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Dynamic Contrast Optical Coherence Tomography reveals 
laminar microvascular hemodynamics in the mouse neocortex in 
vivo

Conrad W. Merkle1, Jun Zhu1, Marcel T. Bernucci1, Vivek J. Srinivasan1,2,*

1Department of Biomedical Engineering, University of California Davis, Davis, California 95616, 
USA.

2Department of Ophthalmology and Vision Science, University of California Davis School of 
Medicine, Sacramento, California 95817, USA.

Abstract

Studies of flow-metabolism coupling often presume that microvessel architecture is a surrogate for 

blood flow. To test this assumption, we introduce an in vivo Dynamic Contrast Optical Coherence 

Tomography (DyC-OCT) method to quantify layer-resolved microvascular blood flow and volume 

across the full depth of the mouse neocortex, where the angioarchitecture has been previously 

described. First, we cross-validate average DyC-OCT cortical flow against conventional Doppler 

OCT flow. Next, with laminar DyC-OCT, we discover that layer 4 consistently exhibits the highest 

microvascular blood flow, approximately two-fold higher than the outer cortical layers. While flow 

differences between layers are well-explained by microvascular volume and density, flow 

differences between subjects are better explained by transit time. Finally, from layer-resolved 

tracer enhancement, we also infer that microvascular hematocrit increases in deep cortical layers, 

consistent with predictions of plasma skimming. Altogether, our results show that while the 

cortical blood supply derives mainly from the pial surface, laminar hemodynamics ensure that the 

energetic needs of individual cortical layers are met. The laminar trends reported here provide data 

that links predictions based on the cortical angioarchitecture to cerebrovascular physiology in vivo.
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Introduction

Cerebral blood flow (CBF) supplies glucose and oxygen, required for glycolysis and 

oxidative metabolism, that provide the majority of the brain’s energy supply [1]. Energy 

reserves in the brain are minimal, yet energy consumption can vary across the brain over 

time, depending on activity levels [2]. Thus, precise oxygen and glucose delivery to meet 

metabolic demand is essential. In the cerebral cortex, different layers have distinct cellular 

compositions [3, 4], computational roles [5], and energetic needs [6]. The principle of flow-

metabolism coupling suggests that blood flow should be precisely supplied to meet the 

energetic requirements of each cerebral cortical layer.

Laminar CBF supply and oxygen delivery, if they exist, would be determined by the balance 

of many opposing factors. Since penetrating arterioles derive from the pial surface, the 

cumulative pressure drop along these resistance vessels could impede CBF supply to deeper 

layers [7]. At the same time, arteriolar branch probability [8], microvessel density [8, 9], and 

arteriolar tone [10] may differ between cortical layers, possibly to supply functional 

neuronal units [11]. The degree to which such putative mechanisms of laminar regulation 

can deliver flow locally, in spite of the blood pressure drop, is not known. Additionally, 

arteriolar oxygen tension and saturation diminish with cortical depth as oxygen diffuses to 

surrounding tissue. At the same time, discharge hematocrit has been hypothesized to 

increase with cortical depth due to plasma skimming, which might maintain oxygen content 

in arterioles, at least to some degree, in spite of the saturation drop. The angioarchitecture, 

while informative, does not uniquely determine CBF, and models can derive CBF from the 

angioarchitecture only with numerous assumptions [7, 12, 13]. To directly assess the net 

effect of the many opposing factors on laminar CBF, and validate model predictions, direct 

in vivo measurements are needed.

Laminar cortical measurements in the mouse require a unique combination of high 

resolution, to differentiate thin cortical layers, and penetration depth, to interrogate the entire 

cortical column. Few imaging modalities satisfy these criteria. Specialized high-field 

functional MRI (fMRI) systems have demonstrated blood oxygen level dependent (BOLD) 

differences resolved across cortical laminae in rats [14, 15]. However, the BOLD signal is 

not a direct measure of blood flow and may be affected by the underlying vascular 

architecture [16, 17]. CBF measurements by bolus tracking MRI need high temporal 

resolution, which limits the spatial resolution and signal-to-noise ratio that can be 

simultaneously achieved, making such measurements difficult in small brains with rapid 

transit times [18]. Arterial spin labeling (ASL) MRI has been used to quantify average 

cortical blood flow in mice without laminar resolution [19, 20], and in rats with laminar 

resolution [21]. However, magnetic contrast methods are needed to assess laminar CBV 

[15]. Positron Emission Tomography [22–24] can measure flow via a diffusible tracer, but 

does not achieve laminar resolution. Recently, functional ultrasound successfully measured 

cerebral blood volume changes in rats with high spatiotemporal resolution and penetration 

depth, but this technique may struggle to resolve individual capillaries [25]. Multi Photon 

Microscopy (MPM) can provide single vessel hemodynamics across the entire cortical 

thickness [26–28], but simultaneous tracking of labeled plasma [29, 30] or line scans of red 

blood cells (RBCs) [31] at multiple depths would require more advanced methods [32, 33]. 
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Moreover, pooling single vessel MPM measurements to provide flow in individual cortical 

layers, at the mesoscopic scale, while theoretically possible, is challenging. Optical methods 

that probe deeper, with depth resolution based on multiple wavelengths [34] or source-

detector separations [34, 35], have been applied to assess laminar hemodynamics, but suffer 

from an ill-posed and underdetermined inverse problem.

Optical Coherence Tomography (OCT) possesses a balance of penetration depth and 

resolution, ideal for performing laminar measurements throughout the mouse cerebral 

cortex. Unfortunately, Doppler OCT [36], the main OCT method for flow quantification, 

only measures volumetric flow in supplying and draining arteries and veins accurately, so 

CBF (in units of volumetric flow per tissue mass) must be inferred by estimating the volume 

of cortical tissue supplied. This approach does not resolve flow to individual cortical layers, 

and better techniques are needed to measure nutritive flow to well-defined tissue volumes. 

Dynamic Contrast OCT (DyC-OCT), a method in which an intravascular tracer is injected 

and tracked as it passes through the field-of-view (FOV), has quantified both laminar flow in 

the rat eye [37] and laminar transit times in the mouse brain [38]. Here we introduce a DyC-

OCT framework, analogous to that used in dynamic susceptibility contrast-enhanced MRI 

[39, 40], to quantify microvascular CBF and CBV within individual layers across the full 

depth of the mouse neocortex. We additionally validate average cortical DyC-OCT flow 

against Doppler OCT flow. Finally, by interpreting laminar differences in the DyC-OCT 

enhancement factor, we present experimental evidence for changes in microvascular 

hematocrit in deeper cortical layers.

Materials and Methods

Animal Preparation

Animal procedures were approved by the Institutional Animal Care and Use Committee at 

UC Davis and are reported here in compliance with ARRIVE guidelines (Animal Research: 

Reporting in Vivo Experiments). Male C57BL/6 mice (The Jackson Laboratory; n = 9; 20–

35 grams) were imaged under isoflurane anesthesia. Induction was achieved by isoflurane 

(2% v/v) in 80% air and 20% oxygen, prior to mounting the mouse in a stereotactic frame. 

Isoflurane was then reduced to ~1–1.5% and adjusted as necessary to maintain shallow and 

steady breathing (~1 breath per second) with end-tidal pCO2 levels of 4–5.5% as measured 

by a capnometer (Columbus Instruments). To image the brain, the scalp was retracted 

following local administration of 2% lidocaine hydrochloride. Using a dental drill, with 

saline cooling every 30 seconds, the skull was thinned over the parietal cortex to ~30 μm 

over a 3 mm diameter region lateral to the midline between lambda and bregma. To 

minimize aberrations from residual roughness and to provide additional structural support to 

the thinned skull, a 5 mm diameter cover glass disk was affixed to the thinned region with 

cyanoacrylate cement. For DyC-OCT imaging, a 3 mL/kg (~3.8% of the total blood volume) 

tracer bolus of Intralipid 20% was injected quickly (~0.5 seconds) via the tail vein. To 

generate variability in CBF for a series of validation experiments, a subset of animals (n = 3) 

were delivered 1–5% CO2 during imaging to induce hypercapnia, which dilates the 

vasculature and increases CBF.
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Imaging Protocols

A 1300 nm spectral / Fourier domain OCT microscope (Thorlabs, USA) was used to image 

the mouse somatosensory cortex with a 91 kHz A-line rate. The source bandwidth of over 

100 nm full-width-at-half maximum (FWHM), detected by a 1024 pixel InGaAs line scan 

camera, provided an axial resolution of 7.4 μm in air (5.6 μm in tissue) across an axial field 

of view of 2.5 mm in air (~1.9 mm in tissue). The transverse (lateral) FWHM resolution and 

approximate OCT frame (B-scan or cross-section) thickness was 8.3 μm (Supplemental 

Figure 1). The system sensitivity was 91 dB with 1.5 mW incident power on the sample.

DyC-OCT was performed by repeatedly scanning the same cross-section of the cortex 

during the contrast agent bolus passage. The optical focus was placed at a cortical depth of 

approximately 350 μm. This depth was chosen to provide a balance between superficial and 

deep signals, thus enabling DyC-OCT measurements across all cortical layers 

simultaneously (Figure 1A). Cross-sections were chosen to include at least one major artery 

and one major vein, so that all vascular compartments were represented in every image. B-

scans with 1024 A-lines over a cross-section width of 2 mm, each with 512 unique axial 

points (after Fourier transformation), were acquired across a sagittal plane in the 

somatosensory and/or visual cortex, chosen based on the criteria above. One thousand 

consecutive B-scans were acquired over 13 seconds for a total data volume of 

512×1024×1000 (z,x,t). The 13 ms interframe time provided high temporal resolution while 

remaining insensitive to flow speed effects [41] when a frame subtraction angiography 

algorithm was applied.

3D Doppler OCT was also performed in some mice, with oversampling along the fast axis to 

yield a volume of 512×5000×500 (z,x,y). Doppler volumes were acquired across a 2 mm × 2 

mm cortical area centered laterally on the DyC-OCT scan region, without changing the 

optical focus. 3D angiography volumes of 512×500×500 (z,x,y) with 10 B-scan repeats at 

each slow axis (y) position were also acquired across the same 2 mm × 2 mm region. The 

sole purpose of 3D angiograms was to depict vascular architecture to aid interpretation and 

analysis of 3D Doppler OCT data.

Angiogram Processing

Either OCT intensities (Ioct) or complex signals (S) were subtracted between repeated B-

scans (frames) at the same position, yielding either phase-insensitive or phase-sensitive 

angiograms, respectively. Subtraction acts as a high-pass filter that enhances the dynamic 

signals caused by RBC or Intralipid particle passage, and removes or reduces static signals, 

from tissue such as skull or gray matter parenchyma, which do not vary significantly 

between consecutive B-scans. For the phase-insensitive angiogram (IOCTA,PI), IOct = |S|2 is 

the OCT signal intensity, and z, x, t, and Δt represent depth, lateral position, time, and frame 

time interval, respectively:

IOCT A, PI(z, x, t) = IOCT(z, x, t + Δt) − IOCT(z, x, t) . (1)

Note that the angiogram time series has one fewer frame than IOct.
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For the phase-sensitive angiogram (IOcta,ps), the magnitude of the complex difference is 

squared and phase correction (ΔØ) is applied to account for bulk motion as described by 

Srinivasan et al. [42]

IOCT A, PS(z, x, t) = S(z, x, t + Δt) − S(z, x, t)exp( − jΔ ∅ ) 2

2 (2)

The DyC-OCT framework described below can be applied to either the phase-insensitive 

angiogram or the phase-sensitive angiogram. The phase-sensitive angiogram more 

comprehensively describes the intravascular dynamic signal but is also more susceptible to 

phase noise caused by motion (Supplemental Figure 2); therefore, different angiograms are 

used for different tasks. Regardless of angiogram type, the change in angiogram signal 

(ΔIOcta) used for DyC-OCT was defined as the baseline-subtracted angiogram signal, where 

ΔIOCTA,baseline is the mean angiogram signal over time for each pixel from the start of the 

DyC-OCT scan until a global cutoff time before the arrival of the tracer in the field of view.

ΔIOCT A(z, x, t) = IOCT A(z, x, t) − IOCT A, baseline(z, x) . (3)

In the theory below, assuming that Intralipid acts as a plasma tracer [38], the change in 

angiogram signal is related to plasma tracer concentration.

Layer Segmentation

Cortical layers were segmented by first manually delineating the upper and lower boundaries 

of the cortex in the cross-sectional log intensity images. The stereotaxic coordinates of the 

imaged field-of-view were determined from white light photographs of the skull. Layer 

assignments were then made for each cortical pixel within this region by assuming a 

percentage thickness distribution of ~10%:21%:9%:31%:29% for layers 1:2/3:4:5:6 

respectively (Figure 1A). This distribution was determined from the Allen mouse brain atlas 

[43] based on the average atlas thickness of each cortical layer over a 2.5 mm × 1 mm 

(sagittal × coronal) range, corresponding to the approximate range of stereotaxic coordinates 

imaged across animals.

Kinetics Mapping

To identify arterial-side inputs for calibration of layer-dependent focusing and attenuation 

effects, vascular kinetics were initially quantified using methods described previously [38]. 

First, we convolved the phase-sensitive angiogram time course with a 3 × 3 × 3 kernel (z,x,t) 

of ones to reduce speckle noise. We then subtracted the baseline angiogram signal (Eq. 3) 

and fit the time course at each z,x location in ΔIocta,ps using a Second Order Plus Dead Time 

(SOPDT) model [44] to avoid residual speckle noise. Parameters such as arrival time, peak 

time, and time to peak were extracted from the fitted curve (Figure 1B). These parameters 

were then visualized with an alpha (transparency) map based on R2 goodness of fit to 

suppress noise (Figure 2A,B).
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Arterial Probability Mapping

To identify arterial-side inputs based on DyC-OCT time courses, we choose a support vector 

machine (SVM) classification method. Here, LIBSVM, a popular and freely available 

package for SVM implementation was adopted [45]. For classification, arrival time (Figure 

2A) and time to peak (Figure 2B) were selected as kinetic parameters that could differentiate 

arterial and venous compartments. Pixels in large vessels, which were easy to manually 

identify as arteries or veins, were used as training data for each animal. For the training 

process, the macrovascular training data was randomly distributed into 5 groups, each of 

which contained both arteries and veins. We used the C-Support Vector Classification 

offered by LIBSVM with a radial basis function as the kernel function. To optimize the 

SVM parameters, a grid-search method with 5-fold cross-validation was used when the 

model was being trained. After training, the classifier assigned each pixel in the cross-

section an arterial probability from 0 to 1 (venous to arterial) based on its measured kinetic 

parameters (Figure 2C). The resulting probability map (Figure 2D) is highly consistent 

within individual vessels. Regional clustering of arterial-side and venous-side 

microvasculature is also noted. The arterial probability information was used to identify 

arterial-side references above a threshold of 0.7 for blood flow and volume quantification. 

Interestingly, some noise in the skull and white matter is assigned an arterial probability ~0.5 

(Figure 2D). Thus thresholding the arterial probability has the beneficial side effect of 

excluding noise.

A validation of arterial probability against branch order demonstrated good separation of 

arterial-side and venous-side vasculature (Figure 3). Branch order was manually identified 

using the full 3D information provided by OCT angiography to track and coregister 38 

individual vessels (16 arterial-side and 22 venous-side) with the DyC-OCT FOV. Branch 

order was defined for either the arterial side or venous side with diving arterioles and 

ascending venules having a branch order of 1 and incrementing for each additional branch 

(Figure 3A). The arterial probability threshold of 0.7 maximizes specificity to arterial-side 

vasculature, while retaining high sensitivity (Figure 3D). While we expect that arterial-side 

vasculature corresponds to arterioles, we cannot exclude the possibility that arterial-side 

capillaries are included.

Flow and Volume Quantification

Indicator dilution theory was originally developed for measurement of cardiac output [46], 

and has since been extended to flow measurements in other external monitoring systems [47] 

such as MRI [39, 48]. We previously adapted indicator dilution theory for ophthalmic DyC-

OCT [37]. Here, we extend the theory to quantify blood flow and volume across cortical 

layers.

Tissue concentration curves (Ct,layer) were obtained for each layer of the cortex (Figure 1A) 

by summing or integrating phase-insensitive OCTA signal changes. Macrovessels and large 

ascending or descending vessels (diameter > 25 μm) were excluded according to the 

protocols established in our prior work [38]. Apart from this exclusion, tissue concentration 

curves were obtained by integrating over entire parenchymal regions corresponding to each 

layer. Note that enhancement factors, described below, were determined from only 
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intravascular regions. Ct,layer for an individual layer is defined in Eq. 4, where Ht,layer is the 

layer’s microvascular hematocrit (defined as the total layer RBC volume divided by the total 

layer blood volume), At,layer is the cross-sectional area of the region of interest (ROI) 

associated with the layer, and kt,layer is an attenuation factor that relates the spatially 

averaged OCTA signal changes to the tissue plasma concentration. This attenuation factor 

includes effects such as the double pass attenuation to the layer, focusing, and the OCT 

system sensitivity rolloff [37]. ΔIOCTA,PI is the baseline-subtracted phase-insensitive 

angiogram signal, assumed to be proportional to tracer concentration. Scaling by 100
ρ , where 

ρ is the tissue density in g/mL, ensures that blood volume is measured in milliliters per 100 

grams of tissue and blood flow is measured in milliliters per unit time per 100 grams of 

tissue. Here ρ=1.04 g/mL was assumed for cortical tissue density [48].

Ct, layer(t) = 100
ρ

kt, layer

1 − Ht, layer At, layer
∬

ROI, layer
ΔIOCT A, PI(z, x, t)dzdx (4)

Because large arteries were only available at the surface of the cortex and attenuation is 

significant in deeper cortical layers, DyC-OCT calibration procedures were modified relative 

to previous work in the eye [37]. To correct for attenuation of the OCT signal as a function 

of depth in the cortex, layer-specific arterial-side references (cr,layer) were determined. The 

reference was selected by first thinning a mask of microvasculature based on the R2 

goodness of fit for the SOPDT model (Supplemental Figure 3A,B). Thinning ensures that 

the reference is properly located within the center of the vasculature and avoids partial 

volume effects which might impair the calibration. From this thinned mask, only the pixels 

with arterial probability greater than 70% (Supplemental Figure 3C), derived from the 

probability map (Figure 2D), were used.

cr, layer(t) =
kr, layer

1 − Hr, layer Ar, layer
∬

ROI, arteriole
ΔIOCT A, PI(z, x, t)dzdx (5)

Here Hr,layer is the hematocrit, Ar,layer is the cross-sectional area, and kr,layer is the 

attenuation factor for the layer-specific arterial-side reference ROI.

Blood volume (Vlayer) can be quantified by dividing the integrated tissue concentration 

curve by the integrated arterial-side reference [39].

V layer =
∫ Ct, layer(t)dt
∫ cr, layer(t)dt . (6)

If the reference is selected from the layer of interest, it can be assumed that Ht,layer ~ Hr,layer, 

i.e. the layer arterial-side reference hematocrit is similar to the overall layer microvascular 

hematocrit (This assumption is discussed further in the Supplemental Material). If so, the 

hematocrit dependencies of Ct,layer and cr,layer cancel out. Furthermore, the layer-dependent 

attenuation factors cancel out as kt,layer ~ kr,layer. Due to the cancellation of layer-dependent 

attenuation and hematocrit factors, spatially averaged OCTA signal changes can be 

substituted for tissue and arterial-side reference concentrations in Eq. 6.
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To quantify blood flow, an arterial input function (cA) is required [39]. Due to the high 

signal-to-noise ratio at the cortical surface, the time course for this arterial input is 

determined from a pial artery. DyC-OCT resolves transit time heterogeneity within 

individual vessels, so a small ROI is selected within the chosen artery to avoid temporal 

broadening of the bolus passage due to spatial averaging. Use of a temporally broadened 

signal as the arterial input function may cause an overestimation of blood flow.

cA(t) =
kA

1 − HA AA
∬

ROI, Artery
ΔIOCT A, PI(z, x, t)dzdx (7)

Here HA is the hematocrit in the pial artery, Aa is the cross-sectional area of the artery ROI, 

and kA is the attenuation factor for the ROI. In our previous characterization of arrival times 

in the mouse cortex [38], the average arrival time of the tracer changed as a function of 

depth; however, the very earliest arrival times were fairly even across different depths. As 

these early arrival times likely correspond to the diving arterioles, the shape of the arterial 

input function is expected to be similar across all cortical depths, due to the rapid delivery of 

arterial blood. Therefore, a single arterial input shape can be used for all layers, but accurate 

determination of hematocrit, double pass attenuation, focusing, and sensitivity rolloff pose a 

potential problem. To circumvent this issue, we define a layer-specific arterial-side input 

(ca,layer), with the shape of the arterial input (cA) and scaling determined by the area under 

the curve of the layer-specific arterial-side reference (cr,layer). This scaling accounts for 

potential layer-dependent attenuation, focusing, sensitivity rolloff, and hematocrit.

ca, layer(t) =
∫ cr, layer(t)dt

∫ cA(t)dt cA(t) (8)

Blood flow was quantified using the measured tissue concentration curves and arterial-side 

input functions for each cortical layer (Figure 4). The following relationship states that the 

tissue concentration curve is equal to the convolution between the arterial-side input and a 

combined term of blood flow times the residue function (R) [39], which describes the 

relative amount of tracer still in the layer’s microvasculature as a function of time. Because 

R always has a range from 0 to 1 and identical shape to the deconvolved flow times residue 

term, blood flow was measured as the maximum of this combined term (Figure 4B). While 

the DyC-OCT scans are time resolved, the resulting blood volumes and flows are single 

measurements describing the average volume or flow during the timecourse of the scan.

Ct, layer(t) = ca, layer(t) ∗ Flowlayer × Rlayer(t) (9)

Similar to Eq. 6, provided that layer-dependent attenuation and hematocrit factors cancel, 

spatially averaged OCTA signal changes can be substituted for tissue (Eq. 4) and arterial-

side input (Eq. 8) concentrations. To measure blood flow in each layer, Ct,layer was 

deconvolved with ca,layer (Figure 4A). Specifically, a singular value decomposition (SVD) 

method was applied to invert the arterial input and solve for the product of flow and the 

residue function (Figure 4B). Here a truncated block-circulant SVD method was chosen for 

its insensitivity to arrival time mismatches between the input and layer concentration signals 
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[49]. Such mismatches could arise because the arterial input is selected from the cortical 

surface and may be time shifted relative to the true input for a given microvascular layer.

SVD methods can yield substantially different flow values depending on both the method 

and the truncation value. This means that objective selection of this threshold is critical for 

determining absolute flow. While early MRI papers used a fixed threshold, others developed 

a sliding threshold based on the signal SNR. Here the truncation point was determined in an 

automated fashion by using an oscillation index derived by Gobbel and Fike [50] and 

modified by Wu et al. [49] where L is the length of the residue function (R).

Oindex = 1
L ∑t = 2Δt

(L − 1)Δt R(t) − 2R(t − Δt) + R(t − 2Δt) (10)

The SVD truncation value, defined as a percentage of the largest singular value for each 

layer, was increased by steps of 0.1% until the oscillation index fell under a value of 0.001 

for the majority of layers. For the imaging protocol used here, this oscillation index value 

was found to consistently remove high frequency noise while ensuring good agreement with 

the original tissue concentration curve after re-convolution with the arterial-side input 

(Figure 4C). While the residues for each layer may produce different oscillation indices for 

the same SVD truncation value, this is due to the varying noise levels in the tissue 

concentration curves rather than the arterial-side inputs. By selecting a single SVD 

truncation threshold for all layers, we ensure a uniform shape for the inverted arterial-side 

input and reduce noise contributions in the laminar analysis of flow.

Flow Validation

DyC-OCT average cortical flow was validated against Doppler OCT flow in a subset of 

mice (n = 3). Multiple DyC-OCT and Doppler OCT data sets were acquired while 

physiological state was modulated by inducing hypercapnia or by changing the isoflurane 

anesthesia level (%v/v). These modulations generated variability in CBF that could be 

quantified by both techniques and compared. In each physiological state, animals were 

allowed to rest for at least 5 minutes. Doppler OCT was acquired immediately after DyC-

OCT. To minimize the time between acquisitions, the focus was not adjusted. Thus the focus 

was ~350 μm below the cortical surface for Doppler OCT measurements. As diving and 

ascending vessels were out-of-focus and appeared larger in the en face plane, quantitative 

flowmetry could not be performed based on Doppler OCT data. Thus, Doppler OCT flow is 

given in arbitrary units (AU) as opposed to absolute units (mL/min/100g) reported elsewhere 

[51].

Flowmetry was performed by selecting ROIs over each diving or ascending vessel in the 3D 

Doppler OCT volume (Figure 5A). En face summations over ROIs around diving or 

ascending vessels yielded positive or negative vessel flows, respectively, whose magnitudes 

were then averaged. Both techniques were compared as percent flow changes relative to the 

animal mean (Figure 5C,D), to assess consistency of intra-subject changes, and as absolute 

flow values (Figure 5E), to assess consistency of inter-subject comparisons.
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Intravascular Enhancement Factor

An enhancement factor (EF) was determined for each layer as the average baseline-

subtracted phase-sensitive angiogram signal at steady state after recirculation of the bolus 

(ΔIOCTA,PS,ss), related to plasma tracer concentration, divided by the average baseline phase-

sensitive angiogram signal before tracer arrival (IOCTA,PS,baseline), related to RBC 

concentration. Typically, 100 temporal averages (1.3 seconds) were used for both baseline 

and steady state measurements, however, the baseline averaging was reduced in cases of 

earlier tracer arrival. Here, the ROI for each layer is restricted to intravascular regions, 

determined by thresholding and thinning the R2 for the pixel-wise SOPDT fits 

(Supplemental Figure 3A,B), to avoid unwanted, artefactual contributions to the baseline 

angiogram signal from multiple scattering and static tissue.

EF =
∬ ROI, vesselΔIOCT A, PS, ss(z, x)dzdx

∬ ROI, vesselIOCT A, PS, baseline(z, x)dzdx (11)

To address variations in bolus injection volumes and blood volumes across animals, a 

challenge unique to EF measurements, EF values were normalized such that the average 

across all layers, weighted by layer thickness, was equal to 1 for each animal. It is also 

important to note that because all tissue attenuation, focusing, and sensitivity rolloff effects 

apply equally to the baseline and steady state signals and therefore cancel out, no layer-wise 

calibration is needed for EF. A discussion on the added attenuation due to the tracer passage 

can be found in the Supplemental Materials. As elaborated further in the discussion, 

provided certain assumptions hold, the enhancement factor can provide information about 

laminar differences in hematocrit.

Mean Transit Time

According to the central volume principle, the mean transit time (MTT) through a network is 

equal to volume divided by flow [46, 52]. Thus, MTT was directly calculated for each layer 

using the measured microvascular volume and flow described above.

Statistical Testing

To evaluate statistically significant differences between cortical layers and across animals, 

two-way analysis of variance (ANOVA) testing was performed for blood volume, flow, and 

MTT measurements. One-way ANOVA testing was performed on EF measurements as these 

are already normalized across animals. In all cases, ANOVA testing was followed by 

Tukey’s Honest Significant Difference (HSD) test to account for multiple comparisons 

between the groups. The coefficient of variation (CoV), defined as the ratio of the standard 

deviation to the mean, was used to assess variability of layer-averaged measures. Pairwise 

relationships between layer-averaged and individual layer measures were quantified with the 

Pearson correlation coefficient.
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Data and Code Availability Statement

The data and code used in this study will be made available upon direct request and may not 

be used for commercial purposes. This policy complies with the institutional ethical 

approvals and the requirements of the funding sources.

Results

In this study, DyC-OCT was used to measure blood volume, flow, enhancement factor, and 

transit time by analyzing changes in angiogram signal following intravenous injection of 

highly-scattering contrast agent. Relative to the phase-sensitive angiogram, the phase-

insensitive angiogram is less susceptible to phase noise caused by subtle static tissue motion 

(Supplemental Figure 2), and was therefore selected for DyC-OCT analysis of flow and 

volume, for which ROIs encompass large parenchymal regions of static tissue. On the other 

hand, ROIs for enhancement factor were confined to vessel lumens, so the phase-sensitive 

angiogram was used to provide a more complete assessment of dynamic scattering for 

enhancement factor measurements. Nevertheless, phase-insensitive and phase-sensitive 

approaches both produced similar trends across layers for each of the above metrics (data 

not shown).

The cross-validation of DyC-OCT against Doppler OCT (Figure 5) revealed that percent 

changes in flow, relative to the animal means, were similar for both techniques, 

demonstrating a linear relationship with R2 = 0.81 and p < 0.005 (Figure 5C). Absolute flow 

likewise showed a strong linear relationship with R2 = 0.73 and p < 0.005 (Figure 5E). 

Relative to the baseline measurements, carbon dioxide- and isoflurane-induced physiological 

perturbations led to an increase in blood flow in all cases as measured by both Doppler OCT 

and DyC-OCT. On average, Doppler blood flow increased by 24.3% with a standard error of 

2.0% and DyC-OCT blood flow increased by 17.5% with a standard error of 4.3%.

Volume, flow, enhancement factor, and mean transit time were additionally resolved by 

cortical layer and demonstrated significant laminar trends, as shown for individual subjects 

(Figure 6A,C,E,G), and as the mean across subjects with standard deviations (Figure 

6B,D,F,H). Layer-resolved values were also weighted by layer thickness and averaged to 

yield average CBV (last columns in Figure 6A,B) and average CBF (last columns in Figure 

6C,D). Average MTT was calculated as the ratio of average CBV to average CBF (last 

columns in Figure 6G,H). Average enhancement factor over the cortex is not shown due to 

the subject-specific normalization described above. Three layers in three animals were 

excluded from volume, flow, and transit time measurements due to a lack of sufficient tracer 

signal to identify arterial-side references. Specifically, layer 1 was excluded in two animals 

and layer 6 was excluded in a third animal. For animals that were missing values in a layer, 

average values (Figure 6 final columns) were determined as the thickness-weighted average 

of the remaining layer values.

Two-way ANOVA testing revealed a statistically significant relationship between 

microvascular blood volume and cortical layer (p << 0.0005) but not between animals (p = 

0.95). Microvascular blood volume was higher in the middle cortical layers and highest in 

layer 4 (Figure 6A,B). Layer 4 microvascular blood volume was higher than that of all other 
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cortical layers except for layer 5 (p < 0.05). Microvascular blood volume was highest in 

layer 4 in 7 out of 9 animals. Layer 5 microvascular blood volume was higher than that of 

layer 1 and layer 6 (p < 0.05). The average blood volume (weighted average over cortical 

layers) was 3.82 ± 0.23 mL/100g across animals. The coefficient of variation of layer-

averaged CBV across subjects was 0.061.

Similar to blood volume, two-way ANOVA testing revealed a statistically significant 

relationship between microvascular blood flow and cortical layer (p << 0.0005) but not 

between animals (p = 0.06). Microvascular blood flow tended to track blood volume, with 

higher flow in the middle cortical layers and highest flow in layer 4 (Figure 6C,D). Layer 4 

microvascular blood flow was higher than that of all other cortical layers except layer 5 (p < 

0.05). Microvascular blood flow was highest in layer 4 in 6 out of 9 animals. Layer 5 

microvascular blood flow was higher than that of layers 1 and 6 (p < 0.05). The average 

blood flow (weighted average over cortical layers) was 221 ± 41 mL/min/100g across 

animals. The coefficient of variation of layer-averaged CBF across subjects was 0.185.

The enhancement factor (EF) increased from layer 1 to layer 4 (p < 0.05) before decreasing 

in deeper cortical layers (Figure 6E,F). A statistically significant difference was additionally 

observed between layer 6 and layers 2/3, 4, and 5 (p < 0.005). To test the apparent declining 

trend from layer 2/3 to layer 6, a linear regression was performed on the EF as a function of 

depth across these layers. This regression analysis demonstrated a negative slope in 8 out of 

9 animals and was found to be statistically significant using a t-test (p < 0.005). It was 

observed that one animal produced a higher EF in layer 4 relative to the other animals. If this 

animal is removed from the analysis, then the statistical significance between layers 1 and 4 

disappears, but a significance between layers 1 and 2/3 appears in its place (p < 0.05). All 

other statistical significances remained the same. No cause to exclude this animal was found. 

The relationship between EF and arterial probability was also investigated, but no clear trend 

was observed.

While MTT was lowest in layers 4 and 5 (Figure 6G,H), differences between layers were not 

significant according to two-way ANOVA testing (p = 0.84), however differences between 

animals were (p << 0.0005). The layer-averaged MTT, taken as the ratio of layer-averaged 

blood volume to layer-averaged blood flow, was 1.07 ± 0.21 seconds across animals. The 

coefficient of variation of layer-averaged MTT across subjects was 0.196.

To understand how the central volume principle explains CBF variability across subjects and 

layers, the pairwise relationships between CBF and CBV (Figure 7A,B) and between CBF 

and 1/MTT (Figure 7C,D) were investigated both for layer averages (Figure 7A,C) and 

individual layers (Figure 7B,D). The Pearson correlation coefficient for CBF and CBV was 

0.33 (p = 0.39) for layer averages and 0.86 (p << 0.0005) for individual layers. The best 

proportional fit was determined via linear regression with a model based on the central 

volume principle, CBF = CBV/MTT0, where 1/MTT0 is the constant of proportionality. For 

layer averages, an MTT0 of 1.04 seconds yielded the best fit (R2=0.11). For individual 

layers, an MTT0 of 1.04 seconds yielded the best fit (R2=0.73). The Pearson correlation 

coefficient for CBF and 1/MTT was 0.94 (p < 0.0005) for layer averages and 0.49 (p < 

0.005) for individual layers. The best proportional fit was determined via linear regression 
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with a similar model based on the central volume principle, CBF = CBV0/MTT, where 

CBV0 is the constant of proportionality. For layer averages, a CBV0 of 3.82 mL/min/100g 

yielded the best fit (R2=0.88). For individual layers, a CBV0 of 3.93 mL/min/100g yielded 

the best fit (R2=0.24). Further supporting analysis using nested linear models is found in 

Supplemental Figure 5.

Our results suggest that the variability in layer-averaged CBF across subjects (CoV=0.185) 

can be attributed more to variability in MTT (CoV=0.196) than to variability in CBV 

(CoV=0.061). The stronger relationship between layer-averaged CBF and MTT, rather than 

CBF and CBV, is supported by both a higher Pearson correlation coefficient (0.94 > 0.33) 

and R2 value (0.88 > 0.11) for the proportional fit (Figure 7A,C). On the other hand, the 

stronger relationship between laminar CBF and CBV, rather than CBF and MTT, is 

supported by both a higher Pearson correlation coefficient (0.86 > 0.49) and R2 value (0.73 

> 0.24) for the proportional fit (Figure 7B,D).

Discussion

This study validated and applied a novel DyC-OCT framework for quantitative 

hemodynamics with laminar resolution across the entire cortical column in mice in vivo. Our 

results highlight substantial laminar differences in hemodynamics, suggesting that flow and 

RBC supply are optimized to meet metabolic demand. Our in vivo hemodynamic data also 

provide evidence that links the cortical angioarchitecture directly to cerebrovascular 

physiology in vivo.

Laminar Microvascular Blood Volume

Microvascular blood volume is determined by both microvessel density and diameter. Ex 
vivo histological studies have reported higher microvessel densities in the middle cortical 

layers in rats [53], and in layer 4 in mice [8, 9]. However, since microvessel diameter is not 

preserved after sacrifice and fixation, physiological blood volume cannot be directly inferred 

from such studies. Our in vivo experiments show that microvascular blood volume in the 

mouse neocortex is higher in the middle cortical layers, with a peak in layer 4 (Figure 

6A,B). While these findings are reassuring and consistent with histology, the two-fold higher 

microvascular CBV in layer 4 relative to the outer cortical layers is notable, and more 

pronounced than laminar differences measured by MRI methods in rats (~20–30% increase 

from the outer cortical layers to layer 4) [54]. CBV MRI includes significant contributions 

from the macrovasculature in the superficial cortex and often shows highest resting CBV 

near the cortical surface [55]. By leveraging the high spatial resolution of DyC-OCT, we 

avoid these macrovascular contributions. Our microvascular CBV distribution also parallels 

microvessel density reported histologically [8, 9] (Supplemental Figure 6). Finally, our 

average microvascular cortical blood volume of 3.82 ± 0.23 mL/100g agrees with micro-

computed tomography, which reported a cortical microvascular volume of 4.6 ± 0.4% in the 

same mouse strain [56] (~4.4 ± 0.4 mL/100g with our assumed cortical tissue density).
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Laminar Microvascular Blood Flow

The impact of laminar microvascular density [53] and volume on nutritive CBF supply is 

unclear, due to potential differences in network topology and pressure between layers. While 

computational models can predict flow from the mouse angioarchitecture, results depend on 

assumed boundary conditions, plasma skimming laws, and capillary diameters [7, 12, 13]. 

Importantly, our direct in vivo measurements show, for the first time, that microvascular 

blood flow is higher in the middle cortical layers in mice, with a peak in layer 4 (Figure 

6C,D). Autoradiography in rats under urethane anesthesia reported similar laminar trends in 

flow, with a peak in layer 4 [57]. ASL MRI in rats under α-chloralose anesthesia also 

demonstrated peak CBF in layer 4 [58]. Similar to MRI CBV, MRI CBF differences between 

layers were less pronounced (~10–40% increase from the outer cortical layers to layer 4) 

than shown here (~100% increase from the outer cortical layers to layer 4). Our average 

microvascular cortical blood flow of 221 ± 41 mL/min/100g is similar to arterial spin 

labeling MRI average cortical flow values of ~210 mL/min/100g, reported in the same 

mouse strain, under similar isoflurane levels, and with similar body positioning [19, 20].

Additional assumptions are needed to compare our nutritive flow values, which are 

normalized to tissue volume, with single vessel RBC flux measured by MPM. For instance, 

recent MPM studies in awake mice found similar capillary RBC fluxes in layers I-IV [59, 

60]. This finding, taken together with much higher microvessel density in layer 4 compared 

to layer 1 [8, 9], suggests much higher nutritive RBC flux (RBC flux / tissue volume) in 

layer 4 than in layer 1, in general agreement with our results. However a rigorous conversion 

from single vessel to nutritive flow requires information about topological distribution, 

which was not available in this study.

Laminar Microvascular Transit Time

As the two-fold variation in CBF across cortical layers parallels that of CBV, the variation in 

MTT=CBV/CBF across cortical layers is relatively smaller (Figure 6G,H). Though not a 

focus of this study, it is reasonable to ask whether the transit time results in Figure 6G,H, 

based on laminar residue functions, are consistent with transit time trends from our prior 

study [38], which analyzed individual microvessels. While the MTT in layers 4 and 5 was 

slightly lower than the outer cortical layers, as in our previous study [38], this difference was 

not statistically significant, though confidence intervals in this study are consistent with the 

prior results. Importantly, in our previous study, different microvessels were treated equally 

in determining average arrival time and peak time, whereas the MTT measured here 

inherently weights different paths by their flow. Furthermore, MTT relates to the entire 

transit time distribution, while arrival time and peak time are single features in the DyC-

OCT curve. With these caveats, our MTT and transit time results are consistent with our 

previous work [38]. Furthermore, our mean MTT of 1.07 ± 0.21 seconds was consistent with 

a two-photon microscopy study in the same mouse strain and anesthesia which measured a 

mean MTT of 0.81 ± 0.27 seconds in the superficial somatosensory cortex [30].

Enhancement Factor and Hematocrit

As enhancement factor (EF) is determined by the ratio of plasma tracer and RBC scattering 

in intravascular regions, we postulated that differences in EF between layers may relate to 
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differences in hematocrit between layers. Specifically, a higher hematocrit would result in 

lower tracer scattering signal and higher baseline RBC scattering signal. Thus, EF should 

vary inversely with hematocrit.

We found that deeper layers had lower intravascular EF across animals (Figure 6E,F), 

suggesting higher hematocrits in deeper layers. If we had detailed knowledge of the 

scattering properties of both tracer particles and RBCs, we could determine hematocrit 

directly from EF. However, due to the complexity of determining RBC scattering, we instead 

infer the hematocrit ratio between two layers from their EF ratio. If the EF ratio between two 

layers (indexed by n and m) is determined solely by hematocrit,

EFn
EFm

=
Hctm 1 − Hctn
Hctn 1 − Hctm

. (12)

By assuming that m=1 (for layer 1) and that the layer 1 hematocrit, Hct1, is known, the 

hematocrits can be determined from enhancement factors in other layers as

Hctn =
EF1 × Hct1

EFn + Hct1 EF1 − EFn
. (13)

Further discussion on the validity of using EF to infer hematocrit differences can be found in 

the Supplemental Materials. Assuming hematocrit accounts for all EF differences, by 

allowing Hct1 to take on a range of physiologically relevant hematocrits (0.15 – 0.45), we 

derived hematocrits in other layers (Figure 8A) using Eq. 13. The hematocrit drops 19% - 

27% between layer 1 and layer 2/3 (Figure 8B). Layer 1 may have a higher hematocrit due 

to its proximity to the large pial vessels and lower branching order. Relative to layer 2/3, the 

hematocrit in layer 6 increases by 56% - 100%. This increase may be explained by the 

plasma skimming effect [61], in which smaller branches of the main descending arterioles 

“skim” plasma off the main branch, thus increasing hematocrit of the deeper blood supply. 

Increased hematocrit may counteract reduced CBF (Figure 6C,D) in deeper layers to 

improve oxygen delivery, thus maintaining relatively high oxygen tension [62], even in the 

deepest layers. An increase in hematocrit with cortical depth has been predicted in model-

based blood flow simulations that account for plasma skimming, in both mouse and human 

cortical microvascular networks [7, 13, 63]. Our enhancement factor measurements, which 

also include the effects of gravity, provide in vivo data to support these predictions. While 

measured laminar blood flow (Figure 6C–D) decreases in deeper cortical layers, the 

predicted hematocrit increase (Figure 8A) suggests that RBC blood flow is maintained 

(Figure 8C–D).

Laminar Support of Metabolic Activity

Taken together, our in vivo findings suggest that diverse metabolic demands across the 

cortical column are supported by laminar hemodynamic patterns that originate from the 

angioarchitecture. In light of the high metabolic activity in layer 4 [64–66] the two-fold 

higher flow in this layer relative to the outer cortical layers suggests that blood flow supply 

is tailored to fit energetic needs. How is blood flow directed so precisely to layer 4, which 
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spans a depth of only ~100 μm in the mouse? Potential mechanisms include fine laminar 

control of arteriolar [10] and possibly capillary tone [67], as well as higher arteriolar branch 

probability and microvessel density [8] or diameter. Given that CBF=CBV/MTT, our results 

show that the two-fold laminar variation in CBF (Figure 6D) can be attributed mostly to 

laminar variation in volume (Figure 6B, Supplemental Figure 5A), rather than to laminar 

variation in transit time (Figure 6H, Supplemental Figure 5B). This persistent, strong 

relationship between laminar CBF and laminar CBV (Figure 7B), which in turn, parallels 

microvessel density [8, 9] (Supplemental Figure 6), suggests that that CBF may likewise be 

influenced by laminar microvessel density. The constancy of laminar CBV and CBF patterns 

across subjects and conditions further supports that they derive from an invariant such as 

microvessel density, though possible laminar differences in diameter or tone cannot be ruled 

out. Importantly, the strong relationship between CBV and CBF does not extend across 

subjects, as MTT better explains CBF variations between subjects (Figure 7C, Supplemental 

Figure 5D). A larger relative variability in CBF than CBV is predicted by Grubb et al. [68], 

however the small data set did not enable us to fit for Grubb’s exponent across subjects. Our 

results raise intriguing questions for the future, such as, whether and how the prominent 

laminar CBF and CBV patterns change after deprivation of thalamocortical inputs to layer 4, 

during functional activation [69], or during global hypoperfusion.

In addition to increased flow to layer 4, our previous work [38] demonstrated reduced transit 

time heterogeneity in the middle cortical layers, suggesting more uniform flow paths and 

more efficient oxygen extraction [70] there. Finally, EF measurements point to an increase in 

the intravascular concentration of oxygen-carrying red blood cells at greater cortical depths 

(Figure 8), likely due to plasma skimming. Thus, the cortical vascular system seems to be 

optimized to supply oxygen and facilitate its extraction in the middle and even deep cortical 

layers, counteracting the decrease in microvascular flow (Figure 6C–D) and arteriolar 

oxygen tension [71] with depth.

Methodological Assessment and Future Directions

The DyC-OCT framework makes a number of assumptions, which have been thoroughly 

described in our previous work [37, 38]. The assumptions that Intralipid acts as a plasma 

tracer and that the injection does not perturb hemodynamics are directly supported by 

observations [38]. Other assumptions, such as the equivalence of layer microvascular 

hematocrit and layer arterial-side reference hematocrit, cannot easily be confirmed. We 

further discuss the plausibility of these assumptions, and errors introduced if they do not 

hold, in the Supplemental Materials.

Since not all assumptions can be directly validated experimentally, we also opted to cross-

validate DyC-OCT against an established Doppler OCT method. Through this comparison, 

we showed that DyC-OCT accurately measures both percent flow changes and quantitative 

flow values (Figure 5). However, this comparison is subject to several limitations. First, even 

though DyC-OCT depends on the out-of-plane microvasculature, DyC-OCT may provide a 

measurement of flow that is localized to the imaged cross-section. Doppler OCT, by 

comparison, determines average flow over a much larger region of the cortical surface. 

Second, DyC-OCT and Doppler OCT were acquired sequentially, not simultaneously. 

Merkle et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, Doppler OCT only works if a measurable Doppler shift is present. Thus, Doppler 

OCT flow depends on the ascending and diving vessel distribution in the field-of-view 

(Supplemental Figure 8). In spite of these limitations, we are reassured that DyC-OCT flow, 

averaged across layers, is consistent with Doppler OCT cortical flow (Figure 5C–E).

The repeatability can be estimated by comparing the deviations of two DyC-OCT 

measurements, acquired in succession without altering the physiological state [38]. We 

found that for two repeated DyC-OCT measurements the CBVs were within 2% of the 

mean, the CBFs were within 6% of the mean, and the MTTs were within 4.5% of the mean.

The anesthetic used in this paper was isoflurane, a known vasodilator that increases CBF 

[72]. Care was taken to keep the concentration as low as possible while maintaining proper 

depth of anesthesia. While the hemodynamic and cardiovascular effects of isoflurane 

certainly affect absolute flow and possibly affect the laminar trends too, to fully explain the 

observed trends, substantial layer-specific responses to the anesthetic must be invoked. It is 

nevertheless important to consider anesthesic effects when comparing this work with other 

literature. A comparative study of layer-resolved flow under different anesthetics and in 

awake animals should be performed in the future.

Finally, there are a number of potential future directions for further development of DyC-

OCT methods. The extension of DyC-OCT methods to 3D could enable more robust 

quantification and analysis, by providing tissue concentration curves in true volumes, not 

individual cross-sections. Data acquired with DyC-OCT could additionally help validate or 

improve graphing and modeling methods for simulating microvascular blood flow. Last, 

while DyC-OCT is minimally invasive, the Intralipid bolus is confined in time and could 

perturb local hematocrit during the bolus passage, if Intralipid is not a pure plasma tracer. 

While the calibration inherent in our analysis should mitigate this potential problem, a 

further reduction in bolus volume could be achieved through the development of more 

sensitive imaging techniques to enhance the tracer signal, or highly scattering tracers such as 

gold nanorods [73, 74].

Conclusion

Here, we applied DyC-OCT to track injected tracer boluses though all layers of the mouse 

neocortex in vivo. By applying a quantitative framework for tracer distribution, we achieved 

the first in vivo measurements of microvascular blood flow and blood volume across all 

cortical layers in mice. Layer-averaged DyC-OCT flow was first cross-validated against 

Doppler OCT flow, demonstrating agreement of relative changes within animals and 

correlation of absolute flow values across animals. Laminar DyC-OCT revealed highest 

microvascular blood flow in layer 4. While laminar flow differences were well-explained by 

volume, flow differences between subjects were better explained by transit time. Layer-

resolved measurements of tracer enhancement suggested higher microvascular hematocrit in 

deeper layers, likely caused by plasma skimming in cortical vasculature. The laminar trends 

in blood flow, volume, and hematocrit, observed here together in vivo for the first time, shed 

light on how a single vascular supply can support diverse metabolic needs across the cortical 

column.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Procedure for determining layer-resolved DyC-OCT signals and tissue concentration curves. 

A) OCT intensity image of the mouse neocortex through the thinned skull (left, log scale) 

extends to the white matter (WM), with estimated cortical layer boundaries in red. DyC-

OCT signal changes, derived from the OCT angiogram signal (middle), were averaged 

across each layer to determine tissue concentration curves (right). B) A DyC-OCT signal 

from a single pixel within a large vein is shown along with the corresponding second order 

plus dead-time (SOPDT) fit to the data. Kinetic measurements such as arrival time, peak 

time, and time to peak are extracted from the SOPDT fit and marked with arrows.
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Figure 2. 
Maps of tracer kinetics with cortical layer boundaries (white). Color maps of tracer kinetic 

parameters: arrival time (A) and time to peak (B). A classifier assigns an arterial probability 

to each pixel (C) using kinetic parameters from known pial arteries (PA) and pial veins (PV) 

as training data (inset). The 0.5 arterial probability line (black) nominally separates arterial 

and venous vasculature. D) The resulting color map of arterial probability aids in the 

selection of arterial-side references by thresholding the probability.
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Figure 3. 
An analysis of branch order was performed to validate the arterial probability mapping 

produced using Dynamic Contrast Optical Coherence Tomography (DyC-OCT). A) A 

maximum intensity projection of a cortical angiogram is shown in greyscale with a color 

overlay of branch order for an arteriole and a venule. The full 3D information provided by 

OCT angiography allows tracking of vessels, even those traveling under other vessels 

(dotted line). B) A depth map for the OCT angiogram highlights how the depth information 

aids the identification of branch order. C) The mean arterial probabilities within 38 

individual microvessels, with 16 on the arterial side (red) and 22 on the venous side (blue), 

were compared against branch order, determined from a co-registered OCT angiogram. D) 

The sensitivity (true positive rate, blue) and specificity (true negative rate, red) for the 

identification of arterial vasculature are shown as a function of the arterial probability 

threshold. The chosen threshold of 0.7 (black dotted line) maximizes specificity while 

retaining good sensitivity to arterial vasculature.
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Figure 4. 
Procedure for deconvolving the DyC-OCT signals. A) Deconvolution of a tissue 

concentration curve (Ct) with an arterial-side input function (ca) yields blood flow multiplied 

by the residue function (B). C) Convolution of the arterial-side input and blood flow times 

the residue function (Eq. 9) reproduces the original tissue concentration curve.
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Figure 5. 
DyC-OCT flow was cross-validated against Doppler OCT flow. A) An en face Doppler 

projection is overlaid on an OCT angiogram projection, and the DyC-OCT scan location is 

shown as a green arrow. B) A cross-sectional OCT angiogram at the location of the DyC-

OCT scan shows the large diving and ascending vessels measured using Doppler flowmetry 

(arrows). C) Percent changes in Doppler and DyC-OCT flow with respect to each subject’s 

mean are shown, with a black line of equality and a red linear fit (R2 = 0.81, p < 0.005). D) 

A Bland-Altman plot shows the differences between the measurements in C versus the mean 

of the two measurements. The mean of the differences (not distinguishable from 0 at this 

scale, thick black line) and 2 standard deviations from this mean (± 9.3%, thin black lines) 

are shown. E) Doppler and DyC-OCT flows are shown across subjects, with a linear fit (R2 

= 0.73, p < 0.005) shown as a red solid line and a proportional fit (linear fit that passes 

through the origin) shown as a black dashed line.
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Figure 6. 
Microvascular blood volume (A,B), flow (C,D), enhancement factor (E,F), and mean transit 

time (G,H) for individual cortical layers. Layer-averaged volumes (A,B) and flows (C,D), 

calculated via weighting by layer thickness, and layer-averaged mean transit times (G,H), 

calculated as the layer-averaged volume divided by layer-averaged flow, are also shown. The 

top row presents data from individual animals (blue) with the means across animals (red 

squares). The bottom row shows the means and standard deviations across animals as well as 

statistically significant pairs. Two-way ANOVA testing was performed for blood volume, 

flow, and mean transit time and one-way ANOVA testing was performed for enhancement 

factor. These tests were followed by Tukey’s Honest Significant Difference test to account 

for multiple comparisons (* p < 0.05, ** p < 0.005, and *** p < 0.0005). CBV, CBF, and 

MTT are shown at 50 μm depth increments in Supplemental Figure 4.
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Figure 7. 
Prediction of cerebral blood flow (CBF) by cerebral blood volume (CBV) or mean transit 

time (MTT), evaluated for both layer-averages (A,C) and individual layers (B, D). For CBF 

versus CBV (A-B), lines of proportionality (black) were determined via linear regression 

with a model based on the central volume principle, CBF = CBV/MTT0, where 1/MTT0 is 

the slope of the best proportional fit. For CBF versus 1/MTT (C-D), lines of proportionality 

(black) were similarly determined via linear regression with a model based on the central 

volume principle, CBF = CBV0/MTT, where CBV0 is the slope of the best proportional fit. 

Symbols represent animals and correspond to Figure 6. The symbols in B and D are colored 

by cortical layer.
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Figure 8. 
Possible laminar hematocrit values that are consistent with enhancement factor 

measurements (Figure 6E,F). A) Assuming hematocrits in the range of 0.15 – 0.45 for layer 

1, color coded from blue to red, the remaining layer hematocrits are determined by Eq. 13, 

assuming that hematocrit is the sole reason for differences in enhancement factors between 

layers. B) Percent changes in hematocrit relative to layer 1. C) Red blood cell (RBC) flow 

rates based on the hematocrit values from A) and the measured mean blood flow (Figure 

6C–D) across layers. D) Percent changes in RBC flow relative to layer 1. All panels use the 

same color coding with black lines to show laminar hematocrit values derived by assuming a 

hematocrit of 0.15, 0.25, 0.35, and 0.45 in layer 1.
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