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ABSTRACT OF THE THESIS

Predicting Hypertension with Add Health Dataset

using Machine Learning Models

by

Zihan Fan

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

High blood pressure is a prevalent health concern worldwide, and identifying the factors that

contribute to its development is crucial for prevention and management strategies. This

study aimed to investigate the influence of sex, hereditary factors, habitats, and BMI on

the risk of high blood pressure using machine learning techniques. Several models, including

Logistic Regression, Decision Trees, Random Forests, XGBoost, Support Vector Machines,

and Neural Networks are employed on the public-use sample from the Add Health dataset.
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CHAPTER 1

Introduction

I was inspired to work on this specific topic because of my personal experience. During a re-

cent annual medical examination, my 25-year-old friend received a warning from her doctor.

The doctor cautioned that if she did not make significant lifestyle changes, she would likely

develop diabetes and high blood pressure in the near future. This news was alarming, given

her young age.

Around the same time, I had a routine blood test. As the nurse drew my blood, I noticed

a distinct yellow substance in the sample tube, which the nurse identified as fat. This im-

mediately sparked concern about my own health, as I feared my triglyceride levels would be

dangerously high due to my dietary habits. Although my test results were within the normal

range, the experience left a lasting impact on me.

Motivated by these events, I conducted research and discovered a worrying trend [HAB20].

A significant number of young people were found to have visible fat in their blood samples,

and many chronic diseases typically associated with older age groups were increasingly af-

fecting younger individuals.

These personal experiences and the concerning patterns I uncovered in my research ignited

a passion within me to investigate the factors that contribute to the development of chronic

diseases, particularly high blood pressure, among younger populations. By understanding

the complex interplay of variables such as sex, heredity, habitats, and BMI, I hope to con-

tribute to the development of more effective prevention strategies and targeted interventions.

This thesis represents my dedication to addressing this critical public health issue and pro-

moting healthier lifestyles for generations to come.
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To further investigate the factors contributing to high blood pressure, I conducted a little

research and identified several key risk factors, including family history, obesity, lack of ex-

ercise, and excessive salt intake. These findings align with the growing body of evidence

suggesting that lifestyle factors play a crucial role in the development of hypertension.

I wanted to explore these risk factors using real-world data and advanced analytical tech-

niques. To achieve this, I decided to work with the Add Health dataset, a comprehensive

longitudinal study that provides a wealth of information on the health and well-being of

adolescents to adults in the United States.

By leveraging this dataset and applying various machine learning models, such as Logistic

Regression, Decision Trees, Random Forests, XGBoost, Support Vector Machines, and Neu-

ral Networks, I aim to gain a more nuanced understanding of how factors like sex, heredity,

habitats, and BMI influence an individual’s likelihood of developing high blood pressure.

These powerful models will allow me to uncover complex patterns and relationships within

the data that might not be apparent through traditional statistical methods.

Through this research, I hope to contribute to the development of more accurate risk assess-

ment tools and targeted prevention strategies. By identifying the most important predictors

of high blood pressure risk, healthcare professionals and policymakers can design more effec-

tive interventions and educational campaigns to promote healthier lifestyles and reduce the

burden of this chronic condition on individuals and society as a whole.

In the following sections of this thesis, I will describe the methodology used in my analy-

sis, present the results of my machine learning models, and discuss the implications of my

findings for public health practice and future research.
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CHAPTER 2

Data

2.1 Data Introduction

The National Longitudinal Study of Adolescent to Adult Health, also know as Add Health

is a nationally representative, longitudinal study of adolescents in the United States.[HU09]

The study first started in 1994-1995 with a sample of more than 20,000 adolescents in grades

7-12 and has followed the participants into adulthood. Recently, in 2016-2018, the most

recent wave of data, wave 5 was collected. Add Health employs a multistage, stratified,

school-based, cluster sampling design, which ensures that the sample is representative of

U.S. adolescents with respect to region, urbanicity, school size, school type, and ethnicity.

The study collects data on a wide range of topics, including physical and mental health,

social and economic well-being, education, employment, relationships, and health-related

behaviors.

For the purpose of this thesis, I will be using data from multiple waves of the Add Health

study, focusing on variables related to high blood pressure risk factors, such as sex, heredity,

habitats, BMI, and lifestyle behaviors.

For this study, I will be using data from Waves I, IV, and V of the Add Health dataset. Wave

I, conducted between 1994 and 1995, included a 45-minute in-school questionnaire completed

by 90,118 students from 145 middle, junior, and high schools. A subset of 20,745 adolescents

was then selected for an in-home interview. Family history data was also collected during

Wave I through a family questionnaire.

Wave IV, conducted in 2008 with 15,701 original Wave I respondents, focused on the develop-
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mental and health trajectories from adolescence into young adulthood. The survey questions

were expanded to cover a wide range of topics, including educational transitions, economic

status, sleep patterns, illnesses and medications, physical activities, emotional content and

quality of relationships, childhood maltreatment, substance addiction, and work-family bal-

ance. For this study, I will use data from Wave IV that contains information about respon-

dents’ lifestyles and their height/weight measurements.

Wave V, the most recent wave of data collection, took place during 2016-2018. The primary

objective was to collect social, environmental, behavioral, and biological data to track the

emergence of chronic diseases as the cohort progressed through their fourth decade of life.

The Wave V design included a mixed-mode survey, with an in-home interview administered

to a sub-sample of respondents to analyze mode effects. Repeat measurements of anthro-

pometric, cardiovascular, metabolic, and inflammatory indicators were collected to assess

the change in and/or onset of chronic diseases, including obesity, hypertension, diabetes,

and dyslipidemia. New biomarkers of chronic kidney disease were also introduced. For this

study, I will use data from Wave V to determine whether respondents have developed high

blood pressure.

One thing to notice is that the data is divided into public-use data and restricted-use data.

In this paper, the public-use data will be studied. This give me less observation to work with

which is around 3000. By leveraging data from these three waves of the Add Health study, I

aim to investigate the complex relationships between lifestyle factors, family history, and the

development of high blood pressure over time. The longitudinal nature of the dataset allows

for a unique opportunity to examine how risk factors in adolescence and young adulthood

may influence the onset of chronic diseases later in life.
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Figure 2.1: Frequency of High Blood Pressure before resampling

2.2 Data Preparation

While exploring the dataset, there are several things need to be considered. Because differ-

ent models have different assumptions and requirements, data is cleaned in order to improve

the model performance. The problems including the conversion of categorical variables, the

imbalance in the target variable.

The dataset contains a categorical variable called ”inspection”, which represents the last

time the interviewee has had any health inspection, the possible value of this variable in-

clude: ‘(1) (1) Within the past 3 months’, ‘(2) (2) 4 to 6 months ago’, ‘(3) (3) 7 to 9 months

ago’, ‘(4) (4) 10 to 12 months ago’, ‘(5) (5) Longer than 1 year ago but less than 2 years

ago’, ‘(6) (6) 2 years ago or longer’, ‘(7) (7) Never’.

Since some machine learning algorithms cannot directly handle categorical variables, I ap-

plied one-hot encoding to convert the “inspection” variable into multiple binary variables.

One-hot encoding works by creating a new set of binary variables for each unique category

in the original variable. A value of 1 indicates the presence of that category and 0 otherwise.

This transformation allows the models to effectively incorporate the information from the

categorical variable.
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0 1

Frequency 1864 1864

Table 2.1: Class distribution of High Blood Pressure after SMOTE

Upon examining the target variable, the next issue with the data is discovered to be

class imbalance. The imbalance is very obvious from figure 2.1. Intuitively, it is easy to

understand this imbalance, because naturally there would be way more people who does

not have hypertension than those who have it. But this class imbalance can lead to biased

models that primarily predict the majority class, resulting in high overall accuracy but poor

performance in identifying the minority class .

There are several different ways often used to address this issue. The one used in this

study is the Synthetic Minority Over-sampling Technique (SMOTE)[CBH02] to resample

the training data. SMOTE is an oversampling technique that creates synthetic examples

of the minority class by interpolating between existing minority instances. By generating

additional synthetic samples, SMOTE helps to balance the class distribution in the training

data, allowing the models to learn more effectively from both classes.

After applying SMOTE, a significant improvement happened in the models’ performance,

particularly in terms of the ROC AUC metric. The ROC AUC increased from around 0.35

to over 0.5, indicating that the models were better able to discriminate between the two

classes after resampling.

The other way to resolve this problem is to undersample the majority class, but the big draw

back is that some important feature could be losed during the process. The model results

also agress with the drawback of the model because the model performance is not improved

with this method, so SMOTE is used in the training data of all the models used in this

study.
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CHAPTER 3

Models

3.1 Logistic Regression

Binary logistic regression is a statistical method used to model the relationship between

a binary dependent variable and independent variables. It is a popular choice for binary

classification problems due to its simplicity and interpretability. The probability of an in-

stance belonging to a particular class is modeled based on a linear combination of the input

features. The probabilistic outputs make it easy to interpret and set decision thresholds.

Logistic regression is suitable for this problem as it can effectively model the relationship

between lifestyle and demographic factors and the likelihood of developing high blood pres-

sure. However, it assumes linearity in the data, which may not always be the case, and can

be sensitive to outliers and multicollinearity.

In this study, the dependent variable is hypertension (1 = yes, 0 = no). The independent

variables include lifestyle factors, such as diet, physical activity, as well as demographic char-

acteristics like sex, age, and family history of hypertension.

The logistic regression model estimates the probability of the dependent variable taking the

value of 1 (presence of hypertension) based on the values of the independent variables. The

general form of the logistic regression equation is:

P (Y = 1 | X) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)

In this equation, p is the probability of the dependent variable being 1, β0is the intercept

term, β1, β2, ..., βkare the regression coefficients for the independent variables X1, X2, ..., Xk

7



The regression coefficients represent the change in the log odds of the dependent variable

for a one-unit change in the corresponding independent variable, holding all other variables

constant. A positive coefficient indicates that an increase in the independent variable is

associated with an increased likelihood of the dependent variable being 1, while a negative

coefficient suggests the opposite.

Table 3.1 shows the coefficients of logistic regression. According to the table, family

history plays a significant role in determining an individual’s likelihood of developing high

blood pressure. The model coefficients reveal that having a mother with diabetes (diabetes

mom) increases the risk of high blood pressure, as indicated by the positive coefficient of

0.269159. Similarly, having a father with diabetes (diabetes dad) also contributes to an

increased risk, albeit to a lesser extent, with a coefficient of 0.105080. These findings suggest

that genetic factors and shared environmental influences within families can have an impact

on an individual’s blood pressure.

One interesting fact from this table is that, the model coefficient for obesity in the mother

(obesity mom) is negative (-0.351274), which is unexpected and contradicts the general un-

derstanding that obesity is a risk factor for high blood pressure. This result should be

interpreted with caution and may require further investigation. On the other hand, having

a father with obesity (obesity dad) is associated with an increased risk of high blood pres-

sure, shown by the positive coefficient of 0.297618. This could reveal the complex interplay

between genetic predisposition and environmental factors in the development of high blood

pressure.

The model also takes into account of an individual’s last health inspection. The inspection

variable is one-hot encoded, meaning that it is represented by multiple binary variables in-

dicating different time intervals since the last inspection. The coefficients for these variables

provide insights into how people treat health check-ups affect the risk of high blood pressure.

For example, having had an inspection within the past 3 months has a positive coefficient

of 0.041420, suggesting a slightly increased risk compared to the reference category. As
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Feature Coefficient

SEX -0.665395

diabete mom 0.269159

diabete dad 0.105080

obesity mom -0.351274

obesity dad 0.297618

bmi 0.084645

fast food 0.050631

sweetdrink 0.010986

exercise -0.033571

inspection(1) (1) Within the past 3 months 0.041420

inspection(2) (2) 4 to 6 months ago -0.312523

inspection(3) (3) 7 to 9 months ago -0.437495

inspection(4) (4) 10 to 12 months ago -0.348100

inspection(5) (5) Longer than 1 year ago but ... -0.307282

inspection(6) (6) 2 years ago or longer -0.587113

inspection(7) (7) Never -0.336818

Table 3.1: Logistic Regression Coefficients
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the time since the last inspection increases, the coefficients become more negative, with the

most negative coefficient (-0.587113) associated with inspections that occurred 2 years ago

or longer (inspection(6)). This trend implies that regular health check-ups and timely inter-

ventions may play a role in managing and preventing high blood pressure.

It is important to note that the model intercept is -2.63599118, which represents the baseline

risk of high blood pressure when all other variables are zero. This negative intercept suggests

that, in the absence of other risk factors, the probability of having high blood pressure is

relatively low.

In conclusion, the logistic regression model provides valuable insights into the factors in-

fluencing the risk of high blood pressure. Family history, particularly diabetes in parents,

emerges as a significant predictor, highlighting the role of genetic predisposition. The timing

of health inspections also appears to be associated with the likelihood of developing high

blood pressure, emphasizing the importance of regular check-ups and early intervention.

However, the unexpected finding regarding obesity in mothers warrants further investigation

to better understand its implications. These results contribute to our understanding of the

complex interplay between various factors in the development of high blood pressure and

can inform strategies for prevention and management.
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3.2 Decision tree and Random Forest

3.2.1 Decision Tree

Decision tree is a machine learning algorithm that recursively partitions the data into smaller

subsets using the explanatory variables. It is also used a lot for binary classification problems

due to the ability to handle both numerical and categorical data. One big advantage that in-

crease the popularity of decision tree is its interpretability. This model can capture complex,

non-linear relationships. Decision trees are suitable for this problem as they can effectively

model the interactions between various lifestyle and demographic factors. However, they are

prone to overfitting, especially when the trees have more levels. Small changes in the data

can lead to different tree structures. Additionally, their performance might not be as good

for high-dimensional data.

At each internal node, the tree selects a single explanatory variable and creates a binary split

based on a simple rule. For numeric variables, the split takes the form of x < k vs x ≥ k,

where k is a threshold value. For categorical variables, the split groups the categories into

two subsets, such as x ∈ {A,B} vs x ∈ {C,D}.

The binary partitioning process continues until a stopping criterion is met, such as reaching

a maximum depth or a minimum number of instances per leaf. The final subsets, represented

by the leaf nodes, contain observations that share a common predicted value. In other words,

a decision tree can only make a limited number of unique predictions, equal to the number

of leaf nodes.

In this study, a classification tree will be employed to predict hypertension, which is a binary

categorical variable. The tree will evaluate all possible splits at each node and select the one

that minimizes an impurity measure. Gini impurity index is used in this model.

The Gini impurity index measures the probability of misclassifying a randomly chosen

instance if it were randomly labeled according to the distribution of classes in the subset.
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Precision Recall F1-Score Support

0.0 0.81 0.78 0.79 465

1.0 0.21 0.24 0.22 111

accuracy 0.67 576

Table 3.2: Classification Report for Decision Tree

The Gini impurity[BFO84] for a node t is calculated as:

Gini(t) = 1− Σi (pi)
2

where pi is the proportion of instances belonging to class i in the node. A Gini impurity

of 0 indicates a pure node, where all instances belong to the same class. Conversely, a Gini

impurity of 0.5 indicates an equal mix of classes, representing the maximum impurity.

At each split, the decision tree algorithm selects the feature and threshold that minimize

the weighted average of the Gini impurity of the child nodes. This greedy approach aims to

create subsets that are as homogeneous as possible compared to the target variable.

12



3.2.2 Random Forest

Random forests are an ensemble learning method that builds upon the concepts of decision

trees to improve their performance and overcome some of their limitations, such as over-

fitting. They are suitable for this problem as they can capture the intricate interactions

between various risk factors and provide insights into the most important predictors of high

blood pressure. However, they are less interpretable than individual decision trees and have

increased computational complexity compared to single decision trees. The key idea behind

random forests is to introduce randomness into the tree-building process, creating a diverse

set of trees that collectively make more accurate predictions.

In a random forest, a number of decision trees are constructed using different subsets of the

training data and different subsets of the explanatory variables. This randomization helps

to reduce overfitting and increases the model’s generalization ability.

The random forest algorithm works as follows:

Bootstrap resampling: Create multiple bootstrap samples from the original training data.

Each bootstrap sample is generated by randomly selecting instances with replacement

Random feature subset selection: At each node of a tree, instead of considering all available

explanatory variables for splitting, only a random subset of variables is considered. This

step further increases the diversity among the trees in the forest.

Tree construction: Build a decision tree for each bootstrap sample using the randomly se-

lected feature subsets. Each tree is grown to its maximum depth without pruning, allowing

them to capture complex interactions among the variables.

Ensemble prediction: To predict for a new instance, the random forest aggregates the predic-

tions from all the individual trees. For classification tasks, the final prediction is determined

by majority voting.

By combining the predictions of multiple diverse trees, random forests aim to achieve better

performance than any single tree. The randomization introduced in the tree-building pro-

cess helps to decorrelate the trees, reducing the risk of overfitting and improving the model’s

13



Precision Recall F1-Score Support

0.0 0.83 0.87 0.85 465

1.0 0.32 0.25 0.28 111

accuracy 0.75 576

Table 3.3: Classification Report for Random Forest

ability to generalize to unseen data.

One of the advantages of random forests is their ability to provide a measure of variable

importance. By calculating the average decrease in impurity across all trees when a specific

variable is used for splitting, random forests can identify the most influential predictors of

high blood pressure. This information can be valuable for understanding the underlying risk

factors and guiding future research and interventions.

The classification reports for the Decision Tree and Random Forest models in table 3.2

and table 3.3 indicate notable differences in their performance. The definition of metrics

used here will be discussed in the Result section of this paper.

In terms of precision, the Random Forest model achieves a slightly higher precision for class

0.0, with a score of 0.83 compared to the Decision Tree’s 0.81. For result 1.0, which means

the people that do have high blood pressure, the improvement is more significant, with the

Random Forest achieving a precision of 0.32, whereas the Decision Tree only reaches 0.21.

This indicates that the Random Forest model is more accurate in predicting the minority

class.

Regarding recall, the Random Forest model also outperforms the Decision Tree. For the

negative class, the Random Forest has a recall of 0.87, which is higher than the Decision

Tree’s recall of 0.78. For positive group, although the recall improvement is modest, the

Random Forest still performs slightly better with a recall of 0.25 compared to the Decision

14



Tree’s 0.24. This suggests that the Random Forest model is more effective at identifying

true positives, particularly for the majority class.

When considering the F1-score, which balances precision and recall, the Random Forest

model again shows superior performance. For negative group, the F1-score of the Random

Forest is 0.85, while the Decision Tree achieves 0.79. For positive group, the Random Forest’s

F1-score is 0.28, significantly higher than the Decision Tree’s 0.22. This indicates that the

Random Forest model maintains a better balance between precision and recall, especially

for the minority class.

Overall accuracy is another key metric where the Random Forest model demonstrates its su-

periority. The Random Forest model achieves an accuracy of 0.75, compared to the Decision

Tree’s 0.67. This overall higher accuracy reflects the Random Forest’s ability to generalize

better across both classes, making fewer errors in classification.

In conclusion, the Random Forest model has consistently better performance compared to

the Decision Tree model. This is shown from in its higher precision, recall, and F1-scores for

both classes, with particularly good improvements for the minority class. These improve-

ments suggest that the Random Forest model is more robust and reliable, making it a more

suitable choice for this classification task.

15



3.3 XGBoost

Extreme Gradient Boosting, also known as XGBoost, works by combining multiple decision

trees and minimize the loss function to create a strong predictive model. XGBoost is an im-

plementation of the gradient boosting framework. They are suitable for this problem as they

can capture the intricate interactions between various risk factors and provide insights into

the most important predictors of high blood pressure. However, they are less interpretable

than individual decision trees and have increased computational complexity compared to

single decision trees.

The objective function of XGboost is:[CG16]

L(t) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ Ω(ft)

Where l represents the loss function, for this binary classification task, log likelihood of

the bernoulli distribution is used as the loss function.

The term ft refers to the tth tree, and y(t−1) represents the prediction made by the model for

the ith instance at the previous iteration (t−1). Ω is the regularization term which is used to

penalize the complexity of the model to prevent overfitting. The other method used in this

model to reduce overfitting is a max depth parameter. This parameter limit the maximum

depth of the trees to achieve that purpose.

The feature importance plot for the XGBoost model provides valuable insights into the

relative importance of various features in predicting the target variable.

The most important feature in the XGBoost model is “fast food”, with an importance score

of 172.0. This suggests that an individual’s fast food consumption habits play an important

role in the model’s predictions. The high importance of this feature indicates that it has a

significant impact on the target variable and that the model heavily relies on this information

for making accurate predictions.

The second most important feature is “sweet drink”, with an importance score of 116.0. This

16



Figure 3.1: Importance rank with XGBoost

implies that an individual’s consumption of sweet drinks is also a key factor in the XGBoost

model’s decision-making process. The model considers this feature to be highly informative

in predicting the target variable.

“walk”, with an importance score of 105.0, is the third most important feature. This suggests

that an individual’s walking habits or physical activity levels are significant predictors in the

XGBoost model. The model likely captures patterns related to the relationship between

walking and the target variable.

“bmi” (Body Mass Index) is the fourth most important feature, with a score of 98.0. This

indicates that an individual’s BMI plays a notable role in the model’s predictions. The XG-

Boost model considers BMI to be a relevant factor in determining the target variable.

“activity”, with an importance score of 62.0, and “num inspection”, with a score of 47.0,

are the fifth and sixth most important features, respectively. These features relate to an

individual’s overall physical activity levels and the number of health inspections they have

17



undergone. The model assigns moderate importance to these features, suggesting that they

contribute to the predictions but to a lesser extent compared to the top four features.

The remaining features, such as “BIO SEX” (biological sex), parental obesity (“obesity mom”

and “obesity dad”), and parental diabetes (“diabete dad” and “diabete mom”), have rela-

tively lower importance scores. This indicates that these features have a limited impact

on the XGBoost model’s predictions compared to the lifestyle and health-related features

mentioned above.

In summary, the feature importance plot for the XGBoost model highlights the significant

role of lifestyle factors in predicting the target variable. Fast food consumption, sweet

drink consumption, walking habits, and BMI are the most influential features in the model’s

decision-making process. Physical activity levels and the number of health inspections also

contribute to the predictions, but to a lesser extent. Demographic factors, such as biological

sex and parental health conditions, have relatively lower importance in the XGBoost model.

These findings provide valuable insights into the key drivers of the model’s predictions and

can guide further analysis and interpretation of the results.
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3.4 Support Vector Machines(SVM)

Support Vector Machines is a powerful machine learning algorithm used for classification

and regression tasks. SVMs can effectively handle non-linear relationships. They are suit-

able for this problem as they can capture complex interactions between risk factors and

are robust to outliers and noise in the data. However, they are computationally expensive

for large datasets, sensitive to the choice of kernel function and hyperparameters, and less

interpretable than other models.

The main idea behind SVM is to find the optimal hyperplane, which could be considered as

a straight line in two dimention, that separates the different classes with maximum margin.

The margin refers to the distance between the hyperplane and the closest data points from

each class, called support vectors. These support vectors define the hyperplane’s position.

The primal problem is a constrained optimization problem. It maximizes the margin of

hyperplane and minimize the classification error. The equation used by primal problem is

to[sks]

minimize(1/2)w⊤w + C
∑

i=1
nξi

subject to yi
(
w⊤Φ (xi) + b

)
≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

Here, w is the weight vector, C is the regularization parameter, ξi are the slack variables,

yi are the class labels, Φ (xi) is the feature mapping function, and b is the bias term. The

objective is to minimize the norm of the weight vector and maximizes the margin while pe-

nalizing misclassifications through the slack variables. The primal problem is then simplified

into dual problem, with the introduce of lagrange multipliers as follows:

minα,α∗
1
2
(α− α∗)T Q (α− α∗) + εeT (α + α∗)− yT (α− α∗)

subject to eT (α− α∗) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , n
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Figure 3.2: Importance rank with SVM

The prediction function that is used to classify the output is:

∑
i∈SV (αi − α∗

i )K (xi, x) + b

Where αi and α∗
i are the Lagrange multipliers for the support vectors from training

process. K(xi, x)represents the kernel function, and the kernel function i used is ‘rbf’ defined

as:

K (x1,x2) = exp
(
−γ · ∥x1 − x2∥2

)
The permutation importance plot for the Support Vector Machine model provides in-

sights into the relative importance of various features in predicting the target variable. The

one-hot encoded ”inspection” variable, which represents the timing of an individual’s last

health inspection, plays a dominant role in the SVM model’s predictions.

The top three most important features are all related to the “inspection” variable. “inspec-

tion (1) (1) Within the past 3 months” has the highest permutation importance, indicating

that individuals who have had a health inspection within the past 3 months significantly
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contribute to the model’s predictions. “inspection (6) (6) 2 years ago or longer” and “inspec-

tion (2) (2) 4 to 6 months ago” also have high importance scores, suggesting that inspections

conducted 2 years ago or longer and those conducted 4 to 6 months ago are influential factors

in the model’s decision-making process.

Other inspection-related features, such as “inspection (5) (5) Longer than 1 year ago but

less than 2 years ago”, “inspection (4) (4) 10 to 12 months ago”, and “inspection (3) (3)

7 to 9 months ago”, also have notable permutation importance scores. This reinforces the

idea that the timing of health inspections at various intervals plays a crucial role in the SVM

model’s predictions.

However, unlike most of the other models used in this study “bmi” (Body Mass Index) has

a lower permutation importance. While still an important feature, its relative influence on

the SVM model’s predictions is less important than the inspection-related features.

The “BIO SEX” (biological sex) feature and the ”inspection (7) (7) Never” feature have

similar permutation importance scores, suggesting that they contribute to the model’s pre-

dictions to a certain extent, but their impact is relatively lower compared to the other

inspection-related features.

Lifestyle factors and family history, such as ”sweet drink” consumption, parental obesity

(“obesity mom” and “obesity dad”), and “fast food” consumption, have lower permutation

importance scores in the SVM model. This indicates that these features have a limited in-

fluence on the model’s predictions compared to the inspection-related features and BMI.

Parental diabetes (“diabete dad” and “diabete mom”), “walk”ing habits, and physical “ac-

tivity” have the lowest permutation importance scores among the given features, suggesting

that they have minimal impact on the SVM model’s predictions.

In summary, the permutation importance plot for the SVM model highlights the dominant

role of the one-hot encoded “inspection” variable in predicting the target variable. The

timing of health inspections, particularly recent inspections within the past 3 months, in-

spections conducted 2 years ago or longer, and those conducted 4 to 6 months ago, are the
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most influential factors in the model’s predictions. BMI, biological sex, and the absence

of health inspections (“inspection (7) (7) Never”) also contribute to the model’s decision-

making process, but to a lesser extent compared to the inspection-related features. Lifestyle

factors and parental health conditions have relatively lower importance in the SVM model.

These findings provide valuable insights into the factors driving the SVM model’s predictions

and can guide further analysis and interpretation of the results.
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3.5 Neural Networks

Neural networks are a class of machine learning algorithms inspired by the human brain.

They are suitable for this problem as they can effectively model the intricate relationships

between lifestyle, demographic, and other risk factors, and the development of high blood

pressure. However, one big problem with neural networks is that they get overfitted easily,

especially with small datasets. Neural networks are also less interpretable than other models.

In this study, a neural network trained with backpropagation and ReLU activation will be

employed. The structure of the neural network is consisted three parts: an input layer, one

or more hidden layers, and an output layer. The input layer will have a number of neurons

equal to the number of input features. The hidden layers will contain a varying number

of neurons, which will be determined through training. The output layer will have a single

neuron with a ReLU activation function, producing a probability estimate for the presence

of high blood pressure.

The neurons in each layer are connected to the neurons in the subsequent layer by weighted

edges. The weights represent the strength of the connections and are learned during the

training process. Each neuron receives input from the previous layer, computes a weighted

sum of the inputs, and applies an activation function to introduce non-linearity.

ReLU(x) m̄ax(0, x)

Cross entropy loss function is:[Bis06]

L = − 1
N

[∑N
j=1 [tj log (pj) + (1− tj) log (1− pj)]

]
It returns 0 for negative inputs and the input value itself for positive inputs, introducing

a non-linearity that helps the network learn complex patterns.

The training process will be performed using backpropagation, a supervised learning algo-

rithm that iteratively adjusts the weights of the network to minimize a loss function. The

steps involved in backpropagation are: Forward propagation: The input features are passed

through the network, and the output is computed based on the current weights.
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Figure 3.3: Importance rank with Neural Network

Loss computation: The predicted output is compared to the true labels using a loss function,

such as binary cross-entropy for binary classification tasks.

Backpropagation: The gradients of the loss function with respect to the weights are computed

using the chain rule, starting from the output layer and propagating backwards through the

network. The ReLU activation function has a simple derivative:

ReLU’(x) = 1 for x > 0

ReLU’(x) = 0 for x ≤ 0

This property makes the computation of gradients efficient during backpropagation.

Weight update: The weights are updated using an optimization algorithm.

Iteration: Steps 1-4 are repeated for a fixed number of epochs or until a stopping criterion

is met.

The permutation importance plot provides insights into the relative importance of vari-

ous features in the neural network model’s predictions.

The most striking observation from the plot is the dominant importance of the ”inspection”
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variable. The two most important features, ”inspection (1) (1) Within the past 3 months”

and ”inspection (6) (6) 2 years ago or longer”, suggest that the timing of the last health

inspection plays a crucial role in the model’s predictions. Individuals who have had an in-

spection within the past 3 months or those whose last inspection was 2 years ago or longer

seem to have a significant impact on the model’s output. This finding highlights the poten-

tial predictive value of the recency of health inspections in relation to the target variable.

The importance of the ”inspection” variable is further emphasized by the presence of other

inspection-related features, such as ”inspection (5) (5) Longer than 1 year ago but less than

2 years ago”, ”inspection (2) (2) 4 to 6 months ago”, and ”inspection (4) (4) 10 to 12 months

ago”, which have moderate permutation importance scores. These features collectively sug-

gest that the model is capturing patterns related to the timing of health inspections at

various intervals, and this information contributes to the model’s predictive performance.

Interestingly, the ”inspection (7) (7) Never” feature has a very low importance score, indi-

cating that individuals who have never had a health inspection do not significantly influence

the model’s predictions. This observation could suggest that the absence of health inspection

data may not be as informative as the presence of inspection data at different time points.

Apart from the ”inspection” variable, the plot also highlights the importance of other fea-

tures. ”bmi” (Body Mass Index) emerges as the third most important feature, suggesting

that an individual’s BMI is a significant factor in the model’s predictions. This finding aligns

with the well-established relationship between BMI and various health outcomes.

Lifestyle factors, such as ”sweet drink” consumption, ”walk”ing habits, ”fast food” con-

sumption, and physical ”activity”, have relatively lower permutation importance compared

to the inspection and BMI features. This suggests that while these lifestyle factors contribute

to the model’s predictions, their impact may be less pronounced than the timing of health

inspections and BMI.

Demographic variables, including “BIO SEX” (biological sex), and family history, including

parental obesity (“obesity mom” and “obesity dad”), and parental diabetes (“diabete dad”
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and “diabete mom”), have the lowest permutation importance scores among the given fea-

tures. This indicates that these demographic factors and family history have a limited

influence on the model’s predictions compared to the other features in the dataset.

In summary, the permutation importance plot emphasizes the significant role of the one-

hot encoded “inspection” variable in the neural network model’s predictions. The timing

of health inspections, particularly recent inspections within the past 3 months and those

conducted 2 years ago or longer, appears to be the most influential factor. BMI is also a key

feature, while lifestyle factors and demographic variables have relatively lower importance.

Valuable insights are given to the factors driving the model’s predictions. These findings can

guide further analysis and interpretation of the results.
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CHAPTER 4

Results

In this section, I present the results of the machine learning models applied to predict the

presence or absence of high blood pressure. The models evaluated include Logistic Regres-

sion, Random Forests, XGBoost, Support Vector Machines (SVM), and Neural Networks.

The performance of each model was assessed using the following metrics: Precision, Recall,

F1-Score, and ROC AUC.

Before discussing the results, it is essential to define the evaluation metrics used:

Accuracy measures the proportion of correct predictions (both true positives and true neg-

atives) among all instances.

Accuracy =
True Positive + False Positive

True Positive + True Negative + False Positive + False Negative

Precision measures the proportion of true positive predictions among all positive predictions.

Precision =
True Positive

True Positive + False Positive

Recall, also known as sensitivity, measures the proportion of true positive predictions

among all actual positive instances.

Recall =
True Positive

True Positive + False Negative
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Model Accuracy ROC AUC

Logistic Regression 0.800 0.695

Random Forests 0.753 0.634

XGBoost 0.731 0.549

SVM 0.783 0.389

Neural Networks 0.736 0.500

Table 4.1: Model Performance Comparison

The F1-score is the harmonic mean of precision and recall, providing a balanced measure

of a model’s performance.

F1-Score =
2 * Precision * Recall

Precision + Recall

The Receiver Operating Characteristic (ROC) curve plots the true positive rate (recall)

against the false positive rate at various classification thresholds. The Area Under the ROC

Curve (AUC) is a summary metric that measures the model’s ability to discriminate between

classes. An AUC of 1 represents a perfect classifier, while an AUC of less than 0.5 indicates

a random classifier.

According to table 4.1, logistic regression has the highest accuracy and highest ROC-

AUC; XGBoost has the lowest accuracy and SVM has the lowest ROC-AUC. Although I

had already oversample the training data, the test data still has a great imbalance in target

variable. Consequently, while accuracy remains a fundamental metric for evaluating model

performance, its significance is somewhat diminished in this context due to the substantial

class imbalance present in the test data. This underscores the critical importance of utiliz-

ing alternative performance metrics, such as ROC-AUC (Receiver Operating Characteristic

- Area Under the Curve), which are less susceptible to the effects of imbalanced datasets.
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In light of this, logistic regression emerges as the most robust performer, exhibiting the

highest accuracy and ROC-AUC among the models evaluated. Conversely, XGBoost demon-

strates comparatively lower accuracy, while SVM exhibits the lowest ROC-AUC performance.

These findings underscore the nuanced interplay between model selection, performance met-

rics, and the intricacies of dataset characteristics, providing valuable insights for future

research and practical application.
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CHAPTER 5

Conclusion

In this study, several machine learning models is used, including Logistic Regression, Deci-

sion Trees, Random Forests, XGBoost, Support Vector Machines, and Neural Networks, to

investigate the influence of various factors such as sex, hereditary, habitats, and BMI on the

risk of developing high blood pressure using the Add Health dataset. While the models pro-

vided valuable insights into the associations between these factors and high blood pressure,

the relatively low ROC-AUC scores indicate that the models have difficulty accurately pre-

dicting an individual’s likelihood of having high blood pressure based solely on the selected

variables.

However, it is essential to acknowledge that the limited predictive power of the models

does not necessarily imply that the chosen factors do not contribute to the development of

high blood pressure. Several reasons could account for the models’ suboptimal performance.

Firstly, the study utilized the public-use sample from the Add Health dataset, which contains

a significantly reduced number of observations compared to the full dataset. This limitation

in sample size may have hindered the models’ ability to capture the complex relationships

between the predictors and the outcome variable.

Secondly, the etiology of high blood pressure is multifaceted and is very hard to be fully

explained by a limited set of factors. Real-life situations involve almost infinite interrelated

variablesmay influence an individual’s risk of developing high blood pressure. These factors

includes both the ones captured within the dataset and the ones present in the real world.

A lot of these factors, not accounted for in the current study, could be lifestyle choices,

environmental exposures, stress levels, and other medical conditions.
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Despite these limitations, the study provides a foundation for understanding the complex

nature of high blood pressure and highlights the importance of considering multiple factors

when assessing an individual’s risk. The findings underscore the need for further research

using more comprehensive datasets and incorporating a broader range of variables to develop

more accurate predictive models.

In conclusion, while the machine learning models in this study demonstrated limited pre-

dictive power, they have shed light on the intricate relationships between sex, hereditary,

habitats, BMI, and high blood pressure. Future research should focus on integrating a wider

array of variables and exploring the potential of advanced machine learning techniques to

enhance the predictive capabilities of the models, ultimately facilitating early detection,

prevention, and personalized management strategies for high blood pressure.
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