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Abstract

Hydrological models generally contain parameters that cannot be measured directly, but can only be meaningfully inferred

by calibration against a historical record of input–output data. While considerable progress has been made in the development

and application of automatic procedures for model calibration, such methods have received criticism for their lack of rigor in

treating uncertainty in the parameter estimates. In this paper, we apply the recently developed Shuffled Complex Evolution

Metropolis algorithm (SCEM-UA) to stochastic calibration of the parameters in the Sacramento Soil Moisture Accounting

model (SAC-SMA) model using historical data from the Leaf River in Mississippi. The SCEM-UA algorithm is a Markov

Chain Monte Carlo sampler that provides an estimate of the most likely parameter set and underlying posterior distribution

within a single optimization run. In particular, we explore the relationship between the length and variability of the streamflow

data and the Bayesian uncertainty associated with the SAC-SMA model parameters and compare SCEM-UA derived parameter

values with those obtained using deterministic SCE-UA calibrations. Most significantly, for the Leaf River catchments under

study our results demonstrate that most of the 13 SAC-SMA parameters are well identified by calibration to daily streamflow

data suggesting that this data contains more information than has previously been reported in the literature.
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1. Introduction and scope

Since, the early 1960s, hydrologists have concen-

trated their efforts on the development and application

of models of the rainfall-runoff process. These models
Journal of Hydrology 325 (2006) 288–307
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can be classified as conceptual, when water balance

dynamics are represented by heuristic or empiric

equations deemed to be qualitatively reasonable, or as

physically based in which the model equations are

based on scientifically accepted principles (Kuczera,

1997). Most operational conceptual rainfall-runoff

(CRR) models typically have on the order of 10 or

more parameters that link transfer functions of several

interconnected water stores. It is assumed that these

conceptual storages correspond to physically identifi-

able control volumes in real space, even though the

boundaries of these control volumes are generally not

known. While some of the values of parameters in

CRR models can be derived directly from knowledge

of physical watershed characteristics, others are

effective quantities that cannot, in practice, be

measured in the field, and therefore have to be

estimated through calibration against a measured

streamflow hydrograph using either a trial-and-error

‘manual approach’ or an automated search algorithm

(Boyle et al., 2000; Madsen, 2000). The parameters,

which are estimated in this manner, represent

effective conceptual representations of spatially and

temporally heterogeneous watershed properties. A

model calibrated by such means can be used for the

simulation or prediction of hydrologic events outside

of the historical record used for model calibration, if it

can be reasonably assumed that the physical charac-

teristics of the watershed and the hydrologic/climate

conditions remain similar (Gupta et al., 2002).

Until the early 1990s, the available automated

optimization algorithms could not be relied upon to

find the actual global optimum in a prescribed

objective function. Advances in computational

resources finally enabled Duan et al. (1992) to

conduct an exhaustive computer based evaluation

of the response surface of the objective function.

This research revealed the existence of multiple

local optima in the response surface, nested within

several larger regions of attractions, and explained

the convergence problems reported by previous

studies. These insights in the response surface led

to the development of the Shuffled Complex

Evolution (SCE-UA) optimization algorithm (Duan

et al., 1992; Sorooshian et al., 1993), whose

strength and reliability has been proven by

numerous researchers worldwide throughout the

years.
While considerable progress has been made in the

development and application of automated procedures

for watershed model calibration, such methods have

received criticism for their lack of rigor in properly

treating parameter uncertainty (Beven and Binley,

1992; Gupta et al., 1998; Thiemann et al., 2001; Vrugt

et al., 2005a,b). In a previous paper (Vrugt et al.,

2003), we presented a general-purpose code, entitled

the Shuffled Complex Evolution Metropolis (SCEM-

UA) algorithm, which is especially designed to

provide an estimate of the most likely parameter set

and underlying posterior distribution within a single

optimization run. As, the SCEM-UA algorithm

thoroughly exploits the global parameter space and

explicitly accounts for parameter interdependence and

non-linearity of the employed CRR model, the

algorithm generates an accurate representation of

parameter uncertainty, and its antithesis parameter

identifiability. The adaptive capabilities of the SCEM-

UA algorithm significantly reduces the number of

model simulations needed to infer the posterior

distribution of the parameters when compared with

traditional Metropolis–Hastings samplers.

In the same paper, we evaluated the identifiability

of the parameters of a rather parsimonious five-

parameter CRR model, consisting of a relatively

simple rainfall excess model, connected with two

series of linear reservoirs. Those results indicated that

the entire model structure was well identifiable by

calibration to runoff data, thereby supporting the

statements of Beven (1989), and results of Jakeman

and Hornberger (1993). They argued that simple RR

models with four to five parameters provide an

adequate fit to the streamflow data and that the

addition of more model structure and its associated

parameters leads to no significant improvement in fit

yet introduces poorly identified parameters.

The purpose of the present paper is to extend the

analysis in Vrugt et al. (2003) by applying the SCEM-

UA algorithm to stochastic optimization of the

parameters of the Sacramento Soil Moisture Account-

ing (SAC-SMA) model of the National Weather

Service River Forecast System (NWSRFS). In

previous work, Yapo et al. (1996) conducted a large

number of calibration runs of the SAC-SMA model

with the SCE-UA global optimization algorithm

(Duan et al., 1992) using different lengths of data

from different sections of a 40 years historical record,
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and concluded that approximately 8 years of stream-

flow data are required to obtain calibrations that are

rather insensitive to the period selected. This

conclusion was drawn based on the performance of

the SAC-SMA model structure, rather than the

statistical uncertainty associated with the final

parameter estimates. In this paper, we extend the

work by Yapo et al. (1996) and investigate the

uncertainty and stationarity of the SAC-SMA model

parameters as function of the length and variability of

the streamflow data. Moreover, we provide a

comparison between SCEM-UA derived values of

the SAC-SMA model parameters and those obtained

using classical deterministic SCE-UA calibrations

(Sorooshian et al., 1993).
2. Treatment of parameter uncertainty
2.1. Classical model calibration approach

The fundamental problem with which we are

concerned is to estimate parameter values and their

associated uncertainty in the SAC-SMA model using a

historical record of streamflow data. The formulation

of this resulting inverse problem can be expressed in a

generic form if we assemble the state variables in the

SAC-SMA model at time t into the state vector jt. The

evolution of this state vector is described with:

jtC1 Z hðjt; ~Xt; qÞ (1)

where j is a vector of m unknown state variables, h($)

represents the SAC-SMA model used to simulate the

state evolution, ~X is an observed forcing field

(precipitation and evapotranspiration), q is a set of p

model parameters, and t denotes time. Let ~YZ
f ~y1;.; ~yng denote the vector of streamflow measure-

ment data available at time steps 1,.,n and let YðqÞZ
fy1ðqÞ;.; ynðqÞg represent the corresponding vector of

SAC-SMA streamflow predictions using the parameter

set q. The SAC-SMA output predictions are related to

its internal state according to:

yt ZHðjtÞ (2)

where H($) is the measurement operator, which maps

the state space into the measurement or model output

space.
The classical approach to estimating the parameters

in Eq. (1) is to ignore input uncertainty ð ~XZXÞ and to

assume that the predictive model h is a correct, or at

least accurate, representation of the underlying

physical data-generating process. In line with classical

statistical estimation theory, the traditional ‘best’

parameter set in Eq. (1) can then be found by

minimizing the following lumped simple least square

(SLS) objective function with respect to q:

FSLSðqÞZ
Xn

tZ1

wtðytK ~ytÞ
2 (3)

where wt denote weights for particular data points.

Minimization of Eq. (3) will result in a single ‘best’

parameter set. However, given the presence of errors in

the input, output and model structure, over condition-

ing of the model to a single parameter set is

unreasonable and cannot be justified (Vrugt et al.,

2005a,b).
2.2. Bayesian model calibration

One way to directly address this problem of

overconditioning is to abandon the Frequentists

approach of believing that the model parameters in

Eq. (1) are fixed but unknown, and to adopt a

Bayesian viewpoint which allows the identification of

a plausible set of values for the parameters of the

model given the available streamflow data. The

Bayesian approach treats the SAC-SMA model

parameters in Eq. (1) as probabilistic variables having

a joint posterior probability density function (pdf),

which summarizes the state of knowledge about the

model parameters given available streamflow data ~Y .

It uses probability distributions to describe this state

of knowledge, which is why the parameters are treated

as random variables. The posterior pdf, pðqj ~YÞ, is

proportional to the product of the likelihood function

and the prior pdf. The prior pdf with probability

density (or mass) function p(q) summarizes infor-

mation about q before any data are collected. In this

paper, we use the following form of the posterior pdf

(Box and Tiao):

pðqj ~YÞfFSLSðqÞ
K1=2n (4)

which is derived when assuming a non-informative

(uniform) prior distribution with uncorrelated,
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homoscedastic, and Gaussian distributed error

residuals. With the implementation of Eq. (4), the

belief in the existence of a single optimal parameter

set is discarded in favour of the search for a set of

plausible parameter values.

2.3. The Shuffled Complex Evolution Metropolis

(SCEM-UA) algorithm

To generate samples from Eq. (4), and to

summarize the posterior parameter pdf using statisti-

cal moments and histograms, we use an implemen-

tation of the Shuffled Complex Evolution Metropolis

(SCEM-UA) algorithm. The SCEM-UA algorithm is

a general-purpose global optimization algorithm that

provides an efficient estimate of the most likely

parameter set (mode) and its underlying posterior

probability distribution within a single optimization

run (see Vrugt et al., 2003). The algorithm is a

Markov Chain Monte Carlo (MCMC) sampler, which

generates multiple sequences of parameter sets

{q(1),q(2),.,q(kC1)} that converge to the stationary

posterior distribution for a large enough number of

simulations k. The SCEM-UA algorithm is related to

the successful SCE-UA global optimization method,

but uses the Metropolis–Hastings (MH) search

strategy (Metropolis et al, 1953; Hastings, 1970)

instead of the Downhill Simplex method for popu-

lation evolution, and is therefore able to simul-

taneously infer both the most likely parameter set

and its underlying posterior probability distribution

within a single optimization run. A detailed descrip-

tion and explanation of the method appears in Vrugt

et al. (2003), and so will not be repeated here.

The SCEM-UA method involves the initial

selection of a population of points distributed

randomly throughout the p-dimensional feasible

parameter space. In the absence of prior information

about the location of the maximum likelihood value, a

uniform sampling distribution is used. For each point,

the posterior density criterion in Eq. (4) is computed.

The population of parameter sets is subsequently

partitioned into a number of complexes, and in

each complex a parallel sequence is launched from

the point that exhibits the highest posterior density.

A new candidate point in each sequence is generated

using a multivariate normal distribution either

centered on the current draw of the sequence or the
mean of the points in the complex augmented with the

covariance structure induced between the points in the

complex. The Metropolis-annealing (Metropolis

et al., 1953) criterion is used to test whether the

candidate point should be added to the current

sequence. Finally, the new candidate point is shuffled

into the original population of complexes. The

evolution and shuffling procedures are repeated until

the Gelman–Rubin convergence diagnostic for each

of the parameters demonstrates convergence to a

stationary posterior target distribution (Gelman and

Rubin, 1992). Although general convergence proofs

for non-homogenous Markov Chain algorithms are

still a matter of ongoing advanced mathematical

research, experiments conducted using standard

mathematical test problems have shown that the

SCEM-UA derived posterior distribution closely

approximates the target distribution (Vrugt et al.,

2003).

Implementation of the SCEM-UA algorithm

requires a large number of SAC-SMA model

evaluations. Fortunately, there has been considerable

progress in the development of distributed computer

systems using the power of multiple processors to

efficiently solve large computational problems. In this

study, we implemented the SCEM-UA algorithm

using a LAM/MPI distributed computing interface for

the Octave programming environment (Vrugt et al.,

in press). Our parallel implementation takes better

advantage of the computational power of a distributed

computer system. Based on recommendations in our

previous work (Vrugt et al., 2003), the stationary

posterior distribution corresponding to the density

criterion defined in Eq. (4) was estimated using a

population size of 1.000 points in combination with a

total of 60.000 SAC-SMA model evaluations and 25

Pentium IV 3.40 GHz parallel processors. The

average CPU time required for 60.000 model

evaluations was approximately 5 min. To avoid

problems with heteroscedastic and non-Gaussian

error distributions, we applied a Box–Cox power

transformation (Box and Cox, 1974) with lZ0.3 to

the measured and SAC-SMA predicted streamflow

(Misirli, 2003). We do not consider uncertainty in

l-values in our analysis because the goal of the current

paper is not to demonstrate how to deal with model

uncertainty, but to demonstrate the merits of the

SCEM-UA methodology for model calibration.
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In another recent paper, we present a combined

parameter and state estimation method that provides a

better treatment of model structural errors (Vrugt

et al., 2005a,b). The estimated pdfs of parameter

values are evaluated using a historical record of

streamflow data outside the calibration period.
3. Case study
3.1. The Sacramento Soil Moisture Accounting

(SAC-SMA) model

The CRR model used throughout this study is the

Sacramento Soil Moisture Accounting (SAC-SMA)

model used by the National Weather Service River

Forecast System (NWSRFS) for flood forecasting

throughout the United States. The model is one of the

components of the NWSRFS used to convert

precipitation input into streamflow outputs (Burnash

et al., 1973; Peck, 1976; Kitanidis and Bras, 1980a,b;

Brazil and Hudlow, 1981; Sorooshian et al., 1993).

The SAC-SMA model has 16 parameters whose

values must be specified (Table 1).
Table 1

Parameters of the SAC-SMA model and their initial uncertainty ranges

Parameter Description

Capacity thresholds

UZTWM Upper zone tension water maximum storage

UZFWM Upper zone free water maximum storage

LZTWM Lower zone tension water maximum storage

LZFPM Lower zone free water primary maximum stor

LZFSM Lower zone free water supplemental maximum

ADIMP Additional impervious area

Recession parameters

UZK Upper zone free water lateral depletion rate

LZPK Lower zone primary free water depletion rate

LZSK Lower zone supplemental free water depletion

Percolation and other

ZPERC Maximum percolation rate

REXP Exponent of the percolation equation

PCTIM Impervious fraction of the watershed area

PFREE Fraction percolating from upper to lower zone

Not optimized

RIVA Riparian vegetation area

SIDE Ratio of deep recharge to channel base flow

RSERV Fraction of lower zone free water not transfera
Following the recommendation of Peck (1976),

three parameters SIDE, RIVA, and RSERV, were fixed

at pre-specified values. The remaining 13 parameters

were selected for stochastic optimization using the

SCEM-UA algorithm, outlined in Section 3.1. The

feasible parameter space is specified in Table 1 by

fixing the lower and upper parameter bounds at the

Level Zero ranges recommended by Boyle et al.

(2000). These ranges are defined conservatively based

on the maximum plausible ranges for the parameters

based on physical reasoning.
3.2. The study basin and hydrological data

We illustrate the usefulness and applicability of the

SCEM-UA algorithm for stochastic optimization of

the parameters in the SAC-SMA model using

historical streamflow data from the Leaf River

watershed. The basin is located north of Collins,

Mississippi, with an area of approximately 1950 km2.

The data, obtained from the Hydrologic Research

Laboratory (HL), consists of 6 hourly mean areal

precipitation (mm/day), daily potential evapotran-

spiration (mm/day), and streamflow (m3/s). Forty
Units Initial ranges

mm 1.0–150.0

mm 1.0–150.0

mm 1.0–500.0

age mm 1.0–1000.0

storage mm 1.0–1000.0

– 0.0–0.40

dayK1 0.1–0.5

dayK1 0.0001–0.025

rate dayK1 0.01–0.25

– 1.0–250.0

– 0.0–5.0

– 0.0–0.1

free water storage – 0.0–0.1

– 0.0

– 0.0

ble to tension water – 0.3
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consecutive years of data (1948–1988) are available

for this watershed, representing a wide variety of

hydrological conditions. In keeping with previous

studies (Boyle et al., 2000; Thiemann et al., 2001;

Vrugt et al., 2003), the hydrological data used for

model calibration and uncertainty assessment of the

parameters of the SAC-SMA model consists of

approximately 36 years (28 July, 1952–30 September,

1988) of streamflow data. The mean annual precipi-

tation for the entire period is 1324 mm, and the mean

runoff is 27.13 m3/s.

3.3. Parameter uncertainty as function of length

calibration set

In the hydrological literature, several contributions

are found which examine the relationship between

data and the statistical uncertainty associated with

the parameter estimates. For instance, Sorooshian

et al. (1983) suggested that rather than length, the

quality of information contained in the data is

important. They also stated that the data sequences

that contain greater hydrologic variability are more

likely to sufficiently activate the various operational

modes of the model, resulting in reliable parameter

estimates. Here, reliability is characterized in terms of

stability and consistency of parameter estimates.

To study the relationship between the length of the

calibration set and the Bayesian uncertainty associ-

ated with the parameter estimates, the first 10 years of

data on record (28 July, 1952–28 September, 1962)

for the Leaf River watershed were used. A traditional

split sample technique was applied to divide this data

set into 10 different subsets. Starting at 28 July, 1952,

for each run with the SCEM-UA algorithm the length

of the calibration set was sequentially increased with

1 consecutive year of measurements to finally arrive at

the total set 10 years of calibration data. To reduce

sensitivity to state value initialisation in any of the

optimizations, a 65 days warm-up period was used,

during which no updating of the posterior density was

performed.

Fig. 1 illustrates the relationship between the length

of the calibration set of measured streamflows in years

and the Bayesian confidence intervals associated with

the parameters in the SAC-SMA model.

The parameters were scaled according to their prior

uncertainty ranges defined in Table 1 to yield
normalized ranges. The gray-shaded area in each

parameter plot represents the evolution of the 95%

Bayesian confidence intervals of the HPD region,

whereas the marked squares and dotted line corre-

spond to the SCE-UA solution, and the ‘most likely’

SCEM-UA solution, respectively. Without any cali-

bration, the ranges reflect the initial parameter

uncertainty, not conditioned on any input–output

time series of measured streamflows. After assimilat-

ing and processing streamflow data with the SCEM-

UA algorithm, the uncertainty associated with the

SAC-SMA model parameters decreases. The import-

ant results depicted in Fig. 1 are as follows:

1. The location and size of the HPD region of the

posterior probability distribution of the parameters

is fairly stable with increasing length of the

calibration set. The parameter estimates and their

Bayesian confidence intervals appear to be

relatively unaffected by the length of the cali-

bration set.

2. There is only a marginal reduction of the size of

the Bayesian confidence intervals, centered on the

most likely SAC-SMA parameter values, with the

availability of more calibration data.

3. In relation to the Level Zero or prior parameter

ranges, most of the SAC-SMA parameters are well

identified by calibration to streamflow data. In

particular, the capacity parameters UZTWM,

UZFWM, LZTWM, LZFSM and LZFPM are

well determined, while parameters ZPERC and

REXP (that control percolation), ADIMP

(additional impervious area), and the rate par-

ameters LZSK and LZPK are less well deter-

mined. These results suggest that most uncertainty

in the model structure is associated with percola-

tion from the upper zone and depletion from the

lower zone. Notice, also that with the use of

relatively short calibration time series (!5 years)

the HPD region of the LZPK parameter traverses

through the feasible parameter space. This

characteristic jumping behavior suggests at least

some correlation with the characteristic of the

hydrologic year. We will further elaborate on this

issue in Sections 3.8 and 3.9 of this paper.

4. There is an excellent agreement between the most

likely value of the posterior distribution, ident-

ified using the SCEM-UA algorithm, and the
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optimal parameter set found by separately fitting

the SAC-SMA model to the probability density

criterion, previously defined in Eq. (4) using the

SCE-UA global optimization algorithm (Duan

et al., 1992). This result is important as it

confirms that the SCEM-UA algorithm correctly

locates the high probability density region of

the parameter space, also for a relatively high-

dimensional optimization problem. This provides

strong evidence that the employed MCMC search

strategy in the SCEM-UA algorithm contains

the desirable properties to deal with the specific

peculiarities of the response surface of hydro-

logical models.

Based on the first two arguments, it appears that

2–3 years of streamflow data are sufficient to provide
a stable estimate for most of the SAC-SMA model

parameters. Here, stability is referred to as parameter

estimates with a small uncertainty. The slow

convergence of the uncertainty bounds with increas-

ing number of calibration years is consistent with

results derived from classical statistical Theorems

using linear approximations to parameter uncertainty

(Gupta and Sorooshian, 1985). However, the use of

2–3 years of streamflow data does not necessarily lead

to consistent parameter estimates. Consistency

implies that different calibration sets lead to the

same approximate parameter values. For instance, if

the analysis in this section would have been done with

a different 10-years section from the 36-years

historical record of streamflow data, the conclusions

with respect to parameter stability would have been

the same. This was concluded from additional
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optimization runs. However, the SCEM-UA method

would have assigned the highest probability to a

different region in the parameter space. The rationales

on data requirements adopted in this section are thus

based on the stability of the parameter estimates.

Summarizing, if over 2–3 years of daily streamflow

data there is a good number of forcing events then

little reduction in parameter uncertainty is realized

using more than 3 years of data. Hence, these results

would vary depending on the forcing climate. In

Section 3.7 of this paper, we address the issue of

parameter consistency by evaluating the pdf of the

parameters over an independent period outside the

historical record used for model calibration.
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3.4. Marginal and joint probability distributions

SAC-SMA model parameters

Fig. 2 presents the marginal posterior probability

distributions (histograms) for 12 of the 13 SAC-SMA

model parameters when using 3 years of calibration

data (WY 1952–1954) with the SCEM-UA algorithm.

These histograms were derived from the SCEM-

UA samples that were generated after convergence

had been achieved to a stationary posterior distri-

bution. The values of the most likely parameter

estimates, derived with the SCE-UA algorithm, are

separately indicated with squared symbols in each of

the graphs. For display convenience, we decided not
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to include a graph for the parameter PFREE. While

the parameters UZFWM (B), ADIMP (E), REXP (G),

LZFSM (I), LZFPM (J) and LZPK (K) are well

described by a normal distribution, the remaining

SAC-SMA parameters UZTWM (A), UZK (C),

PCTIM (D), ZPERC (F), LZTWM (H), and LZSK

(K), are better described with bi-modal or lognormal

distributions, respectively. The SCEM-UA algorithm

retains many desirable features as it not only correctly

infers the most likely parameter set and its underlying

posterior distribution within a single optimization run,

but also generates useful information about the nature

of the response surface in the vicinity of the optimum.

For most of the parameters, Fig. 2 shows excellent

agreement between the modes of the histograms and

the SCE-UA solutions within this high-density region.

This indicates that previous deterministic calibrations

that have used the SCE-UA algorithm are likely to

have yielded robust parameters.

Table 2 presents the posterior mean, standard

deviation, coefficient of variation (CV), and corre-

lation structure induced between the SAC-SMA

parameters in the HPD region of the posterior

probability distribution, when using 3 years of

calibration data (WY 1952–1954).

The posterior moments in Table 2 demonstrate that

most of the SAC-SMA model parameters are well

determined by calibration to streamflow data. The

correlation between the parameters in the posterior

distribution is typically low, further confirming that

the SAC-SMA parameters are well identified. Fig. 3

shows how the mean of the absolute values in the

parameter correlation matrix, behaves during the

evolution of the SCEM-UA algorithm to the station-

ary posterior target distribution using 2 and 3 years of

streamflow data.

Also included in this figure is the total number of

parameter combinations in the parameter correlation

matrix that are correlated higher than the specified

threshold value of 0.50. Without any calibration (left

hand side of Fig. 3A), the correlation structure

between the parameters resemblances the uniform

prior sampling distribution. When subsequently

applying the various algorithmic steps of the SCEM-

UA sampler, the parallel sequences evolve towards a

region with higher posterior density, thereby increas-

ing the correlation between the parameters (location I

in Fig. 3A). We call this ‘large-scale’ correlation
structure. Finally, after convergence of the SCEM-UA

sampler has been achieved to the posterior distri-

bution, the correlation structure between the par-

ameters reduces and remains stable with increasing

number of SAC-SMA model evaluations. Now, the

parameters are fully conditioned on the measured time

series of streamflows and the remaining parameter

correlation is on the ‘small-scale’ (location II in

Fig. 3A). Clearly, erroneous conclusions about

parameter interaction and identifiability can be made

when having insufficient sampling close to the

optimum of the prescribed objective function.

Fig. 3B also illustrates these considerations in a

two-dimensional plot of the sampled LZTWM–

LZFSM parameter space. For each of the other

calibration runs summarized and reported in Fig. 1,

similar correlation structures between the parameters

in the HPD region were found.

3.5. The information content of streamflow data

The results presented in Figs. 1–3 do not suggest

overparametrization (Hooper et al., 1988; Beven,

1989) or equifinality (Beven and Binley, 1992).

Also, the results contradict the work by Jakeman

and Hornberger (1993), who argued that if daily

streamflow data are available, only two linear

storages in parallel driven by excess rainfall,

corresponding to four parameters, are warranted by

the data.

To verify the consistency of this result for the Leaf

River dataset, we separately fitted the HYMOD model

(Boyle, 2000), a parsimonious model structure

consisting of a relatively simple two-parameter

rainfall excess model, described in detail by Moore

(1985), connected with two series of linear reservoirs

to the probability density criterion, previously defined

in Eq. (4) using the 10 different years of calibration

data with the SCEM-UA algorithm. The Average

Relative Parameter Error, ARPE, denoting the

average of the diagonal entries of the covariance

matrix of the SCEM-UA derived posterior pdf, with

each entry normalized with the square of its estimated

mean value (Jakeman et al., 1989, 1990), for each of

the 10 calibration data sets using the HYMOD and

SAC-SMA model, as well, as their predictive

capabilities in terms of root mean squared error

(RMSE) are summarized in Table 3.



Table 2

Posterior mean, standard deviation, coefficient of variation (CV (%)), and correlation structure between the SAC-SMA model parameters, derived when processing 3 years of

streamflow data (1952–1954) of the Leaf River watershed with the SCEM-UA algorithm

Parameter Mean Standard

deviation

CV UZTW-

M

UZFW-

M

UZK PCTI-

M

ADIMP ZPERC REXP LZTW-

M

LZFSM LZFPM LZSK LZPK PFREE

UZTWM 10.70 1.22 11.39 1.00 K0.02 K0.04 0.19 0.36 K0.01 0.11 K0.84 K0.17 0.28 0.17 0.16 0.57

UZFWM 32.55 1.23 3.78 – 1.00 K0.53 0.05 0.01 0.15 0.11 K0.01 K0.08 0.22 K0.15 K0.18 K0.33

UZK 0.39 0.03 8.91 – – 1.00 K0.01 K0.41 K0.13 K0.03 0.07 0.37 K0.11 K0.01 K0.02 0.08

PCTIM 5.11!
10K4

4.93!
10K4

96.30 – – – 1.00 K0.16 0.01 0.03 K0.14 0.01 0.02 K0.08 0.02 K0.04

ADIMP 0.10 0.01 14.99 – – – – 1.00 0.07 0.04 K0.21 K0.15 0.09 0.17 0.15 0.31

ZPERC 241.46 7.91 3.27 – – – – – 1.00 0.05 0.06 K0.06 K0.10 K0.13 0.02 0.00

REXP 1.66 0.12 7.23 – – – – – – 1.00 K0.03 0.65 0.68 0.24 K0.10 K0.12

LZTWM 261.46 5.43 2.08 – – – – – – – 1.00 0.28 K0.16 K0.14 K0.23 K0.63

LZFSM 16.96 2.39 14.08 – – – – – – – – 1.00 0.41 K0.33 K0.55 K0.36

LZFPM 45.08 3.01 6.68 – – – – – – – – – 1.00 0.06 K0.43 K0.26

LZSK 0.19 0.02 8.53 – – – – – – – – – – 1.00 0.60 0.41

LZPK 0.01 1.50!

10K3

12.65 – – – – – – – – – – – 1.00 0.56

PFREE 0.10 6.80!
10K3

6.82 – – – – – – – – – – – – 1.00
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Table 3

ARPE identification statistics for the parsimonious HYMOD and

more complex SAC-SMA conceptual rainfall-runoff models, as

function of the length of the calibration set in years

Length cali-

bration set

HYMOD SAC-SMA

Years ARPE (%) RMSE

(m3/s)

ARPE (%) RMSE

(m3/s)

1 28.91 13.46 5.57 9.80

2 0.66 16.16 1.25 12.01

3 0.59 21.92 0.77 15.34

4 0.42 19.99 0.42 15.28

5 0.46 21.05 0.48 16.89

6 0.37 19.95 0.56 18.08

7 0.80 20.00 0.72 18.34

8 0.78 25.18 0.59 19.12

9 3.32 27.32 0.44 19.65

10 6.67 26.33 0.61 19.40

Also included are the RMSE statistics of the residuals over the

respective calibration period. For more information, please refer to

the text.

Fig. 3. (A) Evolution of the mean of the absolute values in the parameter correlation matrix (on right y-axis), as function of the number of

samples generated with the SCEM-UA algorithm using 2 and 3 years of streamflow data. For completeness, also included are the number of

parameter combinations in the parameter correlation matrix (on left y-axis) that are correlated higher than the specified threshold value of 0.50;

(B) two-dimensional scatterplot of LZTWM–LZFSM sampled parameter space with the SCEM-UA algorithm, using sample numbers 6.000–

12.000 (black dots) and sample numbers 54.000–60.000 (open squares).

J.A. Vrugt et al. / Journal of Hydrology 325 (2006) 288–307298
Jakeman and Hornberger (1993) have used this

ARPE measure, derived from the first-order covari-

ance matrix, to estimate how many parameters are

needed to describe the transformation from mean

areal precipitation to streamflow emanating from the

catchments. The results presented in Table 3, illustrate

that a significant improvement in performance can be

achieved by using the more complex SAC-SMA

model. When only a few years of streamflow data

are available for model calibration, the optimum

model complexity would be a simple two-parameter

rainfall-excess model connected with two series of

linear reservoirs. This supports the statements

made by Beven (1989, p.159), that ‘.it appears that

3–5 parameters should be sufficient to reproduce most

of the information in a hydrological record’ and

Jakeman and Hornberger (1993), who based on

investigations of 1 year of daily streamflow data,

argued that simple RR models with four to five

parameters provide an adequate fit to the streamflow
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data and that the addition of more model structure and

its associated parameters leads to no significant

improvement in fit yet introduces poorly identified

parameters. However, with the availability of more

data, the ARPE values show that larger conceptual

configurations, like the SAC-SMA model, are

warranted by the streamflow data. Note that the

ARPE rapidly climbs for HYMOD as the calibration

hits 9–10 years, indicating inconsistent information

about the HYMOD model parameters with increasing

length of the calibration time series. This is primarily

caused by an extreme large rainfall event in

calibration year 9 resulting in an average daily

streamflow of about 1300 m3/s, which is by far the

largest event on record. Due to this rainfall event the

uncertainty of the HYMOD parameters significantly

increased compared to situations in which the

parameters were fitted without this extreme rainfall-

runoff event. Although not explicitly demonstrated

here, comparison of the SCEM-UA estimated ARPE

values with the theoretical ARPE values derived from

the first-order covariance matrix, evaluated in the

vicinity of the global optimum in the parameter space,

revealed that erroneous conclusions can be drawn
Fig. 4. (A) Streamflow uncertainties associated with the most probable pa

region denotes model uncertainty, whereas parameter uncertainty is indica

streamflow data; (B) hydrograph prediction uncertainty associated with the

gray region) for the WY 1953.
about the ideal model complexity using the first-order

ARPE values, when the underlying assumptions of

model linearity and a Gaussian posterior density of the

parameters are violated.
3.6. SAC-SMA prediction uncertainty ranges

Fig. 4A and B present the residuals from the most

probable parameter set and the hydrograph prediction

uncertainty intervals for the SAC-SMA simulated

streamflows associated with the posterior parameter

estimates (dark-gray region) and the residual model

uncertainty (light-gray region), for a portion of the

wet calibration year 1953.

The solid circles correspond to the observed

streamflow data. The model uncertainty is computed

by adding the model error to the SAC-SMA model

prediction. Note that the streamflow prediction

uncertainty ranges (light-gray) bracket the observed

flows during almost the entire period, but are quite

large. Further, the prediction uncertainty associated

with the posterior parameter estimates (dark-gray)

does not include the observations and displays

systematic error on the long recessions. This indicates
rameter set derived using the SCEM-UA algorithm. The light-gray

ted with the dark-gray region. The dots correspond to the observed

uncertainty in the model (light-gray) and parameter estimates (dark-
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that the estimation procedure is placing too much

confidence in the validity of the SAC-SMA model. In

another paper (Vrugt et al., 2005a,b), we have recently

presented a combined parameter and state estimation

method that provides a better treatment of model

errors, and therefore results in model prediction

uncertainty bounds that are more reasonable and

tend to bracket the observations. Nevertheless, the

results presented here, indicate that for this particular

watershed and dataset, it is possible to reasonably

identify values for most of the SAC-SMA parameters,

using a single objective function.
Fig. 5. Normalized probability density functions of the (A); root

mean square error (RMSE), and, (B) percent bias (BIAS) statistics

over the evaluation period, corresponding to the samples in the HPD

region of the posterior distribution using 2, 4, 6, 8, and 10 years of

calibration data.
3.7. Consistency evaluation pdf parameter values

To verify the consistency and reliability of the

calibration results, the performance for each of the

samples in the HPD region for each of the 10

calibration runs, reported in the previous sections,

were evaluated for the remaining 26 years of data not

included in the calibration set. In this particular

instance, the cross-validation is not based on a single

‘best’ parameter set, but is based on an ensemble of

parameter sets, each having a different likelihood.

Fig. 5 summarizes the results of this analysis for the

case of using 2, 4, 6, 8, and 10 years of calibration

data, in terms of normalized probability distributions

of the root mean square error (RMSE), and percent

bias (BIAS) statistics of the residuals for the

evaluation period.

The two important results are as follows:

1. There is a clear improvement in average model

performance measured in terms of RMSE statistic

of the residuals with the use of longer time series for

calibration purposes. Notice, however, that the

dispersion around the mean RMSE is significant,

illustrating that even with the use of relatively short

calibration sets (2 years), solutions are found in the

HPD region, that generate very similar forecasts in

terms of RMSE value as parameter solutions

obtained using 8–10 years of calibration data.

2. The improvement in model performance measured

in terms of percentage BIAS can be considered

marginal with the use of longer datasets; the BIAS

criterion is rather insensitive to the length and thus

variability of the dataset.
The results presented here indicate that the use of

longer calibration sets does not reduce the uncertainty

associated with the final parameter estimates as

demonstrated in Fig. 1, but improves the average

performance (and thus consistency) of the SAC-SMA

model structure during the evaluation period. This is

not surprising, as longer calibration time series

generate more reliable parameter estimates, as a

larger variety of hydrologic events are presented to the

model during the calibration phase. Consequently, the

parameter sets obtained in this way extrapolate better

during the independent evaluation period.

3.8. Stationarity of the SAC-SMA model parameters

As the SCEM-UA algorithmic procedure success-

fully infers the underlying posterior distribution of the
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model parameters, the method is suited to investigate

whether the SAC-SMA parameters are statistically

stationary over the entire historical record of the Leaf

River dataset or if they are correlated to varying

characteristics of the watershed. Based on our earlier

results presented in Fig. 1, we conducted a traditional

split sample test to divide the entire 36 years of

measurements available for the Leaf River watershed

into calibration sets consisting of 6 chronologically

consecutive water years for the SAC-SMA model.

Hence, there are 30 possible calibration sets con-

stituting 6 consecutive water-years (using WY 1–6,

2–7, 3–8, and so forth up to 30–36). In each

calibration run with the SCEM-UA algorithm, a 65-

days warm-up period was used to minimize initialisa-

tion errors of state variables.
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UA solution and most likely SCEM-UA solution, respectively. Results de
The evolution of the marginal HPD regions for

each of the SAC-SMA parameters in normalized

parameter space is illustrated in Fig. 6.

The gray-shaded area in each parameter plot

represents the HPD region, whereas the marked

squares and dotted line refer to the SCE-UA solution,

and most likely SCEM-UA solution within the HPD

region, respectively. The results presented in Fig. 6

denote averages over a window of 6 years (1953

denotes calibration results over 1953–1959, respect-

ively and so forth). While the SAC-SMA parameters

UZFWM, PCTIM, ZPERC, LZTWM, LZFSM, and

LZFPM show little variation over the 36-year

historical data record, the HPD region for the other

SAC-SMA parameters traverses through the feasible

parameter space. Especially, there is considerable
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Fig. 7. Two-dimensional plot of the most likely parameter value, indicated with a squared symbol, versus the mean areal rainfall for the SAC-

SMA parameters ADIMP (A), LZTWM (B), LZSK (C), and LZPK (D). The bars around the most likely parameter value denote the size of the

HPD region.
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variation and uncertainty associated with the par-

ameters UZK, LZSK, and LZPK, which primarily

determine the shape of the hydrograph during the

recession periods, and the percolation parameters

REXP and PFREE. The apparent systematic variation

of the parameters ADIMP, LZSK and LZPK with

time, might suggest that the watershed has undergone

hydrologic changes. When some of the parameters in

the SAC-SMA model are plotted against the mean

areal rainfall over the calibration periods, as done in

Fig. 7, a relationship becomes apparent.

To be able to match the observed hydrograph with

increasing wetness of the years, the additional

impervious fraction is decreased (ADIMP), while

the maximum capacity of the lower zone tension

water storage (LZTWM) and depletion rate from the

lower zone need to be increased. Seemingly,
parameters calibrated for relatively dry years, result

in sub-optimal forecasts for the wettest years on

record and vice versa. This non-stationarity with

increasing wetness of the years for some of the SAC-

SMA parameters, point towards aspects of the model

structure that needs to be further refined. Similar

issues have previously been reported by Gan and

Burges (1990), who used the SAC-SMA model in

combination with a Nelder–Mead optimization

scheme.
3.9. Which hydrologic years to use for model

calibration?

The final analysis presented in this paper focuses

on the relationship between the characteristics of a

hydrologic year and the Bayesian confidence intervals



Fig. 8. Two-dimensional bi-criterion plot of the mean annual flow

versus the number of sign changes of the measured annual

streamflow for each of the 36 years of the historical record. The

four different clusters are indicated with a circle.
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of the SAC-SMA parameter estimates. For this, the 36

years of available hydrologic data were clustered into

four different groups using two different measures for

each year, the mean annual flow and the number of

sign changes of the measured streamflow (see Fig. 8).

The first criterion, measures the wetness of the

year, while the second criterion characterises the

variability of the hydrologic year. Among several

other criteria, including median and standard devi-

ation of annual flow, these criteria were found to be

most uncorrelated. Hence, it is to be expected that the

wettest years on record, which simultaneously also

exhibit a large variability in streamflows, contain the

most information for the parameters, as these type of

years should activate the different modes of model

operation the most. Table 4 summarizes the results for

these calibration runs with the SCEM-UA algorithm

for each of the four clusters of years distinguished in

Fig. 8.

The important result demonstrated in Table 4 is

that none of the identified clusters of hydrologic data

is superior in terms of the final identifiability of the

parameters, as measured with the standard deviation

and CV-values of the parameter estimates. However,

the use of the wettest hydrologic years on record

simultaneously exhibiting a high intra-annual varia-

bility in streamflows for calibration purposes (cluster

IV), does increase the average performance of the

parameter estimates in the posterior distribution over
the evaluation period (in terms of RMSE and BIAS

statistics), thereby confirming the results presented in

earlier work (Yapo et al., 1996).

3.10. Efficiency comparison of SCEM-UA with

original SCE-UA algorithm

While, the SCE-UA algorithm developed by Duan

et al. (1992) converges to a single ‘best’ solution in

the feasible parameter space, the SCEM-UA algor-

ithm converges to a distribution of parameter sets

within the HPD region of the parameter space, thereby

containing the most optimal (SCE) solution. This

feature enables hydrologists to generate consistent

model predictions, along with estimates of the

underlying model and parameter uncertainty as

depicted in Fig. 4. To further illustrate the efficiency

of the SCEM-UA algorithm in searching the feasible

parameter space for candidate solutions, Fig. 9

presents the evolution of the ‘best’ parameter set,

measured in terms of RMSE of the non-transformed

flow space, for the SCE-UA and SCEM-UA algor-

ithms denoted with the solid and dotted line,

respectively, using 2 (location A), 5 (location B)

and 10 (location C) years of calibration data.

Notice, that the SCE-UA and SCEM-UA algorithm

need a nearly identical number of model simulations

(approximately 7.500) for identifying the most

optimal solution in the high-dimensional parameter

space. The additional runs (O7.500) performed with

the SCEM-UA algorithm, are needed to construct a

large enough sample from which correct kernel

density estimates of the HPD region can be estimated.
4. Summary and discussion

Non-linear structural equations (including

threshold type discontinuities) in conceptual water-

shed models have historically posed a challenge to the

application of computer-based systems methods for

automated parameter estimation. Progress in stochas-

tic optimization has helped to diminish the difficulties

associated with parameter estimation. This paper has

demonstrated the applicability and usefulness of the

Shuffled Complex Evolution Metropolis (SCEM-UA)

global optimization algorithm for stochastic optimiz-

ation of the parameters in the Sacramento Soil



Table 4

Posterior mean, standard deviation, and coefficient of variation (CV (%)), of the SAC-SMA model parameters, for each of the identified clusters of hydrologic years for the Leaf

River watershed

Cluster I Cluster II Cluster III Cluster IV

Parameter Mean Standard

deviation

CV Mean Standard

deviation

CV Mean Standard

deviation

CV Mean Standard

deviation

CV

UZTWM 98.23 0.93 0.94 18.85 0.25 1.36 15.39 0.60 3.78 22.45 1.07 4.77

UZFWM 45.77 0.70 1.53 26.92 0.46 1.71 23.92 0.41 1.67 34.33 1.14 3.31

UZK 0.33 1.1!10K2 3.37 0.49 2.8!10K2 0.57 0.49 6.3!10K3 1.26 0.50 2.2!10K3 0.44

PCTIM 1.4!10K2 8.5!10K4 5.87 6.7!10K5 4.1!10K5 61.28 1.94!10K4 1.2!10K4 67.53 4.0!10K5 2.3!10K5 58.00

ADIMP 0.19 1.1!10K2 5.53 8.7!10K3 4.2!10K3 48.79 0.12 8.7!10K3 7.40 0.21 8.2!10K3 3.97

ZPERC 236.54 6.09 2.58 243.72 4.34 1.79 239.47 5.93 2.35 239.40 5.41 2.26

REXP 3.33 0.15 4.50 4.14 0.27 6.63 2.97 0.11 3.79 3.61 0.12 3.44

LZTWM 189.91 2.17 1.14 337.35 2.71 0.80 320.43 4.37 1.35 360.61 6.18 1.71

LZFSM 78.73 3.41 4.33 115.36 10.35 8.97 32.87 1.78 5.33 48.12 2.74 5.70

LZFPM 118.46 4.75 4.02 176.26 3.92 2.22 100.61 2.73 2.71 166.08 4.83 2.91

LZSK 5.2!10K2 1.7!10K3 3.35 7.7!10K2 2.8!10K3 3.73 0.20 8.6!10K3 3.99 0.24 5.4!10K3 2.27

LZPK 1.8!10K3 1.5!10K4 8.38 2.1!10K3 1.33!10K4 6.37 1.5!10K2 4.8!10K4 3.45 1.3!10K2 3.0!10K4 2.33

PFREE 0.18 4.3!10K3 2.37 3.8!10K2 4.0!10K3 10.61 0.11 3.9!10K3 3.64 0.10 4.7!10K3 4.65

RMSE 22.19 20.10 19.30 17.99

BIAS 11.05 6.24 8.61 5.82

�rj j 0.21 0.25 0.21 0.18

Also included are the RMSE (m3/s) and BIAS (%) statistics of the most optimal parameter set, found by the SCEM-UA algorithm for each of the clusters, when evaluated over the

independent 26-year evaluation period (WY, 1961–1988), and the average of the absolute values in the parameter correlation matrix, �rj j.
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Fig. 9. Evolution of the ‘best’ parameter set, measured in terms of RMSE of the non-transformed flow for the SCE-UA and SCEM-UA

algorithms using 2 (A), 5 (B) and 10 (C) years of calibration data.
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Moisture Accounting model. The SCEM-UA algor-

ithm is a Markov Chain Monte Carlo sampler that

provides an efficient estimate of the most-likely

parameter set and its underlying distribution within

a single optimization run. The algorithm was

implemented using a LAM/MPI distributed proces-

sing interface and Octave programming environment

to maximize computing efficiency, using 25 Pentium

IV 3.40 GHz processing nodes.

To demonstrate the usefulness and applicability of

the SCEM-UA algorithm for watershed model

calibration, we performed a variety of case studies.

In particular, we investigated the uncertainty and

stationarity of the SAC-SMA model parameters as

function of the length and variability of the stream-

flow data. In addition, in each considered case study a

comparison was made between SCEM-UA derived

parameter values and those obtained using a determi-

nistic SCE-UA calibration. The results may be

summarized as follows:

(1) The location and size of the HPD region of the

posterior probability distribution appears to be

relatively unaffected by the length of the

calibration set. It seems that 2–3 years of

streamflow data are sufficient to obtain stable

estimates for most of the SAC-SMA model

parameters. Nevertheless, longer calibration data

sets increase the average performance of the

SAC-SMA model structure during the evaluation

period.

(2) No systematic relationship was found between

the characteristics of the hydrologic year and the

final identifiability of the SAC-SMA model
parameters. However, the use of the wettest

years on records simultaneously exhibiting a

high intra-annual variability in streamflows

increases the average performance of the par-

ameter estimates in the posterior distribution over

the evaluation period

(3) Irrespective of the data period used, most of the

SAC-SMA parameters are well defined by

calibration to streamflow data. In particular, the

capacity parameters are precisely determined,

while parameters that control percolation and

recession are less well determined. These results

suggest that much of the uncertainty in the model

performance is associated with percolation from

the upper zone and depletion from the lower zone.

(4) There is considerable time variation and uncer-

tainty associated with the percolation parameters

in the SAC-SMA model and the parameters that

determine the shape of the hydrograph during the

recession periods. This significant parameter non-

stationarity demonstrates that improvements can

be made to the SAC-SMA model structure. For

instance, when some of the SAC-SMA parameter

values were plotted against the mean areal rainfall

over the calibration periods, a relationship

became apparent.

The results presented in this paper indicate that the

prediction uncertainty associated with the parameter

estimates is typically small compared to the hydro-

graph prediction uncertainty ranges associated with

the model uncertainty, indicating that the main part of

the uncertainty stems from the residuals between

model predictions and observations. To be able to
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better understand the limitations of our models and

improve our understanding and theory of hydrologic

processes, we need to develop strategies, which can

better distinguish between input, output, parameter,

and model structural uncertainty. The SODA frame-

work presented in our most recent work (Vrugt et al.,

2005a,b) has been designed to facilitate this task.

Software used in this and related work can be found at

http://www.science.uva.nl/ibed/cbpg/software/.
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Vrugt, J.A., Ó Nualláin, B., Robinson, B.A., Bouten, W., Dekker,

S.C., Sloot, P.M.A., in press. Application of parallel computing

to stochastic parameter estimation in environmental models.

Computers & Geosciences.

Yapo, P.O., Gupta, H.V., Sorooshian, S., 1996. Calibration of

conceptual rainfall-runoff models: sensitivity to calibration data.

J. Hydrol. 181, 23–48.

http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2004WR003059
http://dx.doi.org/10.1029/2004WR003059
http://dx.doi.org/10.1029/2005GL023940

	Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model
	Introduction and scope
	Treatment of parameter uncertainty
	Classical model calibration approach
	Bayesian model calibration
	The Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm

	Case study
	The Sacramento Soil Moisture Accounting (SAC-SMA) model
	The study basin and hydrological data
	Parameter uncertainty as function of length calibration set
	Marginal and joint probability distributions SAC-SMA model parameters
	The information content of streamflow data
	SAC-SMA prediction uncertainty ranges
	Consistency evaluation pdf parameter values
	Stationarity of the SAC-SMA model parameters
	Which hydrologic years to use for model calibration?
	Efficiency comparison of SCEM-UA with original SCE-UA algorithm

	Summary and discussion
	Acknowledgements
	References




