Title
Unipotent Radicals of the Standard Borel and Parabolic Subgroups in Quantum Special Linear Groups

Permalink
https://escholarship.org/uc/item/9nh2b5bc

Author
Jaramillo, Andrew Cecil

Publication Date
2014

Peer reviewed|Thesis/dissertation
Unipotent Radicals of the Standard Borel and Parabolic Subgroups in Quantum Special Linear Groups

A Dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Andrew Cecil Jaramillo

Committee in Charge:

Professor Ken Goodearl, Chair
Professor Birge Huisgen-Zimmermann
Professor Jon McCammond

June 2014
The Dissertation of
Andrew Cecil Jaramillo is approved:

Professor Birge Huisgen-Zimmermann

Professor Jon McCammond

Professor Ken Goodearl, Committee Chairperson

May 2014
Unipotent Radicals of the Standard Borel and Parabolic Subgroups in Quantum
Special Linear Groups

Copyright © 2014

by

Andrew Cecil Jaramillo
To my wife, Maree.
ACKNOWLEDGEMENTS

First, I would like to thank my advisor Ken Goodearl for his guidance and patience. This project would not have been possible without him.

I would also like to thank the other committee members Birge Huisgen-Zimmermann and Jon McCammond for their advice and input.

There are many professors and teachers I have had over the course of my mathematical career, without whom I would not have been able to make it to this point. In particular, I’d like to acknowledge Federico Ardilla, Daryl Cooper, Eric Hayashi, David Morrison, and Alex Schuster.

I wish to thank the fellow members in the “gang of four,” Brent Albrecht and Jonathan Cass for studying with me for quals and classes. I also wish to acknowledge all my friends for their support, especially, Katia Fuchs, Guy Berger, Leah Hanzlicek, Erik Innocent, Medina Price, and Bonnie Queen.

I’d like to thank my family, especially my parents, Debbie and Andy Jaramillo, and my parents-in-law, Terry and Bert Afaga, for all their love and support.

Finally, I’d like to thank the other member of the “gang of four,” my wife, Maree, for all her patience and love and to whom this work is dedicated.
VITA OF ANDREW CECIL JARAMILLO, JR.

EDUCATION

Ph.D., Mathematics with Certificate in College and University Teaching
University of California, Santa Barbara (UCSB) June 2014

M.A., Mathematics
San Francisco State University (SFSU) May 2008

B.A., Mathematics
University of California, Berkeley (UCB) December 2002

TEACHING EXPERIENCE

Teaching Associate (Instructor of Record), UCSB

34A, Calculus for Social and Life Sciences, 1st Course Spr., Sum. 2013

34B, Calculus for Social and Life Sciences, 2nd Course Summer 2011

3C, Differential Equations and Linear Algebra Summer 2010

Instructor, Summer Institute for Mathematics & Science (SIMS)
California NanoSystems Institute, Santa Barbara, CA Summer 2012, 2013

Head Teaching Assistant, UCSB

34A, Calculus for Social and Life Sciences, 1st Course Fall 2008, Sum. 2009

Teaching Assistant, UCSB

117, Introduction to Real Analysis Spring 2014

3A, Calculus with Applications, 1st Course Fall 2012, 2013, Winter 2014

5B, Vector Calculus with Applications Spring 2010, 2011, Summer 2012

3C, Differential Equations and Linear Algebra Spring 2009, Summer 2012

108A, Introduction to Linear Algebra Fall 2011, Winter 2012

34A, Calculus for Social and Life Sciences, 1st Course Fall 2008, Sum. 2009

34B, Calculus for Social and Life Sciences, 2nd Course Winter 2009

Graduate Student Instructor, SFSU

109, Pre-Calculus Fall 2007, Spring 2008

60, Algebra I Fall 2005, 2006, Summer 2006

Instructor, Louis Stokes Alliance for Minority Participation (LSAMP)

Summer Bridge Program Summer 2007
RESEARCH EXPERIENCE

Program Associate

Noncommutative Algebraic Geometry and Representation Theory

Mathematical Sciences Research Institute (MSRI) Berkeley, CA Winter 2013

MENTORING & SERVICE

Graduate Student Mentor, UCSB September 2012 - Present

Mentor

Scholarships for Transfers to Engage & Excel in Mathematics (STEEM) Fall 2012

Panelist, “How to Pass Your Qualifying Exams”

Hypatian Seminar, UCSB November 2012

Co-organizer

Graduate Student Algebra Seminar, UCSB September 2010 - September 2012

NOMINATIONS & AWARDS

UCSB Outstanding Teaching Assistant - Nominee December 2013
Abstract

Unipotent Radicals of the Standard Borel and Parabolic Subgroups in Quantum Special Linear Groups

Andrew Cecil Jaramillo

In this dissertation we find noncommutative analogues of the coordinate rings of the unipotent radicals of the standard Borel and standard parabolic subgroups in quantum special linear groups. In each case, two subalgebras are defined, both of which can be considered quantizations of the unipotent radical of a standard Borel or a standard parabolic subgroup. Presentations are given for these algebras. It is also shown that these algebras arise as a coinvariant subalgebra of a natural comodule algebra action induced from the Hopf algebra structure on quantum special linear groups.
Contents

Introduction 1

1 Background 10

1.1 Notation and Conventions 10
1.2 Algebras, Coalgebras, Bialgebras, and Hopf Algebras 10
1.3 Modules, Comodules, and Comodule Algebras 18
1.4 Smash Product and Coinvariants 21
1.5 Prime Ideals and H-prime ideals 27
1.6 Gelfand-Kirillov Dimension 28
1.7 Skew Polynomial Rings ... 31
1.8 Root Systems ... 35
1.9 Quantum Universal Enveloping Algebras 42
1.10 The Algebra of Matrix Coinvariants 45
1.11 Some Quantized Coordinate Rings 49
1.12 Quantized Universal Enveloping Algebra for \mathfrak{sl}_{n+1} 53

2 Quantum Unipotent Radicals of the Standard Borel Subgroups 56

2.1 Quantum Standard Borel Subgroups 56
2.2 The Algebras of Coinvariants for $O_q(B^\pm)$ 62
2.3 The Restriction Map and $C_q(b^\pm)$ 69
2.4 The Dual Pairing ... 71

3 Quantum Unipotent Radicals of Standard Parabolic Subgroups 80

3.1 Standard Parabolic Subgroups 80
3.2 Quantum Standard Parabolic Subgroups 83
3.3 The Algebras of Coinvariants for $O_q(P^\pm)$ 94
3.4 Isomorphisms of Unipotent Radical Subalgebras 106
3.5 Structure of $O_q(N_{>P}^\pm)$ 111

Bibliography 164

x
Quantum groups were first discovered in the 1980’s in mathematical physics while studying the quantum inverse scattering method. Since that time there has been much work done on these groups, studying their various properties. Still though, there is not yet a widely accepted axiomatic definition for them. (See [1, Problem II.10.1].) Nevertheless, this has not prevented many objects being given the title of “quantum group.” What many of these groups have in common is that they are noncommutative deformations (in some sense) of classical k-algebras with a parameter q, with the property that as q approaches special values (e.g. $q \to 1$), we recover the classical k-algebra. Thus, a quantum group is a noncommutative object that “acts like” some classical object, and from the quantum group the classical structure is recovered.

For instance, the quantized coordinate ring of SL_{n+1} or quantum SL_{n+1} for short, is a noncommutative deformation of $O(\text{SL}_{n+1})$, the coordinate ring of SL_{n+1}. If we take a presentation for quantum SL_{n+1} (see (1.19) – (1.23)), then as $q \to 1$ we get a presentation for $O(\text{SL}_{n+1})$. Thus, we may think of quantum SL_{n+1}
as a coordinate ring of a “noncommutative space” which “limits to” $O(\text{SL}_{n+1})$.

Of course this can be made more precise (see [6]), but the basic idea is the following: quantum SL_{n+1} is the coordinate ring of a space that has “vanished” leaving behind the “shadow” of SL_{n+1}.

With this general framework of a quantum group in mind, the purpose of the present document is to define and study the properties of quantized coordinate rings for the unipotent radicals of standard Borel and standard parabolic groups of SL_{n+1}. To do this we remind the reader of the classical version of these groups, and show obstacles to finding quantum analogues of them.

Standard Borel Subgroups and their Unipotent Radicals in SL_{n+1}

In SL_{n+1} the **positive (negative) standard Borel subgroup** B^+ (respectively B^-) is the subgroup consisting of all upper (lower) triangular matrices in SL_{n+1}. The **positive (negative) unipotent radical** N^+ (respectively N^-) of B^+ (respectively B^-) is the subgroup of upper (lower) triangular unipotent matrices in B^+ (respectively B^-).

Since B^\pm are closed subvarieties of SL_{n+1}, it follows that for the coordinate rings $O(B^\pm)$ we have

$$O(B^+) \cong O(\text{SL}_{n+1})/\langle X_{ij} \mid i > j \rangle \quad \text{and} \quad O(B^-) \cong O(\text{SL}_{n+1})/\langle X_{ij} \mid i < j \rangle.$$
Similarly, since N^\pm are closed subvarieties of SL_{n+1}, for the coordinate rings $O(N^\pm)$ we have

$$O(N^\pm) \cong O(B^\pm) / \langle X_{ii} - 1 \mid i = 1, \ldots, n, n + 1 \rangle.$$

We now wish to “quantize” these coordinate rings using the above general framework. Moreover, since B^\pm are Poisson-algebraic subgroups of SL_{n+1} we also require the semiclassical limits, as in [6], of $O_q(B^\pm)$ to be $O(B^\pm)$ as Poisson-algebras. Having this property does not leave us much choice in defining $O_q(B^\pm)$. Thus, following [25, Section 6.1] we define the **quantized coordinate rings of the standard Borel subgroups** or **quantum standard positive (negative) Borel subgroup** for short, to be

$$O_q(B^+) := O_q(\text{SL}_{n+1}) / \langle X_{ij} \mid i > j \rangle \quad \text{and} \quad O_q(B^-) := O_q(\text{SL}_{n+1}) / \langle X_{ij} \mid i < j \rangle.$$

Attempting to define the quantized coordinate rings of the unipotent radicals in the same way as in the classical case gives us

$$O_q(B^\pm) / \langle X_{ii} - 1 \mid 1 \leq i \leq n + 1 \rangle.$$
However, this would not be helpful to us since relation (1.19) in $O_q(SL_{n+1})$ implies that for all $i \neq j$

$$X_{ij} = X_{ii}X_{ij} = qX_{ij}X_{ii} = qX_{ij}.$$

For $q \neq 1$ this implies $X_{ij} = 0$ for all $i \neq j$. Thus, $O_q(N^\pm) \cong k$ ([25, Remark 6.3]). Though this may be a nice algebra to study, it is not a particularly useful analogue to the classical setting. Therefore, we must try and define $O_q(N^\pm)$ in another way.

There are (surprisingly) few definitions found in the literature although some authors (e.g. [4]) have defined $O_q(N^\pm)$ to be $U^\pm_q(s_{l_{n+1}})$; since when $q \to 1$ we recover $O(N^\pm)$. This definition “quantizes” $O(N^\pm)$ however, we would like to find an algebra more directly related to $O_q(B^\pm)$. Since N^\pm are not Poisson-algebraic subgroups of B^\pm there are fewer requirements when defining quantized coordinate rings for them. In contrast to the classical case, there are no “natural” quotient algebras of $O_q(B^\pm)$ that reduce to $O(N^\pm)$ when $q \to 1$. (See [25, Remark 6.3].) Nevertheless, there exist candidate subalgebras of $O_q(B^\pm)$ that do have this property; some of which were defined in [8], and thus are good candidates for the definition of $O_q(N^\pm)$.

Another possible way to define $O_q(N^\pm)$ is to first note that B^\pm is the semidirect product $T \ltimes N^\pm$ where T is the diagonal subgroup (standard maximal torus) of SL_{n+1}. Thus, $O(N^\pm)$ is the algebra of coinvariants using the corresponding coaction of $O(T)$ on $O(B^\pm)$. Hence, another possible definition for $O_q(N^\pm)$ is
as the subalgebra of coinvariants for a natural coaction of a quantized standard maximal torus, $O_q(T)$, on $O_q(B^\pm)$ using the Hopf algebra structure of $O_q(SL_{n+1})$.

Therefore, with this in mind we define two subalgebras in $O_q(SL_{n+1})$ which can be considered **quantized coordinate rings for the unipotent radicals** of positive (negative) standard Borel subgroups. Presentations for these subalgebras are found and each of these subalgebras has the property that when $q \to 1$, the coordinate ring of the standard unipotent radical is recovered. Moreover, the following properties are also shown:

(i) All of the quantized coordinate rings for the unipotent radical of a standard Borel subgroup are isomorphic.

(ii) Each quantized coordinate ring for the unipotent radical of a standard Borel subgroup is the coinvariant subalgebra of a natural coaction of the quantized standard maximal torus on the quantum standard Borel subgroup.

(iii) The quantized coordinate ring of a standard Borel subgroup is a smash product of a quantized unipotent radical and the quantized coordinate ring of the standard maximal torus.

(iv) Each quantized coordinate ring for the unipotent radical of a standard Borel subgroup is isomorphic to the quantized universal enveloping algebra of the standard nilpotent subalgebra of \mathfrak{sl}_{n+1}.
It follows that all of the above possibilities for defining a quantized coordinate ring for the unipotent radical of a standard Borel will lead to isomorphic algebras.

Standard Parabolic Subgroups and their Unipotent Radicals in SL\(_{n+1}\)

In SL\(_{n+1}\) a positive (negative) standard parabolic subgroup is a subgroup that contains a positive (negative) standard Borel subgroup. In particular, standard Borel subgroups and SL\(_{n+1}\) are examples of standard parabolic subgroups.

In general though, positive (negative) standard parabolic subgroups are composed of matrices in SL\(_{n+1}\) that are “upper (lower) triangular block matrices.” That is, the matrices in the subgroup can be written with \(m \times m\) block matrices on the diagonal (with each block possibly a different size \(m\)) and 0 on the entries below (above) these blocks. The subgroup of matrices in SL\(_{n+1}\) that are nonzero on the “block diagonal” and zero elsewhere also form a subgroup called the Levi subgroup for the parabolic group. Moreover, the positive (negative) unipotent radical of a positive (negative) standard parabolic is composed of upper (lower) triangular matrices with identity matrices on the “block diagonal.”
For instance, in SL_7, an example of a positive standard parabolic group is composed of matrices in SL_7 of the following form:

$$
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\
 0 & 0 & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} \\
 0 & 0 & a_{43} & a_{44} & a_{45} & a_{46} & a_{47} \\
 0 & 0 & 0 & 0 & a_{55} & a_{56} & a_{57} \\
 0 & 0 & 0 & 0 & a_{65} & a_{66} & a_{67} \\
 0 & 0 & 0 & 0 & a_{75} & a_{76} & a_{77}
\end{pmatrix}
$$

The Levi subgroup is composed of matrices that are nonzero in the indicated diagonal blocks and zero elsewhere. In addition, the positive unipotent radical consists of matrices of the following form:

$$
\begin{pmatrix}
 1 & 0 & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} \\
 0 & 1 & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\
 0 & 0 & 1 & 0 & a_{35} & a_{36} & a_{37} \\
 0 & 0 & 0 & 1 & a_{45} & a_{46} & a_{47} \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$
Just as with standard Borel subgroups, their unipotent radicals, and the standard maximal torus; standard parabolic groups, their unipotent radicals, and the Levi subgroup are closed subvarieties of SL_{n+1}.

When attempting to “quantize” these coordinate rings, again following [25, Section 6.1] a quantized coordinate ring for a positive (negative) standard parabolic subgroups or a quantum positive (negative) standard parabolic subgroup, can be defined in the same way as the quantized coordinate ring of a standard Borel was defined. That is, by direct analogy with the classical case. Similarly, we define the quantized coordinate ring of the Levi subgroup by direct analogy with the coordinate ring of the Levi subgroup.

However, just as with unipotent radicals of standard Borel subgroups, attempting to define quantized coordinate rings for the unipotent radicals as the natural quotient algebras will give us an algebra isomorphic to k. Therefore, we must find a quantized coordinate ring of the unipotent radical of a standard parabolic in another way.

Again, just as with the unipotent radical of a standard Borel, we define two quantized coordinate rings for the unipotent radical of a positive (negative) standard parabolic group, which are generated by products of quantum minors of a certain form. We then show the following:
(i) A quantized coordinate ring for the unipotent radical of a standard parabolic subgroup is the subalgebra of coinvariants of a natural coaction of the quantized standard Levi on the quantum standard parabolic subgroup.

(ii) The quantized coordinate ring of a standard parabolic subgroup is the smash product of a quantized unipotent radical of the standard parabolic subgroup and the quantized coordinate ring of the standard Levi.

(iii) A presentation for a quantum unipotent radical for a positive (negative) standard parabolic subgroup is found, and has the property that when $q \to 1$ the coordinate ring of the standard unipotent radical is recovered.

(iv) A quantized coordinate ring for the unipotent radical of a standard parabolic subgroup is a noncommutative UFD and satisfies the Dixmier-Moeglin Equivalence.

We note that a quantum standard Borel is a special instance of a quantum standard parabolic, hence many of the theorems from Chapter 2 are special instances of theorems from Chapter 3.
Chapter 1

Background

1.1 Notation and Conventions

Let k be a field. Unless otherwise noted, we make no further assumptions on k. For two k-vector spaces V, W we use $V \otimes K$ to denote $V \otimes_k W$. All rings will contain 1. All ring homomorphisms have the property that $f(1) = 1$.

1.2 Algebras, Coalgebras, Bialgebras, and Hopf Algebras

Definition 1.1. A k-algebra is a ring, A, with a ring homomorphism $\eta : k \to A$, whose image is contained in the center of A. The map η is called the structure map for the algebra.
Using the map \(\eta \), \(A \) is a \(k \)-vector space by the following rule:

\[
ra = \eta(r)a
\]

for all \(r \in k \) and \(a \in A \).

A \textbf{\(k \)-algebra homomorphism} or \textbf{a morphism of algebras} is a ring homomorphism \(f : A \to A' \) so that \(f(\eta(r)) = \eta'(r) \) for all \(x, y \in A \) and \(r \in k \) where \(\eta' \) is the structure map of \(A' \).

Changing our point of view slightly, multiplication in the ring \(A \) may be thought of as a \(k \)-linear map \(\mu : A \otimes A \to A \) which satisfies certain axioms. Specifically, a \(k \)-algebra \(A \) is a \(k \)-vector space with \(k \)-linear maps \(\eta \) and \(\mu \) that make the following diagrams commute:

\[
\begin{array}{ccc}
A \otimes A \otimes A & \xrightarrow{\mu \otimes \text{id}} & A \otimes A \\
\scriptstyle{\text{id} \otimes \mu} & & \downarrow \scriptstyle{\mu} \\
A \otimes A & \xrightarrow{\mu} & A
\end{array}
\] \hspace{1cm} (1.1)

\[
\begin{array}{ccc}
A & \xrightarrow{\mu} & A \\
\scriptstyle{l} & & \downarrow \scriptstyle{r}
\end{array}
\] \hspace{1cm} (1.2)

where \(l, r \) are the canonical isomorphisms defined by \(l(s \otimes a) = sa \) and \(r(a \otimes s) = as \) for all \(s \in k \) and \(a \in A \).
We may also reinterpret a k-algebra homomorphism by using the maps, μ and η. Specifically, f is a k-algebra homomorphism if and only if

$$f \circ \mu = \mu' \circ (f \otimes f) \quad \text{and} \quad f \circ \eta = \eta'$$

where μ' is multiplication map and η' is the structure map on A'.

For any k-algebra A we may form the **opposite algebra** denoted A^{op} whose underlying vector space is the same as A and whose structure map is the same as A, but where the multiplication map, μ^{op}, is defined by

$$\mu^{\text{op}}(a \otimes b) := \mu(b \otimes a)$$

for all $a, b \in A$. Notice, A is a commutative algebra if and only if $\mu = \mu^{\text{op}}$.

A k-linear map $f : A \rightarrow B$ so that $f(ab) = f(b)f(a)$ for all $a, b \in A$ is referred to as an **anti-homomorphism**. We note that an anti-homomorphism is a morphism $f : A \rightarrow B^{\text{op}}$.

Definition 1.2. A k-coalgebra is a k-vector space, C, equipped with k-linear maps $\Delta : C \rightarrow C \otimes C$ and $\epsilon : C \rightarrow k$ that make the following diagrams commute:

$$
\begin{array}{c}
C \xrightarrow{\delta} C \otimes C \\
\downarrow \Delta & \downarrow \text{id} \otimes \Delta \\
C \otimes C \xrightarrow{\Delta \otimes \text{id}} C \otimes C \otimes C
\end{array}
\quad (1.3)
$$
where λ, ρ are the canonical isomorphisms defined by $\lambda(c) = 1 \otimes c$ and $\rho(c) = c \otimes 1$ for all $c \in C$.

The map Δ is referred to as the comultiplication map and ϵ is called the counit.

Note that a coalgebra dualizes the definition of an algebra. That is, diagram (1.3) reverses the arrows of diagram (1.1) and diagram (1.4) reverses the arrows of diagram (1.2). For this reason the axiom diagram (1.3) is referred to as coassociativity and the axiom diagram (1.4) is referred to as the counital axiom.

A coalgebra homomorphism or a morphism of coalgebras is a k-linear map $f : C \to C'$ such that

$$(f \otimes f) \circ \Delta = \Delta' \circ f$$

and

$$\epsilon = \epsilon' \circ f$$

where Δ', ϵ' are the comultiplication and counit of C', respectively. Again note that a morphism of coalgebras dualizes the definition for a k-algebra homomorphism.

Let $\text{op} : C \otimes C \to C \otimes C$, be the k-linear map defined by $\text{op}(c \otimes c') = c' \otimes c$ for $c, c' \in C$. For any coalgebra C we may form the co-opposite coalgebra
denoted C^{cop} whose underlying vector space is the same as C, but where the comultiplication map, Δ^{op}, is defined by

$$
\Delta^{\text{op}} := \text{op} \circ \Delta.
$$

A coalgebra is co-commutative if $\Delta = \Delta^{\text{op}}$. A morphism $f : C \to D^{\text{op}}$ is referred to as a coalgebra anti-homomorphism from C to D.

Sweedler’s Notation

For all x in a coalgebra C we have

$$
\Delta(x) = \sum_{i=1}^{n} x'_i \otimes x''_i.
$$

In order to make what follows more readable, we adopt Sweedler’s sigma notation. That is, we will denote the above expression by

$$
\Delta(x) = \sum_{(x)} x_1 \otimes x_2
$$

where x_1 and x_2 stand for the first and second components of the pure tensors in $\Delta(x)$. Using this notation, coassociativity of Δ becomes

$$
\sum_{(x)} \left(\sum_{(x_1)} (x_1)_1 \otimes (x_1)_2 \right) \otimes x_2 = \sum_{(x)} x_1 \otimes \left(\sum_{(x_2)} (x_2)_1 \otimes (x_2)_2 \right).
$$
Since this is still a bit unwieldy, simplifying notation further we denote either side of this equation by

$$\sum_{(x)} x_1 \otimes x_2 \otimes x_3.$$

In this notation f is a coalgebra homomorphism if and only if

$$\sum_{(x)} f(x_1) \otimes f(x_2) = \sum_{(f(x))} f(x_1) \otimes f(x_2)$$

for all $x \in C$. Finally, we note that

$$\Delta^{\text{op}}(x) = \sum_{(x)} x_2 \otimes x_1.$$

Bialgebras and Hopf Algebras

Definition 1.3. A **bialgebra** is a k-algebra, H, that is also a coalgebra so that the comultiplication Δ and counit ϵ are morphisms of algebras. Equivalently, from [17, Theorem III.2.1] H is a bialgebra if the maps μ and η are coalgebra morphisms.

A **morphism of bialgebras** is a map that is both a morphism of algebras and a morphism of coalgebras.

For a bialgebra H, let H^{op} denote the vector space that has the same underlying k-vector space as H, but with structure map η, multiplication μ^{op}, comultiplication Δ, and counit ϵ. Similarly, H^{cop} has structure map η, multiplication
μ, comultiplication Δ^{op}, and counit ϵ, From \cite[Proposition II.2.2]{[17]} if H is a bialgebra, then so are H^{op} and H^{cop}.

Let C be a coalgebra and A a k-algebra.

Definition 1.4. *The convolution product*, \ast, *of two* k-linear maps $f, g : C \rightarrow A$ *is defined as the linear map* $f \ast g : C \rightarrow A$ *such that*

$$(f \ast g)(x) = \sum_{(x)} f(x_1)g(x_2).$$

Notice, for any linear map $f : C \rightarrow A$ that $f \ast \eta \epsilon = \eta \epsilon \ast f = f$. Hence, C^\ast and $\text{Hom}_k(C, A)$ are k-algebras with multiplication \ast and unit, $\eta \epsilon$.

Definition 1.5. *Let* $\gamma : C \rightarrow A$ *be a* k-linear map where $\gamma(1) = 1$. *Then* γ *is convolution invertible if there exists a* k-linear map $\overline{\gamma} : C \rightarrow A$ *so that*

$$\gamma \ast \overline{\gamma} = \overline{\gamma} \ast \gamma = \eta \circ \epsilon.$$

Let H be a bialgebra. *An antipode*, S, *is an endomorphism of* H *so that*

$$\text{id} \ast S = S \ast \text{id} = \eta \circ \epsilon.$$

That is, the identity map on H is convolution invertible with convolution inverse S.

16
Using Sweedler’s notation, this can be rewritten as

\[\sum_{(x)} S(x_1)x_2 = \sum_{(x)} x_1S(x_2) = \epsilon(x) \cdot 1 \]

for \(x \in H \).

Definition 1.6. A Hopf algebra \(H \) is a bialgebra with an antipode, \(S \).

From \([17, \text{Theorem II.3.4}]\) we have that \(S \) is an algebra anti-homomorphism. A morphism of Hopf algebras is a map \(f : H \to H' \) that is a morphism between the underlying bialgebras so that \(f \circ S = S' \circ f \) where \(S \) and \(S' \) are the antipodes of \(H \) and \(H' \), respectively.

From \([17, \text{Corollary II.3.5}]\) \(H^{\text{op}} \) is a Hopf algebra with antipode \(S \). Moreover, if \(S \) is an anti-isomorphism, then \(H^{\text{op}} \) and \(H^{\text{cop}} \) are also Hopf algebras with antipode \(S^{-1} \).

Definition 1.7. A Hopf ideal \(I \) in a Hopf algebra \(H \) is an ideal of \(H \) so that \(I \subset \ker \epsilon \) and \(\Delta(I) \subset H \otimes I + I \otimes H \) and \(S(I) \subset I \).

If \(I \) is a Hopf ideal then \(H/I \) is also a Hopf algebra with comultiplication \(\Delta, \) counit \(\epsilon, \) and antipode \(S \) induced from \(\Delta, \epsilon, \) and \(S \) \([23, \text{Section 1.1}]\). We say \(H/I \) is the quotient or factor Hopf algebra induced from the Hopf ideal \(I \).

The Hopf dual for \(H \) is the subspace of \(H^* \) defined by

\[H^0 := \{ f \in H^* \mid f(I) = 0 \text{ some ideal } I \text{ with } \dim_k(H/I) < \infty \} \].
We note that H^o is a subalgebra of H^*. Also, H^o is a Hopf algebra using the transpose of the comultiplication map in H.

1.3 Modules, Comodules, and Comodule Algebras

Definition 1.8. Let A be a k-algebra with structure map η and multiplication map μ. A (left) A-module M, is a k-vector space with a linear map $\mu_M : A \otimes M \to M$ such that the following diagrams commute

\[
\begin{array}{c}
A \otimes A \otimes M \xrightarrow{\mu \otimes \text{id}} A \otimes M \\
\downarrow \text{id} \otimes \mu_M & \downarrow \mu_M \\
A \otimes M \xrightarrow{\mu_M} M
\end{array}
\]

(1.5)

\[
\begin{array}{c}
k \otimes A \xrightarrow{\eta \otimes \text{id}} A \otimes M \\
\uparrow l_M & \uparrow \mu_M \\
A
\end{array}
\]

(1.6)

where l_M is the canonical isomorphism defined by $l_M(s \otimes a) = sa$ for $s \in k$ and $a \in A$. The map μ_A is called the **structure map** for the A-module M or the **action** of A on the module. A **right** A-module is defined similarly.

A **morphism of A-modules** is a linear map $f : M \to M'$ so that $\mu_{M'} \circ (\text{id} \otimes f) = f \circ \mu_M$. For $a \in A$ and $m \in M$ we will often denote $\mu_M(a \otimes m)$ by am or $a.m$. Similar conventions also hold for a right module.
Modules over a Hopf Algebra

Let \(H \) be a bialgebra. If \(M \) and \(M' \) are both \(H \)-modules, then \(M \otimes M' \) is also an \(H \)-module with \(H \)-action defined by

\[
h.(m \otimes m') := \sum_{(h)} h_1.m \otimes h_2.m'
\]

for all \(m \in M, m' \in M' \), and \(h \in H \).

Now suppose that \(H \) is a Hopf algebra. For \(M \) an \(H \)-module, the **dual \(H \)-module**, denoted \(M^* \), is a left \(H \)-module on the dual space (i.e. the space of linear functions \(f : M \to k \)) with \(H \)-action defined by

\[
(h.f)(m) = f(S(h).m)
\]

for all \(f \in M^*, h \in H, \text{ and } m \in M \). In addition, we also define a right \(H \)-module on \(M^* \) given by

\[
(f.h)(x) = f(h.x)
\]

for all \(h \in H, f \in M^* \) and \(x \in M \).

Comodules, Comodule Algebras, and Module Algebras

Definition 1.9. Let \(C \) be a coalgebra. A (left) \(C \)-comodule, \(M \), is a \(k \)-vector space with a \(k \)-linear map \(\Delta_M : M \to C \otimes M \) such that the following diagrams
commute:

\[
\begin{array}{c}
M \xrightarrow{\Delta_M} C \otimes M \\
\downarrow \Delta_M \\
C \otimes M \xrightarrow{\Delta \otimes \text{id}} C \otimes C \otimes M
\end{array}
\]

(1.7)

\[
\begin{array}{c}
k \otimes M \xleftarrow{\epsilon \otimes \text{id}} C \otimes M \\
\downarrow \lambda_M \\
M \xrightarrow{\Delta_M}
\end{array}
\]

(1.8)

where \(\lambda_M\) is the canonical isomorphism defined by \(\lambda_M(m) = 1 \otimes m\) for all \(m \in M\).

The map \(\mu_M\) is called the coaction of the coalgebra. A right \(C\)-comodule is defined similarly.

A morphism of \(C\)-comodules is a linear map \(f : M \to M'\) so that \((\text{id} \otimes f) \circ \Delta_M = \Delta_{M'} \circ f\).

Note the diagrams in the definition of a comodule dualizes the definition of a module. That is, diagram (1.7) reverse the arrows of diagram (1.5) and diagram (1.8) reverses the arrows of diagram (1.6). We note that \(C\) is a \(C\)-comodule using the comultiplication \(\Delta\).

Definition 1.10. Let \(H\) be a bialgebra and \(A\) an algebra. We say \(A\) is an \(H\)-comodule algebra (on the left) if

(i) \(A\) is a left \(H\)-comodule with coaction \(\Delta_A : A \to H \otimes A\);

(ii) \(\Delta_A\) is a morphism of algebras.

An \(H\)-comodule algebra on the right is defined similarly.
It follows from [17, Proposition III.7.2] that if $\mu_A : A \otimes A \to A$ and $\eta_A : k \to A$ are the structure maps for the algebra A and A is a left H-comodule, then A is an H-comodule algebra if and only if μ_A and η_A are H-comodule morphisms.

Definition 1.11. Let H be a bialgebra and A an algebra. We say A is an H-module algebra (on the left) if

(i) A is an H-module;

(ii) The multiplication map and structure map for A are morphisms of H-modules.

An H-module algebra on the right is defined similarly.

1.4 Smash Product and Coinvariants

Definition 1.12. Let A be a left H-module algebra. The (right) smash product denoted $A \# H$ is defined as follows,

(i) As a k-vector space $A \# H = A \otimes H$ and we write $a \# h$ for the elements $a \otimes h$;

(ii) Multiplication is defined by

$$(a \# h)(b \# k) = \sum_{(h)} a(h_1.b) \# h_2k$$
for all $a, b \in A$ and $h, k \in H$.

Similarly, if A is a right H-module algebra the left smash product $H\# A$ has underlying k-vector space $H \otimes A$ and multiplication defined by

$$(h\# a)(k\# b) = \sum_{(k)} hk_1\# (a.k_2)b$$

for all $h, k \in H$ and $a, b \in A$.

Definition 1.13. Let H be a bialgebra. A (left) coinvariant for a left H-comodule algebra B is any element $b \in B$ so that $\Delta_B(b) = 1 \otimes b$. Similarly, a right coinvariant for a right comodule algebra is an element b so that $\Delta_B(b) = b \otimes 1$.

Since Δ_B is an algebra homomorphism, it follows that if $a, b \in B$ are left (right) coinvariants then ab is also a left (right) coinvariant. Therefore, the left (right) coinvariants of B form a subalgebra that we denote by $B^{\text{co } \Delta_B}$.

Definition 1.14. Let H be a Hopf algebra, B a right H-comodule algebra, and $A = B^{\text{co } \Delta_B}$. The comodule algebra B is called a (right) H-cleft extension of A if there is an H-comodule morphism $\gamma : H \to B$ where $\gamma(1) = 1$ that is convolution invertible (with convolution inverse γ). A left H-cleft extension is defined similarly for a left H-comodule algebra.
According to a result of [2], shown in [23, Proposition 7.2.3], for B an H-cleft extension with $\sigma : H \otimes H \rightarrow A$ defined by

$$
\sigma(h, k) := \sum_{(h), (k)} \gamma(h_1) \gamma(k_1) \bar{\gamma}(h_2 k_2)
$$

there is a left H-action on A is given by

$$
h.a := \sum_{(h)} \gamma(h_1) a \bar{\gamma}(h_2),
$$

and there is a well-defined multiplication on $A \otimes H$ given by

$$(a \otimes h)(b \otimes k) := \sum_{(h), (k)} a(h_1, b) \sigma(h_2, k_1) \otimes h_3 k_2$$

for all $a, b \in A$ and $h, k \in H$.

Similarly, if B' is a left H-cleft extension of A' with

$$
\sigma'(h, k) := \sum_{(h), (k)} \bar{\gamma}(h_1 k_1) \gamma(h_2) \gamma(k_2)
$$

there is a right H-action on A' is given by

$$
a.h := \sum_{(h)} \bar{\gamma}(h_1) a \gamma(h_2),
$$
and there is a well-defined multiplication on $H \otimes A'$ given by

$$(h \otimes a)(k \otimes b) := \sum_{(h), (k)} h_1k_1 \otimes \sigma'(h_2, k_2)(a.h_3)b$$

(1.10)

for all $a, b \in A'$ and $h, k \in H$.

Definition 1.15. The k-algebra with multiplication defined by equation (1.9) is called a (right) crossed product of A and H. It is denoted $A\#_{\sigma}H$ and the vectors $a \otimes h$ are denoted by $a \# h$. Similarly, $H\#_{\sigma'}A'$ is the left crossed product of H and A' with multiplication defined by equation (1.10).

For the remainder of this section H will be a Hopf algebra, B an H-comodule algebra, and $A = B^{co \Delta_B}$.

Definition 1.16. Let B be an H-cleft extension of A with map $\gamma : H \to B$ and B' be an H'-cleft extension of A' with map $\gamma' : H' \to B'$. Let $\tau : H \to H'$ be a Hopf algebra homomorphism and let $f : A \to A'$ be a k-algebra homomorphism. The maps τ and f are H-cleft intertwining if they have the property that $\gamma' \tau = f \gamma$ and $\overline{\gamma'} \tau = f \overline{\gamma}$. Similar definitions also hold for left H-cleft extensions.

Proposition 1.17. Let $\tau : H \to H'$ be a Hopf algebra homomorphism and $f : B \to B'$ a k-algebra homomorphism with $f(A) \subseteq A'$. If τ and f are H-cleft intertwining maps then the map $f \otimes \tau : A\#_{\sigma}H \to A'\#_{\sigma'}H'$ is a k-algebra homomorphism.

Similar statements also hold for left crossed products.
Proof. First note that for all $h,k \in H$ we have

$$f(\sigma(h,k)) = f \left(\sum_{(h),(k)} \gamma(h_1)\gamma(k_1)\overline{\gamma}(h_2k_2) \right) = \sum_{(h),(k)} f(\gamma(h_1)) f(\gamma(k_1)) f(\overline{\gamma}(h_2k_2))$$

$$= \sum_{(h),(k)} \gamma'(\tau(h_1)) \gamma'(\tau(k_1)) \overline{\gamma'}(\tau(h_2k_2))$$

$$= \sum_{(\tau(h)),(\tau(k))} \gamma'(\tau(h_1)) \gamma'(\tau(k_1)) \overline{\gamma'}(\tau(h_2k_2))$$

$$= \sigma'(\tau(h),\tau(k)).$$

Moreover, for all $h \in H$ and $a \in A$ we have

$$f(h.a) = f \left(\sum_{(h)} \gamma(h_1)a\overline{\gamma}(h_2) \right) = \sum_{(h)} f(\gamma(h_1)) f(a) f(\overline{\gamma}(h_2))$$

$$= \sum_{(h)} \gamma'(\tau(h_1)) f(a) \overline{\gamma'}(\tau(h_2))$$

$$= \sum_{(\tau(h))} \gamma'(\tau(h_1)) f(a) \overline{\gamma'}(\tau(h_2)) = \tau(h).f(a).$$

Since $f \otimes \tau$ is a k-linear map, we need only check that it is an algebra homomorphism. Indeed, for all $h,k \in H$ and $a,b \in A$ we have

$$(f \otimes \tau)((a\#h)(b\#k)) = (f \otimes \tau) \left(\sum_{(h),(k)} a(h_1.b)\sigma(h_2,k_1)\#h_3k_2 \right)$$

$$= \sum_{(h),(k)} f(a(h_1.b)) f(\sigma(h_2,k_1)) \# \tau(h_3k_2)$$
\[
\sum_{(h)(k)} f(a)f(h_1.b)\sigma'(\tau(h_2), \tau(k_1))\#\tau(h_3)\tau(k_2)
\]
\[
= \sum_{(h)(k)} f(a)(\tau(h_1).f(b))\sigma'(\tau(h_2), \tau(k_1))\#\tau(h_3)\tau(k_2)
\]
\[
= \sum_{(\tau(h))(\tau(k))} f(a)(\tau(h_1).f(b))\sigma'(\tau(h_2), \tau(k_1))\#\tau(h_3)\tau(k_2)
\]
\[
= (f(a)\#\tau(h))(f(b)\#\tau(k)). \quad \square
\]

We may denote the map \(f \otimes \tau \) by \(f\#\tau \). Moreover, if \(\tau \) and \(f \) are isomorphisms, so is \(f\#\tau \).

If \(\gamma \) is a \(k \)-algebra homomorphism then

\[
\sigma(h, k) = \sum_{(h)(k)} \gamma(h_1k_1)\overline{\gamma}(h_2k_2) = (\gamma \star \overline{\gamma})(hk) = \epsilon(hk) \cdot 1
\]

for all \(h, k \in H \). In this case, we note that multiplication becomes

\[
(a\#h)(b\#k) = \sum_{(h)} a(h_1.b)\#h_2k
\]

for all \(a, b \in A \) and \(h, k \in H \). That is, \(A\#_H H \) is exactly the (right) smash product from Definition 1.12. Similarly, if \(\gamma \) is a homomorphism, the left crossed product becomes the left smash product.
Theorem 1.18 (Proposition 7.2.3]). Let H be a Hopf algebra, and B an H-cleft extension of A. There is a k-algebra isomorphism $\Phi : A\#_{\sigma}H \to B$ given by $\Phi(a\#h) = a\gamma(h)$.

Similarly, for B' a left H-cleft extension of A' there is a k-algebra isomorphism $\Psi : H'\#_{\sigma'}A' \to B'$ defined by $\Psi(h\#a) = \gamma(h)a$.

1.5 Prime Ideals and H-prime ideals

Let R be a ring.

Definition 1.19. A prime ideal P in R is any proper ideal of R such that whenever I and J are ideals of R with $IJ \subseteq P$ then either $I \subseteq P$ or $J \subseteq P$.

The set of all prime ideals for R is denoted by $\text{spec}(R)$. A completely prime ideal P is an ideal so that R/P is a domain. Note, if P is completely prime then P is prime. (The converse is not true, generally.)

Let H be a group acting by automorphisms on R.

Definition 1.20. An H-ideal K is an ideal of R so that $h.K = K$ for all $h \in H$. An H-prime ideal K is a proper H-ideal so that whenever I, J are H-ideals of R so that $IJ \subseteq K$ then either $I \subseteq K$ or $J \subseteq K$.

The set of all H-prime ideals for R is denoted by $H\text{-spec}(R)$.

Suppose that the group H acting on R is an affine algebraic group over k. The action of H on A is rational if A is the directed union of finite dimensional H-
invariant k-subspaces V_i, so that the restriction maps $H \to \text{GL}(V_i)$ are morphisms of algebraic varieties.

1.6 Gelfand-Kirillov Dimension

Let R be a k-algebra. If V and W are subspaces of R, let VW denote the set of all finite sums of products vw where $v \in V$ and $w \in W$. Moreover, we denote $V^0 = k$ and for any natural number n denote $V^n = VV^{n-1}$.

Definition 1.21. A (nonnegative, exhaustive) filtration for R is some indexed family of subspaces $\{R_i \mid i \in \mathbb{Z}_{\geq 0}\}$ so that

(i) $R_i \subseteq R_j$ for $i < j$;

(ii) $R_i R_j \subset R_{i+j}$ for all i, j;

(iii) $\bigcup_{i=0}^{\infty} R_i = R$.

The filtration is standard if $R_i = R_1^i$ for all i. The filtration is finite if $\dim R_n < \infty$ for all n.

Definition 1.22. A k-algebra R is affine if it is generated as a k-algebra by a finite set of elements.

If R is affine then R is necessarily generated by a finite dimensional vector space V called a generating subspace for R. Moreover, R has a standard
finite filtration generated by V, given by $R_0 = V^0 = k$ and $R_n = \sum_{i=0}^{n} V^i$ for each $n \in \mathbb{N}$.

For a generating subspace V with standard filtration $\{R_i\}$ as above, let

$$g_V := \limsup_{i \to \infty} \left(\frac{\log \dim(R_i)}{\log i} \right).$$

Lemma 1.23 ([22, Lemma 8.1.10]). Let V, V' be generating subspaces for standard filtrations $\{R_i\}$ and $\{R'_i\}$ on a ring R. Then $g_V = g_{V'}$.

Using this Lemma, we have a well-defined invariant of the ring R.

Definition 1.24. The Gelfand-Kirillov dimension or **GK dimension** for an affine k-algebra R is

$$\text{GK.dim} \,(R) = g_V$$

for any choice of generating subspace V.

Recall the definitions and notation of Section 1.4. We have the following Lemma.

Lemma 1.25. Let H be a Hopf algebra and A an H-module algebra. Suppose $U \subseteq W \#V$ is a generating subspace for $A \#H$ where V is a finite dimensional subspace of H and W is a finite dimensional subspace of A. Assume $H.W \subseteq W$ and $\Delta(V) \subseteq H \otimes V$. Then

$$\sup(\text{GK.dim} \,(A), \text{GK.dim} \,(H)) \leq \text{GK.dim} \,(A \#H) \leq \text{GK.dim} \,(A) + \text{GK.dim} \,(H).$$
Proof. The first inequality follows from the fact that A and H naturally imbed into $A\#H$ as the the subalgebras $A\#1$ and $1\#H$, respectively.

Let n be a natural number and suppose $U^n \subseteq W^n \# V^n$. We first observe that $H.W^n \subseteq (H.W)W^{n-1} \subseteq W^n$. Suppose $b \in W^n$ and $k \in V^n$ with $a \in W$ and $h \in V$. Since $h_2 \in V$ and $h_1.b \in W^n$ and by how multiplication on $A\#H$ is defined, we have

$$(a\#h)(b\#k) = \sum_{(h)} a(h_1.b)\#h_2k \in W^{n+1} \# V^{n+1}.$$

Hence, $U^{n+1} \subseteq W^{n+1} \# V^{n+1}$. Therefore $U^k \subseteq W^k \# V^k$ for all $k \in \mathbb{N}$.

Next, let S and T be the subalgebras of A and H generated by W and V, respectively. From what we have just shown, it follows that $\dim(A\#H)_k \leq (\dim S_k)(\dim(T_k)$ for all nonnegative integers k. Thus, by [22, Lemma 8.1.7 (ii)] the proposition follows.

We note that Lemma 1.25 also holds for a right smash product $H\#A$ making the appropriate changes.
1.7 Skew Polynomial Rings

Let R be a ring, α an automorphism of R, and δ a map on R. The map δ is an α-derivation if

$$
\delta(rs) = \alpha(r)\delta(s) + \delta(r)s \quad \text{and} \quad \delta(r + s) = \delta(r) + \delta(s)
$$

for all $r, s \in R$.

Definition 1.26. A skew polynomial ring over R, denoted $S = R[x; \alpha, \delta]$, is a ring satisfying the following conditions:

(i) S is a ring containing R as a subring;

(ii) $x \in S$;

(iii) S is a free left R-module with basis $\{1, x, x^2, \ldots\}$;

(iv) α is an automorphism of R and δ is an α-derivation;

(v) $xr = \alpha(r)x + \delta(r)$ for all $r \in R$.

Definition 1.27. A skew polynomial k-algebra is a skew polynomial ring $S = R[x; \alpha, \delta]$ so that R is a k-algebra and α, δ are k-linear. It follows that S is a k-algebra.

We say

$$
S = R[x_1; \alpha_1, \delta_1][x_2; \alpha_2, \delta_2] \cdots [x_n; \alpha_n, \delta_n]
$$
is an iterated skew polynomial ring if

\[(R[x_1; \alpha_1, \delta_1][x_2; \alpha_2, \delta_2] \cdots [x_{i-1}; \alpha_{i-1}, \delta_{i-1}])[x_i; \alpha_i, \delta_i]\]

is a skew polynomial ring over \(R[x_1; \alpha_1, \delta_1][x_2; \alpha_2, \delta_2] \cdots [x_{i-1}; \alpha_{i-1}, \delta_{i-1}]\) for each \(i = 1, 2, \ldots, n\).

Lemma 1.28. Let \(S = R[x; \alpha, \delta]\) be a skew polynomial \(k\)-algebra and let \(V\) be a generating subspace of \(R\). Suppose \(\delta'\) is an \(\alpha\)-derivation of \(R\). If \(\delta(v) = \delta'(v)\) for all \(v \in V\) then \(\delta = \delta'\).

Proof. By hypothesis, for all \(v \in V\) we have \(\delta(v) = \delta'(v)\). Proceeding inductively, suppose for all \(w \in V^n\) that \(\delta(w) = \delta'(w)\). Let \(z \in V^{n+1}\). Then \(z = \sum_i v_iw_i\) where \(v_i \in V\) and \(w_i \in V^n\). Hence,

\[
\delta(z) = \delta\left(\sum_i v_iw_i\right) = \sum_i (\alpha(v_i)\delta(w_i) + \delta(v_i)w_i)
\]

\[
= \sum_i (\alpha(v_i)\delta'(w_i) + \delta'(v_i)w_i) = \delta'\left(\sum_i v_iw_i\right) = \delta'(z).
\]

Thus \(\delta(z) = \delta'(z)\) for all \(z \in V^{n+1}\). Therefore, for all \(N \in \mathbb{N}\) if \(z \in V^N\) then \(\delta(z) = \delta'(z)\). Since every \(z \in R\) is in \(V^N\) for some \(N\) large enough, it follows that \(\delta = \delta'\). \(\square\)
Definition 1.29. Let \(\lambda \) a nonzero element of \(k \) with \(\lambda \neq \pm 1 \). For all \(m \in \mathbb{N} \) define

\[
[m]_\lambda := \frac{\lambda^m - \lambda^{-m}}{\lambda - \lambda^{-1}}.
\]

We define \([0]_\lambda! = 1\) and for \(m \in \mathbb{N} \) we define

\[
[m]_\lambda! := [m]_\lambda[m-1]_\lambda \cdots [1]_\lambda.
\]

Finally, for \(m \in \mathbb{Z}_{\geq 0} \) and \(l = 0, 1, \ldots, m \) we define

\[
\binom{m}{l}_\lambda := \frac{[m]_\lambda!}{[l]_\lambda![m-l]_\lambda!}.
\]

Lemma 1.30. Let \(S = R[x; \alpha, \delta] \) be a skew polynomial \(k \)-algebra. Suppose that \(\alpha \delta = \lambda \delta \alpha \) for \(\lambda \) a nonzero, non root of unity in \(k \). For all \(m \in \mathbb{N} \) and \(r, s \in R \) we have

\[
\delta^m(rs) = \sum_{k=0}^{m} \binom{m}{k}_\lambda \alpha^{m-k} \delta^k(r) \delta^{m-k}(s).
\]

Proof. See [1, Section I.8.4]. \(\square \)

Definition 1.31. Let \(S = R[x; \alpha, \delta] \) be a skew polynomial ring. The \(\alpha \)-derivation \(\delta \) is **locally nilpotent** if for each \(r \in R \) there exists an \(N \in \mathbb{N} \) so that \(\delta^N(r) = 0 \).

Lemma 1.32. Let \(S = R[x; \alpha, \delta] \) be a skew polynomial \(k \)-algebra and let \(V \) be a generating subspace for \(R \). Suppose that \(\alpha \delta = \lambda \delta \alpha \) for some nonzero, non root of
unity scalar λ and that there exists an integer m so that $\delta^m(v) = 0$ for all $v \in V$.

Then δ is locally nilpotent.

Proof. By hypothesis, there exists an $m \in \mathbb{N}$ so that $\delta^m(v) = 0$ for all $v \in V$. Proceeding inductively, suppose that for all $w \in V^n$ that there is an integer s so that $\delta^s(w) = 0$. Let $z \in V^{n+1}$. Then $z = \sum_i v_i w_i$ where $v_i \in V$ and $w_i \in V^n$.

From Lemma 1.30 we have

$$
\delta^{s+m}(z) = \delta^{s+m} \left(\sum_i v_i w_i \right) = \sum_i \sum_{k=0}^{s+m} \binom{s+m}{k} \lambda^{s+m-k} \delta^k(v_i) \delta^{s+m-k}(w_i).
$$

If $k \geq m$ then $\lambda^{s+m-k} \delta^k(v_i) = 0$ by assumption. Moreover, if $k < m$ then $\delta^{s+m-k}(w_i) = 0$ by our hypothesis. Hence, for all $z \in V^{n+1}$ we have $\delta^{s+m}(z) = 0$.

Since every element of R is in V^N for large enough N, it follows that δ is locally nilpotent.

CGL Extensions

Definition 1.33. A CGL extension is an iterated skew polynomial k-algebra

$$R = k[x_1][x_2; \tau_2, \delta_2] \ldots [x_m; \tau_m, \delta_m]$$

equipped with a rational action of a k-torus H by algebra automorphisms, which satisfies the following conditions:

(i) For all $1 \leq j < k \leq m$, $\tau_k(x_j) = \lambda_{kj} x_j$ for some $\lambda_{kj} \in k^*$.

34
(ii) For $2 \leq k \leq m$, δ_k is a locally nilpotent τ_k-derivation on

$$R_{k-1} = k[x_1][x_2; \tau_2, \delta_2] \ldots [x_{k-1}; \tau_{k-1}, \delta_{k-1}].$$

(iii) The elements x_1, \ldots, x_m are H-eigenvectors.

(iv) For every $1 \leq k \leq m$ there is an $h_k \in H$ so that $h_k |_{R_{k-1}} = \tau_k$ and

$$h_k \cdot x_k = \lambda_k x_k$$

where $\lambda_k \in k^*$ is not a root of unity.

1.8 Root Systems

Let V be a vector space over k.

Definition 1.34. A nondegenerate bilinear form on a vector space V is a map $(\cdot, \cdot) : V \times V \to k$ so that

(i) (\cdot, \cdot) is linear in both arguments;

(ii) If $(x, y) = 0$ for all $y \in V$ then $x = 0$;

(iii) If $(x, y) = 0$ for all $x \in V$ then $y = 0$.

To emphasize the vector space V we may write (\cdot, \cdot) as $(\cdot, \cdot)_V$.

Definition 1.35. Let V be a a finite-dimensional space with nondegenerate bilinear form (\cdot, \cdot). A root system Φ for V is a set $\Phi \subset V$ so that

(i) Φ is finite, Φ spans V, $0 \notin \Phi$;
(ii) If $\alpha \in \Phi$, the only multiples of α in Φ are $\pm \alpha$.

(iii) For all $\alpha, \beta \in \Phi$ we have $2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$;

(iv) For all $\alpha, \beta \in \Phi$ we have $\beta - 2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha \in \Phi$.

The elements of Φ are called roots.

For each $\alpha \in \Phi$ we define a transformation s_α of V by

$$s_\alpha(v) := v - 2 \frac{(v, \alpha)}{(\alpha, \alpha)} \alpha$$

(1.11)

for all $v \in V$.

If Φ is a root system for V and Ψ is a root system of W then the two root systems are equivalent if there is an invertible linear transformation $f : V \to W$ that sends Φ to Ψ so that for all $\alpha \in \Phi$ we have

$$fs_\alpha = s_{f(\alpha)}f.$$

Definition 1.36. A base for a root system Φ is a set $\Pi \subset \Phi$ so that

(i) Π is a basis for V;

(ii) Each root $\alpha \in \Phi$ can be expressed as a linear combination of elements of Π such that the coefficients are either all negative or all positive integers.

The roots for which the coefficients are nonnegative (relative to Π) are called the positive roots for Φ. The roots for which the coefficients are nonpositive
are called the **negative roots** for Φ. The elements in Π are called the **positive simple roots**. From [14 Theorem 10.1], every root system Φ has a base.

Definition 1.37. Let $\{\alpha_1, \ldots, \alpha_n\}$ be the set of positive simple roots for a root system Φ. The **Cartan matrix** of Φ is the matrix C so that $C_{ij} = 2\frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle}$.

Theorem 1.38 (14 Proposition 11.1). If Φ a root system for V with base $\{\alpha_1, \ldots, \alpha_t\}$ with Cartan matrix C and Φ' a root systems for W with base $\{\alpha'_1, \ldots, \alpha'_t\}$ with Cartan matrix C', and $C_{ij} = C'_{ij}$ for all i, j, then the bijection $\alpha_i \mapsto \alpha'_i$ extends to an equivalency of the root systems Φ and Φ'.

Theorem 1.38 essentially says that the Cartan matrix of Φ determines Φ up to equivalence.

Weyl Group

Definition 1.39. The **Weyl group** W of Φ is the subgroup of $\text{GL}(V)$ generated by the s_α for $\alpha \in \Phi$ from equation (1.11).

From [14, Theorem 10.3] the Weyl group is generated by the $s_i := s_{\alpha_i}$ where α_i is a positive simple root. A **reduced word** in the Weyl group is an irreducible representation of a element of $w \in W$ as the product of the s_i. The **length** of w is the shortest possible length of a reduced word for w. There is a unique element of longest length in the Weyl group called the **longest word**, which is denoted by w_0 [1, Section I.5.1].
Irreducible Root Systems

Let Φ be a root system for V and Ψ a root system for W. The vector space $V \oplus W$ has a natural bilinear form induced from the bilinear forms on V and W given by

$$(v_1 + w_1, v_2 + w_2)_{V \oplus W} = (v_1, v_2)_V + (w_1, w_2)_W$$

for all $v_i \in V$ and $w_i \in W$. It follows from [11, Proposition 8.3] that $\Phi \sqcup \Psi$ is a root system for $V \oplus W$, which we denote by $\Phi \oplus \Psi$.

Definition 1.40. A root system Φ is **reducible** if $\Phi = \Phi_1 \oplus \Phi_2$ where $\Phi_1, \Phi_2 \neq \emptyset$. A root system is **irreducible** if it is not reducible.

Theorem 1.41 ([14, Proposition 11.3]). Every root system Φ can be decomposed into

$$\Phi_1 \oplus \Phi_2 \oplus \cdots \oplus \Phi_t$$

where each Φ_i is an irreducible nonempty root system. Moreover, this decomposition is unique.

From [14, Lemma 10.4 C] if Φ is an irreducible root system, at most two root lengths occur in Φ. In this case we refer to the roots as **long** or **short** depending on the length. If all roots are the same length, then all roots are considered short.

For an irreducible root system the bilinear form may be normalized so that $(\alpha, \alpha) = 2$ for short roots. It follows this root system is equivalent to our original one.
Convention 1. Let Φ be an irreducible root system. We fix some choice of positive simple roots $\Pi = \{\alpha_1, \cdots, \alpha_n\}$ with $C = (c_{ij})$ the Cartan matrix. The bilinear form is assumed to have the property that $(\alpha, \alpha) = 2$ for short roots.

It follows from Convention 1 that for all positive roots $\alpha_i, \alpha_j \in \Pi$ and α_j a short root, $(\alpha_i, \alpha_j) = c_{ij}$.

Dynkin Diagrams

Definition 1.42. A Dynkin diagram for a root system Φ with Cartan matrix C, is a diagram so that

(i) Each vertex is labeled by a simple root of $\alpha_i \in \Pi$ and each simple root is labeled by some vertex;

(ii) For each pair of distinct $\alpha_i, \alpha_j \in \Pi$ there are $C_{ij}C_{ji}$ edges drawn between the vertices labeled α_i and α_j;

(iii) If the length of α_i is shorter then the length of α_j, then an arrow is drawn pointing from the vertex labeled α_j to the vertex labeled α_i.

A Dynkin diagram is said to be an irreducible if is connected. Hence, a Dynkin diagram is irreducible if and only if the root system is irreducible. Two Dynkin diagrams are equivalent if there is a bijective map of the vertices that preserves the number of edges and direction of the arrows between vertices.
Theorem 1.43 ([14] Theorem 11.4 and [11] Theorem 8.27). Every irreducible Dynkin diagram is equivalent to one of the following:

\[
\begin{align*}
A_n(n \geq 1) & \quad \circ \quad \circ \quad \cdots \quad \circ \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \cdots & \quad \alpha_{n-1} & \quad \alpha_n
\end{align*}
\]

\[
\begin{align*}
B_n(n \geq 2) & \quad \circ \quad \circ \quad \cdots \quad \circ \quad \Rightarrow \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \cdots & \quad \alpha_{n-1} & \quad \alpha_n
\end{align*}
\]

\[
\begin{align*}
C_n(n \geq 3) & \quad \circ \quad \circ \quad \cdots \quad \circ \quad \Leftarrow \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \cdots & \quad \alpha_{n-1} & \quad \alpha_n
\end{align*}
\]

\[
\begin{align*}
D_n(n \geq 4) & \quad \circ \quad \circ \quad \cdots \quad \circ \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \cdots & \quad \alpha_{n-2} & \quad \alpha_{n-1}
\end{align*}
\]

\[
\begin{align*}
E_6 & \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \alpha_3 & \quad \alpha_4 & \quad \alpha_5 & \quad \alpha_6
\end{align*}
\]

\[
\begin{align*}
E_7 & \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \alpha_3 & \quad \alpha_4 & \quad \alpha_5 & \quad \alpha_6 & \quad \alpha_7
\end{align*}
\]

\[
\begin{align*}
E_8 & \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \alpha_3 & \quad \alpha_4 & \quad \alpha_5 & \quad \alpha_6 & \quad \alpha_7
\end{align*}
\]

\[
\begin{align*}
F_4 & \quad \circ \quad \Rightarrow \quad \circ \quad \circ \\
\alpha_1 & \quad \alpha_2 & \quad \alpha_3 & \quad \alpha_4
\end{align*}
\]

\[
\begin{align*}
G_2 & \quad \circ \quad \Rightarrow \quad \circ \\
\alpha_1 & \quad \alpha_2
\end{align*}
\]

Theorem 1.44 ([14] Proposition 14.1). There is a bijective correspondence between the isomorphism classes of indecomposable finite dimensional complex semisimple Lie algebras and irreducible root systems.
Root and Weight Lattices

Definition 1.45. The groups

\[\mathbb{Q}_\Pi := \left\{ \sum_{i=1}^{n} r_i \alpha_i \mid r_i \in \mathbb{Q}, \alpha_i \in \Pi \right\} \quad \text{and} \quad \mathbb{Z}_\Pi := \left\{ \sum_{i=1}^{n} k_i \alpha_i \mid k_i \in \mathbb{Z}, \alpha_i \in \Pi \right\} \]

are called the rational root lattice and root lattice respectively.

For all \(\alpha \in \Phi \) set \(d_\alpha = \frac{(\alpha, \alpha)}{2} \). From [11, Section 8.10] there exist \(\omega_i \in \mathbb{Q}_\Pi \) called the fundamental weights with the property that \((\omega_i, \alpha_j) = d_{\alpha_j} \delta_{ij} \) for all \(\alpha_j \in \Pi \). The set of fundamental weights is denoted by \(\Omega \).

Definition 1.46. The semigroups

\[\Lambda := \left\{ \sum_{i=1}^{n} k_i \omega_i \mid k_i \in \mathbb{Z}, \omega_i \in \Omega \right\} \quad \text{and} \quad \Lambda^+ := \left\{ \sum_{i=1}^{n} k_i \omega_i \mid k_i \in \mathbb{Z}_{\geq 0}, \omega_i \in \Omega \right\} \]

are called the weight lattice and positive weight lattice, respectively.

It is straightforward to see that \(\mathbb{Z}_\Pi \subset \Lambda \) and that for \(\lambda \in \Lambda \) and \(\mu \in \mathbb{Z}_\Pi \) we have \((\lambda, \mu) \in \mathbb{Z} \).

We may give \(\Lambda \) a partial order by defining \(\lambda \geq 0 \) if there exists \(k_i \in \mathbb{Z}_{\geq 0} \) so that \(\lambda = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_n \alpha_n \). If \(\mu, \lambda \in \Lambda \) we define \(\mu \geq \lambda \) if and only if \(\mu - \lambda \geq 0 \).
1.9 Quantum Universal Enveloping Algebras

Let \(q \in k^\times \) with \(q \) not a root of unity. Let \(\mathfrak{g} \) be the irreducible semisimple Lie algebra with corresponding irreducible root system \(\Phi \). Keeping in mind convention \(\square \) for each \(\alpha \in \Phi \) denote \(q_\alpha = q^{d_\alpha} = q^{\frac{(\alpha, \alpha)}{2}} \). Recall Definition \(\square \) For all \(m \in \mathbb{N} \) and \(\alpha \in \Phi \) we use the notation

\[[m]_\alpha := [m]_{q_\alpha} \]

and

\[[m]_\alpha! := [m]_{q_\alpha}!. \]

Finally, for \(m \in \mathbb{Z}_{\geq 0} \) and \(l = 0, 1, \ldots, m \) we set

\[\binom{m}{l}_\alpha := \binom{m}{l}_{q_\alpha}. \]

Definition 1.47. The quantized universal enveloping algebra \(U_q(\mathfrak{g}) \) is the \(k \)-algebra with generators \(E_\alpha, F_\alpha, K_\lambda^{\pm 1} \) for \(\alpha, \lambda \in \Pi \) presented with the following relations: for all \(\alpha, \beta, \lambda, \mu \in \Pi \)

\[
K_\lambda K_\mu = K_\mu K_\lambda \quad (1.13)
\]

\[
K_\lambda K_\lambda^{-1} = K_\lambda^{-1} K_\lambda = 1 \quad (1.12)
\]
\[K_\lambda E_\alpha = q^{(\lambda,\alpha)} E_\alpha K_\lambda \]
(1.14)

\[K_\lambda F_\alpha = q^{-(\lambda,\alpha)} F_\alpha K_\lambda \]
(1.15)

\[[E_\alpha, F_\beta] = \delta_{\alpha\beta} \frac{K_\alpha - K_\alpha^{-1}}{q_\alpha - q_\alpha^{-1}} \]
(1.16)

\[\sum_{l=0}^{1-a_{\alpha\beta}} (-1)^l \binom{1-a_{\alpha\beta}}{l} E_\alpha^{1-a_{\alpha\beta}-l} E_\beta E_\alpha^l = 0 \]
(1.17)

\[\sum_{l=0}^{1-a_{\alpha\beta}} (-1)^l \binom{1-a_{\alpha\beta}}{l} F_\alpha^{1-a_{\alpha\beta}-l} F_\beta F_\alpha^l = 0 \]
(1.18)

where \(\delta_{\alpha\beta} \) is the Kronecker delta and \(a_{\alpha\beta} = 2 \frac{(\alpha,\beta)}{(\alpha,\alpha)} \).

The quantized positive Borel subalgebra, denoted \(U_q^{\geq 0}(g) \), is the subalgebra generated by the \(E_\alpha \) and the \(K_\lambda^{\pm 1} \). Similarly, The quantized negative Borel subalgebra, denoted \(U_q(g)^{\leq 0} \), is the subalgebra generated by the \(F_\alpha \) and the \(K_\lambda^{\pm 1} \). Moreover, the positive nilpotent subalgebra of \(U_q(g) \), denoted \(U_q^+(g) \), is the subalgebra generated by all the \(E_\alpha \) and the negative nilpotent subalgebra, denoted by \(U_q^-(g) \), is the subalgebra generated by all the \(F_\alpha \). Finally, the the quantum torus, denoted by \(U_q^0(g) \), is the subalgebra generated by the \(K_\lambda^{\pm 1} \).

Convention 2. We use the notation \(E_i = E_{\alpha_i}, F_i = F_{\alpha_i} \) and \(K_i^{\pm 1} = K_{\alpha_i}^{\pm 1} \). Furthermore, we also adopt the convention that if \(I = (i_1, i_2, \cdots, i_{N-1}, i_N) \) where each \(i_k \in \{1, 2, \ldots, n\} \) then

\[E_I = E_{i_1} E_{i_2} \cdots E_{i_{N-1}} E_{i_N} \quad \text{and} \quad F_I = F_{i_1} F_{i_2} \cdots F_{i_{N-1}} F_{i_N}. \]
Moreover, $E_0 = 1$ and $F_0 = 1$.

Let $K_{\pm k\alpha_i} = (K_i^{\pm 1})^k$ for $k \in \mathbb{Z}_{\geq 0}$ and $\alpha_i \in \Pi$. Since these elements commute, for any $\lambda \in \mathbb{Z}\Pi$ where $\lambda = k_1\alpha_1 + \cdots + k_n\alpha_n$ we also use the convention that

$$K_{\lambda} = K_{k_1\alpha_1}K_{k_2\alpha_2}\cdots K_{k_n\alpha_n}.$$

We note, it follows from this convention that for $\lambda \in \mathbb{Z}\Pi$ and $1 \leq i \leq n$ we have

$$K_{\lambda}E_i = q^{(\lambda,\alpha_i)}E_iK_{\lambda} \quad \text{and} \quad K_{\lambda}F_i = q^{-(\lambda,\alpha_i)}F_iK_{\lambda}.$$

Hopf algebra Structure

$U_q(g)$ is a Hopf algebra with comultiplication Δ, counit ϵ, and antipode S determined by the following:

$$\Delta(E_i) = K_i \otimes E_i + E_i \otimes 1 \quad \epsilon(E_i) = 0 \quad S(E_i) = -K_i^{-1}E_i$$

$$\Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i \quad \epsilon(F_i) = 0 \quad S(F_i) = -F_iK_i$$

$$\Delta(K_{\lambda}) = K_{\lambda} \otimes K_{\lambda} \quad \epsilon(K_{\lambda}) = 1 \quad S(K_{\lambda}) = K_{\lambda}^{-1}$$

for $i = 1, 2, \ldots, n$ and $\lambda \in \Pi$.

44
The Quantized Universal Enveloping Algebra $\check{U}_q(\mathfrak{g})$

Denote by $\check{U}_q(\mathfrak{g})$ the algebra generated by the E_α, F_α with $\alpha \in \Pi$ and K_λ for $\lambda \in \Omega$ instead of just $\lambda \in \Pi$. It is presented with relations as in equations (1.12) – (1.18), except we now allow $\lambda, \mu \in \Omega$. It is also a Hopf algebra with the same description as the Hopf algebra structure for $U_q(\mathfrak{g})$, again allowing $\lambda \in \Omega$.

The positive (resp. negative) Borel subalgebras of $\check{U}_q(\mathfrak{g})$ denoted by $\check{U}^{\geq 0}_q(\mathfrak{g})$ (resp. $\check{U}^{\leq 0}_q(\mathfrak{g})$) are defined analogously as above. Note that the positive and negative nilpotent subalgebras for $\check{U}_q(\mathfrak{g})$ are the same as for $U_q(\mathfrak{g})$.

1.10 The Algebra of Matrix Coefficients

Weights and Weight Spaces

Continue with \mathfrak{g} as in Section 1.9. Let V be a left $U_q(\mathfrak{g})$-module.

Definition 1.48. A nonzero vector $v \in V$ is a weight vector if it has that has the property that there is a $\lambda \in \Lambda$ and a homomorphism $\sigma : \Pi \to \{\pm 1\}$ such that

$$K_\mu v = \sigma(\mu)q^{(\lambda,\mu)}v$$

for all $\mu \in \Pi$. The element λ is called the weight for v and λ is said to be of type σ.

45
The set of weights for \(V \) is denoted by \(\Omega(V) \). The set of all weight vectors with weight \(\lambda \) of type \(\sigma \), together with 0, is a subspace of \(V \) which we denote by \(V_{(\lambda,\sigma)} \) and call it a weight space of \(V \). If \(\lambda \) is of type \(1 \) we denote \(V_{(\lambda,1)} \) by \(V_\lambda \).

If a weight vector \(v \in V \) has the property that \(E_i v = 0 \) for all the \(E_i \in U_q(g) \) then \(v \) is called a maximal weight vector for \(V \). Analogously, a weight vector \(v \in V \) is a minimal weight vector if \(F_i v = 0 \) for all the \(F_i \in U_q(g) \).

The Category \(\mathcal{C}_q(g) \)

Let \(V_\sigma \) denote the sum of the weight spaces of type \(\sigma \) for a module \(V \). From \cite{15, Section 5.2} we have

\[
V = \bigoplus V_\sigma.
\]

We say a finite dimensional \(U_q(g) \)-module \(V \) has type \(\sigma \) if \(V = V_\sigma \). In particular, irreducible modules have a well-defined type. From, \cite{15, Section 5.2 - 5.4} the class of finite dimensional modules of type \(1 \) is closed under direct sum, tensor product, and duals. Therefore, we denote by \(\mathcal{C}_q(g) \) the full subcategory whose objects are finite dimensional left \(U_q(g) \)-modules of type \(1 \). We note that from \cite{15, Section 5.2} there is an equivalence of categories between \(\mathcal{C}_q(g) \) and the category of all finite dimensional \(U_q(g) \)-modules of type \(\sigma \), for any \(\sigma \).

We collect some basic facts about \(\mathcal{C}_q(g) \) which can be found in \cite{15, Chapters 5, 6}.
For V and W objects in $\mathcal{C}_q(g)$ and V_λ and W_μ weight spaces, $V_\lambda \otimes W_\mu \subseteq (V \otimes W)_{\lambda+\mu}$ and $(V_\lambda)^* \cong (V^*)_\lambda$ where V^* has the left action of $U_q(g)$ from Section 1.3. (See [15, Section 5.3].)

Theorem 1.49. If $V \in \mathcal{C}_q(g)$ then V is the direct sum of its weight spaces.

Theorem 1.50. Let $V \in \mathcal{C}_q(g)$ be irreducible.

(i) V contains a maximal weight vector v_λ with weight $\lambda \in \Lambda^+$.

(ii) $\dim V_\lambda = 1$.

(iii) If ν is any other weight for V then $\nu < \lambda$.

(iv) $U_q(g)^{\leq 0}v_\lambda = V$.

Similarly, V also contains a minimal weight vector $v_{-\mu}$ with weight $-\mu \in -\Lambda^+$ with analogous properties.

From Theorem 1.50, if λ is the weight of a maximal weight vector v_λ then we call v_λ a highest weight vector for V and λ the highest weight for V. Analogously $v_{-\mu}$ is called a lowest weight vector for V and $-\mu$ called the lowest weight for V.

Theorem 1.51. For every $\lambda \in \Lambda^+$ there is an irreducible module $V \in \mathcal{C}_q$ which has highest weight λ. Moreover, if W is any other irreducible module in \mathcal{C}_q with highest weight μ, then $V \cong W$ if and only if $\mu = \lambda$.

47
Taking account of Theorem 1.51 we denote an irreducible module with highest weight λ by $V(\lambda)$. Using this notation, we note $V(\mu) \cong V(\lambda)$ if and only if $\mu = \lambda$.

Definition and Structure of $C_q(\mathfrak{g})$

Definition 1.52. For $V \in \mathcal{C}_q(\mathfrak{g})$ and $f \in V^*$ and $v \in V$, a coordinate function or a matrix coefficient is the linear functional $c^Y_{f,v}$ in $U_q(\mathfrak{g})^*$ defined by

$$c^Y_{f,v}(u) := f(uv)$$

for all $u \in U_q(\mathfrak{g})$. The set of all coordinate functions is denoted by $C_q(\mathfrak{g})$.

Since the annihilator of V is contained in the kernel of $c^Y_{f,v}$ and since V is finite dimensional, $c^Y_{f,v} \in U_q(\mathfrak{g})^\circ$. Therefore, $C_q(\mathfrak{g}) \subseteq U_q(\mathfrak{g})^\circ$.

Note that using the standard addition and multiplication in $U_q(\mathfrak{g})^\circ$, we have

$$c^Y_{f,v} + c^W_{g,w} = c^V_{f \oplus g,v \oplus w}$$

and

$$c^Y_{f,v} c^W_{g,w} = c^V_{f \otimes g,v \otimes w}.$$
Convention 3. For the irreducible modules \(V(\mu) \) in \(C_q(\mathfrak{g}) \), we will often denote \(c_{f,v}^{V(\mu)} \) simply by \(c_{f,v}^\mu \). Moreover, for weight vectors \(v \in V(\mu) \) and \(f \in V(\mu)^* \) with weights \(\nu \) and \(-\lambda \) respectively, we may denote \(c_{f,v}^\mu \) by either \(c_{f,v}^\mu \) or \(c_{-\lambda,v}^\mu \). Therefore, any proposition written with \(c_{-\lambda,v}^\mu \) will be independent of any choice of weight vectors \(v \) or \(f \).

1.11 Some Quantized Coordinate Rings

Define \(\hat{q} = q - q^{-1} \).

Definition 1.53. The quantized coordinate ring for \(M_{n+1} \) or quantum \((n + 1) \times (n + 1) \) matrices, denoted \(O_q(M_{n+1}) \), is the \(k \)-algebra generated by \(\{X_{ij} \mid 1 \leq i, j \leq n + 1\} \) presented with the following relations:

\[
X_{ij}X_{im} = qX_{im}X_{ij} \quad \text{for} \quad j < m \quad (1.19)
\]
\[
X_{ij}X_{lj} = qX_{lj}X_{ij} \quad \text{for} \quad i < l \quad (1.20)
\]
\[
X_{ij}X_{lm} = X_{lm}X_{ij} \quad \text{for} \quad i < l \quad \text{and} \quad j > m \quad (1.21)
\]
\[
X_{ij}X_{lm} - X_{lm}X_{ij} = \hat{q}X_{im}X_{lj} \quad \text{for} \quad i < l \quad \text{and} \quad j < m. \quad (1.22)
\]

We note this presentation is from \cite[Section 3.5]{25} but replacing \(q^{-1} \) there with \(q \) in our relations here. When \(q \to 1 \) we recover exactly the usual presentation for \(O(M_{n+1}) \).
Definition 1.54. Let $I,J \subset \{1,2,\ldots,n+1\}$ with $|I| = |J| = k \neq 0$ and $I = \{i_1,\ldots,i_k\}$ with $i_1 < i_2 < \cdots < i_k$ and $J = \{j_1,\ldots,j_k\}$ with $j_1 < j_2 < \cdots < j_k$. The $k \times k$ quantum minor $[I \mid J]$ is the element of $O_q(M_{n+1})$ defined by

$$[I \mid J] := \sum_{\sigma \in \text{Sym}_k} (-q)^{\ell(\sigma)} X_{i_\sigma(1) j_\sigma(1)} \cdots X_{i_\sigma(k) j_\sigma(k)}.$$

In particular we set

$$D := [1,2,\ldots,n+1 \mid 1,2,\ldots,n+1].$$

The element D is often referred to as the quantum determinant of $O_q(M_{n+1})$ and from [19, 9.2 Proposition 9] belongs to the center of $O_q(M_{n+1})$.

Definition 1.55. The quantized coordinate ring for GL_{n+1} or quantum GL_{n+1} is the k-algebra

$$O_q(SL_{n+1}) := O_q(M_{n+1})[D^\pm 1].$$

Definition 1.56. The quantized coordinate ring for SL_{n+1} or quantum SL_{n+1} is the k-algebra

$$O_q(SL_{n+1}) := O_q(M_{n+1})/\langle D - 1 \rangle.$$

We note that when $q \to 1$ we recover exactly the usual presentation for $O(M_{n+1})$.
We will often abuse notation in $O_q(SL_{n+1})$ and $O_q(GL_{n+1})$ and will refer to the coset which contains X_{ij} simply by X_{ij}. Similarly, we refer to the coset which contains $[I \mid J]$ simply by $[I \mid J]$.

Algebraic Torus Actions

Let

$$H^+ = (k^*)^{n+1} \times (k^*)^{n+1}$$

(1.24)

and

$$H := \{(u, v) \in (k^*)^{n+1} \times (k^*)^{n+1} \mid u_1 \cdots u_{n+1}v_1 \cdots v_{n+1} = 1\}.$$

From [1, II.1.16] there is a rational H-action on $O_q(SL_{n+1})$ by algebra automorphisms given by

$$(u, v).X_{ij} = u_iv_jX_{ij}$$

(1.25)

for all $(u, v) \in H$ and $X_{ij} \in O_q(SL_{n+1})$. Similarly, from [1, II.1.15] there is a rational H^+-action by algebra automorphisms on $O_q(M_{n+1})$ and $O_q(GL_n)$ given by $(u, v).X_{ij} = u_iv_jX_{ij}$.

51
Hopf Algebra Structure

In [19, 9.2.3 Proposition 10] it is shown that $O_q(M_{n+1})$ is a coalgebra. Specifically, the comultiplication and the counit are defined by

$$
\Delta(X_{ij}) := \sum_{k=1}^{n+1} X_{ik} \otimes X_{kj} \quad \text{and} \quad \epsilon(X_{ij}) := \delta_{ij}.
$$

We note that from [19, 9.2.2 Proposition 7(ii)]

$$
\Delta([I \mid J]) = \sum_K [I \mid K] \otimes [K \mid J]. \quad (1.26)
$$

Moreover, $O_q(SL_{n+1})$ is a Hopf algebra with comultiplication and counit carried over from $O_q(M_{n+1})$ and with the antipode defined by

$$
S(X_{ij}) = q^{i-j}[1, 2, \cdots, \widehat{j}, \cdots, n+1 \mid 1, 2, \cdots, \widehat{i}, \cdots, n+1].
$$

In fact, from [19, 9.2.3 Proposition 10] we have

$$
S^2(X_{ij}) = q^{2i-2j}X_{ij}.
$$

It follows that S is an anti-isomorphism.
1.12 Quantized Universal Enveloping Algebra

for \(\mathfrak{sl}_{n+1} \)

We now specialize Section 1.9 to \(\mathfrak{g} = \mathfrak{sl}_{n+1} \).

From [14, 11.4 Table 1] the Cartan matrix is the matrix \((C_{ij})\) so that

\[
C_{ij} = \begin{cases}
2 & \text{if } i = j \\
-1 & \text{if } |i - j| = 1 \\
0 & \text{otherwise}
\end{cases}
\]

Moreover, from [14, 13.2 Table 1] the fundamental weights are given by

\[
\omega_i = \frac{1}{n+1} \left((n-i+1) \sum_{t=1}^{i-1} t\alpha_t + i \sum_{t=i}^{n} (n-t+1)\alpha_t \right).
\]

Using the convention that \(\omega_0 = \omega_{n+1} = 0 \), we also have

\[
\alpha_i = -\omega_{i-1} + 2\omega_i - \omega_{i+1}.
\] (1.27)

Specializing Definition 1.47 we have the following presentation for \(U_q(\mathfrak{sl}_{n+1}) \).

The generators are the \(K_i^{\pm 1} \) and the \(E_i, F_j \) where \(i, j \in \{1, 2, \ldots, n\} \) presented with the following relations: for \(i, j \in \{1, 2, \ldots, n\} \)

\[
K_i K_i^{-1} = 1 \quad \quad \quad \quad K_i K_j = K_j K_i
\]
\[K_j E_i = q^{(\alpha_j, \alpha_i)} E_i K_j \quad \quad \quad K_j F_i = q^{-(\alpha_j, \alpha_i)} F_i K_j \]

\[E_i E_j = E_j E_i \text{ for } |i - j| > 2 \quad \quad \quad F_i F_j = F_j F_i \text{ for } |i - j| > 2 \]

\[[E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}} \]

\[E_i^2 E_j - (q + q^{-1}) E_i E_j E_i + E_j E_i^2 = 0 \text{ for } |i - j| = 1 \]

\[F_i^2 F_j - (q + q^{-1}) F_i F_j F_i + F_j F_i^2 = 0 \text{ for } |i - j| = 1. \]

Example: The Module \(V(\omega_1) \)

Since the module \(V(\omega_1) \) is so integral for what follows, we examine it a bit more closely.

Using [15, Section 5.15] we have that \(\text{dim } V(\omega_1) = n + 1 \) and there exists a basis \(\{e_1, e_2, \ldots, e_{n+1}\} \) so that each \(e_j \) is a weight vector with weight \(\omega_1 - \alpha_1 + \cdots - \alpha_j - 1 \).

Moreover, we may select the \(e_j \) so that \(E_i e_j = \delta_{i,j-1} e_{j-1} \) and \(F_i e_j = \delta_{i,j} e_{j+1} \) for all the \(E_i, F_i \in U_q(\mathfrak{sl}_n) \). Consequently, \(e_1 \) has highest weight \(\omega_1 \) and this basis is well-ordered with respect to weight, that is \(\text{wt } e_i \geq \text{wt } e_j \) if and only if \(i \leq j \).

Keeping in mind convention [2] if \(I = (i_1, i_2, \ldots, i_N) \) then

\[E_I e_j = \delta_{i_1,j-N+1} \delta_{i_2,j-N+2} \cdots \delta_{i_{N-1},j-2} \delta_{i_N,j-1} e_{i_1}. \]
Therefore, for \(i < j \) we have \(E_I e_j = e_i \) if and only if \(I = (i, i + 1, \ldots, j - 2, j - 1) \).

Furthermore, if \(I \) is any other nonempty finite sequence of elements from \(\{1, 2, \ldots, n\} \) then \(E_I e_j = 0 \) for all \(j \). Finally, \(E_I e_j = e_j \) if and only if \(I = \emptyset \).

By (1.27) for each \(i = 1, 2, \ldots, n \) we have the weight of \(e_j \) is \(\beta_j := -\omega_{j-1} + \omega_j \).

Hence for \(\lambda \in \mathbb{Z}^I \) and \(1 \leq j \leq n + 1 \) we get

\[
K_\lambda e_j = q^{(\beta_i, \lambda)} e_j.
\]

(1.28)

Denote the natural dual basis \(\{f^1, f^2, \ldots, f^{n+1}\} \) for \(V(\omega_1)^* \) corresponding to \(\{e_1, e_2, \ldots, e_{n+1}\} \) so that \(f^i(e_j) = \delta_{ij} \).

Finally, we note that there is an isomorphism between quantum \(SL_{n+1} \) and the quantum algebra of matrix coefficients \(C_q(\mathfrak{sl}_{n+1}) \).

Theorem 1.57 ([12, Theorem 1.4.1]). \(\{c_{f^i, e_j}^{\omega_1} | i, j = 1, 2, \ldots, n + 1\} \) is a generating set for the algebra \(C_q(\mathfrak{sl}_{n+1}) \). Moreover, there exists a \(k \)-algebra isomorphism \(\kappa : O_q(SL_{n+1}) \to C_q(\mathfrak{sl}_{n+1}) \) so that \(\kappa(X_{ij}) = c_{f^i, e_j}^{\omega_1} \).

Using the isomorphism from Theorem 1.57 we will often abuse notation and denote \(c_{f^i, e_j}^{\omega_1} \) by \(X_{ij} \).
Chapter 2

Quantum Unipotent Radicals of the Standard Borel Subgroups

2.1 Quantum Standard Borel Subgroups

Definition 2.1. The quantized coordinate ring of the positive (negative) standard Borel subgroup or the quantum positive (negative) standard Borel subgroup of quantum SL_{n+1} is

$$O_q(B^+) := O_q(\text{SL}_{n+1})/\langle X_{ij} \mid i > j \rangle$$ and $$O_q(B^-) := O_q(\text{SL}_{n+1})/\langle X_{ij} \mid i < j \rangle.$$

We will often abuse notation and denote simply by X_{ij} the coset containing X_{ij}. We note that these algebras are quantizations of the standard Borel subgroup.
since as \(q \to 1 \) for the above subgroup, we recover the coordinate ring of the standard Borel.

Definition and Structure of \(O_q(N^\pm) \) **and** \(O_q(N^\pm)' \)

Note that in \(O_q(B^+) \) (resp. \(O_q(B^-) \)) that \(X_{ij} = 0 \) for \(i > j \) (resp. \(i < j \)). Moreover, since the quantum determinant is 1, relation (1.23) in \(O_q(B^\pm) \) simplifies to

\[
X_{11} \cdots X_{n+1,n+1} = 1.
\]

Moreover, by relation (1.22) in \(O_q(B^\pm) \) we have \(X_{ii}X_{jj} = X_{jj}X_{ii} \). Taking these two facts together we can conclude that for all \(i = 1, 2, \ldots, n+1 \) the elements \(X_{ii} \) are in fact, invertible in \(O_q(B^\pm) \). Therefore we may define in \(O_q(B^+) \) two subalgebras

\[
O_q(N^+) : = k \langle X_{ii}^{-1}X_{ij} \mid 1 \leq i < j \leq n+1 \rangle
\]

\[
O_q(N^+)’ : = k \langle X_{ij}X_{jj}^{-1} \mid 1 \leq i < j \leq n+1 \rangle.
\]

These are natural choices because they both become isomorphic to \(O_q(N^+) \) when \(q \to 1 \). We may analogously define subalgebras in \(O_q(B^-) \) by

\[
O_q(N^-) : = k \langle X_{jj}^{-1}X_{ji} \mid 1 \leq i < j \leq n+1 \rangle
\]

\[
O_q(N^-)’ : = k \langle X_{ji}X_{ii}^{-1} \mid 1 \leq i < j \leq n+1 \rangle.
\]
Having defined the algebras $O_q(N^\pm)$ and $O_q(N^\pm)'$, we now analyze their structure.

Lemma 2.2. Define for $1 \leq i < j \leq n + 1$ the elements $y_{ij} = X_{ii}^{-1}X_{ij}$ and $z_{ij} = X_{ij}X_{jj}^{-1}$ in $O_q(B^+)$. The following are defining relations for $O_q(N^+)$ and $O_q(N^+)'$ respectively:

\[
y_{ij}y_{im} = qy_{im}y_{ij} \quad (j < m) \quad (2.1)
\]
\[
y_{ij}y_{lj} = qy_{lj}y_{ij} \quad (i < l) \quad (2.2)
\]
\[
y_{ij}y_{lm} = y_{lm}y_{ij} \quad (i < l, j > m) \quad (2.3)
\]
\[
y_{ij}y_{lm} = \begin{cases} y_{lm}y_{ij} & \text{if } j < l \\ q^{-1}y_{lm}y_{ij} + q^{-1}\hat{q}y_{im} & \text{if } j = l \\ y_{lm}y_{ij} + \hat{q}y_{im}y_{ij} & \text{if } j > l \end{cases} \quad (i < l, j < m) \quad (2.4)
\]

\[
z_{ij}z_{im} = qz_{im}z_{ij} \quad (j < m) \quad (2.5)
\]
\[
z_{ij}z_{lj} = qz_{lj}z_{ij} \quad (i < l) \quad (2.6)
\]
\[
z_{ij}z_{lm} = z_{lm}z_{ij} \quad (i < l, j > m) \quad (2.7)
\]
\[
z_{ij}z_{lm} = \begin{cases} z_{lm}z_{ij} & \text{if } j < l \\ q^{-1}z_{lm}z_{ij} + q^{-1}\hat{q}z_{im} & \text{if } j = l \\ z_{lm}z_{ij} + \hat{q}z_{im}z_{ij} & \text{if } j > l \end{cases} \quad (i < l, j < m) \quad (2.8)
\]
Proof. First we show that the generators y_{ij} of $O_q(N^+)$ satisfy the relations (2.1) – (2.4) above. Note, that from the relations (1.21) and (1.22) in $O_q(SL_{n+1})$, the elements X_{ii} commute with X_{lm} in $O_q(B^+)$ whenever $l, m \neq i$.

For $j < m$ and $i = l$

\[y_{ij}y_{im} = X_{ii}^{-1}X_{ij}X_{ii}^{-1}X_{im} = q^{-1}X_{ii}^{-1}X_{ij}X_{im}X_{ii}^{-1} \]
\[= X_{ii}^{-1}X_{im}X_{ij}X_{ii}^{-1} = qX_{ii}^{-1}X_{im}X_{ii}^{-1}X_{ij} = qy_{im}y_{ij}. \]

For $i < l$ and $j = m$

\[y_{ij}y_{lj} = X_{ii}^{-1}X_{ij}X_{ll}^{-1}X_{lj} = X_{ii}^{-1}X_{ll}^{-1}X_{ij}X_{lj} = qX_{ii}^{-1}X_{ll}^{-1}X_{lj}X_{ij} \]
\[= qX_{ll}^{-1}X_{ii}^{-1}X_{lj}X_{ij} = qX_{ll}^{-1}X_{ij}X_{ll}^{-1}X_{ij} = qy_{lj}y_{ij}. \]

For $i < l$ and $j > m$

\[y_{ij}y_{lm} = X_{ii}^{-1}X_{ij}X_{ll}^{-1}X_{lm} = X_{ii}^{-1}X_{ll}^{-1}X_{ij}X_{lm} = X_{ii}^{-1}X_{ll}^{-1}X_{lm}X_{ij} \]
\[= X_{ll}^{-1}X_{ii}^{-1}X_{lm}X_{ij} = X_{ll}^{-1}X_{lm}X_{ii}^{-1}X_{ij} = y_{lm}y_{ij}. \]

For $i < l$, $j < m$, and $j < l$

\[y_{ij}y_{lm} = X_{ii}^{-1}X_{ij}X_{ll}^{-1}X_{lm} = X_{ii}^{-1}X_{ll}^{-1}X_{ij}X_{lm} = X_{ii}^{-1}X_{ll}^{-1}X_{lm}X_{ij} \]
\[= X_{ll}^{-1}X_{ii}^{-1}X_{lm}X_{ij} = X_{ll}^{-1}X_{lm}X_{ii}^{-1}X_{ij} = y_{lm}y_{ij}. \]
For $i < l$, $j < m$, and $j = l$

$$y_{ij} y_{lm} = X_{ii}^{-1} X_{lj}^{-1} X_{jl}^{-1} X_{lm}$$

$$= q^{-1} X_{ii}^{-1} X_{lj}^{-1} X_{ij} X_{lm} = q^{-1} X_{ii}^{-1} X_{ll}^{-1} (X_{lm} X_{ij} + \hat{q} X_{im} X_{lj})$$

$$= q^{-1} X_{ii}^{-1} X_{lj}^{-1} X_{lm} X_{ij} + q^{-1} \hat{q} X_{ii}^{-1} X_{ll}^{-1} X_{im} X_{lj}$$

$$= q^{-1} X_{ll}^{-1} X_{ii}^{-1} X_{lm} X_{ij} + q^{-1} \hat{q} X_{ii}^{-1} X_{im} X_{lj}^{-1} X_{ij}$$

$$= q^{-1} X_{ll}^{-1} X_{lm} X_{ii}^{-1} X_{ij} + q^{-1} \hat{q} X_{ii}^{-1} X_{im} = q^{-1} y_{lm} y_{ij} + q^{-1} \hat{q} y_{im}.$$}

For $i < l$, $j < m$, and $j > l$

$$y_{ij} y_{lm} = X_{ii}^{-1} X_{lj}^{-1} X_{jl}^{-1} X_{lm} = X_{ii}^{-1} X_{ll}^{-1} X_{ij} X_{lm} = X_{ll}^{-1} X_{ii}^{-1} X_{ij} X_{lm}$$

$$= X_{ll}^{-1} X_{ii}^{-1} (X_{lm} X_{ij} + \hat{q} X_{im} X_{ij}) = X_{ll}^{-1} X_{ii}^{-1} X_{lm} X_{ij} + \hat{q} X_{ll}^{-1} X_{ii}^{-1} X_{im} X_{lj}$$

$$= X_{ll}^{-1} X_{lm} X_{ii}^{-1} X_{ij} + \hat{q} X_{ii}^{-1} X_{im} X_{ll}^{-1} X_{ij} = y_{lm} y_{ij} + \hat{q} y_{im} y_{ij}.$$}

We now show that the above relations are a defining set of relations for $O_q(N^+)$. Let B be the algebra generated by $\{b_{ij} \mid 1 \leq i < j \leq n + 1\}$ presented with relations analogous to those in (2.1)-(2.4) above but replacing y_{ij} with b_{ij}. Let ψ be the k-algebra homomorphism $\psi : B \to O_q(N^+)$ defined by $\psi(b_{ij}) = y_{ij}$.
Order the X_{ij} lexicographically in $O_q(B^+)$ omitting $X_{n+1,n+1}$. As asserted in the proof of [8, Lemma 2.8], the set of monomials ordered in this way is linearly independent.

This is still true if we allow ordered monomials with negative exponents on X_{ii}. Moreover since the X_{ii} commute up to scalars with every X_{lm} in $O_q(B^+)$ then the set of ordered monomials in the y_{ij} is linearly independent, hence forms a basis for $O_q(N^+)$.

Now the monomials in the b_{ij} form a spanning set for B. Hence ψ maps a spanning set of B to a basis of $O_q(N^+)$. Therefore ψ is an isomorphism.

It can be similarly verified that the relations (2.5)-(2.8) give a presentation of $O_q(N^+)'$. \hfill \Box

Theorem 2.3. The algebras $O_q(N^\pm)$ and $O_q(N^\pm)'$ are all isomorphic.

Proof. From Lemma 2.2 it is immediate that $O_q(N^+) \cong O_q(N^+)'$ since the algebras have the same presentation.

From [25, Proposition 3.7.1] there exists a transpose homomorphism $\tau : O_q(SL_{n+1}) \rightarrow O_q(SL_{n+1})$ so that $\tau(X_{ij}) = X_{ji}$ for all $i, j \in \{1, 2, \ldots, n + 1\}$. This is an automorphism of $O_q(SL_{n+1})$ that maps $\langle X_{ij} \mid i > j \rangle$ onto $\langle X_{ij} \mid i < j \rangle$. Therefore there is an induced isomorphism $\overline{\tau} : O_q(B^+) \rightarrow O_q(B^-)$.

Observe that

$$\overline{\tau}(X_{ii}^{-1}X_{ij}) = X_{ii}^{-1}X_{ji} = q^{-1}X_{ji}X_{ii}^{-1}$$
and

\[\tau(X_{ij}X_{jj}^{-1}) = X_{ji}X_{jj}^{-1} = q^{-1}X_{jj}^{-1}X_{ji} \]

for all \(i < j \). Hence, \(\tau \) maps \(O_q(N^+) \) onto \(O_q(N^-)' \) and so \(O_q(N^+) \cong O_q(N^-)' \).

Similarly \(\tau \) maps \(O_q(N^+)' \) onto \(O_q(N^-) \). Therefore \(O_q(N^+)' \cong O_q(N^-) \).

Using this theorem we will refer to either \(O_q(N^+) \) or \(O_q(N^+)' \) as a positive quantized unipotent subgroup or positive standard Borel. Similarly, \(O_q(N^-) \) or \(O_q(N^-)' \) are a negative quantized unipotent subgroup. Notice that as \(q \to 1 \) we have a commutative \(k \)-algebra which matches the usual presentation for \(O(N^\pm) \).

2.2 The Algebras of Coinvariants for \(O_q(B^{\pm}) \)

\(O_q(B^{\pm}) \) as Hopf Algebras

Define \(I^- := \langle X_{ij} \mid i > j \rangle \) and \(I^+ := \langle X_{ij} \mid i < j \rangle \) in \(O_q(SL_{n+1}) \). We now show that \(I^\pm \) are Hopf ideals.

Lemma 2.4. \(I^\pm \) are Hopf ideals in \(O_q(SL_{n+1}) \).

Proof. It is clear that \(I^+ \subset \ker \epsilon \). If \(i < j \) then \(\sum_{k=1}^{j-1} X_{ik} \otimes X_{kj} \in O_q \otimes I^+ \) and \(\sum_{k=j}^{n+1} X_{ik} \otimes X_{kj} \in I^+ \otimes O_q \). Hence \(\Delta(X_{ij}) \in O_q \otimes I^+ + I^+ \otimes O_q \). Since \(\Delta \) is an algebra homomorphism we have \(\Delta(I^+) \subset I^+ \otimes O_q + O_q \otimes I^+ \).
Now since \(i < j \) then each monomial in \(M_{ji} \) is of the form

\[
q^{ℓ(σ)} X_{1,σ(1)} \cdots X_{i-1,σ(i-1)}X_{i,σ(i+1)} \cdots X_{j-1,σ(j)}X_{j+1,σ(j+1)} \cdots X_{n+1,σ(n+1)}
\]

where \(σ \) is some permutation on \(I = \{1, 2, \ldots, \hat{i}, \ldots n + 1\} \). If \(σ \) is not the identity there is a \(k ∈ I \) so that \(σ(k) > k \). Hence the above monomial is in \(I^+ \) since it contains either the term \(X_{k,σ(k)} \) or \(X_{k-1,σ(k)} \), both of which are in \(I^+ \). If \(σ \) is the identity then again the above monomial is in \(I^+ \) since it contains the term \(X_{i,i+1} \) which again is in \(I^+ \).

Thus for every \(σ \), the monomials terms of \(M_{ji} \) are in \(I^+ \). Hence \(S(X_{ij}) = q^{i-j}M_{ji} ∈ I^+ \). Since \(S \) is an antihomomorphism then \(S(I^+) ⊂ I^+ \). Therefore \(I^+ \) is a Hopf ideal.

A similar argument also shows that \(I^- \) is a Hopf ideal. \(\square \)

Since \(O_q(B^±) = O_q(SL_{n+1})/I^\pm \) then \(O_q(B^±) \) are Hopf algebras induced from the Hopf algebra structure of \(O_q(SL_{n+1}) \). We denote the comultiplication, counit, and antipode of the Hopf algebra of \(O_q(B^±) \) by \(Δ_{B^±}, \epsilon_{B^±}, \) and \(S_{B^±} \) respectively, when emphasis is needed, otherwise we will retain the standard notation \(Δ, \epsilon, \) and \(S \). Specifically we note that for \(X_{ij} ∈ O_q(B^+) \) and \(X_{rs} ∈ O_q(B^-) \) we have

\[
Δ_{B^+}(X_{ij}) = \sum_{i ≤ k ≤ j} X_{ik} ⊗ X_{kj} \quad \text{and} \quad Δ_{B^-}(X_{rs}) = \sum_{r ≥ k ≥ s} X_{rk} ⊗ X_{ks}.
\]
The Quantum Standard Maximal Torus

In the classical setting the coordinate ring of the standard maximal torus of $O(SL_{n+1})$ is

$$O(T) \cong O(SL_{n+1})/\langle X_{ij} \mid i \neq j \rangle.$$

We may therefore define the quantized coordinate ring of the standard maximal torus for SL_{n+1} or quantum standard maximal torus by

$$O_q(T) := O_q(SL_{n+1})/\langle X_{ij} \mid i \neq j \rangle.$$

Denote by Y_{ii} the coset containing X_{ii} in $O_q(T)$. We first note that $O_q(T)$ is generated by the Y_{ii} where $i = 1, 2, \ldots, n + 1$. It is straightforward to check that $Y_{ii}Y_{jj} = Y_{jj}Y_{ii}$ for all $i, j \in \{1, 2, \ldots, n + 1\}$. Thus $O_q(T)$ is actually a commutative algebra. Moreover since the quantum determinant is 1 in $O_q(SL_{n+1})$ this implies that

$$Y_{1,1} \cdots Y_{n+1, n+1} = 1$$

That is, each of the Y_{ii} are invertible. Therefore we have, in fact, $O_q(T) \cong O(T)$. Moreover, since $O_q(T) = O_q(SL_{n+1})/(I^+ + I^-)$ this implies that $O_q(T)$ is also a Hopf algebra induced from $O_q(SL_{n+1})$. We denote the comultiplication, counit, and antipode by Δ_T, ϵ_T, and S_T respectively, when emphasis is needed.
Specifically, we note that for $Y_{ii} \in O_q(T)$ we have

$$\Delta_T(Y_{ii}) = Y_{ii} \otimes Y_{ii}.$$

$O_q(T)$-coactions on $O_q(B^\pm)$

There are natural projection homomorphisms $p^\pm : O_q(B^\pm) \to O_q(T)$ defined by $p^\pm(X_{ii}) = Y_{ii}$ and $p^\pm(X_{ij}) = 0$ for $i \neq j$. Therefore using these maps as well as the comultiplication maps Δ on $O_q(B^\pm)$ we define the maps $\eta^\pm : O_q(B^\pm) \to O_q(B^\pm) \otimes O_q(T)$ by

$$\eta^\pm := (id \otimes p^\pm)\Delta.$$

Since p^\pm and Δ are k-algebra homomorphisms, so are η^\pm. Similarly the maps $\theta^\pm : O_q(B^\pm) \to O_q(T) \otimes O_q(B^\pm)$ defined by $\theta^\pm := (p^\pm \otimes id)\Delta$ are k-algebra homomorphisms. Specifically, since $p^\pm(X_{ij}) = 0$ for $i \neq j$ and $p^\pm(X_{ii}) = Y_{ii}$ this implies that for $X_{ij} \in O_q(B^\pm)$ we have

$$\eta^\pm(X_{ij}) = X_{ij} \otimes Y_{jj} \quad \quad \theta^\pm(X_{ij}) = Y_{ii} \otimes X_{ij}.$$

In fact η^\pm and θ^\pm are comodule homomorphisms which we now show.

Lemma 2.5. η^\pm and θ^\pm are right (resp. left) $O_q(T)$-comodule maps. Hence, $O_q(B^\pm)$ are right (resp. left) $O_q(T)$-comodule algebras.
Proof. We need to verify that \((\rho^\pm \otimes \text{id})\rho^\pm = (\text{id} \otimes \Delta_T)\rho^\pm\). It suffices to verify it on the \(X_{ij} \in O_q(B^\pm)\) since \(\rho^\pm\) and \(\Delta_T\) are \(k\)-algebra homomorphisms. Note that

\[(\rho^\pm \otimes \text{id})\rho^\pm(X_{ij}) = (\rho^\pm \otimes \text{id})(X_{ij} \otimes Y_{jj}) = X_{ij} \otimes Y_{jj} \otimes Y_{jj}\]

and

\[(\text{id} \otimes \Delta_T)\rho^\pm(X_{ij}) = (\text{id} \otimes \Delta_T)(X_{ij} \otimes Y_{jj}) = X_{ij} \otimes Y_{jj} \otimes Y_{jj}.\]

Hence \(\theta^\pm\) is a right \(O_q(T)\)-comodule map. In the same way we can show \(\eta^\pm\) are left \(O_q(T)\)-comodule maps.

Since \(\theta^\pm\) is also a \(k\)-algebra homomorphism we have \(O_q(B^\pm)\) are right \(O_q(T)\)-comodule algebras with these structure maps. Similarly, \(\eta^\pm\) will also make \(O_q(B^\pm)\) into left \(O_q(T)\)-comodule algebras. \(\square\)

\(O_q(N^\pm)\) as Coinvariants

Theorem 2.6. Let \(A^\pm = O_q(B^\pm)^{\text{co } \eta^\pm}\) then \(A^\pm \# O_q(T) \cong O_q(B^\pm)\). Similarly letting

\[C^\pm = O_q(B^\pm)^{\text{co } \theta^\pm}\] then \(O_q(T) \# C^\pm \cong O_q(B^\pm)\).

Proof. Let \(r^\pm : O_q(T) \to O_q(B^\pm)\) be the \(k\)-algebra homomorphism such that \(r^\pm(Y_{ii}) = X_{ii}\). Define \(\overline{r^\pm} : O_q(T) \to O_q(B^\pm)\) by \(\overline{r^\pm} = r^\pm S_T\). Then

\[(r^\pm \ast \overline{r^\pm})(Y) = \sum_{(Y)} r^\pm(Y_1)\overline{r^\pm}(Y_2) = r^\pm \left(\sum_{(Y)} Y_1 S_T(Y_2)\right) = r^\pm(\epsilon_T(Y) \cdot 1) = \epsilon(Y) \cdot 1\]
for all $Y \in O_q(T)$. Similarly, $(\bar{r}^\pm \ast r^\pm)(Y) = \epsilon(Y) \cdot 1$. Hence, \bar{r}^\pm is the convolution inverse of r^\pm.

To check that r^\pm is a right $O_q(T)$-comodule map we need to show that $\eta^\pm r^\pm = (r^\pm \otimes id)\Delta_T$. Since r^\pm and η^\pm are k-algebra homomorphisms, it is sufficient to show the equality holds on the $Y_{ii} \in O_q(T)$. This holds because

$$\eta^\pm r^\pm (Y_{ii}) = \eta^\pm (X_{ii}) = X_{ii} \otimes Y_{ii}$$

and

$$(r^\pm \otimes id)\Delta_T(Y_{ii}) = (r^\pm \otimes id)(Y_{ii} \otimes Y_{ii}) = X_{ii} \otimes Y_{ii}.$$

Hence, r^\pm are right $O_q(T)$-comodule homomorphisms. Therefore $O_q(B^\pm)$ is an H-cleft extension. Moreover, by the above discussion, using the result of [2] there is a k-algebra isomorphism $\Phi^\pm : A^\pm \# O_q(T) \rightarrow O_q(B^\pm)$ where $\Phi^\pm (X \# Y) = X r^\pm(Y)$.

Similarly, by making the appropriate changes to the above proof, there is a k-algebra isomorphism $\Psi^\pm : O_q(T) \# C^\pm \rightarrow O_q(B^\pm)$ defined by $\Psi(Y \# X) = r^\pm(Y)X$.

It is natural to ask what are the coinvariants for $O_q(B^\pm)$ using the structure maps η^\pm or θ^\pm? Note that for any $X_{jj}^{-1}, X_{ij} \in O_q(B^\pm)$

$$\eta^\pm(X_{ij}X_{jj}^{-1}) = \eta^\pm(X_{ij})\eta^\pm(X_{jj}^{-1}) = (X_{ij} \otimes Y_{jj})(X_{jj}^{-1} \otimes Y_{jj}^{-1}) = X_{ij}X_{jj}^{-1} \otimes 1.$$
That is $X_{ij}X_{jj}^{-1} \in O_q(B^\pm)_{\eta^\pm}$. Similarly, $X_{ii}^{-1}X_{ij} \in O_q(B^\pm)_{\theta^\pm}$. Since η^\pm and θ^\pm are algebra homomorphism this implies that $O_q(N^\pm)'$ is a subalgebra of $O_q(B^\pm)_{\eta^\pm}$ and $O_q(N^\pm)$ is a subalgebra of $O_q(B^\pm)_{\theta^\pm}$. In fact these algebras are exactly the coinvariants for η^\pm and θ^\pm which we now show.

Theorem 2.7. $O_q(N^\pm)' = O_q(B^\pm)_{\eta^\pm}$ and $O_q(N^\pm) = O_q(B^\pm)_{\theta^\pm}$.

Proof. From our discussion we have shown that $O_q(N^\pm)' \subseteq O_q(B^\pm)_{\eta^\pm}$. Since the map Φ^\pm from Theorem 3.19 is an isomorphism of $A^\pm \otimes O_q(T)$ onto $O_q(B^\pm)$, it is sufficient to show that Φ^\pm maps $O_q(N^\pm)' \otimes O_q(T)$ onto $O_q(B^\pm)$.

Notice that

$$
\Phi^\pm(O_q(N^\pm)' \otimes O_q(T)) = O_q(N^\pm)' r^\pm(O_q(T)) \subseteq O_q(B^\pm).
$$

Therefore we need only show that $O_q(N^\pm)r^\pm(O_q(T))$ is a subalgebra that contains all the X_{ij} to prove the proposition.

Let L^\pm be the subalgebra generated by $\{X_{ii}^{\pm1} \mid 1 \leq i \leq n+1\}$ in $O_q(B^\pm)$. Note that the image of the maps r^\pm from Theorem [3.19] is L^\pm. Using the projection homomorphism p^\pm, it is straightforward to check that $p^\pm r^\pm = id_{O_q(T)}$ and $r^\pm p^\pm = id_{L^\pm}$. Hence r^\pm is an isomorphism from $O_q(T)$ to L^\pm. Since each of the X_{kk} commutes up to a scalar with each of the $X_{ij} \in O_q(B^\pm)$ we have that $O_q(N^\pm)'r^\pm(O_q(T))$ is a subalgebra of $O_q(B^\pm)$.

68
Now for $X_{jj}^{-1}, X_{ij} \in O_q(B^\pm)$ with $i \neq j$ we have

$$\Phi^\pm(X_{ij}X_{jj}^{-1} \otimes Y_{jj}) = X_{ij}X_{jj}^{-1}r^\pm(Y_{jj}) = X_{ij}X_{jj}^{-1}X_{jj} = X_{ij}.$$

Hence, $O_q(N^\pm)'r^\pm(O_q(T)) = O_q(B^\pm)$. Therefore $O_q(N^\pm)' = O_q(B^\pm)^{co \eta^\pm}$.

In the same way one can use the isomorphism Ψ^\pm to show $O_q(N^\pm) = O_q(B^\pm)^{co \theta^\pm}$.

Finally we have the following corollary.

Corollary 2.8. $O_q(B^\pm) \cong O_q(T)\#O_q(N^\pm) \cong O_q(N^\pm)\#O_q(T)$.

Proof. The first isomorphism follows directly from Theorem [3.19] and Theorem [2.7]. For the second isomorphism we note that Theorem [3.19] and Theorem [2.7] imply that $O_q(B^\pm) \cong O_q(N^\pm)'\#O_q(T)$. Since from Theorem [2.3] we have $O_q(N^\pm) \cong O_q(N^\pm)'$ the second isomorphism holds.

\[\square \]

2.3 The Restriction Map and $C_q(b^\pm)$

Having investigated $O_q(B^\pm)$ and $O_q(N^\pm)$ we now switch to the quantum function algebra or algebra of matrix coefficients $C_q(\mathfrak{sl}_{n+1})$. In order to do this though we first need some background.

For any element $c \in C_q(\mathfrak{sl}_{n+1})$ we may restrict the domain of c to the subalgebra $U_q^+(\mathfrak{sl}_{n+1})$ (resp. $U_q(b^-)$). This induces a well-defined k-algebra homomorphism from $C_q(\mathfrak{sl}_{n+1})$ to $U_q(b^-)^*$ (resp. $U_q(b^-)^*$). Let ρ^+ (resp. ρ^-) denote this
restriction homomorphism and denote \(\text{im} \rho^+ \) by \(C_q(b^+) \) (resp. \(\text{im} \rho^- \) by \(C_q(b^-) \)).

For \(c \in C_q(\mathfrak{sl}_{n+1}) \) we denote \(\rho^+(c) \) by \(c \). From this convention we note that \(c \neq 0 \) if and only if \(c(u) \neq 0 \) for some \(u \in U_q^{\geq 0}(\mathfrak{sl}_{n+1}) \).

We now wish to better understand \(\rho^+(c_{_{\omega_1}f_{_{i,e_j}}}) \) which, using the conventions above, we denote by \(\overline{X}_{ij} \).

Example: Matrix Coefficients for \(V(\omega_1) \) in \(C_q(b^\pm) \)

We wish to understand \(C_q(b^\pm) \) and to do so we will start trying to understand the “basic” elements \(\overline{X}_{ij} \in C_q(b^\pm) \). Since \(U_q^{\geq 0} \) (resp. \(U_q^{\leq 0} \)) is spanned by monomials of the form \(K^\lambda E_I \) (resp. \(K^\lambda F_I \)) where \(\lambda \in \mathbb{Z}\Phi^+ \) and \(I \in P^+ \), to understand any \(\overline{X}_{ij} \) it is sufficient to understand where it maps each of these elements.

Lemma 2.9. For \(\lambda \in \mathbb{Z}\Pi \) and \(I \) a finite sequence of elements from \(\{1, 2, \ldots, n + 1\} \) we have the following:

For \(i \leq j \),

\[
\overline{X}_{ij}(K^\lambda E_I) = \begin{cases}
q^{(\beta_i, \lambda)} & \text{if } I = \emptyset \text{ and } i = j \\
q^{(\beta_i, \lambda)} & \text{if } I = (i, i + 1, \ldots, j - 2, j - 1) \text{ and } i < j \\
0 & \text{otherwise.}
\end{cases}
\]

where \(\beta_i = -\omega_{i-1} + \omega_i \).

For \(i > j \), then \(\overline{X}_{ij}(K^\lambda E_I) = 0 \).
Proof. By equation (1.12) if \(i < j \) we have \(E_I e_j = e_i \) if and only if \(I = (i, i+1, \cdots, j-2, j-1) \) and \(E_I e_j = e_j \) if and only if \(I = \emptyset \). Furthermore, if \(I \) is any other finite sequence of elements from \(\{1, 2, \ldots, n+1\} \) then \(E_I e_j = 0 \) for all \(j = 1, 2, \ldots, n+1 \). Hence by equation (1.28) if \(i < j \) and \(I = (i, \cdots, j-1) \) we have \(K_\lambda E_I e_j = q^{(\beta_i, \lambda)} e_i \) and if \(I = \emptyset \) then \(K_\lambda E_I e_j = q^{(\beta_j, \lambda)} e_j \). Thus if \(i \leq j \) then \(\overline{X}_{ij}(K_\lambda E_I) \) is as indicated.

Note that for all the \(E_i \) we have \(E_i e_j \) is either 0 or a weight vector of lower weight. Hence, for \(i > j \) there is no \(E_I \) so that \(E_I e_j = e_i \). Therefore for \(i > j \) we have \(f^i(E_I e_j) = 0 \) for all \(E_I \). Hence, \(\overline{X}_{ij}(K_\lambda E_I) = 0 \) for all \(\lambda \in \mathbb{Z} \Phi^+ \) and \(I \) a finite sequence with entries in \(\{1, 2, \ldots, n+1\} \).

\[\square \]

2.4 The Dual Pairing

By [3] Corollary 3.3, if \(\sqrt[n+1]{q} \in k \) there exists a unique nondegenerate bilinear pairing \((-,-) : \tilde{U}_q^{\leq 0} \times \tilde{U}_q^{\geq 0} \to k \) defined by the following properties: for all \(u, u' \in \tilde{U}_q^{\geq 0} \) and all \(v, v' \in \tilde{U}_q^{\leq 0} \) and all \(\mu, \nu \in \Lambda \) and \(\alpha, \beta \in \Pi \)

\[
(u, vv') = (\Delta(u), v' \otimes v) \quad \quad (uu', v) = (u \otimes u', \Delta(v))
\]
\[
(K_\mu, K_\nu) = q^{-(\mu, \nu)} \quad \quad (F_\alpha, E_\beta) = -\delta_{\alpha \beta} \hat{q}^{-1}
\]
\[
(K_\mu, E_\beta) = 0 \quad \quad (F_\alpha, K_\mu) = 0
\]
We note there is a pairing on $U^\geq_0(\mathfrak{sl}_{n+1}) \times U^\geq_0(\mathfrak{sl}_{n+1})$ defined in [15, p. 6.12] as well as [16, p. 9.2.10] with the same properties as above.

The bilinear pairing above can be restricted to a bilinear pairing on $\check{U}^\leq_0 \times U^\geq_0$. In fact the assumption that $\sqrt[n]{q} \in k$ is not needed to have a well defined dual pairing on $\check{U}^\leq_0 \times U^\geq_0$. Since we will primarily be studying this pairing, we remove this assumption. We now show that the pairing is nondegenerate by slightly modifying the proof in [3, Corollary 3.3].

Theorem 2.10. The dual pairing on $\check{U}^\leq_0 \times U^\geq_0$ is nondegenerate.

Proof. By [15, p. 4.7], U^+_q and U^-_q are \mathbb{Z}_Π-graded with $\deg E_\alpha = \alpha$ and $\det F_{-\alpha} = -\alpha$ for $\alpha \in \Pi$. For each $\mu \in \mathbb{Z}_\Pi$ denote a basis of U^+_μ by $\{u^\mu_i\}$. By [15, Corollary 8.30], the pairing when restricted to $U^-_\mu \times U^+_\mu$ with $\mu \in \mathbb{Z}_\Pi$ is nondegenerate. Therefore, we may select a corresponding dual basis of U^-_μ, which we denote by $\{v^-_\mu\}$, with the property that $(v^-_\mu, u^\mu_i) = \delta_{ij}$.

Suppose that $y \in \check{U}^\leq_0$ so that $(y, x) = 0$ for all $x \in U^\geq_0(\mathfrak{sl}_{n+1})$. We may write

$$y = \sum_{\mu' \in \mathbb{Z}_\Pi, i} v^-_{i}^{\mu'} p_{\mu', i}(K)$$

where

$$p_{\mu', i}(K) = \sum_{\lambda' \in \Lambda} c_{\lambda'}^{\mu', i} K_{\lambda'}$$
for some scalars \(c_{\lambda', i}^{\mu, j} \). It follows from \([15, 6.10(3) \text{ and } 6.10(4)]\) that if \(\mu \in \mathbb{Z}\Pi \) then for all \(\eta \in \mathbb{Z}\Pi \) and all \(j \) we have

\[
0 = (y, u_j^\mu K_\eta) = \sum_{\lambda' \in \Lambda} c_{\lambda', i}^{\mu, j} q^{-\langle \eta, \lambda' \rangle}.
\]

Notice that for all \(\lambda' \in \Lambda \) there exist scalars \(\lambda'_1, \ldots, \lambda'_n \in \mathbb{Z} \) so that \(\lambda' = \lambda'_1 \omega_1 + \cdots + \lambda'_n \omega_n \). Therefore, for each \(m = (m_1, \ldots, m_n) \in \mathbb{Z}^n \), setting \(\eta = -(m_1 \alpha_1 + \cdots + m_n \alpha_n) \) we get

\[
0 = \sum_{\lambda' \in \Lambda} c_{\lambda', i}^{\mu, j} q^{-\langle \eta, \lambda' \rangle} = \sum_{\lambda' \in \Lambda} c_{\lambda', i}^{\mu, j} q^{m_1 \lambda'_1} \cdots q^{m_n \lambda'_n} = p_{\mu, j}(q^{m_1}, \ldots, q^{m_n}) = p_{\mu, j}(q^m)
\]

where

\[
p_{\mu, j}(x_1, \ldots, x_n) = \sum_{\lambda' \in \Lambda} c_{\lambda', i}^{\mu, j} x_1^{\lambda'_1} \cdots x_n^{\lambda'_n}.
\]

Since \(q \) is not a root of unity, it follows from \([3, \text{ Lemma 3.2}]\) that \(p_{\mu, j} = 0 \) for all \(\mu \in \mathbb{Z}\Pi \) and all \(j \). Hence, \(y = 0 \).

Suppose for \(x \in U_{q}^{\geq 0}(\mathfrak{s}\mathfrak{l}_{n+1}) \) that \((y, x) = 0 \) for all \(y \in \check{U}_{q}^{\leq 0} \). Since \(x \in \check{U}_{q}^{\geq 0} \) it follows from the nondegeneracy of \((-, -) \) on \(\check{U}_{q}^{\leq 0} \times \check{U}_{q}^{\geq 0} \) that \(x = 0 \).

Using this dual pairing we define the map \(\phi : \check{U}_{q}^{\leq 0} \to (U_{q}^{\geq 0})^* \) by

\[
\phi(u)(v) = (u, v).
\]
The map ϕ is a k-algebra homomorphism and since the bilinear form is nondegenerate by Theorem 2.10, ϕ is injective.

For $I = (i_1, i_2, \ldots, i_N)$ define $\text{wt} I = \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_N}$. We say that $J \subseteq I$ if J is a subsequence of I. For $J \subseteq I$ we denote $I - J$ to be the sequence remaining when the subsequence J is removed.

It is shown in [15, 6.8(8) and 6.12] that $(F_I, E_J) = 0$ unless $\text{wt} I = \text{wt} J$. If follows that $\ker(\phi(F_I))$ has finite codimension for every I. Similarly, $\ker \phi(K_\mu)$ has codimension 1. Hence $\phi(u) \in (U_q^{\geq 0}(\mathfrak{sl}_{n+1}))^0$ for all $u \in \check{U}_q^{\leq 0}$.

Lemma 2.11. For the map ϕ we have $\phi(K_{-\beta_i + \alpha_i} F_i) = -q^{-1}q^{-1}X_{ii+1}$ and $\phi(K_{+\beta_i}) = X_{ii}^{\pm 1}$.

Proof. From [15, 6.9 (2)] it follows for all $\mu, \lambda \in \Lambda$ that $(K_\mu, K_\lambda E_I) = 0$ if and only if $I \neq \emptyset$. Using this fact we get

$$
\phi(K_{-\beta_i + \alpha_i} F_i)(K_\lambda E_i) = (K_{-\beta_i + \alpha_i} F_i, K_\lambda E_i) = (K_{-\beta_i + \alpha_i} \otimes F_i, \Delta(K_\lambda E_i))
$$

$$
= (K_{-\beta_i + \alpha_i} \otimes F_i, K_{\lambda + \alpha_i} \otimes K_\lambda E_i + K_\lambda E_i \otimes K_\lambda)
$$

$$
= (K_{-\beta_i + \alpha_i}, K_{\lambda + \alpha_i})(F_i, K_\lambda E_i) + (K_{-\beta_i + \alpha_i}, K_\lambda E_i)(F_i, K_\lambda)
$$

$$
= (K_{-\beta_i + \alpha_i}, K_{\lambda + \alpha_i})(F_i, K_\lambda E_i)
$$

$$
= (K_{-\beta_i + \alpha_i}, K_{\lambda + \alpha_i})(\Delta(F_i), E_i \otimes K_\lambda)
$$

$$
= (K_{-\beta_i + \alpha_i}, K_{\lambda + \alpha_i})(F_i \otimes K_{-\alpha_i} + 1 \otimes F_i, E_i \otimes K_\lambda)
$$

$$
= (K_{-\beta_i + \alpha_i}, K_{\lambda + \alpha_i})((F_i, E_i)(K_{-\alpha_i}, K_\lambda) + (1, E_i)(F_i, K_\lambda))
$$

74
\[= (K_{-\beta_i+\alpha_i}, K_{\lambda+\alpha_i})(F_i, E_i)(K_{-\alpha_i}, K_{\lambda})\]
\[= -q^{-(-\beta_i+\alpha_i, \lambda+\alpha_i)} \tilde{q}^{-1} q^{(\alpha_i, \lambda)} = -q^{-1} \tilde{q}^{-1} q^{(\beta_i, \lambda)}.\]

Now suppose \(I \neq (i)\). It follows from [15, 6.8 (1)] , for \(\lambda \in \mathbb{Z} \Pi\) and \(I\) a finite sequence of elements in \(\{1, 2, \ldots, n\}\)

\[\Delta(K_{\lambda}E_I) = \sum_{J \subseteq I} c_{I,J} K_{\lambda} K_{J} E_{I-J} \otimes K_{\lambda} E_J\]

for some scalars, \(c_{I,J}\). Hence, we have

\[\phi(K_{-\beta_i+\alpha_i} F_i)(K_{\lambda}E_I) = (K_{-\beta_i+\alpha_i} F_i, K_{\lambda}E_I) = (K_{-\beta_i+\alpha_i} \otimes F_i, \Delta(K_{\lambda}E_I))\]
\[= \left(K_{-\beta_i+\alpha_i} \otimes F_i, \sum_{J \subseteq I} c_{I,J} K_{\lambda} K_{J} E_{I-J} \otimes K_{\lambda} E_J \right)\]
\[= \sum_{J \subseteq I} c_{I,J} (K_{-\beta_i+\alpha_i}, K_{\lambda} K_{J} E_{I-J})(F_i, K_{\lambda} E_J).\]

It follows from [15 6.8 (7)] that \((F_i, K_{\lambda} E_J) = 0\) if and only if \(J \neq (i)\). Moreover, if \(J = (i)\) then since \(I \neq (i)\) we have that \(I - J \neq \emptyset\). This implies \((K_{-\beta_i+\alpha_i}, K_{\lambda} K_{J} E_{I-J}) = 0\). Therefore, we have \(\phi(K_{-\beta_i+\alpha_i} F_i)(K_{\lambda}E_I) = 0\). Therefore, we have

\[\phi(K_{-\beta_i+\alpha_i} F_i)(K_{\lambda}E_I) = \begin{cases} -q^{-1} \tilde{q}^{-1} q^{(\beta_i, \lambda)} & \text{if } I = (i) \\ 0 & \text{if } I \neq (i). \end{cases}\]
Similarly,

$$\phi(K_{\mp \beta_i})(K_\lambda) = (K_{\mp \beta_i}, K_\lambda) = q^{\pm(\beta_i, \lambda)}$$

Moreover, if $\lambda \in \mathbb{Z}^\Pi$ and I is a finite sequence of elements from $\{1, 2, \ldots, n\}$ and $I \neq \emptyset$ we have

$$\phi(K_{\mp \beta_i})(K_\lambda E_I) = (K_{\mp \beta_i}, K_\lambda E_I)$$

$$= (K_{\mp \beta_i} \otimes K_{\mp \beta_i}, E_I \otimes K_\lambda)$$

$$= (K_{\mp \beta_i}, E_I)(K_{\mp \beta_i}, K_\lambda)$$

$$= 0.$$

Hence,

$$\phi(K_{\mp \beta_i})(K_\lambda E_I) = \begin{cases} q^{\pm(\beta_i, \lambda)} & \text{if } I = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

By Lemma 2.9,

$$\mathcal{X}_{i,i+1}(K_\lambda E_I) = \begin{cases} q^{(\beta_i, \lambda)} & \text{if } I = (i) \\ 0 & \text{otherwise} \end{cases}$$

and

$$\mathcal{X}_{ii}^{\pm 1}(K_\lambda E_I) = \begin{cases} q^{\pm(\beta_i, \lambda)} & \text{if } I = \emptyset \\ 0 & \text{otherwise}. \end{cases}$$
Since $U_q^{\geq 0}(\mathfrak{sl}_{n+1})$ is spanned by the elements of the form $K_\lambda E_I$ where I is a finite sequence of elements from $\{1, 2, \ldots, n\}$ and $\lambda \in \mathbb{Z}\Pi$ then $\phi(K_{-\beta_i+\alpha_i}F_i) = -q^{-1}\hat{q}^{-1}X_{i,i+1}$ and $\phi(K_{\mp\beta_i}) = X_{ii}^{\pm 1}$.

Lemma 2.12. $C_q(b^+)$ is generated by $\{X_{ii}^{\pm 1}, X_{i,i+j} \mid 1 \leq i \leq n+1, 1 \leq j \leq n\}$.

Proof. Denote $\{X_{ii}^{\pm 1}, X_{i,i+j} \mid 1 \leq i \leq n+1, 1 \leq j \leq n\}$ in $O_q(B^+)$ by S. Since for all $1 \leq i \leq n-1$, $O_q(B^+)$ has the relation

$$X_{i,i+1},X_{i+1,i+2} - X_{i+2,i+1}X_{i,i+1} = \hat{q}X_{i+1,i+1}X_{i,i+2}.$$

By multiplying both sides by $X_{i+1,i+1}^{-1}$ we see $X_{i,i+2} \in S$ for all $1 \leq i \leq n-1$.

Continuing inductively if $X_{i,i+k} \in S$ for all $1 \leq i \leq n-k$ since

$$X_{i,i+k}X_{i+k,i+k+1} - X_{i+k,i+k+1}X_{i,i+k} = \hat{q}X_{i+i+k,k}X_{i,i+k+1}$$

multiplying by $X_{i+k,i+k}^{-1}$ we get $X_{i,i+k+1} \in S$ for all $1 \leq i \leq n-k$. Therefore $X_{ij} \in S$ for all $1 \leq i \leq j \leq n+1$. Hence S generates $O_q(B^+)$. Using the isomorphism induced from Corollary ??, the proposition follows.

The following theorem can be found in [16, p. 9.2.12] however, in the present case we may prove it more simply.

Theorem 2.13. The map ϕ is an isomorphism of $\hat{U}_q^{\leq 0}$ onto $C_q(b^+)$.

77
Proof. Note that $\pm \beta_1 = \mp \omega_1$ so then

$$\phi(K_{\mp \omega_1}) = \phi(K_{\mp \beta_1}) = \overline{X}_{11}^{\pm 1} \in C_q(b^+).$$

Proceeding inductively, we see that if $\phi(K_{\mp \omega_{i-1}}) \in C_q(b^+)$ then since $\phi(K_{\mp \beta_{i}}) = \overline{X}_{ii}^{\pm 1}$ we have

$$\phi(K_{\mp \omega_{i}}) = \phi(K_{\mp \beta_{i}})\phi(K_{\mp \omega_{i-1}}) = \overline{X}_{ii}^{\pm 1} \phi(K_{\mp \omega_{i-1}}) \in C_q(b^+)$$

It then follows that $\phi(K_{\mu}) \in C_q(b^+)$ for all $\mu \in \Lambda$.

Finally, we note that $\beta_i - \alpha_i = \beta_{i+1}$ for $1 \leq i \leq n$. Therefore we have for $1 \leq i \leq n$ that

$$\phi(F_i) = \phi(K_{\beta_i - \alpha_i} K_{-\beta_i + \alpha_i} F_i) = \phi(K_{\beta_{i+1}}) \phi(K_{-\beta_{i+1} + \alpha_i} F_i) \in C_q(b^+).$$

Since the K_{μ} with $\mu \in \Lambda$ and the F_i generate $\bar{U}_q^{\geq 0}$, then $\text{im } \phi \subseteq C_q(b^+)$. Conversely, since the $X_{ii}^{\pm 1}$ and $X_{i,i+1}$ generate $C_q(b^+)$ it follows that $\text{im } \phi = C_q(b^+)$. Since the dual pairing is nondegenerate, ϕ is injective. Hence, ϕ is a k-algebra isomorphism. \hfill \Box

Corollary 2.14. If $\omega : \bar{U}_q^{\geq 0} \to \bar{U}_q^{\leq 0}$ is the Cartan homomorphism then $\phi \circ \omega$ restricted to U_q^+ induces an isomorphism onto $\rho^+(\kappa(O_q(N^+)''))$.

78
Proof. The Cartan homomorphism is defined by \(\omega(K_\lambda) = K_\lambda \) and \(\omega(E_i) = F_i \). It is clear that \(\omega \) is an isomorphism, so \(\phi \circ \omega \) is an isomorphism. Hence \(\phi \circ \omega \) restricted to \(U_q^+ \) is an injective \(k \)-algebra homomorphism. Moreover, from Theorem 2.13 for \(i = 1, 2, \ldots, n \)

\[
\phi \circ \omega(E_i) = \phi(K_{\beta_i+1}) \phi(K_{-\beta_i+\alpha_i}F_i) = X_{i+1,i+1}^{-1} (-q^{-1}q^{-1}X_{i,i+1}) = -q^{-1}X_{i,i+1}X_{i+1,i+1}^{-1}.
\]

Since \(\rho^+(\kappa(O_q(N^+)'')) \) is generated by the \(X_{i,i+1}X_{i+1,i+1}^{-1} \) for \(i = 1, 2, \ldots n \) then \(\phi \circ \omega \) when restricted to \(U_q^+ \) is an isomorphism. \(\square \)

Theorem 2.15. There is a \(k \)-algebra isomorphism \(\psi : U_q^+ \to O_q(N^+)' \) such that \(\psi(E_i) = -q^{-1}X_{i,i+1}X_{i+1,i+1}^{-1} \) for \(1 \leq i \leq n \).

Proof. This follows from Corollary 2.14 and the fact that, \(\rho^+ \) and \(\kappa \) are isomorphisms. \(\square \)

We note that since the Cartan automorphism \(\omega \) is an isomorphism of \(U_q^+ \) onto \(U_q^+ \) it also follows form Theorem 2.15 that \(U_q^- \cong O_q(N^+)' \).

In conclusion, we have shown that the algebras \(O_q(N^\pm) = O_q(B^\pm)^{co \theta^\pm} \), \(O_q(N^\pm)' = O_q(B^\pm)^{co \eta^\pm} \), and \(U_q^\pm \) are all isomorphic from Theorem 2.3, Theorem 2.7, and Theorem 2.15.
Chapter 3

Quantum Unipotent Radicals of Standard Parabolic Subgroups

Let \(n \) be a fixed positive integer.

3.1 Standard Parabolic Subgroups

Recall from the Introduction that a standard parabolic subgroup of \(\text{SL}_n \) is a group that contains a standard Borel subgroup, \(B^\pm \). This implies that the matrices in a standard parabolic subgroup are in “upper (lower) block diagonal form.” Since parabolic subgroups are closed subvarieties of \(\text{SL}_n \), we first describe the coordinate ring of a standard parabolic, and then “quantize” this to define quantum standard parabolic subgroups of \(\text{SL}_n \).
Definition 3.1. A partition of n is a set $P = \{P_1, \ldots, P_k\}$ where each P_i is a nonempty subset of $\{1, \ldots, n\}$ so that

(a) $\bigcup_{i=1}^{k} P_i = \{1, \ldots, n\}$

(b) $P_i \cap P_j = \emptyset$ for $i \neq j$

(c) For each $i = 1, \ldots, k-1$ each element of P_i is less than every element of P_{i+1}.

The idea behind Definition 3.1 is that the partition of n determines a “block diagonal” for matrices in SL_n. Using this block diagonal, a standard parabolic subgroup of SL_n is a subgroup that is composed of matrices that are zero below (above) the block diagonal.

Also note that this definition for a partition of n is different from the usual definition found in combinatorics. In that definition a partition of n is a sequence of positive integers (n_1, \ldots, n_k) so that $n_1 + \cdots + n_k = n$. However, the two are related – for if P is a partition of n (in the sense of Definition 3.1) then $(|P_1|, \ldots, |P_k|)$ is a partition of n in the combinatorial sense.

For each $j \in \{1, 2, \ldots, |P|\}$ denote the sets

$$P_{>j} := \bigsqcup_{l>j} P_l$$

and

$$P_{\geq j} := \bigsqcup_{l \geq j} P_l.$$

Similarly, define $P_{<j}$ and $P_{\leq j}$. For convenience if $|P| = k$ we adopt the convention that $P_{k+1} = \emptyset$ and $P_0 = \emptyset$.

81
For P a partition of n, with $|P| = k$, define the following subsets of \(\{1, 2, \ldots, n\} \times \{1, 2, \ldots, n\} \):

\[
C^+_P := \bigcup_{i=1}^{k} (P_i \times P_{>i}) \quad \text{and} \quad C^-_P := \bigcup_{i=1}^{k} (P_{>i} \times P_i).
\]

It easy to check that \(C^+_P = \bigcup_{i=1}^{k} (P_{<i} \times P_i) \) and \(C^-_P = \bigcup_{i=1}^{k} (P_i \times P_{<i}) \).

Therefore a parabolic group relative to a partition P is

\[
P^\pm_P = \{(a_{ij}) \in \text{SL}_n \mid (i, j) \in C^\pm_P\}.
\]

Let x_{ij} be the coordinate functions in $O(\text{SL}_n)$ and define the following ideals in $O(\text{SL}_n)$:

\[
T^+_P := \langle x_{ij} \in O(\text{SL}_n) \mid (i, j) \in C^+_P \rangle \quad \text{and} \quad T^-_P := \langle x_{ij} \in O(\text{SL}_n) \mid (i, j) \in C^-_P \rangle.
\]

For the coordinate rings of the standard parabolic subgroups of SL_n relative to P we have

\[
O(P^\pm_P) \cong O(\text{SL}_n)/T^\mp_P.
\]

Moreover, for the coordinate ring of the standard Levi subgroup of SL_n relative to P we have

\[
O(L_P) \cong O(\text{SL}_n)/(T^+_P + T^-_P).
\]
3.2 Quantum Standard Parabolic Subgroups

We may now define the quantized coordinate ring of the standard parabolic in direct analogy with the classical case.

Let P be a partition of n and define the following ideals in $O_q(\text{SL}_n)$:

$$I^+_P := \langle X_{ij} \mid (i, j) \in C^+_P \rangle \quad \text{and} \quad I^-_P := \langle X_{ij} \mid (i, j) \in C^-_P \rangle.$$

Definition 3.2. For P a partition of n, define the quantized coordinate rings of the standard parabolic subgroups of SL_n relative to P by

$$O_q(P^\pm_P) := O_q(\text{SL}_n)/I^\mp_P.$$

We will often abuse notation and refer to the coset which contains X_{ij} in $O_q(P^\pm_P)$ simply by X_{ij}. Similarly, we will refer to the coset which contains the quantum minor $[I \mid J]$ in $O_q(P^\pm_P)$ simply by $[I \mid J]$.

We note that this definition for quantum parabolic groups is not standard; however, it is equivalent to the definition of quantum parabolic groups given in [25, Section 6.1].
Examples

i. If $P = \{\{1\}, \{2\}, \ldots, \{n\}\}$ then $I_P^+ = \langle X_{ij} \mid i < j \rangle$ and $I_P^- = \langle X_{ij} \mid i > j \rangle$.

Therefore, $O_q(P_P^\pm) = O_q(B^\pm)$ from Chapter 2.

ii. If $P = \{\{1, \ldots, n\}\}$ then $I_P^\pm = 0$. Therefore, $O_q(P_P^\pm) = O_q(Sl_n)$.

Lemma 3.3. Let P be a partition of n. For $1 \leq i < s \leq n$ and $1 \leq j < t \leq n$ if (i, j) or (s, t) in C_P^\pm then (i, t) or (s, j) is in C_P^\pm.

Proof. Let $i \in P_l$. If $(i, j) \in C_P^+$ then $j \in P_{>l}$. Since $t > j$ then $t \in P_{>l}$ and so $(i, t) \in C_P^+$. Similarly, if $(s, t) \in C_P^+$, then $s \in P_r$ for some $r \geq l$ and $t \in P_{>r}$. It follows that $t \in P_{>l}$ and therefore $(i, t) \in C_P^+$.

A similar proof also works for C_P^-.

Theorem 3.4. Let P be a partition of n. The algebras $O_q(P_P^\pm)$ are noetherian domains.

Proof. Since $O_q(SL_n)$ is noetherian, it follows that $O_q(P_P^\pm)$ is as well.

Define the following ideals of $O_q(M_n)$:

$$J_P^+ := \langle X_{ij} \mid (i, j) \in C_P^+ \rangle \quad J_P^- := \langle X_{ij} \mid (i, j) \in C_P^- \rangle.$$

Using Lemma 3.3, it follows from [9, Lemma 3.2] that J_P^\pm are completely prime ideals in $O_q(M_n)$. Let D be the quantum determinant of $O_q(M_n)$. It is clear that $D^m \not\in J_P^\pm$ for all positive integers m. Therefore, by [7, Theorem 10.20]
the extension ideal, \((J_P^\pm)^e\) in \(O_q(\text{GL}_n)\) is a prime ideal. In fact, \((J_P^\pm)^e\) is in \(H^+\)-spec, where \(H^+\) is the natural torus action on \(O_q(\text{GL}_n)\) (See (1.24)). From Lemma II.5.16] there is a bijection between the \(H^+\)-spec of \(O_q(\text{GL}_n)\) and the \(H\)-spec of \(O_q(\text{SL}_n)\). Using this bijection it follows that \(I_P^\pm\) is an \(H\)-prime of \(O_q(\text{SL}_n)\). Finally, from [1, Lemma II.5.17] we have that \(I_P^\pm\) is completely prime. Therefore, \(O_q(P_P^\pm)\) is a domain.

Preliminary Relations in \(O_q(P_P^\pm)\)

Lemma 3.5. Let \(P\) be a partition of \(n\) with \(P_i \in P\) and \(J \subset \{1, \ldots, n\}\) so that \(|P_i| = |J|\).

(i) If \(J \cap P_{<i} \neq \emptyset\) then \([P_i \mid J] \in I_P^-\). Hence, \([P_i \mid J] = 0\) in \(O_q(P_P^+)\).

(ii) If \(J \cap P_{>i} \neq \emptyset\) then \([J \mid P_i] \in I_P^-\). Hence, \([J \mid P_i] = 0\) in \(O_q(P_P^+)\).

(iii) If \(J \cap P_{>i} \neq \emptyset\) then \([P_i \mid J] \in I_P^+\). Hence, \([P_i \mid J] = 0\) in \(O_q(P_P^-)\).

(iv) If \(J \cap P_{<i} \neq \emptyset\) then \([J \mid P_i] \in I_P^+\). Hence, \([J \mid P_i] = 0\) in \(O_q(P_P^-)\).

Proof. Let \(j \in P_{<i} \cap J\). Note for all \(i_\alpha \in P_i\) that \(\langle X_{i_\alpha,j}\rangle \subset I_P^-\). Since each monomial term of \([P_i \mid J]\) contains an element of \(\langle X_{i_\alpha,j}\rangle\) for some \(i_\alpha \in P_i\), it follows that \([P_i \mid J] \in I_P^-\). Hence, \([P_i \mid J] = 0\) in \(O_q(P_P^+)\).

The other cases are proven similarly. \(\square\)
For index sets $I, J \subseteq \{1, 2, \ldots, n\}$ define

$$\ell(I, J) := \left|\{(i, j) \mid i \in I, j \in J, i > j\}\right|.$$

Recall from [24, Proposition 1.1] the following q-Laplace relation in $O_q(\text{SL}_n)$:

Theorem 3.6 ([24, Proposition 1.1]). Let $I, J \subseteq \{1, 2, \ldots, n\}$ with $|I| = |J|$. For $I_1, I_2 \subset I$ with $|I_1| + |I_2| = |I|$ then

$$\sum_{J_1 \sqcup J_2 = J, |J_i| = |I_i|} (-q)^{\ell(J_1, J_2)}[I_1 \mid J_1][I_2 \mid J_2] = \begin{cases} (-q)^{\ell(I_1, I_2)}[I \mid J] & \text{if } I_1 \cap I_2 = \emptyset \\ 0 & \text{if } I_1 \cap I_2 \neq \emptyset. \end{cases}$$

For each $P_i \in P$ denote

$$D_{P_i} := [P_i \mid P_i].$$

Theorem 3.7. For $P = \{P_1, P_2, \ldots, P_k\}$ a partition of n, we have

$$D_{P_1}D_{P_2} \cdots D_{P_{k-1}}D_{P_k} = D = 1$$

in $O_q(\mathbb{P}^k_\mathbb{P})$.

Proof. Let $i \in \{1, 2, \ldots, k+1\}$. Setting $I_1 = P_{<i-1}$ and $I_2 = P_{i-1}$ it follows from Theorem 3.6 that

$$[P_{<i} \mid P_{<i}] = \sum_{J_1 \sqcup J_2 = P_{<i}} (-q)^{\ell(J_1, J_2)}[P_{<i-1} \mid J_1][P_{i-1} \mid J_2]$$

86
where $|J_1| = |P_{<i-1}|$ and $|J_2| = |P_{i-1}|$. However, by Lemma 3.5 if $J_2 \cap P_{<i-1} \neq \emptyset$ then $[P_{i-1} | J_2] = 0$ in $O_q(P_P^+)$. Therefore, the only nonzero term on the right hand side of the equality occurs when $J_2 = P_{i-1}$. Hence, $J_1 = P_{<i-1}$. Since $\ell(P_{<i-1}, P_{i-1}) = 0$, we get the following relation in $O_q(P_P^+)$:

$$[P_{<i} | P_{<i}] = [P_{<i-1} | P_{<i-1}][P_{i-1} | P_{i-1}].$$

In particular,

$$D = [P_{<k} | P_{<k}][P_{k} | P_{k}] \quad \text{and} \quad [P_{<2} | P_{<2}] = [P_1 | P_1].$$

Thus,

$$D = [P_{<k} | P_{<k}][P_{k} | P_{k}] = [P_{<k-1} | P_{<k-1}][P_{k-1} | P_{k-1}][P_{k} | P_{k}]
= \cdots = [P_i | P_i][P_2 | P_2] \cdots [P_{k-1} | P_{k-1}][P_k | P_k] = D_{P_1}D_{P_2} \cdots D_{P_{k-1}}D_{P_k}$$

in $O_q(P_P^+)$. A similar proof also works in $O_q(P_P^-)$. □

Theorem 3.8. Let P be a partition of n with $P_i, P_j \in P$ and $i < j$. The following relation holds in $O_q(P_P^\pm)$:

$$D_{P_i}D_{P_j} = D_{P_j}D_{P_i}.$$
Proof. For $i, j, \gamma, \delta \in P$ and $i, \beta \in P$ relation (1.22) simplifies to $X_{i, i, \beta} X_{j, j, \delta} = X_{j, j, \delta} X_{i, i, \beta}$ in $O_q(P_P)$. The relation follows easily from this.

\[\text{Corollary 3.9. For } P \text{ a given partition of } n \text{ we have } D_P \text{ is invertible in } O_q(P_P) \text{ for all } P_i \in P. \]

Proof. This follows directly from Theorems 3.7 and 3.8.

For P a partition of n and $P_i \in P$ where the elements of P_i are placed in increasing order, we denote the αth term of i by i_α. Similarly, denote the βth term of $P > i$ by i_β. For each $i_\alpha \in P_i$ and $i_\beta \in P > i$ denote the quantum minor

$$M_{i_\alpha i_\beta}^P := [P_i \mid (P_i \setminus i_\alpha) \cup \{i_\beta\}].$$

Theorem 3.10. Let P a partition of n and $P_i \in P$. For $i_\alpha \in P_i$ and $i_\beta \in P > i$, the following relation holds in $O_q(P_P^\pm)$:

$$X_{i_\alpha i_\beta} = \sum_{i, \gamma \in P_i} (-q^{\gamma - |P| - 1}) X_{i_\alpha i_\gamma} M_{i_\gamma i_\beta}^P D_{P_i}^{-1}.$$

Proof. Set $I = J = P_i \cup \{i_\beta\}$ and $I_1 = \{i_\alpha\}$ with $I_2 = P_i$. Since $I_1 \cap I_2 \neq \emptyset$, Theorem 3.6 implies

$$\sum_{j \in J} (-q)^{\ell(j)} [i_\alpha \mid j][P_i \mid J \setminus j] = 0. \quad (3.1)$$

88
If $j \in P_i$ then $j = i_\gamma$ for some γ. In this case it is clear that $\ell(\{i_\gamma\}, J \setminus i_\gamma) = \gamma - 1$. Similarly, if $j = i_\beta$ then $\ell(\{i_\beta\}, \{J \setminus i_\beta\}) = \ell(\{i_\beta\}, P_i) = |P_i|$. Thus, (3.1) becomes

$$\sum_{i_\gamma \in P_i} (-q)^{\gamma - 1}[i_\alpha | i_\gamma][P_i | J \setminus i_\gamma] + (-q)^{|P_i|}[i_\alpha | i_\beta][P_i | P_i] = 0.$$

Since $[i_\alpha | i_\gamma] = X_{i_\alpha i_\gamma}$ and $[P_i | J \setminus i_\gamma] = M_{i_\alpha i_\gamma}$, we have [8, Lemma 5.2]. Following the proof in [8, Lemma 5.2] we have

$$D_{P_i}X_{i_\lambda i_\beta} = qD_{P_i}X_{i_\lambda i_\beta}.$$

Moreover, from [25, Lemma 4.5.1], following the proof in [8, Lemma 5.2] we have

$$D_{P_i}X_{i_\lambda i_\beta} = qX_{i_\lambda i_\beta}D_{P_i}.$$

Since $(P_i \setminus i_\gamma) \cap P_{>i} \neq \emptyset$ we have from Lemma 3.5 that $D_{P_i}X_{i_\lambda i_\beta} = qX_{i_\lambda i_\beta}D_{P_i}$ in $O_q(P_i^+)$. Since $M_{i_\alpha i_\beta}$ is the sum of monomials that contain exactly one $X_{i_\lambda i_\beta}$ for some $i_\lambda \in P_i$ and the other terms are $X_{i_\lambda i_\mu}$, it follows that $M_{i_\alpha i_\beta}D_{P_i} = qD_{P_i}M_{i_\alpha i_\beta}$.

\section*{Theorem 3.11}

For P a partition of n with $P_i \in P$ where $i_\alpha \in P_i$ and $i_\beta \in P_{>i}$, the following relation holds in $O_q(P_i^+)$:

$$D_{P_i}M_{i_\alpha i_\beta} = qM_{i_\alpha i_\beta}D_{P_i}.$$

Proof. Let $i_\lambda, i_\mu \in P_i$. From [8, Lemma 5.2] we have $X_{i_\lambda i_\mu}D_{P_i} = D_{P_i}X_{i_\lambda i_\mu}$. Moreover, from [25, Lemma 4.5.1], following the proof in [8, Lemma 5.2] we have

$$D_{P_i}X_{i_\lambda i_\beta} = qX_{i_\lambda i_\beta}D_{P_i} = \hat{q}\sum_{i_\gamma \in P_i, i_\gamma < i_\lambda} (-q)\cdot X_{i_\lambda i_\gamma}[(P_i \setminus i_\gamma) \cup \{i_\beta\} | P_i].$$

Since $(P_i \setminus i_\gamma) \cup \{i_\beta\} \cap P_{>i} \neq \emptyset$ we have from Lemma 3.5 that $D_{P_i}X_{i_\lambda i_\beta} = qX_{i_\lambda i_\beta}D_{P_i}$ in $O_q(P_i^+)$. Since $M_{i_\alpha i_\beta}$ is the sum of monomials that contain exactly one $X_{i_\lambda i_\beta}$ for some $i_\lambda \in P_i$ and the other terms are $X_{i_\lambda i_\mu}$, it follows that $M_{i_\alpha i_\beta}D_{P_i} = qD_{P_i}M_{i_\alpha i_\beta}$.

\section*{89}
Theorem 3.12. Let P a partition of n with $P_i, P_j \in P$ where $i < j$. For $j_\gamma \in P_j$ and $j_\delta \in P_{>j}$ with $i_\alpha \in P_i$ and $i_\beta \in P_{>i}$, the following relations hold in $O_q(P^+_P)$:

$$D_{P_i} M_{P_j}^{P_{J_{i,j_{\delta}}}} = M_{P_j}^{P_{J_{i,j_{\delta}}}} D_{P_i}$$ (3.3)

$$M_{i_{a_{j_{i_{\beta}}}}}^{P_i} D_{P_j} = q D_{P_j} M_{i_{a_{j_{i_{\beta}}}}}^{P_i} \text{ if } i_\beta \in P_j$$ (3.4)

$$M_{i_{a_{j_{i_{\beta}}}}}^{P_i} D_{P_j} = D_{P_j} M_{i_{a_{j_{i_{\beta}}}}}^{P_i} \text{ if } i_\beta \notin P_j.$$ (3.5)

Proof.

(i) Let $i_{\lambda}, i_{\mu} \in P_i$ and $j_\eta \in P_j$. For all $j_\theta \in P_{\geq j}$ relation (1.22) simplifies to $X_{i_{\lambda}i_{\mu}} X_{j_\eta j_\theta} = X_{j_\eta j_\theta} X_{i_{\lambda}i_{\mu}}$ in $O_q(P^+_P)$. Since D_{P_i} is the sum of monomials that contain $X_{i_{\lambda}i_{\mu}}$ and $M_{P_j}^{P_{J_{i,j_{\delta}}}}$ is the sum of monomials that contain $X_{j_\eta j_\theta}$, it follows that D_{P_i} and $M_{P_j}^{P_{J_{i,j_{\delta}}}}$ commute and (3.3) follows.

(ii) Let $i_{\lambda}, i_{\mu} \in P_i$. It is straightforward to check that $X_{i_{\lambda}i_{\mu}} D_{P_j} = D_{P_j} X_{i_{\lambda}i_{\mu}}$.

(See the proof of Theorem 3.8) Moreover, for $i_\beta \in P_j$, it follows from Lemma 4.5.1 following the proof in Lemma 5.2 that

$$X_{i_{\lambda}i_{\beta}} D_{P_j} = q D_{P_j} X_{i_{\lambda}i_{\beta}} = \hat{q} \sum \left((-q)^{\star_{P_j} (P_j \setminus j_\gamma) \cup \{i_\lambda\}} \right) X_{j_\gamma i_{\beta}}.$$

Since $((P_j \setminus j_\gamma) \cup \{i_\lambda\}) \cap P_{<j} \neq \emptyset$, we have from Lemma 3.5 that

$$X_{i_{\lambda}i_{\beta}} D_{P_j} = q D_{P_j} X_{i_{\lambda}i_{\beta}}$$
in $O_q(P^+_P)$. Since $M^{P_i}_{i\alpha i\beta}$ is the sum of monomials that contain exactly
one $X_{i\lambda i\beta}$ for some $i_\lambda \in P_i$ and the other terms are $X_{i\lambda i\mu}$, it follows that

$$M^{P_i}_{i\alpha i\beta} D_P = q D_P M^{P_i}_{i\alpha i\beta}.$$

(iii) Let $i_\lambda, i_\mu \in P_i$. It is straightforward to check that $X_{i_\lambda i_\mu} D_P = D_P X_{i_\lambda i_\mu}$.

Moreover, for $i_\beta \notin P_j$ we have from relations [1.22] and [1.21] for all $j_\gamma, j_\delta \in P_j$ that $X_{i_\lambda i_\beta} X_{j_\gamma j_\delta} = X_{j_\gamma j_\delta} X_{i_\lambda i_\beta}$ in $O_q(P^+_P)$. It follows that $X_{i_\lambda i_\beta} D_P = D_P X_{i_\lambda i_\beta}$ in $O_q(P^+_P)$. Since $M^{P_i}_{i\alpha i\beta}$ is the sum of monomials that contain
exactly one $X_{i_\lambda i_\beta}$ and the other terms are $X_{i_\lambda i_\mu}$, it follows that $M^{P_i}_{i\alpha i\beta} D_P = D_P M^{P_i}_{i\alpha i\beta}$. \qed

More Relations in $O_q(P^+_P)$

Let P be a partition of n. For all $P_i \in P$, $i_\delta \in P_i$, and $i_\gamma \in P_{<i}$ define in

$O_q(P^+_P)$

$$W^{P_i}_{i_\gamma i_\delta} := \{|i_\gamma\} \cup (P_i \setminus i_\delta) | P_i\].$$

Similarly, for all $P_i \in P$, $i_\gamma \in P_{<i}$, and $i_\delta \in P_i$ define in $O_q(P^-_P)$

$$m^{P_i}_{i_\gamma i_\delta} := [P_i | \{i_\gamma\} \cup (P_i \setminus i_\delta)].$$
Finally, for all $P_i \in P$, $i_\beta \in P_{>i}$, and $i_\alpha \in P_i$ define in $O_q(P^-_P)$

$$w_{i_\alpha i_\beta}^P := [(P_i \setminus i_\alpha) \cup \{i_\beta\} \mid P_i].$$

We note that there are relations in $O_q(P^{\pm}_P)$ analogous to those in Theorems 3.10, 3.11 and 3.12 involving $W_{i_\gamma i_\delta}^P$, $m_{i_\gamma i_\delta}^P$, or $w_{i_\alpha i_\beta}^P$. The proofs are similar to the proofs in these theorems and we simply state the results explicitly below.

Theorem 3.13. Let P be a partition of n with $P_i, P_j \in P$ where $i < j$.

If $i_\alpha \in P_{<i}$ and $i_\beta \in P_i$ with $j_\gamma \in P_{<j}$ and $j_\delta \in P_j$, the following relations hold in $O_q(P^+_P)$:

$$W_{j_\gamma j_\delta}^P D_{P_j} = q^{-1} D_{P_j} W_{j_\gamma j_\delta}^P$$

$$W_{i_\alpha i_\beta}^P D_{P_j} = D_{P_j} W_{i_\alpha i_\beta}^P$$

$$D_{P_i} W_{j_\gamma j_\delta}^P = q^{-1} W_{j_\gamma j_\delta}^P D_{P_i} \text{ if } j_\gamma \in P_i$$

$$D_{P_i} W_{j_\gamma j_\delta}^P = W_{j_\gamma j_\delta}^P D_{P_i} \text{ if } j_\gamma \not\in P_i$$

If $i_\alpha \in P_{<i}$ and $i_\beta \in P_i$ with $j_\gamma \in P_{<j}$ and $j_\delta \in P_j$, the following relations hold in $O_q(P^-_P)$:

$$m_{j_\gamma j_\delta}^P D_{P_j} = q^{-1} D_{P_j} m_{j_\gamma j_\delta}^P$$

92
\[m_{i_\alpha i_\beta}^{P_i} D_{P_j} = D_{P_j} m_{i_\alpha i_\beta}^{P_i} \]

\[D_{P_i} m_{j_\gamma j_\delta}^{P_j} = q^{-1} m_{j_\gamma j_\delta}^{P_j} D_{P_i} \text{ if } j_\gamma \in P_i \]

\[D_{P_i} m_{j_\gamma j_\delta}^{P_j} = m_{j_\gamma j_\delta}^{P_j} D_{P_i} \text{ if } j_\gamma \notin P_i \]

If \(i_\alpha \in P_i \) and \(i_\beta \in P_{>i} \) with \(j_\gamma \in P_j \) and \(j_\delta \in P_{>j} \), the following relations hold in \(O_q(P^-_P) \):

\[D_{P_i} w_{i_\alpha i_\beta}^{P_i} = q w_{i_\alpha i_\beta}^{P_i} D_{P_i} \]

\[D_{P_i} w_{j_\gamma j_\delta}^{P_j} = w_{j_\gamma j_\delta}^{P_j} D_{P_i} \]

\[w_{i_\alpha i_\beta}^{P_i} D_{P_j} = q D_{P_j} w_{i_\alpha i_\beta}^{P_i} \text{ if } i_\beta \in P_j \]

\[w_{i_\alpha i_\beta}^{P_i} D_{P_j} = D_{P_j} w_{i_\alpha i_\beta}^{P_i} \text{ if } i_\beta \notin P_j \]

Theorem 3.14. Let \(P \) be a partition of \(n \) and \(P_i \in P \).

For \(i_\alpha \in P_{<i} \) and \(i_\beta \in P_i \), the following relation holds in \(O_q(P^+_P) \):

\[X_{i_\alpha i_\beta} = \sum_{i_\gamma \in P_i} (-q^{-|P_i|-1}) D_{P_i}^{-1} W_{i_\alpha i_\gamma}^{P_i} X_{i_\gamma i_\beta} \]

For \(i_\alpha \in P_i \) and \(i_\beta \in P_{<i} \), the following relation holds in \(O_q(P^-_P) \):

\[X_{i_\alpha i_\beta} = \sum_{i_\gamma \in P_i} (-q^{-|P_i|-1}) X_{i_\alpha i_\gamma} m_{i_\beta i_\gamma}^{P_i} D_{P_i}^{-1} \]

93
For \(i_\alpha \in P_{>i} \) and \(i_\beta \in P_i \), the following relation holds in \(O_q(P_P^-) \):

\[
X_{i_\alpha i_\beta} = \sum_{i_\gamma \in P_i} -(-q^{|P_i|-1}) D_{P_i}^{-1} w_{i_\gamma i_\alpha} X_{i_\gamma i_\beta}.
\]

3.3 The Algebras of Coinvariants for \(O_q(P_P^\pm) \)

Proposition 3.15. \(I_P^\pm \) are Hopf ideals.

Proof. If \(|P| = 1 \) then \(I_P^\pm = 0 \) and the result is trivial. Therefore, we may assume that \(|P| > 1 \).

It is clear that \(I_P^+ \subset \ker \epsilon \). For each \(X_{ij} \in I_P^+ \) there exists an \(r \) so that \(i \in P_r \) and \(j \in P_{>r} \). Comultiplication of \(X_{ij} \) becomes

\[
\Delta(X_{ij}) = \sum_{t=1}^{n} X_{it} \otimes X_{tj} = \sum_{t \in P_{<r}} X_{it} \otimes X_{tj} + \sum_{t \in P_r} X_{it} \otimes X_{tj} + \sum_{t \in P_{>r}} X_{it} \otimes X_{tj}.
\]

(3.6)

But for \(t \in P_{<r} \) since \(j \in P_{>r} \) then \(X_{tj} \in I_P^+ \). Moreover for \(t \in P_{>r} \) since \(i \in P_r \) then \(X_{it} \in I_P^+ \). Therefore \(\Delta(X_{ij}) \in I_P^+ \otimes O_q(SL_n) + O_q(SL_n) \otimes I_P^+ \).

Let \(L = \{1, 2, \ldots, \hat{j}, \ldots, n\} \) and \(M = \{1, 2, \ldots, \hat{i}, \ldots, n\} \). Ordering the elements of \(L \) and \(M \) sequentially, let \(l_k \) and \(m_k \) be the \(k \)th terms of \(L \) and \(M \), respectively. From the definition of the antipode we have

\[
S(X_{ij}) = q^{i-j}[L \mid M] = \sum_{\sigma \in \text{Sym}_{n-1}} (-q)^{\ell(\sigma)} X_{l_1 m_{\sigma(1)}} \cdots X_{l_{n-1} m_{\sigma(n-1)}}.
\]
Note, for any $\sigma \in \text{Sym}_{n-1}$ we may interpret σ acting on M by $\sigma(m_k) = m_{\sigma(k)}$.

Thus, to show that $S(X_{ij}) \in I_{P}^+$, it is sufficient to show that for any $\sigma \in \text{Sym}_{n-1}$ there is a $k \in \{1, 2, \ldots, n - 1\}$ so that $X_{lk} \sigma(m_k) \in I_{P}^+$. To do this, we need to show that for all $\sigma \in \text{Sym}_{n-1}$ there is a $k \in \{1, 2, \ldots, n - 1\}$ so that $l_k \in P_{\leq r}$ and $\sigma(m_k) \in P_{> r}$.

Since $X_{ij} \in I_{P}^+$, from above there is a natural number r so that $i \in P_r$ and $j \in P_{> r}$. It follows that $i < j$ and so $l_k \leq m_k$ for all k. In fact, $i < m_k \leq j$ if and only if $l_k < m_k$. This implies that if $m_k \in P_{\leq r}$ then $l_k \in P_{\leq r}$.

There are two possibilities for $\sigma \in \text{Sym}_{n-1}$ to consider. Either there is an $m_k \in M$ so that $m_k \in P_{\leq r}$ and $\sigma(m_k) \in P_{> r}$ or there is not. If the former, then from the previous discussion $l_k \in P_{\leq r}$ and we are done. If σ is in the latter case then for all $m_k \in P_{\leq r}$ we must have $\sigma(m_k) \in P_{\leq r}$. Consequently, for all $m_k \in P_{> r}$ we have $\sigma(m_k) \in P_{> r}$. Let $m_t = \min P_{> r}$. Then $i < m_t \leq j$. This implies that $l_t < m_t$. Since m_t is $\min P_{> r}$ then $l_t \in P_{\leq r}$. However, since $\sigma(m_t) \in P_{> r}$ again we are done.

It can similarly be shown that $I_{\bar{P}}$ is a Hopf ideal. \hfill \qed

It follows from Theorem 3.15 that $O_q(P_{\pm}^\pm)$ are Hopf algebras induced from the Hopf algebra structure of $O_q(\text{SL}_n)$. For clarity we may denote the counit, comultiplication, and antipode in $O_q(P_{\pm}^\pm)$ by $\epsilon_{p \pm}$, $\Delta_{p \pm}$, and $S_{p \pm}$ respectively, otherwise we will keep the usual notation of ϵ, Δ, and S.

95
We note from (3.6) that if $i_\alpha \in P_i$ then

$$\Delta P^+(X_{i_\alpha i_\beta}) = \sum_{i_\gamma \in P_i} X_{i_\alpha i_\gamma} \otimes X_{i_\gamma i_\beta} + \sum_{i_\gamma \in P_{>i}} X_{i_\alpha i_\gamma} \otimes X_{i_\gamma i_\beta}$$

and

$$\Delta P^-(X_{i_\alpha i_\beta}) = \sum_{i_\gamma \in P_{<i}} X_{i_\alpha i_\gamma} \otimes X_{i_\gamma i_\beta} + \sum_{i_\gamma \in P_i} X_{i_\alpha i_\gamma} \otimes X_{i_\gamma i_\beta}.$$

We also note that for $P_i \in P$ and $i_\beta \in P_{>i}$ then from (1.26) we have

$$\Delta \left(M_{i_\alpha i_\beta}^{P_i} \right) = \Delta \left([P_i \mid (P_i \setminus i_\alpha) \cup \{i_\beta\}] \right) = \sum_{\substack{|J| = |P_i| \\ J \subset \{1, 2, \ldots, n\}}} \left[P_i \mid J \right] \otimes \left[J \mid (P_i \setminus i_\alpha) \cup \{i_\beta\} \right].$$

However, by Lemma 3.5, we have that if $J \cap P_{<i} \neq \emptyset$ then $[P_i \mid J] = 0$ in $O_q(P^+_i)$. Thus, we have

$$\Delta_{P^+} \left(M_{i_\alpha i_\beta}^{P_i} \right) = \sum_{\substack{|J| = |P_i| \\ J \subset P_{\geq i}}} \left[P_i \mid J \right] \otimes \left[J \mid (P_i \setminus i_\alpha) \cup \{i_\beta\} \right].$$

Similarly,

$$\Delta_{P^+} \left(W_{i_\gamma i_\delta}^{P_i} \right) = \sum_{\substack{|J| = |P_i| \\ J \subset P_{\leq i}}} \left[\{i_\gamma\} \cup (P_i \setminus i_\delta) \mid J \right] \otimes \left[J \mid P_i \right]$$

and

$$\Delta_{P^-} \left(m_{i_\alpha i_\beta}^{P_i} \right) = \sum_{\substack{|J| = |P_i| \\ J \subset P_{\leq i}}} \left[P_i \mid J \right] \otimes \left[J \mid \{i_\gamma\} \cup (P_i \setminus i_\delta) \right]$$

96
\[\Delta_{P_i} \left(u_{i_\alpha \beta}^{P_i} \right) = \sum_{\substack{|J|=|P_i| \\ J \subset P_{\geq i}}} \left[(P_i \setminus i_\alpha) \cup \{i_\beta\} \mid J \right] \otimes [J \mid P_i]. \]

Finally, we note that Lemma 3.5 also implies that \(\Delta_{P_i}(D_{P_i}) = D_{P_i} \otimes D_{P_i} \) for all \(P_i \in P \).

Levi Subalgebra \(O_q(L_P) \)

Definition 3.16. The quantized (standard) Levi algebra of \(O_q(\text{SL}_n) \) relative to \(P \) is the algebra defined by

\[O_q(L_P) := O_q(\text{SL}_n)/(I_P^+ + I_P). \]

For \(i_\alpha, i_\beta \in P_i \) we denote the coset containing \(X_{i_\alpha i_\beta} \) in \(O_q(L_P) \) by \(Y_{i_\alpha i_\beta} \). It is clear that \(O_q(L_P) \) is generated by \(\{ Y_{i_\alpha i_\beta} \mid P_i \in P, \ i_\alpha, i_\beta \in P_i \} \). We will also abuse notation and denote by \(D_{P_i} \) the quantum minor \([P_i \mid P_i] \) in \(O_q(L_P) \).

Since \(I_P^\pm \) are Hopf ideals, \(O_q(L_P) \) is also a Hopf algebra induced from \(O_q(\text{SL}_n) \). We denote the comultiplication, counit, and antipode by \(\Delta_L, \epsilon_L, \text{ and } S_L \) respectively, when emphasis is needed. Specifically, for all \(P_i \in P \) we note that for \(i_\alpha, i_\beta \in P_i \)

\[\Delta_L(Y_{i_\alpha i_\beta}) = \sum_{i_\gamma \in P_i} Y_{i_\alpha i_\gamma} \otimes Y_{i_\gamma i_\beta} \quad (3.7) \]
and
\[\Delta_L(D_{P_i}) = D_{P_i} \otimes D_{P_i}. \]

We also define the subalgebras \(O_q(S^\pm_P) \) in \(O_q(P^\pm_P) \) to be the algebras generated by
\[\{ X_{ij} \mid P_k \in P, \ i,j \in P_k \}. \]

\(O_q(L_P) \)-coactions on \(O_q(P^\pm_P) \)

There exist natural projection homomorphisms \(p^\pm : O_q(P^\pm_P) \to O_q(L_P) \) such that
\[
p^\pm(X_{i\alpha i\beta}) = \begin{cases}
Y_{i\alpha i\beta} & \text{if } i, i \in P \text{ some } P_i \in P \\
0 & \text{otherwise.}
\end{cases}
\] (3.8)

It is clear that \(p^\pm \) is surjective when restricted to \(O_q(S^\pm) \). Lemma 3.5 implies that
\[
p^\pm ([P_i \mid J]) = \begin{cases}
D_{P_i} & \text{if } J = P_i \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \quad p^\pm ([J \mid P_i]) = \begin{cases}
D_{P_i} & \text{if } J = P_i \\
0 & \text{otherwise.}
\end{cases}
\]

Using these maps, as well as the comultiplication maps, \(\Delta \) and identity maps, \(\text{id}_{P^\pm} \) on \(O_q(P^\pm_P) \), we define the maps \(\eta^\pm : O_q(P^\pm_P) \to O_q(P^\pm_P) \otimes O_q(L_P) \) and
\[\theta^\pm : O_q(P^\pm_{\bar{P}}) \rightarrow O_q(L_{\bar{P}}) \otimes O_q(P^\pm_{\bar{P}}) \] by

\[\eta^\pm := (\text{id}_{P^\pm} \otimes p^\pm)\Delta \quad \text{and} \quad \theta^\pm := (p^\pm \otimes \text{id}_{P^\pm})\Delta. \]

Since \(p^\pm \) and \(\Delta \) are \(k \)-algebra homomorphisms, so too are \(\eta^\pm \) and \(\theta^\pm \). We note for \(i_\alpha \in P_i \) and \(j_\beta \in P_j \) we have

\[\eta^\pm(X_{i_\alpha j_\beta}) = \sum_{j_\gamma \in P_j} X_{i_\alpha j_\gamma} \otimes X_{j_\gamma j_\beta} \quad \text{and} \quad \theta^\pm(X_{i_\alpha j_\beta}) = \sum_{i_\gamma \in P_i} X_{i_\alpha i_\gamma} \otimes X_{i_\gamma j_\beta}. \]

We also note that

\[\eta^+(W^{P_i}_{i_\gamma i_\alpha}) = W^{P_i}_{i_\gamma i_\alpha} \otimes D_{P_i} \quad \theta^+(M^{P_i}_{i_\alpha i_\beta}) = D_{P_i} \otimes M^{P_i}_{i_\alpha i_\beta} \]
\[\eta^-(w^{P_i}_{i_\alpha i_\beta}) = w^{P_i}_{i_\alpha i_\beta} \otimes D_{P_i} \quad \theta^-(m^{P_i}_{i_\alpha i_\beta}) = D_{P_i} \otimes m^{P_i}_{i_\alpha i_\beta}. \]

Finally,

\[\eta^\pm(D_{P_i}) = D_{P_i} \otimes D_{P_i} \quad \text{and} \quad \theta^\pm(D_{P_i}) = D_{P_i} \otimes D_{P_i}. \]

It is easily checked that \(\eta^\pm \) and \(\theta^\pm \) are comodule structure maps, i.e., \(O_q(P^\pm_{\bar{P}}) \) is a right \(O_q(L_{\bar{P}}) \)-comodule algebra via \(\eta^\pm \) and similarly, \(O_q(P^\pm_{\bar{P}}) \) is a left \(O_q(L_{\bar{P}}) \)-comodule algebra via \(\theta^\pm \).
Lemma 3.17. Let P be a partition of n with $|P| = k$. Let $M = \bigotimes_{i=1}^{k} O_q(M_{|P_i|})$.

There exists a surjective algebra homomorphism $\phi : M \rightarrow O_q(L_P)$ so that $1 \otimes \cdots X_{i,j} \otimes 1 \otimes \cdots \rightarrow Y_{(|P_{<i}|+i)(|P_{<j}|+j)}$ for all $X_{i,j} \in O_q(M_{P_i})$.

Proof. For each $P_i \in P$, define a map $\phi_i : O_q(M_{P_i}) \rightarrow O_q(L_P)$ by $X_{l,m} \mapsto Y_{(|P_{<i}|+l)(|P_{<i}|+m)}$. It is straightforward to check that these maps are k-algebra homomorphisms.

Define the map $\bar{\phi} : \prod_{i=1}^{k} O_q(M_{|P_i|}) \rightarrow O_q(L_P)$ defined by $\bar{\phi}(a_1, \ldots, a_k) = \phi_1(a_1) \cdots \phi_k(a_k)$. Again, it is straightforward to check that $\bar{\phi}$ is a surjective multilinear map. Moreover, if $i_s, j_s \in P_s$ and $l_t, m_t \in P_t$ with $s \neq t$ then $Y_{i_s j_s}$ and $Y_{l_t m_t}$ commute. It follows that

$$\bar{\phi}(1, \cdots, X_{i_s j_s}, \cdots, 1) \bar{\phi}(1, \cdots, X_{l_t m_t}, \cdots, 1) = \bar{\phi}(1, \cdots, X_{l_t m_t}, \cdots, 1) \bar{\phi}(1, \cdots, X_{i_s j_s}, \cdots, 1)$$

for all $X_{i_s j_s} \in O_q(M_{|P_i|})$ and all $X_{l_t m_t} \in O_q(M_{|P_t|})$ with $s \neq t$. By the universal property for the tensor products of algebras, there exists an algebra homomorphism ϕ described above.

Lemma 3.18. The map p^\pm is an isomorphism of $O_q(S_P^\pm)$ onto $O_q(L_P)$.

Proof. Let $\phi : M \rightarrow O_q(L_P)$ be the homomorphism from Lemma 3.17 and let $p^\pm_S = p^\pm |_{O_q(S^\pm_P)}$.

100
It follows from the proof of Theorem 3.40 that $\text{GK.dim} \ M = \text{GK.dim} \ O_q(L_P) + 1$. Notice that there exists a surjective algebra homomorphism $\phi' : M \to O_q(S_P^\pm)$ so that $p_S^+ \phi' = \phi$. Since $D_1 \otimes \cdots D_n - 1 \in \ker \phi'$ it follows from Proposition 3.15 that $\text{GK.dim} \ O_q(S^+) \leq \text{GK.dim} \ M - 1 = \text{GK.dim} \ O_q(L_P)$. However, since $O_q(L_P) = p_S^+(O_q(S_P^+))$ it is not possible for $\text{GK.dim} \ O_q(S^+) < O_q(L_P)$. Therefore, $\ker p_S^+ = 0$.

Similarly results hold for p_S^-.

Therefore, by Lemma 3.18 we may define homomorphisms $r^\pm : O_q(L_P) \to O_q(P_P^\pm)$ by $r^\pm := (p^\pm)^{-1}$ where p^\pm is restricted to $O_q(S^\pm)$. Notice that

$$r^\pm(Y_{i\alpha i\beta}) = X_{i\alpha i\beta}. \quad (3.9)$$

Note, from Corollary 3.9 we have that the $D_{P_i} \in O_q(L_P)$ are invertible which implies that $\Delta_L(D_{P_i}^{-1}) = D_{P_i}^{-1} \otimes D_{P_i}^{-1}$.

$O_q(P_P^\pm)$ as the Smash Product of Coinvariants

Theorem 3.19. Let $A^\pm = O_q(P_P^\pm)^{\eta^\pm}$ then $A^\pm \# O_q(L_P) \cong O_q(P_P^\pm)$. Similarly letting $C^\pm = O_q(P_P^\pm)^{\theta^\pm}$ then $O_q(L_P) \# C^\pm \cong O_q(P_P^\pm)$.

101
Proof. Let \(r^\pm \) be the homomorphism from [3.9]. Define \(\overline{r^\pm} : O_q(L_P) \to O_q(P^\pm_P) \) by \(\overline{r^\pm} = r^\pm S_L \). Note we have

\[
(r^\pm \ast \overline{r^\pm})(Y) = \sum_{(Y)} r^\pm(Y_1) \overline{r^\pm}(Y_2) = r^\pm \left(\sum_{(Y)} Y_1 S_L(Y_2) \right) = r^\pm(\epsilon_L(Y) \cdot 1) = \epsilon_L(Y) \cdot 1
\]

for all \(Y \in O_q(L_P) \). Similarly, \((\overline{r^\pm} \ast r^\pm)(Y) = \epsilon_L(Y) \cdot 1 \). Since \(\overline{r^\pm}(1) = 1 \) then \(\overline{r^\pm} \) is the convolution inverse of \(r^\pm \).

To check that \(r^\pm \) is a right \(O_q(L_P) \)-comodule map we need to show that

\[
\eta^\pm r^\pm = (r^\pm \otimes id) \Delta_L,
\]

but since \(r^\pm \) and \(\eta^\pm \) are \(k \)-algebra homomorphisms, it is sufficient to show the equality holds on the \(Y_{i,j} \in O_q(L_P) \). Indeed,

\[
\eta^\pm r^\pm(Y_{i_\alpha,j_\beta}) = \eta^\pm(X_{i_\alpha,j_\beta}) = \sum_{i_\gamma \in P_i, j_\gamma \in P_i} X_{i_\alpha,j_\gamma} \otimes Y_{i_\gamma,j_\beta}
\]

and

\[
(r^\pm \otimes id) \Delta_L(Y_{i_\alpha,j_\beta}) = (r^\pm \otimes id) \left(\sum_{i_\gamma \in P_i} Y_{i_\alpha,j_\gamma} \otimes Y_{i_\gamma,j_\beta} \right) = \sum_{i_\gamma \in P_i} X_{i_\alpha,j_\gamma} \otimes Y_{i_\gamma,j_\beta}
\]

for all \(P_i \in P, i_\alpha, i_\beta \in P_i \). Hence, \(r^\pm \) are right \(O_q(L_P) \)-comodule homomorphisms. Therefore we have \(O_q(P^\pm_P) \) is an \(H \)-cleft extension. Moreover, using Theorem 1.18 we have a \(k \)-algebra isomorphism \(\Phi^\pm : A^\pm \#O_q(L_P) \to O_q(P^\pm_P) \) where \(\Phi^\pm(X \# Y) = X r^\pm(Y) \).
Similarly, by making the appropriate changes to the above proof, there is a k-algebra isomorphism $\Psi^\pm : O_q(L_P)\#C^\pm \to O_q(P_P^\pm)$ defined by $\Psi^\pm(Y \# X) = r^\pm(Y)X$. \qed

Quantized Standard Unipotent Subgroups of P_P^\pm

It is natural to ask what are the coinvariants for $O_q(P_P^\pm)$ using the structure maps η^\pm or θ^\pm. Note, for the elements $D_{P_i}^{-1}M_{i_{i_\alpha i_\beta}}^{P_i} \in O_q(P_P^\pm)$ we have

$$\theta^+(D_{P_i}^{-1}M_{i_{i_\alpha i_\beta}}^{P_i}) = \theta^+(D_{P_i}^{-1})(\theta^+(M_{i_{i_\alpha i_\beta}}^{P_i})) = (D_{P_i}^{-1} \otimes D_{P_i}^{-1})(D_{P_i} \otimes M_{i_{i_\alpha i_\beta}}^{P_i}) = 1 \otimes D_{P_i}^{-1}M_{i_{i_\alpha i_\beta}}^{P_i}.$$\

That is, $D_{P_i}^{-1}M_{i_{i_\alpha i_\beta}}^{P_i} \in O_q(P_P^+)^{\text{co } \theta^+}$. Similarly, $w_{i_{i_\gamma i_\delta}}^{P_i}D_{P_i}^{-1} \in O_q(P_P^-)^{\text{co } \eta^-}$, $W_{i_{i_\gamma i_\alpha}}^{P_i}D_{P_i}^{-1} \in O_q(P_P^+)^{\text{co } \eta^+}$, and $D_{P_i}^{-1}m_{i_{i_\alpha i_\beta}}^{P_i} \in O_q(P_P^-)^{\text{co } \theta^-}$.\

Define the following subalgebras of $O_q(P_P^\pm)$

- $O_q(N_{> P}^+) : = k \left\langle D_{P_i}^{-1}M_{i_{i_\alpha i_\beta}}^{P_i} \mid P_i \in P, i_\alpha \in P, i_\beta \in P_{>i} \right\rangle$ (3.10)

- $O_q(N_{> P}^+) : = k \left\langle W_{i_{i_\gamma i_\delta}}^{P_i}D_{P_i}^{-1} \mid P_i \in P, i_\gamma \in P_{<i}, i_\delta \in P_i \right\rangle.$ (3.11)

Similarly, define the subalgebras of $O_q(P_P^-)$

- $O_q(N_{< P}^-) : = k \left\langle D_{P_i}^{-1}m_{i_{i_\alpha i_\beta}}^{P_i} \mid P_i \in P, i_\gamma \in P_{<i}, i_\delta \in P_i \right\rangle$ (3.12)

- $O_q(N_{< P}^-) : = k \left\langle w_{i_{i_\gamma i_\delta}}^{P_i}D_{P_i}^{-1} \mid P_i \in P, i_\alpha \in P_{>i}, i_\beta \in P_i \right\rangle.$ (3.13)
Since \(\eta^\pm \) and \(\theta^\pm \) are algebra homomorphisms, from the above discussion \(O_q(N_{>P}^+) \) and \(O_q(N_{<P}^+) \) are subalgebras of \(O_q(P_{P}^+)^{\text{co } \theta^+} \) and \(O_q(P_{P}^+)^{\text{co } \eta^+} \). Similarly, \(O_q(N_{<P}^-) \) and \(O_q(N_{<P}^-) \) are subalgebras of \(O_q(P_{P}^-)^{\text{co } \theta^-} \) and \(O_q(P_{P}^-)^{\text{co } \eta^-} \). In fact, these algebras are exactly the coinvariants for \(\eta^\pm \) and \(\theta^\pm \) which we now show.

Theorem 3.20. \(O_q(N_{>P}^+) = O_q(P_{P}^+)^{\text{co } \theta^+} \) and \(O_q(N_{<P}^-) = O_q(P_{P}^-)^{\text{co } \theta^-} \). Similarly, \(O_q(N_{<P}^+) = O_q(P_{P}^+)^{\text{co } \eta^+} \) and \(O_q(N_{>P}^-) = O_q(P_{P}^-)^{\text{co } \eta^-} \).

Proof. From the discussion above it follows that \(O_q(N_{>P}^+) \subseteq O_q(P_{P}^+)^{\text{co } \theta^+} \). The map \(\Psi^+ \) from the proof of Theorem 3.19 is an isomorphism of \(O_q(L_P)^\#C^+ \) onto \(O_q(P_{P}^+) \), thus it is sufficient to show that \(\Psi^+ \) maps \(O_q(L_P)^\#O_q(N_{>P}^+) \) onto \(O_q(P_{P}^+) \).

Notice that

\[
\Psi^+(O_q(L_P)^\#O_q(N_{>P}^+)) = r^+(O_q(L_P))O_q(N_{>P}^+) \subseteq O_q(P_{P}^+).
\]

It follows that \(r^+(O_q(L_P))O_q(N_{>P}^+) \) is a subalgebra of \(O_q(P_{P}^+) \). Therefore, we need only show that this subalgebra contains all the \(X_{ij} \) that generate \(O_q(P_{P}^+) \) to prove the Theorem.

For \(i_\alpha, i_\beta \in P_i \) we note that

\[
\Psi^+(Y_{i_\alpha i_\beta}^\#1) = r^+(Y_{i_\alpha i_\beta}) = X_{i_\alpha i_\beta}.
\]
Moreover, for $i_\alpha \in P_i$ and $i_\beta \in P_{>i}$ the relation from Theorem 3.10 and Theorem 3.11 gives us

$$X_{i_\alpha i_\beta} = \sum_{i_\gamma \in P_i} (-q^{-|P_i|}) X_{i_\alpha i_\gamma} D_{P_i}^{-1} M_{i_\gamma i_\beta}.$$

Hence,

$$\Psi^+ \left(\sum_{i_\gamma \in P_i} (-q^{-|P_i|}) X_{i_\alpha i_\gamma} \# D_{P_i}^{-1} M_{i_\gamma i_\beta} \right) = \sum_{i_\gamma \in P_i} (-q^{-|P_i|}) r^+(Y_{i_\alpha i_\gamma}) D_{P_i}^{-1} M_{i_\gamma i_\beta}$$

$$= \sum_{i_\gamma \in P_i} (-q^{-|P_i|}) X_{i_\alpha i_\gamma} D_{P_i}^{-1} M_{i_\gamma i_\beta}$$

$$= X_{i_\alpha i_\beta}.$$

Therefore, the generators of $O_q(P^+_P)$ are contained in the image of Ψ^+. Hence,

$$O_q(N^+_P) = O_q(P^+_P)^{\co \theta^+}.$$

By a similar argument using Ψ^- from from the proof of Theorem 3.19 and Theorems 3.13 and 3.14 we have $O_q(P^+_P)^{\co \theta^-} = O_q(N^-_P)$. Finally, using Φ^\pm from the proof of Theorem 3.19 and Theorems 3.13 and 3.14 one can also show that $O_q(N^+_P) = O_q(P^+_P)^{\co \eta^+}$ and $O_q(N^-_P) = O_q(P^-_P)^{\co \eta^-}$.

Corollary 3.21. For P a partition of n we have the following k-algebra isomorphisms

$$O_q(P^+_P) \cong O_q(L_P) \# O_q(N^+_P) \cong O_q(N^+_P) \# O_q(L_P)$$
\[O_q(P^-_P) \cong O_q(L_P) \# O_q(N^-_{>P}) \cong O_q(N^-_{<P}) \# O_q(L_P). \]

Proof. This follows directly from Theorem 3.19 and Theorem 3.20.

Definition 3.22. The algebras from (3.10) and (3.11) are called quantized standard positive unipotent subgroups of \(P^+_P \). Similarly, the algebras from (3.12) and (3.13) are called quantized standard negative unipotent subgroups of \(P^-_P \). Collectively, they are called the quantized standard unipotent subgroups.

3.4 Isomorphisms of Unipotent Radical Subalgebras

Let \(w_0 \) be the longest element in \(\text{Sym}_n \). For \(P \) a partition of \(n \) where \(|P| = k \), denote \(w_0(P) \) to be the partition of \(n \) such that \(w_0(P)_{k-i+1} = w_0(P_i) \). Note, for any \(i, j \in \{1, 2, \ldots, n\} \) with \(i < j \) then \(w_0(i) > w_0(j) \).

From [25, Section 3.7] there exist a transpose automorphism \(\tau : O_q(M_n) \to O_q(M_n) \) defined by \(\tau(X_{ij}) = X_{ji} \) and an anti-automorphism \(\xi : O_q(M_n) \to O_q(M_n) \) defined by \(\xi(X_{ij}) = X_{w_0(j), w_0(i)} \). It is clear that \(\tau^2 = \text{id} \) and since \(w_0^2 = 1 \) then \(\xi^2 = \text{id} \). We note from [25, Lemma 4.3.1] that for index sets
\(I, J \subset \{1, 2, \ldots, n\} \) where \(|I| = |J|\) then

\[
\tau([I \mid J]) = [J \mid I] \quad \text{and} \quad \xi([I \mid J]) = [w_0(J) \mid w_0(I)].
\] (3.14)

It is clear that \(\tau(D) = D \). Moreover, since \(w_0(\{1, 2, \ldots, n\}) = \{1, 2, \ldots, n\} \) it follows that \(\xi(D) = D \). Hence, \(\tau \) induces an automorphism and \(\xi \) induces an anti-automorphism of \(O_q(\text{SL}_n) \), respectively. We will abuse notation and continue to denote these maps by \(\tau \) and \(\xi \).

Lemma 3.23. Let \(P \) be a partition of \(n \).

(i) The map \(\tau \) induces algebra isomorphisms \(\tau_P^\pm : O_q(P_P^\pm) \to O_q(P_P^\pm) \).

(ii) The map \(\tau \) induces a Hopf algebra isomorphism \(\tau_L : O_q(L_P) \to O_q(L_P)^{\text{cop}} \).

(iii) The map \(\xi \) induces algebra isomorphisms \(\xi_P^\pm : O_q(P_P^\pm) \to O_q(P_{w_0(P)}^\pm)^{\text{op}} \).

(iv) The map \(\xi \) induces a Hopf algebra isomorphism \(\xi_L : O_q(L_P) \to O_q(L_P)^{\text{op}} \).

Proof. If \(X_{ij} \in I_P^\pm \) then \(\tau(X_{ij}) = X_{ji} \in I_P^\pm \) and so \(\tau(I_P^\pm) \subseteq I_P^\pm \). Conversely, since \(\tau^2 = \text{id} \), then \(I_P^\pm \subseteq \tau(I_P^\pm) \). Thus, \(I_P^\pm \subseteq \tau(I_P^\pm) \subseteq I_P^\pm \) and so \(\tau(I_P^\pm) = I_P^\pm \). Hence, \(\tau \) induces algebra homomorphisms \(\tau_P^\pm : O_q(P_P^\pm) \to O_q(P_P^\pm) \). Moreover, for all \(X_{ij} \in O_q(P_P^+) \) and all \(X_{kl} \in O_q(P_P^-) \) we get

\[
\tau_P^+\tau_P^-(X_{ij}) = \tau_P^+(X_{ji}) = X_{ij} \quad \text{and} \quad \tau_P^-\tau_P^+(X_{kl}) = \tau_P^+(X_{lk}) = X_{kl}.
\]

That is \(\tau_P^+\tau_P^- = \text{id}_{P^+} \) and \(\tau_P^-\tau_P^+ = \text{id}_{P^-} \). Therefore, \(\tau_P^\pm \) are isomorphisms.
From Proposition 3.7.1 (2) we have that τ is a Hopf algebra automorphism from $O_q(\text{SL}_n) \to O_q(\text{SL}_n)^{\text{cop}}$. It follows from the above discussion that $\tau(I_P^+ + I_P^-) = I_P^+ + I_P^-$. Hence, from Proposition 3.15 the induced homomorphism $\tau_L : O_q(L_P) \to O_q(L_P)^{\text{cop}}$ is also a Hopf algebra homomorphism. Since $\tau_L^2 = \text{id}_L$ we have τ_L is a Hopf algebra isomorphism.

Similar proofs also hold for ξ_P^\pm and ξ_L noting that ξ is an anti-automorphism of $O_q(\text{SL}_n)$ and $\xi(I_P^\pm) = I_P^\pm$.

Proposition 3.24. The maps τ_P^\pm from Lemma 3.23 restricted to $O_q(N_{>P}^\pm)$ give isomorphisms onto $O_q(N_{>P}^\pm)$. Also, the maps τ_P^\pm restricted to $O_q(N_{<P}^\pm)$ give isomorphisms onto $O_q(N_{<P}^\pm)$. Finally, ξ_P^\pm restricted to $O_q(N_{<P}^\pm)$ gives anti-isomorphisms onto $O_q(N_{>w_0(P)}^\pm)$ and ξ_P^\pm restricted to $O_q(N_{<P}^\pm)$ gives anti-isomorphisms onto $O_q(N_{>w_0(P)}^\pm)$.

Proof. Let $P, P \in P$. We first note that for all $D_P \in O_q(P_P^+)$ we have $\tau_P^-(D_P) = D_P$. We also note that

$$\tau_P^-(M_{i_\alpha i_\beta}^P) = \tau_P^-(P_i \setminus (P_i \setminus i_\alpha) \cup \{i_\beta\}) = [(P_i \setminus i_\alpha) \cup \{i_\beta\} | P_i] = w_{i_\alpha i_\beta}^P$$

for all $M_{i_\alpha i_\beta}^P \in O_q(P_P^+)$. Hence, for $D_P, M_{i_\alpha i_\beta}^P \in O_q(N_{>P}^\pm)$ it follows from Theorem 3.11 that

$$\tau_P^-(D_P^{-1} M_{i_\alpha i_\beta}^P D_P^{-1}) = \tau_P^-(q^{-1} M_{i_\alpha i_\beta}^P D_P^{-1} \tau_P^-(D_P^{-1})) = q^{-1} w_{i_\alpha i_\beta}^P D_P^{-1}.$$

108
Hence $\tau_P^{-}(O_q(N^+_P)) \subseteq O_q(N^-_P)$.

Conversely, for $w_{i,\alpha,\beta} P_i \in O_q(N^-_P)$, we have

$$
\tau_P^{-}(qD^{-1}_i M_{i,\alpha,\beta} D^{-1}_i) = w_{i,\alpha,\beta} P_i.
$$

Therefore, the generators of $O_q(N^-_P)$ are contained in the image of τ_P^{-} and the inclusion becomes an equality. Since τ_P^{-} is an isomorphism on $O_q(P^+_P)$, it follows from the above that the restriction to $O_q(N^+_P)$ is an isomorphism onto $O_q(N^-_P)$.

The other statements are proven similarly.

Theorem 3.25. For P a partition of n we have the following k-algebra isomorphisms

$$
O_q(P^+_P) \cong O_q(L_P)^{\text{cop}} \# O_q(N^-_P) \cong O_q(N^-_P) \# O_q(L_P)^{\text{cop}}
$$

$$
O_q(P^-_P) \cong O_q(L_P)^{\text{cop}} \# O_q(N^+_P) \cong O_q(N^+_P) \# O_q(L_P)^{\text{cop}}.
$$

Proof. Let $P_i \in P$. We note that for all $i, \alpha, i, \beta \in P_i$, if r^\pm is the map defined in equation (3.9) we have

$$
r^\pm(\tau_L(Y_{i,\alpha,\beta})) = r^\mp(Y_{i,\beta,\alpha}) = X_{i,\beta,\alpha} = \tau_P^+(X_{i,\alpha,\beta}) = \tau_P^-(r^\pm(Y_{i,\alpha,\beta})).
$$

Hence, $r^- \tau_L = \tau_P^- r^+$. Since $\tau_L : O_q(L_P) \to O_q(L_P)^{\text{cop}}$ is a Hopf algebra isomorphism and since the antipode for $O_q(L_P)^{\text{cop}}$ is S_L^{-1}, from Theorem 3.23 we
have
\[r^− \tau_L = r^− S_L \tau_L = r^− \tau_L S_L^{-1} = \tau_P^− r^+ S_L^{-1} = \tau_P^− r^+. \]

Therefore, the maps τ_P^\pm and τ_L are H-cleft intertwining maps.

From Proposition 3.24 the restriction of τ_P is an isomorphism of, $O_q(N^\pm_P)$ onto $O_q(N^-_P)$. Thus, the map

\[(\tau_P^− \# \tau_L) : O_q(N^\pm_P) \# O_q(L_P) \rightarrow O_q(N^-_P) \# O_q(L_P)^{\text{cop}} \]

is an algebra isomorphism from Proposition 1.17. It follows from Corollary 3.21 that $O_q(P^+_P) \cong O_q(N^-_P) \# O_q(L_P)^{\text{cop}}$.

The other statements follow similarly.

\textbf{Theorem 3.26.} All of the algebras from Theorem 3.25 and Corollary 3.21 are isomorphic to $O_q(P^\pm_P)$ and hence, are isomorphic to each other. Moreover, all of these algebras are anti-isomorphic to $O_q\left(P^\pm_{w_0(P)}\right)$.

\textit{Proof.} This follows from Lemma 3.23.

\[\Box \]

A succinct way to state Theorem 3.26 (ignoring some details) is that the quantized standard parabolic group is the smash product of the quantized standard Levi algebra and a quantized standard unipotent subgroup.
3.5 Structure of $O_q(N^+_{\geq P})$

Next, we will show that $O_q(N^+_{\geq P})$ is a CGL extension, and hence can give an explicit presentation for this algebra. To do this we first need relations involving the quantum minors $D_{P_i}, M_{i_{\alpha}i_{\beta}}^{P_i} \in O_q(P^+_P)$.

Relations with Quantum Minors in $O_q(P^+_P)$

Lemma 3.27. Let P be a partition of n with $P_i \in P$. For $i_\alpha, i_\gamma \in P_i$ with $i_\alpha < i_\gamma$ and $i_\beta, i_\delta \in P_{\geq i}$ with $i_\beta < i_\delta$, the following relation holds in $O_q(P^+_P)$:

$$D_{P_i}[P_i | (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta, i_\delta\}] = qM^{P_i}_{i_\alpha i_\beta}M^{P_i}_{i_\delta i_\gamma} - q^2M^{P_i}_{i_\alpha i_\gamma}M^{P_i}_{i_\beta i_\delta}.$$

Proof. We first note that from [18, Theorem 2.1] for $J_1, J_2, K \subset P_i \cup \{i_\beta, i_\delta\}$ with $|J_1|, |J_2| \leq r$ and $|K| = 2r - |J'| - |J''| > r$ then we have the following relation in $O_q(P^+_P)$:

$$\sum_{K'\cup K'' = K} (-q)^{\ell(J_1, K') + \ell(K', K'') + \ell(K'', J_2)} [P_i | K' \cup J_1][P_i | J_2 \cup K''] = 0. \quad (3.15)$$

Case (i) $|P_i| = 2$ that is, $P_i = \{i_\alpha, i_\gamma\}$.

Set

$$J_1 = \emptyset \quad J_2 = \{i_\delta\} \quad K = \{i_\alpha, i_\gamma, i_\beta\}$$

111
and $r = 2$. Applying (3.15) the only possibilities for K' and K'' are

$$
\begin{align*}
K'_1 &= \{i_\alpha, i_\gamma\} & K'_2 &= \{i_\alpha, i_\beta\} & K'_3 &= \{i_\gamma, i_\beta\} \\
K''_1 &= \{i_\beta\} & K''_2 &= \{i_\gamma\} & K''_3 &= \{i_\alpha\}
\end{align*}
$$

and for these possibilities,

\begin{align*}
\ell(J_1, K'_1) + \ell(K'_1, K''_1) + \ell(K''_1, J_2) &= 0 \\
\ell(J_1, K'_2) + \ell(K'_2, K''_2) + \ell(K''_2, J_2) &= 1 \\
\ell(J_1, K'_3) + \ell(K'_3, K''_3) + \ell(K''_3, J_2) &= 2.
\end{align*}

Hence, (3.15) becomes

$$
[P_i | P_i][P_i | \{i_\beta, i_\delta\}] - q[P_i | \{i_\alpha, i_\beta\}][P_i | \{i_\gamma, i_\delta\}] + q^2[P_i | \{i_\gamma, i_\beta\}][P_i | \{i_\alpha, i_\delta\}] = 0.
$$

It follows that $D_{P_i}[P_i | i_\beta, i_\delta] = qM_{i_\gamma i_\beta}^{P_i} M_{i_\alpha i_\delta}^{P_i} - q^2 M_{i_\alpha i_\beta}^{P_i} M_{i_\gamma i_\delta}^{P_i}$.

Case (ii) $|P_i| \geq 3$.

Set $J = (P_i \setminus \{i_\alpha, i_\gamma\})$ with

$$
\begin{align*}
J_1 &= J \setminus \text{min } J & J_2 &= \{\text{min } J, i_\delta\} & K &= P_i \cup \{i_\beta\}
\end{align*}
$$
and $r = |P|$ and apply (3.15). Since $K' \sqcup K'' = K$ and $K' \sqcup J_1$ and $K'' \sqcup J_2$, the only possibilities for K' and K'' are

$$K_1' = \{\min J, i_\alpha, i_\gamma\} \quad K_2' = \{\min J, i_\alpha, i_\beta\} \quad K_3' = \{\min J, i_\gamma, i_\beta\}$$

$$K_1'' = J_1 \cup \{i_\beta\} \quad K_2'' = J_1 \cup \{i_\gamma\} \quad K_3'' = J_1 \cup \{i_\alpha\}.$$

To compute $\ell(J_1, K_1')$ we note that every element in J_1 is greater than $\min J$. Therefore, there are are $r - 3$ elements greater than $\min J$. Similarly, there are $r - \alpha - 1$ elements in J_1 greater than i_α and $r - \gamma$ elements in J_1 greater than i_γ. Hence

$$\ell(J_1, K_1') = (r - 3) + (r - \alpha - 1) + (r - \gamma) = 3r - \alpha - \gamma - 4.$$

In the same way we also get

$$\ell(K_1', K_1'') = \alpha + \gamma - 5 \quad \text{and} \quad \ell(K_1'', J_2) = r - 2.$$

Therefore,

$$\ell(J_1, K_1') + \ell(K_1', K_1'') + \ell(K_1'', J_2) = 4r - 11.$$
In a similar way, we have

\[\ell(J_1, K'_2) + \ell(K'_2, K''_2) + \ell(K''_2, J_2) = 4r - 10 \]

\[\ell(J_1, K'_3) + \ell(K'_3, K''_3) + \ell(K''_3, J_2) = 4r - 9. \]

Since

\[J_1 \cup K'_1 = P_i, \quad J_2 \cup K''_1 = (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta, i_\delta\} \]

\[J_1 \cup K'_2 = (P_i \setminus \{i_\gamma\}) \cup \{i_\beta\}, \quad J_2 \cup K'_2 = (P_i \setminus \{i_\alpha\}) \cup \{i_\delta\} \]

\[J_1 \cup K'_3 = (P_i \setminus \{i_\alpha\}) \cup \{i_\beta\}, \quad J_2 \cup K'_3 = (P_i \setminus \{i_\gamma\}) \cup \{i_\delta\} \]

equation (3.15) simplifies to

\[(-q)^{4r-11} D_{P_i}[P_i \mid (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta, i_\delta\}] + (-q)^{4r-10} M^{P_{i_i}}_{i_\gamma i_\beta} M^{P_{i_i}}_{i_\alpha i_\delta} \]

\[+ (-q)^{4r-9} M^{P_{i_i}}_{i_\alpha i_\beta} M^{P_{i_i}}_{i_\gamma i_\delta} = 0. \]

It follows that \(D_{P_i}[P_i \mid (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta, i_\delta\}] = q M^{P_{i_i}}_{i_\gamma i_\beta} M^{P_{i_i}}_{i_\alpha i_\delta} - q^2 M^{P_{i_i}}_{i_\alpha i_\beta} M^{P_{i_i}}_{i_\gamma i_\delta}. \)

We may give the set of all nonempty subsets of \(\{1, 2, \ldots, n\} \) with the same cardinality a partial order by the following rule: for \(I, J \in \{1, 2, \ldots, n\} \) with \(I = \{i_1 < i_2 < \cdots < i_k\} \) and \(J = \{j_1 < j_2 < \cdots < j_k\} \) we set \(I \leq J \) if and only if \(i_t \leq j_t \) for \(t = 1, 2, \ldots, k. \)
Let $I, J, M, N \subset \{1, 2, \ldots, n\}$ so that $|I| = |J|$ and $|M| = |N|$. Define the family

$$\{< I||M\} := \{S \subset I \cup M \mid S \supset I \cap M \text{ with } |S| = |I| \text{ and } S < I\}$$

and

$$\{> J||N\} := \{T \subset J \cup N \mid T \supset J \cap N \text{ with } |T| = |J| \text{ and } T > J\}.$$

For $T \in \{> J||N\}$ and $S \in \{< I||M\}$ define

$$T^\natural := (J \cup N) \setminus (T \cup (J \cap N)) \quad \text{and} \quad S^\natural := (I \cup M) \setminus (S \cup (I \cap M)).$$

Define

$$\mathcal{L}(S, I, M) := \ell((S \setminus S^\natural) \cup (I \setminus M), S \setminus I) - \ell((S \setminus S^\natural) \cup (I \setminus M), I \setminus S)$$

$$\mathcal{L}^\natural(T, J, N) := \ell((T^\natural \setminus T) \cup (J \setminus N), T \setminus J) - \ell((T^\natural \setminus T) \cup (J \setminus N), J \setminus T).$$

For any set X we denote $X \setminus \{x\}$ simply by $X \setminus x$.

For any nonnegative integer d recall from Definition 1.29 that

$$[d]_{-q} = \frac{(-q)^d - (-q)^{-d}}{(-q)^1 - (-q)^{-1}}.$$
For each $l = 1, 2, \ldots, k$ set $d_l = |[1, i_l] \cap J| - l + 1$. Using this, define

$$
\xi_q(I; J) = [d_1]_{-q}[d_2]_{-q} \cdots [d_k]_{-q}.
$$

Since many of our calculations will use [5, Theorem 6.2, and Corollary 6.3] we remind the reader of these theorems.

Theorem 3.28 (Theorem 6.2 [5]). For $I, J, M, N \subset \{1, 2, \ldots, n\}$ with $|I| = |J|$ and $|M| = |N|$, then

$$
q^{[I \cap M][I \mid J][M \mid N]} + q^{[J \cap M]} \sum_{S \in \{<I \mid M\}} \lambda_S[S \mid J][S^c \mid N] = q^{[J \cap N][M \mid N][I \mid J]} + q^{[J \cap N]} \sum_{T \in \{>I \mid M\}} \mu_T[M \mid T^c][I \mid T]
$$

where

$$
\lambda_S = \tilde{q}^{[I \setminus S]}(-q)^{\mathbb{Z}(S, I, M)} \xi_q(I \setminus S; S \setminus I) \quad \mu_T = \tilde{q}^{[T \setminus J]}(-q)^{\mathbb{Z}(T, J, N)} \xi_q(T \setminus J; J \setminus T).
$$

Theorem 3.29 (Corollary 6.3 [5]). For $I, J, M, N \subset \{1, 2, \ldots, n\}$ with $|I| = |J|$ and $|M| = |N|$, then

$$
q^{[J \cap N][I \mid J][M \mid N]} + q^{[J \cap N]} \sum_{S \in \{<J \mid N\}} \lambda_S[I \mid S][M \mid S^c] = q^{[I \cap M][M \mid N][I \mid J]} + q^{[I \cap M]} \sum_{T \in \{>I \mid M\}} \mu_T[T^c \mid N][T \mid J]
$$

116
where

\[\lambda_S = \hat{q}^{(J \setminus S)}(-q)^{\mathcal{L}(S,J,N)} \xi_q(J \setminus S; S \setminus J) \quad \mu_T = \hat{q}^{(T \setminus I)}(-q)^{\mathcal{L}(T,I,M)} \xi_q(T \setminus I; I \setminus T). \]

Theorem 3.30. Let \(P \) be a partition of \(n \) with \(P_i \in P \). For \(i_\alpha, i_\gamma, i_\delta \in P_i \) and \(i_\beta \in P_{>i} \), the following relations hold in \(O_q(P_P^+) \):

\[
M^{P_i}_{i_\delta} X_{i_\gamma i_\delta} = q^{-1} X_{i_\gamma i_\delta} M^{P_i}_{i_\delta} + \hat{q} \sum_{\eta=1}^{\delta-1} q^{\eta-\delta} X_{i_\gamma i_\eta} M^{P_i}_{i_\eta i_\delta} \tag{3.16}
\]

\[
M^{P_i}_{i_\alpha i_\delta} X_{i_\gamma i_\delta} = X_{i_\gamma i_\delta} M^{P_i}_{i_\alpha i_\delta} \quad \text{for } i_\alpha \neq i_\delta \tag{3.17}
\]

\[
D^{P_i} X_{i_\gamma i_\delta} = X_{i_\gamma i_\delta} D^{P_i}. \tag{3.18}
\]

Proof.

(i) Set \(I = P_i \) and \(J = (P_i \setminus i_\delta) \cup \{i_\beta\} \) with \(M = \{i_\gamma\} \) and \(N = \{i_\delta\} \). Since \(I \cap M = \{i_\gamma\} \) and \(I \cup M = P_i \), there is no set \(S \) with \(I \cup M \supseteq S \supseteq I \cap M \) with \(|S| = |I| \) so that \(S < I \). Hence, \(\{< I||M\} = \emptyset \). Moreover, since \(J \cup N = P_i \cup \{i_\beta\} \) and \(J \cap N = \emptyset \) the only sets \(T \) with \(T \subset J \cup N \) and \(T \supset J \cap N \) with \(|T| = |J| \) and \(T > J \) are

\[T_\eta := (P_i \setminus i_\eta) \cup \{i_\beta\} \]

117
where \(\eta = 1, 2, \ldots, \delta - 1 \). This implies \(T_\eta^2 = \{ i_\eta \} \). To calculate \(\lambda_{T_\eta} \) we note that \(J \setminus N = J \) and

\[
T_\eta \setminus J = \{ i_\delta \} \quad J \setminus T_\eta = \{ i_\eta \} \quad T_\eta^2 \setminus T_\eta = \{ i_\eta \} \quad T_\eta \setminus T_\eta^2 = T_\eta.
\]

Hence,

\[
\mathcal{L}^2(T_\eta, I, J) = \ell(J, \{ i_\delta \}) - \ell(J, \{ i_\eta \}) = \mu - \delta + 1 - (\mu - \eta) = \eta - \delta + 1.
\]

Finally, since

\[
\xi_q(\{ i_\delta \}; \{ i_\eta \}) = [1]_{-q} = 1
\]

we get from Theorem 3.28 that

\[
q[I \mid J][M \mid N] = [M \mid N][I \mid J] + \sum_{\eta=1}^{\delta-1} q^{\eta-\delta+1}[M \mid T_\eta^2][I \mid T_\eta].
\]

That is,

\[
M_{i_\gamma i_\beta} X_{i_\gamma i_\delta} = q^{-1} X_{i_\gamma i_\delta} M_{i_\gamma i_\beta} + \hat{q} \sum_{\eta=1}^{\delta-1} q^{\eta-\delta} X_{i_\gamma i_\eta} M_{i_\gamma i_\beta}.
\]

(ii) Set \(I = P_i \) and \(J = (P_i \setminus i_\alpha) \cup \{ i_\beta \} \) with \(M = \{ i_\gamma \} \) and \(N = \{ i_\delta \} \). Then \(I \cap M = \{ i_\gamma \} \) and \(I \cup M = P_i \). Note that there is no set \(S \) such that \(S \supset \{ i_\gamma \} \) and \(S \subset P_i \) with \(S < I \). Hence, \(\{ \prec I \mid M \} = \emptyset \). Similarly, since \(J \cap N = \{ i_\delta \} \) and \(J \cup N = J \) there is no set \(T \) where \(T \supset \{ i_\delta \} \) with \(T \subset J \)
so that $T > J$. Hence, $\{ > J \| N \} = \emptyset$. Therefore, from Theorem 3.28 we have

$$q[I \ | J][M \ | N] = q[M \ | N][I \ | J].$$

That is, $M^P_{i_\alpha i_\beta}X_{i_\gamma i_\delta} = X_{i_\gamma i_\delta}M^P_{i_\alpha i_\beta}$.

(iii) Since D_{P_i} is a central element in $M_{[P_i]}$, it follows that $D_{P_i}X_{i_\gamma i_\delta} = X_{i_\gamma i_\delta}D_{P_i}$.

\[\square\]

Theorem 3.31. Let P be a partition of n and $P_i, P_j \in P$ with $i < j$. For $i_\alpha, i_\beta, i_\gamma, i_\delta \in P_i$ with $j_\alpha \in P_j$ and $j_\beta \in P_{>j}$, the following relations hold in $O_q(P_+^P)$:

$$M^P_{j_\alpha j_\beta}X_{i_\gamma i_\delta} = X_{i_\gamma i_\delta}M^P_{j_\alpha j_\beta} \quad \text{(3.19)}$$

$$D_{P_j}X_{i_\alpha i_\beta} = X_{i_\alpha i_\beta}D_{P_j}. \quad \text{(3.20)}$$

Proof.

(i) Set $I = P_j$ and $M = \{i_\gamma\}$. Since $i < j$ then $I \cup M = P_j \cup \{i_\gamma\}$ and $I \cap M = \emptyset$. Note, for every $j_\eta \in P_i$ we have $j_\eta > i_\gamma$. Hence, there is no set S so that $S \subset I \cup M$ and $S \supset I \cap M$ with $S < I$. Therefore, $\{< I \| M\} = \emptyset$.

Set $J = (P_j \setminus j_\alpha) \cup \{j_\beta\}$ and $N = \{i_\delta\}$, then $J \cup N = (P_j \setminus j_\alpha) \cup \{j_\beta, i_\delta\}$ and $J \cap N = \emptyset$. Note for any $T > J$ with $T \subset J \cup N$ and $T \supset J \cap N$ we must have $T^\natural \cap P_j \neq \emptyset$. Hence, $[i_\gamma \ | T^\natural] \in I^-_P$. Therefore, by Theorem 3.28
we have in $O_q(P^+_P)$

$$[I \mid J][M \mid N] = [M \mid N][I \mid J].$$

That is, $M_{ja,jb}^{P_j} X_{i,i\delta} = X_{i,i\delta} M_{ja,jb}^{P_j}$.

(ii) We note that for any $j_\gamma, j_\theta \in P_j$ that $X_{ia,i\beta} X_{jn,j_\theta} = X_{jn,j_\theta} X_{ia,i\beta}$ in $O_q(P^+_P)$. Consequently, $D_{P_j} X_{i,i\beta} = X_{i,i\beta} D_{P_j}$.

\[\square\]

Theorem 3.32. Let P be a partition of n and $P_i, P_j \in P$ with $i < j$. For $j_\gamma, j_\delta \in P_j$ and $i_\alpha \in P_i$ and $i_\beta \in P_{>i}$ the following relations hold in $O_q(P^+_P)$:

\[\begin{align*}
M_{ia,i\alpha}^{P_i} X_{j_\gamma,j_\delta} &= X_{j_\gamma,j_\delta} M_{ia,i\alpha}^{P_i} \text{ for } i_\beta \in P_{<j} \quad (3.21) \\
M_{ia,i\alpha}^{P_i} X_{j_\gamma,j_\delta} &= X_{j_\gamma,j_\delta} M_{ia,i\alpha}^{P_i} + \tilde{q} X_{ia,i\delta} M_{ia,j_\delta}^{P_i} \text{ for } i_\beta \in P_{j} \text{ and } i_\beta < j_\delta \quad (3.22) \\
M_{ia,i\alpha}^{P_i} X_{j_\gamma,j_\delta} &= q X_{j_\gamma,j_\delta} M_{ia,i\beta}^{P_i} \text{ for } i_\beta \in P_{j} \text{ and } i_\beta = j_\delta \quad (3.23) \\
M_{ia,i\alpha}^{P_i} X_{j_\gamma,j_\delta} &= X_{j_\gamma,j_\delta} M_{ia,i\beta}^{P_i} \text{ for } i_\beta > j_\delta \quad (3.24) \\
D_{P_j} X_{j_\gamma,j_\delta} &= X_{j_\gamma,j_\delta} D_{P_j}.
\end{align*}\]

Proof. Set $I = P_i$ and $M = \{j_\gamma\}$. Since $i < j$ then $I \cup M = P_i \cup \{j_\gamma\}$ and $I \cap M = \emptyset$. Note for every $i_\eta \in P_i$ that $i_\eta < j_\gamma$. Hence, there is no set S so that $S \subset I \cup M$ and $S \supset I \cap M = \emptyset$ with $S < I$. Therefore, $\{<I||M\} = \emptyset$. Thus,
Theorem 3.28 simplifies to

\[[I \mid J][M \mid N] = q^{[J,N]}[M \mid N][I \mid J] + q^{[J,N]} \sum_{T \in \{>J\mid N\}} \lambda_T[M \mid T][I \mid T]. \]

We now consider each case separately.

(i) Set \(J = (P_i \setminus i_\alpha) \cup \{i_\beta\} \) and \(N = \{j_\delta\} \), then \(J \cup N = (P_i \setminus i_\alpha) \cup \{i_\beta, j_\delta\} \) and \(J \cap N = \emptyset \). Notice that since \(i_\beta \in P_{<j} \) then \(i_\beta < j_\delta \). Therefore, any \(T > J \) with \(T \subset J \cup N \) and \(T \supset J \cap N \) must have \(T^c \cap P_{<j} \neq \emptyset \). Hence, \([i_\alpha \mid T^c] \in I_{\overline{P}}\). That is, in \(O_q(P_{\overline{P}}) \) the relation from Theorem 3.28 simplifies to

\[[I \mid J][M \mid N] = [M \mid N][I \mid J], \]

i.e., \(M_{i_\alpha \mid j} X_{j_\delta, j_\delta} = X_{j_\gamma, j_\delta} M_{i_\alpha \mid j_\delta} \).

(ii) Set \(J = (P_i \setminus i_\alpha) \cup \{i_\beta\} \) and \(N = \{j_\delta\} \). For each \(i_\eta \in J \) denote

\[T_\eta = (J \setminus i_\eta) \cup \{j_\delta\} \]

It is clear that \(T_\eta > J \) for all \(i_\eta \in J \) and that \(\{> J\mid N\} \) consists of exactly these \(T_\eta \). Now, for \(i_\eta \neq i_\beta \) we have \(T_\eta^c = \{i_\eta\} \) and \(T_\eta^c \cap P_{<j} \neq \emptyset \). Hence, \([j_\gamma \mid T_\eta^c] \in I_{\overline{P}}\). Therefore, the relation from Theorem 3.28 simplifies in
\[O_q(P_P^+)\text{ to}

\[[I \mid J][M \mid N] = [M \mid N][I \mid J] + \lambda_{T_\beta}[M \mid T^e_{T_\beta}][I \mid T_\beta] \]

where \(T_\beta = (J \setminus i_\beta) \cup \{j_\delta\}\). To calculate \(\lambda_{T_\beta}\) we note that \(J \setminus N = J\) and

\[
\begin{align*}
T_\beta \setminus J &= \{j_\delta\} & J \setminus T_\beta &= \{i_\beta\} & T^e_{T_\beta} \setminus T_\beta &= \{i_\beta\} & T_\beta \setminus T^e_{T_\beta} &= T_\beta
\end{align*}
\]

Therefore, \(\lambda_{T_\beta} = \tilde{q}\) since

\[\mathcal{L}^2(T_\beta, J, N) = \ell(J; \{j_\delta\}) - \ell(J; \{i_\beta\}) = 0 \quad \text{and} \quad \xi_q(\{j_\delta\}; \{i_\beta\}) = [1]_{-q} = 1. \]

It follows that \(M_{i_\alpha i_\beta}^{P_{i_\alpha}} X_{j_\gamma j_\delta} = X_{j_\gamma j_\delta} M_{i_\alpha i_\beta}^{P_{i_\alpha}} + \tilde{q} X_{j_\gamma i_\beta} M_{i_\alpha j_\delta}^{P_{i_\alpha}}. \)

(iii) Set \(J = (P_i \setminus i_\alpha) \cup \{i_\beta\}\) and \(N = \{j_\delta\}\). Hence, \(J \cup N = (P_i \setminus i_\alpha) \cup \{i_\beta\}\) and \(J \cap N = \{i_\beta\}\). We note that for any set \(T\) with \(T \subset J \cup N\) and \(T \supset J \cap N = \{i_\beta\}\) so that \(T > J\) we have \(T^\alpha \cap P_{j_\beta} \neq \emptyset\). Hence, \([i_\alpha \mid T^\alpha] \in I^-_P. \)

Therefore, in \(O_q(P_P^+)\) the relation from Theorem 3.28 simplifies to

\[[I \mid J][M \mid N] = q[M \mid N][I \mid J]. \]

That is, \(M_{i_\alpha i_\beta}^{P_{i_\alpha}} X_{j_\gamma j_\delta} = q X_{j_\gamma j_\delta} M_{i_\alpha j_\delta}^{P_{i_\alpha}}. \)
(iv) Set $J = (P_i \setminus i_\alpha) \cup \{i_\beta\}$ and $N = \{j_\delta\}$. Hence, $J \cup N = (P_i \setminus i_\alpha) \cup \{j_\delta, i_\beta\}$ and $J \cap N = \emptyset$. We note that for any set T with $T \subset J \cup N$ and $T \supset J \cap N$ so that $T > J$ we have $T \cap P_{<j} \neq \emptyset$. Hence, $[i_\alpha | T^2] \in I_P$. Therefore, in $O_q(P^+_P)$ the relation from Theorem 3.28 simplifies to

$$[I | J][M | N] = [M | N][I | J].$$

That is, $M^{P_i}_{i_\alpha i_\beta} X_{j_\gamma j_\delta} = X_{j_\gamma j_\delta} M^{P_i}_{i_\alpha i_\beta}$.

(v) Since D_{P_i} is a central element of $M_{|P_i|}$ it follows that $D_{P_i} X_{j_\gamma j_\delta} = X_{j_\gamma j_\delta} D_{P_i}$.

Theorem 3.33. Let P be a partition of n with $P_i \in P$. For $i_\alpha, i_\gamma \in P_i$ with $i_\alpha < i_\gamma$ and $i_\beta, i_\delta \in P_{>i}$ with $i_\beta < i_\delta$, the following relations hold in $O_q(P^+_P)$:

\begin{align*}
M^{P_i}_{i_\alpha i_\beta} M^{P_i}_{i_\alpha i_\delta} &= q M^{P_i}_{i_\alpha i_\delta} M^{P_i}_{i_\alpha i_\beta} \quad (3.26) \\
M^{P_i}_{i_\alpha i_\beta} M^{P_i}_{i_\gamma i_\beta} &= q^{-1} M^{P_i}_{i_\gamma i_\beta} M^{P_i}_{i_\alpha i_\beta} \quad (3.27) \\
M^{P_i}_{i_\alpha i_\beta} M^{P_i}_{i_\gamma i_\delta} &= M^{P_i}_{i_\gamma i_\beta} M^{P_i}_{i_\alpha i_\delta} \quad (3.28) \\
M^{P_i}_{i_\alpha i_\delta} M^{P_i}_{i_\gamma i_\beta} &= M^{P_i}_{i_\gamma i_\beta} M^{P_i}_{i_\alpha i_\delta} - \hat{q} M^{P_i}_{i_\alpha i_\beta} M^{P_i}_{i_\gamma i_\delta}. \quad (3.29)
\end{align*}
Proof. Set \(I = M = P_i \). We first note that since \(\{< I || M \} = \emptyset \), Theorem 3.28 simplifies to

\[
q^{P_i}[I \mid J][M \mid N] = q^{[J \cap N]}[M \mid N][I \mid J] + q^{[J \cap N]} \sum_{T \in \{> J || N\}} \mu_T[M \mid T^g][I \mid T].
\]

(i) Set \(J = (P_i \setminus i_\alpha) \cup \{i_\beta\} \) and \(N = (P_i \setminus i_\alpha) \cup \{i_\delta\} \). Note that \(J \cap N = (P_i \setminus i_\alpha) \) and \(J \cup N = (P_i \setminus i_\alpha) \cup \{i_\beta, i_\delta\} \). Hence, the only possibilities for \(T \) so that \(|T| = |J| \) with \(T \subset J \cup N \) and \(T \supset J \cap N \) are \(J \) and \(N \). Since \(N > J \), the relation above simplifies to

\[
q^{P_i}[I \mid J][M \mid N] = q^{[P_i]}[M \mid N][I \mid J] + q^{[P_i]}q[M \mid J][I \mid N].
\]

However, since \(N \cap P_{>i} \neq \emptyset \) then \([I \mid N] = 0 \) in \(O_q(P_i^+) \) by Lemma 3.5. It follows that \(M_{i_\alpha i_\beta}^P M_{i_\alpha i_\delta}^P = qM_{i_\alpha i_\delta}^P M_{i_\alpha i_\beta}^P \).

(ii) Set \(J = (P_i \setminus i_\alpha) \cup \{i_\beta\} \) and \(N = (P_i \setminus i_\gamma) \cup \{i_\beta\} \). Note that \(J \cap N = (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta\} \) and \(J \cup N = P_i \cup \{i_\beta\} \). The only possibilities for \(T \) so that \(|T| = |J| \) with \(T \subset J \cup N \) and \(T \supset J \cap N \) are \(J \) and \(N \). None of these sets have the property that \(T > J \) so \(\{> J || N\} = \emptyset \). Hence, by Theorem 3.28 we get

\[
q^{[P_i]}[I \mid J][M \mid N] = q^{[P_i]}[M \mid N][I \mid J].
\]

It follows that \(M_{i_\alpha i_\beta}^P M_{i_\gamma i_\delta}^P = q^{-1} M_{i_\gamma i_\delta}^P M_{i_\alpha i_\beta}^P \).
(iii) Set $J = (P_i \setminus \{i_\alpha\}) \cup \{i_\beta\}$ and $N = (P_i \setminus \{i_\gamma\}) \cup \{i_\delta\}$. Note that $J \cap N = (P_i \setminus \{i_\alpha, i_\gamma\})$ and $J \cup N = P_i \cup \{i_\beta, i_\delta\}$. Hence, the only possibilities for T so that $|T| = |J|$ with $T \subset J \cup N$ and $T \supset J \cap N$ with the property that $T > J$ are

$$T_1 = (P_i \setminus \{i_\alpha\}) \cup \{i_\delta\} \quad \text{or} \quad T_2 = (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta, i_\delta\}.$$

To compute λ_{T_i} we note that $J \setminus N = \{i_\gamma, i_\beta\}$ and

$$\begin{align*}
T_1^\sharp &= (P_i \setminus \{i_\gamma\}) \cup \{i_\beta\} & T_2^\sharp &= P_i \\
T_1^\sharp \setminus T_1 &= \{i_\alpha, i_\beta\} & T_2^\sharp \setminus T_2 &= \{i_\alpha, i_\gamma\} \\
T_1 \setminus J &= \{i_\delta\} & T_2 \setminus J &= \{i_\delta\} \\
J \setminus T_1 &= \{i_\beta\} & J \setminus T_2 &= \{i_\gamma\}.
\end{align*}$$

Therefore,

$$\begin{align*}
\mathcal{L}^\sharp(T_1, J, N) &= \ell(\{i_\alpha, i_\gamma, i_\beta\}, \{i_\delta\}) - \ell(\{i_\alpha, i_\gamma, i_\beta\}, \{i_\beta\}) = 0 + 0 = 0 \\
\mathcal{L}^\sharp(T_2, J, N) &= \ell(\{i_\alpha, i_\gamma, i_\beta\}, \{i_\delta\}) - \ell(\{i_\alpha, i_\gamma, i_\beta\}, \{i_\gamma\}) = 0 - 1 = -1.
\end{align*}$$

Similarly,

$$\xi_q(T_1 \setminus J; J \setminus T_1) = 1 \quad \text{and} \quad \xi_q(T_2 \setminus J; J \setminus T_2) = 1.$$
Thus, $\lambda_{T_1} = \tilde{q}$ and $\lambda_{T_2} = \tilde{q}(-q)^{-1}$. Therefore, by Theorem 3.28 we have

$$q^{[P_i]}[I \mid J][M \mid N] = q^{[P_i]-2}[M \mid N][I \mid J]$$

$$+ q^{[P_i]-2}\tilde{q}[M \mid T_1^\circ][I \mid T_1] + q^{[P_i]-2}(-q^{-1})\tilde{q}[M \mid T_2^\circ][I \mid T_2].$$

That is,

$$M^P_{i_{\alpha i}\beta} M^P_{i_{\gamma i}\delta} = q^{-2}M^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta} + q^{-2}\tilde{q}M^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta} + q^{-2}(-q^{-1})\tilde{q}D_P[I \mid T_2].$$

However, by Lemma 3.27 we have $D_P[I \mid T_2] = qM^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta} - q^2 M^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta}$. Therefore

$$M^P_{i_{\alpha i}\beta} M^P_{i_{\gamma i}\delta} = q^{-2}M^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta} + q^{-2}\tilde{q}M^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta} + q^{-2}(-q^{-1})\tilde{q}D_P[I \mid T_2].$$

It follows that $M^P_{i_{\alpha i}\beta} M^P_{i_{\gamma i}\delta} = M^P_{i_{\gamma i}\beta} M^P_{i_{\alpha i}\delta}$.

(iv) Set $J = (P_i \setminus i_\alpha) \cup \{i_\delta\}$ and $N = (P_i \setminus i_\gamma) \cup \{i_\beta\}$. Then $J \cup N = P_i \cup \{i_\beta, i_\delta\}$ and $J \cap N = P_i \setminus \{i_\alpha, i_\gamma\}$. The only possibility for T so that $|T| = |J|$ with
\(T \subset J \cup N \) and \(T \supset J \cap N \) with the property that \(T > J \) is

\[
T = (P_i \setminus \{i_\alpha, i_\gamma\}) \cup \{i_\beta, i_\delta\}.
\]

To compute \(\lambda_T \) we note \(J \setminus N = \{i_\gamma, i_\delta\} \) and

\[
T^g = P_i, \quad T^g \setminus T = \{i_\alpha, i_\gamma\}, \quad T \setminus J = \{i_\beta\}, \quad J \setminus T = \{i_\gamma\}.
\]

Therefore we get

\[
\mathcal{L}^g(T, I, J) = \ell(\{i_\alpha, i_\gamma, i_\delta\}, \{i_\beta\}) - \ell(\{i_\alpha, i_\gamma, i_\beta\}, \{i_\gamma\}) = 1 - 1 = 0.
\]

Similarly, we have

\[
\xi_\delta(T \setminus J; J \setminus T) = 1.
\]

Therefore, \(\lambda_T = \hat{q} \) and we have the relation

\[
q^{P_i}[I \mid J][M \mid N] = q^{P_i-2}[M \mid N][I \mid J] + q^{P_i-2}\hat{q}[M \mid T^g][I \mid T].
\]

That is,

\[
M_{i_\alpha i_\delta}^{P_i} M_{i_\gamma i_\beta}^{P_i} = q^{-2} M_{i_\alpha i_\beta}^{P_i} M_{i_\alpha i_\delta}^{P_i} + q^{-2}\hat{q}D_{P_i}[P_i \mid T].
\]
However, by Lemma 3.27 we have $D_{P_i}[P_i \mid T] = qM^{P_i}_{i+1}M^{P_i}_{i+2} - q^2M^{P_i}_{i+1}M^{P_i}_{i+3}$.

Substituting this into the equation, we have

$$M^{P_i}_{i+1}M^{P_i}_{i+2} = q^{-2}M^{P_i}_{i+1}M^{P_i}_{i+2} + q^{-2}q\left(qM^{P_i}_{i+1}M^{P_i}_{i+2} - q^2M^{P_i}_{i+1}M^{P_i}_{i+3}\right)$$

$$= q^{-2}M^{P_i}_{i+1}M^{P_i}_{i+2} + q^{-2}qM^{P_i}_{i+1}M^{P_i}_{i+2} - qM^{P_i}_{i+1}M^{P_i}_{i+3}$$

$$= M^{P_i}_{i+1}M^{P_i}_{i+2} - qM^{P_i}_{i+1}M^{P_i}_{i+3}.$$ \[\square \]

For $P_i, P_j \in P$ with $i_\alpha \in P_i$ and $j_\delta, j_\gamma \in P_j$ denote

$$M^{P_i}_{i_\alpha,j_\delta,j_\gamma} := \left(\sum_{\eta=1}^{P_j} (-q)^{1-\eta}M^{P_i}_{j_\gamma+\eta,j_\delta}M^{P_i}_{i_\alpha,j_\gamma+\eta} + (-q)^{\gamma-|P_j|}D_jM^{P_i}_{i_\alpha,j_\delta}\right).$$

Theorem 3.34. Let P be a partition of n and $P_i, P_j \in P$ with $i < j$. For $i_\alpha \in P_i$ with $i_\beta \in P_{>i}$ and $j_\gamma \in P_j$ with $j_\delta \in P_{>j}$, the following relations hold in $O_q(P^n_\alpha)$:

1. $M^{P_i}_{i_\alpha,i_\beta}M^{P_j}_{j_\gamma,j_\delta} = M^{P_j}_{j_\gamma,j_\delta}M^{P_i}_{i_\alpha,i_\beta}$ for $i_\beta \in P_{<j}$ \hspace{1cm} (3.30)
2. $M^{P_i}_{i_\alpha,i_\beta}M^{P_j}_{j_\gamma,j_\delta} = qM^{P_j}_{j_\gamma,j_\delta}M^{P_i}_{i_\alpha,i_\beta}$ for $i_\beta \in P_j$ but $i_\beta \neq j_\gamma$ \hspace{1cm} (3.31)
3. $M^{P_i}_{i_\alpha,i_\beta}M^{P_j}_{j_\gamma,j_\delta} = M^{P_j}_{j_\gamma,j_\delta}M^{P_i}_{i_\alpha,i_\beta} + qM^{P_j}_{j_\gamma}M^{P_i}_{i_\alpha,j_\delta}$ for $i_\beta \in P_j$ and $i_\beta = j_\gamma$ \hspace{1cm} (3.32)
4. $M^{P_i}_{i_\alpha,i_\beta}M^{P_j}_{j_\gamma,j_\delta} = M^{P_j}_{j_\gamma,j_\delta}M^{P_i}_{i_\alpha,i_\beta} + qM^{P_j}_{j_\gamma}M^{P_i}_{i_\alpha,j_\delta}$ for $i_\beta \in P_{>j}$ and $i_\beta < j_\delta$ \hspace{1cm} (3.33)
5. $M^{P_i}_{i_\alpha,i_\beta}M^{P_j}_{j_\gamma,j_\delta} = qM^{P_j}_{j_\gamma,j_\delta}M^{P_i}_{i_\alpha,i_\beta}$ for $i_\beta \in P_{>j}$ and $i_\beta = j_\delta$ \hspace{1cm} (3.34)
6. $M^{P_i}_{i_\alpha,i_\beta}M^{P_j}_{j_\gamma,j_\delta} = M^{P_j}_{j_\gamma,j_\delta}M^{P_i}_{i_\alpha,i_\beta}$ for $i_\beta \in P_{>j}$ and $i_\beta > j_\delta$. \hspace{1cm} (3.35)
Proof. Set \(I = P_i \) and \(M = P_j \). Since \(i < j \) it follows that \(\{ < I \| M \} = \emptyset \).

Set \(J = (P_i \setminus i_\alpha) \cup \{ i_\beta \} \) and \(N = (P_j \setminus j_\gamma) \cup \{ j_\delta \} \). For \(T \in \{ > J \| N \} \) since \(P_i \subset P_{<j} \), if \(P_i \cap T^2 \neq \emptyset \) then \([P_j \mid T^2] = 0 \) in \(O_q(P^+_P) \) by Lemma 3.5 (i). Since we are concerned with relations in \(O_q(P^+_P) \) we need only consider the \(T \in \{ > J \| N \} \) so that \(P_i \cap T^2 = \emptyset \), which is equivalent to \(T \supset J \cap P_i \). Hence, Theorem 3.28 simplifies in \(O_q(P^+_P) \) to

\[
[I \mid J][M \mid N] = q^{[J \cap N]}[M \mid N][I \mid J] + q^{[J \cap N]} \sum_{T \in \{ > J \| N \} \mid T \supset J \cap P_i} \lambda_T[M \mid T^2][I \mid T]. \quad (3.36)
\]

We now consider each case individually.

(i) First note that \(J \cap N = \emptyset \) and \(J \cap P_i = P_i \setminus i_\alpha \). If \(i_\beta \notin T \) then \(i_\beta \in T^2 \). Since \(i_\beta \in P_{<j} \) then \(T^2 \cap P_{<j} \neq \emptyset \), hence \([M \mid T^2] = 0 \) in \(O_q(P^+_P) \) by Theorem 3.5 (i). If \(i_\beta \in T \) then since we are only considering \(T \supset J \cap P_i \) then this implies that \(T = J \). Since \(T \nmid J \) equation (3.36) simplifies to

\[
[I \mid J][M \mid N] = [M \mid N][I \mid J].
\]

That is, \(\text{M}_{i_\alpha i_\beta}^{P_i} M_{j_\gamma j_\delta}^{P_j} = M_{j_\gamma j_\delta}^{P_j} M_{i_\alpha i_\beta}^{P_i} \).

(ii) Since \(i_\beta \in P_j \) then \(i_\beta = j_\eta \) for some \(j_\eta \in P_j \) except \(i_\beta \neq j_\gamma \). Hence, \(J \cup N = (P_i \setminus i_\alpha) \cup (P_j \setminus j_\gamma) \cup \{ j_\delta \} \) and \(J \cap N = \{ i_\beta \} \). Notice, since we need only consider \(T \supset J \cap P_i = P_i \setminus i_\alpha \) and since \(T \supset \{ i_\beta \} \) then we must have
$T = J$. However, since $T \not\ni J$ equation (3.36) simplifies to

$$[I \mid J][M \mid N] = q[M \mid N][I \mid J].$$

That is, $M_{i\alpha} P_{i\alpha} M_{j\beta} P_{j\beta} = q M_{j\beta} P_{j\beta} M_{i\alpha} P_{i\alpha}.$

(iii) Note that $J \cup N = (P_i \setminus i_\alpha) \cup P_j \cup \{j_\delta\}$ and $J \cap N = \emptyset$. It is straightforward to verify that the only $T \in \{> J||N\}$ with $T \supset J \cap P_i$ are

$$T_\eta := (P_i \setminus i_\alpha) \cup \{j_{\gamma+\eta}\}$$

where $\eta = 1, 2, \ldots, |P_j| - \gamma$ and

$$T_\delta := (P_i \setminus i_\alpha) \cup \{j_\delta\}.$$

To compute λ_{T_η} we note $J \setminus N = J$ and

$$T^\pm_\eta = (P_j \setminus j_{\gamma+\eta}) \cup \{j_\delta\} \quad T^\pm_\eta \setminus T_\eta = T_\eta \setminus T_\eta = \{j_{\gamma+\eta}\} \quad J \setminus T_\eta = \{j_\gamma\}.$$

Therefore,

$$\mathbf{L}_\mathcal{P}(T_\eta, J, N) = \ell((P_i \setminus i_\alpha) \cup (P_j \setminus j_{\gamma+\eta}) \cup \{j_\delta\}\{j_{\gamma+\eta}\})$$

$$- \ell(((P_i \setminus i_\alpha) \cup P_j \setminus j_{\gamma+\eta}) \cup \{j_\delta\}, \{j_\gamma\})$$

130
and \(\xi_q(T_i \setminus J; J \setminus T_i) = 1 \). Thus, \(\lambda_{T_i} = \tilde{q}(-q)^{1-\eta} \). Similarly, to compute \(\lambda_{T_\delta} \) we note that

\[
T_\delta^\circ = P_j \quad T_\delta^\circ \setminus T_\delta = P_j \quad T_\delta \setminus J = \{j_\delta\} \quad J \setminus T_\delta = \{j_\gamma\}.
\]

Therefore,

\[
\mathcal{L}^2(T_\delta, I, J) = \ell((P_i \setminus i_\alpha) \cup P_j; \{j_\delta\}) - \ell((P_i \setminus i_\alpha) \cup P_j; \{j_\gamma\})
\]

\[
= 0 - (|P_j| - \gamma) = \gamma - |P_j|.
\]

and \(\xi_q(T_\delta \setminus J; J \setminus T_\delta) = 1 \). Thus, \(\lambda_{T_\delta} = \tilde{q}(-q)^{\gamma-|P_j|} \). Therefore, equation \(3.36\) becomes

\[
[I \mid J][M \mid N] = [M \mid N][I \mid J]
\]

\[
+ \sum_{\eta=1}^{\gamma} \tilde{q}(-q)^{1-\eta}[M \mid T_\eta^\circ][I \mid T_\eta] + \tilde{q}(-q)^{\gamma-|P_j|}[M \mid T_\delta^\circ][I \mid T_\delta],
\]

That is,

\[
M_{i_\alpha i_\beta}^{P_i} M_{j_\gamma j_\delta}^{P_j} = M_{j_\gamma j_\delta}^{P_j} M_{i_\alpha i_\beta}^{P_i}
\]
\[+ \hat{q} \left(\sum_{\eta=1}^{(P_j)_{-\gamma}} (-q)^{1-\eta} M_{j_{\eta+\gamma} j_{\delta}} P_i P_i \right)
\]
\[= M_{j_{\gamma} j_{\delta}} P_i P_i + \hat{q} M_{j_{\eta} j_{\gamma}} P_i P_i. \]

(iv) We have \(J \cup N = (P_i \setminus i_\alpha) \cup (P_j \setminus j_\gamma) \cup \{i_\alpha, j_\beta\} \) and \(J \cap N = \emptyset \). Since \(i < j \) then \(i_\beta < j_\epsilon \) for all \(j_\epsilon \in P_j \). Similarly, since \(i_\beta \in P_{>i} \) then \(i_\beta > i_\eta \) for all \(i_\eta \in P_i \). Since \(i_\beta < j_\delta \) the only element in \(J \cup N \) larger than \(i_\beta \) is \(j_\delta \). Since we need only consider \(T \in \{> J||N\} \) such that \(T \supset J \cap P_i \) it is clear that the only such \(T \) is \(T = (P_i \setminus i_\alpha) \cup \{j_\delta\} \).

Now, to compute \(\lambda_T \) we note

\[T^k = P_j \setminus \{i_\beta\} \quad T^k \setminus T = T \quad T \setminus J = \{j_\delta\} \quad J \setminus T = \{i_\beta\}. \]

Hence,

\[L^k(T, I, J) = \ell((P_i \setminus i_\alpha) \cup (P_j \setminus j_\gamma) \cup \{i_\beta\}, \{j_\delta\})
\]
\[- \ell((P_i \setminus i_\alpha) \cup (P_j \setminus j_\gamma) \cup \{i_\beta\}, \{i_\beta\}) = 0 \]

and \(\xi_q(T \setminus J; J \setminus T) = 1 \). Therefore, \(\lambda_T = \hat{q} \). Thus, equation (3.36) simplifies to become

\[[I \setminus J][M \setminus N] = [M \setminus N][I \setminus J] + \hat{q} [M \setminus T^k][I \setminus T]. \]
That is, $M_{i\alpha i\beta}P_i M_{j\gamma j\delta}P_j = M_{j\gamma j\delta}P_j M_{i\alpha i\beta}P_i + \hat{q}M_{i\alpha i\beta}P_i M_{i\alpha i\beta}P_i$.

(v) Since $j_\beta = l_\delta$ we have $J \cup N = (P_i \setminus i_\alpha) \cup (P_j \setminus j_\gamma) \cup \{j_\delta\}$ and $J \cap N = \{j_\delta\}$.

Since $J \cap P_i = P_i \setminus i_\alpha \subset T$ and since we must have $j_\delta \in T$ then $T = J$.

Therefore, equation (3.36) simplifies to

$$[I \mid J][M \mid N] = q[M \mid N][I \mid J].$$

That is, $M_{i\alpha i\beta}P_i M_{j\gamma j\delta}P_j = qM_{j\gamma j\delta}P_j M_{i\alpha i\beta}P_i$.

(vi) We have $J \cup N = (P_i \setminus i_\alpha) \cup (P_j \setminus j_\gamma) \cup \{j_\delta, i_\beta\}$ and $J \cap N = \emptyset$. Since $i < j$ and $i_\beta > j_\delta$ then i_β is the largest element in $J \cup N$. Since $i_\beta \in J$ if $i_\beta \not\in T$ then $T \not\supset J$. Hence, $i_\beta \in T$. Moreover, since we need only consider $T \in \{> J\mid N\}$ so that $J \cap P_i \subset T$ and $i_\beta \in T$ with $|T| = |J|$ then $T = J$.

Therefore, equation (3.36) above simplifies to

$$[I \mid J][M \mid N] = [M \mid N][I \mid J].$$

That is, $M_{i\alpha i\beta}P_i M_{j\gamma j\delta}P_j = M_{j\gamma j\delta}P_j M_{i\alpha i\beta}P_i$.

\[\square\]
Relations in $O_q(N^+_{>P})$

Let P be a partition of n. Now that we have some relations in $O_q(P^+_P)$ involving the quantum minors D_P and M^{P}_i, we can deduce some relations in $O_q(N^+_{>P})$.

For $P_i \in P$ with $i_\alpha \in P_i$ and $i_\beta \in P_{>i}$ denote the generators of $O_q(N^+_{>P})$ by

$$x^{P_i}_{i_\alpha i_\beta} := D^{-1}_P M^{P_i}_{i_\alpha i_\beta}.$$

Moreover, for $P_i, P_j \in P$ with $i_\alpha \in P_i$ and $j_\delta, j_\gamma \in P_j$ denote

$$x^{P_j P_i}_{(i_\alpha j_\delta), j_\gamma} := D^{-1}_{P_j} D^{-1}_{P_i} M_{P_j P_i}^{P_j P_i}_{(i_\alpha j_\delta), j_\gamma}.$$

It follows from (3.3) and Theorem 3.35 that

$$x^{P_j P_i}_{(i_\alpha j_\delta), j_\gamma} = \sum_{\eta=1}^{[P_j]-\gamma} (-q)^{1-\eta} x^{P_j}_{j_\gamma+\eta j_\delta} x^{P_i}_{i_\alpha j_\gamma+\eta} + (-q)^{\gamma-[P_j]} x^{P_i}_{i_\alpha j_\delta}.$$

Theorem 3.35. Let P be a partition of n with $P_i \in P$.

For $i_\alpha, i_\gamma \in P_i$ with $i_\alpha < i_\gamma$ and $i_\beta, i_\delta \in P_{>i}$ with $i_\beta < i_\delta$, the following relations hold in $O_q(N^+_{>P})$:

$$x^{P_i}_{i_\alpha i_\beta} x^{P_i}_{i_\alpha i_\delta} = qx^{P_i}_{i_\alpha i_\delta} x^{P_i}_{i_\alpha i_\beta} \quad (3.37)$$

$$x^{P_i}_{i_\alpha i_\beta} x^{P_i}_{i_\gamma i_\beta} = q^{-1} x^{P_i}_{i_\gamma i_\beta} x^{P_i}_{i_\alpha i_\beta} \quad (3.38)$$
Let $P_j \in P$ with $i < j$ let $i_\alpha \in P_i$ with $i_\beta \in P_{>i}$ and $j_\gamma \in P_j$ with $j_\delta \in P_{>j}$. The following relations hold in $O_q(N_{>P}^+)$:

\begin{align*}
x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} &= x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} \quad \text{for } i_\beta \in P_{<j} \tag{3.41} \\
x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} &= x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} \quad \text{for } i_\beta \in P_j \text{ but } i_\beta \neq j_\gamma \tag{3.42} \\
x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} &= q^{-1} x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} + q^{-1} \hat{q} x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} \quad \text{for } i_\beta \in P_j \text{ and } i_\beta = j_\gamma \tag{3.43} \\
x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} &= x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} + \hat{q} x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} \quad \text{for } i_\beta \in P_{>j} \text{ and } i_\beta < j_\delta \tag{3.44} \\
x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} &= q x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} \quad \text{for } i_\beta \in P_{>j} \text{ and } i_\beta = j_\delta \tag{3.45} \\
x_{i_\alpha i_\beta}^{P_i} x_{j_\gamma j_\delta}^{P_j} &= x_{j_\gamma j_\delta}^{P_j} x_{i_\alpha i_\beta}^{P_i} \quad \text{for } i_\beta \in P_{>j} \text{ and } i_\beta > j_\delta. \tag{3.46}
\end{align*}

Proof. For $i_\alpha, i_\gamma \in P_i$ with $i_\alpha < i_\gamma$ and $i_\beta, i_\delta \in P_{>i}$ with $i_\beta < i_\delta$ by Theorem 3.11, D_{P_i} commutes with $M_{i_\alpha i_\beta}^{P_i}$, $M_{i_\alpha i_\gamma}^{P_i}$, $M_{i_\gamma i_\beta}^{P_i}$, and $M_{i_\gamma i_\delta}^{P_i}$. Hence, relations (3.37) – (3.40) follow from (3.26) – (3.29).

Now, for $P_i, P_j \in P$ with $i < j$ and $i_\alpha \in P_i$ with $i_\beta \in P_{>i}$ and $j_\gamma \in P_j$ with $j_\delta \in P_{>j}$ by Theorem 3.11 and relation (3.5) we have that D_{P_i} commutes with $M_{j_\gamma j_\delta}^{P_j}$ and D_{P_j} commutes with $M_{i_\alpha i_\beta}^{P_i}$. Moreover, by Theorem 3.8 D_{P_i} commute with D_{P_j}. Hence, relations (3.41) follows from (3.30) and relations (3.44) – (3.46) follow from (3.33) – (3.35).
(i) For relation (3.42) using relations (3.31), (3.3), and (3.4) along with Theorem 3.8 we have

\[x^{P_i}_{\gamma, j_b} x^{P_j}_{\alpha, j_a} = D^{-1}_{P_i} M^{P_i}_{\alpha, j_a} D^{-1}_{P_j} M^{P_j}_{\gamma, j_b} \]

\[= q^{-1} D^{-1}_{P_j} D^{-1}_{P_j} M^{P_i}_{\alpha, j_a} M^{P_j}_{\gamma, j_b} \]

\[= q^{-1} D^{-1}_{P_j} D^{-1}_{P_j} M^{P_i}_{\alpha, j_a} M^{P_j}_{\gamma, j_b} = D^{-1}_{P_j} D^{-1}_{P_j} M^{P_i}_{\alpha, j_a} M^{P_j}_{\gamma, j_b} \]

\[= D^{-1}_{P_j} M^{P_j}_{\gamma, j_b} D^{-1}_{P_i} M^{P_i}_{\alpha, j_a} = x^{P_j}_{\alpha, j_a} x^{P_i}_{\gamma, j_b}. \]

(ii) For relation (3.43) using relations (3.32), (3.3), and (3.4) along with Theorem 3.8 we have

\[x^{P_i}_{\alpha, j_a} x^{P_j}_{\gamma, j_b} = D^{-1}_{P_i} M^{P_i}_{\alpha, j_a} D^{-1}_{P_j} M^{P_j}_{\gamma, j_b} = q^{-1} D^{-1}_{P_i} D^{-1}_{P_j} M^{P_i}_{\alpha, j_a} M^{P_j}_{\gamma, j_b} \]

\[= q^{-1} D^{-1}_{P_j} D^{-1}_{P_j} M^{P_i}_{\alpha, j_a} M^{P_j}_{\gamma, j_b} \]

\[= q^{-1} D^{-1}_{P_j} D^{-1}_{P_j} \left(M^{P_j}_{\gamma, j_b} M^{P_i}_{\alpha, j_a} + \hat{q} M^{P_j}_{(\alpha, j_b), j_a} \right) \]

\[= q^{-1} D^{-1}_{P_j} D^{-1}_{P_j} M^{P_j}_{\gamma, j_b} M^{P_i}_{\alpha, j_a} + q^{-1} \hat{q} D^{-1}_{P_j} D^{-1}_{P_j} M^{P_i}_{(\alpha, j_b), j_a} \]

\[= q^{-1} D^{-1}_{P_j} M^{P_j}_{\gamma, j_b} D^{-1}_{P_i} M^{P_i}_{\alpha, j_a} + q^{-1} \hat{q} D^{-1}_{P_j} D^{-1}_{P_i} M^{P_j}_{(\alpha, j_b), j_a} \]

\[= q^{-1} x^{P_j}_{\gamma, j_b} x^{P_i}_{\alpha, j_a} + q^{-1} \hat{q} x^{P_j}_{(\alpha, j_b), j_a}. \]
Action of $O_q(L_P)$ on $O_q(N^+_{>P})$

Recall that there is a natural right $O_q(L_P)$ action on $O_q(N^+_{>P})$ given by

\[x.Y = \sum_{(Y)} r^+(S_L(Y_1))xr^+(Y_2) \]

for $Y \in O_q(L_P)$ and $x \in O_q(N^+_{>P})$.

Theorem 3.36. Let P be a partition of n with $P_k, P_i, P_j \in P$ with $k < i < j$.

For $i_\alpha, i_\gamma, i_\delta \in P_i$ and $i_\beta \in P_{>i}$ and $k_\lambda, k_\mu \in P_k$ and $j_\sigma, j_\theta \in P_j$, the right $O_q(L_P)$ action on $O_q(N^+_{>P})$ satisfies the following:

\[x^{P_i}_{i_\alpha i_\beta} Y_{k_\lambda k_\mu} = \delta_{k_\lambda k_\mu} x^{P_i}_{i_\alpha i_\beta} \] (3.47)

\[x^{P_i}_{i_\alpha i_\beta} Y_{i_\gamma i_\delta} = \delta_{i_\gamma i_\delta} x^{P_i}_{i_\alpha i_\beta} \text{ for } i_\alpha \neq i_\delta \] (3.48)

\[x^{P_i}_{i_\alpha i_\beta} Y_{i_\gamma i_\delta} = q^{-1} \delta_{i_\gamma i_\delta} x^{P_i}_{i_\alpha i_\beta} + \hat{q} \sum_{c=1}^{\delta-1} q^{-c} \delta_{i_\gamma i_\epsilon} x^{P_i}_{i_\alpha i_\delta} \text{ for } i_\alpha = i_\delta \] (3.49)

\[x^{P_j}_{i_\alpha i_\beta} Y_{j_\sigma j_\theta} = \delta_{j_\sigma j_\theta} x^{P_i}_{i_\alpha i_\beta} \text{ for } i_\beta \in P_{<j} \] (3.50)

\[x^{P_j}_{i_\alpha i_\beta} Y_{j_\sigma j_\theta} = q \delta_{j_\sigma j_\theta} x^{P_i}_{i_\alpha i_\beta} + \hat{q} \delta_{j_\sigma j_\epsilon} x^{P_i}_{i_\alpha j_\theta} \text{ for } i_\beta \in P_j \text{ and } i_\beta < j_\theta \] (3.51)

\[x^{P_j}_{i_\alpha i_\beta} Y_{j_\sigma j_\theta} = q \delta_{j_\sigma j_\theta} x^{P_i}_{i_\alpha i_\beta} \text{ for } i_\beta \in P_j \text{ and } i_\beta = j_\theta \] (3.52)

\[x^{P_j}_{i_\alpha i_\beta} Y_{j_\sigma j_\theta} = \delta_{j_\sigma j_\theta} x^{P_i}_{i_\alpha i_\beta} \text{ for } i_\beta > j_\theta. \] (3.53)
Proof. From Theorem (3.31) and from the comultiplication (3.7) we have

\[x^P_{\iota \alpha \iota \beta} Y_{k \lambda k \mu} = \sum_{k_n \in P_k} r^+ (S_L(Y_{k \lambda k \eta})) D_{P_1}^{-1} M_{i \alpha i \beta}^P r^+ (Y_{k \eta k \mu}) \]

\[= \sum_{k_n \in P_k} r^+ (S_L(Y_{k \lambda k \eta})) D_{P_1}^{-1} M_{i \alpha i \beta}^P X_{k \eta k \mu} \]

\[= \sum_{k_n \in P_k} r^+ (S_L(Y_{k \lambda k \eta})) X_{k \eta k \mu} D_{P_1}^{-1} M_{i \alpha i \beta}^P \]

\[= \sum_{k_n \in P_k} r^+(S_L(Y_{k \lambda k \eta})) r^+(Y_{k \eta k \mu}) D_{P_1}^{-1} M_{i \alpha i \beta}^P \]

\[= r^+(\epsilon_L(Y_{k \lambda k \mu}))) x^P_{\iota \alpha \iota \beta} = \delta_{k \lambda k \mu} x^P_{\iota \alpha \iota \beta}. \]

If \(i_\alpha \neq i_\delta \), from equations (3.17) and (3.18) and from the comultiplication (3.7) we have

\[x^P_{\iota \alpha \iota \beta} Y_{\iota \gamma \iota \delta} = \sum_{i_\eta \in P_i} r^+(S_L(Y_{\iota \gamma \iota \eta})) D_{P_1}^{-1} M_{i \alpha i \beta}^P r^+(Y_{\iota \eta \iota \delta}) \]

\[= \sum_{i_\eta \in P_i} r^+(S_L(Y_{\iota \gamma \iota \eta})) D_{P_1}^{-1} M_{i \alpha i \beta}^P X_{i \eta \iota \delta} \]

\[= \sum_{i_\eta \in P_i} r^+(S_L(Y_{\iota \gamma \iota \eta})) X_{i \eta \iota \delta} D_{P_1}^{-1} M_{i \alpha i \beta}^P \]

\[= \sum_{i_\eta \in P_i} r^+(S_L(Y_{\iota \gamma \iota \eta})) r^+(Y_{\iota \eta \iota \delta}) D_{P_1}^{-1} M_{i \alpha i \beta}^P \]

\[= r^+(\epsilon_L(Y_{\iota \gamma \iota \delta}))) x^P_{\iota \alpha \iota \beta} = \delta_{i \alpha i \beta} x^P_{\iota \alpha \iota \beta}. \]
If \(i_\alpha = i_\delta \), from equations (3.16) and (3.18) and from the comultiplication (3.7) we have

\[
x_{i_\alpha i_\beta}^{P_i} Y_{i_\gamma i_\delta} = \sum_{i_\eta \in P_i} r^+(S_L(Y_{i_\gamma i_\eta})) D_{P_i}^{-1} M_{i_\alpha i_\beta} P_i X_{i_\eta i_\delta}
\]

\[
= \sum_{i_\eta \in P_i} r^+(S_L(Y_{i_\gamma i_\eta})) D_{P_i}^{-1} \left(q^{-1} X_{i_\eta i_\delta} M_{i_\alpha i_\beta}^{P_i} + \tilde{q} \sum_{\epsilon = 1}^{\delta - 1} q^{-\epsilon} X_{i_\eta i_\delta} M_{i_\alpha i_\beta}^{P_i} \right)
\]

\[
= \sum_{i_\eta \in P_i} \left(q^{-1} r^+(S_L(Y_{i_\gamma i_\eta})) X_{i_\eta i_\delta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} \right)
\]

\[
+ \tilde{q} \sum_{i_\eta \in P_i} \left(q^{-\epsilon} \sum_{i_\eta \in P_i} r^+(S_L(Y_{i_\gamma i_\eta})) X_{i_\eta i_\delta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} \right)
\]

\[
= \sum_{i_\eta \in P_i} q^{-1} r^+(S_L(Y_{i_\gamma i_\eta})) X_{i_\eta i_\delta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i}
\]

\[
+ \tilde{q} \sum_{\epsilon = 1}^{\delta - 1} q^{-\epsilon} \sum_{i_\eta \in P_i} r^+(S_L(Y_{i_\gamma i_\eta})) X_{i_\eta i_\delta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i}
\]

\[
= r^+(\epsilon_L(Y_{i_\gamma i_\eta})) q^{-1} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} + \tilde{q} \sum_{\epsilon = 1}^{\delta - 1} q^{-\epsilon} r^+(\epsilon_L(Y_{i_\gamma i_\eta})) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i}
\]

\[
= \delta_{i_\gamma i_\delta} q^{-1} x_{i_\alpha i_\beta}^{P_i} + \tilde{q} \sum_{\epsilon = 1}^{\delta - 1} q^{-\epsilon} \delta_{i_\gamma i_\delta} x_{i_\alpha i_\beta}^{P_i}.
\]

If \(i_\beta \in P_{< j} \), using equations (3.21) and (3.25) and from the comultiplication (3.7) we have

\[
x_{i_\alpha i_\beta}^{P_i} Y_{j_\alpha j_\beta} = \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\alpha j_\eta})) D_{P_j}^{-1} M_{i_\alpha i_\beta} P_i X_{j_\eta j_\beta} = \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\alpha j_\eta})) X_{j_\eta j_\beta} D_{P_j}^{-1} M_{i_\alpha i_\beta}^{P_i}
\]

\[
= r^+(\epsilon_L(Y_{j_\alpha j_\eta})) D_{P_j}^{-1} M_{i_\alpha i_\beta}^{P_i} = \delta_{j_\alpha j_\beta} x_{i_\alpha i_\beta}^{P_i}.
\]
If $i_\beta \in P_j$ and $i_\beta < j_\theta$, using equations (3.22) and (3.25) and from the comultiplication (3.7) we have

$$x_{i_\alpha i_\beta}^{P_i} \cdot Y_{j_\sigma j_\theta} = \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\sigma j_\eta})) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} X_{j_\eta j_\theta}$$

$$= \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\sigma j_\eta})) D_{P_i}^{-1} \left(X_{j_\eta j_\theta} M_{i_\alpha i_\beta}^{P_i} + \hat{q} X_{j_\eta i_\beta} M_{i_\alpha j_\theta}^{P_i} \right)$$

$$= \sum_{j_\eta \in P_j} \left(r^+(S_L(Y_{j_\sigma j_\eta})) X_{j_\eta j_\theta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} + \hat{q} r^+(S_L(Y_{j_\sigma j_\eta})) X_{j_\eta i_\beta} D_{P_i}^{-1} M_{i_\alpha j_\theta}^{P_i} \right)$$

$$= r^+\left(\epsilon_L(Y_{j_\sigma j_\eta}) \right) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} + \hat{q} r^+\left(\epsilon_L(Y_{j_\sigma i_\beta}) \right) D_{P_i}^{-1} M_{i_\alpha j_\theta}^{P_i}$$

$$= \delta_{j_\sigma j_\theta} x_{i_\alpha i_\beta}^{P_i} + \hat{q} \delta_{j_\sigma i_\beta} x_{i_\alpha j_\theta}^{P_i}.$$

If $i_\beta \in P_j$ and $i_\beta = j_\theta$, using equations (3.23) and (3.25) and from the comultiplication (3.7) we have

$$x_{i_\alpha i_\beta}^{P_i} \cdot Y_{j_\sigma j_\theta} = \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\sigma j_\eta})) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} X_{j_\eta j_\theta} = \sum_{j_\eta \in P_j} q r^+(S_L(Y_{j_\sigma j_\eta})) X_{j_\eta j_\theta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i}$$

$$= q r^+\left(\epsilon_L(Y_{j_\sigma j_\eta}) \right) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} = q \delta_{j_\sigma j_\theta} x_{i_\alpha i_\beta}^{P_i}.$$

If $i_\beta > j_\theta$, using equations (3.24) and (3.25) and from the comultiplication (3.7) we have

$$x_{i_\alpha i_\beta}^{P_i} \cdot Y_{j_\sigma j_\theta} = \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\sigma j_\eta})) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i} X_{j_\eta j_\theta} = \sum_{j_\eta \in P_j} r^+(S_L(Y_{j_\sigma j_\eta})) X_{j_\eta j_\theta} D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i}$$

$$= r^+\left(\epsilon_L(Y_{j_\sigma j_\eta}) \right) D_{P_i}^{-1} M_{i_\alpha i_\beta}^{P_i}$$

$$= q \delta_{j_\sigma j_\theta} x_{i_\alpha i_\beta}^{P_i}.$$
GK-dimension for $O_q(N_{>P}^+)$

Having found some relations in $O_q(N_{>P}^+)$ we wish to find the GK-dimension for $O_q(N_{>P}^+)$). This will help us in showing that $O_q(N_{>P}^+)$ is a CGL extension. To find the GK-dimension, we first need to return to $O_q(P_{\pm}^\pm)$ and find bounds on the GK-dimension for $O_q(P_{\pm}^\pm)$ as well as finding the GK-dimension for $O_q(L_P)$.

We may define an ordering on the generators of $O_q(SL_n)$ by the following rule: for $X_{ij}, X_{kl} \in O_q(SL_n)$ we have $X_{kl} <_{\text{rlex}} X_{ij}$ if and only if $k < i$ or $k = i$ and $l > j$. We may similarly define another ordering by $X_{kl} <_{\text{clex}} X_{ij}$ if and only if $l < j$ or $l = j$ and $k > i$. Note that $<_{\text{rlex}}$ and $<_{\text{clex}}$ are in fact well-orderings on the generators of $O_q(SL_n)$. Let S_P^+ be the sequence of generators from I_P^+ ordered sequentially using $<_{\text{rlex}}$. Similarly, let S_P^- be the sequence of generators from I_P^- ordered sequentially using $<_{\text{clex}}$. Observe that

$$|S_P^+| = \sum_{i=1}^{k} |P_i||P_{>i}| \quad \text{and} \quad |S_P^-| = \sum_{i=1}^{k} |P_i||P_{<i}|. \quad (3.54)$$

Definition 3.37 (Definition 4.1.13 [22]). A sequence of elements a_1, \ldots, a_N in a ring R is a normalizing sequence if for each $j \in \{0, 1, 2, \ldots, N-1\}$ the image of a_{j+1} in $R/\sum_{i=1}^{j} a_i R$ is normal and $\sum_{i=1}^{N} a_i R \neq R$. The ideal generated by such a sequence is called polynormal.
Let $R = O_q(\text{SL}_n)$. For each element X_{ij} of S_P^+, let

$$R_{ij}^+ := \sum_{X_{kl} < \text{rlex} X_{ij}} X_{kl} R.$$

We note that $<_{\text{rlex}}$ induces an inclusion on the right ideals R_{ij} from Lemma 3.38. That is, $R_{ij}^+ \subset R_{st}^+$ if and only if $X_{ij} <_{\text{rlex}} X_{st}$. We may similarly define right ideals $R_{ij}^-\text{ from } S_P^-$ using $<_{\text{clex}}$.

Lemma 3.38. Let P be a partition of n. The ideals I_P^\pm are polynormal. Moreover, $I_P^+ + I_P^-$ is also a polynormal ideal.

Proof. If $|P| = 1$ then $S_P^\pm = \emptyset$. Since $I_P^\pm = 0$ the statement holds trivially. Therefore, we suppose that $|P| > 1$.

To show S_P^+ is a normalizing sequence, we need to show that the image of each $X_{ij} \in S_P^+$ is normal in $O_q(\text{SL}_n)/R_{ij}^+$. To do this, it suffices to show that X_{ij} is normal modulo R_{ij}^+ with respect to each of the generators of $O_q(\text{SL}_n)$.

Let $X_{st} \in O_q(\text{SL}_n)$. If $i \leq s$ and $j \geq t$ or $i \geq s$ and $j \leq t$, then X_{ij} commutes or q-commutes with X_{st} and X_{ij} normalizes X_{st}. Therefore, we only need to consider the case where X_{ij} and X_{st} are “NW” or “SE” from each other. That is, if $i < s$ and $j < t$ or $i > s$ and $j > t$.

If $i < s$ and $j < t$ then $X_{ij}X_{st} = X_{st}X_{ij} + \tilde{q}X_{it}X_{sj}$. In this case we have $X_{it} <_{\text{rlex}} X_{ij}$ and so $X_{it}X_{sj} \in R_{ij}^+$. Similarly, if $i > s$ and $j > t$ then again $X_{st}X_{ij} = X_{ij}X_{st} + \tilde{q}X_{sj}X_{it}$ and $X_{sj} <_{\text{rlex}} X_{ij}$ and so $X_{sj}X_{it} \in R_{ij}^+$. It follows that
X_{ij} is normal modulo R_{ij}^+ with respect to any generator of $O_q(\text{SL}_n)$. Therefore, S^+ is a normalizing sequence and I_P^+ is a polynormal ideal.

A similar proof also works for S_P^- replacing $<_\text{lex}$ with $<_\text{clex}$ and R_{ij}^+ with R_{ij}^-. Finally, denote $S_P^+ \cup S_P^-$ the sequence of elements of S_P^+ followed by those of S_P^-. To show $S_P^+ \cup S_P^-$ is a normalizing sequence, since S_P^+ and S_P^- are already normalizing sequences, it is sufficient to show that the lowest element of S_P^-, X_{n1}, is normal modulo the right ideal generated by S_P^+ to prove the Lemma. However, since X_{n1} is normalizes all the generators of $O_q(\text{SL}_n)$ this is trivial. \hfill \Box

Let A_P^\pm be the right ideals in $O_q(\text{SL}_n)$ generated by S_P^\pm.

Proposition 3.39. Let P be a partition of n. All the R_{ij}^\pm are two-sided ideals. Moreover, the A_P^\pm are two-sided ideals equal to I_P^\pm.

Proof. If $|P| = 1$ then $S_P^\pm = \emptyset$. It follows that the right ideal generated by S_P^\pm and I_P^\pm are both 0 and the theorem holds. Therefore we suppose that $|P| > 1$.

We proceed inductively to show that all the right ideals R_{ij}^\pm are two-sided. It is trivial that R_{1n}^+ is a two-sided ideal. Let $X_{i'j'}$ be the immediate successor to X_{ij} in S_P^+ and suppose that R_{ij}^+ is a two-sided ideal. We wish to show that $R_{i'j'}^+$ is also a two-sided ideal. Since $X_{i'j'}$ is the immediate successor of X_{ij} we have $R_{i'j'}^+ = X_{ij}R + R_{ij}^+$ from the definition of $R_{i'j'}^+$. Moreover, it follows from Lemma 3.38 that $RX_{ij} \subseteq X_{ij}R + R_{ij}^+$. Therefore, since R_{ij}^+ is a two-sided ideal
we have

\[RR_{ij'} = R(X_{ij}R + R_{ij}^+) \subseteq (RX_{ij})R + R_{ij}^+ \subseteq (X_{ij}R + R_{ij}^+)R + R_{ij}^+ \subseteq R_{ij'}^+. \]

That is, \(R_{ij'}^+ \) is a two-sided ideal. Hence, all the \(R_{ij}^+ \) are two sided ideals. A similar proof replacing \(<_{\text{rlex}}\) with \(<_{\text{clex}}\) can also show that the \(R_{ij}^- \) are two-sided ideals.

It is clear that

\[A_P^+ = X_{\text{max}_P} R + R_{\text{max}_P}^+ R + \]

In a similar way to above, since \(R_{\text{max}_P}^+ R \) is a two-sided ideal, we have that \(A_P^+ \) is also a two-sided ideal. A similar proof also shows \(A_P^- \) is a two-sided ideal.

Since \(A_P^\pm \) are two-sided ideals and since \(I_P^\pm \) are the ideals generated by \(S_P^{\pm} \), they are equal.

\[\square \]

Theorem 3.40. For \(P \) a partition of \(n \) with \(|P| = k\) we have

\[
\text{GK.dim} \left(O_q(P_P^+) \right) \geq (n^2 - 1) - \sum_{i=1}^{k} |P_i||P_{<i}| \\
\text{GK.dim} \left(O_q(P_P^-) \right) \geq (n^2 - 1) - \sum_{i=1}^{k} |P_i||P_{>i}|.
\]
Moreover,

\[
\text{GK.dim } (O_q(L_P)) = (n^2 - 1) - \sum_{i=1}^{k} |P_i||P_{<i}| - \sum_{i=1}^{k} |P_i||P_{>i}|.
\]

Proof. Since the quantum determinant \(D \) is a central element of \(O_q(SL_n) \) \([19, \text{Proposition 9}]\), it follows from \([22, \text{Theorem 4.1.13}]\) and \([1, \text{Corollary II.9.18}]\) that \(\text{GK.dim } (O_q(SL_n)) = n^2 - 1 \).

By Lemma 3.38 and \([22, \text{Theorem 4.1.13}]\) we have

\[
\text{height } (I_P^\pm) \leq \text{height } (I_P^\pm/A_P^\pm) + |S_P^\pm|.
\]

However, by Proposition 3.39 we have that \(A_P^\pm = I_P^\pm \). Therefore,

\[
\text{height } (I_P^-) \leq \sum_{i=1}^{k} |P_i||P_{<i}| \quad \text{and} \quad \text{height } (I_P^+) \leq \sum_{i=1}^{k} |P_i||P_{>i}|.
\]

Since, by \([1, \text{Corollary II.9.18}]\) we have that \(I_P^\pm \) satisfies Tauvel’s height formula, i.e.

\[
\text{GK.dim } (O_q(SL_n)) = \text{height } (I_P^\pm) + \text{GK.dim } (O_q(SL_n/I_P^\pm)),
\]
it immediately follows that

\[
\operatorname{GK.dim} (O_q(P_P^+)) \geq (n^2 - 1) - \sum_{i=1}^{k} |P_i| |P_{<i}|
\]

\[
\operatorname{GK.dim} (O_q(P_P^-)) \geq (n^2 - 1) - \sum_{i=1}^{k} |P_i| |P_{>i}|.
\]

Moreover, using Lemma 3.38 and [22, Theorem 4.1.13] we have

height \((I_P^+ + I_P^-) \leq |S_P^+ \cup S_P^-|.

By a similar argument to above, it follows that

\[
\operatorname{GK.dim} (O_q(L_P)) \geq (n^2 - 1) - \sum_{i=1}^{k} |P_i| |P_{<i}| - \sum_{i=1}^{k} |P_i| |P_{>i}|.
\] (3.55)

Let \(\phi\) be the map described in Lemma 3.17. Let \(D_i\) be the quantum determinant of \(O_q(M|P_i|)\). Using Theorem 3.7 it is easy to verify that that \(D_1 \otimes \cdots \otimes D_k - 1 \in \ker \phi\). Moreover, since each \(O_q(M|P_i|)\) is a domain we have that \(D_1 \otimes \cdots \otimes D_k - 1\) is a regular element. Therefore, from [20, Proposition 3.15] we have

\[
\operatorname{GK.dim} (M/ \ker \phi) + 1 \leq \operatorname{GK.dim} (M).
\]

Since \(O_q(M|P_i|)\) is a finitely generated iterated skew polynomial ring, it follows from [13, Lemma 2.2] that \(\operatorname{GK.dim} O_q(M|P_i|) = |P_i|^2\). Hence, [20, Lemma 3.10]
implies
\[\text{GK.dim } (M) \leq \sum_{i=1}^{k} |P_i|^2. \]

Since \(O_q(L_P) \cong M/ \ker \phi \) we have
\[\text{GK.dim } (O_q(L_P)) \leq \sum_{i=1}^{k} |P_i|^2 - 1. \]

Since
\[\sum_{i=1}^{k} |P_i|^2 = n^2 - \sum_{i=1}^{k} |P_i||P_{<i}| - \sum_{i=1}^{k} |P_i||P_{>i}| \]

it follows that
\[\text{GK.dim } (O_q(L_P)) \leq (n^2 - 1) - \sum_{i=1}^{k} |P_i||P_{<i}| - \sum_{i=1}^{k} |P_i||P_{>i}|. \quad (3.56) \]

Combining (3.55) and (3.56) gives us the desired result. \(\square \)

Corollary 3.41. Let \(P \) be a partition of \(n \). We have that
\[\text{GK.dim } (O_q(N^+_P)) \geq \sum_{i=1}^{k} |P_i||P_{>i}|. \]

Proof. Let \(W \) be the subspace spanned by the \(Y_{i\alpha^i\beta} \in O_q(L_P) \) and 1. Note that \(W \) is a generating subspace for \(O_q(L_P) \). Similarly, if \(V \) is the subspace spanned by the generators \(x_{i\alpha^i\beta}^{P_i} \) of \(O_q(N^+_P) \) and 1, then \(V \) is a generating subspace for \(O_q(N^+_P) \). From Theorem 3.36 we have \(V.O_q(L_P) \subseteq V \). Moreover, from (3.7) we
have $\Delta(W) \subseteq W \otimes O_q(L_P)$. Hence, Lemma 1.25 implies

$$
\text{GK.dim} \left(O_q(N^+_{>P}) \right) \geq \text{GK.dim} \left(O_q(P^+_P) \right) - \text{GK.dim} \left(O_q(L_P) \right).
$$

Theorem 3.40 then gives the desired result. \(\square\)

If $|P| = 1$ then $O_q(P^\pm_P) \cong O_q(\text{SL}_n)$ and therefore the quantum unipotent subgroups are trivial. From now on, unless indicated otherwise, we assume $|P| > 1$.

We may give the set of generators of $O_q(N^+_{>P})$ a total ordering, $<_{N^+}$ by the following rule: $x^P_{i_\alpha i_\beta} <_{N^+} x^P_{j_\gamma j_\delta}$ if and only if $i < j$, or $i = j$ and $i_\alpha > j_\gamma$, or $i = j$ and $i_\alpha = j_\gamma$ and $i_\beta < j_\delta$.

For $P_j \in P$ with $j_\gamma \in P_j$ and $j_\delta \in P_{>j}$ define

$$
R^{P_j}_{j_\gamma j_\delta} := k \left\langle x^P_{i_\alpha i_\beta} \mid x^P_{i_\alpha i_\beta} <_{N^+} x^P_{j_\gamma j_\delta} \right\rangle \quad \text{and} \quad \overline{R}^{P_j}_{j_\gamma j_\delta} := k \left\langle x^P_{i_\alpha i_\beta} \mid x^P_{i_\alpha i_\beta} \leq_{N^+} x^P_{j_\gamma j_\delta} \right\rangle.
$$

We note that $x^P_{i_\alpha i_\beta} <_{N^+} x^P_{j_\gamma j_\delta}$ if and only if $\overline{R}^{P_i}_{i_\alpha i_\beta} \subset \overline{R}^{P_j}_{j_\gamma j_\delta}$. It follows that all the algebras $\overline{R}^{P_j}_{j_\gamma j_\delta}$ form an ascending chain of subalgebras of $O_q(N^+_{>P})$. Denote this chain by \overline{R}_P. We note that if $\overline{R}_i = \overline{R}^{P_j}_{j_\gamma j_\delta}$ is the i^{th} term in the chain, then $\overline{R}_{i-1} = \overline{R}^{P_j}_{j_\gamma j_\delta}$ and

$$
\overline{R}_i = \overline{R}_{i-1} \left\langle x^P_{j_\gamma j_\delta} \right\rangle.
$$
Consequently, the length of this chain is \(\sum_{P_i \in P} |P_i||P_i >| \). We also note that \(\overline{R}_1 \) is a polynomial ring in one variable and the highest element in the chain is \(O_q(N^+_{>P}) \).

Lemma 3.42. Let \(P \) be a partition of \(n \). Let \(P_j \in P \) and \(j_\gamma \in P_j \) and \(j_\delta \in P_{>j} \).

For each generator \(x_{i_\alpha,i_\beta}^{P_i} \) of \(R_{j_\gamma,j_\delta}^{P_j} \) there exist scalars \(\lambda_{i_\alpha,i_\beta}^{P_i} \) so that

\[
x_{i_\alpha,i_\beta}^{P_i} x_{i_\alpha,i_\beta}^{P_i} - \lambda_{i_\alpha,i_\beta}^{P_i} x_{i_\alpha,i_\beta}^{P_i} x_{i_\gamma,i_\delta}^{P_j} \in R_{j_\gamma,j_\delta}^{P_j},
\]

Proof. Let \(x_{i_\alpha,i_\beta}^{P_i} \) be a generator of \(R_{j_\gamma,j_\delta}^{P_j} \). We note that for \(i < j \) and \(i_\alpha \in P_i \) that \(x_{i_\alpha,j_\delta}^{P_i} \in R_{j_\gamma,j_\delta}^{P_j} \). Moreover, for \(\eta \in \{1, \ldots, |P_j| - \gamma\} \) we have that \(x_{j_\gamma,j_\delta}^{P_j} x_{i_\alpha,j_\gamma+\eta}^{P_i} \in R_{j_\gamma,j_\delta}^{P_j} \). It follows that \(x_{i_\alpha,j_\gamma}^{P_i} x_{j_\gamma,j_\delta}^{P_j} \in R_{j_\gamma,j_\delta}^{P_j} \). Therefore, by (3.43) we have

\[
x_{j_\gamma,j_\delta}^{P_j} x_{i_\alpha,i_\beta}^{P_i} - q x_{i_\alpha,i_\beta}^{P_i} x_{j_\gamma,j_\delta}^{P_j} \in R_{j_\gamma,j_\delta}^{P_j},
\]

For \(i_\alpha, i_\beta \in P_i \) with \(i_\alpha > j_\gamma \) and \(i_\beta < j_\delta \) we have that \(x_{i_\alpha,j_\delta}^{P_i}, x_{i_\alpha,j_\gamma}^{P_i} \in R_{j_\gamma,j_\delta}^{P_j} \). Therefore, by (3.40) we have \(x_{j_\gamma,j_\delta}^{P_j} x_{i_\alpha,i_\beta}^{P_i} - x_{i_\alpha,j_\delta}^{P_i} x_{j_\gamma,j_\delta}^{P_j} \in R_{j_\gamma,j_\delta}^{P_j} \).

For \(i < j \) with \(i_\alpha \in P_i \) and \(i_\beta \in P_{>j} \) with \(i_\beta < j_\delta \) we have that \(x_{i_\alpha,j_\delta}^{P_i}, x_{j_\gamma,j_\delta}^{P_j} \in R_{j_\gamma,j_\delta}^{P_j} \). Therefore, by (3.44) we have \(x_{j_\gamma,j_\delta}^{P_j} x_{i_\alpha,i_\beta}^{P_i} - x_{i_\alpha,j_\delta}^{P_i} x_{j_\gamma,j_\delta}^{P_j} \in R_{j_\gamma,j_\delta}^{P_j} \).

Finally, for all other cases it follows from Theorem 3.35 that there exist scalars \(\lambda_{i_\alpha,i_\beta}^{P_i} \) so that

\[
x_{j_\gamma,j_\delta}^{P_j} x_{i_\alpha,i_\beta}^{P_i} - \lambda_{i_\alpha,i_\beta}^{P_i} x_{i_\alpha,i_\beta}^{P_i} x_{j_\gamma,j_\delta}^{P_j} = 0 \in R_{j_\gamma,j_\delta}^{P_j}.
\]
Theorem 3.43. Let P be a partition of n. We have that

$$\text{GK.dim } (O_q(N^+_{>P})) = \sum_{i=1}^{k} |P_i||P_{>i}|.$$

Moreover, for all $P_j \in P$ and $j_\gamma \in P_j$ and $j_\delta \in P_{>j}$ we have

$$\text{GK.dim } (R^{P_j}_{j_\gamma,j_\delta}) = 1 + \text{GK.dim } (R^{P_j}_{j_\gamma,j_\delta}).$$

Proof. We note that using Lemma 3.42, the proof of Proposition 8.6.7 can be modified to show that

$$\text{GK.dim } (R^{P_j}_{j_\gamma,j_\delta}) \leq 1 + \text{GK.dim } (R^{P_j}_{j_\gamma,j_\delta}).$$

Hence, each subalgebra in the chain R_P has GK-dimension at most one more than the subalgebra immediately preceding it. Since the lowest element of the chain R_P is a polynomial ring in one variable, the GK-dimension of this algebra is 1. Moreover, since the highest element of the chain is $O_q(N^+_{>P})$, it follows that the $1 \leq \text{GK.dim } (O_q(N^+_{>P})) \leq \sum_{i=1}^{k} |P_i||P_{>i}|$. By Corollary 3.41 we then have that $\text{GK.dim } (O_q(N^+_{>P})) = \sum_{i=1}^{k} |P_i||P_{>i}|$. It immediately follows that

$$\text{GK.dim } (R^{P_j}_{j_\gamma,j_\delta}) = 1 + \text{GK.dim } (R^{P_j}_{j_\gamma,j_\delta}).$$

\square
Lemma 3.44. Let P be a partition of n. The H-action on $O_q(SL_n)$ from (1.25) induces a rational H-action by algebra automorphisms on $O_q(P^+_P)$. Moreover, this action has the property that

$$(u,v).D_{P_i} = \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} v_{i_\lambda} \right) D_{P_i}$$

$$(u,v).M_{i_\alpha i_\beta}^{P_i} = \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} \prod_{i_\mu \in P_i, i_\mu \neq i_\alpha} v_{i_\mu} \right) v_{i_\beta} M_{i_\alpha i_\beta}^{P_i}$$

for $(u,v) \in H$ and for all $P_i \in P$ with $i_\alpha \in P_i$ and $i_\beta \in P_{\geq i}$.

Proof. We first note that I_P^\pm is generated by H-eigenvectors. It follows that there are induced actions of H on $O_q(P^+_P)$. From [1, Theorem II.2.7], the induced action H-action on $O_q(P^+_P)$ is rational.

If $|P_i| = k$, we have

$$(u,v).D_{P_i} = (u,v).[P_i \mid P_i] = (u,v). \left(\sum_{\sigma \in \text{Sym}_k} (-q)^{\ell(\sigma)} X_{i_{1\sigma(1)}} \cdots X_{i_{k\sigma(k)}} \right)$$

$$= \sum_{\sigma \in \text{Sym}_k} (-q)^{\ell(\sigma)} u_{i_1 \sigma(1)} v_{i_{1\sigma(1)}} \cdots u_{i_k \sigma(k)} v_{i_{k\sigma(k)}} X_{i_{1\sigma(1)}} \cdots X_{i_{k\sigma(k)}}$$

$$= \sum_{\sigma \in \text{Sym}_k} \left(\prod_{j=1}^k u_{i_j \sigma(j)} \right) (-q)^{\ell(\sigma)} X_{i_{1\sigma(1)}} \cdots X_{i_{k\sigma(k)}}.$$

151
However, since for any $\sigma \in \text{Sym}_k$

$$\prod_{j=1}^{k} u_{i_j} v_{i_{\sigma(j)}} = \prod_{j=1}^{k} u_{i_j} v_{i_j} = \prod_{i_\lambda \in P_i} u_{i_\lambda} v_{i_\lambda}$$

we have

$$\sum_{\sigma \in \text{Sym}_k} \left(\prod_{j=1}^{k} u_{i_j} v_{i_{\sigma(j)}} \right) (-q)^{\ell(\sigma)} X_{i_1 i_{\sigma(1)}} \cdots X_{i_k i_{\sigma(k)}} = \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} v_{i_\lambda} \right) D_{P_i}.$$

In the same way we also have,

$$(u, v).M_{i_\alpha i_\beta}^{P_i} = \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} \prod_{i_\mu \in P_i} v_{i_\mu} \right) v_{i_\beta} M_{i_\alpha i_\beta}^{P_i}. \quad \Box$$

Proposition 3.45. Let P be a partition of n. For $P_i \in P$ with $i_\alpha \in P_i$ and $i_\beta \in P > P_i$ then

$$(u, v).x_{i_\alpha i_\beta}^{P_i} = v_{i_\alpha}^{-1} v_{i_\beta} x_{i_\alpha i_\beta}^{P_i}$$

for all $(u, v) \in H$.

Proof. From Lemma 3.44 it follows that

$$(u, v).D_{P_i}^{-1} = \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} v_{i_\lambda} \right)^{-1} D_{P_i}^{-1}.$$
Therefore, we have

$$
(u, v).x^{P_i}_{\alpha\beta} = (u, v).D^{-1}_{P_i}M^{P_i}_{\alpha\beta}
$$

$$
= \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} v_{i_\lambda} \right)^{-1} D^{-1}_{P_i} \left(\prod_{i_\lambda \in P_i} u_{i_\lambda} \prod_{i_\mu \in P_i \setminus i_\alpha} v_{i_\mu} \right) v_{i_\alpha} M^{P_i}_{\alpha\beta}
$$

$$
= v_{i_\alpha}^{-1} v_{i_\beta} D^{-1}_{P_i} M^{P_i}_{\alpha\beta} = v_{i_\alpha}^{-1} v_{i_\beta} x^{P_i}_{\alpha\beta}.
$$

Let P be a partition of n. For each $h \in H$ define the map $\tau_h : O_q(N^+_{>P}) \to O_q(P^+_P)$ by

$$
\tau_h(x) := h.x
$$

(3.57)

for all $x \in O_q(N^+_{>P})$. Since the H-action is by algebra homomorphisms, τ_h is an algebra homomorphism. Since each generator of $O_q(N^+_{>P})$ is an H-eigenvector, τ_h is an automorphism of $O_q(N^+_{>P})$.

For $P_j \in P$ and $j_\gamma \in P_j$ and $j_\delta \in P_{>j}$ define $h^{P_j}_{j_\gamma j_\delta} = (u, v) \in H$ where

$$
u_k := \begin{cases}
q^{-2} & \text{if } k = j_\gamma \\
1 & \text{if } k = j_\delta \\
q^{-1} & \text{otherwise}
\end{cases}
\quad \text{and} \quad
v_k := \begin{cases}
q^2 & \text{if } k = j_\gamma \\
1 & \text{if } k = j_\delta \\
q & \text{otherwise.}
\end{cases}
$$
We note that the restriction of $\tau_{h_{j\gamma}}$ to $R^{P_j}_{j\gamma j\delta}$ is an automorphism of $R^{P_j}_{j\gamma j\delta}$. We denote this restriction by $\tau^{P_j}_{j\gamma j\delta}$. Using Proposition 3.45 it is straightforward to verify for each generator $x_{i\alpha i\beta}^{P_i} \in R^{P_j}_{j\gamma j\delta}$ that

$$
\tau^{P_j}_{j\gamma j\delta}(x_{i\alpha i\beta}^{P_i}) = \begin{cases}
q^{-1}x_{i\alpha i\beta}^{P_i} & \text{if } i = j \text{ and } i_\alpha = j_\gamma \\
q^{-1}x_{i\alpha i\beta}^{P_i} & \text{if } i = j \text{ and } i_\beta = j_\delta \\
x_{i\alpha i\beta}^{P_i} & \text{if } i = j \text{ and } i_\alpha > j_\gamma \text{ and } i_\beta > j_\delta \\
x_{i\alpha i\beta}^{P_i} & \text{if } i = j \text{ and } i_\alpha > j_\gamma \text{ and } i_\beta < j_\delta \\
x_{i\alpha i\beta}^{P_i} & \text{if } i < j \text{ and } i_\beta \in P_{<j} \\
x_{i\alpha i\beta}^{P_i} & \text{if } i < j \text{ and } i_\beta \in P_j \text{ but } i_\beta \neq j_\gamma \\
qx_{i\alpha i\beta}^{P_i} & \text{if } i < j \text{ and } i_\beta \in P_j \text{ and } i_\beta = j_\gamma \\
x_{i\alpha i\beta}^{P_i} & \text{if } i < j \text{ and } i_\beta \in P_{>j} \text{ and } i_\beta < j_\delta \\
q^{-1}x_{i\alpha i\beta}^{P_i} & \text{if } i < j \text{ and } i_\beta \in P_{>j} \text{ and } i_\beta = j_\delta \\
x_{i\alpha i\beta}^{P_i} & \text{if } i < j \text{ and } i_\beta \in P_{>j} \text{ and } i_\beta > j_\delta.
\end{cases}
$$

(3.58)

Define the map $\delta^{P_j}_{j\gamma j\delta}$ on $R^{P_j}_{j\gamma j\delta}$ by

$$
\delta^{P_j}_{j\gamma j\delta}(x) := x^{P_j}_{j\gamma j\delta}x - \tau^{P_j}_{j\gamma j\delta}(x)x^{P_j}_{j\gamma j\delta}.
$$

(3.59)
for all $x \in R_{j\gamma j\delta}^{P_j}$. Since $\tau_{j\gamma j\delta}^{P_j}$ is defined using the H-action, it is straightforward to check that $\delta_{j\gamma j\delta}^{P_j}$ is a $\tau_{j\gamma j\delta}^{P_j}$-derivation and from the relations of Theorem 3.35 that

$$
\delta_{j\gamma j\delta}^{P_j}(x_{i\alpha i\beta}^{P_j}) = \begin{cases}
0 & \text{if } i = j \text{ and } i_\alpha = j_\gamma \\
0 & \text{if } i = j \text{ and } i_\beta = j_\delta \\
0 & \text{if } i = j \text{ and } i_\alpha > j_\gamma \text{ and } i_\beta > j_\delta \\
-\hat{q} x_{(i\alpha j\beta),j\gamma}^{P_j} & \text{if } i = j \text{ and } i_\alpha > j_\gamma \text{ and } i_\beta < j_\delta \\
0 & \text{if } i < j \text{ and } i_\beta \in P_{<j} \\
0 & \text{if } i < j \text{ and } i_\beta \in P_j \text{ but } i_\beta \neq j_\gamma \\
-\hat{q} x_{(i\alpha j\beta),j\gamma}^{P_j} & \text{if } i < j \text{ and } i_\beta \in P_j \text{ and } i_\beta = j_\gamma \\
-\hat{q} x_{(i\alpha j\beta),j\gamma}^{P_j} & \text{if } i < j \text{ and } i_\beta \in P_{<j} \text{ and } i_\beta < j_\delta \\
0 & \text{if } i < j \text{ and } i_\beta \in P_{<j} \text{ and } i_\beta = j_\delta \\
0 & \text{if } i < j \text{ and } i_\beta \in P_{>j} \text{ and } i_\beta > j_\delta
\end{cases}
$$

(3.60)

for $x_{i\alpha i\beta}^{P_j} \in R_{j\gamma j\delta}^{P_j}$.

Having defined an automorphism $\tau_{j\gamma j\delta}^{P_j}$ and a $\tau_{j\gamma j\delta}^{P_j}$-derivation $\delta_{j\gamma j\delta}^{P_j}$ on $R_{j\gamma j\delta}^{P_j}$, it should not be surprising that $R_{j\gamma j\delta}^{P_j}$ is a skew polynomial ring over $R_{j\gamma j\delta}^{P_j}$.

155
Theorem 3.46. Let P be a partition of n. For $P_j \in P$ and $j_\gamma \in P_j$ and $j_\delta \in P_{>j}$ then

$$R_{j_\gamma,j_\delta} = R_{j_\gamma,j_\delta}^P[x^P_{j_\gamma,j_\delta}; \tau^P_{j_\gamma,j_\delta}, \delta^P_{j_\gamma,j_\delta}].$$

Proof. Since $\tau^P_{j_\gamma,j_\delta}$ is an automorphism and $\delta^P_{j_\gamma,j_\delta}$ is a $\tau^P_{j_\gamma,j_\delta}$-derivation, it follows that there exists a skew polynomial ring $R_{j_\gamma,j_\delta}^P[b^P_{j_\gamma,j_\delta}; \tau^P_{j_\gamma,j_\delta}, \delta^P_{j_\gamma,j_\delta}]$. Since R_{j_γ,j_δ}^P has a finite dimensional generating subspace V such that $\tau^P_{j_\gamma,j_\delta}(V) = V$ and $\delta^P_{j_\gamma,j_\delta}(V) \subseteq V^2$, it follows from [13, Lemma 2.2] that

$$\text{GK.dim} (R_{j_\gamma,j_\delta}^P[b^P_{j_\gamma,j_\delta}; \tau^P_{j_\gamma,j_\delta}, \delta^P_{j_\gamma,j_\delta}]) = \text{GK.dim} (R_{j_\gamma,j_\delta}^P) + 1. \quad (3.61)$$

From (3.59) there exists an algebra homomorphism $\phi : R_{j_\gamma,j_\delta}^P[b^P_{j_\gamma,j_\delta}; \tau^P_{j_\gamma,j_\delta}, \delta^P_{j_\gamma,j_\delta}] \rightarrow R_{j_\gamma,j_\delta}^P$ which is the identity on R_{j_γ,j_δ}^P and $b^P_{j_\gamma,j_\delta} \mapsto x^P_{j_\gamma,j_\delta}$.

It is clear that ϕ is surjective. Suppose $\ker \phi \neq 0$. In view of (3.61), [20, Proposition 3.15] implies that

$$\text{GK.dim} (R_{j_\gamma,j_\delta}^P) \leq \text{GK.dim} (R_{j_\gamma,j_\delta}^P).$$

Since this contradicts Theorem 3.43, we must have that $\ker \phi = 0$. It follows that ϕ is an isomorphism. \qed

156
Properties of $\delta_{j\gamma j\delta}^P$ and $\tau_{j\gamma j\delta}^P$

Lemma 3.47. Let P be a partition of n. For $P_j \in P$ with $j \gamma \in P_j$ and $j \delta \in P_{>j}$ we have

$$\delta_{j\gamma j\delta}^P \tau_{j\gamma j\delta}^P = q^2 \tau_{j\gamma j\delta}^P \delta_{j\gamma j\delta}^P.$$

Proof. Since $\tau_{j\gamma j\delta}^P$ is an automorphism, this is equivalent to $(\tau_{j\gamma j\delta}^P)^{-1} \delta_{j\gamma j\delta}^P \tau_{j\gamma j\delta}^P = q^2 \delta_{j\gamma j\delta}^P$. Since both sides of the equation are $\tau_{j\gamma j\delta}^P$-derivations, we can apply Lemma 1.28 and therefore need to show equality on the generators of $R_{j\gamma j\delta}^P$.

Let $x_{i,\alpha,\beta}^P$ a generator of $R_{j\gamma j\delta}^P$. For $i = j$ with $i \alpha > j \gamma$ and $i \beta < j \delta$, from (3.58) and (3.60)

$$q^2 \tau_{j\gamma j\delta}^P \delta_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P) = q^2 (-\hat{q}) \tau_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P) \tau_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P) = q^2 q^{-2} (-\hat{q}) x_{i,\alpha,\beta}^P x_{i,\alpha,\beta}^P = \delta_{j\gamma j\delta}^P \tau_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P).$$

Similarly, for $i < j$ and $i \beta \in P_{>j}$ then

$$q^2 \tau_{j\gamma j\delta}^P \delta_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P) = q^2 (-\hat{q}) \tau_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P) \tau_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P) = q^2 q^{-2} (-\hat{q}) x_{i,\alpha,\beta}^P x_{i,\alpha,\beta}^P = \delta_{j\gamma j\delta}^P \tau_{j\gamma j\delta}^P (x_{i,\alpha,\beta}^P).$$
Moreover, for \(i < j \) and \(i_\beta \in P_j \) and \(i_\beta = j_\gamma \) then

\[
q^2 \tau_{j_\gamma j_\delta} \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha i_\beta})
\]

\[
= q^2(-q) \left(\sum_{\eta=1}^{\gamma} (-q)^{1-\eta} \tau_{j_\gamma j_\delta} (x_{P_j}^{j_\gamma j_\delta}) \right) \tau_{j_\gamma j_\delta} (x_{i_\alpha j_\gamma + \eta}) + (-q)^{\gamma-1} \tau_{j_\gamma j_\delta} (x_{i_\alpha j_\delta})
\]

\[
= q^2(-q) \sum_{\eta=1}^{\gamma} (-q)^{1-\eta} x_{P_j}^{j_\gamma j_\delta} \tau_{j_\gamma j_\delta} (x_{i_\alpha j_\gamma + \eta}) + (-q)^{\gamma-1} \tau_{j_\gamma j_\delta} (x_{i_\alpha j_\delta})
\]

\[
= \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}) = \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}).
\]

Finally, for any other \(x_{P_i}^{i_\alpha i_\beta} \in V \), since \(\tau_{j_\gamma j_\delta}^{P_j} (x_{i_\alpha i_\beta}) \) is a scalar multiple of \(x_{i_\alpha i_\beta} \) we have \(q^2 \tau_{j_\gamma j_\delta}^{P_j} \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha i_\beta}) = 0 \) and \(\delta^{P_j}_{j_\gamma j_\delta} \tau_{j_\gamma j_\delta}^{P_j} (x_{i_\alpha i_\beta}) = 0 \). \(\square \)

Proposition 3.48. Let \(P \) be a partition of \(n \). For all \(P_j \in P \) and \(j_\gamma, j_\delta \in P \) and \(j_\delta \in P_{j_\gamma} \) we have that \(\delta^{P_j}_{j_\gamma j_\delta} \) is locally nilpotent on \(R_{j_\gamma j_\delta}^{P_j} \).

Proof. By Lemma 1.32 it is sufficient to show that \((\delta^{P_j}_{j_\gamma j_\delta})^2 (x_{i_\alpha i_\beta}) = 0 \) for all \(x_{i_\alpha i_\beta} \) a generator of \(R_{j_\gamma j_\delta}^{P_j} \). If \(i = j \) and \(i_\alpha > j_\gamma \) and \(i_\beta < j_\delta \) then from (3.60) we have

\[
\delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha i_\beta}) = \tau_{j_\gamma j_\delta}^{P_j} (x_{i_\alpha j_\delta}) \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}) + \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}) x_{i_\alpha i_\beta} = 0.
\]

Similarly, if \(i < j \) and \(i_\beta \in P_{j_\gamma} \) and \(i_\beta < j_\delta \) then

\[
\delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}) = \tau_{j_\gamma j_\delta}^{P_j} (x_{i_\alpha j_\delta}) \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}) + \delta^{P_j}_{j_\gamma j_\delta} (x_{i_\alpha j_\delta}) x_{j_\gamma j_\beta} = 0.
\]
Moreover, if \(i < j \) and \(i_{\beta} \in P_{\gamma} \) with \(i_{\gamma} = j \) then

\[
\delta_{j_{\gamma}j_{\beta}}^{P_{j}}(x_{i_{\alpha}j_{\beta}j_{\gamma}}) = \delta_{j_{\gamma}j_{\beta}}^{P_{j}} \left(\sum_{\eta=1}^{P_{\gamma}-1} (-q)^{1-\eta} x^{P_{j}}_{j_{\gamma}+\eta j_{\beta}} x^{P_{i}}_{i_{\alpha}j_{\gamma}+\eta} \right) + (-q)^{\gamma-|P_{j}|} \delta_{j_{\gamma}j_{\beta}}^{P_{j}}(x^{P_{i}}_{i_{\alpha}j_{\beta}})
\]

\[
= \sum_{\eta=1}^{P_{\gamma}-1} (-q)^{1-\eta} \left(\tau_{j_{\gamma}j_{\beta}}^{P_{j}}(x^{P_{j}}_{j_{\gamma}+\eta j_{\beta}}) \delta_{j_{\gamma}j_{\beta}}^{P_{j}}(x^{P_{i}}_{i_{\alpha}j_{\gamma}+\eta}) + \delta_{j_{\gamma}j_{\beta}}^{P_{j}}(x^{P_{j}}_{j_{\gamma}+\eta j_{\beta}}) x^{P_{i}}_{i_{\alpha}j_{\gamma}+\eta} \right)
\]

\[
= 0.
\]

Thus \((\delta_{j_{\gamma}j_{\beta}}^{P_{j}}(x^{P_{i}}_{i_{\alpha}i_{\beta}}))^{2} = 0\) in the above cases. Since, \(\delta_{j_{\gamma}j_{\beta}}^{P_{j}}(x^{P_{i}}_{i_{\alpha}i_{\beta}}) = 0\) for all other \(x^{P_{i}}_{i_{\alpha}i_{\beta}},\) we are done.

\[\square\]

O\(_{q}(N_{>P}^{+})\) is a CGL Extension

Theorem 3.49. Let \(P \) be a partition of \(n \). Let \(X_{P}^{+} \) be the sequence of generators of \(O_{q}(N_{>P}^{+}) \) ordered sequentially using \(<_{N^{+}}\). Let \(x_{i} = x^{P_{j}}_{j_{\gamma}j_{\beta}} \) be the \(i \)th term in the sequence with \(\tau_{i} = \tau_{j_{\gamma}j_{\beta}}^{P_{j}} \) and \(\delta_{i} = \delta_{j_{\gamma}j_{\beta}}^{P_{j}} \). The ring \(O_{q}(N_{>P}^{+}) \) is a CGL extension equal to

\[
k[x_{1}][x_{2}; \tau_{2}, \delta_{2}] \ldots [x_{m}; \tau_{m}, \delta_{m}].
\]

Proof. Let \(R_{i} = R_{j_{\gamma}j_{\beta}}^{P_{j}} \) and \(\overline{R}_{i} = \overline{R}_{j_{\gamma}j_{\beta}}^{P_{j}} \). Since \(R_{i} = \overline{R}_{i-1} \), Theorem 3.46 gives us that \(\overline{R}_{i} = \overline{R}_{i-1}[x_{i}; \tau_{i}, \delta_{i}] \). Since \(O_{q}(N_{>P}^{+}) = \overline{R}_{m} \), repeatedly applying the theorem gives us that \(O_{q}(N_{>P}^{+}) \) is the skew polynomial ring above.
Notice that

\[h_{j_i j_3}^{P_j} x_{j_i j_3}^{P_j} = q^{-2} x_{j_i j_3}^{P_j}. \]

The fact that \(O_q(N_{>P}^+) \) is a CGL extension follows from this fact, the definition of \(\tau_i \), (3.58), Proposition 3.45 and Proposition 3.48.

Theorem 3.50. The relations from Theorem 3.35 give a presentation of \(O_q(N_{>P}^+) \).

Proof. This is a direct consequence of Theorem 3.49.

Notice that as \(q \to 1 \) we recover the relations for the coordinate ring for the unipotent radical of a a standard parabolic group in \(\text{SL}_n \).

Definition 3.51. Let \(R \) be a domain. A **prime element** in \(R \) is any nonzero normal element \(p \in R \) such that \(Rp \) is a completely prime ideal. A **noncommutative unique factorization domain (UFD)** is a domain \(R \) such that each nonzero prime ideal of \(R \) contains a prime element.

The fact that \(O_q(N_{>P}^+) \) is a GCL extension gives us many useful properties for this ring. For instance, from [21, Theorem 3.7] it follows that \(O_q(N_{>P}^+) \) is a noncommutative UFD. It also follows from [10, Theorem 4.7] that \(O_q(N_{>P}^+) \) satisfies the Dixmier-Moeglin Equivalence.

In fact, using the isomorphisms from Section 3.4, we have the following result.

Theorem 3.52. Let \(P \) be a partition of \(n \). The rings \(O_q(N_{>P}^+) \) and \(O_q(N_{<P}^+) \) are noncommutative UFDs and satisfy the Dixmier-Moeglin Equivalence.
Bibliography

