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A thin liquid film flowing down a vertical fiber exhibits complex and captivating interfacial

dynamics of an unsteady flow, including the formation of droplets, irregular traveling waves,

and a string of beads. The dynamics of traveling beads are particularly applicable in various

fluid experiments due to their high surface-area-to-volume ratio, which enhances gas diffusion

towards the liquid surface. Recent studies verified that when the flow undergoes regime

transitions, the motion of the film thickness changes dramatically. The dynamics of the liquid

film are influenced by the cylindrical geometry of the fiber and the presence of stabilizing

and destabilizing forces, which pose additional challenges for numerical simulations. Many

current numerical simulations of fiber coating dynamics, such as direct numerical simulation

(DNS), rely on the full Navier-Stokes equations. Such numerical simulations incur significant

computational costs, often requiring several days on a desktop computer. As a result of

the high computational cost, it is not feasible to simulate regime transitions or extend the

computational domain further downstream of the fluid.

In order to overcome these challenges, several reduced-order models using lubrication

ii



approximations have been developed. These models are much simpler than the full Navier-

Stokes equations, yet they are capable of capturing droplet dynamics and transient patterns

of the flow. However, these models have drawbacks in terms of their versatility, as one needs

to modify the form of the equations depending on the assumptions made regarding boundary

conditions and the scales of the problem. Depending on the boundary conditions at the

solid-liquid interface, one may observe singularities, cusps, and non-classical shocks in finite

time. If one were to consider a liquid film with a moderate thickness or a moderate Reynolds

number, the resulting equation would exhibit significant differences.

In this dissertation, we consider a model for fiber coating at low Reynolds numbers

with geometry such that the fluid thickness is larger than the fiber radius. We present a

computationally efficient numerical method that can maintain the positivity of the film

thickness as well as conserve the volume of the fluid in a coarse mesh setting. Our method

allows simulations of regimes with isolated droplets and the Rayleigh-Plateau instability,

commonly observed in laboratory experiments but particularly difficult to simulate. We create

our positivity-preserving numerical method in the following way. First, we present a conserved

and dissipative quantity for our continuous model. Next, we construct a continuous in time

and discrete-in-space numerical method that satisfies the discrete equivalent of conservation of

mass and an entropy estimate. We provide a proof of the positivity of our numerical method

using a priori and a posteriori bounds and a proof of second-order consistency. Finally, we

show that our method can be implemented efficiently using an adaptive time-stepping method

to describe solutions that correspond quantitatively to laboratory experiments.
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CHAPTER 1

Introduction

When a thin, annular layer of liquid flows down a narrow vertical cylindrical fiber, such

as a hair or a microscale tube, one can observe a fascinating physical phenomenon: an

unstable flow exhibiting complex traveling waves and bead patterns [Que90, KDB01, Lor78,

XD85, Que99]. Several patterns emerge, including traveling beads patterns that create

high-curvature regions that act as radial sinks. These patterns provide suitable geometry to

design devices for heat transfer [ZWJ15, HIM94] and mass transfer [CUM00, GLH12] along

the liquid-gas interfaces [SZJ19, GB21]. Such devices have application in various fields of

engineering [ZSW17, ZSJ18, UMO03, GLH12, CUM00, SZJ19], motivating comprehensive

theoretical and experimental studies over the last few decades [Que90, CD99, CM09, RTG09,

RTG08, KRS12c, RK12, JFS19, JFS21]. Although there have been many comprehensive

theoretical and experimental studies, numerical methods for simulating the traveling waves

and bead patterns have not been explored in depth. In this thesis, we focus on designing

numerical methods for efficiently simulating the coating flow on a vertical cylindrical fiber.

To better comprehend and create numerical methods for the coating flow on a vertical

cylindrical fiber, it is necessary to investigate models that use lubrication approximation.

Lubrication approximations are applied to simplify the Navier-Stokes equations and study

the dynamics of thin liquid films [BB02]. The study of thin liquid films is a well-developed

field with numerous models describing case-by-case situations. Examples include a model

for the rain flowing down a window [Mye98], the drying process of paint layers [Mye98], a

fluid drop spreading on a surface [Mye98], the deicing process on an airplane wing [MCT02],

1



the tears of wine phenomenon [DJF20], and many others. Myers provided a comprehensive

review article on thin-film flow driven by surface tension, highlighting the significant role of

surface tension in determining the dynamics of thin liquid flow [Mye98]. We refer readers

to [ODB97, CM09] for more recent reviews.

The lubrication approximation is valid when the thickness of the liquid film is much

smaller than its length scale. These equations are simpler in structure, making it easier to

design numerical methods. However, it is still not simple enough to consider lubrication-type

equations that approximate coating flows because they typically incorporate many different

nonlinear terms to describe the intricate flow dynamics. Thus, we first review the simplest

equation involving lubrication approximation to set the stage for the thesis: an equation

describing thin liquid flow on a solid substrate.

1.1 Lubrication equation derivation: a thin liquid film on a solid

surface

In this section, we derive the most basic form of a lubrication equation from the Navier-Stokes

equations, modeling a viscous fluid on a solid substrate. The equation describes the flow

where the pressure is dominated by surface tension and negligibly affected by other complex

forces. We follow the derivation and analysis by Bertozzi et al. [BBD94], but [KCD16]

provides an alternative discussion in depth.

Consider a two-dimensional Newtonian flow of a thin liquid film on a solid substrate, as

described in Figure 1.1. Assuming that the thickness of the liquid film is much smaller than

the length scale, a lubrication equation can be derived from the following two-dimensional

2



Figure 1.1: Illustration of a two-dimensional thin viscous liquid on a solid surface.

Navier-Stokes Equations [Bat67, KCD16],

u∗t∗ + u∗u∗x∗ + v∗u∗y∗ = −p
∗
x∗

ρ
+ ν (u∗x∗x∗ + uy∗y∗) , (1.1)

v∗t∗ + u∗v∗x∗ + v∗v∗y∗ = −
p∗y∗

ρ
+ ν (v∗x∗x∗ + vy∗y∗) , (1.2)

u∗x∗ + v∗y∗ = 0. (1.3)

Equations (1.1)-(1.3) represent the dimensional Navier-Stokes equations, where u∗ and v∗

represent the fluid velocity in the x and y direction, respectively, and p denotes the pressure.

The density ρ and the kinematic viscosity ν of the fluid are assumed to be constants. Various

boundary conditions can be considered, but the simplest conditions at the solid-liquid interface

are the no-slip [BBD94] and no-penetration [CM09] boundary conditions,

u∗ = 0, v∗ = 0 at y∗ = 0. (1.4)

In order to derive the lubrication equation for the thin viscous film, we need to nondi-

mensionalize the equations using an appropriate scaling. We adopt the scaling suggested

by [KCD16],

x = x∗/L, y = y∗/H, u = u∗/U, v = v∗/V,

t = t∗U/L, p = p∗/P,
(1.5)
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where L is a characteristic length scale of the film, H is a characteristic thickness scale of the

film, U is a characteristic velocity of the flow in the x direction, V is a characteristic velocity

of the flow in the y direction, and P is the atmospheric pressure. As we scale the continuity

equation (1.3) with Equation (1.5),

U

L
ux +

V

H
vy = 0. (1.6)

As a result,

U

L
∼ V

H
=⇒ V ∼ H

L
U ∼ ϵU, (1.7)

for ϵ = H/L≪ 1. This assumption makes sense since the thickness scale H is much smaller

than the length scale L. Using the above assumption (1.7) and the scaling (1.5), we simplify

Equations (1.1)-(1.3) as the following,

ϵ2Re(ut + uux + vuy) = − 1

Λ
px + ϵ2uxx + uyy, (1.8)

ϵ4Re(vt + uvx + vvy) = − 1

Λ
py + ϵ4vxx + ϵ2vyy, (1.9)

ux + vy = 0, (1.10)

where Re = UL/ν is the Reynolds number, and Λ = µUL/PH2. Assuming that we choose

the scaling coefficients correctly, all the dimensionless derivative terms should be of order

one [KCD16]. In other words, Λ = O(1). Note that we assume Re = O(1) due to the viscosity

of the fluid. In addition, using ϵ = H/L≪ 1, we collect the leading order terms,

1

µ
px = uyy, (1.11)

1

ρ
py = 0, (1.12)

ux + vy = 0, (1.13)

where µ is the dynamic viscosity of the fluid.

Equation (1.11)-(1.13) is the simplest form of the lubrication approximation producing a

zeroth-order approximation of the Navier-Stokes equations.
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In order to derive the evolution equation of liquid film h(x, t), we solve Equation (1.11)-

(1.13) with respect to boundary conditions at the solid-liquid interface and liquid-gas interface.

At the solid-liquid interface, an immense frictional force is applied to the liquid, whereas

the tangential component of the liquid stress tensor vanishes at the liquid-gas boundary.

Thus, the gradient of uy is inevitably large across the thin film [BBD94]. We integrate

Equation (1.11) with respect to y and use the boundary condition at the liquid-gas interface

to get

u =
px
µ

(
y2

2
− hy −B

)
. (1.14)

Here, we use B to represent the interaction at the solid-liquid interface. Averaging Equa-

tion (1.14) in the y direction, we get

ū = − px
3µ

(h2 + 3B). (1.15)

Finally, the conservation of mass implies that

ht + (ūh)x = 0. (1.16)

Hence,

ht +

(
γ

3µ
(h3 +Bh)hxxx

)
x

. (1.17)

Here, the pressure jump is estimated by the Gibbs-Thompson relation, ∆p = γκ1, where

γ is the surface tension and κ is the mean curvature of the liquid-gas interface. We may

approximate κ ≃ hxx, assuming the surface tension to be dominant. The value of B is

determined by boundary conditions at the solid-liquid interface. We assume B = 0 when

the thickness scales h ≫ H, corresponding to the no-slip boundary condition [BBD94].

When the surface is porous, B = α, where α represents the degree of porosity of the

surface [NM83]. In the case of the Navier slip condition, B = ch, where c represents the

amount of slippage [Gen85].

1Here, we use ∆ to denote the difference. If it is used in PDE, we use it to denote the Laplacian. If it is
used in the numerical method, it is used to denote the difference. The meaning of each should be clear from
the context.
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1.2 Model lubrication equation

Lubrication-type equations frequently share the following characteristics; h is sufficiently

small compared to the length scale L, and the flux is dominated by the same functional

form other than differences in the exponent of h. In the case of Equation (1.17), the flux is

γ
3µ
(h3 +Bh)hxxx. Other types of fluid dynamics can be considered by slightly changing the

flux. For example, we can generalize Equation (1.17) by

ht + (f(h)hxxx)x = 0, f(h) ∼ hn. (1.18)

Altogether, Equation (1.18) allows us to model Hele-Shaw flow when n = 1, polymeric liquids

when n = 2, and macroscopic thin films when n = 3 in a single equation. Often, one considers

f(h) ∼ hn, n ∈ (0, 3). We discuss this further in Chapter 2.

1.3 The scope of the thesis

The thesis reviews and investigates topics in designing positivity-preserving numerical methods

for lubrication-type equations, particularly focusing on fiber coating equations. In Chapter 2,

we provide a literature review of positivity-preserving numerical methods for lubrication-type

equations. In addition, topics on the analysis of higher-order nonlinear PDEs, positivity-

preserving numerical methods for parabolic PDEs, and the application of numerical methods

are reviewed. After the literature review, we discuss the necessary ingredients to design

positivity-preserving numerical methods and reproduce numerical simulations of existing

positivity-preserving methods. In Chapter 3, we review previous research on the fiber coating

problem, including experimental and theoretical studies. We primarily focus on mathematical

models of a thin liquid film flowing down a vertical fiber and derive the current state-of-the-art

model used in Chapter 4. In Chapter 4, we present a novel positivity-preserving numerical

method for a fiber coating equation as our contribution. Our method is computationally

efficient and maintains the positivity of the film thickness while conserving the volume of
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the fluid under coarse mesh settings. This chapter also includes simulations of the numerical

method compared with experimental data and a previously proposed numerical method.

Finally, in Chapter 5, we conclude the thesis with a few remarks and suggest future research

directions.
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CHAPTER 2

Positivity-preserving numerical methods

2.1 Literature review of positivity-preserving numerical methods

In this section, we provide a literature review of positivity-preserving numerical methods for

lubrication-type equations. We have specifically focused on articles that cited the work of

Zhornitskaya & Bertozzi [ZB00], which include over 161 articles. We have divided them into

four categories and summarized the work of a few representative articles from each category

for the readers’ convenience.

2.1.1 Prior work on positivity-preserving numerical methods for lubrication-type

equations

In this section, we review the articles that studied positivity-preserving schemes on lubrication-

type equations. Such articles include ones that designed a novel positivity-preserving (or

nonnegativity-preserving) numerical method, analyzed positivity-preserving (or nonnegativity-

preserving) numerical methods, or presented extensive studies on the simulation of positivity-

preserving (or nonnegativity-preserving) numerical methods. The articles in this category

are the most relevant to the thesis.

First, we focus on articles that designed numerical schemes for the basic lubrication

equation (2.40) with or without a generalized pressure term [ZB00, WB03, Gru03, GR00,

GR01, GBR02]. Among them, we specifically point out the following articles from Zhornitskaya

& Bertozzi [ZB00], Grün [Gru03], Grün & Rumpf [GR00], and Witelski & Bowen [WB03].
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These articles are highly relevant and foundational in understanding the problems discussed

throughout the thesis.

Zhornitskaya & Bertozzi [ZB00] proposed a novel positivity-preserving finite difference

method for simulating lubrication-type equations of the form (2.40). Their work is particularly

inspiring for the thesis because it is desirable to design a positivity-preserving numerical

method that allows efficient simulation of fiber coating dynamics with coarse spatial resolution.

The numerical method ensured the positivity of the solution regardless of the spatial resolution

in one dimension and was extended to two dimensions assuming additional regularity of

analytical solutions. Prior numerical methods commonly required significant grid refinement

to simulate solutions near singularities. Through a series of simulations, Zhornitskaya &

Bertozzi demonstrated that their method could compute solutions near singularities by

calculating a regularized PDE (see Section 2.3.1). Such a regularization technique is effective

for studying singularity formation and defining solutions beyond the singular time. The

method preserved the positivity of numerical solutions even when the continuum PDE

was known to only preserve nonnegativity. The authors established proofs of second-order

consistency, stability near a flat state, and convergence of the numerical method, which can

serve as guidelines for proving such properties of more complex numerical methods. The

article also provided a finite element generalization of the numerical method, which allowed

simulations on nonuniform grids (e.g., a locally refined grid near singularities).

In [GR00], Grün & Rumpf presented a nonnegativity-preserving finite element numerical

scheme for the basic fourth-order lubrication equation (2.40) that models the time evolution

of film thickness of a viscous liquid. The paper established proofs of the convergence

and nonnegativity-preserving properties of the numerical scheme. This paper produced a

significant improvement to the finite element method proposed by Barrett et al. [BBG98]

because the method guarantees nonnegativity independent of the grid size. Discrete solutions

are guaranteed to be positive under restricted conditions, which is the major difference

from the results provided by Zhornitskaya & Bertozzi [ZB00]. The method solved for a
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discrete solution in time and space that preserves qualitatively desired properties such as

the nonnegativity, a uniform discrete Hölder continuity, and a discrete analog of an energy

estimate. The article also established proofs of the existence and compactness in time of

discrete solutions.

In [WB03], Witelski & Bowen developed an alternating direction implicit (ADI) method

to solve a fourth-order thin film PDE for a surface-tension-driven flow. The proposed

ADI method is second-order accurate and unconditionally stable for linear problems with

constant coefficients but has solution-dependent stability and convergence properties for

nonlinear problems. Regardless, the authors not only proposed a framework for creating a

two-dimensional numerical method for lubrication-type equations but also extended the ADI

method to the following generalized higher order linear parabolic PDE explored by Bernis &

Friedman [BF90],

ut + (−1)m−1∇ · (f(u)∇∇2mu) = 0, m = 2, 3, · · · . (2.1)

A self-similar solution was simulated for equation (2.40) with f(h) = h by the Grün &

Rumpf’s nonnegativity-preserving method [GR00].

In [Gru03], Grün presented a finite element scheme for a lubrication-type equation

incorporating nonlinear pressure terms such as van der Waals interactions in multiple space

dimensions. The author considered equation (2.53) presented in Section 2.3.2. As a by-

product of an entropy and energy estimate, results on the existence and positivity of discrete

solutions almost everywhere were established to equations with singular lower-order terms.

This was a generalization of the work of [GR01] to multiple space dimensions.

The study of moving contact lines is a well-recognized topic that has been investigated along

with lubrication-type equations. It is often the case that the front of the thin fluid becomes

unstable, developing a wavy pattern such as fingering instability [Mun04, KD01] and saw-

tooth [Kal00, KD01] patterns. These instabilities are not desirable for technical applications

in engineering, chemistry, and biology since they may form dry regions [KD01]. Therefore, the
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problem introduced plenty of articles that investigated simulations of positivity-preserving

numerical methods in the context of moving contact lines of thin film droplets [DK02, DKB00,

MW05, Gom12, SRX07].

One representative article was published by Diez and Kondic [DK02], in which the

authors presented a computational method for calculating quasi-three-dimensional unsteady

flows, specifically the coalescence of a linear array of sessile drops of thin liquid films on a

solid, horizontal substrate. The authors used a modified positivity-preserving scheme by

Zhornitskaya & Bertozzi [ZB00] to avoid “false” (negative) singularities caused by a numerical

method near the moving fronts. According to a series of numerical experiments, the equivalent

results were observed from both the precursor film model and the slip model, while the

precursor model significantly reduced the computational cost. Numerical simulations were

presented for the different grid resolutions. The method captured the topological transitions

of the flow, such as merging or a rupture of a film, and incorporated additional driving

mechanisms of the fluid dynamics, such as centrifugal, thermocapillary, or van der Waals

forces. While the quadratic convergence to the exact solution for radial and elliptic drops

was discussed, a mathematical proof was not provided.

Another article discussing the numerical method in the context of moving contact lines

was introduced by Münch and Wagner [MW05]. The authors mainly focused on linear

stability analysis of a lubrication-type equation and extended the model to incorporate the

full nonlinear curvature. The model described the dewetting process of a thin polymer film on

a hydrophobized substrate driven by van der Waals forces under the no-slip or slip condition.

The authors observed that a small perturbation of the receding front was amplified in the

slip case by orders of magnitude larger than in the no-slip case. The authors observed that

the slip case had asymmetric protrusions extending toward the trench, while for the no-slip

case, the protrusions were symmetrical.

Positivity-preserving numerical methods for lubrication equations also have been discussed

in the context of identifying dewetting patterns of a thin film. For example, Becker et
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al. [BGS03] presented a numerical simulation of dewetting dynamics of a thin film with a

semi-implicit linear finite element method. The method was derived from the nonnegativity-

preserving numerical method from Grun & Rumpf [Gru03, GR00] because the model incor-

porated nonlinear pressure effects. The numerical simulations were in good agreement with

highly controlled laboratory experiment data for various film-rupture patterns. Normalized

Minkowski functionals were used for calculating sums over weighted pixels for digitized data

laboratory experiments and simulations and analyzing the dewetting patterns.

Since thin film flows driven by gravity can be observed on an inclined surface, positivity-

preserving numerical algorithms in this context were also investigated [KD01, Aja04, BGL02,

MWW18, DKB00]. For example, Kondic & Diez [KD01] presented fully nonlinear time-

dependent simulations of a thin liquid film flowing down an inclined plane, assuming a

complete wetting situation. The authors investigated film instability patterns with nonlinear

waves, such as fingering instabilities and saw-tooth wave patterns at varying inclination angles

and sizes of the domain. The numerical schemes proposed by Zhornitskaya & Bertozzi [ZB00]

were verified to be significantly efficient in [DKB00]. The authors ensured the work was

specifically restricted to cases where the fluid thickness is kept constant far behind the

apparent contact line. Such configuration allows one to understand many features of the

moving contact line problem without introducing additional complications, such as the effect

of shear thinning given a constant volume of the fluid.

Several articles were discussed in the context of Hele-Shaw cell equations [LGB07, GT06,

PRT04]. Lu et al. [LGB07] proposed a diffuse-interface model describing the motion of

Hele-Shaw cell drops that undergo topological changes by the effect of electrowetting. The

model describes the fluid interfacial dynamics through a nonlinear Cahn–Hilliard equation

of one phase-field variable. A series of asymptotic analyses were carried out, assuming a

small interface thickness. Consequently, the asymptotic analysis showed that the model in

the article is equivalent to Hele-Shaw flow with voltage-modified Young–Laplace boundary

conditions on the free surface. The contact angles and their effect on the model are also
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discussed

Gosse & Toscani [GT06] derived a nonnegativity-preserving numerical method and ex-

panded the theoretical and numerical study of Hele-Shaw cell models. The authors utilized

an idea from mass transportation to develop a simple numerical scheme that is stable,

entropy-decreasing, and convergent toward the unique solution of the continuous problem.

Homogeneous cooling states of the problem are displayed numerically. Section 5 of the paper

is entirely devoted to the study of a mollified Hele-Shaw cell equation for which the authors

proposed a nonnegativity-preserving scheme based on entropy estimates and numerical results.

A numerical example of Hele-Shaw cell film rupture was presented as well.

Another topic that was investigated in depth is lubrication-type equations in the con-

text of the thermocapillary migration of flow on a heated surface [GH10, AW03, AK09,

Gom12, TKS07]. For example, Ajaev & Wilis [AW03] develop a mathematical model of

the thermocapillary flow of thin films of molten metals to study the rupture of the film

under two different patterns: point rupture and ring rupture. The model is formulated

assuming that the laser beam radius is much larger than the thickness of the molten metal.

By analyzing numerical simulations, the authors concluded that the transition between two

rupture patterns depends on the disjoining pressure. The proposed model slightly deviates

from standard lubrication-type equations because it incorporates a nonlinear evaporative flux

term, an unsteady heat conduction term, and a positive disjoining pressure term.

Several other topics are discussed in the context of positivity-preserving numerical methods

for lubrication-type equations. Some examples include: polymer flow [SMC12, PHM19]; flow

driven by surfactant [BN04, BGL02, LPD19]; flow with stochastic noise [NCM15, FG18],

stochastic porous-media flow [GG19], evaporative flow [KA09], capillary-driven flow [BSR13],

laminar flow with a free liquid-gas interface [OM17], flow on a media during a heat-assisted

magnetic recording (HAMR) process [Raj13], blood flow in the vicinity of atheroma [Chu10],

simulation of flow at real-time frame rate [VRB18], and many more. We especially focus on

the following articles [GR01, DK02, DKB00, BGL02, SRX07, PHM19, Gom12, VRB18, Chu10,
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GR00, WB03, GBR02, Gru03, GT06, PRT04, BN04, PHM19, LPD19, FG18, LHV13]. These

articles presented a numerical scheme that solves equations similar to our main problem (2.41).

Many of them include proofs of the positivity of numerical solutions and the convergence of

numerical methods. For example, Lu et al. [LHV13] designed a numerical scheme utilizing

cut-off methods. The convergence analysis and applications demonstrated that a cutoff

method is an effective tool for computing nonnegative solutions.

2.1.2 Prior work on the positivity of continuous solutions of lubrication-type

equations

In this section, we review the articles that proved the analytical properties of lubrication-type

equations, such as proving the existence of a strong or weak solution and the positivity of

analytical solutions. It is crucial to understand the properties of the continuous solution

of PDE when designing numerical methods because one can often construct the discrete

equivalent of those properties [ZB00, GR00, GR01, Gru03, BBG98]. If one can incorporate

those discrete properties in numerical methods, it is possible to construct positivity-preserving,

or even better, other physical properties preserving numerical methods [ZB00, GR00, GR01,

Gru03, BBG98].

Bernis & Friedman set the stage for studying higher-order nonlinear degenerate parabolic

equations of the form
∂h

∂t
+ (−1)m−1 ∂

∂x

(
f(h)

∂2m+1h

∂x2m+1

)
= 0, (2.2)

where

f(h) = |h|nf0(h), f0(h) > 0, n,m ≥ 1. (2.3)

Such an equation arises in modeling viscous droplets spreading over a solid surface [Gre78,

GM81, Hoc81, Lac82] and also in the oxidation of silicon in semiconductor devices [Kin89,

TK87]. In such cases, f(h) often takes the form of f(h) = |h|3 + o(|u|3) as |h| → 0. The

authors provided a general framework for analyzing PDEs of the form (2.2) to establish
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results such as the existence of a smooth weak solution or a proof of the nonnegativity of a

solution. The authors introduced a quantity later referred to as entropy and established a

bound on the entropy to prove the positivity of a continuous solution. The entropy estimate

technique is still used in recent work, such as [JTC22, CPT10].

We illustrate an example for the simplest case,

ht + (f(h)hxxx)x = 0 in QT0 = Ω× (0, T0),

h(x, 0) = h0(x), h0 ∈ H1(Ω),
(2.4)

where m = 1 for T0 > 0 and Ω bounded, e.g., Ω = {−a < x < a}. One can impose simple

boundary conditions such as

hx = hxxx = 0 on x = ±a. (2.5)

The authors assumed that

f(h) = |h|nf0(h), f0 ∈ C1+α(R1), f0 > 0, α ∈ (0, 1), n > 1. (2.6)

Equation (2.4) is degenerate at h = 0. By regularizing this to a uniformly parabolic equation,

one can use classical Schauder theory to prove local existence. This can be done by adding

a small diffusion term with ϵ > 0 to the equation and relaxing the initial condition to an

approximating C4+α function,

ht + ((f(h) + ϵ)hxxx)x = 0 in QT0 = Ω× (0, T0),

h(x, 0) = h0ϵ(x), h0ϵ ∈ C4+α(Ω).
(2.7)

This example will be discussed for both showing the existence of a smooth weak solution and

proving the nonnegativity of the weak solution.

First, we focus on the framework for showing the existence of a smooth weak solution.

The procedure is detailed in Sections 2 and 3 of their work [BF90]. Equation (2.7) is not

degenerate so that one can apply the parabolic Schauder estimates [Fri58, Sol65] to show
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that the equation admits a unique solution for a short time interval Qσ, for small σ > 0. The

Schauder estimates also guarantee a Hölder condition of

ht, hx, hxx, hxxx, hxxxx in Qσ. (2.8)

Additional smoothness properties are guaranteed for the solution hϵ of the regularized

PDE (2.7) on Qσ. These include

|hϵ(x, t)| ≤ A, (2.9)

|hϵ(x2, t)− hϵ(x1, t)| ≤ K|x2 − x1|1/2, (2.10)

|hϵ(x, t2)− hϵ(x, t1)| ≤M |t2 − t1|1/8, (2.11)

for arbitrary x1, x2, x, t1, t2, t ∈ Qσ, where constants A,K, and M are independent of σ and ϵ.

In other words, one can find an upper bound on the C
1/2,1/8
x,t -norm of hϵ in Qσ, which allows

one to extend the solution hϵ to QT0 for the desired T0 > 0 in Equation (2.7).

Now that one has obtained an equicontinuous and uniformly bounded family of solutions

{hϵ} in QT0 , taking its subsequence as ϵ→ 0 allows one to obtain a weak solution h, which

satisfies ∫
QT0

hϕt +

∫
QT0

\({h=0}∪{t=0})
f(h)hxxxϕx = 0, (2.12)

for all ϕ ∈ Lip(QT0) with ϕ = 0 near t = 0 and t = T0. In fact, this weak solution h is very

weak in the sense that it even includes a stationary solution with compact support of form

(x− b)+(c− x)+, for −a < b < c < a. However, despite its “weakness”, the solution naturally

satisfies h ∈1/2,1/8
x,t (QT0) as well as assures conditions:

ht, hx, hxx, hxxx, hxxxx ∈ C(QT0\{h = 0} ∪ {t = 0}). (2.13)

Next, we describe the general framework for proving the nonnegativity of the weak solution

given that the initial condition h0 ≥ 0 and h0 ∈ H1(Ω). The procedure is described in detail
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in Section 4 of the work [BF90]. Bernis & Friedman introduced the following function Gϵ(s)

by setting

gϵ(s) = −
∫ A

s

dr

f(r) + ϵ
, Gϵ(s) = −

∫ A

s

gϵ(r)dr, (2.14)

for A > max |hϵ| for all small ϵ. Because of how we defined f(h) in equation (2.6), one can

already obtain the following useful properties:

gϵ(s) ≤ 0, Gϵ(s) ≥ 0 if s ≤ A. (2.15)

In addition, one can analyze the behavior of the limit G0(s) = limϵ→0Gϵ(s),

G0(s) =


A0 +O(s2−n) if 1 < n < 2, A0 > 0,

C2 log
1
s
+O(1) if n = 2, C2 > 0,

C1s
2−n +R(s) if n > 2,

(2.16)

where

C1 > 0, R(s) =


O(s3 − n) if n > 3,

O(log
(
1
s

)
) if n = 3,

O(1) if n < 3.

(2.17)

At first glance, it might be hard to understand why one should consider Gϵ(s). Equa-

tion (2.4) becomes degenerate as |h| → 0, which will make the Gϵ(s) extremely large. However,

this is exactly why it is important to consider Gϵ(s); bounding Gϵ(s) would imply |h| ̸→ 0.

This intuition turns out to be correct. Bernis & Friedman multiplied equation (2.7) by gϵ(hϵ)

and integrated over QT , for 0 < T < T0, to obtain∫
Ω

Gϵ(hϵ(x, T )) +

∫
QT

h2ϵ,xx =

∫
Ω

Gϵ(h0ϵ(x)). (2.18)

This allows one to have an upper bound on
∫
Ω
Gϵ(hϵ(x, T )) over any time T by restricting

initial condition h0ϵ(x). For example, one can let∫
Ω

Gϵ(h0ϵ(x)) ≤ C, where C is independent of small ϵ. (2.19)
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At this point, one observes that h ≥ 0 holds as ϵ→ 0 due to uniform convergence of family

of Hölder continuous functions. Otherwise, equation (2.18) would be contradicted.

We emphasize that Bernis & Friedman proved the uniqueness and the strict positivity

of the solution h(x, t) in QT0 for n > 4, in addition to the nonnegativity result for n > 1.

Later we note that the result was improved by Bertozzi et al. [BBD94] as the authors showed

the positivity of weak solutions for n > 3.5. The work of Bernis & Friedman has inspired

many mathematicians to study higher-order parabolic equations. In particular, two notable

papers were followed by Berttozi & Pugh. The first article [BP96] explores properties of weak

solutions of

ht + (f(h)hxxx)x = 0, f(h) = |h|n on S1, (2.20)

with respect to periodic boundary conditions and initial condition h(x, 0) ≥ 0. Equation (2.20)

has several exact solutions.

One important example is a compactly supported source-type solution, which is guaranteed

to exist for 0 < n < 3 [BPW92]. These are solutions of the form

h(x, t) = t−αH(η), η = xt−α, α = 1/(n+ 4), (2.21)

where H(η) solves the following ordinary differential equation:

Hn(η)H(3)(η) = αηH(η). (2.22)

These source-type solutions do not exist for n ≥ 3 because of the structure of equation (2.22).

Another important example is a traveling-wave solution of form h(x, t) = H(x− ct). Specifi-

cally, for n < 2, there exist compactly supported traveling-wave solutions. For 3
2
< n < 3,

advancing-front solutions exist and can be solved as

h(x, t) =


A(x− ct)3/n if x > ct,

0, otherwise,

for c =

(
3

n
− 2

)(
3

n
− 1

)
3An

n
. (2.23)

For n ≥ 3, there are no advancing-front traveling-wave solutions [BKO93].
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Bertozzi & Pugh [BP96] further proved the existence of a nonnegative weak solution for

all time for 0 < n < 3. For 0 < n < 3
8
, the authors considered weak solutions in a sense of

equation (2.12) whereas for 3
8
< n < 3, the authors considered weak solutions in a sense of

distribution. In particular, for a test function ϕ ∈ C∞
c ((0, T );C∞(S1)), the weak solutions

for 3
8
< n ≤ 1 satisfy∫

QT

hϕt −
∫
QT

f(h)hxxϕxx −
∫
QT

nhn−α

(
hα

α

)
x

hxxϕx = 0 for 1/2− s/4 ≤ α < n. (2.24)

The weak solutions for 1 < n < 2 satisfy∫
QT

hϕt −
∫
QT

f(h)hxxϕxx −
∫
QT

f ′(h)hxhxxϕx = 0. (2.25)

The weak solutions for n = 2 satisfy∫
QT

hϕt +
1

α

∫
QT

h1−α

(
hα

α

)
x

h2xϕx +
3

2

∫
QT

f ′(h)h2xϕxx +

∫
QT

f(h)hxϕxxx = 0

for r/4 + 1/2 < α < 1, 0 < r < 1.

(2.26)

The weak solutions for 2 < n < 3 satisfy∫
QT

hϕt +
3

2

∫
QT

f ′(h)h2xϕxx +
1

2

∫
QT

f ′′(h)h3xϕx +

∫
QT

f(h)hxϕxxx = 0

for 0 < r < 1, 0 < 2 + r − n < 1.

(2.27)

In all four cases, s < min(2− n, 1/2) and QT = S1 × (0, T ). Bertozzi & Pugh also provided

detailed results on regularities in Section 2–4. The existence and regularity proofs followed

the general framework suggested by Bernis & Friedman [BF90]. We highlight that their

regularity conditions of weak solutions for 0 < n < 3 are in perfect agreement with the

regularity of zero local contact angle for nonnegative source-type solutions. This is meaningful

to consider since the boundary of the weak solution’s support corresponds to the contact line

in the spreading droplet problem.

Finally, Bertozzi & Pugh [BP96] broadened the discussion to the study of the long-time

behavior and the existence of a weak solution for 0 < n < ∞. In particular, the authors
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proved an additional result for 0 < n < 3, which is the physically meaningful case for

lubrication approximation for thin films. The proof states that there exist constants A, c > 0

such that

∥h(x, t)− h∥L∞(S1) ≤ Ae−ct, (2.28)

for h = 1
|S1|

∫
S1 h0(x)dx and initial condition h0 ≥ 0, h0 ∈ H1(S1). Using this fact, the authors

concluded that there exists a weak solution that becomes strong in finite time (after all t > T ∗

for some T ∗ > 0) as long as h0 is not identically zero. It is also implied that the solution

asymptotically approaches its mean as t → ∞. The result was shown by using Poincare’s

inequality, interpolation inequality, and their original inequalities involving entropy.

The second article of Bertozzi & Pugh [BP94] explored the properties of weak solutions of

ht + (hnhxxx − (hm)x)x = 0 (2.29)

to investigate the effect of second-order nonlinear diffusion terms with periodic boundary

conditions. Such diffusion terms are introduced in the context of the flow through a porous

medium but are also used to describe a cutoff long-range van der Waals interaction. Including

a van der Waals term allows one to describe film rupture (in the repulsive case) and the

precursor dynamic of thin film (in the attractive case) [Gen85, WD82]. The presence of the van

der Waals term has been observed in recent studies that model fiber coating dynamics as well.

For example, a diffusion term proportional to −AH

h3 was used [JFS19, JFS21, DLL19, JSJ20].

By including an additional second-order term from equation (2.20), one can expect

competition between the second-order term and the fourth-order term. In the case when

n ≥ 3 and 1 < m < 2, the leading order asymptotics solution is proportional to (x−x(t))1/(1−m)

at the leading edge. This means there are locally advancing traveling-wave solutions and

the behavior of the boundary at the support is dominated by the second-order term. For

3/2 < n < 3 and 1 < m < 2, the equation is dominated by the term that gives higher

regularity. In the case when n = 3/2 and 1 < m < 2, log dependence is expected since the

equation is dominated by the fourth-order term.
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The presence of the second-order term leads to additional regularity results. In the case

when n ≥ 3 and 1 < m < 2, the following regularity is guaranteed,

h
m+1

2 ∈ L2(0, T ;H2(S1)),

(hγ)x ∈ L4(QT ) for all γ ≥ m+ 1

4
,

(h
α+m−1

2
x ∈ L2(QT ) for all α ≥ α0 > 0.

(2.30)

Similar to the work of Bertozzi & Pugh [BP96], the authors achieved the existence of a

nonnegative weak solution in the distributional sense. In particular, for a test function

ϕ ∈ C∞
c ((0, T );C∞(S1)) and f(h) = hn, the weak solution for 1 < n < 2 and 1 < m < 2

satisfies ∫
QT

hϕt −
∫
QT

f(h)hxxϕxx −
∫
QT

f ′(h)hxxhxϕx −
∫
QT

(hm)xϕx = 0. (2.31)

The weak solution for n > 2 and 1 < m < 2 satisfies∫
QT

hϕt +
3

2

∫
QT

f ′(h)h2xϕxx +
1

2

∫
QT

f ′′(h)h3xϕx +

∫
QT

f(h)hxϕxxx −
∫
QT

(hm)xϕx = 0. (2.32)

Similar to [BP96], the weak solution for n = 2 can be derived by modifying the above equation.

The nonnegative weak solution also has time t∗ after which the solution is guaranteed to

be a positive strong solution, converging to the mean as t → ∞. This is because, similar

to [BP96] again, equation (2.28) holds.

The second paper of Bertozzi & Pugh [BP94] can be viewed in parallel with the article

by Passo et al. [PGS01]. In this paper, the authors considered a fourth-order degenerate

parabolic equation with respect to the Neumann boundary conditions,

ht +∇ · (hn∇∆h− hm∇h) = 0, h(x, 0) ≥ 0, m ∈ R, n ∈ R+,

∇h · ν = ∇∆h · ν = 0 on ∂Ω× R+.
(2.33)

The paper provided a proof on the existence of a weak solution for equation (2.33) when
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1
8
< n < 4,m > −1. For any test function ϕ ∈ C∞

c (Ω× [0,∞)), a weak solution h satisfies∫ ∞

0

∫
Ω

hϕt +

∫
Ω

ϕ(x, 0)h(x, 0) +
1

m+ 1

∫ ∞

0

∫
Ω

hm+1∆ϕ+
n(n− 1)

2

∫
P
hn−2|∇h|2∇h∇ϕ

+
n

2

∫
P
hn−1|∇h|2∆ϕ+

n

2

∫
P
hn−1D2ϕ∇h∇h+

∫ ∞

0

∫
Ω

hn∇h∇∆ϕ = 0.

(2.34)

Note that the definition above involves P = {h : h(x, t) > 0}, similar to the definition in

equation (2.12). Still, these solutions satisfy the following entropy estimate:

1

α(α + 1)

∫
Ω

[hα+1(x, t)− hα+1(x, 0)] +

∫
Ωt

|∇h
α+m+1

2 |2 + |∇h
α+n+1

4 |4 + |D2h
α+n+1

2 |2 ≤ 0,

for α ∈ (1/2− n, 2− n)\{(0,−1)}.

(2.35)

The above entropy estimate leads to various regularity properties. Using these regularity

properties, Passo et al. [PGS01] estimated the propagation speed of the solutions. The authors

proved that solutions have an infinite speed of propagation if m < 0 and 0 < m−n+2 < 1/2

by showing that solutions with compactly supported initial data are positive in finite time

almost everywhere in the domain Ω. On the other hand, the authors showed that the solutions

have a finite speed of propagation if m > 0 and 1/8 < n < 2. These investigations further

contributed to the understanding of the interplay between the fourth-order term and the

second-order term in equation (2.33).

Finally, we must mention the work of Bertozzi et al. [BBD94], as it has served as an

inspiration for many mathematicians to investigate singular behaviors of PDEs, particularly

those arising from interfacial flows [Ber96b, Ber95b, ZB00, Bra12, ZL99, BBW98, BF03,

MBU10, MBH10, JW17, BT07, Egg18]. The study of singular behaviors contributed to the

design of robust positivity-preserving numerical methods.

Several other articles established the positivity of weak solutions for lubrication-type

equations and investigated the regularity of solutions [Zha09, TW18, Mic15, FG18]. Some of

them focused on proving the existence of a Cauchy solution [Gru05, Gru01, AK09, BF90].
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These articles are mathematically interesting and can be utilized to prove the existence of a

numerical solution.

Grün [Gru01] investigate Bernis’ interpolation inequality [Ber96a] arising from the lubri-

cation equation (2.40) with the Neuman Boundary conditions (2.33),∫
Ω

hn−4|∇h|6 +
∫
Ω

hn−2|∇h|2|D2h|2 ≤ C

∫
Ω

hn|∇∆h|2 for h ∈ H2(Ω).

The author established a generalized estimate in multiple spatial dimensions (Rd, d ≤ 6)

under a few additional assumptions. While there were many results describing the regularity

of strong solutions, which is important for proving the positivity of solutions, extending these

results to multiple dimensions has remained challenging. In one dimension, the proof of

the estimate relies on the Sobolev embedding theorem. However, generalizing the regularity

analysis for the case 2 ≤ n < 3 to multiple dimensions is particularly important, as these

cases are physically relevant. Moreover, for the fiber coating application, investigating the

regularity of solutions in multiple dimensions is crucial in order to extend the numerical

method accordingly.

The work of Grün [Gru05] can be viewed in parallel with the article [Gru01]. Grün [Gru05]

considered the thin film equation in the multi-dimensional setting and solved the Cauchy

problem in the parameter regimen n ∈ [2, 3), where n could be understood as the term

controlling the slippage of the solid-liquid interface. The author’s new interpolation inequalities

were applied to the energy estimate, allowing control of third-order derivatives of appropriate

powers of solutions. The article also provided a proof of the existence of a regular, strong

solution to the Cauchy problem with compactly supported initial data. Some key integral

estimates were established to provide further insight into the qualitative behavior of solutions,

like the finite speed of propagation or occurrence of a waiting time phenomenon.

Lastly, if equation (2.41) is not guaranteed to be positive all the time, the work of

Poulios et al. [PVK18] will become useful. The authors introduced a method to enforce the

nonnegativity of solutions for lubrication-type equations by incorporating an additional flow
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term. We also expect the following articles to be useful [AB20, GW03] since these articles

introduced Lyapunov functionals for lubrication-type of thin-film equations. These functionals

can be used to establish entropy or other types of estimates on analytical solutions.

2.1.3 Prior work on positivity-preserving numerical methods for fourth-order

nonlinear parabolic PDEs

In this section, we review the articles that designed positivity-preserving schemes for solving

fourth-order nonlinear parabolic PDEs other than lubrication-type equations. Although these

equations are not specifically used to model viscous fluid, the articles introduced various

transformation techniques to prove the positivity of numerical solutions of higher-order

parabolic equations. There are also a few similarities between these equations and lubrication-

type equations, such as the existence of a non-decreasing entropy. While the techniques

introduced in this section are not directly applied to the problems addressed in the thesis,

the work of these authors could be utilized for other lubrication-type problems with some

modifications.

The main focus of the discussion is on positivity-preserving numerical methods for

fourth-order nonlinear parabolic systems that arise in modeling quantum semiconductor

devices [JP01, JP03]. There are various models at different scales, ranging from microscopic to

macroscopic [JP01]. Two notable macroscopic-level models are the quantum hydrodynamics

model (QHD) and the quantum drift-diffusion model (QDD), derived by asymptotic analysis.

The QHD describes the behavior of electron density flow in quantum semiconductor devices

in a “fluid-like” structure. The model was developed by adding O(ℏ2) correction to the

classical hydrodynamic equations. While the primary application of QHD equations is in

quantum semiconductor devices, it has also been studied in the context of fluid models of

the nucleus, superconductivity, and superfluidity [Gar94]. In the limit where relaxation time
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approaches zero, a coupled QHD system can be written by the following single equation,

nt = ∇ ·
(
n∇

(
−ε2∆

√
n√
n

+ θ log(n) + V

))
(2.36)

on a bounded domain Ω [JP01]. Here, n represents the electron density, ε represents a

scaled Planck constant, θ represents a scaled temperature, and V represents the electrostatic

potential. Positivity-preserving numerical methods are desired for the QHD equations since

the electron density n(x, t) must remain positive.

Jüngel & Pinnau [JP01] introduced a positivity-preserving numerical scheme for equa-

tion (2.36). The authors derived an implicit semi-discretization using the backward Euler

method after writing equation (2.36) into a system of equations. The authors proved the

existence and strict positivity of discretized solutions using an exponential transformation

of variable, ρ =
√
n = eu. In addition, the authors proved a stability estimate and the

convergence of the numerical solution, which is essentially a consequence of the boundedness

of entropy. For an extensive review of QHD, we refer the readers to Gardner [Gar94] and

Jüngel & Pinnau [JP01].

QDD, on the other hand, is a drift-diffusion model with a quantum correction term [Moc83].

One can view QDD as the isothermal QHD in the limit of zero relaxation time [Pin00].

Several articles investigated positivity-preserving numerical methods of QDD, including

works by [DMM10, MO17, Pin02, BEJ14, Pin01, CJT03]. Some of them specifically focused

on positivity-preserving numerical methods for the Derida-Lebowitz-Speer-Spohn (DLSS)

equation [DMM10, MO17], which is a simplification of QDD in the limit of zero temperature

and vanishing electric fields [JM08]. The DLSS equation [DLS91] was initially discussed in

analyzing interface fluctuations in a two-dimensional spin system commonly referred to as

the Toom model. However, it gained significant attention and has been extensively studied

due to its simpler form [DMR05, Jun09]. The DLSS equation can be written as

nt + 2

[
n

(
(
√
n)xx√
n

)
x

]
x

= 0 on ΩT . (2.37)

In this case, n(x, t) is the electron density again, which must remain positive.
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Düring et al. [DMM10] developed a fully practical numerical scheme for the DLSS equation

that preserves the conservation of mass and nonnegativity of the numerical solutions. Other

numerical methods for maintaining the positivity of a DLSS solution were introduced as

well [Jun09, Lau05, DMR05]. For a comprehensive review of the topic, we refer the readers

to the article by Pinnau [Pin02]. In this article, the author covered several topics, such as

the existence and uniqueness of analytical solutions and asymptotic limits.

2.1.4 Prior work on the application of positivity-preserving numerical methods

for parabolic PDEs

In this section, we present a collection of articles inspired by positivity-preserving numerical

methods. These articles either directly applied positivity numerical methods to simulations or

incorporated ideas from positivity-preserving numerical methods, such as utilizing entropy or

energy estimation techniques. Some of these articles also established connections to the field

of lubrication theory. We present the application of positivity-preserving methods through

various examples in different scenarios, from and beyond the field lubrication theory.

One apparent application of the positivity-preserving numerical method is in the context of

describing thin film dynamics. For example, the spreading of droplets remains an interesting

topic within the scientific community due to its versatile applications [Gen85, ODB97].

However, there are challenges due to the presence of a fourth-order term, which can make the

numerical method extremely stiff. Additionally, describing the dynamics near the wetting

line requires the need for numerical grid refinement. Gaskell et al. [GJS04] presented an

efficient and fully implicit time-adaptive multigrid method for simulating droplet spreading on

heterogeneous substrates. The authors utilized Zhornitskaya & Bertozzi’s positivity-preserving

numerical method [ZB00] to develop their numerical approach. The validity of the method

was demonstrated by successfully reproducing a wide range of analytical and numerical results

from previous studies, as well as by generating new simulations regarding droplet motion

on heterogeneous substrates. Alleborn & Raszillier [AR04] also presented a model for the
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spreading and sorption of a droplet on a thick porous substrate. The model was derived using

the lubrication approximation, characterizing the droplet profile above and inside the porous

substrate. The model incorporated the influence of the precursor film as well as disjoining

pressures, which play crucial roles in wetting and dewetting phenomena. The proposed model

successfully captured the dynamics of spreading and sorption for axisymmetric droplets as

well as more complex three-dimensional sorption scenarios.

Modeling thin liquid film on an inclined heated surface is another example of application.

Ajaev et al. [AGS10] introduced a model that captures the dynamics of an evaporating thin

liquid film on such a surface. The model incorporated disjoining pressure effect, as thin fluids

are strongly influenced by it. The objective of the study was to investigate the relationship

between the static and dynamic contact angles and various factors, including wetting proper-

ties, the rate of evaporation, and the effects of heating. The results demonstrated that the

static contact angle increases as the heater temperature rises while the dynamic contact angle

increases as the evaporative mass loss increases. The authors conducted numerical simulations

using Zhornitskaya & Bertozzi’s [ZB00] positivity-preserving numerical method to accurately

simulate these intricate phenomena. The simulations yielded valuable information regarding

the profiles of the evaporating liquid film near the moving contact line, with particular

emphasis on different forms of disjoining pressure.

Another application of thin films arises in biological contexts. Maki et al. [MBH10, MBU10]

modeled a tear film of a human on a stationary eye-shaped domain after blinking. The model

was created using lubrication approximation and the effects of viscosity, surface tension,

gravity, and boundary conditions were considered. As a result, the authors were able to gain

insight into the thin-tear-film movement on the entire eye surface. The evolution equation

was solved numerically with an overset grid method on an eye-shaped (curved) domain

constructed from measured eyelid data.

In simulating several models discussed above, such as the model of the tear film on a human

eye geometry [MBD08], the model of droplet spreading in multiple spatial dimensions [GJS04]
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or vapor bubbles between two plates [AHM02], there is a need for positivity-preserving

numerical methods that can be applied to more general geometries. Greer et al. [GBS06] also

acknowledged this need. Greer et al. [GBS06] developed a numerical method for solving fourth-

order PDEs on general geometries, including the Cahn–Hilliard equation and a lubrication

model for curved surfaces. The authors extended a previously introduced method for solving

PDEs on implicit surfaces numerically. This was done by representing the surface on which

the PDE is defined as the level set of a smooth function and rewriting the relevant equations

in terms of Euclidean coordinates and derivatives of the level set function [BCO01]. The PDE

was computed using simple finite differences, which is challenging to apply on surfaces with

complex geometries. The method utilized convexity splitting, ADI method, and iterative

solvers to overcome challenges arising from higher-order degenerate PDEs. However, it is

important to note that the resulting numerical method was not positivity-preserving. Given

the application of these equations in thin film and mixed fluids, it would be valuable to design

a positivity-preserving numerical method that works on various geometries.

As mentioned before, the Cahn-Hilliard system is a well-known degenerate fourth-order

system of PDEs that models phase separation and coarsening phenomena of multi-components.

Because the model deals with the concentration of fluids, the components have to be

nonnegative. Barrett et al. [BBG01] developed and analyzed a finite element approximation

of the degenerate Cahn-Hilliard system with a degenerate mobility matrix. The numerical

method was designed based on a continuous piecewise linear finite element method that

discretizes the fractional concentration of multi-components in space. An implicit Euler

method was used to discretize in time. Fortunately, the Cahn-Hilliard system was shown to

have an associated entropy that gives H2 estimates of concentration vector u. The analysis of

the method included the stability bounds holding in all space dimensions and the convergence

in the case of one space dimension.

Discussions on positivity-preserving numerical methods can also be found in the context

of nonlinear cross-diffusion PDE models. In a typical nonlinear cross-diffusion system, there
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are two second-order parabolic nonlinear PDEs, where each equation describes the population

density of a species. Again, the population density needs to remain positive. Barrett

& Blowey [BB04] presented a fully discrete finite element approximation for a nonlinear

cross-diffusion equation that describes the interaction of two species in a population. The

method was derived to be consistent with a discrete analog of an entropy estimate. The

authors demonstrated the well-posedness of the approximation and proved convergence in

space dimensions d ≤ 3. The existence of a discrete solution was established by exploiting

the entropy estimate. Furthermore, the authors provided numerical experiments in one

space dimension that are consistent with the theoretical results. Bruna & Chapman [BC12]

introduced a model that describes inter-species competition using a stochastic diffusion

approach. Each species is represented as a finite-size particle and these particles interact

with each other while undergoing Brownian motion. The authors derived two kinds of

models; a continuum PDE model describing the macroscopic interaction of the species and an

N-coupled system of stochastic differential equations describing the microscopic interaction of

the species. The system of two species resulted in a nonlinear cross-diffusion system describing

the population density of each species. The validity of their approach was supported by

comparing a numerical simulation of the continuum model with a stochastic simulation of a

discrete particle-based model.

Another intriguing application is in image denoising [BG04]. Bertozzi & Greer discussed

the connection between lubrication-type equations and image-denoising equations. The latter

is a fourth-order nonlinear diffusion equation motivated by Tumblin and Turk’s “low-curvature

image simplifiers”,

ht = −∇ · (g(∆h)∇∆h) + λ(f − h), (2.38)

where g(s) = k2/(k2 + s2) is a curvature threshold and λ is a fidelity term. This type of

equation has been studied in the context of image denoising and image segmentation for one-

and two-dimensional images. The authors derived pointwise estimates for ∆h which allowed

them to prove the global regularity of smooth solutions in one dimension. For two-dimensional
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cases, the authors presented a constraint for finite-time singularities depending on the initial

data. Their estimates were derived by making a key change of variable, namely tanw = ∆h,

which was first observed in [GB04]. After applying the change of variable, equation (2.38)

becomes

wt + cos2(w)∆2w = 0, (2.39)

which is similar to the classical lubrication equation (2.40). Thus, these connections were

used to design an effective finite difference method that satisfies the discrete equivalent of a

priori bounds on smoothness in one and two dimensions.

The application of positivity-preserving numerical methods is not limited to the examples

above. It can be applied in various other domains such as modeling tumor growth [KS08,

WLF08, CGR17] and atmospheric circulation [DD07], where nonlinear, and many times

higher order parabolic PDEs are commonly used. Recent advancements in biomathematics

and biofluids also demonstrate a noteworthy potential for the application of these numerical

methods. For instance, Klapper and Dockery [KD06] developed equations that provide a

qualitative constitutive description of biofilm by incorporating the effects of viscoelasticity

and cohesion using a polymer-solvent theory.

2.2 Fundamentals of positive-preserving numerical methods

In this section, we discuss the necessary ingredients to design a positivity-preserving numerical

scheme. We specifically consider the work of Zhornitskaya & Bertozzi [ZB00], which was an

inspiration for the new work in the thesis. The general problem the authors consider is

ht +∇ · (f(h)∇∆h) = 0, where f(h) ∼ hn as h→ 0, (2.40)

which is the most basic form of the lubrication equation. Some distinguished properties of

Equation (2.40) are that this fourth-order equation is degenerate and diffusive, guaranteeing

smoothness whenever the solution is positive. Despite such a delightful property on regularity,
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Equation (2.40) induces numerical instability and “false” (negative) singularities as h→ 0

[BBD94]. While preserving positivity, it is desirable for the equation to satisfy fundamental

physical properties such as conservation of mass, surface energy dissipation, and nonlinear

entropy dissipation.

The above equation (2.40) if written in 1-dimension possesses many similarities with the

following problem:

∂t

(
h+

α

2
h2
)
+ ∂x

[
M(h)

(
1− ∂x

[
ZFS(h)− ∂2xh

])]
= 0,

M(h) =
h3ϕ(αh)

3ϕ(α)
, ϕ(X) =

3

16X3
[(1 +X)4(4 log(1 +X)− 3) + 4(1 +X)2 − 1],

ZFS(h) = −AH

h3
+

α

η(1 + αh)
for α,AH , η > 0.

(2.41)

Aside from ∂t
(
h+ α

2
h2
)
term, one can observe that the mobility term M(h) ∼ h3 is very

similar to f(h) in Equation (2.40) although M(h) depends on α for Equation (2.41). We

can also view the ∇∆h term in Equation (2.40), which is written as hxxx in the case of one

dimension, is being replaced by ∂x(∂
2
xh) in Equation (2.41). One distinct term that adds

richness to the intricate behavior to Equation (2.41) is ZFS(h) term, which consists of a

destabilizing term α
η(1+αh)

and a stabilizing term − A
h3 .

Notice that f(h) ∼ hn from Equation (2.40) can be discretized based on the following

equation:

a(s1, s2) =


f(s1) if s1 = s2

s1−s2
G′(s1)−G′(s2)

if s1 ̸= s2

, where G′′(s) =
1

f(s)
. (2.42)

Eqaution (2.42) can be used to formulate various finite difference methods using implicit or

semi-implicit time stepping.
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2.3 Numerical examples

2.3.1 Regularizing a singular PDE

In this section, we reproduce an example from Section 9 of Zhornitskaya & Bertozzi’s

work [ZB00]. The authors considered a weak solution of

ht + ∂x(f(h)∂
3
xh) = 0, f(h) = h1/2, (2.43)

where the fractional power of 1/2 was chosen because the numerical solution develops

a singularity in finite time [Ber95b]. The authors imposed the following positive initial

conditions,

h0(x) = 0.8− cos(πx) + 0.25 cos(2πx), x ∈ [0, 1]. (2.44)

To calculate solutions past the singularity, Zhornitskaya & Bertozzi introduced the following

regularized problem,

hϵt + ∂x(fϵ(hϵ)∂
3
xhϵ) = 0, fϵ(hϵ) =

h4ϵf(hϵ)

ϵf(hϵ) + h4ϵ
, f(h) = h1/2. (2.45)

The regularized problem described in Equation (2.45) ensures that the analytical solution of

the equation remains positive for all ϵ > 0, as fϵ(hϵ) ∼ h4ϵ/ϵ as hϵ → 0 [BF90, BBD94]. We

employ a numerical scheme that forms the basis of the generic scheme (GS) and the entropy

dissipating scheme (EDS) presented in [ZB00]. The scheme is given by

uk+1
i − uki
∆t

+ (a(uk+1
i−1 , u

k+1
i )uk+1

i,x̄xx̄)x = 0, i = 1, 2, 3, ...N, k = 1, 2, 3, ...M, (2.46)

where i represents the grid index in space and k represents the grid index in time. In

Equation (2.46), x and x̄ are shorthand notations for forward and backward differences,

uki,x =
uki+1 − uki

∆x
, uki,x̄ =

uki − uki−1

∆x
. (2.47)
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We impose the Neumann boundary condition to the regularized problem (2.45). Central

difference approximations are used at the boundary to derive the following conditions:

hϵx(0) =⇒ uk0 = uk2, hϵxxx(0) =⇒ uk−1 = uk3,

hϵx(1) =⇒ ukN−1 = ukN+1, hϵxxx(0) =⇒ ukN−2 = ukN+2,

for k = 1, 2, 3, 4...M.

(2.48)

For GS, we define

a(s1, s2) = 0.5(fϵ(s1) + fϵ(s2)). (2.49)

For EDS, we define

a(s1, s2) =


fϵ(s1) s1 = s2

s1−s2
G′(s1)−G′(s2)

s1 ̸= s2

, where G′′(s) =
1

fϵ(s)
. (2.50)

We specifically choose a fully implicit method because Equation (2.46) involves a diffusion

term. The backward Euler method is often used to ensure the monotonicity and stability of

problems with diffusion [ZB00]. Since Equation (2.46) is nonlinear, we use Newton’s method

(see Algorithm 1) to solve for the numerical solution at the next time step.

Figures 2.1 to 2.3 depict the reproduced images, illustrating the effectiveness of Zhor-

nitskaya & Bertozzi’s positivity-preserving numerical scheme for the lubrication equation

with a near singular behavior (2.45). Both Figure 2.1 and Figure 2.2 are simulated with a

uniform time and space discretization. An adaptive time stepping method (see Algorithm 3)

is used to generate Figure 2.3 on the other hand, to demonstrate that the method (2.46) can

be computationally efficiently implemented for a fine grid problem.

Figure 2.1 shows the numerical solutions obtained by the GS (2.49) with ϵ = 10−11, 10−13,

and 10−14 using a grid with 128 points on [0, 1]. The GS solutions develop finite time

singularities for all three cases, as depicted in Figure 2.1, consistent with Zhornitskaya

& Bertozzi’s observation [ZB00]. In Figure 2.2, the numerical solutions obtained by the

EDS (2.50) with ϵ = 10−11, 10−13, and 10−14 using a grid with 128 points on [0, 1] until
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Figure 2.1: Numerical solutions of Equation (2.45) using the generic scheme (GS), specifically

implementing Equation (2.46) with Equation (2.49). The computation is terminated earlier

than t = 0.001 due to the occurrence of a finite time singularity. Simulations are conducted

on a coarse grid (128 grid points on [0, 1]) with a uniform time step ∆t = 10−7. For each

time step, Newton’s method (see Algorithm 1) is employed to calculate the solution at the

next time step, with a tolerance value of 10−8. At ϵ = 10−11, 10−13, and 10−14, the GS

exhibits a numerical singularity at the corresponding time t = 0.0008, t = 0.00074, and

t = 0.00073. Figure 2.1 shows the reproduced results from Figure 9.2 of Zhornitskaya &

Bertozzi’s work [ZB00], obtained by implementing our code.

t = 0.001 are shown. Unlike the GS, the EDS does not introduce any singularity until the

terminating time t = 0.001. Figure 2.3 presents the numerical solutions obtained by the

EDS (2.50) with ϵ = 10−11, 10−13, and 10−14 using a grid with 1028 points on [0, 1] until

t = 0.001. Again, the EDS does not introduce any singularity until the terminating time

t = 0.001. Figure 2.3 exhibits similar solution profiles to Figure 2.2, illustrating the effective

capture of solutions by EDS on a coarse mesh. Figure 2.3 shows the computational results

obtained by the EDS (2.50) with ϵ = 10−11, 10−13, and 10−14 using a grid with 1028 points

on [0, 1] until t = 0.001. The regenerated EDS does not introduce any singularity until the

terminating time t = 0.001. Figure 2.3 is similar to 2.2, illustrating that the coarse grid
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Figure 2.2: Numerical solutions of Equation (2.45) using the entropy dissipating scheme

(EDS), specifically implementing Equation (2.46) with Equation (2.50). The computation is

successfully continued until t = 0.001 without encountering any finite time singularity for

ϵ = 10−11, 10−13, and 10−14. Simulations are conducted on a coarse grid (128 grid points

on [0, 1]) with a uniform time step ∆t = 10−7. The solutions obtained from the coarse grid

exhibit a good agreement with the solutions generated from a fine grid (see Figure 2.3). For

each time step, Newton’s method (see Algorithm 1) is employed to calculate the solution at

the next time step, with a tolerance value of 10−8. Figure 2.2 shows the reproduced results

from Figure 9.3 of Zhornitskaya & Bertozzi’s work [ZB00], obtained by implementing our

code.

captures the solution profile well.
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Figure 2.3: Numerical solutions of Equation (2.45) using the entropy dissipating scheme

(EDS), specifically implementing Equation (2.46) with Equation (2.50). The computation is

successfully continued until t = 0.001 without encountering any finite time singularity for

ϵ = 10−11, 10−13, and 10−14. Simulations are conducted on a fine grid (1024 grid points on

[0, 1]) with an adaptive time stepping method (see Algorithm 3) with log10(min∆t) = −7.

For each time step, Newton’s method (see Algorithm 1) is employed to calculate the solution

at the next time step, with a tolerance value of 10−14. Figure 2.3 shows the reproduced

results from Figure 9.4 of Zhornitskaya & Bertozzi’s work [ZB00], obtained by implementing

our code.

2.3.2 Dewetting liquid film on a solid substrate

In this section, we reproduce an example from Section 7 of Bertozzi et al.’s work [BGW01].

The example consists of the following lubrication-type equations with a nonlinear pressure p,

ht + (M(h)px)x = 0 in (0, 20)× (0, T ) ⊂ R2,

p = hxx −
1

h3
+

ϵ

h4
, M(h) = h3,

px = hx = 0 at x = 0 and x = 20.

(2.51)

In addition to the contribution from linearized surface tension represented by hxx, the term p

incorporates the effects of −1/h3 and ϵ/h4. These terms exemplify the combined influence of
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the destabilizing long-range attractive force and the stabilizing short-range effect of Born

repulsion. Oron & Bankoff [OB99] employed these terms to model the dewetting of a thin film

on a layered solid substrate. Equation (2.51) is solved with the following initial conditions,

h0(x) = 1 + 0.005 sin(6(x− 13)2) on x ∈ [0, 20]. (2.52)

As the distance from x = 13 increases, the initial data exhibits increasing oscillations in a

symmetric fashion. This type of initial data can generate complex patterns of droplets, which

can display high sensitivity to the underlying structure of h0(x). Consequently, a robust

numerical method is required to effectively simulate this example.

Bertozzi et al. [BGW01] conducted a simulation of Equation (2.51) with two different

values of ϵ, specifically ϵ = 0.01 and ϵ = 0.1. In our study, we choose ϵ = 0.1 to generate

Figure 2.4. The choice of the ϵ determines the magnitude of the contribution from short-range

repulsive forces. As ϵ approaches zero, the stabilizing effect on the thin film decreases,

resulting in a slower coarsening process where droplets gradually merge into a single droplet.

In Figure 2.4, it can be observed that initially separated droplets resulting from dewetting

gradually merge into a series of droplets, eventually coalescing into a large droplet over a

period. At approximately t ≈ 300116, a simulation with ϵ = 0.1 exhibits the formation of a

single large droplet, which is comparable to the result achieved by Bertozzi et al. around

t ≈ 6.125× 107 using a smaller value of ϵ = 0.01. Due to the complex nature of the dewetting

dynamics at the initial stage, a robust numerical method is essential for accurate simulation.

The numerical method employed for this simulation is presented in Section 2.4.

2.4 Positivity-preserving numerical method for a thin film model

with nonlinear second order pressure

In this section, we present a finite difference method employed in Section 2.3.2 to generate

Figure 2.4. We utilized a specific instance of the finite element method proposed by Grün
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Figure 2.4: Numerical solutions of Equation (2.51) using the method described in Equa-

tion (2.57). a(s1, s2) is defined as Equation (2.42) with f(s) = M(s) = s3 in this particular

example. The computation is performed on a fine grid (4000 grids on [0, 20]) with an adaptive

time stepping method (see Algorithm 3). Newton’s method (see Algorithm 1) is employed

for each time step with a tolerance of 10−7. The simulation was executed on a MacBook Pro

13 inch (2020) with Apple M1 chip and 16GB RAM, taking 40 seconds. Figure 2.4 is the

reproduced results of Figure 10 in Bertozzi et al.’s work [BGW01].
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& Rumpf [GR01], which is subsequently formulated as a finite difference method. Finite

element methods are advantageous when dealing with complex grid structures, such as local

mesh refinement for resolving features near moving contact lines [ZB00, DK02]. On the other

hand, finite difference methods are generally easier to implement in practice.

Zhornitskaya & Bertozzi [ZB00] proposed a method to reformulate the finite element

method into a simple finite difference method. We summarize the procedure and derive the

resulting numerical method. Suppose we have the following PDE that describes the dynamics

of a thin film under the effect of nonlinear generalized pressure,

ht +∇ · (M(h)∇(∆h−W ′(h))) = 0 on Ω× (0, T ) ⊂ R3 or R4,

∂

∂ν
h =

∂

∂ν
∆h = 0 on ∂Ω× (0, T ),

h(0, x) = h0(x) in Ω.

(2.53)

In many cases, the energy W ∈ C2(R;R+) can be decomposed into a sum W (h) = W+(h) +

W−(h), where W+ ∈ C2(R;R+) is a convex nonnegative function, and W− ∈ C2(R;R+) is

a concave function. Such splitting may not be unique, but it is useful in designing stable

numerical methods. Discretizing the convex term implicitly and the concave term implicitly

results in an energy stable method [Eyr98]. The main advantage of the convexity splitting

method is that the convex term can often be chosen to be purely quadratic, with a first

variation that is linear, so the numerical inversion becomes easier. This results in an efficient

method that is often unconditionally or very weakly conditionally gradient stable.

Grün & Rumpf formulated the following finite element method that preserves the nonneg-

ativity of a discrete solution [GR01],(
Uk+1 − Uk

∆t
,Θ

)
h

+ (M(Uk+1)∇P k+1,∇Θ) = 0,

(∇Uk+1,∇Ψ) + (W ′
+(U

k+1),Ψ)h + (W ′
−(U

k),Ψ)h = (P k+1,Ψ)h.

(2.54)

Here, we denote (η1, η2) as the standard inner product in L2, and V h as a linear finite

element space in H1,2(Ω). A basis of V h is given by ϕj(x) satisfying ϕj(xi) = δij. Ih(u) =
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∑
j∈J u(xj)ϕj, so that discrete inner product can be defined as (Θ,Ψ)h :=

∫
Ω
Ih(ΘΨ). The

discrete mobility M is defined as the limit of Mσ(U) as σ approaches zero, where Mσ is

defined element-wise as

Mσ(U)|E =


mσ(U1) if U1 = U2 ≥ 0,(
−
∫
1/mσ(s)ds

)−1
if U1 ̸= U2.

(2.55)

In the above equation, U1 and U2 represent the values of U at the vertices of an element E,

−
∫
denotes the mean value integral, and mσ(u) = M(max(σ, u)). Given an initial condition

(U0, P 0) ∈ V h × V h, for k = 0, 1, . . . , N − 1, we seek (Uk+1, P k+1) such that Equation (2.54)

is satisfied for all (Θ,Ψ) ∈ V h × V h.

The above finite element method can be formulated as a finite difference scheme in one

spatial dimension by choosing a proper basis function ϕj(x). We consider the following

standard piecewise linear basis

ϕj(x) =


x−xi−1

∆x
if xi−1 ≤ x ≤ xi,

xi+1−x
∆x

if xi ≤ x ≤ xi+1.

(2.56)

Then, for u0i = h0(i∆x) and i = 1, ...N − 1, Equation (2.54) can be written as the following

finite difference scheme:

uk+1
i − uki
∆t

+ [a(uk+1
i−1 , u

k+1
i )pk+1

i,x̄ ]x = 0,

pk+1
i − uk+1

i,x̄x +W ′
+(u

k+1
i ) +W ′

−(u
k
i ) = 0.

(2.57)

Here, x and x are shorthand notations for forward and backward differences, as defined

in Equation (2.47). Note that we use the same definition for a(s1, s2) as in EDS (2.50). In

the case when W ′ = 0, Equation (2.57) simplifies to Equation (2.46) since pk+1
i = uk+1

i,xx .
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CHAPTER 3

Thin liquid film flowing down a vertical fiber

Questions on the coating flow problem, which pertains to applying a thin fluid over a solid,

have been posed by scientific communities for a considerable period [WR04, Que99, KRS12c,

CM09, JFS19]. Earlier work classified the coating flow problem based on the geometry of the

solid onto which the fluid is coated [Que99]. Examples include plate coating [GW22, LL88]

(see Figure 3.1), roll coating [Gat45, Tay63], fiber coating [GW22, WT66], and coating of

the inside of a tube [Tay60, Bre61]. For instance, Figure 3.1 provides an example of plate

coating, depicting water wave patterns on a vertical plate. It illustrates the complex dynamics

of falling liquid films at moderate Reynolds numbers. The initial flat-film flow undergoes

dynamic transitions leading to the formation of a two-dimensional periodic wave train. Over

time, these waves evolve into solitary waves and eventually develop into more complex three-

dimensional patterns, as shown in Figure 3.1. Each wave is characterized by a prominent hump

with a long, flat tail trailing behind (see Figure 3.2). The front of the hump is steep and is

preceded by small ripples. This dynamic phenomenon is commonly observed in both empirical

observations [Que90, KC94, JFS19, SZJ17] and theoretical predictions [KC94, CM06, RTG08]

during the fiber coating process as well.

Fiber coating has received substantial attention due to its application in engineering. For

instance, passing a cold steel wire through polymer [AH97] effectively protects the steel from

corrosion. The toughness and strength of carbon fiber can be reinforced by dipping it in

epoxy solution [LI94]. Naturally, one might wonder about the impact of different fluids on

coating dynamics. What are the parameters that influence the thickness of the fiber coating?
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Figure 3.1: Dynamics of water film coating a vertical plate: naturally occurring waves

on a water film flowing along a vertical plate at Reynolds number Re = 33. The initial

flat-film flow undergoes dynamic transitions leading to the formation of two-dimensional and

three-dimensional waves. Acknowledgment to Kalliadasis et al. [KRS12b], Falling Liquid

Films, Introduction, Page 1-19, 2012, Springer Nature. Reproduced with permission from

Springer Nature. Used with permission of AlChE journal, from “Three-dimensional wave

dynamics on a falling film and associated mass transfer”, Park & Nosoko [PN03], Volume 49,

Issue 11, 2003; permission conveyed through Copyright Clearance Center, Inc.

How do the fluid properties affect the dynamics or shape of the fiber coating? In this Chapter,

we ask these questions in the context of modeling a viscous liquid flowing down a vertical

fiber.
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3.1 The dynamics of a thin liquid film flowing down a vertical fiber

Figure 3.2: Dynamic of a falling film on a contour map, which is very similar to the

coating dynamics of a thin fluid flowing down a vertical fiber. v represents the velocity

of the fluid in the horizontal direction, p represents pressure, and ψ represents the stream

function. Acknowledgment to Kalliadasis et al. [KRS12a], Falling Liquid Films, Boundary

Layer Approximation, Page 65-93, 2012, Springer Nature. Reproduced with permission

from Springer Nature. Reprinted from Salamon et al. [SAB94], with the permission of AIP

Publishing.

A thin liquid film flowing down a fiber was first introduced from the context of withdrawing

fibers from reservoirs [Que99, GW22, SGM02]. The coating flow is unstable and breaks

up into axisymmetric droplets or finite-amplitude interfacial waves despite low inertial

effects [KDB01, Que90]. For example, Figure 3.2 depicts a falling film dynamic that is very

similar to the coating flow dynamic. The intricate dynamics are characterized by an upstream

tail, a main hump, a wavefront, and subsequent capillary ripples. This type of instability is

well-known and dates back to the 1870s when Lord Rayleigh discovered that the capillary
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force of liquids causes fluid jet instability [Lor78]. He discovered that unstable liquid film

breaks up into droplets for L > 2πR for the axial length scale L and the radius of a fiber

scale R [Lor78, KDB01]. The mechanism for the fiber coating is very similar. As the liquid

flows downward, the liquid-gas interface is lowered by axisymmetric modulation of the free

interface’s period L, where L > 2πR [Que90]. Consequently, the surface tension causes

instability of the liquid film in the azimuthal direction.

Figure 3.3: Three different flow regimes discovered by Kliakhandler et al. [KDB01]. We

refer to these (a)-(c) regimes as convective, Rayleigh-Plateau, and isolated droplet regimes

throughout the thesis. Reprinted with permission from Kliakhandler et al. [KDB01].

While surface tension destabilizes the flow in the azimuthal direction, it stabilizes the

flow in the axial direction. This is a key physical feature of traveling beads down the

vertical fiber; the surface tension plays both stabilizing and destabilizing roles [CM09]. In

the azimuthal direction, the surface tension destabilizes the liquid layer by the Rayleigh

mechanism, whereas in the axial direction, the surface tension stabilizes and restrains
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the breakup of the film [Que90, KDB01, XD85]. This creeping flow, despite low inertial

contributions, has rich dynamics including pulses and waves [CM09] due to various forces

acting on it. For example, in 2001, Kliakhandler et al. observed and classified these three

regimes as (a)-(c) (see Figure 3.3) from an experimental study using a caster oil with the

Reynolds number around 10−2 [KDB01].

We refer to these (a)-(c) regimes as convective, Rayleigh-Plateau, and isolated droplet

regimes throughout the paper using the convention suggested by Ji et al. [JFS19]. The

convective regime observed when the flow rate is high corresponds to the flow profile, where

irregular droplets collide with each other. The Rayleigh-Plateau regime corresponds to the

flow profile, where beaded traveling waves propagate nearly constantly. The isolated droplet

regime observed when the flow rate is low corresponds to the flow profile, where small wavy

patterns follow well-separated large droplets. Varying the size of nozzle [SZJ17], the flow rate

of the fluid, and the fiber radius [KDB01] all influence the beads’ size and velocity, allowing

one to observe the three regimes. Among these regimes, the Rayleigh-Plateau regime produces

a uniformly spaced string of beads with a large liquid-gas interfacial area. Slowly falling

droplets extend the contact time of the liquid with the gas and often result in the mixing

of the gas and the liquid at the liquid-gas interface. As a result, the flow is well-suited for

designing mass-transfer [UMO03, GLH12, CUM00] and heat-transfer devices [ZSW17, ZSJ18].

Recently, the applications are further extended to desalination [ZSJ19], water and CO2

capturing [SZJ19], and microfluidics [GTV09]. Examples of such devices are illustrated in

Figure 3.4.

3.2 Mathematical models of a thin liquid film flowing down a

vertical fiber

Several models have been developed for fiber coating dynamics. Classical lubrication approxi-

mation is used to approximate the dynamics. Frenkel [Fre92], Kalliadasis & Chang [KC94],
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Figure 3.4: Top: Experimental setup for a direct contact heat exchanger using multiple

strings. Reprinted from “Thermohydraulic characteristics of a multi-string direct-contact

heat exchanger”, Volume 126, Part A, Zheng et al. [ZSJ18], 536-544, Copyright (2018), with

permission from Elsevier. Bottom: Experimental setup for the Rayleigh-Plateau regime

study. Reprinted with permission from Sadeghpour et al. [SZJ17], Copyright (2017) American

Chemical Society.
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Kerchman & Frenkel [KF94], and Chang & Demekhin [CD99] proposed work on weakly

nonlinear thin-film equations under the assumption that the film is a thin film. These inves-

tigations show that when subjected to large-magnitude waves, the flow reveals interesting

dynamics. To describe moderate flow rate, Trifonov et al. [Tri92] first developed a system

of evolution equations for both film thickness and volumetric flow rate. Following that,

Kliakhandler et al. [KDB01] then proposed a model with fully nonlinear curvature, in which

the film thickness is at least as large as the fiber radius.

Craster & Matar [CM06] also developed an evolution equation based on the assumption

that the film thickness is at least as large as the fiber radius and that the bond number

is low. They used a scaling that is similar to that used in long-wave theories of viscous

fluids [ED94, ODB97]. Their model also includes surface tension that destabilizes the flow in

the azimuthal direction while stabilizing the flow in the axial direction. In the same year,

Sisoev et al. [SCM06] proposed an improved model of Trifonov et al. [Tri92] by incorporating

the integral boundary layer method to describe the liquid film of moderate flow rate. Ruyer-

Quil et al. [RTG08] employed the weighted residual method to introduce their simple (linear)

and extended model (nonlinear), which included second-order dissipation. Both the extended

and simple models predicted the bead speed of the Rayleigh-Plateau regime with errors of

less than 10% and 1.2%, respectively.

Many previous models restricted their analysis on the no slip boundary condition at the

solid-liquid interface until Haefner et al. [HBB15] employed the slip boundary condition.

When the gravitational effect is ignored, Haefner et al. [HBB15] showed that the slippage has

a significant effect on the growth rate of undulation. Later, Halpern & Wei [HW17] found

that slip effects stimulate droplet formation and offered a likely hypothesis for obtaining

different critical Bond numbers for droplet formation in the predicted case and experimental

case. Chao et al.’s study [CDL18] also supported this idea since they observed that wall

slippage increases the size and speed of droplets for thin liquid films flowing down a uniformly

heated (cooled) cylinder.
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Ji et al. [JFS19] also observed that keeping the slip term in their Film Stabilization model

(FSM) affected the droplet size to grow taller and narrower compared to disregarding the slip

term. They confirmed that the dependence of the bead speed on the slip length agrees with

the work of Halpern and Wei [HW17]. While slip term has an impact on predicting bead

propagation velocities, Ji et al [JFS19] concluded that it is not the most important factor that

determines accurate prediction against experimental data. Instead, the film stabilization term

plays a more critical role in accurately predicting the speed of the beads and, consequently,

the transition between different flow regimes. This idea is further affirmed in Section 4.5.2, as

simulations of our method without the slip effect shows a strong agreement with experimental

data.

Indeed, it is not surprising to see that traveling beads play a vital part in determining flow

regimes. The behavior of pulses and droplets is determined by the film thickness near these

waves, according to both theories [KC94, CD99, YH13] and experiments [Que90, RTG08,

CM06]. When the liquid film is thicker than a critical value c, the wave is propagated by

combining fluid from nearby. On the other hand, thinner films are rather steady propagating

traveling waves at a constant speed. In Chapter 4, we demonstrate that the film stabilization

term is unnecessary for our positivity-preserving numerical method, thereby showing that

our numerical method does not require an additional stabilizing effect.

Several articles also presented in-depth simulations of mathematical models and compared

them with laboratory experiments [KDB01, CM06, DRK07, JFS19, JSJ20, JFS21]. Here, we

introduce a few relevant articles. Kliakhandler et al. [KDB01] employed a standard pseudo-

spectral technique and the fourth-order Runge-Kutta method to solve their evolution equation.

The simulations were conducted with periodic boundary conditions. Their simulations closely

matched the laboratory experimental data for the Rayleigh-Plateau regime and convective

regimes in terms of the height of the prominent drop and the minimum thickness of the

film. However, the simulations were not able to provide accurate estimates for the isolated

droplet regimes. In addition, the distance between the drops was poorly estimated, with some
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simulations yielding approximately half the distance observed in the laboratory experiments.

Craster & Matar [CM06] conducted two types of numerical simulations for their model: the

traveling wave solution and the long-time solution. Both simulations were performed under

the periodic boundary assumption and were compared against laboratory experimental data

acquired by Craster & Matar themselves, as well as laboratory experimental data acquired

by Kliakhandler et al. [KDB01]. In the case of traveling waves, solutions with smaller domain

sizes exhibited slower speeds compared to those with larger domain sizes. This behavior

represents that longer waves eventually catch up with and absorb the shorter waves, which

aligns with laboratory experimental observations. For the long-time simulations, Craster &

Matar [CM06] investigated the naturally selected “steady states” from families of solutions

to their model. The significance of their simulations lies in successfully capturing small-

amplitude wave patterns driven by instabilities for the isolated droplet regime, both upstream

and downstream of the most prominent bead. While the presence of ripples downstream of

the bead was consistent with experimental observations, the presence of ripples upstream of

the bead was not.

Ruyer-Quil et al. [RTG08] conducted numerical simulations of their model, Craster &

Matar’s model [CM06], and Trifonov et al.’s model [Tri92] and compared them to experimental

data acquired by Kliakhandler et al. [KDB01] and Duprat et al. [DRK07]. Traveling wave

solutions for their model and Craster & Matar’s model [CM06] were calculated numerically

using the continuation software Auto97 developed by Doedel et al. [DCF98]. Although

Ruyer-Quil et al.’s models [RTG08] underpredicted the propagation speeds of solutions in

many cases, the speeds, maximum thickness of the film, and shapes of the solutions closely

matched those of Craster & Matar’s model [CM06] at the small wave number limit. The

linear and nonlinear traveling wave solutions of Ruyer-Quil et al.’s model [RTG08] also better

predicted small-amplitude wave patterns for the isolated droplet regime. Their simulations

were almost absent of small wave patterns upstream of the most prominent bead, which is

consistent with experimental observations.
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In addition to conducting traveling wave solution simulations, Ruyer-Quil et al. [RTG08]

utilized a second-order finite-difference quasi-linearized Crank-Nicolson scheme to obtain

time-dependent simulations for their own model, as well as for Craster & Matar’s [CM06]

and Trifonov et al.’s models [Tri92]. They applied a soft boundary condition at the outlet,

assuming that the flux behaves like a linear hyperbolic wave equation. The time-dependent

simulations of their second-order nonlinear model exhibited good agreement with experimental

data obtained by Kliakhandler et al. [KDB01], except for the isolated droplet regime, as well

as with experimental data acquired by Duprat et al. [DRK07]. Ruyer-Quil et al. [RTG08]

also pointed out that Craster & Matar’s [CM06] and Trifonov et al.’s models [Tri92] were

limited in their ability to simulate the spatiotemporal dynamics of the flow, as the numerical

solutions did not correspond to the experimental observations for a few cases.

Following a series of articles on numerical simulations, Ji et al. [JFS19] pursued a similar

approach and provided numerical simulations of the Craster & Matar model (CM) as well as

their three new models: Slip Craster & Matar model (SCM), Full Curvature Model (FCM),

and Film Stabilization Model (FSM). The focus of the simulations mostly lies on CM and

FSM, as the other models were simulated to understand the contributions of the slip effect

and full curvature to bead velocities and bifurcation. They numerically calculated traveling

wave solutions of FSM and CM and compared the profiles with experimental data from Ji

et al.’s own experiments [JFS19]. Notably, their FSM accurately predicted the bead speeds

provided by the experimental data better than any other models and even worked well as

nozzle sizes varied. Still, predicting the bead speed for the isolated droplet regime remained

a challenge.

Ji et al. [JFS19] also simulated time-dependent FSM and CM models using a fully implicit

second-order finite difference method. To study the regime transition from the Rayleigh-

Plateau regime to the isolated droplet regime, they initialized the simulation with a slight

perturbation of a traveling wave solution using the parameters from their isolated droplet

regime experiment. As the simulation progressed, larger droplets that traveled faster merged
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with smaller droplets, resulting in a typical isolated droplet regime. Additionally, their model

captured the differences in the advancing and receding contact lines of droplets, although the

distinction was less illustrated compared to the experimental data.

The most critical limitation of the current models and mathematical theory is that

they are not fully capable of carefully characterizing regimes and their transitions. The

convective regime and isolated droplet regimes were qualitatively described by the model

from Kliakhandler et al. [KDB01] and Craster & Matar [CM06] but bead velocities of the

flow were overestimated by a significant amount (over 40%). Ji et al. [JFS19] and Ruyer-

Quil et al. [RTG08] presented better models predicting the bead velocities but these are

still limited to the Rayleigh-Plateau regime. The challenges related to predicting the flow

profile and bead velocities for isolated droplet regimes are repeatedly emphasized in several

studies [KDB01, CM06, RTG08, JFS19] due to the inherent instability patterns near the

beads. We have addressed this issue in Chapter 4 and provided simulations of the isolated

droplet regime that match well with experimental data as well as effectively handle the

instability near the droplet.

There was also some discrepancy in the bifurcation analysis of the Rayleigh-Plauteau state.

For example, Craster & Matar concluded that the Rayleigh-Plataeu regime is a transient

state when it is actually a steady-state phenomenon. Their model also produced isolated

droplet regimes even when the experimental parameters were still in the Rayleigh-Plateau

regime. Studies from Duprat et al. [DRK07] and Smolka et al. [SNG08] investigated regime

transitions and steady-states of fiber coating flow further, but the quantitative model still

could not resolve the discrepancies. Ji et al. [JFS19] addressed this issue in their paper and

analyzed the relationship between the velocity of wave propagation and its effect on regime

transitions. The article presented comprehensive experimental, theoretical, and numerical

results on regime transitions, yet most of their analysis focused on a few specific cases within

the Rayleigh-Plateau regime.

Despite these limitations, the film stabilization model proposed by Ji et al. [JFS19]
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demonstrated remarkable performance when compared to experimental data. Not only did

they successfully capture the bifurcation of regime transition from the Rayleigh-Plateau

regime to the Isolated Droplet regime, but their study also accurately predicted bead velocities

and flow profiles in the Rayleigh-Plateau regime. The model demonstrated a clear transition

from the Rayleigh-Plateau regime to the isolated droplet regime, given the parameters used

for laboratory experiments. The model correctly identifies the parameters for the Rayleigh-

Plateau regime, while other models, such as CM, falsely predict the regime. As a consequence,

we investigate their model thoroughly in the next section and modify it to create our numerical

method in Chapter 4.

While studying the code provided by Ji et al. [JFS19], which implements a fully implicit

second-order finite difference method, we observed multiple instances of a finite-time rupture

of the film when using an underresolved grid within the range of physically relevant parameters.

This phenomenon is not exclusive to their model but has also been observed in Ruyer-Quil

et al.’s model [RTG08] when keeping their parameter α1 relatively small. Additionally, we

observed a finite-time rupture of the film while simulating the Craster & Matar model. The

instability is attributed to the cylindrical geometry and leads to an unphysical blow-up in

the time-dependent simulation. Ruyer-Quil et al. [RTG08] conjectured that this behavior

is due to the poor convergence properties of the logarithmic function log(α) as α → 0, but

our observations indicate that even higher values of α can result in a finite-time rupture as

well. We conjecture that as small waves are absorbed into larger droplets, the instabilities at

downstream of a merged bead become amplified. This idea has motivated us to develop a

positivity-preserving numerical method for thin film models on a fiber geometry.
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Figure 3.5: Schematic for the vertical fiber coating problem described in Section 3.1 with

dimensional parameters. Reprinted with permission from Ji et al. [JFS19].

3.3 Derivation of a model equation

In this section, we derive a model from [JFS19] which will be used as our main partial

differential equation to build our numerical method. The schematic of the liquid film flowing

down on a vertical fiber with dimensional parameters is presented in Figure 3.5. We assume

a Newtonian fluid flowing down a vertical cylinder of radius R∗ (as shown in Figure 3.5).

Assuming axis-symmetric flow in the azimuthal direction, one can write dimensional Navier-

Stokes equations and the continuity equation as

u∗t∗ + u∗u∗x∗ + v∗u∗y∗ = −p
∗
x∗

ρ
+ g + ν

(
u∗x∗x∗ +

u∗y∗

y∗
+ u∗y∗y∗

)
, (3.1)

1We denote it as α here since it is scales similarly to the α we used in Section 3.3
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v∗t∗ + v∗v∗y∗ + u∗v∗x∗ = −
p∗y∗

ρ
+ ν

(
v∗y∗

y∗
+ v∗y∗y∗ −

v∗

y∗2
+ v∗x∗x∗

)
, (3.2)

v∗y∗ +
v∗

y∗
+ u∗x∗ = 0, (3.3)

where t∗, u∗, and v∗ represents time, axial and radial velocity, respectively. p∗ is pressure

and g∗ is the gravitational acceleration while ν represents the usual kinematic viscosity. We

assume surface tension σ, density ρ, and kinematic viscosity ν of a liquid to be constant.

Equations (3.1)-(3.3) are solved subject to the boundary conditions imposed at two

different locations: the solid-liquid interface at y∗ = R∗ and the liquid-gas interface at

y∗ = R∗ + h∗. At the solid-liquid interface, the flow must obey a no-penetration boundary

condition with a slip or no slip condition,

v∗ = 0, u∗ = λ∗u∗y∗ at y∗ = R∗, (3.4)

a slip condition for (λ∗ > 0 [MWW05, HW17]) and the no slip condition for (λ∗ = 0 [CM06]).

At the liquid-gas interface, the normal and the tangential stress must be balanced and

must comply with the kinematic boundary condition as well,

p∗ =
2µ

1 + h∗2x∗
(h∗2x∗u∗x∗ − h∗x∗(v∗x∗ + u∗y∗) + v∗y∗) +

σ

(1 + h∗2x∗)3/2

(
1 + h∗2x∗

R∗ + h∗
− h∗x∗x∗

)
, (3.5)

(1− h∗2x∗)(v∗x∗ + u∗y∗) + 2h∗x∗(v∗y∗ − u∗x∗) = 0, (3.6)

h∗t∗ + u∗h∗x∗ = v∗, (3.7)

at y∗ = R∗ + h∗. The next step is to scale Equations (3.1)-(3.7) with adequate dimensionless

parameters in order to reduce the equations asymptotically. The key here is to solve the

equations in the long-wavelength limit [CM06, ODB97]. In other words, one assumes that

the thickness of the liquid film is much smaller than the characteristic axial length. Suppose

the radial length scale is H and the streamwise length scale is L = H/ϵ. The scaling ratio
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ϵ = (ρgH2/σ)1/3 balances the term σ introduced in p∗ and the gravity g. The scaling of

streamwise velocity, pressure, and time can then be defined byH,L, and ϵ which let us produce

nondimensionalized equations containing ϵ and Re. We can observe ϵ = (ρgH2/σ)1/3 ≪ 1 as

the surface tension is dominant over the gravitational acceleration, letting us disregard higher

order terms of ϵ. Similarly, the boundary conditions are reduced after asymptotic expansion

with respect to ϵ.

The reduced set of equations is

1− ∂p

∂x
+
∂2u

∂y2
+
uy
y

= 0, (3.8)

−∂p
∂y

= 0, (3.9)

∂u

∂x
+
∂v

∂y
+
v

y
= 0, (3.10)

with boundary conditions,

v = 0, u = λuy at y = R, (3.11)

p = α

ϵ2(1+αh)
√

1+ϵ2h2
x

− ∂2h
∂x2 , uy = 0, ht + uhx = v at y = R + h, (3.12)

where α = L/R∗ describes the aspect ratio between radial length and the fiber thickness.

Finally, by integrating (3.10) across the thin film width, we derive the evolution equation,

(1 + αh)
∂h

∂t
+
∂q

∂x
= 0, where q =

1

R

∫ h+R

R

uy dy. (3.13)

In particular, if we assume the initial streamwise velocity to be the Nusselt solution,

u0(y) = −1

4
(y2 −R2) +

1

2
(h+R)2 log

( y
R

)
+ hλ

(
h

2R
+ 1

)
. (3.14)

The flow rate q can be further simplified as

q =

(
1− ∂p

∂x

)
q0, q0 =

1

R

∫ R+h

R

u0y dy =
h3

3
ϕ(αh) +

h2

4
(αh+ 2)2λ. (3.15)
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Combining the equation (3.13) and the equation (3.15), we can write the generalized thin

film equation as

∂t

(
h+

α

2
h2
)
+ ∂x

[
M(h)

(
1− ∂x

[
ZFS(h)− ∂2xh

])]
= 0, (3.16)

for

M(h;λ, α) =
h3

3

ϕ(αh)

ϕ(α)
+
h2(αh+ 2)2λ

4ϕ(α)
, (3.17)

ϕ(x) =
3

16x3
[
(1 + x)4(4 log(1 + x)− 3) + 4(1 + x)2 − 1

]
. (3.18)

In this equation, we approximate p = hxx − ZFS(h) with

ZFS(h) =
α

η(1 + αh)
− A

h3
. (3.19)

One can understand the first term of ZFS as a linearized unbalanced azimuthal curvature

term while the second term represents disjoining pressure.

In this model, a long-range attractive part of the apolar van der Waals forces is used

for Π(h) = −AH/h
3, where AH represents a positive Hamaker constant. Van der Waals

interactions effects are frequently incorporated into the equation by adding disjoining pressure

terms in lubrication equations [Gen85, ODB97, OB01, RB92]. Π(h) = −AH/h
3 describes the

liquid’s wetting behavior on a solid substrate. Different formulas of disjoining pressure can

be used by defining a combination of long-range and short-range intermolecular forces. For

the review of this topic, we refer the readers to de Gennes [Gen85], Bonnet et al. [BEI09],

and Israelachvili [Isr11].
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CHAPTER 4

Positivity-preserving numerical method for a thin liquid

film on a vertical cylindrical fiber

4.1 Introduction

Thin-film flows over fibers exhibit complex dynamical properties due to interplay among

various forces, such as surface tension, viscous force, gravity, and inertia force. In the Rayleigh

instability regime, an initially uniform flow quickly breaks up into regularly spaced beads, and

forms traveling waves in the presence of gravity along the fiber direction [Que90, KRS12c].

The beaded morphology creates an array of localized high-curvature regions that act as

radial sinks, making it attractive for devices for heat and mass transfer along the liquid-gas

interfaces [SZJ19, GB21]. These thin-film flows have applications in gas absorption [UMO03,

GLH12, CUM00], heat exchange [ZSW17, ZSJ18], microfluidics [GTV09], desalination [SZJ19],

and others. The wide variety of potential applications attracted theoretical studies over the

last few decades [CM09, KRS12c, CD99, DRG09, RTG08, SZJ17, Que90, Que99].

The fundamental component determining the profile of the thin liquid film on a vertical

fiber is surface tension, which has a stabilizing effect on the axial curvatures, and destabilizing

effect on the azimuthal curvatures of the interface [KDB01]. In addition, other factors

increasing the flow’s complexity are the cylindrical geometry of the fiber and the gravitational

force. Experimentally, interfacial instabilities of the flow have been studied over decades

[Que90, Que99]. Kliakhandler et al. experimentally characterized the three distinct regimes

of interfacial patterns (a)-(c) [KDB01]. In this chapter, we use the convention by Ji et
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Figure 4.1: Illustration of a thin liquid film flowing down a vertical fiber.

al. [JFS19] and call (a)-(c) regimes convective, Rayleigh-Plateau, and isolated droplet

regimes. The convective regime, observed when the flow rate is high, corresponds to the

flow profile where irregular droplets collide with each other. The Rayleigh-Plateau regime

corresponds to the flow profile, where beaded traveling waves propagate nearly constantly.

The isolated droplet regime, observed when the flow rate is low, corresponds to the flow

profile where small wavy patterns follow well-separated large droplets. The distinct dynamics

of each regime and its transition is extensively studied, both theoretically and experimentally

[Que99, RTG09, KRS12c, RK12, JFS19, JTC22].

In this chapter, we consider reduced-order models of the Navier-Stokes equations in-

corporating linear and nonlinear effects of the flow. Li and Chao [LC20] summarize a few

notable methods: the gradient expansion method [Fre92, CM06, HW17, JFS19], the integral

method [Tri92, SCM06], the weighted residual method [RTG08, RK12, DRG09], and the

energy integral method [NO09]. The models are often classified according to the size of the

Reynolds number. For the low Reynolds number cases, the flow profile is approximated
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by the Stokes equations combined with the lubrication approximation [JFS19, CM06]. For

moderate Reynolds number cases, one incorporates inertial terms in the governing equation

using the weighted residual boundary integral method [RTG08, DRG09]. Many of the models

are verified against the experimental data [RTG08, DRG09]. For example, a recent study

by Ji et al. shows a good agreement with experimental data by correctly predicting bead

velocities, flow profiles, and regime transition bifurcation [JFS19].

A major challenge is that fiber coating equations are extremely difficult to solve both

numerically and analytically. They are typically fourth-order degenerate nonlinear parabolic

equations due to the surface tension in the dynamics. We consider the following model from

[JFS19]:

∂

∂t

(
h+

α

2
h2
)
+

∂

∂x
M(h) +

∂

∂x

[
M(h)

∂p

∂x

]
= 0,

M(h) = O(hn), p =
∂2h

∂x2
−Z(h).

(4.1)

Equation (4.1) is an evolution equation of the film thickness h(x, t). From left to right,

• ∂
∂t
(h+ α

2
h2) denotes the mass change over time where α = H/R ≥ 0 is the aspect ratio

between the characteristic length scale of film thickness H to the fiber radius R.

• M(h) is often referred to as the mobility function that describes the hydrodynamic

interactions of the transverse waves. Many times, M(h) = O(hn). For example, setting

M(h) to M(h) = h3 corresponds to the no-slip boundary condition, and setting M(h)

to h3 + βhn for n ∈ (0, 3) corresponds to various Navier-slip conditions (cf. [Ber95a]).

The smoothness of M(h) near h = 0 determines the qualitative behavior of solutions

at zero [GR01].

• The pressure p consists of two terms - the linearized curvature ∂2h
∂x2 , representing the

streamwise surface tension, and the Z(h), representing other nonlinear pressure effects.

Z(h) often contains a destabilizing surface tension term that arises from the azimuthal

curvature but can also include other terms.

59



Equation (4.1) is considered state of the art for this problem because it quantitatively

agrees with bead velocities, flow profiles, and regime transition bifurcations as compared

to experiments. Previously, the model by Kliakhandler et al. [KDB01] incorporated fully

nonlinear curvature to capture the qualitative behavior of the Rayleigh-Plateau and isolated

droplet regime. Nevertheless, this model overestimated the beads’ velocity by 40%. Craster

& Matar’s model [CM06] revisited this idea and presented an asymptotic model describing

Rayleigh-Plateau and isolated droplet regime but again overestimated the bead velocity. Their

model also identified the Rayleigh-Plateau regime to be transient rather than a stationary

state. Duprat et al. [DRK07], and Smolka et al. [SNG08] further studied regime transitions

but predicting the regime transitions remained challenging. Ji et al.’s film stabilization model

(FSM) [JFS19] improved the preceding models by incorporating a film stabilization term

among generalized pressure terms. This stabilization term was inspired by the attractive

part of the long-range apolar van der Waals forces, which are carefully studied for the

well-wetting liquids [RB92, BEI09]. One can see that simulating such complex models is

a delicate procedure. Thus, it is vital to have a robust numerical method for simulating

complex spatiotemporal dynamics to predict flow profiles and regime transitions.

The degeneracy of the mobility function M(h) and the complex nonlinear pressure terms

Z(h) are two hurdles one needs to clear to construct a robust numerical method. First, the

degeneracy of the mobility function presents a substantial challenge in numerically solving

Equation (4.1) since the solution may lose regularity as h → 0. Second, the nonlinear

term Z(h) in pressure p complicates the problem further since it is often relatively large in

magnitude as h→ 0. As a result, the numerical method can suffer from instabilities as h→ 0.

Therefore, keeping h positive is not only crucial for the solution to be physically meaningful

but also important for the solution to be accurate. Fortunately, we found similarities between

Equation (4.1) and many lubrication-type equations, and realized we could view Equation (4.1)
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as a variant of a lubrication-type equation with generalized pressure,

∂h

∂t
+

∂

∂x

(
M(h)

∂p

∂x

)
= 0 p =

∂2h

∂x2
−Z(h), where f(h) ∼ hn as h→ 0. (4.2)

One may see that setting α = 0 and ∂
∂x
M(h) = 0 in Equation (4.1) results in Equation

(4.2). Setting α = 0 would mean neglecting the effect of the fiber, and ∂
∂x
M(h) = 0 would

mean neglecting the advection effect by liquid traveling downward. Such experimental and

theoretical settings are discussed in various studies devoted to the lubrication theory so that

we can take advantage of them [BGS03, LGB07, MBH10, GR01, Gru03]. We know the

solution of (4.2) is smooth whenever the solution is positive but typically loses its regularity

as the solution h→ 0 due to the degeneracy of the equation [BBD94, Ber96b]. We also know

that the nonlinear pressure terms often introduce a large numerical instability as h → 0,

making it challenging to maintain the positive numerical solution [GR01, Gru03]. Examples of

fiber coating problems include Z(h) = −(α/ϵ)2h in [YH13], assuming the thickness of the film

is much smaller than the fiber radius (H ≪ R). Craster & Matar [CM06] used Z(h) = α
η(1+αh)

,

assuming the film thickness comparable to the fiber radius (α = O(1)). Ji et al. [JFS19]

used that Z(h) = α
η(1+αh)

− A
h3 . In both the Craster & Matar model and Ji et al. model, we

can expect numerical challenges when h is small. Indeed, we show in Section 4.5.1 that the

numerical method used in [JFS19] can generate a false singularity as h→ 0 when the spatial

grid size is underresolved. In other words, although the analytical solution of (4.1) is positive

everywhere, the solution produced by a naive numerical method can produce negative values

within some range of the solution when the grid size is underresolved. Such numerical methods

can be quite difficult to extend to higher dimensions where grid refinement is computationally

expensive. We also show that the negativity further prevents calculating the solution after

the singularity. Thus, it is desirable to have a positivity-preserving numerical method that

can perform well at different grid resolutions without spurious numerical singularities.

Constructing positivity-preserving methods for partial differential equations (PDEs) is

addressed in a wealth of literature yet most of them are limited to the first or second-order

equations [ZS10, ZS11, DP11, DJL21]. Equations above the second-order have no maximum

61



or comparison principles and higher-order spatial derivatives make the numerical system

extremely stiff. Numerical methods for fourth or higher-order equations with positivity-

preserving properties have received far less attention. Early works include [BBG98, ZB00,

GR00, Gru03] and make use of entropy estimates to prove positivity. Some of the recent

approaches use cut-off, or Lagrange multiplier methods which have a limitation in conserving

mass or maintaining smoothness [LYZ20, LHV13]. Here we introduce a convex-splitting

method that preserves physical quantities like energy, entropy, and mass [CWW19, DWZ19,

HH20, GR01] which treats the stabilizing terms implicitly and the destabilizing terms explicitly.

A few methods are unconditionally stable [Eyr98, VR03] which include the scalar auxiliary

variable method by Huang et al. [HSW22]. The applications of these methods are to solve

Cahn-Hilliard or Hele-Shaw cell-type equations.

This chapter presents a positivity-preserving numerical scheme that works on a general

family of lubrication-type equations on cylindrical geometries. Positivity-preserving numerical

methods have not been studied in the context of fiber coating, especially in the regime

that is most relevant to physical experiments. The structure of the chapter follows. In

Section 4.2, we prove properties that the PDE (4.1) holds and discuss how the PDE imparts

such properties to our numerical methods. In Section 4.3, we introduce our numerical method

and the state of art method used in Ji et al. [JFS19]. In Section 4, we present proof of the

positivity and the consistency of our method. Section 4.5 contains numerical simulations of

our methods. In particular, in Section 4.5.1, we compare simulations of our method with

simulations of the state-of-the-art method while in Section 4.5.2, we compare simulations of

our method with laboratory experimental data. We also demonstrate how to employ adaptive

time stepping to efficiently implement our method in Section 4.5.3. An example without any

numerical singular behavior is presented in Section 4.5.3.1 whereas an example with a finite

time numerical singular behavior is presented in Section 4.5.3.2. We also compare the CPU

time of simulating our method and the state-of-the-art method in Section 4.5.3.3.
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4.2 Properties of the partial differential equation

This section investigates two essential properties of the continuous fiber coating Equation (4.1).

We ensure that our numerical method preserves the discrete equivalent of the properties. We

consider the following initial-boundary value problem:

(P )



∂

∂t

(
h+

α

2
h2
)
+

∂

∂x

[
M(h)

(
1 +

∂p

∂x

)]
= 0 in LT = (0, L)× (0, T ) ⊂ R2,

p =
∂2h

∂x2
−Z+(h)−Z−(h),

periodic boundary conditions on [0, L],

h(x, 0) = h0(x) > 0.

The main difference from previous Equation (4.1) is that we split Z(h) into two parts:

Z+(h) and Z−(h), where Z ′
+(h) ≥ 0 and Z ′

−(h) ≤ 0. Such splittings are not generally

unique but useful in the design of stable numerical schemes. An example is discussed in

Section 4.5.1. We assume periodic boundary conditions for simplicity and a positive initial

condition to match the physical setting.

Here we assume that a smooth positive solution exists to the problem (P ). The existence

of a solution to problems such as (P ) has been studied in depth [BF90, BP94, JTC22]. The

general procedure is like this. First, one applies a regularization technique to the problem

(P ) to overcome the degeneracy and make the problem uniformly parabolic. The boundary

condition can be extended to the whole line using a proper continuation technique such as

the one suggested in [Sol65]. The well-known parabolic Schauder estimates [Sol65, Fri58]

guarantees a unique solution in a small time interval say, Lσ = (0, L)× (0, σ). In the end, the

limit of the regularized solution results in a smooth, positive solution. We direct our readers

to [BF90, JTC22] for the full derivation. We believe a similar derivation is possible through

the canonical approach, although the continuation of solutions past the initial small time

interval requires a priori bounds on certain norms. A full discussion of the existence of the

problem (P) is beyond the scope of this chapter.
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The key idea of developing a positivity-preserving numerical method is to formulate an

entropy estimate for the continuous problem (P ). Such an estimate guarantees the positivity

of solutions in the continuous setting. Therefore, designing a numerical method that satisfies

the discrete equivalent of the entropy estimate will result in a positivity-preserving numerical

method. For our problem (P ), we define entropy G(h) so that its derivative G′(h) satisfies

G′(h) = (1 + αh)

∫ h

A

1

M(s)
ds for some fixed A > 0.

We point out that the positivity proof for a continuous solution in Section 4.2, the definition of

numerical methods in Section 4.3, and the positivity proof for a discrete solution in Section 4.4

do not explicitly involve the constant A > 0. In other words, A is only involved in G′(h)

to ensure that it is well-defined. We claim that solutions to the problem (P ) satisfy the

conservation of mass and an entropy estimate.

Proposition 4.2.1. Suppose that there exists a solution h ∈ C4(LT ) of (P ), where LT =

[0, L)× [0, T ). Suppose we further assume

M(h) = O(hn), M(h) ≥ 0,

Z+, Z− ∈ C2(R+), and Z ′
+(h) ≥ 0, Z ′

−(h) ≤ 0.

Then, the solution h satisfies the following two properties:

(I)

∫ L

0

h(x, T ) +
α

2
h2(x, T ) dx =

∫ L

0

h(x, 0) +
α

2
h2(x, 0) dx (Conservation of mass),

(II)

∫ L

0

G(h(x, T )) dx ≤
∫ L

0

G(h(x, 0)) dx+

∫
LT

(
Z−(h)

2

)2

dxdt (Entropy estimate).

Proof. The conservation of mass (I) is achieved by integrating the problem (P ) on LT ,∫
LT

∂

∂t

(
h+

α

2
h2
)
dxdt = −

∫
LT

∂

∂x

[
M(h)

(
1 +

∂p

∂x

)]
dxdt

=⇒
∫ L

0

(
h(x, T ) +

α

2
h2(x, T )

)
dxdt−

∫ L

0

(
h(x, 0) +

α

2
h2(x, 0)

)
dxdt = 0.
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Note that the periodic boundary condition removes the complex expression surrounded by

∂
∂x

[· · · ] on the left-hand side of the equality in the first line.

The entropy estimate (II) is achieved by

d

dt

∫ L

0

G(h)dx =

∫ L

0

G′(h)htdx

=

∫ L

0

{
(1 + αh)ht

∫ h

A

1

M(s)
ds

}
dx

= −
∫ L

0

{
∂

∂x

[
M(h)

(
1 +

∂p

∂x

)]∫ h

A

1

M(s)
ds

}
dx

=

∫ L

0

hx

(
1 +

∂p

∂x

)
dx.

The equalities are justified using integration by parts. Note that the periodic boundary

plays a crucial role in simplifying expressions on the boundary. We use the definition

p = hxx −Z(h) = hxx −Z+(h)−Z−(h) in

d

dt

∫ L

0

G(h)dx =

∫ L

0

hxdx+

∫ L

0

hx
∂

∂x
(hxx −Z(h)) dx

= −
∫ L

0

h2xx +

∫ L

0

hxxZ−(h)dx−
∫ L

0

h2xZ ′
+(h)dx

= −
∫ L

0

(
hxx −

Z−(h)

2

)2

dx+

∫ L

0

(
Z−(h)

2

)2

dx−
∫ L

0

h2xZ ′
+(h)dx

≤ −
∫ L

0

(
hxx −

Z−(h)

2

)2

dx+

∫ L

0

(
Z−(h)

2

)2

dx.

Again, the periodic boundary is crucial in eliminating
∫ L

0
hxdx in the first line. We simplify

the expression by completing the square on the third line. We obtain the inequality in the

last line because Z ′
+(h) ≥ 0. Integrating over time gives us∫ L

0

G(h(x, T )) dx+

∫
LT

(
hxx −

Z−(h)

2

)2

dxdt ≤
∫ L

0

G(h(x, 0)) dx+

∫
LT

(
Z−(h)

2

)2

dxdt.

Finally, one can drop the second term on the left side of the inequality since it is nonnegative.

The above properties allow us to create a positivity-preserving numerical method due to

the entropy estimate. Lubrication-type equations are well-known to satisfy entropy-dissipating
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properties. Bernis et al. recognized the significance of the entropy dissipation property in third-

order or higher degenerate parabolic equations and used it to prove the nonnegativity of weak

solutions with sufficiently high degeneracy in one space dimension [BF90]. They also proved

that the solution is unique and strictly positive if the mobility order n ≥ 4. Following their

work, several articles regarding lubrication-type equations discussed the importance of entropy

estimates in numerical and analytical contexts [BBD94, BP96, ZB00, BBG98, GR00, GR01].

These ideas have largely been lacking in the fiber coating problem, except for the generalized

entropy analysis done by Ji et al. [JTC22], which proves the existence of a nonnegative weak

solution of a fiber-coating model with fully nonlinear curvature terms. In this chapter, we

use these ideas to develop a positivity-preserving numerical solution.

4.3 Positivity-preserving finite difference method

In this section, we present a continuous time and discrete in space positivity-preserving

finite difference method, Bounded Entropy Method (BEM), and compare it to a current

state-of-the-art method General Method (GM) used in fiber coating models [JFS19]. Our

method is second-order accurate in space while preserving the positivity of a numerical

solution at each time. Our method is motivated by prior work by Zhornitskaya et al. [ZB00]

and Grün et al. [GR01] for a simple lubrication model without the geometry and physics of

fiber coating. Before introducing our method, we define the following notation.

Notation. Suppose we divide our domain [0, L] into N equally spaced grids of size ∆x = L/N .

Let ui(t) be a solution of a numerical method that is continuous in time and discrete in space

at time t and on grid i. Define the forward difference in space and the backward difference in

space as

ui,x =
ui+1(t)− ui(t)

∆x
, ui,x̄ =

ui(t)− ui−1(t)

∆x
.

Respectively, higher-order differences in space can be defined as

ui,x̄x =
ui+1,x̄ − ui,x̄

∆x
, ui,x̄xx̄ =

ui,x̄x − ui−1,x̄x

∆x
.
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As we highlight the importance of the entropy G(h) in designing a positivity-preserving

method in Section 4.2, the discretized mobility M(h) is the key factor that determines the

qualitative behavior of the solutions near zero. We define the discrete mobility function

m(s1, s2) according to Definition 4.3.1.

Definition 4.3.1 (Discretization of Mobility). The mobility term M(s) in the problem (P )

is discretized to satisfy the following criteria [ZB00]:

(a) m(s, s) = M(s),

(b) m(s1, s2) = m(s2, s1),

(c) m(s1, s2) ∈ C4((0,∞)× (0,∞)) ∩ C([0,∞]× [0,∞]),

(d) ∀δ > 0, there exists γ > 0 such that s1, s2 > δ =⇒ m(s1, s2) ≥ γ > 0.

The above definition of m(s1, s2) is symmetric and continuously differentiable everywhere

except possibly at 0. Condition (d) allows the m(s1, s2) to be degenerate if one of the

arguments h→ 0 but guarantees positivity if both of the arguments are greater than 0. Our

positivity-preserving finite difference method, the Bounded Entropy Method (BEM) (4.3),

presented below, satisfies Definition 4.3.1.

Bounded Entropy Method (BEM). The finite difference discretization of the problem

(P ) with continuous time is written as

(1 + αui)
dui
dt

+ [m(ui−1, ui)(1 + pi,x̄)]x = 0, pi = ui,x̄x −Z+(ui)−Z−(ui),

ui(0) = u0(i∆x), i = 0, 1, 2, · · · , N,

m(s1, s2) =


M(s1) if s1 = s2,

(s2 − s1)/
∫ s2
s1

1
M(s)

ds if s1 ̸= s2.

(4.3)
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In Section 4.4, we show that the above discretization of M(h) in the BEM (4.3) guarantees

a discrete equivalent of the conservation of mass (I) and the entropy estimate (II). We also

write the numerical method of Ji et al. [JFS19] as the following, which we refer to as GM (4.4).

Generic Method (GM). The finite difference discretization of the problem (P ) with

continuous time is written as

(1 + αui)
dui
dt

+ [m(ui−1, ui)(1 + pi,x̄)]x = 0, pi = ui,x̄x −Z+(ui)−Z−(ui),

ui(0) = u0(i∆x), i = 0, 1, 2, · · · , N,
(4.4)

where m(s1, s2) satisfies Definition 4.3.1.

As an example of m(s1, s2) used in GM (4.4), one can let m(s1, s2) = M(0.5(s1 + s2)) or

m(s1, s2) = 0.5(M(s1) +M(s2)), where either one estimates the mobility at the midpoint.

Note that m(s1, s2) in BEM (4.3) and GM (4.4) uses center-difference, allowing the numerical

method to conserve flux at each time step. Together with second-order consistency, both

numerical methods are “shock capturing,” which is a desirable property to have in conservation

law type of equations [LeV90]. In the following section, we show that BEM (4.3) satisfies the

conservation of mass and entropy estimate, which allows us to prove the positivity of the

numerical method.

4.4 Positivity of numerical solutions

In the previous section, we claim that m(s1, s2) in BEM (4.3) satisfies a discrete equivalent of

the conservation of mass and the entropy estimates discussed in Section 4.2. In this section,

we prove our claim through Proposition 4.4.1 and explain how such discretizations preserve

the positivity of BEM (4.3) through Theorem 4.4.1. Our method is inherently more complex

than entropy dissipating schemes for traditional lubrication-type equations because of three

reasons. First, the time derivative of Equation (4.1) involves the geometry of the cylindrical

fiber α
2
h2. Second, a nonlinear advection ∂

∂x
M(h) is incorporated. Lastly, nonlinear pressure
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p entails a destabilizing azimuthal curvature α
η(1+αh)

. The coupled entropy estimate expression

in Proposition 2.1 is consequently more complicated than “entropy dissipation”, which is the

case for the conventional lubrication-type equations. The following proposition is a discrete

analog of Proposition 2.1.

Proposition 4.4.1. Suppose ui(t) is a solution of the BEM (4.3) at time t and ith grid in

space. Suppose we further assume

M(h) = O(hn), M(h) ≥ 0,

Z+, Z− ∈ C2(R+), Z ′
+(h) ≥ 0, Z ′

−(h) ≤ 0,

G′(h) = (1 + αh)

∫ h

A

1

M(s)
ds for some fixed A > 0.

Then, ui(t) satisfies the following two properties given T > 0:

(I)
∑
i

(
ui(T ) +

α

2
ui(T )

2
)
∆x =

∑
i

(
ui(0) +

α

2
ui(0)

2
)
∆x

(Discrete conservation of mass),

(II)
∑
i

G(ui(T ))∆x ≤
∑
i

G(ui(0))∆x+

∫ T

0

∑
i

(
Z−(ui(s))

2

)2

∆xds

(Discrete entropy estimate).

Proof. The proof of the statements is very similar to the proof of Proposition 2.1. The only

difference is that we multiply by ∆x and sum over i = 0, 1, 2, · · · , N −1 instead of integrating

over space. Discrete conservation of mass (I) is achieved by integrating the first line of (4.3)

by time and summing over i = 0, 1, 2, · · · , N − 1,∫ T

0

∑
i

(1 + αui)
dui
dt

∆x = −
∫ T

0

∑
i

[m(ui−1, ui)(1 + pi,x̄)]x∆x

=⇒
∑
i

(
ui(T ) +

α

2
ui(T )

2
)
∆x−

∑
i

(
ui(0) +

α

2
ui(0)

2
)
∆x = 0.

As we saw in the continuous case, the periodic boundary condition removes the expression

surrounded by [· · · ]x.
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The discrete entropy estimate (II) follows by

d

dt

∑
i

G(ui)∆x =
∑
i

G′(ui)
dui
dt

∆x

= −
∑
i

∫ ui

A

1

M(s)
ds[a(ui−1, ui)(1 + pi,x̄)]x∆x

=
∑
i

1

∆x

(∫ ui

ui−1

1

M(s)
ds

)
a(ui−1, ui)(1 + pi,x̄)∆x

=
∑
i

ui,x̄(1 + pi,x̄)∆x

=
∑
i

{
−(ui,x̄x)

2 − ui,x̄[Z ′
+(ui)]x̄ + ui,x̄xZ−(ui)

}
∆x

≤ −
∑
i

(
ui,x̄x −

Z−(ui)

2

)2

∆x+
∑
i

(
Z−(ui)

2

)2

∆x.

Until the fourth line, the equalities are justified by integration by parts. Note that the periodic

boundary plays a crucial role in simplifying expressions on the boundary and eliminating∑
i ui,x̄∆x in the fourth line. We obtain the inequality in the last line after completing the

square and using the fact that Z ′
+ ≥ 0. From the inequality, one integrates over time from 0

to T , which results in∑
i

G(ui(T ))∆x+

∫ T

0

∑
i

(
ui,x̄x(s)−

Z−(ui(s))

2

)2

∆xds

≤
∑
i

G(ui(0))∆x+

∫ t

0

∑
i

(
Z−(ui(s))

2

)2

∆xds.

Finally, one can drop the second term on the left side since it is nonnegative and the

desired entropy estimate is achieved.

We have two versions of theorems on the positivity: (a) a priori bound - depending on

∆x and (b) a posteriori bound assuming a uniform Lipschitz condition on the numerical

solution. We note that the solution is observed to have a uniform Lipschitz bound in all of

our numerical simulations. Thus, the uniform Lipschitz assumption is observed numerically

and thus can be used in an a posteriori argument. We leave proving the smoothness of PDE,

such as establishing a uniform Lipschitz bound, as future work.
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Theorem 4.4.1. (Positivity of BEM) Suppose we have the same assumptions as Proposition

4.1. We further assume that (Z−(s))
2 ≤ C1 for any s ≥ 0 and the initial data ui(0) > 0.

Then, the solution of BEM (4.3) at time T > 0, ui(T ), satisfies the following conditions:

(a) if n ≥ 2, there exists δ such that ui(T ) ≥ δ(∆x) > 0 for all i,

(b) if n > 2 and ui(t) is uniformly Lipchitz on [0, T ], |ui(s)− uj(s)| ≤ CL|(i− j)∆x|, ∀i, j,

∀0 ≤ s ≤ T , for some CL > 0, there is a posteriori lower bound δ, independent of ∆x,

such that ui(T ) ≥ δ > 0.

Proof. Notice that we assume that M(h) = O(hn) and consider cases where n ≥ 2. Thus,

for the sake of simplicity, we take M(h) = hn throughout the proof. More general cases can

be proved similarly. Let us first prove statement (a). The given assumptions allow us to use

the discrete entropy estimate (II) from Proposition 4.4.1.

First, we claim that
∑

iG(ui(T ))∆x ≤ C for a fixed constant C as any ui(T ) → 0. Since

we take M(h) = hn, we explicitly calculate G(h) as

G(h) =



− log h+O(h) +O(1) if n = 2,

1
(n−1)(n−2)

h−(n−2) +O(h3−n) +O(1) if 2 < n < 3,

1
2h

− α
2
log h+O(h) +O(1) if n = 3,

1
(n−1)(n−2)

h−(n−2) + α
(n−1)(n−3)

h−(n−3) +O(h) +O(1) if n > 3.

Here, the choice of A only affects the coefficients of the higher-order terms but not the

leading-order term. Each G(ui(0)) is also well defined because we have fixed initial data

ui(0) > 0. This leads us to conclude∑
i

G(ui(0))∆x ≤ C0 for some constant C0.

We also assume (Z−(ui(s)))
2 ≤ C2, which implies∫ T

0

∑
i

(
Z−(ui(s))

2

)2

∆xds ≤ C2T for some constant C2 as any ui(T ) → 0.
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Hence, we get∑
i

G(ui(T ))∆x ≤
∑
i

G(ui(0))∆x+

∫ T

0

∑
i

(
Z−(ui(s))

2

)2

∆xds ≤ C0 + C2T ≤ C.

Next, we show that δ(T ) = mini ui(T ) ≥ 0 using the boundedness of
∑

iG(ui(T ))∆x.

Notice that each leading-order term of G(δ) is positive as δ → 0 up to constant differences,

G(δ) =



− log δ +O(δ) +O(1) if n = 2,

1
(n−1)(n−2)

δ−(n−2) +O(δ3−n) +O(1) if 2 < n < 3,

1
2δ

− α
2
log δ +O(δ) +O(1) if n = 3,

1
(n−1)(n−2)

δ−(n−2) + α
(n−1)(n−3)

δ−(n−3) +O(δ) +O(1) if n > 3.

Thus, δ → 0 implies G(δ) → +∞, which contradicts
∑

iG(ui(T ))∆x ≤ C. Hence, we achieve

mini ui(T ) = δ > 0.

To prove (b), we use
∑

iG(ui(T ))∆x ≤ C as well. From part (a), we have nonnegativity

of ui(T ), which implies

G(ui(T )) =

∫ ui

B

(1 + αv)

∫ v

A

1

M(s)
dsdv +O(1) ≥

∫ ui

B

∫ v

A

1

M(s)
dsdv +O(1),

for some B > 0.

Therefore,

C ≥
∑
i

G(ui(T ))∆x ≥
∑
i

∫ ui

B

∫ v

A

1

M(s)
dsdv∆x+O(1)

≥
∑
i

∫ ui

B

∫ v

A

1

sn
dsdv∆x+O(1) =

∑
i

u2−n∆x+O(1).

Suppose δ(T ) = mini ui(T ) occurs at i
∗. Due to the uniform Lipschitzness, ui ≤ δ +CL|(i∗ −

i)∆x|, ∀i, we obtain

C̃ ≥
∑
i

1

un−2
i

∆x ≥
∑
i

∆x

(δ + CL|(i− i∗)∆x|)n−2
≥

∑
i

∆x

(δ + CL(i∆x))n−2

≥
∫ L

0

dx

(δ + CLx)n−2
≥ 1

CLδn−1

∫ LCL/δ

0

ds

(1 + s)n−2
.
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If LCL

δ
≤ 1 =⇒ δ ≥ LCL so we have a lower bound δ independent of ∆x. In the case when

LCL

δ
≥ 1,

C̃ ≥ 1

CLδn−1

∫ 1

0

ds

(1 + s)n
=

C ′

δn−1
,

=⇒ δ ≥
(
C ′

C̃

)1/n−1

.

Corollary 4.4.2. Continuous time, discrete space, numerical solutions of the Craster-Matar

model (CM) [CM06] and the Film Stabilization Model (FSM) [JFS19] are positive at any

time T > 0 and grid point i if we use the BEM (4.3).

Proof. For the two cases, the same mobility function M(h) is used, but different Z(h) is

used. They are

M(h) =
h3

3

ϕ(αh)

ϕ(α)
+
h2(αh+ 2)2λ

4ϕ(α)
,

ϕ(x) =
3

16x3
[
(1 + x)4(4 log(1 + x)− 3) + 4(1 + x)2 − 1

]
,

ZCM(h) = ZCM−(h) =
α

η(1 + αh)
,

ZFSM(h) = ZFSM+ + ZFSM− = −AH

h3
+

α

η(1 + αh)
.

We prove that the assumptions are satisfied for Theorem 4.4.1 by showing that M(h) =

O(h2) as h→ 0 and (Z−(s))
2 ≤

(
α
η

)2

. We simplify the calculation by letting y = αh,

h3ϕ(αh)

3ϕ(α)
=

1

16α3ϕ(α)

[
(y + 1)4(4 log(y + 1)− 3) + 4(y + 1)2 − 1 + 4λαy2(y + 2)2

]
=

1

C

[
A4y

4 + A3y
3 + A2y

2 + A1y + A0

]
,

where

A4 = 4αλ+ 4 log(y + 1)− 3, A3 = 16αλ+ 16 log(y + 1)− 12,

A2 = 16αλ+ 24 log(y + 1)− 14, A1 = 16 log(y + 1)− 4, A0 = 4 log(y + 1).
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As y → 0, log(y + 1) = O(y), which implies

h3ϕ(αh)

3ϕ(α)
= O(y2) +

1

C
[A1y + A0] = O(y2) + 16y2 − 4y + 4y = O(y2) = O(s2).

Finally, for any s ≥ 0, we have

Z−(s) =
α

η(1 + αs)
≤ α

η
.

To finish the proof, we apply Theorem 4.4.1 and see that the numerical solutions of both CM

and FSM are positive.

Theorem 4.4.3 (Consistency). GM (4.4) and BEM (4.3) are second-order consistent in

space. That is, given a smooth solution u(x, t) of the problem (P ), a local truncation error

τi(t) is O(∆x
2) for

τi(t) = (1 + αui)ui,t + [m(ui−1, ui)(1 + pi,x̄)]x.

Proof. Let us denote ui = u(i∆x, t) to simplify the notation. First, note that both GM

and BEM have very similar formulations and satisfy Definition 4.3.1. Thus, we can use an

approach similar to [ZB00]. After a Taylor expansion, we achieve

m(s1, s2) = m(s+∆s, s−∆s) = m(s, s) +
∂m

∂s1
(s, s)∆s− ∂m

∂s2
(s, s)∆s+ β(s)∆s2 +O(∆s2)

= M(s) + β(s)∆s2 +O(∆s2),

where s = s1+s2
2
,∆s = s1−s2

2
, and

β(s) =
1

2

(
∂2m(s, s)

∂s21
− 2

∂2m(s, s)

∂s1∂s2
+
∂2m(s, s)

∂s22

)
.

We cancel out O(∆s) terms by using the symmetry of m(s1, s2), according to (b) from

Definition 4.3.1. We also obtain

pi,x̄ = ui,x̄xx̄ − [Z(ui)]x̄ ,

ui,x̄xx̄ =
ui+1 − 3ui + 3u−1 − ui−2

∆x3
= u

(3)

i− 1
2

+ α(xi− 1
2
)∆x2 +O(∆x4),

[Z(ui)]x̄ = Z ′(ui− 1
2
)
ui − ui−1

∆x
+ Z ′′(ui− 1

2
)
(ui − ui− 1

2
)2 − (ui−1 − ui− 1

2
)2

2∆x
+O(∆x2) +O(∆x4)

= Z ′(ui− 1
2
)

[
u′i− 1

2
+

∆x2

24
u
(3)

i− 1
2

+O(∆x4)

]
+ Z ′′(ui−1/2)

[
∆x2

8
u′i− 1

2
u′′i− 1

2
+O(∆x4)

]
.
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After simplification,

pi,x̄ = u
(3)

i− 1
2

+ Z ′(ui− 1
2
)u′i− 1

2
+ γ(xi− 1

2
)∆x2 +O(∆x4)

for some smooth function γ(x). As a result,

[m(ui−1, ui)(1 + pi,x̄)]x =
1

∆x
[m(ui, ui+1)(1 + pi+1,x̄)−m(ui−1, ui)(1 + pi,x̄)]

=
1

∆x

{
M

(
ui + ui+1

2

)
+ β

(
ui + ui+1

2

)(
ui+1 − ui

2

)2

+O(∆x3)

}
{
1 + u

(3)

i+ 1
2

+ Z ′(ui+ 1
2
)u′i+ 1

2
+ γ(xi+ 1

2
)∆x2 +O(∆x4)

}
− 1

∆x

{
M

(
ui + ui−1

2

)
+ β

(
ui + ui−1

2

)(
ui−1 − ui

2

)2

+O(∆x3)

}
{
1 + u

(3)

i− 1
2

+ Z ′(ui− 1
2
)u′i− 1

2
+ γ(xi− 1

2
)∆x2 +O(∆x4)

}
.

Note that for any continuously differentiable function, g(s) is defined as

g

(
ui + ui+1

2

)
= g(ui+ 1

2
) + g′(ui+ 1

2
)
u′′i+ 1

2

2

(
∆x

2

)2

+O(∆x4),(
ui+1 − ui

2

)2

= (u′i+ 1
2
)2
(
∆x

2

)2

+O(∆x4).

The above properties can be applied to M(s) and β(s). Hence we conclude

[m(ui−1, ui)(1 + pi,x̄)]x =
[
M(ui)(1 + u

(3)
i − Z ′(ui)u

′
i)
]′
+O(∆x2).

4.5 Numerical simulation

In this section, we present numerical simulations based on the continuous time methods in

Section 4.3 with a practical discrete-time adaptive time stepping method. We illustrate the

benefit of using BEM over GM in a physically relevant setting in comparison to results from

laboratory experiments. Throughout Section 4.5, we solve the problem (P ) with the specific
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functions,

M(h) =
h3ϕ(αh)

3ϕ(α)
, ϕ(X) =

3

16X3
[(1 +X)4(4 log(1 +X)− 3) + 4(1 +X)2 − 1],

Z+(h) = −AH

h3
, Z−(h) =

α

η(1 + αh)
.

(4.5)

This corresponds to the FSM in Ji et al. [JFS19] with λ = 0. In their work, setting λ = 0

matched the experimental data better than setting λ > 0. Thus, this is a good example to

demonstrate our method on. The film stabilization term Z+(h) takes the functional form of

disjoining pressure, with AH corresponding to the Hamaker constant. Increasing the value

of AH stabilizes the flow. The parameter η acts as a scaling parameter in the azimuthal

curvature Z−(h), and decreasing its value destabilizes the flow.

For each simulation, we use the functions in Equation (4.5) and dimensionless parameters

α, η, AH , and a dimensionless initial data h0(x) on domain [0, L]. In Section 4.5.1 and

Section 4.5.3, we use dimensionless variables to compare the performance of the two numerical

schemes. Whereas, in Section 4.5.2, the simulation is compared with experimental data, so the

numerical results are converted back to a dimensional scale. The dimensionless parameters

and the initial data are chosen to be in the range of physically meaningful values. Many

times, we choose the initial data as a slightly perturbed constant state,

h0(x) = h̄(1 + 0.01 sin(πx/L)).

The initial condition represents the profile of a flat liquid film at the onset of the instability,

where h̄ is a critical flow parameter that governs the size, spacing, and frequency of the liquid

beads, consequently having a strong influence on the flow regime [SZJ17].

4.5.1 Comparison of numerical methods

In this section, we compare the simulation of the BEM and GM in a physically relevant

setting. We simulate the BEM and GM with the functions (4.5) with dimensionless parameters
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α = 10.6, η = 0.223227, AH = 0.001. We choose the initial data as

h0(x) = 1.471(1 + 0.01 sin(πx/L)), L = 24.0.

The numerical schemes presented in Section 4.4 are continuous in time. Thus, we must

discretize the time step for the practical implementation. We discretize the continuous

method (4.3) using the θ-weighted time-step method with θ = 1
2
. This leads to the semi-

implicit BEM method:

Bounded Entropy Method (Semi-Implicit BEM).(
1 + α

uk+1
i + uki

2

)(
uk+1
i − uki
∆t

)
+ [m(uk+1

i−1 , u
k+1
i )(1 + pk+1

i,x̄ )]x = 0,

pk+1
i = uk+1

i,x̄x −Z+(u
k+1
i )−Z−(u

k
i ),

ui(0) = u0(i∆x), i = 0, 1, 2, · · · , N,

m(s1, s2) =


M(s1) if s1 = s2,

(s2 − s1)/
∫ s2
s1

1
M(s)

ds if s1 ̸= s2.

(4.6)

While other terms involving spatial differences, including Z+, are discretized implicitly, we

note that Z− is discretized explicitly. Such discretization is a well-known technique that

increases the stability of a numerical method by treating a concave term and a convex term

separately [GR01, Gru03]. One may employ a fully implicit method, but this typically requires

∆t to be very small. We observe that the semi-implicit method is stable for larger time steps.

When using the semi-implicit scheme, we accelerate the simulations by incorporating adaptive

time stepping, as discussed in detail in Section 4.5.3. We also note that one has to numerically

calculate
∫ s2
s1

1
M(s)

ds while evaluating m(s1, s2). We use the Simpson’s method with 2-4 grids

to numerically integrate 1/M(h) on [ui−2, ui−1], [ui−1, ui], and so on. Similarly, we discretize

the continuous method (4.4) using the fully implicit time-stepping scheme in [JFS19].

We take m(s1, s2) = M (0.5(s1 + s2)), which satisfies Definition 4.3.1. The calculation

of m(s1, s2) for GM is relatively simple since it does not require numerical integration. As
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mentioned before, GM is fully implicit so ∆t needs to be well-controlled and kept small.

Thus, when we compare the simulation of BEM (4.6) to GM (4.7) in Section 4.5.1-4.5.2, we

use a fixed ∆t unless the numerical method fails to converge in which case we decrease ∆t

by half. In Section 4.5.3, we show an example of BEM (4.6) implemented with the adaptive

time stepping algorithm (see Algorithm 3) to demonstrate more efficient implementation.

For both methods, we use Newton’s method at each time step to solve discrete nonlinear

equations (see Algorithm 1). The Newton’s method returns True if it successfully solves

for the numerical solution at the next time step within 15 iterations; otherwise, it returns

False. When the Newton’s method fails, we decrease ∆t by 50% and try Newton’s method

again. The detailed procedure of the Newton’s method with fixed time stepping is written in

Algorithm 2.

The Newton’s algorithm is specifically written for BEM (4.6), but setting f(uk) as the left

side expression of the equality of equation (10) in Algorithm 1 results in the algorithm for

GM (4.7). The function NewtonMethod has the input of the numerical solution at kth time

step uk, the current time step ∆t, and the tolerance value tol which determines the success

or failure of the Newton’s iteration. NewtonMethod returns True if ∥f(uk)∥∞ < tol after the

for loop and updates the numerical solution by setting uk = uk+1. NewtonMethod gives a

chance of 15 iteration, but in practice, we see that the method satisfies ∥f(uk)∥∞ < tol/10

within 3-4 iteration. When ∥f(uk)∥∞ ≥ tol, NewtonMethod returns False.

In the case when NewtonMethod returns False, we decrease ∆t by 50% and try NewtonMethod

again with the same uk and tol (see Algorithm 1 and Algorithm 3). The Algorithm 2 is used

to generate Figure 4.2 and Figure 4.3. Notice that ∆t is only decreased when NewtonMethod

returns False. If NewtonMethod fails more than 4 consecutive times, we completely stop the

simulation.
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Algorithm 1: Newton’s method for BEM

Input: numerical solution uk, the current time step ∆t, and a tolerance value tol for

the convergence success criteria.

Output: True or False depending on whether the method succeed or fail.

NewtonMethod(uk,∆t,tol):

uk+1 = uk; % Initial guess for the Newton’s method

for i = 0 to 15 do

f(uk) = the left side of the equality of equation (4.6); % Use (4.7)

for GM

uk+1 = uk − (∇f(uk))−1f(uk);

if ∥f(uk)∥∞ < tol/10 then
break;

end

end

if ∥f(uk)∥∞ < tol then
return True;

else
return False;

end
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Algorithm 2: Simulation with fixed time stepping

Input: discrete initial data u0, the time step ∆t, the end time tend, and a tolerance

value tol for the convergence success criteria.

Output: uk at the tend if the simulation succeeds. Otherwise outputs uk at the time

of the simulation failure.

Simulate(u0,∆t,tend):

set t = 0, bad = 0, and uk = u0;

while t < tend do

if NewtonMethod(uk, ∆t, tol) == True then

t = t+∆t ; % Update time

uk = uk+1; % Update the numerical solution

bad = 0;

else

bad = bad+1;

∆t = ∆t ∗ 0.5; % Try the Newton’s Method with smaller ∆t

if bad > 4 then

exit(1); % Stop the simulation

end

end

end
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Generic Method (Implicit GM).(
1 + α

uk+1
i + uki

2

)(
uk+1
i − uki
∆t

)
+ [m(uk+1

i−1 , u
k+1
i )(1 + pk+1

i,x̄ )]x = 0,

pk+1
i = uk+1

i,x̄x −Z+(u
k+1
i )−Z−(u

k+1
i ),

ui(0) = u0(i∆x), i = 0, 1, 2, · · · , N,

m(s1, s2) =


M(s1) if s1 = s2,

M (0.5(s1 + s2)) if s1 ̸= s2.

(4.7)

(a) GM (b) BEM

Figure 4.2: Simulation results with (a) the Generic Method (GM) from Equation (4.7) from

t = 610 to t = 650.05 and (b) the Bounded Entropy Method (BEM) from Equation (4.6)

from t = 610 to t = 650 on a coarse grid (3072 grid points on [0, 24]). The details of the

simulation are described in Section 4.5.1. The plots illustrate the difference between the

evolution profiles of traveling droplets as they merge. At t = 640, GM prematurely fuses

two droplets while the BEM does not. Because of instabilities caused during the merging,

GM develops negativity at t = 650.05, indicated by the blue square marker. The instability

also causes the Newton’s method (see Algorithm 1) to fail for GM at t = 650, so ∆t = 0.1

is decreased by half ∆t = 0.05. On the other hand, BEM can handle such instability and

maintain the positivity of the film thickness while keeping the time step size ∆t = 0.1.

Figure 4.2 and Figure 4.3 compare numerical simulations of GM (4.7) and BEM (4.6)
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methods on a dimensionless domain [0, 24]. In Figure 4.2, one observes a classic evolution of

isolated droplet dynamics where the bigger droplet collides with a smaller one and merges

into one droplet as the solution propagates. Figure 4.3 is a closeup of the results from

Figure 4.2 at the time of singularity. To generate Figure 4.2 and Figure 4.3, we simulate GM

on a fine grid (6144 grid points on [0, 24]) until dimensionless time t = 610 with ∆t = 10−4

fixed. At this time t = 610, we extract the data corresponding to a coarse grid (3072 grid

points on [0, 24], which is twice the grid size of the fine grid) and set it as an initial condition

for Figure 4.2 and Figure 4.3. From this time, we simulate BEM and GM on the coarse

grid with fixed ∆t = 0.1. Figure 4.2(a) illustrates the evolution of the simulation of GM

while Figure 4.2(b) illustrates the evolution of the simulation of BEM. At t = 650.05 in

Figure 4.2(a), one observes that the numerical solution becomes negative at one grid point

in an underresolved mesh setting. Notice that Figure 4.2(a) has a singularity at t = 650.05

instead of t = 650.0 or t = 650.1 despite keeping ∆t = 0.1 fixed. This is because, at t = 650,

the Newton’s method for GM fails. As a consequence, the time steps ∆t = 0.1 is decreased

by half, ∆t = 0.05 (see Algorithm 2 in Section 4.5. The Newton’s method succeeds after

decreasing the time step by half, yet the recovered solution has a negative h value. On the

other hand, BEM successfully maintains positivity throughout the dynamics.

In Figure 4.3, one observes the detailed profile of each simulation at the time of the

numerical singularity. We continue the simulation in Figure 4.2 until t = 654. Note that we

observe the numerical singularity on the coarse GM (4.7) simulation at t = 650.05 for the first

time. The coarse GM simulation continues to have a negative value in contrast to the coarse

BEM (4.6) simulation, which stays positive. Having a singularity is critical since it often

prevents further numerical simulation and provides inaccurate results. It is also unphysical

because no finite time rupture is observed in the experiment. Such numerical singularities are

commonly observed with GM method in this dynamic regime of the simulation. The details

of the fixed time closeup are described in the caption of Figure 4.3. One can see that the

singularity affects the shape of the solution making the numerical prediction inaccurate. Let
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(a) Simulation comparison (b) Simulation comparison (enlarged)

Figure 4.3: Closeup of a coarse grid simulation (3072 points on [0, 24]) around t = 654. The

details of the simulation are described in Section 4.5.1. The coarse GM simulation is taken

at t = 654.45, the coarse BEM simulation is taken at t = 654.40, and the fine GM simulation

is taken at t = 654.41. Figure 4.3(a) represents the full profile, and Figure 4.3(b) represents

the closeup profile near the singularity. Note that h of the coarse GM simulation goes below

the zero line indicated in dashed black at t = 654.4500, whereas the coarse BEM simulation

does not go below the zero line at t = 654.400. The fine GM simulation uses twice as many

grid points (6144 grid points on [0, 24]) and is captured at t = 654.4100. Besides the phase

shift, the coarse BEM simulation agrees better with the fine GM simulation in a sense that

the average l2 error (l2 error = 2.0116) across the domain is lower than the average l2 error

caused by the coarse GM simulation (l2 error = 2.5999). The average l2 error was calculated

by Equation (4.8).

us take a closer look at the downstream and upstream profile of the droplet in Figure 4.3. We

see that the coarse BEM (4.6) simulation has more smoothness downstream of the droplet

(from x = 23 to x = 24), whereas GM (4.7) simulation has a finite time pinchoff (marked by

a blue square). We also see that BEM’s wavy pattern at the upstream matches better with

the experiment than GM’s (from x = 0 to x = 15). Furthermore, the coarse BEM simulation

has a lower average l2 error (l2 error = 2.0116) than the error caused by the coarse GM

simulation (l2 error = 2.5999) despite using different schemes. Here, we define the average l2
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error as

l2 error =
1

L

∑
i

(ui − u∗i )
2, (4.8)

where ui is the simulation results on the coarse grid and u∗i is the simulation result on the

fine grid at the corresponding points of the coarse grid.

4.5.2 Comparison with laboratory experiments

Here we compare predictions from our method with the experimental data. In the experiment,

the coating flow is created by injecting fluid into the nozzle with an inner diameter of 0.8

mm using a programmable syringe pump. We use Rhodorsil silicone oil v50, which is a

well-wetting liquid with the density ρ = 963 kg/m3, kinematic viscosity ν = 50 mm2/s, and

surface tension σ = 20.8 mN/m at 20◦C. The corresponding capillary length lc = 1.5 mm.

The fluid flows along a 0.6 m-long Nylon string that is hung vertically. The radius of the

Nylon string is 0.1 mm. A high-speed camera captures the flow at a frame rate of 1000

frames/second. We estimate the measurement uncertainty in the liquid bead radius and

length to be approximately ± 0.08 mm, and that in the liquid bead spacing approximately

± 0.3 mm. Further details of our experimental setup, procedure, and data analysis can be

found in a previous publication [SZJ17].

We consider two cases: the Rayleigh-Plateau case and the isolated droplet case. We do

not consider the convective regime because it requires different boundary conditions. For the

first case, we let the flow rate be 0.08 g/s for a fiber with a radius of 0.1 mm and a nozzle

inner diameter (nozzle ID) of 0.8 mm. The experiments and corresponding numerical method

both exhibit the Rayleigh-Plateau regime (see Figure 4.4). For the second case, we let the

flow rate be 0.006 g/s for the same fiber. For these parameters, one observes the isolated

droplet regime (see Figure 4.5).

The experimentally obtained images are processed and segmented by the built-in methods

inMatlab, where we have incorporated the Canny method and Otsu’s method. By processing
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Figure 4.4: Comparison between laboratory experimental data and simulation data of the

numerical methods. The details of the simulation and laboratory data acquisition are

described in Section 4.5.2. GM (4.7) and BEM (4.6) are simulated with a fine grid (1000

grid points on the domain [0, 5]) and then shifted horizontally to match the phase. The

experimental profile (indicated by the solid black line) follows the Rayleigh-Plateau regime

extracted from an experiment conducted with a flow rate of 0.08 g/s, a fiber radius of 0.1

mm, and a nozzle ID of 0.8 mm.

Figure 4.5: Comparison between laboratory experimental data and simulation data of the

numerical methods. The details of the simulation and laboratory data acquisition are

described in Section 4.5.2. GM (4.7) and BEM (4.6) are simulated with a relatively coarse

grid (1999 grid points on the domain [0, 39.338]) and then shifted horizontally to match the

phase. The experimental profile (indicated by the black solid line) follows the isolated droplet

regime extracted from an experiment conducted with a flow rate of 0.06 g/s, a fiber radius of

0.1 mm, and a nozzle ID of 0.8 mm.

high-resolution optical images and using other experimental values such as the flow rate, fiber

radius, the density of the fluid ρ, and the kinematic viscosity ν, we obtain a characteristic

length scale hN and the estimated period L of traveling beads. Using these values, one can

calculate dimensionless parameters α, η, and nondimensional scaling constants. We must
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perform this task for each experimental case since the resulting parameters are different. To

generate Figure 4.4 and Figure 4.5, we simulate GM (4.7) and BEM (4.6) on a dimensionless

domain and scale back to dimensional data to compare with the experimental data.

Figure 4.4 illustrates the simulation results of GM (4.7) and BEM (4.6) compared with

the experimental data of the Rayleigh-Plateau regime. We simulate GM and BEM with the

functions (4.5) with corresponding α = 5.8856 and η = 0.2912 with a stabilizing parameter

chosen to be AH = 10−11. We choose the initial data as a slightly perturbed constant state

h0(x) = h̄(1 + 0.01 sin(πx/L)), L = 5.0, h̄ = 0.9568.

Note that the stabilizing parameter AH is relatively small compared to η or α or the average

film thickness h̄. We simulate GM and BEM on a fine grid until dimensionless time t = 250.006

with an adaptive time stepping method (see Algorithm 3) where 10−3 ≤ ∆t ≤ 10−2. The

adaptive time stepping was used to expedite the simulation process, but we made sure the

max∆t is small enough for an accurate simulation (i.e., one results in the almost identical

simulation if we keep ∆t = 10−4, fixed). After the simulation, we dimensionalize the data by

multiplying scaling constants with respect to space and time. One can see that the three

simulations match well despite the fact that both GM and BEM slightly underpredict the

bead traveling speed as they go further along the x-direction.

Figure 4.5 illustrates the simulation results of GM (4.7) and BEM (4.6) compared with

the experimental data of the isolated droplet regime. We simulate GM and BEM with

Equation (4.5) with corresponding α = 3.092621559 and η = 0.123 with a stabilizing

parameter chosen to be AH = 4.0× 10−2. Note that the stabilizing parameter AH is bigger

than the value we choose to simulate the Rayleigh-Plateau regime. We have simulated GM and

BEM with a slightly perturbed constant state condition as the initial data, but the simulation

has resulted in a dramatically different and unphysical profile from the experimental data.

We expect this to be natural because the profile of the isolated droplet regime is inherently

more complex than the Rayleigh-Plateau regime. We expect that there are several different

steady states, and it may depend on the initial data intricately. Therefore, we extract
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the initial condition from the experiment and use an interpolating sine series to find the

best-fitting smooth function. We enforce a periodic boundary condition by cropping the data

appropriately so that the h0 at x = 0 matches h0 at x = L. After cropping, we use a moving

average filter to smooth data even further. The code implementation details are published in

a GitHub repository. After acquiring the initial data, we simulate GM and BEM on a fine grid

until dimensionless time t = 807.107 for GM and t = 827.8070 for BEM with an adaptive time

stepping method (see Algorithm 3) where 10−3 ≤ ∆t ≤ 10−2. The adaptive time stepping is

used to expedite the simulation process again. Similar to the Rayleigh-Plateau simulation, we

dimensionalize the data by multiplying scaling constants with respect to space and time. One

can see that both simulations predict the width of the droplet well with slight overprediction

of the height of the droplet. We note that BEM describes the pinchoff behavior downstream

of the bead better (from x = 18mm to x = 20mm) than GM since GM is nearly flat in this

region (from x = 18mm to x = 20mm) in Figure 4.5.

4.5.3 Adaptive time stepping method

Adaptive time stepping can optimize the performance of the numerical method while still

accurately capturing the droplet propagation. In the early stage of the computation, we

expect to see a lot of change in the shape of the graph. Therefore, one wishes to keep the time

step very small to capture the accurate profile of the solution. However, as the computation

progress, the algorithm approaches a nearly steady state. It becomes costly to implement a

small time step calculation for many iterations, while such a small step iteration does not

contribute much to the change of the profile or the phase. Here we use an adaptive time

stepping method (see Algorithm 3) motivated by the method in [KB13, BBD94].

The main idea is to use a dimensionless local truncation error for every time step and see

if it surpasses a tolerance value that we impose. This choice of adaptive method was inspired

by similar ideas in [BBD94, KB13]. We define the dimensionless local truncation error using

87



the following formula,

LTE(tk+1)i =

∣∣∣∣ek+1
i − ∆t

∆told
eki

∣∣∣∣,
for

ek+1
i =

uk+1
i − uki
uki

, eki =
uki − uk−1

i

uk−1
i

, ∆t = tk+1 − tk, ∆told = tk − tk−1.

The details of the entire algorithm are given by Algorithm 3. Note that we store information

from the previous timestep uk−1 to calculate LTE(tk+1). If one successfully calculates uk+1

with the Newton’s method, we increase our time step by 1%, calculate LTE(tk+1), and check

||LTE(tk+1)||∞ < tol1. If ||LTE(tk+1)||∞ < tol1 more than countMax times (in our case, we

let countMax = 3 throughout Section 4.5.3), we increase our time step by 20%. To speed up

the simulation even further, one may increase the percentage to a higher value while the time

step reduces by half if the Newton’s method fails. If the error is bigger than tol1, we proceed

to calculate the next time step. In the case when the Newton’s method fails, we decrease our

time step by 50% and try the Newton’s method again.

4.5.3.1 Adaptive time stepping example without a near singular behavior

We simulate the semi-implicit BEM (4.6) with the functions (4.5), and dimensionless param-

eters α = 5.0, η = 0.02, AH = 10−5. We choose the initial data as

h0(x) = 0.95(1 + 0.01 sin(πx/L)), L = 1.0,

and use 100 grid points on [0,1]. We start with initial ∆t = 10−3 and use Algorithm 3

to increase ∆t until t = 1.0 with tol1 = 10−1 and countMax = 3. Figure 4.6 illustrates

the increase of ∆t throughout the simulation when η is relatively high and the stabilizing

parameter AH is relatively high. Because the parameters are selected to simulate a relatively

stable coating flow, the ||LTE(tk+1)||∞ < tol1 condition is satisfied whenever the Newton’s

method succeeds. Thus, every third-time step (note that countMax = 3), ∆t increases by

20%.
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Algorithm 3: Adaptive time stepping method

Input: discrete initial data u0, time step ∆t, final time tend, an adaptive time

tolerance value tol1, the maximum number of count countMax.

Output: uk at the tend if the simulation succeeds. Otherwise outputs uk at the time

of the simulation failure.

SimulateAdaptive(u0,∆t,tend):

set t = 0, bad = 0, count = 0, and uk = u0;

while t < tend do

if NewtonMethod(uk,∆t,tol1) == True then

t = t+∆t,uk = uk+1; % Update time and solution

∆t = ∆t ∗ 1.01; % Increase ∆t by 1%

calculate ek+1, ek, and LTE(tk+1);

if ∥LTE(tk+1)∥∞ < tol1 then

count=count+1;

if count =countMax then

∆t = ∆t ∗ 1.2; % Increase ∆t by 20%

count = 0;

end

end

else

bad = bad+1;

∆t = ∆t ∗ 0.5; % Try the Newton’s Method with smaller ∆t

if bad > 4 then

exit(1); % Stop the simulation

end

end

end
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(a) ∆t over simulation (b) ∆t over simulation (enlarged)

Figure 4.6: Plots of ∆t for the simulation described in Section 4.5.3.1 for 0 < t < 1. Newton’s

iteration always succeeds, so ∆t continuously increases by 1% every time while an additional

increase of 20% (20 times in total) occurs every third time. The image on the right shows a

closeup of the early time interval from t = 0 to t = 0.1.

4.5.3.2 Adaptive time stepping example with a near singular behavior

We simulate the semi-implicit BEM (4.6) with the functions (4.5), and dimensionless param-

eters α = 5.0, η = 0.005, AH = 0. We choose the initial data as

h0(x) = 0.95(1 + 0.01 sin(πx/L)), L = 1.0,

and use 100 grid points on [0,1]. We start with initial ∆t = 10−3 and use Algorithm 3

to increase ∆t until t = 1.0 with tol1 = 10−1 and countMax = 3 again. Since we set the

stabilizing parameter AH = 0 and take a lower η value, we observe a singular behavior of

the simulated flow (see Figure 4.8). Figure 4.7 illustrates the increase of ∆t throughout the

simulation when there is a singular behavior. Unlike Figure 4.6, the ||LTE(tk+1)||∞ ≥ tol1

from t = 0.045228 to t = 0.0918907. In this region, ∆t is increased by 1% to carefully handle

the transition of droplet dynamics (see Figure 4.8).
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(a) ∆t over simulation (b) ∆t over simulation (enlarged)

Figure 4.7: Plots of ∆t for the simulation described in Section 4.5.3.2 for 0 < t < 1. Newton’s

iteration always succeeds, so ∆t continuously increases by 1% every time. However, unlike

Figure 4.6, an additional 20% increase occurs irregularly. In fact, from t = 0.045228 to

t = 0.0918907, ∆t does not increase. The image on the right shows a closeup of the early

time interval from t = 0 to t = 0.1.

4.5.3.3 Computational efficiency and accuracy

In this section, we demonstrate the computational efficiency of our method BEM over GM.

We simulate semi-implicit BEM (4.6) and implicit GM (4.7) with the functions (4.5), and

dimensionless parameters α = 5.0, η = 0.005, AH = 0. We choose the initial data as

h0(x) = 0.45(1 + 0.01 sin(πx/L)), L = 1.0,

and record the CPU time of each method on three different grid sizes. Note that this is

a similar setting as the simulation run in Section 4.5.3.2. When we use the fixed time

stepping (see Algorithm 2 in Section 4.5) for BEM and GM, we let ∆t = 10−3. When

we use the adaptive time stepping, which is only used for BEM, we use Algorithm 3 with

initial ∆t = 10−3, tol1 = 10−3, and countMax = 3. Each GM simulation is run until the

numerical solution fails to preserve positivity, resulting in different termination times. On the
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Figure 4.8: Evolution of a flow with a singular behavior described in Section 4.5.3.2. All of

the plots have h ≥ 6.0942× 10−4.

other hand, each BEM always preserves the positivity of the numerical solution regardless

of using any time stepping method so that it can be run until any time. For a fair CPU

time comparison, we run BEM until GM fails with the respective grid sizes. By examining

Table 4.1, one may notice the computational benefits of using adaptive time stepping with

increased grid points.
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Time stepping Positivity CPU time

GM with ∆x = 0.01 Fixed Fails at t = 0.299 0.286s until t = 0.299

BEM with ∆x = 0.01 Fixed Success 0.374s until t = 0.299

BEM with ∆x = 0.01 Adaptive Success 0.317s until t = 0.299

GM with ∆x = 0.005 Fixed Fails at t = 1.09594 0.602s until t = 1.09594

BEM with ∆x = 0.005 Fixed Success 1.08s until t = 1.096

BEM with ∆x = 0.005 Adaptive Success 0.412s until t = 1.09678

GM with ∆x = 0.0025 Fixed Fails at t = 3.4765 2.959s until t = 3.4765

BEM with ∆x = 0.0025 Fixed Success 4.727s until t = 3.477

BEM with ∆x = 0.0025 Adaptive Success 0.724s until t = 3.51201

Table 4.1: Computational cost comparison of BEM and GM for the example discussed in

Section 4.5.3.3.
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CHAPTER 5

Conclusion and future work

Numerical methods for simulating thin liquid films have been extensively studied over several

decades [BBG98, ZB00, GR00, GR01]. Carefully simulating the dynamics of the fluid at

the solid-liquid interface remains a challenging task and is still an active area of research

[ZXR22, BSW22, DPM18, AN17]. As emphasized throughout the thesis, the intrinsic

positivity property of the liquid film is essential at the discrete level of the numerical solution;

it ensures that the solutions are physical and practical for various scientific and engineering

applications.

Numerous articles in the literature present numerical simulation of the fiber coating

problem [JFS19, JSJ20, JFS21, ZZS23, NO09, BRK14, JD22], and a considerable amount of

work has been put into designing mathematical models [JFS19, JFS21, JSJ20, JD22, ZZS23].

However, less work has been done to design numerical methods for this geometry. Designing

a numerical method requires careful attention due to the complexity of the solution, which

involves the effects of cylindrical geometry, disjoining pressure, and stabilizing and destabilizing

intermolecular forces. This thesis addresses the gap between state of the art numerical methods

for thin films in simple geometries and numerical methods for fiber coating.

In this thesis, we introduce a positivity-preserving finite difference method for the problem

of fiber-coating a vertical cylindrical fiber. While the prior state-of-the-art method (GM)

achieves close agreement with experiments and successfully captures regime transitions, it

struggles to match the flow profiles as the film thickness becomes small. In particular, the

GM needs significant grid refinement to resolve very thin films without an artificial numerical
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Figure 5.1: Left: Phase diagram of the bead morphology depending on surface tension

and fiber diameters. Middle: Bead symmetry observed in a laboratory experiment. Right:

Bead asymmetry observed in a laboratory experiment. Reprinted figure with permission

from Gabbard & Bostwick [GB21]. Copyright (2021) by the American Physical Society,

https://doi.org/10.1103/PhysRevFluids.6.034005.

singularity. We prove that our BEM preserves positivity given M(h) = O(hn) for n ≥ 2 and,

furthermore, that there exists a lower bound independent of grid size given an a posteriori

Lipschitz bound on the solution (something that has always been observed in experiments).

By constructing a generalized entropy estimate, we extend the idea of positivity-preserving

methods for basic lubrication equations to the problem involving cylindrical geometry, gravity,

and nonlinear pressure. This technique has promise for thin liquid film equations with

complex geometry, advection effect, and other surface tension effects.

There are a number of directions one can pursue from this work. One obvious direction is

to prove the convergence of the BEM. Such work would benefit from additional regularity

and positive results for the continuum of PDE. Another direction is to generalize the method

to the fully 2D fiber coating problem, for example, using ADI methods such as [WB03] or

considering more general geometries as in [GBS06]. Gabbard & Bostwick observed that the
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asymmetric behavior of the traveling bead depends on the fiber radius and surface tension of

the flow (see Figure 5.1) [GB21]. Thus, incorporating this behavior in a higher-dimensional

model will be meaningful. In order to extend our method to higher dimensional cases,

additional a posteriori assumptions on numerical and analytical solutions must be made.

Finally, it would be interesting to consider other types of boundary conditions since the

experiment is not periodic in space. The boundary conditions on an inlet and an outlet of the

flow can change if other models are considered, such as one that includes a nozzle geometry

[JSJ20] or a thermal effect [JFS21].
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