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The term glaucoma represents a heterogeneous group of 
neurodegenerative disorders that have a specific type of optic 
neuropathy, causing irreversible defects in the visual field. 
The disease is deceptive, and sometimes, individuals remain 
undertreated or undiagnosed because central vision is usually 
not lost at an early stage of the disease [1,2]. Glaucoma is 
the second leading cause of blindness accounting for nearly 
12.3% cases of visual loss worldwide [1,2].

Primary congenital glaucoma (PCG; OMIM 231300), a 
severe type of glaucoma, is characterized by developmental 
defects in the trabecular meshwork (trabeculodysgenesis) 
with neonatal or infantile onset [3]. Genetic defects in the 
trabecular meshwork are responsible for various forms of 
glaucoma [4]. The classical triad of symptoms presented 
by PCG is photophobia (hypersensitivity to light), epiphora 
(excessive tearing), and blepharospasm (inflammation of 
eyelids) [5]. Other clinical findings include Haab’s striae 
(rupture of Descemet’s membrane), elevated intraocular 
pressure (IOP), buphthalmos, conjunctival erythema, corneal 

edema, and optic atrophy in later stages of the disease [6-9]. 
It is a rare form of glaucoma representing 1% to 5% of all 
cases of glaucoma [10]. Although sporadic cases of PCG are 
more common, familial cases have also been documented. 
In familial cases, PCG is normally inherited in an autosomal 
recessive pattern with incomplete penetrance, but recently, an 
autosomal dominant inheritance case was reported [3,11,12].

As the molecular etiology of PCG is not fully under-
stood, only a few genes responsible for the disease are 
known [13-18]. Four chromosomal locations, GLC3A (2p22-
p21), GLC3B (1p36.2–36.1), GLC3C (14q24.3), and GLC3D 
(14q24.2–24.3), and two causative genes, cytochrome P450 
family 1 subfamily B member 1 (CYP1B1; OMIM 601771) 
and latent transforming growth factor-beta binding protein 
2 (LTBP2; OMIM 602091), have been identified for PCG 
thus far [19-25]. Pathogenic mutations in CYP1B1 are the 
most common cause of PCG and are responsible for 27% 
of sporadic and 87% of familial PCG cases worldwide [26]. 
To date, a total of nine mutations, including missense and 
frameshift, have been identified in LTBP2 responsible for 
PCG [20,22,27-29]. Recently, an autosomal dominant model 
of PCG with variable expression was identified in a fifth 
locus, GLC3E (9p21.2) harboring mutations in the tunica 
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Purpose: Primary congenital glaucoma (PCG) is a genetically heterogeneous disorder caused by developmental defects 
in the anterior chamber and trabecular meshwork. This disease is an important cause of childhood blindness. In this 
study, we aim to identify the genetic determinants of PCG in three consanguineous families of Pakistani descent.
Methods: Affected members of all three families underwent detailed ophthalmological examination including slit-lamp 
biomicroscopy. Blood samples were collected from affected and healthy members of all three families, and genomic DNA 
was extracted. Linkage analysis was performed for the known or reported loci of PCG to localize the disease interval, 
and logarithm of odds (LOD) scores were calculated. All protein-coding exons of the candidate gene, latent transforming 
growth factor-beta binding protein 2 (LTBP2), were bidirectionally sequenced to identify the disease-causing mutation.
Results: Short tandem repeat (STR) marker-based linkage analysis localized the critical interval to chromosome 
14q with a maximum two-point LOD score of 2.86 (PKGL076), 2.8 (PKGL015), and 2.92 (PKGL042). Bidirectional 
Sanger sequencing of LTBP2 revealed three novel pathogenic variants, i.e., c.3028G>A (p.Asp1010Asn), c.3427delC 
(p.Gln1143Argfs*35), and c.5270G>A (p.Cys1757Tyr) in PKGL076, PKGL015, and PKGL042, respectively. All three 
mutations segregated with the disease phenotype in their respective families and were absent in 200 ethnically matched 
normal chromosomes.
Conclusions: We identified three novel mutations, p.D1010N, p.Q1143Rfs*35, and p.C1757Y, in LTBP2 responsible for 
PCG.
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interna endothelial cell kinase (TEK; OMIM 600221) gene 
[12]. These findings were consistent with previous findings 
in terms of high penetrance as well as variable expression of 
the paired-like homeodomain transcription factor 2 (PITX2; 
OMIM 601542), forkhead box C1 (FOXC1; OMIM 601090), 
paired box gene 6 (PAX6; OMIM 607108), and optic atrophy 1 
(OPA1; OMIM 605290) genes responsible for developmental 
glaucoma in an autosomal dominant inheritance pattern 
[30-36].

A total of 30 familial cases affected with PCG were 
identified and recruited from different cities in Pakistan. Of 
these cases, 23 families were linked to CYP1B1 with a total of 
11 mutations reported previously, and three families showed 
linkage to LTBP2 [37]. In the present study, we report three 
novel mutations, including two missense and a frameshift in 
the LTBP2 gene, in three consanguineous families with PCG 
who were negative for mutations in CYP1B1.

METHODS

Subject recruitment and clinical evaluation: Patients 
affected with PCG were identified and recruited from pedi-
atric departments of Layton Rahmatulla Benevolent Trust 
(LRBT) and Children’s Hospital Lahore. Informed written 
consent was obtained from all participating family members 
consistent with the tenets of the Declaration of Helsinki and 
ARVO (Association for Research in Vision and Ophthal-
mology) statement on human subjects as well. This study 
was approved by the Institutional Review Board (IRB) of the 
National Eye Institute (Bethesda, MD), the Johns Hopkins 

University School of Medicine (Baltimore, MD), and the 
National Centre of Excellence in Molecular Biology (Lahore, 
Pakistan).

A detailed medical and clinical history was obtained by 
interviewing all members of the family. Ophthalmic exami-
nation including slit-lamp microscopy was performed at the 
LRBT Hospital (Lahore, Pakistan). Elevated IOP (>16 mmHg 
for children and >21 mmHg for adults), corneal edema, 
increased corneal diameter (>12.0 mm), and a large cup to 
disc ratio (C/D ratio) were inclusion criteria for the patients.

Approximately 10  ml of blood was drawn from all 
participating family members, and the samples were stored 
in 50 ml Sterilin Falcon tubes with 20 mM EDTA. Genomic 
DNA was extracted as previously described [38,39].

Exclusion and linkage analysis: The known or reported loci 
or genes associated with PCG were screened by genotyping 
16 polymorphic short tandem repeat (STR) markers spanning 
GLC3A/CYP1B1 (D2S2163, D2S177, D2S1346, D2S2331), 
GLC3B (D1S228, D1S402, D1S507, D1S2672), GLC3C 
(D14S274, D14S63, D14S258), and GLC3D/LTBP2 (D14S43, 
D14S1036, D14S61, D14S59, D14S74). Amplification reac-
tions for the exclusion analysis were performed as previously 
described [38,39]. The amplified products from each DNA 
sample were mixed with a loading cocktail containing 400 
HD size standards (Applied Biosystems, Mountain View, 
CA) and resolved on an ABI 3100 Genetic Analyzer (Applied 
Biosystems). Genotypes were assigned with GeneMapper 
software (Applied Biosystems).

Table 1. Clinical characteristics of affected individuals of PKGL076, PKGL015 and PKGL042.

Family ID
Individual 
ID

Age at 
Enrollment

Max. IOP 
(OD/OS)

CD Ratio 
(OD/OS) VA(OD/OS)

Corneal 
Diameter 
(B/L)

Other Clinical 
findings

PKGL076 7 3 Years 36/26 NV/NV PL/PL Increased B/L Bu, CE, CH
PKGL076 8 6.5 Years 28/24 NV/NV PL/CF >13mm B/L Mc, B/L NY.
PKGL076 9 16 Years NA 0.6/0.4 NPL/PL Increased B/L Bu, B/L MF
PKGL015 12 6 Years 40/21 1.0/NV CF/NPL NA Bu, CE
PKGL015 15 5 Years NV/36 NV/0.9 CF NA Only Left Eye, FT

PKGL015 17 8 Years NA 1.0/NV CF NA Only Right eye, Ap, 
PI

PKGL042 9 16 years 36/NV 1.0/NV HM/HM Increased Bu, CO
PKGL042 10 12 years NA NV/NV PL/PL Increased B/L Bu, B/L CO
PKGL042 11 14 years 24/22 0.7/0.4 PL/HM 13/14mm B/L Bu, CO, B/L NY.

IOP: intraocular pressure; OD: oculus dexter; OS: oculus sinister; CD Ratio: cup to disc ratio; VA: visual acuity; NV: no view; PL: light 
perception; NPL: no light perception; HM: hand movement; CF: counting fingers; B/L: bilateral; Bu: buphthalmos; CH: corneal haze; 
CE: corneal edema; NY: nystagmus; Mc: megalocornea; MF: myopic fundus; Ap: Aphakia; PI: peripheral Iridectomy; FT: Failed trab-
eculectomy, CO: corneal opacity.

http://www.molvis.org/molvis/v26/14
https://www.ncbi.nlm.nih.gov/omim/?term=600221
https://www.ncbi.nlm.nih.gov/omim/?term=601542
https://www.ncbi.nlm.nih.gov/omim/?term=601090
https://www.ncbi.nlm.nih.gov/omim/?term=607108
https://www.ncbi.nlm.nih.gov/omim/?term=605290
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Figure 1. Pedigree drawing of fami-
lies harboring mutations in LTBP2 
with the haplotypes of alleles for 
chromosome 14q24.2–24.3 micro-
satellite markers. A: PKGL076. B: 
PKGL015. C: PKGL042. Alleles 
forming the risk haplotype are 
shaded black, and alleles not cose-
gregating with primary congenital 
glaucoma are shown in white. 
Square: male; circle: female; filled 
symbol: affected individual; the 
double line between individuals: 
consanguineous marriage; diagonal 
line through a symbol: deceased 
family member.

http://www.molvis.org/molvis/v26/14
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Two-point linkage analyses were performed using the 
FASTLINK version of MLINK from the LINKAGE Program 
Package (provided in the public domain by the Human 
Genome Mapping Project Resources Centre, Cambridge, 
UK) [40,41]. Maximum logarithm of odds (LOD) scores were 
calculated using PLINK (Shaun Purcell, Boston, MA). PCG 
was analyzed as a fully penetrant trait with an affected allele 
frequency of 0.001. The marker order and distances between 
the markers were obtained from the NCBI (National Center 

for Biotechnology Information, Bethesda, MD) chromosome 
14 sequence maps.

Sanger sequencing for mutation screening: Thirty-four 
primer pairs for LTBP2 were designed by using the Primer3 
program. The PCR amplification was performed in 10 µl 
volume with 20 ng of genomic DNA. The reaction consisted 
of denaturation step at 95 °C for 5 min followed by a two-step 
touchdown procedure. The first step of 10 cycles consisted 
of denaturation at 95 °C for 30 s, followed by a primer set 
specific annealing for 30 s (annealing temperature decrease 

Figure 2. Bidirectional Sanger sequencing identified pathogenic mutations in LTBP2. Forward and reverse sequence chromatograms. A: 
Affected individual 7 of PKGL076 homozygous for a novel missense mutation c.3028G>A (p.Asp1010Asn). B: Unaffected individual 5 
heterozygous carrier of PKGL076 for c.3028G>A (p.Asp1010Asn). C: Affected individual 15 of PKGL015 homozygous for a novel frameshift 
mutation c.3427delC (p.Gln1143Argfs*35). D: Unaffected individual 11 heterozygous carrier of PKGL015 for c.3427delC (p.Q1143Rfs*35). 
E: Affected individual 9 of PKGL042 homozygous for a novel missense mutation c.5270G>A (p.Cys1757Tyr). F: Unaffected individual 14 
heterozygous carrier of PKGL042 for c.5270G>A (p.Cys1757Tyr).

http://www.molvis.org/molvis/v26/14
https://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/fastlink.html
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by 1 °C per cycle) and elongation at 72 °C for 45 s. The 
second step of 30 cycles consisted of denaturation at 95 °C 
for 30 s followed by annealing (annealing temperature -10 
°C) for 30 s and elongation at 72 °C for 45 s, followed by a 
final elongation at 72 °C for 10 min [42]. The PCR primers 
for each exon were used for bidirectional sequencing with 
the BigDye Terminator Ready Reaction mix, according to 

the manufacturer’s instructions (Thermo Fisher Scientific, 
Waltham, MA). Sequencing products were dissolved in 
10 μl of formamide (Applied Biosystems) and resolved on 
an ABI PRISM 3100 Genetic Analyzer (Applied Biosys-
tems). Sequencing results were assembled with ABI PRISM 
sequencing analysis software, version 3.7, and analyzed with 
SeqScape software (Applied Biosystems).

Figure 3. Sequence alignment of LTBP2 orthologs illustrating the conservation of amino acids aspartic acid at position 1010 and cysteine at 
position 1757. Red: primates; green: Euarchontoglires; blue: Laurasiatheria; and black: Afrotheria.

http://www.molvis.org/molvis/v26/14
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Evolutionary conservation and prediction analysis: The 
evolutionary conservation of mutated amino acids was exam-
ined by using the UCSC Genome Browser (https://genome.
ucsc.edu). The possible effect of substituted amino acid on the 
structure of the protein was further examined with Sorting 
Intolerant from Tolerant (SIFT), PolyPhen-2, CONsensus 
DELetreiousness score of non-synonymous single nucleotide 
variants (Condel), Mutation Taster, and LoFtool. The Human 
Splicing Finder (HSF) tool was used to better understand the 
impact of exonic mutation causing any splicing defects. The 
novelty of the pathogenic variant was confirmed with the 
1000 Genomes, dbSNP, gnomAD, and Exome Variant Server 
databases and 200 ethnically matched control chromosomes.

RESULTS

In this study, we report three familial cases, PKGL076, 
PKGL015, and PKGL042, recruited from different cities in 
Punjab, Pakistan. A detailed history was obtained for affected 
individuals in each family through family interviews and 
available medical records. Pedigree and haplotype analysis 
revealed the disease phenotype segregates with an autosomal 
recessive pattern. All affected individuals developed the 
disease symptoms within the first 3 years of life. Affected 
individuals from these familial cases underwent a detailed 
ophthalmic examination including slit-lamp biomicroscopy 
to confirm the diagnosis.

Ophthalmic examination of PKGL076 showed bilateral 
(B/L) buphthalmos, corneal edema, B/L corneal haze, and 
an increased corneal diameter (>13 mm) in individual 7. The 
maximum IOP recorded for this individual was 36/26 mmHg 
(oculus dexter/oculus sinister [OD/OS]) and visual acuity 
reduced to the perception of light in both eyes. Individual 
8 developed PCG symptoms at 1.5 years of age. Medical 
records showed B/L buphthalmos, B/L nystagmus, elevated 

IOP of 28/24 mmHg (OD/OS), and an increased corneal 
diameter (>13 mm). Detailed medical examination of indi-
vidual 9 showed B/L buphthalmos and B/L myopic fundus. 
Fundoscopy of this affected individual revealed a cup to disc 
ratio of 0.6/0.4 (OD/OS). Visual acuity was reduced to the 
perception of light in the left eye whereas the right eye had 
no perception of light (Table 1).

Detailed medical examination of individual 12 in 
PKGL015 showed B/L buphthalmos, corneal edema, 
maximum IOP of 40/21 mmHg (OD/OS), and a C/D ratio 
of 1.0/ no view (NV; OD/OS). Visual acuity of this affected 
member was reduced to counting fingers and no perception of 
light in the right and left eyes, respectively. Medical records 
of individual 15 showed a maximum IOP of NV/36 mmHg 
(OD/OS), a C/D ratio of NV/0.9 (OD/OS) and visual acuity 
reduced to counting fingers. Clinical data of individual 17 
showed aphakia, peripheral iridectomy, a C/D ratio of 1.0/NV, 
and visual acuity reduced to counting fingers only (Table 1).

All affected individuals of PKGL042 exhibited a severe 
PCG phenotype. Clinical data of affected individual 9 showed 
B/L buphthalmos and corneal opacity. The maximum IOP 
recorded was 36/NV mmHg (OD/OS), and the C/D ratio was 
1.0/NV (OD/OS). Visual acuity was reduced to hand move-
ment only. Medical records of individual 10 showed B/L 
buphthalmos, B/L corneal opacity, and an increased corneal 
diameter (>13 mm). The ophthalmic examination of affected 
individual 11 revealed a maximum IOP of 24/22 mmHg (OD/
OS), a C/D ratio of 0.7/0.4 (OD/OS), and a corneal diameter 
of 13/14 mm (OD/0S). Additional clinical findings included 
B/L buphthalmos, corneal opacification, and B/L nystagmus 
(Table 1).

Initially, linkage analysis was performed on all families 
for previously reported genes and loci responsible for PCG, 

Table 3. A list of previously reported pathogenic mutations in LTBP2 responsible for primary congenital glaucoma.

Nucleotide Change Protein Change
Exon of 
LTBP2 Mutation Ethnicity Reference

c.331C>T p.Gln111* 1 Nonsense Pakistani [20]
c.412delG p.Ala138Profs*278 1 Deletion Pakistani [20]
c.895C>T p.Arg299* 4 Nonsense Gypsy [20]
c.1243_1256del14 p.Glu415Argfs*596 6 Deletion Pakistani [20]
c.1415delC p.Ser472fs*3 7 Deletion Iranian [22]
c.2421G>A p.Trp807* 14 Nonsense Indian [29]
c.4031InsA p.Asp1345Glyfs*6 27 Insertion Pakistani [28]
c.4934G>A p.Arg1645Glu 34 Missense Pakistani [28]
c.5376delC p.Tyr1793fs*55 36 Deletion Iranian [22]

Note: the reference numbers correspond to the bibliography of the manuscript.

http://www.molvis.org/molvis/v26/14
https://genome.ucsc.edu
https://genome.ucsc.edu
https://sift.bii.a-star.edu.sg
http://genetics.bwh.harvard.edu/pph2/
http://bg.upf.edu/fannsdb/
http://www.mutationtaster.org
https://omictools.com/loftool-tool
http://www.umd.be/HSF/
http://www.1000genomes.org
http://www.ncbi.nlm.nih.gov/SNP/
https://gnomad.broadinstitute.org
http://evs.gs.washington.edu/EVS/
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including the GLC3D locus on chromosome 14q24.2–24.3. 
All available members of the families (PKGL076, PKGL015, 
and PKGL042) were genotyped for microsatellite markers 
(D14S63, D14S258, D14S43, D14S1036, D14S61, D14S59, and 
D14S74) flanking the GLC3D locus. The haplotype analysis 
of chromosome 14 markers in all families revealed the 
linkage of the PCG phenotype to the GLC3D locus (Figure 
1). Maximum two-point LOD scores of 2.86, 2.8 and 2.92, at 
recombination fraction θ=0, were obtained for the D14S1036, 
D14S59, and D14S59 markers, for PKGL076, PKGL015, and 
PKGL042, respectively (Table 2).

Subsequently, all 36 coding exons, exon–intron bound-
aries along with 5′ and 3′ untranslated regions (UTRs) of 
LTBP2 were sequenced in all available family members of 
PKGL076, PKGL015, and PKGL042. In PKGL076, a novel 
homozygous missense mutation (c.3028G>A) was identi-
fied in exon 19 of LTBP2 that results in the substitution of 
asparagine for aspartic acid at position 1010 (p.Asp1010Asn; 
Figure 2A,B). In PKGL015, bidirectional sequencing of the 
LTBP2 gene identified a novel single-base deletion at the 
coding nucleotide position: c.3427delC (p.Q1143Rfs*35; 
Figure 2C,D). In PKGL042, a novel guanine to adenine 
transition mutation (c.5270G>A) was identified in exon 35 
which results in the substitution of tyrosine for cysteine at 
position 1757 (p.Cys1757Tyr; Figure 2E,F). All three muta-
tions showed complete segregation with the PCG phenotype 
in the respective families and were absent in 200 ethnically 
matched control chromosomes. Moreover, both missense 
mutations (c.3028G>A and c.5270G>A) were absent from the 
Exome Variant Server (EVS), Genome Aggregation Database 
(gnomAD), dbSNP database, and 1000 Genomes database 
whereas c.3427delC has been reported in ExAC and gnomAD 
with a minor allele frequency (MAF) of 0.000008258 and 
0.000003981, respectively.

Evolutionary conservation analysis showed high 
conservation of both residues (Asp1010 and Cys1757) among 
primates, placental mammals, and vertebrates (Figure 3). The 
PolyPhen-2, SIFT, LoFtool, and Condel analyses predicted 
the p.D1010N mutation to be deleterious to the functional 
and enzymatic activity of the LTBP2 protein with scores of 
1.0000, 0.0000, 0.0599, and 0.9450, respectively. Mutation-
Taster also predicted this mutation to be disease-causing 
affecting the protein features. In silico analysis predicted 
that the p.C1757Y mutation would be damaging to the protein 
function by providing maximum scores of 0.0000, 1.0000, 
0.9450, 0.0599, and 194.00 for SIFT, PolyPhen-2, Condel, 
LoFtool, and MutationTaster, respectively. MutationTaster 
also provided the conservation of the wild-type nucleo-
tide (g.111113G) based on multiple alignments of genome 

sequences of 46 different species. MutationTaster predicted 
g.111113G to be highly conserved with maximum PhastCons 
and phyloP scores of 1.000 and 5.924, respectively.

DISCUSSION

In the present study, we identified three novel pathogenic 
mutations in the LTBP2 gene in three consanguineous fami-
lies with PCG (PKGL076, PKGL015, and PKGL042) from 
Punjab, Pakistan. The homozygous substitution (c.3028G>A; 
p. Asp1010Asn) identified in PKGL076 occurs within the 
splice donor site of intron 19, and most likely will perturb 
the normal splicing pattern of the LTBP2 protein. We used 
HSF, an online bioinformatics tool, to predict the effect of 
c.3028G>A on LTBP2 mRNA splicing. The HSF analysis 
generated consensus values of 74.68 and 45.73 for the wild-
type (c.3028G) and mutant (c.3028A) nucleotides, respec-
tively. The predicted consensus deviation value of −38.77% 
for c.3028G>A suggests the loss of the wild-type donor splice 
site. In parallel, HSF also detected the activation of an exonic 
cryptic splice acceptor site using the adenine nucleotide 
(c.3028G>A) in exon 19. The algorithm predicted consensus 
values of 37.26 and 66.20 for the wild-type (c.3028G) and the 
new cryptic splice site (c.3028A), respectively. The predicted 
consensus value deviation of +77.67% for the new exonic 
splice acceptor site suggests the loss of the wild-type splice 
donor site that would result in a frameshift and eventually, 
would lead to a premature stop codon in the mutant protein. 
Sanger sequencing of the LTBP2 gene identified a novel 
homozygous single-base deletion at c.3427delC in all affected 
members of PKGL015. This single nucleotide deletion in 
exon 23 substitutes the amino acid glutamine with arginine 
at codon 1143 (p.Gln1143Argfs*35), causing a frameshift 
mutation. This frameshift resulted in truncating the open 
reading frame of the LTBP2 protein by creating a premature 
stop codon, 35 amino acids downstream after the last original 
amino acid P1142. As a result of this frameshift mutation, a 
truncated protein of 1,176 amino acids was produced of which 
only the first 1,142 amino acids were similar to the wild-type 
LTBP2 protein. These frameshift mutations change the amino 
acid composition of the LTBP2 enzyme which, as a result, 
renders the functional inactivity of the protein by changing 
its primary, secondary, and tertiary structures.

We identified the second novel substitution (c.5270G>A) 
resulting in the substitution of tyrosine for cysteine at position 
1757 (p.Cys1757Tyr) in epidermal growth factor (EGF)-like 
domain 19 of LTBP2. The high conservation of cysteine and 
the flanking amino acids indicates an important role in the 
structural and functional stability of the LTBP2 protein. 
Cysteine, a nonpolar hydrophobic amino acid, involves the 
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formation of intrachain disulfide bonds. MutationTaster-based 
in silico analysis ranked p.Cys1757Tyr as disease-causing and 
predicted the potential loss of EGF-like domain 19 and EGF-
like domain 20 and subsequent downstream disulfide bond 
formations in the mutant LTBP2 protein. In conclusion, the 
substitution of cysteine with tyrosine will result in the loss of 
intrachain disulfide bonds and ultimately, disrupts the proper 
folding and the normal functioning of the LTBP2 protein.

LTBP2 has 36 exons and encodes for an 1,821 amino acid 
protein [43,44], that belongs to a superfamily of extracellular 
matrix LTBP proteins and fibrillins comprised of EGF-like 
domains, transforming growth factor β (TGF-β) binding 
protein (TB)-like motifs [22,45-47]. LTBP2 protein is an 
extracellular matrix protein and has a presumed role in cell 
adhesion and elastin microfibril assembly [48-52]. The asso-
ciation of LTBP2 with microfibrils and its noticeable presence 
in elastic tissues has been reported [53].

The LTBP2 protein is expressed in the trabecular mesh-
work, and is important in the regulation of IOP and for the 
development of ciliary zonules and the anterior chamber, as 
well as the production of aqueous humor [54]. Furthermore, 
LTBP2 is highly expressed in tissues rich in elastic fibers, i.e., 
arteries, and lungs [55]. Mutations in LTBP2 were identified 
to cause PCG in families and patients from Pakistani, Gypsy, 
Iranian, and Indian populations [20,22,27-29].

PCG is a genetically heterogeneous disease with variable 
patterns and expressivity. The most common clinical features 
persistent with PCG are elevated IOP, buphthalmos, increased 
corneal diameter, corneal edema or haze, and reduced visual 
acuity. The clinical presentation of PCG cases harboring 
mutations in CYP1B1 or LTBP2 is similar with the excep-
tion of a few subtle phenotypic differences. For instance, 
in a family reported from Pakistani population, one of the 
patients had a persistent pupillary membrane and had a bilat-
eral subluxated lens. The other patient in the same family had 
microspherophakia and iridogoniodysgenesis in addition to 
the cardinal symptoms of PCG, whereas the second family 
had typical symptoms [28]. Furthermore, in a recent study of 
36 large consanguineous Pakistani families, several patients 
affected by PCG had classical or typical symptoms (reduced 
vision and corneal haze) in only one eye which is in direct 
contrast with the present study in which all the individuals 
were affected bilaterally in the first 3 years of life. Similarly, 
one affected member of the family had high IOP but no 
corneal haze or vision impairment, which is also in slight 
contrast to the present study in which all affected individuals 
have much reduced visual acuity along with corneal haze, 
corneal edema, or megalocornea [56].

In summary, we have identified three novel LTBP2 
mutations, c.3028G>A (p. Asp1010Asn), c.3427delC 
(p.Gln1143Argfs*35), and c.5270G>A (p.Cys1757Tyr), in 
three Pakistani familial cases with PCG. Thus far, only nine 
mutations in LTBP2 have been reported in patients with 
PCG of Pakistani, Gypsy, Iranian, and Indian descent which 
suggests that these mutations are a relatively rare cause of 
PCG (Table 3). The present study results along with those 
of previous studies suggest that mutations in LTBP2 are a 
plausible cause of ocular anomalies that may lead to elevated 
IOP and eventually cause PCG.
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