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P H Y S I C S

Landau-phonon polaritons in Dirac heterostructures
Lukas Wehmeier1,2*, Suheng Xu3, Rafael A. Mayer1, Brian Vermilyea4, Makoto Tsuneto1,  
Michael Dapolito1,3, Rui Pu1, Zengyi Du1, Xinzhong Chen1,3, Wenjun Zheng1,  
Ran Jing1,5, Zijian Zhou1, Kenji Watanabe6, Takashi Taniguchi7, Adrian Gozar8,9,10,  
Qiang Li1,5, Alexey B. Kuzmenko11, G. Lawrence Carr2, Xu Du1, Michael M. Fogler4*,  
D. N. Basov3*, Mengkun Liu1,2*

Polaritons are light-matter quasiparticles that govern the optical response of quantum materials at the nanoscale, 
enabling on-chip communication and local sensing. Here, we report Landau-phonon polaritons (LPPs) in magne-
tized charge-neutral graphene encapsulated in hexagonal boron nitride (hBN). These quasiparticles emerge from 
the interaction of Dirac magnetoexciton modes in graphene with the hyperbolic phonon polariton modes in hBN. 
Using infrared magneto-nanoscopy, we reveal the ability to completely halt the LPP propagation in real space at 
quantized magnetic fields, defying the conventional optical selection rules. The LPP-based nanoscopy also tells 
apart two fundamental many-body phenomena: the Fermi velocity renormalization and field-dependent magne-
toexciton binding energies. Our results highlight the potential of magnetically tuned Dirac heterostructures for 
precise nanoscale control and sensing of light-matter interaction.

INTRODUCTION
Polaritons are light-matter quasiparticles that play a fundamental 
role in the optical response of polarizable materials (1–18). Phonon 
polaritons were studied historically first (18), and they are examples 
of modes demonstrating strong light-matter coupling. In complex 
materials, polaritons can involve several distinct matter excitations, 
yielding a rich variety of collective phenomena (3, 19–21). If the 
optical properties of a material are tunable, polaritons inherit this 
tunability. For example, the dispersion of plasmon-polaritons in 
two-dimensional (2D) conductors can be controlled by changing 
their charge carrier concentration (13–15) or applying an electric 
current (16, 17). However, attaining strong mode coupling with 
conducting materials is difficult because of their high electronic 
losses. Graphene is one of the promising polaritonic platforms be-
cause of its low intrinsic electron scattering rate (22) and corre-
sponding high quality factors (3, 8, 9).

Here, we report the discovery of the Landau-phonon polaritons 
(LPPs) in a 2D graphene-hexagonal boron nitride (hBN) hetero-
structure. The LPPs result from the hybridization (19–21) of pho-
non polaritons of the hBN encapsulating layers (8–10) with Dirac 
magnetoexcitons (6, 7) [or “Landau polaritons” (5)] of charge-
neutral graphene (6, 7). LPPs belong under a broader umbrella of 
magneto-phonon resonance (MPR) effects, resulting from a near 

coincidence of the energy spacing between a pair of Landau levels 
(LLs) and the energy of an optical phonon. We comment on other 
MPR effects (23–28), such as magneto polarons (23–25), in the dis-
cussion. We also note that, in addition to graphene, Landau polaritons 
in semiconductor 2D electron gas systems have been demonstrated 
extensively at terahertz frequencies, which exhibit intriguing ultra-
strong light-matter coupling phenomena in a solid-state cavity quan-
tum electrodynamics system (29). Using the state-of-the-art magneto 
scanning near-field optical microscopy (m-SNOM) (6, 30–32), we 
have imaged real-space interference patterns created by the LPPs in a 
graphene-hBN heterostructure. We demonstrate that the LPP propa-
gation can be switched on and off using magnetic fields. We have been 
able to detect as many as six different LPP branches. Several of them 
originate from optically dark transitions, suggesting that the usual se-
lection rules (33–39) no longer apply in the extended momentum-
frequency space accessible with the m-SNOM. Our high-precision 
mapping of the LPP dispersion has also enabled us to quantify 
many-body effects that yield the effective Fermi velocity in gra-
phene (33–37, 40, 41).

Our experimental setup is depicted in Fig. 1A. The experiments 
involved focusing infrared radiation onto the tip of an atomic force 
microscope that acted as a scannable nanoscale antenna. Light scat-
tered from the tip carried near-field information to a far-field detec-
tor. Another, stationary nanoantenna in the form of a metallic bar 
deposited on graphene played the dual role of an electrical contact 
and a polariton launcher. Both the sample and the m-SNOM resided 
in an optical cryostat allowing the control of temperature and mag-
netic field applied in the out-of-plane direction [see Materials and 
Methods and (6)]. We present and discuss the results of these mea-
surements below after we have introduced the necessary theoretical 
background.

RESULTS
High-momentum magneto-optics of graphene
In a transverse magnetic field, the density of states in graphene splits 
into LLs of energy En = sgn(n)

√
2�n��ℏvF ∕ lB

�
 , where n = 0, ±1, ±2, 

1Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 
11794, USA. 2National Synchrotron Light Source II, Brookhaven National Laborato-
ry, Upton, NY 11973, USA. 3Department of Physics, Columbia University, New York, 
NY 10027, USA. 4Department of Physics, University of California, San Diego, La Jolla, 
CA 92093, USA. 5Condensed Matter Physics and Materials Science Division, 
Brookhaven National Laboratory, Upton, NY 11973, USA. 6Research Center for Elec-
tronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, 
Tsukuba 305-0044, Japan. 7Research Center for Materials Nanoarchitectonics, Na-
tional Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan. 8De-
partment of Physics, Yale University, New Haven, CT 06520, Fairfield University, 
Department of Physics, Fairfield, CT 06824, USA. 9Energy Sciences Institute, Yale 
University, West Haven, CT 06516, USA. 10Fairfield University, Department of Phys-
ics, Fairfield, CT 06824, USA. 11Department of Quantum Matter Physics, University 
of Geneva, 1211 Geneva, Switzerland.
*Corresponding author. Email: mengkun.​liu@​stonybrook.​edu (M.L.); db3056@​
columbia.​edu (D.N.B.); mfogler@​ucsd.​edu (M.M.F.); lwehmeier@​bnl.​gov (L.W.)

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

mailto:mengkun.​liu@​stonybrook.​edu
mailto:db3056@​columbia.​edu
mailto:db3056@​columbia.​edu
mailto:mfogler@​ucsd.​edu
mailto:lwehmeier@​bnl.​gov


Wehmeier et al., Sci. Adv. 10, eadp3487 (2024)     13 September 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 16

… is the LL index, vF is the Fermi velocity, e is the elementary charge, 
lB =

√
ℏ∕e ∣B ∣ is the magnetic length, and B is the magnetic field 

(Fig. 1B). This characteristic square-root n- and B-dependence is a 
manifestation of the Dirac-like energy-momentum dispersion of 
graphene quasiparticles. In a charge-neutral graphene, the optical 
transitions can occur between LLs with indices of opposite sign, −n 
→ n′, at frequencies ω ∝

√�n� +√
∣n� ∣ . The oscillator strength of 

each transition is a function of the in-plane momentum k. Conven-
tional far-field infrared experiments excite graphene at very small k, 
with a nonnegligible oscillator strength only at |n| − ∣n� ∣ = ± 1. 
This selection rule at k → 0 is evident in the nonlocal optical con-
ductivity σ(ω,k) of graphene shown in Fig.  1C (blue curve in 
Fig. 1D). Such peaks in the optical conductivity Re σxx have been 
observed in many magneto-optical absorption experiments (33, 35, 
36, 38, 39, 42).

The theory also predicts that at finite momenta transitions be-
tween any pair of LLs become possible (43). Among these addition-
al “forbidden” transitions, the first ones to become noticeable as k 
increases are the –n → n transitions; see Fig. 1C. Faint signatures of 
such forbidden modes have been seen in previous far-field experi-
ments (33). They were attributed to mildly relaxed momentum 
conservation due to disorder scattering. As discussed below, our ex-
periments have revealed much stronger evidence of the forbidden 
inter-LL transitions (ILTs), presumably because the requisite large 
in-plane momenta were created by scattering of light with the tip. 
The forbidden transitions become comparable in strength to the 
nearby allowed ones at momenta of the order of the inverse mag-
netic length, e.g., l−1

B
= 71 μm−1 at B = 3.35 T. The momentum range 

important in the m-SNOM is illustrated by the bell-shaped curve in 

Fig. 1C. For the estimated tip radius of rtip = 30 nm, it is centered at 
k = 33 μm−1 marked by the vertical dashed line (14). At such k, the 
forbidden transitions are only slightly weaker than the allowed ones; 
see the orange line in Fig. 1D. In addition, the allowed transitions at 
nonzero k are diminished with respect to the k = 0 case (the blue 
line in Fig. 1D) to fulfill the optical sum rule.

Modeling of polariton dispersion
Each ILT gives rise to a collective excitation, which has been previously 
referred to as a Landau polariton (5) (the term we use here), Dirac 
magnetoexciton, or magnetoplasmon (6, 7). If the Landau polari-
tons are tuned in resonance with the hyperbolic phonon-polaritons 
in hBN by changing the applied magnetic field, the hybrid modes, 
which are the aforementioned LPPs, can form. We have carried out 
numerical simulations to model the LPP dispersion expected un-
der our experimental conditions. As customary in near-field stud-
ies, we deduce the dispersion of the collective modes from the 
frequency- and momentum-dependent p-polarized reflection coef-
ficient of the sample, rp = rp(k, ω). Figure 2 (A to C) demonstrates the 
imaginary part of rP calculated for three representative values of the 
magnetic field. The multiple branches of phonon polaritons in the up-
per Reststrahlen band of hBN (~1360 to 1610 cm−1) are evident in all 
three cases (8–10). Without the magnetic field (Fig. 2A), the charge-
neutral graphene influences the response of the heterostructure only 
weakly via its “universal” optical conductivity σ = e2/4ℏ (33).

At 3.35 T (Fig. 2B), the frequency of the −1 → 2 ILT is inside the 
hBN upper Reststrahlen band, which generates avoided crossings in 
the polariton dispersion. These features manifest as a coupling and 
hybridization of the −1 → 2 inter-LL Landau polariton with the 

Fig. 1. High-momentum magneto-optics of graphene. (A) Schematics of our sample and m-SNOM setup. Gold contacts enable transport measurements and gating of 
graphene and also serve as polariton launchers. (B) LL energy as a function of magnetic field B and LL index n = 0, ±1, …, ±4. Black (red) arrows mark −n → n ± 1 and −n 
→ n inter-LL transitions (ILTs) for a photon energy of ℏω = 188 meV (1519 cm−1). (C) Analytically calculated real part of the graphene conductivity (43) at B = 3.35 T as a 
function of frequency ω and in-plane momentum k calculated using Fermi velocity vF = 1.19 × 106 m/s and damping γ = 24.3 cm−1. The relevant −n → n ± 1 (−n → n) ILTs 
are labeled in black (red). The black bell-shaped curve illustrates the momenta accessible via m-SNOM (14), which peak at around k = 1/rtip = 33 μm−1 as marked by the 
vertical dashed line. (D) The line cuts at momenta k = 0 and k = 33 μm−1 extracted from (C).
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hBN phonon polaritons, i.e., the formation of the LPPs. Modeling the 
system as two coupled harmonic oscillators (44, 45) (see Materials 
and Methods), we extract the mode splitting Ω = 43.3 cm−1 at the 
largest avoided crossing and mode linewidths of ΓLandau = 50.6 cm−1 
and ΓhBN = 4.0 cm−1 for the uncoupled Landau polariton and hBN 
phonon polariton, respectively. Hence, the strong coupling criterion 
C =

2Ω2

Γ2
Landau

+Γ2
hBN

= 1.5 > 1.0 is fulfilled at this magnetic field.

At 6.0 T (Fig. 2C), our calculations indicate no ILTs inside the 
Reststrahlen band, so the phonon-polariton dispersion is again 
largely unaffected by graphene. Notably, these calculations show 
that the polariton damping at 6.0 T should be lower than that at 0 T 
because the LL quantization makes graphene more optically trans-
parent away from the discrete ILT frequencies (33).
Nano-imaging of LPP
We now turn to our experimental nano-imaging results that reveal 
field-tunable features of LPPs in real space. Figure 2 (D to F) shows 
m-SNOM images acquired at a temperature of 154 K and mag-
netic fields of B = 0.0, 3.35, and 6.0 T, matching Fig. 2 (A to C, re-
spectively). The incident photon energy is 188 meV (wavenumber, 
ω = 1519 cm−1). Note that our scan area contained three different 
regions: 1) a gold electrode on the left, which served as a polariton 
launcher; 2) hBN-encapsulated graphene on the top right, showing 
propagating LPP polaritons; 3) hBN without graphene in the bot-
tom right, showing phonon-polariton modes only. At 0.0 T (Fig. 2D) 
and 6.0 T (Fig.  2F), we observed polariton fringes parallel to the 
gold electrode in both regions 2) and 3). At 0.0 T, the fringes in the 
region containing graphene exhibited a higher damping. At 6.0 T, 

the impact of graphene was minimal. These findings are consistent 
with our simulations (Fig. 2, A and C) and also previous work (33). 
On the other hand, at 3.35 T (Fig. 2E), there is a notable contrast 
between the regions with and without graphene. The polariton 
propagation in hBN-graphene ceases such that all but the first fringe 
is suppressed. This gives clear evidence for the existence of the hy-
bridization gap in the LPP dispersion, i.e., the strong mode cou-
pling, predicted by our theoretical calculations (Fig. 2B).

To study the magnetic-field dependence of the LPP dispersion in 
detail, we obtained a field-tip position map of the m-SNOM signal 
(Fig. 3A) by sweeping B from −6.0 to +6.0 T. The maps were ac-
quired by performing repeated scans with the tip along lines per-
pendicular to the gold electrode, as marked by the black arrow in 
Fig. 2F. At our selected photon energy of 188 meV (ω = 1519 cm−1) 
within the hBN Reststrahlen band, we observe the suppression of 
the fringes for certain distinct field values, e.g., for the discussed 
case of B  =  3.35 T. When approaching such fields from a higher 
(lower) absolute magnetic field side, the polariton wavelength de-
creases (increases) along with an overall reduction in near-field sig-
nal and a decrease of the propagation length. Figure 3B shows line 
profiles that have been extracted at B=0.0, ±3.3, and ±5.8 T, re-
spectively. While we observe oscillatory polariton fringes at 0.0 and 
±5.8 T, at the −1 → 2 ILT at B = ±3.3 T, the fringes are strongly 
damped, consistent with the predicted observations in Fig. 2. These 
features are observed for both directions of the magnetic field, B > 0 
and B < 0. We note that the ILTs can also be suppressed by doping 
graphene off charge neutrality [via the Pauli blocking (33, 35, 39)], 

Fig. 2. Hybridization of hBN phonon polaritons with graphene Landau polaritons, resulting in LPPs. (A to C) Calculated LPP dispersion at magnetic fields of 0.0, 3.35, 
and 6.0 T, respectively. The false color represents Im rp(k, ω), the analytically calculated imaginary part of the reflection coefficient for p-polarized light. Graphene is as-
sumed to be charge neutral with a constant LL broadening (33) γ = 24.3 cm−1 and Fermi velocity vF = 1.19 × 106 m/s, the latter being the value extracted from Fig. 4C. Inset 
in (B): An enlarged view of the region exhibiting strong coupling and an avoided crossing between the Landau and the hBN phonon polaritons; the arrow marks ω = 
1519 cm−1 corresponding to the data in (D) to (F). (D to F) Nano-imaging data collected from the region marked by the red rectangle in Fig. 1A at T = 154 K and B = 0.0, 
3.35, and 6.0 T, respectively. The near-field signal S3 (demodulated at the third harmonic of the tip frequency; refer to Materials and Methods) shows relative differences 
between regions with and without graphene that strongly depend on the magnetic field. The enhanced signal-to-noise ratio in (E) and (F), compared to (D), is due to a 
slightly longer integration time. We also note that the mechanical stability of our system is slightly better at higher magnetic fields. The double-headed arrow in (F) marks 
the location of the line scan analyzed further in Fig. 3. a.u., arbitrary unit.
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which provides additional opportunities for controlling LPPs (see 
Materials and Methods).

Averaging the data in Fig. 3A over the tip position removes the 
spatial oscillations, which allows us to focus on the B dependence of 
the signal (Fig. 3C). We can compare the trace in Fig. 3C with the 
theoretical simulations in Fig. 3D. For simplicity, in these simula-
tions, we did not include a separate polariton launcher. Instead, we 
modeled a more common m-SNOM setup where the tip is the only 
nanoantenna interacting with the sample, which is uniform and in-
finite in size. It is fair to compare the predictions of this model with 
Fig. 3C since in both cases, the signal depends only on the magnetic 
field not the tip position. We see that Fig. 3 (C and D) are in good 
agreement. The dips in the theoretical curve come from distinct 
ILTs. Assuming that this is also the case in the data, we can label 
them accordingly. Furthermore, fitting the data to the theory allows 
us to determine the graphene Fermi velocity, which we discuss in 
detail below. Unassigned dips in the experimental spectrum are mi-
nor and might be attributed to the experimental conditions, such as 
mechanical vibrations.

We find that the dips corresponding to the −1 → 2 transitions are 
the strongest in our frequency window, testifying to a strong mode 
coupling regime (see also Materials and Methods). In addition, we 
observe clear signatures of several other transitions. They include 
allowed transitions −2 → 3 and −3 → 4, as well as transitions −1 → 
1, −2 → 2, and −3 → 3 forbidden by the standard selection rules (33, 
36, 38, 39). Any of these ILTs also induces a clear modification of the 
polariton wavelength as well as a reduction of the quality factor, 

which further supports our assignment and will be used for a quan-
titative analysis later. In total, we can resolve six different ILTs in our 
data. Notably, the forbidden transitions (26, 33, 46) show up much 
stronger compared to what was previously seen in far-field infrared 
spectroscopy (33). As hypothesized above, this massive breakdown 
of the selection rules originates from the greater role of high-
momentum field components k ∼ l−1

B
 in our m-SNOM measure-

ments (Fig. 1, C and D).

Tunability of LPPs
We have fitted the polaritonic fringes in Fig. 3 to exponentially de-
caying sine waves ∼eikx, where k = Re k + i Im k is the complex po-
lariton momentum (Materials and Methods). From this fitting, we 
deduced the LPP wavelength λP = 2 π/ Re k (Fig. 4A) and the qual-
ity factor Q = Re k/ Im k (Fig. 4B). For example, at B = 0 T, we found 
λP = 647 nm and Q = 12. As B increases, the crossing of each ILT 
results in a deep minimum of the Q factor as well as a characteristic 
change in λp. Within the studied magnetic field range, we have ob-
served a modulation depth of λmax/λmin ∼ 2 (Fig. 4A) and Qmax/Qmin ∼ 
10 (Fig. 4B). The latter is much larger than the values Qmax/Qmin ∼ 2 
reported for gate-tuning of doped graphene-hBN polaritons (19). 
In particular, near the −1 → 2 transition, altering the magnetic 
field by only 10% changes the Q factor by a factor of five. The great 
tunability of our system can be explained by the large optical con-
ductivity associated with the LL transitions at infrared frequen-
cies and the resultant externally controllable gap in the polariton 
dispersion (Fig.  2B). Therefore, the magnetic field provides a 

Fig. 3. Magnetic-field dependence of the polariton dispersion. (A) Near-field signal S3 acquired via a repeated line scan while sweeping the magnetic field from −6.0 
to 6.0 T at a rate of 0.4 mT/s; measurement was taken at ω = 1519 cm−1 and T = 154 K. The direction of this line scan was perpendicular to the gold contact to the left, which 
served as a polariton launcher; see Figs. 1A and 2F. (B) Line profiles extracted from (A) at magnetic fields B = 0.0, ±3.3, and ±5.8 T. (C) The near-field signal in (A) averaged 
over the distance. Minima of the averaged signal are assigned to the ILTs shown by the labels. The assignment is based on the calculation shown in (D). (D) Calculated 
near-field signal (Materials and Methods) as a function of magnetic field. Parameter values are chosen to be the same as in Figs. 1 (C and D) and 2 (A to C).
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feasible path toward on/off switching of polariton propagation in 
2D systems.

Many-body effects
Last, we discuss many-body effects manifested in deviations of the 
ILT frequencies from the 

√
B - law valid for free Dirac fermions. An 

alternative description of these deviations is the renormalization of 
the effective Fermi velocity veff

F
 defined by Eq. 1 below. From the 

minima in the Q factor, we can read off the magnetic fields B associ-
ated with each ILT and obtain the corresponding field-dependent 
veff
F

 . We find that veff
F

 decreases with B for all transition types follow-
ing a non-logarithmic B dependence (squares in Fig.  4C). These 
values agree unexpectedly well with previous far-field infrared (33) 
and Raman (34) spectroscopy results. We extract veff

F
 associated 

with both allowed and forbidden ILTs with the same measurement. 
In this regard, the m-SNOM provides a unified approach for LL 
spectroscopy that lifts many previous limitations.

Our theoretical calculations (Materials and Methods) of the ef-
fective Fermi velocity (diamonds in Fig. 4C) show a good agreement 
with the data using one adjustable parameter, the value of veff

F
 at one 

specific ILT (here, −2 → 3 gives the best agreement). These calcula-
tions also corroborate our experimental observation that the effec-
tive Fermi velocity of the −n → n ILTs is consistently below the 
trend followed by the −n → n ± 1 ones.

Our explanation for the above observation of veff
F

 is as follows: De-
spite its common usage, the term “effective” Fermi velocity is some-
what misleading in the present context. A more accurate statement is 
that the interaction corrections to the observed ILT energy ℏω, 
resulting in veff

F
 , include contributions from both the Fermi velocity 

renormalization (a polaronic effect) and excitonic effects. Namely, ℏω 
is given by the LL energy difference, |En| + ∣E

n�
∣, minus the magneto-

exciton binding energy Δ
nn�

The LLs En in this expression obey the quantization rule |En| = 
E(qn) where E = ℏvren

F
q is the renormalized quasiparticle dispersion 

and qn = l−1
B

√
2�n� is the quantized momentum of a Dirac fermion 

residing at the nth LL (inset Fig. 4C). The effective Fermi velocity veff
F

 
is (approximately) equal to the renormalized vren

F
 only if the magne-

toexciton binding energy Δ
nn�

 is neglected. In that case, a logarith-
mic dependence of veff

F
 on E (at fixed n and n′) follows from the 

perturbation theory formula vF(E) ≈ v
F(Λ)

[
1+ 1

4
αln|Λ∕E|+…

]
 

where α = e2/(κℏvF) ≪ 1 is the Coulomb coupling constant, Λ is the 
high-energy cutoff, and κ is the effective dielectric constant of the 
graphene environment (36). This formula has been derived for 

ℏω ≡ ℏveff
F

lB

�√
2�n� +√

2�n��
�
=
���En�� + ��En� ��

�
− Δnn� (1)

Fig. 4. Magnetic-field dependence of LPP properties and Fermi velocity renormalization. (A) Polariton wavelength λP and (B) polariton quality factor Q = Re k/ Im k 
as a function of the magnetic field B. Solid lines show experimental values extracted from Fig. 2; shaded regions show the SD of the measurement. (C) Effective Fermi 
velocity veff

F
 as a function of the logarithmic magnetic field ln(B) derived for different ILTs (see section Many-body effects): Squares show experimental values derived from 

(B). Diamonds represent calculated values of veff
F

 (see Materials and Methods) (37). We observe a nonlogarithmic trend. Inset: The red (black) points show veff
F

 for the −1 
→ 1 (−1 → 2) ILT measured via Raman spectroscopy (34) [far-field infrared spectroscopy (33)]. The tapering shape of the Dirac cone illustrates the Fermi velocity renormaliza-
tion (33, 34, 40), resulting in a logarithmic B dependence of the far-field data (33, 34). (D) Squares and diamonds show the exciton binding energy Δ

nn�
 of the Landau po-

laritons derived from the experiment and theory, respectively. The exciton binding energy is larger for the ILTs with n′ = −n compared to those with n′ = −(n ± 1) and 
generally increases with magnetic field. Inset: The dependence of the exciton binding energy on the magnetic field and type of the ILT can be explained within a semiclas-
sical model where quantized electronic orbitals of the LLs are shaped as narrow rings of radius rj = lB

√
2�j� , j = n, or n′. The magnetoexciton binding energy Δ

nn�
 (see text) 

is given by the Coulomb attraction energy of these rings. For a fixed n, this binding energy is the largest when the ring radii are equal, at n′ = −n.
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graphene in zero magnetic field; however, it remains approximately 
correct at nonzero B (Materials and Methods), meaning that the re-
normalized Fermi velocity is first and foremost a function of energy, 
vren
F

= vren
F

(E) . Since En and E
n′

 are B dependent (33, 34), vren
F

 usually 
acquires a logarithmic B dependence for a given ILT, as found in 
previous far-field spectroscopy studies (inset in Fig. 4C) (31, 32, 34, 
35, 38). On the other hand, here, we have studied ILTs at a fixed 
laser frequency so that the transition energy ℏω ≈ |En| + ∣E

n�
∣ re-

mained the same, being split roughly equally between |En| and ∣En� ∣. 
Therefore, in our experiments, the renormalized Fermi velocity 
vren
F

≈ vren
F

(ℏω∕2) should have little B-field dependence and the ob-
served variation of veff

F
 (Fig.  4C) should mostly come from the 

change of magnetoexciton binding energy Δ
nn�

, which follows non-
logarithmic trend with changing magnetic field. The data analysis 
in some of the previous works was oversimplified by emphasizing 
the logarithmic trend and not considering the additional field-
dependent contribution due to the magnetoexciton binding energy.

Our theoretical calculation of the two competing terms, |En| + 
∣E

n�
∣ and Δ

nn�
, in Eq. 1 confirms that at fixed ℏω, the former gives a 

nearly constant contribution to veff
F

 for all measured ILTs so that veff
F

 
variation comes from the latter, with characteristic dips occurring at 
n′ = − n points (Materials and Methods). This allows us to extract 
the binding energy Δ

nn�
 (Fig. 4D) from veff

F
 . The absolute value of 

Δ
nn�

 generally increases with magnetic field and is larger for the ILTs 
with n′ = − n compared to those with n′ = − (n ± 1). A simple way 
to think about the magnetoexciton binding energy Δ

nn�
 is to imagine 

that it is equal to the Coulomb attraction energy of two LL orbitals 
shaped as concentric rings, one with charge +e, the other with 
charge −e (inset Fig. 4D). The ring radii are given by the formula 
rj =∣Ej ∕ev

ren
F

B ∣ , where j = n or n′, which is the semiclassical cyclo-
tron radius of a Dirac particle with energy Ej. (Note additional rela-
tions rj = lB

√
2||j|| = l2

B
qj .) For a fixed n, this attraction energy is the 

largest when the ring radii are equal, i.e., at n′ = −n, yielding the 
lowest veff

F
 at such ILTs.

DISCUSSION
Our study has shown that the physics of LPPs is very rich, and it 
involves simultaneously three types of effects: polaritonic, excitonic, 
and polaronic. These effects have distinct characteristics: 1) The po-
laritonic effects change collective mode properties in the hetero-
structure. Forbidden optical transitions are now accessible in the 
momentum space offered by m-SNOM. The mode coupling be-
tween Landau polaritons (magnetoexcitons) in graphene and pho-
non polaritons in hBN generates a tunable avoided crossing, which 
could potentially be further tailored by using other ILTs (e.g., 0 → 1 
ILT) or multilayer engineering (e.g., adding additional layers of gra-
phene). 2) The excitonic effects are manifestations of the electron-
electron interactions. They lead to a finite binding energy, which 
also modifies the LPP dispersion. This binding energy can be fur-
ther tuned via dielectric screening engineering. 3) The polaron 
effect is another term for the renormalization of the quasiparticle 
dispersion. Although above we emphasized the role of electron-
electron interactions as the reason for the renormalization of the 
Fermi velocity vren

F
 , this interaction is screened by hBN. Hence, the 

interaction of electrons in graphene with phonons in hBN is includ-
ed implicitly. In our case, vren

F
 does not change much with magnetic 

field since we keep the incident photon energy the same throughout 

the experiments. In addition, in our calculation of the renormal-
ized Fermi velocity, we approximated the hBN dielectric function 
by its dc (ω = 0) value. Goals for future work can be: i) incorporat-
ing more sophisticated theoretical approaches into our model to 
properly treat electron-phonon coupling and ii) experimentally 
studying in more detail the momentum dependence (e.g., via differ-
ent m-SNOM tip radii) and frequency dependence of LPPs.

As mentioned in the introduction to this paper, LPPs are specific 
examples of MPR effects. Other known MPR effects include magneto-
polarons (23–25), dc magneto-transport oscillations (27, 28, 47), and 
mode splitting in magneto-Raman spectroscopy (26). Most of them 
have been studied in bulk crystals or a single material system. It 
would be interesting to investigate whether these phenomena are af-
fected by finite-momenta LPPs in a 2D heterostructure. Last, it would 
be desirable to explore a variety of other nano-magneto-optics phe-
nomena using m-SNOM, including chiral edge magnetoplasmons 
(48–50), cavity magneto optics (51), magnon polaritons and magnon-
phonon polaritons (5, 52), the polaritonic Hofstadter butterfly (53), 
magnetoexcitons of fractional quantum Hall states (54), and collec-
tive modes of stripe phases in partially filled LLs (55).

MATERIALS AND METHODS
Experimental setup: Magneto infrared nanoscopy
Details of our experimental setup have been described in references 
(6, 56). Infrared nano-imaging in magnetic fields up to 7 T is dem-
onstrated using a home-built scattering-type scanning near-field 
optical microscope (57) that is placed within a closed-cycle cryostat 
(OptiCool, Quantum Design). The accessible sample temperature 
with our scanning probe system is ~10 to 350 K. For infrared near-
field imaging, a tunable QCL laser (Hedgehog mid-IR laser by DRS 
Daylight Solutions) is focused onto an atomic force microscopy tip 
via a parabolic mirror. As the resulting light spot is diffraction lim-
ited, it is much larger than the atomic force microscopy tip. Hence, 
it also illuminates the gold electrode that here serves as a launcher 
for the polariton waves (refer to the sketch of the experimental setup 
in Fig. 1A). The light scattered from the tip contains information 
about both the sample material and its polaritonic excitation. We 
detect the scattered light with a mercury-cadmium-telluride detec-
tor via a self-homodyne detection scheme (11, 57, 58), which yields 
a stable scattering signal and a good signal contrast. To separate the 
near-field signal from far-field contributions to the detected optical 
signal, we use lock-in demodulation at higher harmonics nΩtip 
of the tip tapping frequency Ωtip, with n = 3 for the data shown in 
the manuscript. We use an Akiyama-type scanning probe with a 
resonance frequency of about Ωtip ≈ 65 kHz (56), and scanning 
stages and positioners from Attocube (ANSxyz100/LT/UHV and 
ANPxyz101/LT/UHV, respectively).

Fabrication of graphene-hBN heterostructure
The sample studied in this work is hBN-encapsulated monolayer 
graphene. We fabricated the hBN/graphene/hBN stack using the 
standard van der Waals dry transfer technique (59). Graphene and 
hBN flakes were exfoliated onto Si/SiO2 (285 nm) substrates. The 
flakes were examined using an atomic force microscope and those 
with pristine surfaces and suitable thicknesses were selected. A 
polycarbonate (PC)/ polydimethylsiloxane (PDMS) was prepared 
and used to assemble the stack. We used the stamp to pick up the 
top hBN at ~120°C; then, monolayer graphene was picked up by 
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the top hBN at ~100°C; and then, the bottom hBN was picked up 
by the graphene layer at ~120°C. The stack on the stamp was trans-
ferred onto a clean Si/SiO2 (285 nm) substrate at 180°C, where the 
PC melted and detached from the PDMS. The finished stack was 
annealed in forming gas (95% N2 and 5% H2) at 450°C for 4 hours 
to minimize the polymer residue on the surface. Electrical contacts 
to the graphene channel were defined via standard electron beam 
lithography. The top hBN and graphene at the contact area were 
etched in CHF3/O2 (10:1) plasma (40 mTorr, 60 W), exposing the 
side of the graphene layer. Cr (5 nm)/Au (40 nm) was thermally 
evaporated to form side contacts to graphene (60).

Pauli-blocking and gate-switchable dispersion
A transition n → n′ between two LLs can be suppressed (Pauli-
blocked) by emptying the initial LL or filling the final LL via doping 
graphene off charge neutrality (33, 35, 39). Hence, Pauli-blocking 
is another clear signature of the ILTs. Here, we show that Pauli-
blocking can be used to tune the LPP dispersion, requiring lower 

carrier doping than nonmagnetic tuning. This is in stark contrast 
to the tuning mechanism of plasmons in doped graphene that de-
pends on modifying the plasma frequency via the charge carrier 
density (13, 15). Studying the same line as in Fig. 3A, Fig. 5A shows 
a measurement at constant magnetic field strength B = 3.3 T, with 
filling factor ν = 2πℏN/eB varied from 0 to 19 (N is the charge car-
rier concentration). Figure 5B shows corresponding line profiles at 
distinct filling factors ν = 0,5,10,15. At low ν, we find a strongly 
damped polariton, matching well to our magnetic-field dependent 
measurements of charge-neutral graphene above. When increasing 
the filling factor, due to the Pauli-blocking, we regain a propagating 
polariton mode with clear oscillatory behavior.

A quantitative analysis of the line profiles yields the filling-factor 
dependence of the polariton wavelength λP (Fig.  5C) and quality 
factor Q (Fig. 5D). At a constant magnetic field of 3.3 T, for charge-
neutral graphene with ν = 0, λP is larger than its value without a 
magnetic field due to the coupling with the −1 → 2 inter-LL reso-
nance. However, the polaritons are strongly damped, preventing a 

Fig. 5. Gate dependence of the −1➔➔ 2 graphene LPP at B = 3.3 T. (A) Near-field signal acquired via a repeated scan of the same line as in Fig. 3A while sweeping the 
gate voltage and, thus, the filling factor from ν = 0 to 19; measurements were done at ω = 1519 cm−1, and T = 154 K. (B) Line profiles extracted from (A) at four different 
filling factors of ν = 0, 5, 10, and 15, respectively. (C) Polariton wavelength λP and (D) polariton Q factor as a function of ν and charge carrier concentration N at 3.3 T; the 
shaded regions show the SD of the measurement.
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meaningful estimate of λP at ν = 0. When increasing the filling factor 
to ν ≈ 10, λP decreases to a local minimum and approximately re-
gains the wavelength observed at 0 T (compare to Fig. 3A). At the 
same time, the Q factor increases by more than a factor of 5. This 
is readily attributed to the expected Pauli-blocking of the −1 → 2 
transition: One expects the second LL to be filled at a filling factor of 
∣ν∣ = 4 ∣n�∣ + 2 = 10 with n′ referring to the index of the highest LL 
contributing to the transition (33), i.e., here, n′ = 2. When increasing 
ν beyond 10, the Q factor remains almost constant while λP slowly 
increases again. This increase of λP is not directly related to the 
Pauli-blocking of the inter-LL excitation and can rather be assigned 
to the hybridization between hBN phonon polaritons and plasmon 
polariton modes in doped graphene (19). Overall, combining gate 
tuning with a constant magnetic field opens unique possibilities for 
polariton tunability in the low-voltage regime, with a charge carrier 
concentration difference of less than 1011 cm−2, resulting in a polari-
ton wavelength change of several percent.

Additional insight into the coupling between graphene Landau 
polaritons and hBN phonon polaritons can be attained by studying 
the frequency dependence of the LPP dispersion along with its gate 
dependence. Like Fig. 5A, Fig. 6 shows near-field images that were 
acquired by repeatedly scanning the same line perpendicular to the 
gold electrode while sweeping the back gate voltage. The images 
have been acquired at six different photon frequencies; in Fig.  6 
from left to right, these are: ω = 1498,1509,1519,1529,1537, and 
1547 cm−1. From top to bottom, the gate voltage was changed from 
0 to −50 V for each scan (0 to −40 V for the scan at 1529 cm−1).
From the symmetry of the near-field images, one can see that the 
charge neutrality point (CNP) of graphene for these scans is found 
approximately in the middle of the scans, i.e., around −25 V. All the 
measurements shown so far (Figs. 2 to 5) have been taken in a single 
measurement run at 154 K. For the measurements shown in Fig. 6, 
the sample had been heated up to room temperature (to exchange 
the m-SNOM tip) and then cooled to 76 K. While both the thermal 
cycling (33) as well as the lower temperature may affect the mea-
surement, the results in Fig. 6 appear consistent with the results dis-
cussed so far. As also observed in Fig. 5, Fig. 6 illustrates how the 
ILT gets Pauli-blocked when doping graphene away from charge 
neutrality. Well matching to the calculated dispersion in Fig. 2 (A to 
C) and literature results on the uncoupled hBN phonon polaritons
(8), the LPP fringes show a clear positive dispersion, i.e., increasing
polariton momentum (decreasing wavelength) with increasing fre-
quency. Notably, Fig. 6 also directly illustrates how the gap in the
LPP dispersion (Fig. 2B) opens and closes with frequency: While,
around charge neutrality, the LPP propagation is gapped out at the

central frequencies in Fig. 5 (e.g., at 1519 and 1529 cm−1), one can 
see the width of the gap (along the voltage axis) decrease when mov-
ing to either lower or higher photon frequencies. For example, both 
at 1498 and 1547 cm−1, the fringe suppression due to the coupling 
with the graphene ILT is less efficient, and some fringes can even be 
observed at charge neutrality. Again, this behavior agrees very well 
with the calculated dispersion shown in Fig. 2B.

Numerical calculation of graphene magneto- optical 
conductivity, polariton dispersion, and near- field signal: 
(Figs. 1, C and D, 2D, and 3D)
We calculate the longitudinal conductivity of graphene (plotted in 
Fig. 1, C and D of the main text) using the approximate Kubo formula

In this formula, the effect of disorder and electron interactions on 
LL broadening is expressed using a single phenomenological param-
eter γ. Equation 2 neglects contributions from intra-LL transitions, 
which are model dependent and difficult to compute. [For an example 
of such calculation, see (61).] These intra-LL contributions should be 
small at frequencies ω ≫ γ of interest and should be absent complete-
ly under the integer quantum Hall effect conditions, where each of the 
Fermi factors fn is equal to either zero or unity (no partial LL filling 
occurs). In principle, the matrix elements Fnm(q) in Eq. 2 can be sepa-
rated into two parts, F

nm
(q) = F0

nm
(q) + δF

nm
 , where the first one rep-

resents the response of an ideal system without electron scattering 
and the second one is a correction due to interactions and disorder. If 
γ and δFnm originate from the same physical mechanism, such as the 
scattering of electrons by static disorder, then the matrix element 
δFnm are expected to scale as γ2/(Em − En)2. In the aforementioned 
paper, for short-range disorder and in the absence of electron-electron 
interactions, the following result has been derived (61)

In our experiments, we typically have γ2 ∕ω2
c
∼ 10−5 … 10−4 so 

that δFnm should be negligible. We do not consider such corrections 
below; however, the question of whether electron interaction can 
produce larger δFnm for the same small γ is conceptually interesting 
and may warrant future theoretical study.

σxx
(
q,ω

)
= ie2ω

∞∑
m=−∞

∞∑
n=m+1

(
Em − En

)(
fm − fn

)
(
Em−En

)2
− ℏ2(ω+ iγ)2

Fnm
(
q
)

(2)

δF
nm

=
γ2

4π

(
1+δ0,m

)(
1+δ0,n

)
(
Em−En

)2
[
2|m|+2|n|+δ

n,0

(2|n|−2|m|+1)2
+(m↔n)

] (3)

Fig. 6. Frequency dependence of the gate dependence at B = 3.3 T. Near-field signal acquired via a repeated scan of approximately the same line as in Fig. 3A while 
sweeping the back gate voltage from 0 to −50 V. The charge neutrality point (CNP) of graphene for these scans is found approximately in the middle of the scans, i.e., 
around −25 V. To investigate the dependence on the photon energy, the scans were performed at different frequencies, from left to right: ω = 1498,1509,1519,1529,
1537,1547 cm−1. The measurements were done at temperature T = 76 K. Scale bar, 1 μm.
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The formulas for Fnm(q) in the ideal system, which are well 
known, can be written as (43)

where Lα
n
(x) is the associated Laguerre polynomial. At small mo-

menta q ≪ l−1
B

 , function Fnm(q) scales as q2||m|−|n||−2 so that the con-
ductivity σxx(q, ω) is dominated by the allowed transitions with 
|m|−|n| = ± 1, as discussed in the main text. Precisely at q = 0 
(“far-field limit”), the conductivity is given by

Note that because of the factors 1 + δ0,n in Eq. 4, the oscillator 
strength of the principal cyclotron transitions 0 → ± 1 is effectively 
doubled compared to other ILTs. In Eq. 5, this doubling is affected 
implicitly by summing over the band index s.

In the case of zero temperature, which we consider from now on, 
the numerators in the series of Eq. 5 can have only three possible 
values: Nms = 0, −1, or −2. For example, at CNP, they are equal to 
Nm,−1 = − 2 if s = − 1 (inter-band transitions) and Nm,1 = 0 if s = 1 
(intra-band transitions) for all m except m = 0, for which N0,−1 = 
N0,1 = − 2. The series for finite doping differs from that for the CNP 
only in a finite number of terms for which Nms deviates from this 
rule. Hence, the far-field limit of the conductivity of a doped system 
can be easily computed from that for CNP by adding suitable cor-
rections due to these terms.

Numerical evaluation of the series in Eq. 5 at CNP poses a prob-
lem, however, because of its slow convergence. To expedite the con-
vergence, we transformed this series into an integral using standard 
techniques of complex analysis. The final expression for σCNP

xx
 is 

somewhat lengthy, so we split it into three parts

The first part C1 is a partial sum of the original series (cf. Eq. 5),

The upper limit of summation M is largely arbitrary, and the 
minimal choice (where M = 0 or 1) is given below. The second part 
C2 is the integral

We ensure that this integral is free of singularities by taking 

M = 0 if Re mω > 1 where mω =
1

4

(
ω−

1

ω

)2

and M = 1 otherwise. 

Parameter mω has the property that at m = mω, the summand in 
Eq. 6b has a pole in the complex plane of m. The final part of our 
formula comes from the residue of that pole

where Θ(x) is a unit step function. Numerical evaluation Eq. 6a to d 
is very fast, yielding the numerically exact results for conductivity 
σCNP
xx

(0,ω) at CNP and thus σxx(0, ω) at any desired doping.
Next, we discuss our procedure for computing σxx(q, ω) at non-

zero q. Here, both allowed and forbidden ILTs must be included. 
Once again, the problem is difficult because the terms in Eq. 2 de-
crease slowly with m and n. For simplicity, we focus on the CNP 
where only the inter-band transitions are possible. Applying the 
Wentzel-Kramers-Brillouin approximation to solve the differential 
equation for Ln2−n1n1

(x) , we derived the following asymptotic formula, 
valid for m ≥ n ≫ 1

Substituting this formula into Eqs. 4 and 2, we see that the high-
order terms in Eq. 2 scale as O(x−1/2 n−2) if n≫ ω and that the dom-
inant contribution comes from m’s that satisfy the double inequality √
n ≤√

m ≤√
n +

√
x . Let us define the series residual ΔσCNP

xx
 as 

the difference between σCNP
xx

  and the series of Eq.  2 truncated at 
some Nc so that

From the above reasoning, we expect that ΔσCNP
xx

 scales as N−1∕2
c  

if Nc ≫ ω. Hence, for strong enough magnetic fields where 
ω = (ω + iγ)∕ωc  is at most of the order of unity, we can achieve, say, 
5% accuracy by simply summing over N2

c
∼ 0.05−4 ∼ 105 terms. As 

the magnetic field decreases, ω increases, and this naïve strategy be-
comes unfeasible because of long computation times and, more im-
portantly, the accumulation of roundoff errors in evaluating the 
Laguerre functions. As an alternative, we briefly experimented with 
various series acceleration methods (e.g., Levin’s method) but found 
them to be numerically unstable due to their own set of roundoff 
errors. Eventually, we settled on estimating the residual by using the 
asymptotic formula (Eq. 7) and replacing the summation with inte-
gration. After some manipulations, our result, in the absence of 
damping, can be presented as follows

Fnm
(
q
)
=

2

πx

|||sgn(mn) An
<
,n

>

(x)+An
<
−1,n

>
−1(x)

|||
2
,

n
<
=min(|m|, |n|), n

>
=max(|m|, |n|), x≡ q2l2

B

2
,
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(
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2
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2
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(4)
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√
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In weak magnetic fields where x ≡ q2l2
B
∕2 > 4Nc , Eq. 9 can be 

evaluated analytically. Here, we have k+ = q, C(k−) = − 1 so that

which is a well-known expression for the conductivity of gra-
phene at CNP in the absence of the magnetic field. Apparently, 
σCNP
xx

(
q,ω

)
≃ ΔσCNP

xx

(
q,ω

)
 in this regime. At stronger fields where 

<4Nc, Eq. 9 can be easily evaluated by a numerical quadrature. Last, 
to include a small LL broadening γ ≪ ω, we replaced ω by ω + iγ in 
these equations. Including ΔσCNP

xx
 in the calculation significantly im-

proves the accuracy of the procedure so that reasonably accurate 
results can be obtained for modest Nc. We found that Nc = 70 is suf-
ficient for the entire parameter space of momenta, frequencies, and 
magnetic fields we explored.

The parameters we used for calculating σCNP
xx

(
q,ω

)
 according to 

Eqs. 4, and 8 to 10 were as follows. On the basis of our experimental 
results for the −1 → 2 transition (Fig. 4C), we choose a Fermi veloc-
ity vF = 1.19 × 106 m/s. Our choice of the LL broadening γ is based 
on (33), which suggests an energy-dependent LL broadening of the 
form γ = γ0 + βE with γ0 = 0.75 meV and β = 0.012. For our photon 
energy E = ℏω = 188 meV, it gives γ = 3.01 meV (24.27 cm−1), which 
is the constant value that we used for our calculations.

Having calculated graphene conductivity, next, we compute the 
reflection coefficient rp for the whole heterostructure using the trans-
fer matrix formalism [see, e.g., (8, 13, 14)]. We assume that the sample 
has the following structure: hBN (16 nm), graphene, hBN (55 nm), 
SiO2 (285  nm), and Si (semi-infinite); see Fig.  1D. Representative 
plots for Im rp as a function of momentum, frequency, and magnetic 
field are shown in Fig. 2 (A to C) of the main text.

The near-field signal in Fig. 3D is calculated as described in (62), 
assuming the tip radius of rtip = 30 nm, length of the long semi-axis 
of the spheroid of 160 nm, and tip tapping amplitude of A = 40 nm.

Momentum-range accessible via m-SNOM
As m-SNOM is based on scattering-type SNOM (s-SNOM), the ac-
cessible momentum range of both techniques can be described in the 
same manner, which originates in the simple point-dipole model (14, 
57, 58, 63) of the tip-sample interaction. The bell-shaped curve in 
Fig.  1C represents the time-averaged function k2e−2kz(t). Here, the 
time-dependent effective dipole position z(t) is (14): z(t) = b + A(1 − 
cos Ωtipt), b is the shortest distance between the model dipole and the 
sample, A is the tip tapping amplitude, and Ωtip is the tip tapping fre-
quency. The analytical formula for this bell-shaped curve is therefore 
〈k2e−2kz〉t = k2e−2k(b+A)I0(kA), where I0(x) is the modified Bessel func-
tion of the first kind. We choose b = frtip with f = 0.79 based on 
s-SNOM modeling literature (64, 65), and we assume rtip = 30 nm and 
A = 40 nm.

Extracting the coupling strength via the coupled harmonic 
oscillator model
Coupled harmonic oscillators model for hBN phonon 
polaritons and graphene Landau polaritons
We model the interaction between hBN hyperbolic phonon polari-
tons and graphene Landau polaritons as coupling of two harmonic 
oscillators (44, 45, 66, 67). The oscillator resonant frequencies and 
damping parameters are ωi, and Γi, respectively, where i = {hBN, 
Landau}. The complex eigenfrequencies of this system are given by

where the sign ± indicates the lower (−) and the upper (+) branch solu-
tion (42). Here, ω =

(
ωhBN + ωLandau

)
∕2 , Γ =

(
ΓhBN + ΓLandau

)
∕2 , G 

is the coupling strength, and H = ωhBN − ωLandau −
i

2

(
ΓhBN − ΓLandau

)
 . 

The real parts of the eigenfrequencies are

By calculating ω± and the parameters ωi and Γi of the uncoupled 
oscillators, we can determine the coupling strength G from Eq. 12. 
Because of the dispersive nature of polaritons, each parameter de-
pends on the momentum k. The following sections describe the pro-
cedure for extracting ωi(k), Γi(k), and ω±(k) from the simulated 
dispersions.
Extraction of the oscillator parameters for uncoupled modes
To calculate the parameters of the oscillators, we simulate the imag-
inary part of the reflection coefficient Im rp that yields the disper-
sion for each uncoupled mode. For hBN phonon polaritons, we 
considered the Im rp map at B = 6 T shown in Fig. 2C in the main 
text (and Fig. 7A). The reason we preferred to use B = 6 T instead of 
B = 0 T is that at zero field, the charge-neutral graphene influences 
the polaritonic response of the heterostructure via its universal opti-
cal conductivity σ = e2/4ℏ (33). We isolate the fundamental hyper-
bolic branch by applying a window mask to the dispersion map. The 
mask values are 1 in the interest region and 0 elsewhere (red area in 
Fig. 7A). Figure 7B shows line profiles from the map extracted for 
different momenta. The oscillator parameters were obtained by fit-
ting these profiles to the function

The extracted dispersion ωhBN(q) (white line in Fig. 7A) matches 
well with the dispersion in the Im rp map. Figure 7C shows the ex-
tracted values for fhBN and ΓhBN.

To calculate the parameters for the Landau polaritons, we simu-
lated Im rp for graphene on top of SiO2 (thickness, 285 nm). Figure 7D 
shows the map at B = 3.35 T. Using the same procedure described 
previously for hBN polaritons, we extracted the uncoupled oscillator 
parameters for the LLPs. Figure 7E shows the extracted ωLandau(B, k). 
Figure 7D (black line) shows ωLandau(k), and Fig. 7F shows ΓLandau and 
fLandau for B = 3.35 T.
Dispersion of branches and coupling strength extraction
We extracted ω±(k, B) from Im rp by locating its maxima for every 
fixed k. The hBN phonon polariton dispersion was used as a refer-
ence to separate the ω− and ω+ branches. The result of this extrac-
tion is illustrated in Fig. 8 (A and D), for B = 3.15 T and B = 3.4 T, 
respectively. Figure  8 (B, C, E, and F) shows the spectral gap 
2Δω±(k) = 2

(
ω± − ω

)
 as a function of the complex parameter H(k). 

The coupling strength was obtained by fitting the spectral gap 
to Eq. 12.
Coupling strength and criterium for strong coupling
Figure  9A shows the calculated coupling strength G for different 
magnetic fields. We can observe that the coupling strength increases 
until it reaches a maximum at B = 3.3 T. The frequencies of hBN and 

ΔσCNP
xx

�
q,ω

�
=

e2

4ℏ

iω√
q2v2 − ω2

(10)

ω± + iΓ±∕2 = ω − i Γ∕2 ±

√
G2 +

1

4
H2 (11)

ω± = ω ± Re

√
G2 +

1

4
H2 (12)

Im rp ∝ ωf 2
i
Im

(
1

− ω2 − iωΓi + ω2
i

)
(13)
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Landau modes in which dispersion crossing occurs are shown 
in Fig. 9B. By calculating the branches splitting Ωtip = ω+ − ω− 
where crossing occurs (Fig.  9C), we calculated the criterion 
C = 2Ω2 ∕

(
Γ2
hBN

+ Γ2
Landau

)
 (Fig. 9D) (44). Strong coupling is achieved 

for 3.15 T < B < 3.4 T, where C > 1.
To verify the results, we show in Fig. 9 (E to H) the calculated 

frequency branches from Eq. 12, in which we used the parameters 
from the uncoupled hBN and Landau modes and the extracted cou-
pling strength. Notice that we have calculated coupling values only 
in a narrow range of magnetic fields. This is because the coupled 
oscillator model is only well-defined at frequencies and momenta in 
which the dispersions of both modes overlap. Nevertheless, the hBN 
polariton dispersion is not fully recovered for B > 3.4 T (see Fig. 9H 
at B = 3.6 T), indicating that these polariton modes can still interact 
with each other.

Weak polariton fringes parallel to graphene boundary in 
fig. 2 (D to F)
Figure 2 (D to F) shows clear polariton fringes parallel to the gold 
electrode. The analysis of these fringes and their dispersion with 
magnetic field is a central part of this study. We note that weaker 
polariton fringes can be observed parallel to the graphene boundary 
marked by the dashed white line in Fig. 2 (D to F). This mode reflec-
tion is attributed to the polariton momentum mismatch between 
hBN regions with and without graphene. Therefore, the interference 
fringes parallel to the graphene boundary are most pronounced in 
pure hBN at 3.35 T where the momentum mismatch between the 
regions 2) and 3) is the largest. In our analysis, we do not focus on 
these weak polariton fringes.

Many-body effects: Fermi velocity and magnetoexciton 
binding energy
Figure 2 (D to F): The effective Fermi velocity was defined by Eq. 1, 
copied below for convenience (assuming n, n′ ≥ 0)

In the main text, we explained that the many-body correction 
ΔE−n→n�

 to the energy E−n→n�
 of a −n → n′ ILT (at zero momentum 

q = 0) has two parts: i) the correction due to the electron self-
energies ΔEm of m = −n, n′ LLs and ii) the magnetoexciton binding 
energy Δ−n,n�

We referred to the former as the Fermi velocity renormaliza-
tion effect and to the latter as the excitonic effect. In this ap-
proach, the renormalized Fermi velocity of −n → n′ ILT is 
given by

where vF is the bare Fermi velocity, so that veff
F,−n→n�

 and vF,−n→n� are 
related by

v
eff
F,−n→n�

≡ l
B

ℏ

E−n→n�√
2n +

√
2n� (14)

ΔE−n→n� =
(
ΔEn� − ΔE−n

)
− Δ−n,n� (15)

v
F,−n→n�

≡ v
F
+

l
B

ℏ

ΔE
n�
− ΔE−n√

2n +
√
2n�

(16)

v
eff
F,−n→n�

= v
F,−n→n�

−
l
B

ℏ

Δ−n,n�√
2n +

√
2n�

(17)

Fig. 7. Extraction of oscillator parameters from polariton dispersions. (A) Im rp at B = 6 T from the main text (Fig. 2C). The red-shaded region indicates the area ex-
cluded by the window function. The white solid line is the phonon polariton dispersion extracted from fitting. (B) Line profiles from (A) extracted for different momenta 
values (black lines). The fitted curve is represented as dashed lines. (C) hBN phonon polaritons damping and oscillator strength extracted from fitting. (D) Im rp simulated 
for graphene on SiO2 (thickness, 285 nm) at B = 3.35 T. The black solid line represents the dispersion extracted from fitting. (E) Extracted Landau polariton resonance as a 
function of magnetic field and momenta. The white dashed lines represent isofrequencies. (F) Landau polariton damping and oscillator strength from fitting.
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Following previous work (37), we compute the quantities that 
enter these equations as follows

Here, fm is again the Fermi occupation factor of mth LL [fm = 
Θ(−m) if m ≠ 0 and f0 = 1/2], gmn(q) is the matrix element defined 
in Eq. 4, and v

(
q
)
=

2πe2

ϵ(q)q
 is the screened Coulomb interaction. We 

ΔEn� −ΔE−n=− ∫
d2q

(2π)2
v
(
q
)
I−n,n�

(
q
)
,

I−n,n�
(
q
)
=
∑
m

fm

(|||gm,n�

(
q
)|||

2

−
|||gm,−n

(
q
)|||

2) (18)

Δ−n,n� = ∫
d2q

(2π)2
v
(
q
)
g−n,−n

(
q
)
gn�n�

(
q
)

(19)

Fig. 9. Coupling strength analysis and model validation across varying magnetic fields. (A) Coupling strength as a function of the magnetic field, extracted via fitting. (B) Ex-
tracted spectral position where the hBN phonon polariton and Landau polariton dispersion cross. (C) Branch separation Ω at the crossing point. (D) Criterion C for strong coupling. 
The blue-shaded areas represent the uncertainty of the presented variables, assuming straight connections between the data points as a guide to the eye. (E to H) Calculated branch 
dispersion based on the uncoupled modes and the extracted coupling strength for (E) B = 3.2 T, (F) B = 3.3 T, and (G) B = 3.4 T. For (H) B = 3.6 T, we only show the hBN phonon polari-
ton and the Landau polariton dispersions. The Im(rp) is presented on the background to show the expected dispersion from the simulation.

Fig. 8. Determination of coupling strength from hybrid modes. (A and D) Extracted dispersion of lower (green) and upper (yellow) branches for (A) B = 3.15 T and (D) 
B = 3.4 T. The simulated Im rp and the dispersion of the uncoupled modes are shown for reference. Dependence of 2Δω±(q) on (B and E) the real part and (C and F) the 
imaginary part of H(k) for B = 3.15 T and B = 3.4 T.
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neglect dynamical screening effects; however, we include static 
screening through the momentum-dependent dielectric function

Function κ(q) has the meaning of the effective dielectric constant 

of graphene environment. Parameter ϵhBN ≡ (
ϵ⊥
hBN

ϵ
∥

hBN

)1∕2

= 4.9 is 

the dc (i.e., ω = 0) dielectric constant of hBN defined as the geomet-
ric average of its in-plane and out-of-plane dielectric constants, 

ξhBN ≡ (
ϵ⊥
hBN

∕ϵ
∥

hBN

)1∕2

 is the hBN anisotropy factor, ϵSiO2 = 3.9 is 
the dc dielectric constant of SiO2, ϵSi = 11.7 is the dc dielectric con-
stant of Si, and ϵ0 = 1 is the dielectric constant of vacuum. Parame-
ters d1 = 16  nm and d2 = 55  nm are thicknesses of the top and 
bottom hBN layers, respectively, and d3 = 285  nm is the SiO2 
thickness. Function κg(q) specified by Eq.  19c accounts for the 
(static) screening of the Coulomb potential by electrons in gra-
phene and σxx(q, ω) is the longitudinal conductivity of graphene in 
the presence of magnetic field computed as described in section 

Numerical calculation of graphene magneto-optical conductivity. 
Representative plots of functions κ(q), κg(q), and ϵ(q) are shown in 
Fig. 10 (A and B).

As one can see from these graphs, κ(q) (the middle curve) is equal 
to (ϵ0 + ϵSi)/2 at zero q, then has a small dip to approach (ϵ0 + ϵSiO2)/2 
within a narrow range of relatively low momenta d−1

3
≲ q ≲ d−1

2
 , and 

then rises and tends to ϵhBN at q ≳ d−1
1

= 6.7 × 105 cm−1 . The total 
dielectric function ϵ(q) (the top curve) shows the same small dip at 
low q, goes through a modest maximum, and then approaches the 
limiting value

at high momenta q ≫ l−1
B

.
The calculation of the binding energies Δ−n,n� in Eq. 19 involves 

numerical evaluation of four integrals of the form

which are well behaved. On the other hand, the integral for the self-
energy in Eq. 18 diverges at large momenta qlB ≫

√
n,
√
n′ because

as can be deduced from Eqs. 4 and 18. We regularize this divergence 
by renormalization, i.e., subtraction of vF,−n→n� evaluated at some 
reference field B0. Let l0 ≡ lB(B0) be the magnetic length at B0. Since 
the high momenta enter through the product qlB, we can rescale the 

ϵ
(
q
)
= κ

(
q
)
+ κg

(
q
)

(20a)

κ
(
q
)
=
ϵhBN

2(
ϵhBNtanhξhBNqd1+ϵ0

ϵ0tanhξhBNqd1+ϵhBN
+
ϵhBNtanhξhBNqd2+ϵSOS

ϵSOStanhξhBNqd2+ϵhBN
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ϵSOS=ϵSiO2
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(20b)
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q
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ω→ 0
ω−1σxx

(
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(20c)

ϵ∞ = ϵhBN +
πα

2
, α =

e2

ℏvren
F

≈ 2.2 (21)

∫
d2q

(2π)2
v
(
q
)
Ln1

(
q2l2

B

2

)
Ln2

(
q2l2

B

2

)
e−q

2 l2
B
∕2 (22)
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�
q
�
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√
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√
2n�

4qlB
(23)

Fig. 10. Calculation of the Fermi velocities and many-body effects. (A and B) Effective dielectric function for electrons in graphene. Functions κ(q), κg(q), and ϵ(q) de-
fined by Eq. 19 (A to C) for B = 3.35 T. (B) shows a magnification of the small dip at low q that is observed for κg(q) and ϵ(q). (C) Renormalized Fermi velocities given by 
Eq. 26. (D) Effective Fermi velocities defined by Eq. 17 that include excitonic corrections.
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integration variable in Eq. 18 by the ratio R = lB ∕ l0 =
√
B0 ∕B to can-

cel the divergence. Performing the subtraction, we find

where

Note that if the dielectric function is replaced by a constant, e.g., 
ϵ∞, then v(q) = 2πe2/(ϵ∞q) and Δv

F,−n→n�
(B, B0) vanishes identically. 

In this case, the conventional logarithmic-in-B rule (37) for the 
Fermi velocity renormalization is recovered.

In our experiment, all the ILTs were measured at the same pho-
ton energy ℏω. Therefore, it is convenient to select a particular ILT, 
e.g., −2 → 3, as a reference, so that B0 = B−2→3, where B−2→3 is the 
field at which this ILT occurs. Equation 24 entails

Our calculations using this formula show that vF,−n→n� is almost 
the same for all the ILTs, as shown in Fig. 10C. On the other hand, 
v
eff
F,−n→n�

 , given by Eq. 17, exhibits characteristic dips at n = n′ be-
cause of relatively larger excitonic corrections Δ−n,n� at such ILTs; see 
Fig. 10D.

To obtain the experimental binding energies Δexp,−n,n�, we use 
Eqs. 17 and 26 but set the effective Fermi velocities equal to their ex-
perimentally measured values veff

F,exp,m→n
 . Solving for Δ−n,n�, we obtain

This gives Δexp,−n,n� in terms of veff
F,exp,−n→n�

 and veff
F,exp,−2→3

 , the cal-
culated electron self-energies, and the calculated binding energy 
Δ−2,3 for the reference ILT.

Processing of experimental near-field data
The following section describes the processing of the experimental 
near-field data that are displayed in Figs. 2 (D to F), 3A, and 5A. We 
want to emphasize that we tried to keep data and image processing 
to a minimum. The data processing that we did apply is described 
below for each (sub-)figure showing experimental near-field data:

Figure  2 (D to F): The 2D scans at 0.0 T (Fig.  2D) and 3.35 T 
(Fig.  2E) show raw data. No filter was applied. The scan at 6.0 T 
(Fig. 2F) was corrected for horizontal strokes using the “correct hori-
zontal scars (strokes)” function of gwyddion (program version 2.62).

Figure  3A: The near-field data were corrected for slow spatial 
drift during this linescan using the topography information record-
ed simultaneously with the near-field data. Each line was horizon-
tally shifted such that the topography step of the gold electrode 
aligns for all lines (refer to Fig. 1D for a sketch of the sample). The 

topography information was also used to select the region without 
the gold electrode. Using this information derived from the topog-
raphy data, the same procedure was then applied to the near-field 
data to obtain the drift-corrected version of the near-field response 
on hBN and hBN-graphene-hBN shown in Fig. 3A. In addition, we 
found that the average near-field signal of our measurement slowly 
decreased with time. This can be assigned to minor drift in the opti-
cal alignment over the long measurement time of >8 hours. Assum-
ing a linear dependence on time, we estimated a drift of 1.01% signal 
reduction per hour of measurement time relative to the initial near-
field signal. We multiplied the near-field signal of each line with a 
constant compensating for this slow linear drift.

Figure  5A: The near-field data were corrected for slow spatial 
drift during this line scan using the topography information record-
ed simultaneously to the near-field data; this procedure is identical 
to the one applied for the near-field data of Fig. 3A. We did not com-
pensate for any potential temporal drift of the near-field signal, as 
we assume that it will be negligible because of the shorter measure-
ment time compared to Fig. 3A.

Extracting the polariton wavelength and quality factor from 
near-field line profiles
Each horizontal line of the near-field data displayed in Figs. 3A and 
5A represents a line profile such as the examples displayed in 
Figs. 3C and 5B. We analytically describe each line profile via an 
exponentially damped sine wave (20, 68–70) with linear back-
ground term

The vertical offset S0, the polariton wavelength λp, the polariton 
decay length Lp, and the phase offset φ0 are optimized for each line 
using a least-square fitting procedure. For this fitting procedure, the 
left-most 10% of each line are neglected. The linear background slope 
S1 and the amplitude A are constants that are optimized once for the 
whole dataset. However, S1 and A are not part of the fitting procedure 
and, thus, have the same value for all line profiles within a dataset.

Applying this fitting procedure to the data displayed in Figs. 3A 
(Fig.  5A) directly yields the polariton wavelength λp displayed in 
Figs. 4A and 5C. The quality factor Q (Figs. 4B and 5D) is calculated 
as Q = 2πLp/λp, i.e., it directly follows from the ratio of the fit param-
eters Lp and λp.

For our analytical description, we assume that our observed 
fringe pattern is dominated by polariton waves that are launched by 
the gold electrode (refer to Figs. 1D, and 2 D to F). This is opposed 
to polaritons launched by the tip and then reflected by the gold 
electrode.

Note that our analytical description above may be modified to 
reflect the geometrical spreading of the polariton waves, resulting in 
a function of the following form

The additional factor x−p reflects the amplitude reduction due to 
the geometrical spreading; the most common version of this factor 
uses a power p = 1/2, i.e., a factor x−1/2 corresponding to circularly 
spreading waves in a plane (20, 68–70). If we apply this modified 
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description to our data, we still obtain a good match to our data, but 
the resulting polariton quality factors are about three times larger 
compared to the values shown in the main text. However, while it is 
common to apply the geometrical spreading factor for polaritons 
launched by the tip or small antennas (20, 68–70), in our case, the 
edge of a gold contact (refer to Fig. 1A for the sample design) repre-
sents a linear launcher with extension larger than the analyzed polariton 
propagation length (70). This is why we chose not to add the fac-
tor x−1/2 in our analysis. Nevertheless, this also suggests that the 
quality factors shown in Figs. 4B and 5D may be an underestimation.
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