

UNIVERSITY OF CALIFORNIA

Los Angeles

An Improved Quadrature Direct Digital Frequency Synthesizer in an FPGA

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Electrical Engineering

by

Matthew Ryan Bergeron

2013

© Copyright by

Matthew Ryan Bergeron

2013

 ii

ABSTRACT OF THE THESIS

An Improved Quadrature Direct Digital Frequency Synthesizer in an FPGA

by

Matthew Ryan Bergeron

Master of Science in Electrical Engineering

University of California, Los Angeles, 2013

Professor Alan N. Willson, Jr., Chair

The architecture and design of a high-speed quadrature direct digital frequency

synthesizer (DDFS) is presented. The architecture is based on a novel multiplier-

based angle-rotation algorithm that does not distort the magnitude of the sine and

cosine outputs. This algorithm maps well into the DSP slices present in modern

FPGAs. The design has a 32-bit frequency control word, 16-bit outputs, and a tuning

resolution of 0.23 Hz at 1 GHz. Implemented in a Xilinx Virtex-7 FPGA, the design

dissipates 54.9 mW of power, a performance previously attainable only in ASIC

designs.

 iii

The thesis of Matthew Ryan Bergeron is approved.

Babak Daneshrad

Rajeev Jain

Alan N. Willson, Jr., Committee Chair

University of California, Los Angeles

2013

 iv

To my children

 v

TABLE OF CONTENTS

1 INTRODUCTION... 1

1.1 MOTIVATION... 2

1.2 THESIS OVERVIEW .. 3

2 ARCHITECTURE.. 4

2.1 COARSE-FINE DDFS... 4

2.2 ANGLE ROTATION ALGORITHM .. 5

2.3 TWO’S COMPLEMENT RECODING.. 6

2.4 COARSE STAGE ... 7

3 CIRCUIT IMPLEMENTATION.. 9

3.1 OVERVIEW .. 9

3.2 PHASE ACCUMULATOR ... 11

3.3 RADIAN CONVERTER .. 13

3.3.1 π/4 Mirror.. 13

3.4 ROM .. 14

3.5 ROTATION STAGE ... 16

3.5.1 Recoding ... 16

3.5.2 Multiplier-Adder ... 17

3.6 OUTPUT STAGE ... 19

4 RESULTS .. 22

4.1 VERIFICATION... 23

 vi

4.2 SPEED ... 23

4.3 SPECTRAL PERFORMANCE... 24

4.4 LATENCY .. 25

4.5 DEVICE UTILIZATION.. 25

4.6 POWER.. 25

5 CONCLUSION ... 27

BIBLIOGRAPHY... 29

 vii

LIST OF FIGURES

Fig. 1.1. General structure of a DDFS. ... 2

Fig. 3.1. Block diagram of designed DDFS.. 10

Fig. 3.2. Implementation of phase accumulator.. 12

Fig. 3.3. (a) Mapping of angles to first quadrant. (b) π/4 mirroring. 13

Fig. 3.4. Implementation of π/4 mirror. .. 14

Fig. 3.5. Implementation of multiplier-adder.. 18

Fig. 3.6. Generation of output stage control signals. .. 20

Fig. 3.7. Implementation of output stage. ... 20

Fig. 4.1. Output SFDR vs. L. .. 24

 viii

LIST OF TABLES

Table 3.1. Phase accumulator DSP parameters. ... 12

Table 3.2. Multiplier-adder DSP parameters. ... 19

Table 3.3. Swap and negation control conditions. .. 19

Table 4.1. Design summary. ... 22

Table 4.2. Device utilization... 25

Table 4.3. LUT breakdown by module... 25

Table 4.4. Power consumption for different fcw. ... 26

Table 5.1. Comparisons. ... 28

 ix

ACKNOWLEDGEMENTS

 I would like to thank Professor Alan N. Willson, Jr. for giving me the

opportunity to do this research and thesis. Without his support, guidance, and

patience none of this would be possible.

 Thanks to Art Torosyan for discussion and guidance on general DDFS topics.

I am also appreciative of Sean Huang and Yen-Liang Shue, with whom I collaborated

in 2003 while working on my first prototype DDFS IC design.

 Thanks to my mom for continuing to push me to complete this work. Finally,

thanks to my wife Pauline and my children, Allison and James, who are my chief

inspiration.

 1

Chapter 1

Introduction

Digital communications are an essential part of modern life. Since their inception,

direct digital frequency synthesizers (DDFS) have been used in digital communication

systems. DDFS have several characteristics that make them advantageous over analog

PLLs, including fast continuous-phase frequency switching, fine frequency resolution,

the ability to operate over a large frequency range, and high spectral purity.

Most DDFS are based on a structure first proposed by Tierney, Rader, and Gold

[1] in 1971, as illustrated in Fig. 1.1. This structure consists of two primary components:

a phase accumulator and a sine/cosine mapping function (SCMF). The phase accumulator

consists of an overflowing M-bit adder and register. The frequency control word (fcw)

controls the rate of overflow and hence the output frequency. The M-bit output of the

phase accumulator is truncated to W bits to generate φ, which is the input to the SCMF.

Early designs of the SCMF consisted entirely of lookup tables to map φ to the outputs X

and Y, where X = cos πφ and Y = sin πφ. The lookup table size scales exponentially with

 2

M (and with the desired spectral purity), therefore much research has been done over the

last 40 years to reduce the size of the lookup table.

Fig. 1.1. General structure of a DDFS.

1.1 Motivation

FPGAs are becoming increasingly popular for the implementation of digital

circuits, despite the significant clock speed degradation and power overhead vs. an ASIC

design in the same process. Due to cost prohibitive NRE, many companies and research

institutions design ASICs in a process several generations old—making the case for

FPGAs more compelling.

With the advent of smart phones and tablets, an increasing amount of digital

communication is transitioning from wireline to wireless. The myriad of constantly

evolving wireless standards are pushing wireless base stations from fixed

implementations to re-programmable ones—a technique often referred to as software

defined radio. One method of implementing a re-programmable base station is to use

FPGAs (rather than fixed ASICs) for some or all parts of the design. The usage of FPGAs

enables field re-programmability on existing deployed hardware as wireless standards

evolve.

 3

The increasing amount of wireless data leads to a demand for more wireless

capacity at each cell site, and the increased capacity drives the need for smaller and more

power efficient base stations. Despite the usage of DDFS as part of the digital radio in

wireless base stations, little work has been done to optimize the implementation and

power of DDFS in FPGAs. Such digital radio implementations tend to use FPGA vendor

provided DDFS cores, which are implemented with large lookup tables in power hungry

RAM blocks and wide complex multipliers in order to achieve sufficient spectral purity.

In this thesis we present an optimal implementation of a DDFS in an FPGA, with

the primary design goals being high data rates and reduced power consumption.

1.2 Thesis Overview

Chapter 2 of this thesis describes the architecture of the presented DDFS,

including the angle rotation algorithm. In Chapter 3, a block diagram is presented and the

detailed circuit implementation of each functional block is described. This chapter also

explains the hardware optimizations and reductions achieved. The results of the

implementation are presented in Chapter 4. Finally, Capture 5 summarizes the thesis.

 4

Chapter 2

Architecture

2.1 Coarse-Fine DDFS

Over the years, many variations of DDFS based on a coarse-fine architecture have

been proposed. In such an architecture, the phase angle φ is decomposed into a coarse

angle φM and a fine angle φL. This allows the DDFS to be implemented in two stages,

with the coarse stage often implemented in a lookup table and the fine stage implemented

through angle rotation, linear interpolation, or polynomial interpolation. The Givens

rotation allows us to split the DDFS into these two stages:

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

M

M

LL

LL

Y
X

Y
X

φφ
φφ

cossin
sincos

 (2.1)

where (XM, YM) are the cosine and sine lookup table outputs.

 5

 The critical component in a coarse-fine DDFS is most often the fine stage. The

underlying architecture of the DDFS presented in this thesis is based on a novel angle-

rotation algorithm that does not introduce magnitude distortion into the output.

2.2 Angle Rotation Algorithm

Madisetti [2] used concepts from CORDIC [3] to design an angle rotation algorithm

that does not distort the magnitude of the phasor defined by the point (X, Y) as this point

is rotated around the unit circle. With the cosine factored out of (2.1) the rotation is split

into multiple sub-rotations:

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

++

++

M

M

NN

NN

Y
X

r
r

r
r

K
Y
X

1tan
tan1

...
1tan

tan1

11

11

22

22

φ
φ

φ
φ

 (2.2)

where K = cos φ2 cos φ3 ... cos φN+1 is a scale factor as a result of the factoring and

rk ∈ {–1, 1}. The bits of r are obtained by recoding the b binary bits of φ along with an

initial fixed rotation φF:

 ∑∑
+

=

−

=

− +==
1

21
22

N

k

k
kF

N

k

k
k rb φφ . (2.3)

The fixed rotation is given by φF = 2–1 – 2–(N+1) and rk = 2bk–1 – 1.

For sufficiently large k, tan 2–k ≈ 2–k, and for a finite signal word length (SWL) they

are exactly equal. Madisetti also shows that the sub-rotation stages can be merged for

k ≥ (SWL – 1)/2. Our decomposition of φ into φM and φL is done such that the merge

condition is satisfied, with the MSB of φL at bit position 2–(M+1). As a result, the sub-

rotations can be recombined into the following single rotation:

 6

 ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

+

+=

−
+

+=

∑

∑
M

M

k
N

Mk
k

k
N

Mk
k

Y
X

r

r
K

Y
X

12

21
1

2

1

2 (2.4)

where ∏
+

+=

−=
1

2

2cos
N

Mk

kK is the scale factor. The initial fixed rotation now becomes

φF = 2–(M+1) – 2–(N+1) and it is incorporated into the coarse stage ROM output (XM, YM).

2.3 Two’s Complement Recoding

The summation term in (2.4) represents a binary number with the signed-binary digits

rk. We can recode rk into the bits of a two’s complement binary number tk ∈ {0, 1} by

expressing the values of rk in terms of the bk:

 k
N

Mk
krt −

+

+=
∑= 2

1

2

 ()∑
+

+=

−
− −=

1

2
1 212

N

Mk

k
kbt

 ∑∑
+

+=

−−−
+

+=
− −=

1

2

)1(
1

2
1 22

N

Mk

kk
N

Mk
kbt

 ())1()1(

2

)1(
1 2222 +−+−−

+=

+−
+ −−+= ∑ NMk

N

Mk
k

M
M bbt

 ())1(

2

)1(
1 2221 +−−

+=

+−
+ ++−= ∑ Nk

N

Mk
k

M
M bbt

)1(

2

)1(
1 222 +−−

+=

+−
+ ++−= ∑ Nk

N

Mk
k

M
M bbt (2.5)

 7

where kb represents the complement of the bk bit. Then (2.5) can be implemented as a

trivial bit manipulation, where tM+1 is the sign bit:

 11 ++ = MM bt NMNM bt :2:2 ++ = 11 =+Nt . (2.6)

The recoding is illustrated in the following example.

Example 1. Take the 4-bit representation of the angle φ = 0.375 radians and recode. For

simplicity, let M = 0.

weight 2–1 2–2 2–3 2–4 2–5

bk 0 1 1 0
rk –1 1 1 –1
tk –1 1 1 0 1

t = –0.09375 and φF = 2–1 – 2–5 = 0.46875, thus t represents φ as expected.

Using the recoding shown in (2.5), and incorporating K into (XM, YM), we can

rewrite (2.4) as:

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

M

M

Y
X

t
t

Y
X

1
1

 (2.7)

which reduces our fine rotation stage to a simple multiply-add operation. Since K is a

constant that is independent of t, the rotation introduces no magnitude error.

2.4 Coarse Stage

The coarse stage in this DDFS design is implemented by a lookup table. The

normalized angle φ must be converted to radians for proper operation. Rather than

employing a dedicated circuit for the required π/4 multiplication, this factor is simply

 8

incorporated into the lookup table [4]. The incorporation of this π/4 term requires two

additional values to be stored in the lookup table. This is because the value of X is

calculated according to (2.7) as X = XM – tYM, where the value t is a function of the fine

angle φL, which also needs to be converted to radians. We must factor π/4 out of t and

into YR, as shown in (2.8). The scale factor now becomes ∏
+

+=

− ⎟
⎠
⎞

⎜
⎝
⎛=

1

2

2
4

cos
N

Mk

kK π .

The M MSBs of φ compose the coarse angle φM. The values in the lookup table are

given by the following equations:

 ()⎟
⎠
⎞

⎜
⎝
⎛ += FMM KX φφπ

4
 cos

 ()⎟
⎠
⎞

⎜
⎝
⎛ += FMM KY φφπ

4
 sin

 MR XX
4
π=

 MR YY
4
π= . (2.8)

Fortunately, because the MSB of φL is in the 2–(M+1) bit position, the YR multiplier term is

added only into the LSBs of X. A finite signal word length in the datapath necessitates

fewer bits for XR and YR, as the output of the multiply-add is truncated in the fine stage to

generate the output. As a result, the lookup table does not double in size due to the

omission of the π/4 multiplication circuit as one might suspect.

 9

Chapter 3

Circuit Implementation

3.1 Overview

The block diagram of the designed DDFS is shown in Fig. 3.1. A 32-bit frequency

control word fcw controls the rate at which a 32-bit phase accumulator overflows. The

output of the phase accumulator φ is then truncated to 20 bits. The truncated phase

accumulator output represents an angle within the interval [0, 2π). Since sine and cosine

exhibit quarter-wave symmetry, the upper two MSBs of φ are removed to map the angle

into [0, π/2). Additionally, since the values of cosine (or sine) from π/4 to π/2 are the

same as mirror-image values of sine (or cosine) from zero to π/4, we remove another

MSB and use this bit to conditionally mirror within the first octant of the unit circle.

 10

Reg

Phase Accumulator

fcw

32

32

32

cos(/4) /4

sin(/4)

sin(/4) /4

cos(/4)

8

1

MSB[3]
20

Output
Stage

3

MSB[1–3]

Rotation Stage

10

X

Y

16

16

7

7

10

10

17

17

15

L to t Recode

10
negate

ROM
128 words

/4 Mirror

8

′ L

M

15

X′

Y′

XR

YM

YR

XM

Fig. 3.1. Block diagram of designed DDFS.

The 18-bit mapped, normalized, angle φ′ ∈ [0, π/2), is used to control the datapath.

The most significant bit of φ′ controls the π/4 mirror. The next seven bits of φ′ generate

φM, which is used to address a 128-word ROM that contains the coarse stage. The least

significant ten bits of φ′ (denoted φL) control rotation in the fine stage.

The outputs of the fine stage are mapped back to their proper octants through

conditional swapping and/or negation, in the output stage, from the first octant of the unit

circle. The resulting output of the DDFS is two 16-bit two’s complement values

X = cos πφ and Y = sin πφ.

The overall operation of the designed DDFS can be summarized below:

1) Phase Accumulator – generates a normalized phase φ ∈ [0, 2).

 11

2) Radian Converter – maps normalized φ to φ′′.

a) Quadrant mapping – maps φ to φ′ ∈ [0, 1/2).

b) π/4 Mirror – mirrors the values of φ′ within [1/4, 1/2) to φ′′ ∈ [0, 1/4).

3) ROM

a) Radian converter – converts φ′′ ∈ [0, 1/4) to θ ∈ [0, π/4).

b) Provides the coarse values XM and YM via table lookup.

4) Rotation Stage – calculate sin θ and cos θ.

a) Recoding – converts the positive value φL into the signed value t.

b) Multiplier-Adder – conditional negation – mirrors the values of φ′ within

[1/4, 1/2) to [0, 1/4].

c) Multiplier-Adder – implements the fine rotation stage.

5) Output Stage – maps sine and cosine θ ∈ [0, π/4] to [0, 2π).

3.2 Phase Accumulator

The structure of the phase accumulator is shown in Fig. 3.2. The frequency

control word fcw adjusts the tuning frequency f0 of the DDFS. Mathemati-

cally clkM
cw Fff

20 = , where Fclk is the clock frequency of the system and M is the

number of bits in the phase accumulator. The tuning resolution, defined as the change

in output frequency as a result of changing fcw by one, is given by M
clkF

2
. For the

implemented design Fclk = 1 GHz and M = 32, yielding a tuning resolution of

0.23 Hz.

 12

Fig. 3.2. Implementation of phase accumulator.

 At every clock cycle the output of the phase accumulator represents the

normalized angle nf
M
cw

2
=φ ∈ [0, 2). The output of the phase accumulator is truncated to

20 bits. This choice creates phase truncation spurs that are well matched to the SCMF

spurs. See Chapter 4 for more discussion on spurious performance of the DDFS.

 Implementation of the registers and the adder is done with a DSP48E1 primitive

in the Xilinx Virtex-7 FPGA. This DSP slice is used to reduce the number of CLB

(configurable logic block) slices, to reduce loading on the clock network, and to

guarantee timing at 1 GHz. fcw is supplied to the C input of the DSP slice and φ is taken

from the P output. The 32-bit phase accumulator is mapped to bits 47:16 of the DSP in

order to minimize power consumption—otherwise the MSBs of the DSP would continue

to count on a carry out from the MSB of φ.

Parameter Value
USE_MULT FALSE
AREG 0
BREG 0
CREG 1
PREG 1
ALUMODE 0000
OPMODE 000 11 10

Table 3.1. Phase accumulator DSP parameters.

 13

3.3 Radian Converter

A “radian converter” converts the normalized output of the phase accumulator φ

into a value φ′′ in the first octant of the unit circle. To do this mapping, the upper two

MSBs of φ (MSB[1] and MSB[2]) are removed. This effectively truncates the phase from

[0, 2) to [0, 1/2) and hence remaps the angle to the first quadrant, as shown in Fig. 3.3(a).

The resulting angle φ′ is passed to the π/4 mirror to generate the value φ′′ ∈ [0, π/4).

cos

sin

Fig. 3.3. (a) Mapping of angles to first quadrant. (b) π/4 mirroring.

3.3.1 π/4 Mirror

Symmetry exists within the first quadrant of the unit circle that allows the sine

and cosine of any angle greater than π/4 to be obtained from an angle equally less than

π/4, and vice versa, as shown in Fig. 3.3(b). The cosine of an angle offset by δ from π/4,

denoted γ, can be found by calculating the sine of an angle that is equally offset in the

opposite direction, denoted (π/2 – γ). This means that cos γ = sin (π/2 – γ) and

 14

sin γ = cos (π/2 – γ). MSB[3] = 1 indicates that φ′ represents the range [π/4, π/2), and is

used in this design as a condition for mirroring.

The mirroring operation is represented mathematically as φ′′ = 1/2 – φ′. Because

φ′ represents a fixed point number within the interval [0, 1/2) with no sign bit, subtracting

the number from 1/2 is equivalent to two’s complement negation. Instead of performing

two’s complement negation, which requires a carry ripple, we perform a ones’

complement negation. Hence the resulting value of φ′′ can be one LSB less than it should

be. Normally this one LSB error results in a significant phase truncation spur. To avoid

this spur, we will compensate for this missing LSB in the multiplier—which is an

important new technique, related to a method mentioned in [4]. Fig. 3.4 shows the

implementation of the π/4 mirror. When MSB[3] = 0, φ′ is passed through unmodified,

otherwise it is complemented.

Fig. 3.4. Implementation of π/4 mirror.

3.4 ROM

The ROM serves three purposes. The first is to implement the coarse stage of our

DDFS. In this design the ROM has 128 words.

The second purpose of the ROM is to act as a radian converter, converting

φ′′ ∈ [0, 1/4) into θ ∈ [0, π/4). Many rotation based DDFS designs use a dedicated π/4

 15

multiplier circuit for this purpose. Instead, we include the π/4 factor within the pre-

computed ROM data. In doing so, instead of requiring only two ROM outputs, cos θM

and sin θM, we now require four outputs: XM, YM, XR, and YR. The values stored at the

ROM locations are given by (2.8). Fortunately, the second set of outputs require only

seven bits, as opposed to the entire 17-bit SWL. This requires more FPGA fabric LUTs to

implement the ROM, but the difference is actually smaller than implementing a π/4

multiplier in the fabric. Alternatively, we could implement the π/4 multiplier in a DSP

slice, but that would result in a greater power consumption than simply making the ROM

larger. The other advantage of including the π/4 factor in the ROM is a reduced latency.

The final purpose of the ROM is to compensate for finite signal word-length

errors and truncation in the datapath. The values for the ROM are optimized to minimize

error at the X and Y outputs of the DDFS relative to ideal rounded values. This allows for

a datapath with an SWL that is only two bits larger than the output precision—without

the use of rounding anywhere. The ROM optimization algorithm is as follows:

1) Calculate ideal ROM values using floating point arithmetic and round to the

SWL.

2) Simulate the entire DDFS design with the signature fcw and record the Xinitial and

Yinitial output sequences.

3) For each X ROM location, identify the Xinitial values in the output sequence that

correspond to that location. Modify the ROM location by subtracting the mean of

the differences between each Xinitial and Xideal value, followed by re-rounding to

the SWL.

4) Apply the same technique to the Y ROM.

 16

The implemented ROM values are omitted from this thesis for brevity.

 The native LUT in the Virtex-7 FPGA has six inputs. Each output bit of the 128-

word ROM is decomposed into two six-input LUTs, a MUXF7, and an output register.

All four of these components can be packed into a single logic slice, which is crucial for

1-GHz operation.

3.5 Rotation Stage

3.5.1 Recoding

Naively providing the input angle φL into a multiplier does result in an angle

rotation, but the magnitude of the phasor defined by the DDFS output (X, Y) is not

maintained, resulting in an error that degrades the spectral purity of the DDFS. The key

to using a single multiplier for angle rotation is to maintain the magnitude of the phasor

by using the angle rotation algorithm discussed in Chapter 2. We do this by recoding the

bits of φL into the signed two’s complement number t, as shown in (2.6):

]0[0 Lt φ=]:1[:1 Nt LN φ= 11 =+Nt

where the MSB of φL is in the k = M + 1 position of the bk bits of φ. The tN+1 bit can be

set to 0 and compensated in the ROM without significant degradation in the spectral

performance. The recoding is thus reduced to a single inverter on the MSB of the angle.

 17

3.5.2 Multiplier-Adder

The multiplier-adder is the core of the angle rotation stage. Its structure is shown

in Fig. 3.5. This block serves two functions. The primary function is the fine angle

rotation (2.7) using the signed two’s complement value t (which is a recoded version of

φL).

 The secondary function of the multiplier is to act as the π/4 mirror for the LSBs of

φ′. Recall that a physical π/4 mirror was only placed before the ROM, and not before the

multiplier. Using the conditional negation feature of the multiplier allows us to

implement the mirror for free, with no logic cost. In addition, by performing a two’s

complement negation of t, we compensate for the ones’ complement negation’s missing

LSB in the ROM π/4 mirror. This is because, for the minimum value represented by a

two’s complement n-bit number, the negative of that number overflows into an additional

bit. On first glance this does not have the behavior we want—to virtually add an LSB into

the ROM π/4 mirror. The crucial detail is that, due to recoding, the sign bit of t is the

inverse of the MSB of φL. This means that for φ′ = 1/4 (representing the radian angle π/4),

the value of t is –1/4. Negating t in the multiplier based on φ MSB[3] causes it to rotate

by 1/4 instead of overflowing to 0. This virtual bit emulates adding an LSB in the ROM

π/4 mirror.

 18

Fig. 3.5. Implementation of multiplier-adder.

 Each multiplier-adder combination is implemented in a DSP slice in the FPGA.

The hard multiplier in the DSP slice is much more efficient than a multiplier

implemented in the FPGA fabric. For X′, YR is supplied to the A input of the DSP slice, t

is driven into the B input, XM is supplied to the C input, and X′ is taken from the P output.

For Y′, XR is supplied to the A input, t is supplied to the B input, YM is supplied to the C

input, and Y′ is taken from the P output. Input bits A[6:0], B[9:0], and C[23:7] are used.

Because t is a signed number, it must be sign-extended into B[17:10]. X′ and Y′ are taken

from P[23:9].

 19

Parameter Value
USE_MULT TRUE
AREG 1
BREG 2
CREG 1
PREG 1
ALUMODE 00 {negate, negate}
OPMODE 010 01 01

Table 3.2. Multiplier-adder DSP parameters.

 Notice that BREG in Table 3.2 is one larger than AREG. This extra delay is used

to delay t to balance the pipeline. These pipeline registers were implemented in the DSP

slice rather than in CLB registers to reduce power consumption.

3.6 Output Stage

The output stage is responsible for mapping the X′ and Y′ outputs in the first

octant of the unit circle [0, π/4] back into its proper octant within [0, 2π). This can be

achieved by optionally swapping and negating X′ and Y′, as shown in Table 3.3

below.

φ MSB[1–3] πφ SwapXY NegateX NegateY
000 0 ≤ πφ < π/4 0 0 0
001 π/4 ≤ πφ < π/2 1 0 0
010 π/2 ≤ πφ < 3π/4 1 1 0
011 3π/4 ≤ πφ < π 0 1 0
100 π ≤ πφ < 5π/4 0 1 1
101 5π/4 ≤ πφ < 3π/2 1 1 1
110 3π/2 ≤ πφ < 7π/4 1 0 1
111 7π/4 ≤ πφ < 2π 0 0 1

Table 3.3. Swap and negation control conditions.

 The three MSBs of φ are used to generate the controls SwapXY, NegateX, and

NegateY. These controls are generated using two XORs as shown in Fig. 3.6 below.

 20

Fig. 3.6. Generation of output stage control signals.

 The swap and negation circuit is implemented as shown in Fig. 3.7. X′ and Y′ are

swapped with two 2:1 multiplexors, followed by a subtractor which optionally negates

the two. Notice the growth from 15 bits to 16 bits after the swap stage to allow for the

sign bit after negation.

1

0

1

0

1

0

1

0

16

16

15

15

X′

Y′

NegateY

NegateX

X

Y

SwapXY

16

16

Reg

Reg
16

16

Fig. 3.7. Implementation of output stage.

 21

 Each bit of X and Y in the output stage is packed into a single CLB slice in the

FPGA. This is possible because the Virtex-7 slice contains a six-input LUT, a carry

chain, and a register. X′, Y′, SwapXY, and NegateX (or NegateY) are only four inputs,

which easily fit into a single LUT. This packing is once again critical for achieving our

high-speed operation. DSP slices could be used to implement the output stage, but they

were found to consume more power than the CLB-based circuit.

 22

Chapter 4

Results

The DDFS implementation presented in Chapter 3 was targeted to a Xilinx

Virtex-7 FPGA and characterized. The specifications and results of the implementation

are summarized in Table 4.1 below.

Parameter Value
Target Xilinx Virtex-7
Clock Frequency 1 GHz
Output Resolution 16-bit
Frequency Control
Resolution

32-bit

Tuning Resolution 0.23 Hz
Phase Modulation 20-bit
Tuning Latency 8 clock cycles
Output SFDR 120.19 dBc
Output SNR 96.53 dB
Average Power 54.9 mW
LUT Count 139

Table 4.1. Design summary.

 23

4.1 Verification

Functional verification of the implemented design was through simulation. The X

and Y outputs of the DDFS were validated against a bit-accurate MATLAB model of the

design.

The design was programmed into a Virtex-7 FPGA on a VC707 evaluation board

from Xilinx. Verification was through built in self test (BIST), a circuit which inputs a

pseudo-random sequence into the fcw input of the DDFS and monitors the outputs. A

signature analyzer generates a unique signature value for each clock cycle based on the

captured DDFS outputs. The pseudo-random sequence generated by the BIST is identical

for every test and, if the DDFS is functioning correctly, the output of the signature

analyzer will be identical as well. The BIST test runs for a predetermined number of

clock cycles and then stops the signature analyzer, storing the unique signature value.

4.2 Speed

The speed of the implemented design was verified with static timing analysis in

the Xilinx Vivado software suite. It was found to run at 741.84 MHz, the maximum speed

specified for DSP slice operation in the FPGA device. BIST was used to verify the design

in hardware. The clock speed was incrementally increased while checking for passing

BIST results. The design was functional at 1 GHz, which is above the maximum

specified clock tree speed in the FPGA device.

 24

4.3 Spectral Performance

The DDFS was analyzed using the algorithm described in [5]. The worst case

SFDR (in the presence of phase truncation) is 116.49 dBc, while for large L the SFDR is

120.19 dBc. Fig. 4.1 below shows the SFDR for all L, the rightmost non-zero bit of fcw.

0 5 10 15 20 25 30 35
−125

−120

−115

−110

−105

−100

−95

−90

−85

−
S

F
D

R
 (

dB
c)

L (bit)

Fig. 4.1. Output SFDR vs. L.

The SNR of the DDFS was also analyzed using the algorithm in [5]. The SNR

with no phase truncation (L = 20) is 96.53 dB. In addition, there is always no more than

one LSB of time-domain error (compared to ideal rounded values).

 25

4.4 Latency

The implemented design has a tuning latency of eight clock cycles. At 1 GHz this

equates to 8 ns. The clock cycle latency breakdown is: two cycles in the phase

accumulator, one cycle in the π/4 mirror, one cycle in the ROM, three cycles in the

multiplier-adder, and one cycle in the output stage.

4.5 Device Utilization

Table 4.2 below shows the overall utilization for the DDFS in the Virtex-7 FPGA

device. As shown in Table 4.3, the LUT count could be reduced significantly if the coarse

ROM was stored in dedicated block RAMs as opposed to LUTs. This would, however,

consume more power.

Resource Count
Slice LUTs 139
Slice Registers 128
DSP48E1 3

Table 4.2. Device utilization.

Module LUT Count
Coarse ROM 96
π/4 Mirror 7
Output Stage 32
Miscellaneous 4

Table 4.3. LUT breakdown by module.

4.6 Power

The Virtex-7 485T device on the VC707 board is a rather large device, so it is

important to only measure the power associated with the DDFS itself, and not the device

 26

static power or power consumed by the BIST or other miscellaneous circuitry. We used a

differential power measurement to isolate the DDFS power. First we measure the FPGA

core power for a chip built with the BIST circuitry and a single DDFS core. Then we

build a second chip with additional DDFS cores and measured its power. The DDFS core

power is the difference of the two measurements.

It is also important to note that clock tree power in an FPGA not a strictly linear

function of loading. In fact the power per load is inversely proportional to the number of

loads. For a large number of loads the clock tree power asymptotically approaches a

linear region. For accurate measurements, the second “chip build” described above

contains 41 DDFS cores, all constrained to a single clock region.

Power was measured for various values of fcw with the clock frequency set to

1 GHz, as shown in Table 4.4 below. The average power consumption is 54.9 mW, for a

normalized power consumption of 54.9 µW/MHz.

fcw (hex) Power (mW) Power (µW/MHz)
0000_1000 17.40 17.40
0000_8000 19.70 19.70
DFFF_8000 87.30 87.30
1111_8000 65.70 65.70
4000_0000 21.05 21.05
0021_4038 37.05 37.05
13CB_D8D3 68.85 68.85
1999_999A 73.30 73.30
23DF_1DE3 78.05 78.05
3BE7_957A 62.90 62.90
5555_5555 73.05 73.05

Table 4.4. Power consumption for different fcw.

 27

Chapter 5

Conclusion

A novel multiplier-based, magnitude-invariant, angle-rotation algorithm was

introduced. A quadrature DDFS using a coarse-fine architecture was realized and its

design, implementation, and results were described and presented. Our angle rotation

algorithm enabled us to implement the fine stage of the DDFS with a single multiplier-

adder, minimizing power dissipation. The conditional negation feature of multiplier

enables a new technique to compensate for ones’ complement negation in the π/4 mirror.

Implemented in a Virtex-7 485T FPGA, the DDFS dissipates 54.9 mW of power

at 1 GHz. This level of performance was previously attainable only in ASIC designs. The

measured power compares favorably with recently reported FPGA work [6]–[7], even

when adjusting for device differences. The DDFS also compares favorably with an ASIC

design [4] implemented on a decade-old process, with the process advantage being

cancelled out by the FPGA vs. ASIC power overhead. Table 5.1 presents the comparisons

described above.

 28

Design Target PA
(bits)

Out-
put
(bits)

SFDR
(dBc)

Data
Rate
(MHz)

Power
(µW/
MHz)

Slice DSP

This work Xilinx
Virtex-7

32 16 120.2 1000 54.9 46 3

Genovese –
PQ1* [6]–[7]

Xilinx
Virtex-5

24 19 124.9 138.6 281.4 57 5

Genovese –
PQ2* [6]–[7]

Xilinx
Virtex-5

24 16 104.1 281.7 159.2 45 2

Willson –
Excess Fours [4]

0.18-µm
CMOS

32 16 113 260 63.5 – –

Table 5.1. Comparisons.

 29

Bibliography

[1] J. Tierney, C. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE
Transactions on Audio and Electroacoustics, vol. AU-19, pp. 48–57, Mar. 1971.

[2] A. Madisetti, A. Y. Kwentus, and A. N. Willson, Jr., “A 100-MHz, 16-b, direct
digital frequency synthesizer with a 100-dBc spurious-free dynamic range,” IEEE
Journal of Solid-State Circuits, vol. 34, pp. 1034–1043, Aug. 1999.

[3] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, pp. 330–334, Sept. 1959.

[4] A. Willson, M. Ojha, S. Agarwal, T. Lai, and T.-C. Kuo, “A direct digital
frequency synthesizer with minimized tuning latency of 12ns,” in IEEE ISSCC Digest of
Technical Papers, Feb. 2011, pp. 138–139.

[5] A. Torosyan and A. N. Willson, Jr., “Analysis of the output spectrum for direct
digital frequency synthesizers in the presence of phase truncation and finite arithmetic
precision,” The 2nd International Symposium on Image and Signal Processing and
Analysis, Jun. 2001, pp. 458–463.

[6] M. Genovese and E. Napoli, “Direct Digital Frequency Synthesizers implemented
on high end FPGA devices,” 9th Conference on Ph.D. Research in Microelectronics and
Electronics (PRIME), Jun. 2013, pp. 137–140.

[7] M. Genovese, E. Napoli, D. De Caro, N. Petra, and A. G. M. Strollo, “Analysis
and comparison of direct digital frequency synthesizers implemented on FPGA”,
Integration, the VLSI journal (2013), in press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

