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Abstract

Unipotent Radicals of the Standard Borel and Parabolic

Subgroups in Quantum Special Linear Groups

Andrew Cecil Jaramillo

In this dissertation we find noncommutative analogues of the coordinate rings

of the unipotent radicals of the standard Borel and standard parabolic subgroups

in quantum special linear groups. In each case, two subalgebras are defined, both

of which can be considered quantizations of the unipotent radical of a standard

Borel or a standard parabolic subgroup. Presentations are given for these alge-

bras. It is also shown that these algebras arise as a coinvariant subalgebra of

a natural comodule algebra action induced from the Hopf algebra structure on

quantum special linear groups.
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Introduction

Quantum groups were first discovered in the 1980’s in mathematical physics

while studying the quantum inverse scattering method. Since that time there has

been much work done on these groups, studying their various properties. Still

though, there is not yet a widely accepted axiomatic definition for them. (See

[1, Problem II.10.1].) Nevertheless, this has not prevented many objects being

given the title of “quantum group.” What many of these groups have in common

is that they are noncommutative deformations (in some sense) of classical k-

algebras with a parameter q, with the property that as q approaches special

values (e.g. q → 1), we recover the classical k-algebra. Thus, a quantum group

is a noncommutative object that “acts like” some classical object, and from the

quantum group the classical structure is recovered.

For instance, the quantized coordinate ring of SLn+1 or quantum SLn+1 for

short, is a noncommutative deformation of O(SLn+1), the coordinate ring of

SLn+1. If we take a presentation for quantum SLn+1 (see (1.19) – (1.23)), then as

q → 1 we get a presentation for O(SLn+1). Thus, we may think of quantum SLn+1

1



as a coordinate ring of a “noncommutative space” which “limits to” O(SLn+1).

Of course this can be made more precise (see [6]), but the basic idea is the follow-

ing: quantum SLn+1 is the coordinate ring of a space that has “vanished” leaving

behind the “shadow” of SLn+1.

With this general framework of a quantum group in mind, the purpose of the

present document is to define and study the properties of quantized coordinate

rings for the unipotent radicals of standard Borel and standard parabolic groups

of SLn+1. To do this we remind the reader of the classical version of these groups,

and show obstacles to finding quantum analogues of them.

Standard Borel Subgroups and their Unipotent Radicals in

SLn+1

In SLn+1 the positive (negative) standard Borel subgroup B+ (respec-

tively B−) is the subgroup consisting of all upper (lower) triangular matrices

in SLn+1. The positive (negative) unipotent radical N+ (respectively N−)

of B+ (respectively B−) is the subgroup of upper (lower) triangular unipotent

matrices in B+ (respectively B−).

Since B± are closed subvarieties of SLn+1, it follows that for the coordinate

rings O(B±) we have

O(B+) ∼= O(SLn+1)/〈Xij | i > j〉 and O(B−) ∼= O(SLn+1)/〈Xij | i < j〉.
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Similarly, since N± are closed subvarieties of SLn+1, for the coordinate rings

O(N±) we have

O(N±) ∼= O(B±)/〈Xii − 1 | i = 1, . . . , n, n+ 1〉.

We now wish to “quantize” these coordinate rings using the above general

framework. Moreover, since B± are Poisson-algebraic subgroups of SLn+1 we

also require the semiclassical limits, as in [6], of Oq(B
±) to be O(B±) as Poisson-

algebras. Having this property does not leave us much choice in defining Oq(B
±).

Thus, following [25, Section 6.1] we define the quantized coordinate rings of

the standard Borel subgroups or quantum standard positive (negative)

Borel subgroup for short, to be

Oq(B
+) := Oq(SLn+1)/〈Xij | i > j〉 and Oq(B

−) := Oq(SLn+1)/〈Xij | i < j〉.

Attempting to define the quantized coordinate rings of the unipotent radicals

in the same way as in the classical case gives us

Oq(B
±)/〈Xii − 1 | 1 ≤ i ≤ n+ 1〉.

3



However, this would not be helpful to us since relation (1.19) in Oq(SLn+1) implies

that for all i 6= j

Xij = XiiXij = qXijXii = qXij.

For q 6= 1 this implies Xij = 0 for all i 6= j. Thus, Oq(N
±) ∼= k ([25, Remark

6.3]). Though this may be a nice algebra to study, it is not a particularly useful

analogue to the classical setting. Therefore, we must try and define Oq(N
±) in

another way.

There are (surprisingly) few definitions found in the literature although some

authors (e.g. [4]) have defined Oq(N
±) to be U±q (sln+1); since when q → 1 we

recover O(N±). This definition “quantizes” O(N±) however, we would like to

find an algebra more directly related to Oq(B
±). Since N± are not Poisson-

algebraic subgroups of B± there are fewer requirements when defining quantized

coordinate rings for them. In contrast to the classical case, there are no “natural”

quotient algebras of Oq(B
±) that reduce to O(N±) when q → 1. (See [25, Remark

6.3.].) Nevertheless, there exist candidate subalgebras of Oq(B
±) that do have this

property; some of which were defined in [8], and thus are good candidates for the

definition of Oq(N
±).

Another possible way to define Oq(N
±) is to first note that B± is the semidi-

rect product T nN± where T is the diagonal subgroup (standard maximal torus)

of SLn+1. Thus, O(N±) is the algebra of coinvariants using the corresponding

coaction of O(T ) on O(B±). Hence, another possible definition for Oq(N
±) is

4



as the subalgebra of coinvariants for a natural coaction of a quantized standard

maximal torus, Oq(T ), on Oq(B
±) using the Hopf algebra structure of Oq(SLn+1).

Therefore, with this in mind we define two subalgebras in Oq(SLn+1) which

can be considered quantized coordinate rings for the unipotent radicals of

positive (negative) standard Borel subgroups. Presentations for these subalgebras

are found and each of these subalgebras has the property that when q → 1, the

coordinate ring of the standard unipotent radical is recovered. Moreover, the

following properties are also shown:

(i) All of the quantized coordinate rings for the unipotent radical of a standard

Borel subgroup are isomorphic.

(ii) Each quantized coordinate ring for the unipotent radical of a standard Borel

subgroup is the coinvariant subalgebra of a natural coaction of the quantized

standard maximal torus on the quantum standard Borel subgroup.

(iii) The quantized coordinate ring of a standard Borel subgroup is a smash

product of a quantized unipotent radical and the quantized coordinate ring

of the standard maximal torus.

(iv) Each quantized coordinate ring for the unipotent radical of a standard Borel

subgroup is isomorphic to the quantized universal enveloping algebra of the

standard nilpotent subalgebra of sln+1.
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It follows that all of the above possibilities for defining a quantized coordinate

ring for the unipotent radical of a standard Borel will lead to isomorphic algebras.

Standard Parabolic Subgroups and their Unipotent Radi-

cals in SLn+1

In SLn+1 a positive (negative) standard parabolic subgroup is a sub-

group that contains a positive (negative) standard Borel subgroup. In particular,

standard Borel subgroups and SLn+1 are examples of standard parabolic sub-

groups.

In general though, positive (negative) standard parabolic subgroups are com-

posed of matrices in SLn+1 that are “upper (lower) triangular block matrices.”

That is, the matrices in the subgroup can be written with m×m block matrices

on the diagonal (with each block possibly a different size m) and 0 on the entries

below (above) these blocks. The subgroup of matrices in SLn+1 that are nonzero

on the “block diagonal” and zero elsewhere also form a subgroup called the Levi

subgroup for the parabolic group. Moreover, the positive (negative) unipo-

tent radical of a positive (negative) standard parabolic is composed of upper

(lower) triangular matrices with identity matrices on the “block diagonal.”
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For instance, in SL7, an example of a positive standard parabolic group is

composed of matrices in SL7 of the following form:



a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

0 0 a33 a34 a35 a36 a37

0 0 a43 a44 a45 a46 a47

0 0 0 0 a55 a56 a57

0 0 0 0 a65 a66 a67

0 0 0 0 a75 a76 a77


The Levi subgroup is composed of matrices that are nonzero in the indicated

diagonal blocks and zero elsewhere. In addition, the positive unipotent radical

consists of matrices of the following form:



1 0 a13 a14 a15 a16 a17

0 1 a23 a24 a25 a26 a27

0 0 1 0 a35 a36 a37

0 0 0 1 a45 a46 a47

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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Just as with standard Borel subgroups, their unipotent radicals, and the stan-

dard maximal torus; standard parabolic groups, their unipotent radicals, and the

Levi subgroup are closed subvarieties of SLn+1.

When attempting to “quantize” these coordinate rings, again following [25,

Section 6.1] a quantized coordinate ring for a positive (negative) stan-

dard parabolic subgroups or a quantum positive (negative) standard

parabolic subgroup, can be defined in the same way as the quantized coordi-

nate ring of a standard Borel was defined. That is, by direct analogy with the

classical case. Similarly, we define the quantized coordinate ring of the Levi

subgroup by direct analogy with the coordinate ring of the Levi subgroup.

However, just as with unipotent radicals of standard Borel subgroups, at-

tempting to define quantized coordinate rings for the unipotent radicals as the

natural quotient algebras will give us an algebra isomorphic to k. Therefore,

we must find a quantized coordinate ring of the unipotent radical of a standard

parabolic in another way.

Again, just as with the unipotent radical of a standard Borel, we define two

quantized coordinate rings for the unipotent radical of a positive (neg-

ative) standard parabolic group, which are generated by products of quantum

minors of a certain form. We then show the following:

8



(i) A quantized coordinate ring for the unipotent radical of a standard parabolic

subgroup is the subalgebra of coinvariants of a natural coaction of the quan-

tized standard Levi on the quantum standard parabolic subgroup.

(ii) The quantized coordinate ring of a standard parabolic subgroup is the smash

product of a quantized unipotent radical of the standard parabolic subgroup

and the quantized coordinate ring of the standard Levi.

(iii) A presentation for a quantum unipotent radical for a positive (negative)

standard parabolic subgroup is found, and has the property that when q → 1

the coordinate ring of the standard unipotent radical is recovered.

(iv) A quantized coordinate ring for the unipotent radical of a standard parabolic

subgroup is a noncommutative UFD and satisfies the Dixmier-Moeglin Equiv-

alence.

We note that a quantum standard Borel is a special instance of a quantum

standard parabolic, hence many of the theorems from Chapter 2 are special in-

stances of theorems from Chapter 3.

9



Chapter 1

Background

1.1 Notation and Conventions

Let k be a field. Unless otherwise noted, we make no further assumptions on

k. For two k-vector spaces V , W we use V ⊗K to denote V ⊗kW . All rings will

contain 1. All ring homomorphisms have the property that f(1) = 1.

1.2 Algebras, Coalgebras, Bialgebras, and Hopf

Algebras

Definition 1.1. A k-algebra is a ring, A, with a ring homomorphism η : k → A

,whose image is contained in the center of A. The map η is called the structure

map for the algebra.
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Using the map η, A is a k-vector space by the following rule:

ra = η(r)a

for all r ∈ k and a ∈ A.

A k-algebra homomorphism or a morphism of algebras is a ring homo-

morphism f : A→ A′ so that f(η(r)) = η′(r) for all x, y ∈ A and r ∈ k where η′

is the structure map of A′.

Changing our point of view slightly, multiplication in the ring A may be

thought of as a k-linear map µ : A ⊗ A → A which satisfies certain axioms.

Specifically, a k-algebra A is a k-vector space with k-linear maps η and µ that

make the following diagrams commute:

A⊗ A⊗ Aµ⊗id //

id⊗µ
��

A⊗ A
µ

��
A⊗ A µ

// A

(1.1)

A

k ⊗ A

l

99

η⊗id
// A⊗ A

µ

OO

A⊗ k
id⊗η
oo

r

ee (1.2)

where l, r are the canonical isomorphisms defined by l(s⊗a) = sa and r(a⊗s) =

as for all s ∈ k and a ∈ A.

11



We may also reinterpret a k-algebra homomorphism by using using the maps,

µ and η. Specifically, f is a k-algebra homomorphism if and only if

f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ η = η′

where µ′ is multiplication map and η′ is the structure map on A′.

For any k-algebra A we may form the opposite algebra denoted Aop whose

underlying vector space is the same as A and whose structure map is the same

as A, but where the multiplication map, µop, is defined by

µop(a⊗ b) := µ(b⊗ a)

for all a, b ∈ A. Notice, A is a commutative algebra if and only if µ = µop.

A k-linear map f : A → B so that f(ab) = f(b)f(a) for all a, b ∈ A is

referred to as an anti-homomorphism. We note that an anti-homomorphism

is a morphism f : A→ Bop.

Definition 1.2. A k-coalgebra is a k-vector space, C, equipped with k-linear

maps ∆ : C → C ⊗C and ε : C → k that make the following diagrams commute:

C δ //

∆
��

C ⊗ C
id⊗∆
��

C ⊗ C
∆⊗id
// C ⊗ C ⊗ C

(1.3)

12



k ⊗ C C ⊗ Cε⊗idoo id⊗ε // C ⊗ k

C
λ

ee

∆

OO

ρ

99 (1.4)

where λ, ρ are the canonical isomorphisms defined by λ(c) = 1⊗c and ρ(c) = c⊗1

for all c ∈ C.

The map ∆ is referred to as the comultiplication map and ε is called the

counit.

Note that a coalgebra dualizes the definition of an algebra. That is, dia-

gram (1.3) reverses the arrows of diagram (1.1) and diagram (1.4) reverses the

arrows of diagram (1.2). For this reason the axiom diagram (1.3) is referred to

as coassociativity and the axiom diagram (1.4) is referred to as the counital

axiom.

A coalgebra homomorphism or a morphism of coalgebras is a k-linear

map f : C → C ′ such that

(f ⊗ f) ◦∆ = ∆′ ◦ f and ε = ε′ ◦ f

where ∆′, ε′ are the comultiplication and counit of C ′, respectively. Again note

that a morphism of coalgebras dualizes the definition for a k-algebra homomor-

phism.

Let op : C ⊗ C → C ⊗ C, be the k-linear map defined by op(c⊗ c′) = c′ ⊗ c

for c, c′ ∈ C. For any coalgebra C we may form the co-opposite coalgebra

13



denoted Ccop whose underlying vector space is the same as C, but where the

comultiplication map, ∆op, is defined by

∆op := op ◦∆.

A coalgebra is co-commutative if ∆ = ∆op. A morphism f : C → Dop is

referred to as an coalgebra anti-homomorphism from C to D.

Sweedler’s Notation

For all x in a coalgebra C we have

∆(x) =
n∑
i=1

x′i ⊗ x′′i .

In order to make what follows more readable, we adopt Sweedler’s sigma no-

tation. That is, we will denote the above expression by

∆(x) =
∑
(x)

x1 ⊗ x2

where x1 and x2 stand for the first and second components of the pure tensors in

∆(x). Using this notation, coassociativity of ∆ becomes

∑
(x)

∑
(x1)

(x1)1 ⊗ (x1)2

⊗ x2 =
∑
(x)

x1 ⊗

∑
(x2)

(x2)1 ⊗ (x2)2

 .

14



Since this is still a bit unwieldy, simplifying notation further we denote either

side of this equation by ∑
(x)

x1 ⊗ x2 ⊗ x3.

In this notation f is a coalgebra homomorphism if and only if

∑
(x)

f(x1)⊗ f(x2) =
∑

(f(x))

f(x)1 ⊗ f(x)2

for all x ∈ C. Finally, we note that

∆op(x) =
∑
(x)

x2 ⊗ x1.

Bialgebras and Hopf Algebras

Definition 1.3. A bialgebra is a k-algebra, H, that is also a coalgebra so that

the comultiplication ∆ and counit ε are morphisms of algebras. Equivalently,

from [17, Theorem III.2.1] H is a bialgebra if the maps µ and η are coalgebra

morphisms.

A morphism of bialgebras is a map that is both a morphism of algebras

and a morphism of coalgebras.

For a bialgebra H, let Hop denote the vector space that has the same under-

lying k-vector space as H, but with structure map η, multiplication µop, comul-

tiplication ∆, and counit ε. Similarly, Hcop has structure map η, multiplication

15



µ, comultiplication ∆op, and counit ε, From [17, Proposition II.2.2] if H is a

bialgebra, then so are Hop are Hcop.

Let C be a coalgebra and A a k-algebra.

Definition 1.4. The convolution product, ?, of two k-linear maps f, g : C →

A is defined as the linear map f ? g : C → A such that

(f ? g)(x) =
∑
(x)

f(x1)g(x2).

Notice, for any linear map f : C → A that f ? ηε = ηε ? f = f . Hence, C∗

and Homk(C,A) are k-algebras with multiplication ? and unit, ηε.

Definition 1.5. Let γ : C → A be a k-linear map where γ(1) = 1. Then γ is

convolution invertible if there exists a k-linear map γ : C → A so that

γ ? γ = γ ? γ = η ◦ ε.

Let H be a bialgebra. An antipode, S, is an endomorphism of H so that

id ? S = S ? id = η ◦ ε.

That is, the identity map on H is convolution invertible with convolution inverse

S.

16



Using Sweedler’s notation, this can be rewritten as

∑
(x)

S(x1)x2 =
∑
(x)

x1S(x2) = ε(x) · 1

for x ∈ H.

Definition 1.6. A Hopf algebra H is a bialgebra with an antipode, S.

From [17, Theorem II.3.4] we have that S is an algebra anti-homomorphism.

A morphism of Hopf algebras is a map f : H → H ′ that is a morphism

between the underlying bialgebras so that f ◦ S = S ′ ◦ f where S and S ′ are the

antipodes of H and H ′, respectively.

From [17, Corollary II.3.5] Hopcop is a a Hopf algebra with antipode S. More-

over, if S is an anti-isomorphism, then Hop and Hcop are also Hopf algebras with

antipode S−1.

Definition 1.7. A Hopf ideal I in a Hopf algebra H is an ideal of H so that

I ⊂ ker ε and ∆(I) ⊂ H ⊗ I + I ⊗H and S(I) ⊂ I.

If I is a Hopf ideal then H/I is also a Hopf algebra with comultiplication ∆,

counit ε, and antipode S induced from ∆, ε, and S [23, Section 1.1]. We say H/I

is the quotient or factor Hopf algebra induced from the Hopf ideal I.

The Hopf dual for H is the subspace of H∗ defined by

H◦ := {f ∈ H∗ | f(I) = 0 some ideal I with dimk(H/I) <∞}.

17



We note that H◦ is a subalgebra of H∗. Also, H◦ is a Hopf algebra using the

transpose of the comultiplication map in H.

1.3 Modules, Comodules, and Comodule Alge-

bras

Definition 1.8. Let A be a k-algebra with structure map η and multiplication map

µ. A (left) A-module M , is a k-vector space with a linear map µM : A⊗M →M

such that the following diagrams commute

A⊗ A⊗Mµ⊗id //

id⊗µM
��

A⊗M
µM
��

A⊗M µM
//M

(1.5)

A

k ⊗ A

lµ

99

η⊗id
// A⊗M

µM

OO (1.6)

where lM is the canonical isomorphism defined by lµ(s ⊗ a) = sa for s ∈ k and

a ∈ A. The map µA is called the structure map for the A-module M or the

action of A on the module. A right A-module is defined similarly.

A morphism of A-modules is a linear map f : M →M ′ so that µM ′ ◦ (id⊗

f) = f ◦ µM . For a ∈ A and m ∈ M we will often denote µM(a ⊗m) by am or

a.m. Similar conventions also hold for a right module.
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Modules over a Hopf Algebra

Let H be a bialgebra. If M and M ′ are both H-modules, then M ⊗M ′ is also

an H-module with H-action defined by

h.(m⊗m′) :=
∑
(h)

h1.m⊗ h2.m
′

for all m ∈M , m′ ∈M ′, and h ∈ H.

Now suppose that H is a Hopf algebra. For M an H-module, the dual H-

module, denoted M∗, is a left H-module on the dual space (i.e. the space of

linear functions f : M → k) with H-action defined by

(h.f)(m) = f(S(h).m)

for all f ∈M∗, h ∈ H, and m ∈M . In addition, we also define a right H-module

on M∗ given by

(f.h)(x) = f(h.x)

for all h ∈ H, f ∈M∗ and x ∈M .

Comodules, Comodule Algebras, and Module Algebras

Definition 1.9. Let C be a coalgebra. A (left) C-comodule, M , is a k-vector

space with a k-linear map ∆M : M → C ⊗M such that the following diagrams
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commute:

M
∆M //

∆M

��

C ⊗M
id⊗∆M

��
C ⊗M

∆⊗id
// C ⊗ C ⊗M

(1.7)

k ⊗M C ⊗Mε⊗idoo

M
λM

ee

∆M

OO (1.8)

where λM is the canonical isomorphism defined by λM(m) = 1⊗m for all m ∈M .

The map µM is called the coaction of the coalgebra. A right C-comodule is

defined similarly.

A morphism of C-comodules is a linear map f : M → M ′ so that (id ⊗ f) ◦

∆M = ∆M ′ ◦ f .

Note the diagrams in the definition of a comodule dualizes the definition of a

module. That is, diagram (1.7) reverse the arrows of diagram (1.5) and diagram

(1.8) reverses the arrows of diagram (1.6). We note that C is a C-comodule using

the comultiplication ∆.

Definition 1.10. Let H be a bialgebra and A an algebra. We say A is an H-

comodule algebra (on the left) if

(i) A is a left H-comodule with coaction ∆A : A→ H ⊗ A;

(ii) ∆A is a morphism of algebras.

An H-comodule algebra on the right is defined similarly.
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It follows from [17, Proposition III.7.2] that if µA : A⊗A→ A and ηA : k → A

are the structure maps for the algebra A and A is a left H-comodule, then A is

an H-comodule algebra if and only if µA and ηA are H-comodule morphisms.

Definition 1.11. Let H be a bialgebra and A an algebra. We say A is an H-

module algebra (on the left) if

(i) A is an H-module;

(ii) The multiplication map and structure map for A are morphisms of H-

modules.

An H-module algebra on the right is defined similarly.

1.4 Smash Product and Coinvariants

Definition 1.12. Let A be a left H-module algebra. The (right) smash prod-

uct denoted A#H is defined as follows,

(i) As a k-vector space A#H = A ⊗ H and we write a#h for the elements

a⊗ h;

(ii) Multiplication is defined by

(a#h)(b#k) =
∑
(h)

a(h1.b)#h2k
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for all a, b ∈ A and h, k ∈ H.

Similarly, if A is a right H-module algebra the left smash product H#A

has underling k-vector space H ⊗ A and multiplication defined by

(h#a)(k#b) =
∑
(k)

hk1#(a.k2)b

for all h, k ∈ H and a, b ∈ A.

Definition 1.13. Let H be a bialgebra. A (left) coinvariant for a left H-

comodule algebra B is any element b ∈ B so that ∆B(b) = 1⊗b. Similarly, a right

coinvariant for a right comodule algebra is an element b so that ∆B(b) = b⊗ 1.

Since ∆B is an algebra homomorphism, it follows that if a, b ∈ B are left

(right) coinvariants then ab is also a left (right) coinvariant. Therefore, the left

(right) coinvariants of B form a subalgebra that we denote by Bco ∆B .

Definition 1.14. Let H be a Hopf algebra, B a right H-comodule algebra, and

A = Bco ∆B . The comodule algebra B is called a (right) H-cleft extension

of A if there is an H-comodule morphism γ : H → B where γ(1) = 1 that is

convolution invertible (with convolution inverse γ). A left H-cleft extension

is defined similarly for a left H-comodule algbera.

22



According to a result of [2], shown in [23, Proposition 7.2.3], for B an H-cleft

extension with σ : H ⊗H → A defined by

σ(h, k) :=
∑

(h),(k)

γ(h1)γ(k1)γ(h2k2)

there is a left H-action on A is given by

h.a :=
∑
(h)

γ(h1)aγ(h2),

and there is a well-defined multiplication on A⊗H given by

(a⊗ h)(b⊗ k) :=
∑

(h),(k)

a(h1.b)σ(h2, k1)⊗ h3k2 (1.9)

for all a, b ∈ A and h, k ∈ H.

Similarly, if B′ is a left H-cleft extension of A′ with

σ′(h, k) :=
∑

(h),(k)

γ(h1k1)γ(h2)γ(k2)

there is a right H-action on A′ is given by

a.h :=
∑
(h)

γ(h1)aγ(h2),
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and there is a well-defined multiplication on H ⊗ A′ given by

(h⊗ a)(k ⊗ b) :=
∑

(h),(k)

h1k1 ⊗ σ′(h2, k2)(a.h3)b (1.10)

for all a, b ∈ A′ and h, k ∈ H.

Definition 1.15. The k-algebra with multiplication defined by equation (1.9) is

called a (right) crossed product of A and H. It is denoted A#σH and the

vectors a⊗h are denoted by a#h. Similarly, H#σ′A
′ is the left crossed product

of H and A′ with multiplication defined by equation (1.10).

For the remainder of this section H will be a Hopf algebra, B an H-comodule

algebra, and A = Bco ∆B .

Definition 1.16. Let B be an H-cleft extension of A with map γ : H → B and B′

be an H ′-cleft extension of A′ with map γ′ : H ′ → B′. Let τ : H → H ′ be a Hopf

algebra homomorphism and let f : A → A′ be a k-algebra homomorphism. The

maps τ and f are H-cleft intertwining if they have the property that γ′τ = fγ

and γ′τ = fγ. Similar definitions also hold for left H-cleft extensions.

Proposition 1.17. Let τ : H → H ′ be a Hopf algebra homomorhpism and

f : B → B′ a k-algebra homomorphism with f(A) ⊆ A′. If τ and f are H-

cleft intertwining maps then the map f ⊗ τ : A#σH → A′#σ′H
′ is a k-algebra

homomorphism.

Similar statements also hold for left crossed products.
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Proof. First note that for all h, k ∈ H we have

f(σ(h, k)) = f

∑
(h),(k)

γ(h1)γ(k1)γ(h2k2)

 =
∑

(h),(k)

f(γ(h1))f(γ(k1))f(γ(h2k2))

=
∑

(h),(k)

γ′(τ(h1))γ′(τ(k1))γ′(τ(h2k2))

=
∑

(τ(h)),(τ(k))

γ′(τ(h)1)γ′(τ(k)1)γ′(τ(h)2τ(k)2)

= σ′(τ(h), τ(k)).

Moreover, for all h ∈ H and a ∈ A we have

f(h.a) = f

∑
(h)

γ(h1)aγ(h2)

 =
∑
(h)

f(γ(h1))f(a)f(γ(h2))

=
∑
(h)

γ′(τ(h1))f(a)γ′(τ(h2))

=
∑

(τ(h))

γ′(τ(h)1)f(a)γ′(τ(h)2) = τ(h).f(a).

Since f ⊗ τ is a k-linear map, we need only check that it is an algebra homo-

morphism. Indeed, for all h, k ∈ H and a, b ∈ A we have

(f ⊗ τ) ((a#h)(b#k)) = (f ⊗ τ)

∑
(h)(k)

a(h1.b)σ(h2, k1)#h3k2


=
∑

(h)(k)

f(a(h1.b))f(σ(h2, k1))#τ(h3k2)
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=
∑

(h)(k)

f(a)f(h1.b)σ
′(τ(h2), τ(k1))#τ(h3)τ(k2)

=
∑

(h)(k)

f(a)(τ(h1).f(b))σ′(τ(h2), τ(k1))#τ(h3)τ(k2)

=
∑

(τ(h))(τ(k))

f(a)(τ(h)1.f(b))σ′(τ(h)2, τ(k)1)#τ(h)3τ(k)2

= (f(a)#τ(h))(f(b)#τ(k)).

We may denote the map f ⊗ τ by f#τ . Moreover, if τ and f are isomorphisms,

so is f#τ .

If γ is a k-algebra homomorphism then

σ(h, k) =
∑

(h),(k)

γ(h1k1)γ(h2k2) = (γ ? γ)(hk) = ε(hk) · 1

for all h, k ∈ H. In this case, we note that multiplication becomes

(a#h)(b#k) =
∑
(h)

a(h1.b)#h2k

for all a, b ∈ A and h, k ∈ H. That is, A#σH is exactly the (right) smash product

from Definition 1.12. Similarly, if γ is a homomorphism, the left crossed product

becomes the left smash product.
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Theorem 1.18 ([23, Proposition 7.2.3]). Let H be a Hopf algebra, and B an

H-cleft extension of A. There is a k-algebra isomorphism Φ : A#σH → B given

by Φ(a#h) = aγ(h).

Similarly, for B′ a left H-cleft extension of A′ there is a k-algebra isomorphism

Ψ : H ′#σ′A
′ → B′ defined by Ψ(h#a) = γ(h)a.

1.5 Prime Ideals and H-prime ideals

Let R be a ring.

Definition 1.19. A prime ideal P in R is any proper ideal of R such that

whenever I and J are ideals of R with IJ ⊆ P then either I ⊆ P or J ⊆ P .

The set of all prime ideals for R is denoted by spec(R). A completely prime

ideal P is an ideal so that R/P is a domain. Note, if P is completely prime then

P is prime. (The converse is not true, generally.)

Let H be a group acting by automorphisms on R.

Definition 1.20. An H-ideal K is an ideal of R so that h.K = K for all h ∈ H.

An H-prime ideal K is a proper H-ideal so that whenever I, J are H-ideals of

R so that IJ ⊆ K then either I ⊆ K or J ⊆ K.

The set of all H-prime ideals for R is denoted by H-spec(R).

Suppose that the group H acting on R is an affine algebraic group over k. The

action of H on A is rational if A is the directed union of finite dimensional H-
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invariant k-subspaces Vi, so that the restriction maps H → GL(Vi) are morphisms

of algebraic varieties.

1.6 Gelfand-Kirillov Dimension

Let R be a k-algebra. If V and W are subspaces of R, let VW denote the set

of all finite sums of products vw where v ∈ V and w ∈ W . Moreover, we denote

V 0 = k and for any natural number n denote V n = V V n−1.

Definition 1.21. A (nonnegative, exhaustive) filtration for R is some in-

dexed family of subspaces {Ri | i ∈ Z≥0} so that

(i) Ri ⊆ Rj for i < j;

(ii) RiRj ⊂ Ri+j for all i, j;

(iii)
⋃∞
i=0Ri = R.

The filtration is standard if Ri = Ri
1 for all i. The filtration is finite if

dimRn <∞ for all n.

Definition 1.22. A k-algebra R is affine if it is generated as a k-algebra by a

finite set of elements.

If R is affine then R is necessarily generated by a finite dimensional vector

space V called a generating subspace for R. Moreover, R has a standard
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finite filtration generated by V , given by R0 = V 0 = k and Rn =
∑n

i=0 V
i for

each n ∈ N.

For a generating subspace V with standard filtration {Ri} as above, let

gV := lim sup
i→∞

((log dimRi)/ log i).

Lemma 1.23 ([22, Lemma 8.1.10]). Let V, V ′ be generating subspaces for stan-

dard filtrations {Ri} and {R′i} on a ring R. Then gV = gV ′.

Using this Lemma, we have a well-defined invariant of the ring R.

Definition 1.24. The Gelfand-Kirillov dimension or GK dimension for an

affine k-algebra R is

GK.dim (R) = gV

for any choice of generating subspace V .

Recall the definitions and notation of Section 1.4. We have the following

Lemma.

Lemma 1.25. Let H be a Hopf algebra and A an H-module algebra. Suppose

U ⊆ W#V is a generating subspace for A#H where V is a finite dimensional

subspace of H and W is a finite dimensional subspace of A. Assume H.W ⊆ W

and ∆(V ) ⊆ H ⊗ V . Then

sup(GK.dim (A),GK.dim (H)) ≤ GK.dim (A#H) ≤ GK.dim (A) + GK.dim (H).
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Proof. The first inequality follows from the fact that A and H naturally imbed

into A#H as the the subalgebras A#1 and 1#H, respectively.

Let n be a natural number and suppose Un ⊆ W n#V n. We first observe that

H.W n ⊆ (H.W )W n−1 ⊆ W n. Suppose b ∈ W n and k ∈ V n with a ∈ W and

h ∈ V . Since h2 ∈ V and h1.b ∈ W n and by how multiplication on A#H is

defined, we have

(a#h)(b#k) =
∑
(h)

a(h1.b)#h2k ∈ W n+1#V n+1.

Hence, Un+1 ⊆ W n+1#V n+1. Therefore Uk ⊆ W k#V k for all k ∈ N.

Next, let S and T be the subalgebras of A and H generated by W and V ,

respectively. From what we have just shown, it follows that dim(A#H)k ≤

(dimSk)(dim(Tk) for all nonnegative integers k. Thus, by [22, Lemma 8.1.7 (ii)]

the proposition follows.

We note that Lemma 1.25 also holds for a right smash product H#A making

the appropriate changes.
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1.7 Skew Polynomial Rings

Let R be a ring, α an automorphism of R, and δ a map on R. The map δ is

an α-derivation if

δ(rs) = α(r)δ(s) + δ(r)s and δ(r + s) = δ(r) + δ(s)

for all r, s ∈ R.

Definition 1.26. A skew polynomial ring over R, denoted S = R[x;α, δ], is

a ring satisfying the following conditions:

(i) S is a ring containing R as a subring;

(ii) x ∈ S;

(iii) S is a free left R-module with basis {1, x, x2, . . .};

(iv) α is an automorphism of R and δ is an α-derivation;

(v) xr = α(r)x+ δ(r) for all r ∈ R.

Definition 1.27. A skew polynomial k-algebra is a skew polynomial ring

S = R[x;α, δ] so that R is a k-algebra and α, δ are k-linear. It follows that S is

a k-algebra.

We say

S = R[x1;α1, δ1][x2;α2, δ2] · · · [xn;αn, δn]
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is an iterated skew polynomial ring if

(R[x1;α1, δ1][x2;α2, δ2] · · · [xi−1;αi−1, δi−1]) [xi;αi, δi]

is a skew polynomial ring over R[x1;α1, δ1][x2;α2, δ2] · · · [xi−1;αi−1, δi−1] for each

i = 1, 2, . . . , n.

Lemma 1.28. Let S = R[x;α, δ] be a skew polynomial k-algebra and let V be a

generating subspace of R. Suppose δ′ is a an α-derivation of R. If δ(v) = δ′(v)

for all v ∈ V then δ = δ′.

Proof. By hypothesis, for all v ∈ V we have δ(v) = δ′(v). Proceeding inductively,

suppose for all w ∈ V n that δ(w) = δ′(w). Let z ∈ V n+1. Then z =
∑

i viwi

where vi ∈ V and wi ∈ V n. Hence,

δ(z) = δ

(∑
i

viwi

)
=
∑
i

(α(vi)δ(wi) + δ(vi)wi)

=
∑
i

(α(vi)δ
′(wi) + δ′(vi)wi) = δ′

(∑
i

viwi

)
= δ′(z).

Thus δ(z) = δ′(z) for all z ∈ V n+1. Therefore, for all N ∈ N if z ∈ V N then

δ(z) = δ′(z). Since every z ∈ R is in V N for some N large enough, it follows that

δ = δ′.
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Definition 1.29. Let λ a nonzero element of k with λ 6= ±1. For all m ∈ N

define

[m]λ :=
λm − λ−m

λ− λ−1
.

We define [0]λ! = 1 and for m ∈ N we define

[m]λ! := [m]λ[m− 1]λ · · · [1]λ.

Finally, for m ∈ Z≥0 and l = 0, 1, . . . ,m we define

(
m

l

)
λ

:=
[m]λ!

[l]λ![m− l]λ!
.

Lemma 1.30. Let S = R[x;α, δ] be a skew polynomial k-algebra. Suppose that

αδ = λδα for λ a nonzero, non root of unity in k For all m ∈ N and r, s ∈ R we

have

δm(rs) =
m∑
k=0

(
m

k

)
λ

αm−kδk(r)δm−k(s).

Proof. See [1, Section I.8.4].

Definition 1.31. Let S = R[x;α, δ] be a skew polynomial ring. The α-derivation

δ is locally nilpotent if for each r ∈ R there exists an N ∈ N so that δN(r) = 0.

Lemma 1.32. Let S = R[x;α, δ] be a skew polynomial k-algebra and let V be a

generating subspace for R. Suppose that αδ = λδα for some nonzero, non root of
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unity scalar λ and that there exists an integer m so that δm(v) = 0 for all v ∈ V .

Then δ is locally nilpotent.

Proof. By hypothesis, there exists an m ∈ N so that δm(v) = 0 for all v ∈ V .

Proceeding inductively, suppose that for all w ∈ V n that there is an integer s so

that δs(w) = 0. Let z ∈ V n+1. Then z =
∑

i viwi where vi ∈ V and wi ∈ V n.

From Lemma 1.30 we have

δs+m(z) = δs+m

(∑
i

viwi

)
=
∑
i

s+m∑
k=0

(
s+m

k

)
λ

αs+m−kδk(vi)δ
s+m−k(wi).

If k ≥ m then αs+m−kδk(vi) = 0 by assumption. Moreover, if k < m then

δs+m−k(wi) = 0 by our hypothesis. Hence, for all z ∈ V n+1 we have δs+m(z) = 0.

Since every element of R is in V N for large enough N , it follows that δ is locally

nilpotent.

CGL Extensions

Definition 1.33. A CGL extension is an iterated skew polynomial k-algebra

R = k[x1][x2; τ2, δ2] . . . [xm; τm, δm]

equipped with a rational action of a k-torus H by algebra automorphisms, which

satisfies the following conditions:

(i) For all 1 ≤ j < k ≤ m, τk(xj) = λkjxj for some λkj ∈ k∗.

34



(ii) For 2 ≤ k ≤ m, δk is a locally nilpotent τk-derivation on

Rk−1 = k[x1][x2; τ2, δ2] . . . [xk−1; τk−1, δk−1].

(iii) The elements x1, · · · , xm are H-eivgenvectors.

(iv) For every 1 ≤ k ≤ m there is an hk ∈ H so that hk. |Rk−1
= τk and

hk.xk = λkxk where λk ∈ k∗ is not a root of unity.

1.8 Root Systems

Let V be a vector space over k.

Definition 1.34. A nondegenerate bilinear form on a vector space V is a

map (−,−) : V × V → k so that

(i) (−,−) is linear in both arguments;

(ii) If (x, y) = 0 for all y ∈ V then x = 0;

(iii) If (x, y) = 0 for all x ∈ V then y = 0.

To emphasize the vector space V we may write (−,−) as (−,−)V .

Definition 1.35. Let V be a a finite-dimensional space with nondegenerate bi-

linear form (−,−). A root system Φ for V is a set Φ ⊂ V so that

(i) Φ is finite, Φ spans V , 0 /∈ Φ;
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(ii) If α ∈ Φ, the only multiples of α in Φ are ±α;

(iii) For all α, β ∈ Φ we have 2 (β,α)
(α,α)

∈ Z;

(iv) For all α, β ∈ Φ we have β − 2 (β,α)
(α,α)

α ∈ Φ.

The elements of Φ are called roots.

For each α ∈ Φ we define a transformation sα of V by

sα(v) := v − 2
(v, α)

(α, α)
α (1.11)

for all v ∈ V .

If Φ is a root system for V and Ψ is a root system of W then the two root

systems are equivalent if there is an invertible linear transformation f : V →

W that sends Φ to Ψ so that for all α ∈ Φ we have

fsα = sf(α)f.

Definition 1.36. A base for a root system Φ is a set Π ⊂ Φ so that

(i) Π is a basis for V ;

(ii) Each root α ∈ Φ can be expressed as a linear combination of elements of Π

such that the coefficients are either all negative or all positive integers.

The roots for which the coefficients are nonnegative (relative to Π) are called

the positive roots for Φ . The roots for which the coefficients are nonpositive
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are called the negative roots for Φ. The elements in Π are called the positive

simple roots. From [14, Theorem 10.1], every root system Φ has a base.

Definition 1.37. Let {α1, . . . , αn} be the set of positive simple roots for a root

system Φ. The Cartan matrix of Φ is the matrix C so that Cij = 2
(αi,αj)

(αj ,αj)
.

Theorem 1.38 ([14, Proposition 11.1]). If Φ a root system for V with base

{α1, . . . , αt} with Cartan matrix C and Φ′ a root systems for W with base

{α′1, . . . , α′t} with Cartan matrix C ′, and Cij = C ′ij for all i, j, then the bijec-

tion αi 7→ α′i extends to an equivalency of the root systems Φ and Φ′.

Theorem 1.38 essentially says that the Cartan matrix of Φ determines Φ up

to equivalence.

Weyl Group

Definition 1.39. The Weyl group W of Φ is the subgroup of GL(V ) generated

by the sα for α ∈ Φ from equation (1.11).

From [14, Theorem 10.3] the Weyl group is generated by the si := sαi where

αi is a positive simple root. A reduced word in the Weyl group is an irreducible

representation of a element of w ∈ W as the product of the si. The length of w

is the shortest possible length of a reduced word for w. There is a unique element

of longest length in the Weyl group called the longest word, which is denoted

by w0 [1, Section I.5.1].
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Irreducible Root Systems

Let Φ be a root system for V and Ψ a root system for W . The vector space

V ⊕W has a natural bilinear form induced from the bilinear forms on V and W

given by

(v1 + w1, v2 + w2)V⊕W = (v1, v2)V + (w1, w2)W

for all vi ∈ V and wi ∈ W . If follows from [11, Proposition 8.3] that Φ t Ψ is a

root system for V ⊕W , which we denote by Φ⊕Ψ.

Definition 1.40. A root system Φ is reducible if Φ = Φ1⊕Φ2 where Φ1,Φ2 6= ∅.

A root system is irreducible if it is not reducible.

Theorem 1.41 ([14, Proposition 11.3]). Every root system Φ can be decomposed

into

Φ1 ⊕ Φ2 ⊕ · · · ⊕ Φt where each Φi is an irreducible nonempty root sys-

tem. Moreover, this decomposition is unique.

From [14, Lemma 10.4 C] if Φ is an irreducible root system, at most two root

lengths occur in Φ. In this case we refer to the roots as long or short depending

on the length. If all roots are the same length, then all roots are considered short.

For an irreducible root system the bilinear form may be normalized so that

(α, α) = 2 for short roots. It follows this root system is equivalent to our original

one.
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Convention 1. Let Φ be an irreducible root system. We fix some choice of

positive simple roots Π = {α1, · · · , αn} with C = (cij) the Cartan matrix. The

bilinear form is assumed to have the property that (α, α) = 2 for short roots.

It follows from Convention 1 that for all positive roots αi, αj ∈ Π and αj a

short root, (αi, αj) = cij.

Dynkin Diagrams

Definition 1.42. A Dynkin diagram for a root system Φ with Cartan matrix

C, is a diagram so that

(i) Each vertex is labeled by a simple root of αi ∈ Π and each simple root is

labeled by some vertex;

(ii) For each pair of distinct αi, αj ∈ Π there are CijCji edges drawn between

the vertices labeled αi and αj;

(iii) If the length of αi is shorter then the length of αj , then an arrow is drawn

pointing from the vertex labeled αj to the vertex labeled αi.

A Dynkin diagram is said to be an irreducible if is connected. Hence, a Dynkin

diagram is irreducible if and only if the root system is irreducible. Two Dynkin

diagrams are equivalent if there is a bijective map of the vertices that preserves

the number of edges and direction of the arrows between vertices.
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Theorem 1.43 ([14, Theorem 11.4] and [11, Theorem 8.27]). Every irreducible

Dynkin diagram is equivalent to one of the following:

An(n ≥ 1)
α1 α2

. . .
αn−1 αn

Bn(n ≥ 2)
α1 α2

. . .
αn−1 αn
⇒

Cn(n ≥ 3)
α1 α2

. . .
αn−1 αn
⇐

Dn(n ≥ 4)
α1 α2

. . .
αn−2 αn−1

αn

E6 α1 α2 α3 α4 α5

α6

E7 α1 α2 α3 α4 α5 α6

α7

E8 α1 α2 α3 α4 α5 α6 α7

α8

F4 α1 α2 α3 α4

⇒

G2 α1 α2

V

Theorem 1.44 ([14, Proposition 14.1]). There is a bijective correspondence

between the isomorphism classes of indecomposable finite dimensional complex

semisimple Lie algebras and irreducible root systems.
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Root and Weight Lattices

Definition 1.45. The groups

QΠ :=

{
n∑
i=1

riαi | ri ∈ Q, αi ∈ Π

}
and ZΠ :=

{
n∑
i=1

kiαi | ki ∈ Z, αi ∈ Π

}

are called the rational root lattice and root lattice respectively.

For all α ∈ Φ set dα = (α,α)
2

. From [11, Section 8.10] there exist ωi ∈ QΠ

called the fundamental weights with the property that (ωi, αj) = dαjδij for all

αj ∈ Π. The set of fundamental weights is denoted by Ω.

Definition 1.46. The semigroups

Λ :=

{
n∑
i=1

kiωi | ki ∈ Z, ωi ∈ Ω

}
and Λ+ :=

{
n∑
i=1

kiωi | ki ∈ Z≥0, ωi ∈ Ω

}

are called the weight lattice and positive weight lattice, respectively.

It is straightforward to see that ZΠ ⊂ Λ and that for λ ∈ Λ and µ ∈ ZΠ we

have (λ, µ) ∈ Z.

We may give Λ a partial order by defining λ ≥ 0 if there exists ki ∈ Z≥0 so

that λ = k1α1 + k2α2 + · · · + knαn. If µ, λ ∈ Λ we define µ ≥ λ if and only if

µ− λ ≥ 0.

41



1.9 Quantum Universal Enveloping Algebras

Let q ∈ k× with q not a root of unity. Let g be the irreducible semisimple Lie

algebra with corresponding irreducible root system Φ. Keeping in mind conven-

tion 1, for each α ∈ Φ denote qα = qdα = q
(α,α)

2 . Recall Definition 1.29. For all

m ∈ N and α ∈ Φ we use the notation

[m]α := [m]qα

and

[m]α! := [m]qα !.

Finally, for m ∈ Z≥0 and l = 0, 1, . . . ,m we set

(
m

l

)
α

:=

(
m

l

)
qα

.

Definition 1.47. The quantized universal enveloping algebra Uq(g) is the

k-algebra with generators Eα, Fα, K±1
λ for α, λ ∈ Π presented with the following

relations: for all α, β, λ, µ ∈ Π

KλK
−1
λ = K−1

λ Kλ = 1 (1.12)

KλKµ = KµKλ (1.13)

42



KλEα = q(λ,α)EαKλ (1.14)

KλFα = q−(λ,α)FαKλ (1.15)

[Eα, Fβ] = δαβ
Kα −K−1

α

qα − q−1
α

(1.16)

1−aαβ∑
l=0

(−1)l
(

1− aαβ
l

)
α

E
1−aαβ−l
α EβE

l
α = 0 (1.17)

1−aαβ∑
l=0

(−1)l
(

1− aαβ
l

)
α

F
1−aαβ−l
α FβF

l
α = 0 (1.18)

where δαβ is the Kronecker delta and aαβ = 2 (α,β)
(α,α)

.

The quantized positive Borel subalgebra, denoted U≥0
q (g), is the subal-

gebra generated by the Eα and the K±1
λ . Similarly, The quantized negative

Borel subalgebra, denoted Uq(g)≤0, is the subalgebra generated by the Fα and

the K±1
λ . Moreover, the positive nilpotent subalgebra of Uq(g), denoted

U+
q (g), is the subalgebra generated by all the Eα and the negative nilpotent

subalgebra, denoted by U−q (g), is the subalgebra generated by all the Fα. Fi-

nally, the the quantum torus, denoted by U0
q (g), is the subalgebra generated

by the K±1
λ .

Convention 2. We use the notation Ei = Eαi, Fi = Fαi and K±1
i = K±1

αi
.

Furthermore, we also adopt the convention that if I = (i1, i2, · · · iN−1, iN) where

each ik ∈ {1, 2, . . . , n} then

EI = Ei1Ei2 · · ·EiN−1
EiN and FI = Fi1Fi2 · · ·FiN−1

FiN .
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Moreover, E∅ = 1 and F∅ = 1.

Let K±kαi = (K±1
i )k for k ∈ Z≥0 and αi ∈ Π. Since these elements commute,

for any λ ∈ ZΠ where λ = k1α1 + · · ·+ knαn we also use the convention that

Kλ = Kk1α1Kk2α2 · · ·Kknαn .

We note, it follows from this convention that for λ ∈ ZΠ and 1 ≤ i ≤ n we

have

KλEi = q(λ,αi)EiKλ and KλFi = q−(λ,αi)FiKλ.

Hopf algebra Structure

Uq(g) is a Hopf algebra with comultiplication ∆, counit ε, and antipode S

determined by the following:

∆(Ei) = Ki ⊗ Ei + Ei ⊗ 1 ε(Ei) = 0 S(Ei) = −K−1
i Ei

∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi ε(Fi) = 0 S(Fi) = −FiKi

∆(Kλ) = Kλ ⊗Kλ ε(Kλ) = 1 S(Kλ) = K−1
λ

for i = 1, 2, . . . , n and λ ∈ Π.
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The Quantized Universal Enveloping Algebra Ǔq(g)

Denote by Ǔq(g) the algebra generated by the Eα, Fα with α ∈ Π and Kλ for

λ ∈ Ω instead of just λ ∈ Π. It is presented with relations as in equations (1.12)

– (1.18), except we now allow λ, µ ∈ Ω. It is also a Hopf algebra with the same

description as the Hopf algebra structure for Uq(g), again allowing λ ∈ Ω.

The positive (resp. negative) Borel subalgebras of Ǔq(g) denoted by Ǔ≥0
q (g)

(resp. Ǔ≤0
q (g)) are defined analogously as above. Note that the positive and

negative nilpotent subalgebras for Ǔq(g) are the same as for Uq(g).

1.10 The Algebra of Matrix Coefficients

Weights and Weight Spaces

Continue with g as in Section 1.9. Let V be a left Uq(g)-module.

Definition 1.48. A nonzero vector v ∈ V is a weight vector if it has that has

the property that there is a λ ∈ Λ and a homomorphism σ : Π→ {±1} such that

Kµv = σ(µ)q(λ,µ)v

for all µ ∈ Π. The element λ is called the weight for v and λ is said to be of

type σ.
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The set of weights for V is denoted by Ω(V ). The set of all weight vectors

with weight λ of type σ, together with 0, is a subspace of V which we denote by

V(λ,σ) and call it a weight space of V . If λ is of type 1 we denote V(λ,1) by Vλ.

If a weight vector v ∈ V has the property that Eiv = 0 for all the Ei ∈ Uq(g)

then v is called a maximal weight vector for V . Analogously, a weight vector

v ∈ V is a minimal weight vector if Fiv = 0 for all the Fi ∈ Uq(g).

The Category Cq(g)

Let Vσ denote the sum of the weight spaces of type σ for a module V . From

[15, Section 5.2] we have

V =
⊕

Vσ.

We say a finite dimensional Uq(g)-module V has type σ if V = Vσ. In particular,

irreducible modules have a well-defined type. From, [15, Section 5.2 - 5.4] the

class of finite dimensional modules of type 1 is closed under direct sum, tensor

product, and duals. Therefore, we denote by Cq(g) the full subcategory whose

objects are finite dimensional left Uq(g)-modules of type 1. We note that from [15,

Section 5.2] there is an equivalence of categories between Cq(g) and the category

of all finite dimensional Uq(g)-modules of type σ, for any σ.

We collect some basic facts about Cq(g) which can be found in [15, Chapters

5, 6].
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For V and W objects in Cq(g) and Vλ and Wµ weight spaces, Vλ ⊗ Wµ ⊆

(V ⊗ W )λ+µ and (Vλ)
∗ ∼= (V ∗)−λ where V ∗ has the left action of Uq(g) from

Section 1.3. (See [15, Section 5.3].)

Theorem 1.49. If V ∈ Cq(g) then V is the direct sum of its weight spaces.

Theorem 1.50. Let V ∈ Cq(g) be irreducible.

(i) V contains a maximal weight vector vλ with weight λ ∈ Λ+.

(ii) dimVλ = 1.

(iii) If ν is any other weight for V then ν < λ.

(iv) Uq(g)≤0vλ = V .

Similarly, V also contains a minimal weight vector v−µ with weight −µ ∈ −Λ+

with analogous properties.

From Theorem 1.50, if λ is the weight of a maximal weight vector vλ then

we call vλ a highest weight vector for V and λ the highest weight for V .

Analogously v−µ is called a lowest weight vector for V and −µ called the

lowest weight for V .

Theorem 1.51. For every λ ∈ Λ+ there is an irreducible module V ∈ Cq which

has highest weight λ. Moreover, if W is any other irreducible module in Cq with

highest weight µ, then V ∼= W if and only if µ = λ.

47



Taking account of Theorem 1.51 we denote an irreducible module with highest

weight λ by V (λ). Using this notation, we note V (µ) ∼= V (λ) if and only if µ = λ.

Definition and Structure of Cq(g)

Definition 1.52. For V ∈ Cq(g) and f ∈ V ∗ and v ∈ V, a coordinate function

or a matrix coefficient is the linear functional cVf,v in Uq(g)∗ defined by

cVf,v(u) := f(uv)

for all u ∈ Uq(g). The set of all coordinate functions is denoted by Cq(g).

Since the annihilator of V is contained in the kernel of cVf,v and since V is

finite dimensional, cVf,v ∈ Uq(g)◦. Therefore, Cq(g) ⊆ Uq(g)◦.

Note that using the standard addition and multiplication in Uq(g)◦, we have

cVf,v + cWg,w = cV⊕Wf⊕g,v⊕w and cVf,vc
W
g,w = cV⊗Wf⊗g,v⊗w.

Since Cq(g) is closed under finite direct sums and tensor products it follows that

Cq(g) is a k-subalgebra of Uq(g)◦.

Finally, Cq(g) is both a left Uq(g)-module and a right Uq(g)-module with

actions given by

u.cVf,v = cVf,u.v and (cVf,v).u = cVf.u,v.
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Convention 3. For the irreducible modules V (µ) in Cq(g), we will often denote

c
V (µ)
f,v simply by cµf,v. Moreover, for weight vectors v ∈ V (µ) and f ∈ V (µ)∗

with weights ν and −λ respectively, we may denote cµf,v by either cµf,ν or cµ−λ,ν.

Therefore, any proposition written with cµ−λ,ν will be independent of any choice of

weight vectors v or f .

1.11 Some Quantized Coordinate Rings

Define q̂ = q − q−1.

Definition 1.53. The quantized coordinate ring for Mn+1 or quantum

(n + 1) × (n + 1) matrices, denoted Oq(Mn+1), is the k-algebra generated by

{Xij | 1 ≤ i, j ≤ n+ 1} presented with the following relations:

XijXim = qXimXij for j < m (1.19)

XijXlj = qXljXij for i < l (1.20)

XijXlm = XlmXij for i < l and j > m (1.21)

XijXlm −XlmXij = q̂XimXlj for i < l and j < m. (1.22)

We note this presentation is from [25, Section 3.5] but replacing q−1 there with

q in our relations here. When q → 1 we recover exactly the usual presentation

for O(Mn+1).
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Definition 1.54. Let I, J ⊂ {1, 2, . . . , n + 1} with |I| = |J | = k 6= 0 and I =

{i1, . . . , ik} with i1 < i2 < · · · < ik and J = {j1, . . . , jk} with j1 < j2 < · · · < jk.

The k × k quantum minor [I | J ] is the element of Oq(Mn+1) defined by

[I | J ] :=
∑

σ∈Symk

(−q)`(σ)Xi1,jσ(1) · · ·Xik,jσ(k) .

In particular we set

D := [1, 2, . . . , n+ 1 | 1, 2, . . . , n+ 1]. (1.23)

The element D is often referred to as the quantum determinant of Oq(Mn+1)

and from [19, 9.2 Proposition 9] belongs to the center of Oq(Mn+1).

Definition 1.55. The quantized coordinate ring for GLn+1 or quantum

GLn+1 is the k-algebra

Oq(SLn+1) := Oq(Mn+1)[D±1].

Definition 1.56. The quantized coordinate ring for SLn+1 or quantum

SLn+1 is the k-algebra

Oq(SLn+1) := Oq(Mn+1)/ 〈D − 1〉 .

We note that when q → 1 we recover exactly the usual presentation for O(Mn+1).
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We will often abuse notation in Oq(SLn+1) and Oq(GLn+1) and will refer to

the coset which contains Xij simply by Xij. Similarly, we refer to the coset which

contains [I | J ] simply by [I | J ].

Algebraic Torus Actions

Let

H+ = (k∗)n+1 × (k∗)n+1 (1.24)

and

H := {(u, v) ∈ (k∗)n+1 × (k∗)n+1 | u1 · · ·un+1v1 · · · vn+1 = 1}.

From [1, II.1.16] there is a rational H-action on Oq(SLn+1) by algebra auto-

morphisms given by

(u, v).Xij = uivjXij (1.25)

for all (u.v) ∈ H and Xij ∈ Oq(SLn+1). Similarly, from [1, II.1.15] there is a

rational H+-action by algebra automorphisms on Oq(Mn+1) and Oq(GLn) given

by (u, v).Xij = uivjXij.
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Hopf Algebra Structure

In [19, 9.2.3 Proposition 10] it is shown that Oq(Mn+1) is a coalgebra. Specif-

ically, the comultiplication and the counit are defined by

∆(Xij) :=
n+1∑
k=1

Xik ⊗Xkj and ε(Xij) := δij.

We note that from [19, 9.2.2 Proposition 7(ii)]

∆([I | J ]) =
∑
K

[I | K]⊗ [K | J ]. (1.26)

Moreover, Oq(SLn+1) is a Hopf algebra with comultiplication and counit car-

ried over from Oq(Mn+1) and with the antipode defined by

S(Xij) = qi−j[1, 2, · · · , ĵ, · · · , n+ 1 | 1, 2, · · · , î, · · · , n+ 1].

In fact, from [19, 9.2.3 Proposition 10] we have

S2(Xij) = q2i−2jXij.

It follows that S is an anti-isomorphism.

52



1.12 Quantized Universal Enveloping Algebra

for sln+1

We now specialize Section 1.9 to g = sln+1.

From [14, 11.4 Table 1] the Cartan matrix is the matrix (Cij) so that

Cij =


2 if i = j

−1 if |i− j| = 1

0 otherwise

.

Moreover, from [14, 13.2 Table 1] the fundamental weights are given by

ωi =
1

n+ 1

(
(n− i+ 1)

i−1∑
t=1

tαt + i
n∑
t=i

(n− t+ 1)αt

)
.

Using the convention that ω0 = ωn+1 = 0, we also have

αi = −ωi−1 + 2ωi − ωi+1. (1.27)

Specializing Definition 1.47 we have the following presentation for Uq(sln+1).

The generators are the K±1
i and the Ei, Fj where i, j ∈ {1, 2, . . . , n} presented

with the following relations: for i, j ∈ {1, 2, . . . , n}

KiK
−1
i = 1 KiKj = KjKi
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KjEi =q(αj ,αi)EiKj KjFi = q−(αj ,αi)FiKj

EiEj =EjEi for |i− j| > 2 FiFj = FjFi for |i− j| > 2

[Ei, Fj] = δij
Ki −K−1

i

q − q−1

E2
iEj − (q + q−1)EiEjEi+EjE

2
i = 0 for |i− j| = 1

F 2
i Fj − (q + q−1)FiFjFi+FjF

2
i = 0 for |i− j| = 1.

Example: The Module V (ω1)

Since the module V (ω1) is so integral for what follows, we examine it a bit

more closely.

Using [15, Section 5.15] we have that dimV (ω1) = n+1 and there exists a basis

{e1, e2, . . . , en+1} so that each ej is a weight vector with weight ω1−α1+· · ·−αj−1.

Moreover, we may select the ej so that Eiej = δi,j−1ej−1 and Fiej = δi,jej+1 for

all the Ei, Fi ∈ Uq(sln+1). Consequently, e1 has highest weight ω1 and this basis

is well-ordered with respect to weight, that is wt ei ≥ wt ej if and only if i ≤ j.

Keeping in mind convention 2 if I = (i1, i2, . . . , iN) then

EIej = δi1,j−N+1δi2,j−N+2 · · · δiN−1,j−2δiN ,j−1ei1 .
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Therefore, for i < j we haveEIej = ei if and only if I = (i, i+ 1, · · · , j − 2, j − 1).

Furthermore, if I is any other nonempty finite sequence of elements from {1, 2, . . . , n}

then EIej = 0 for all j. Finally, EIej = ej if and only if I = ∅.

By (1.27) for each i = 1, 2, . . . , n we have the weight of ej is βj := −ωj−1 +ωj.

Hence for λ ∈ ZΠ and 1 ≤ j ≤ n+ 1 we get

Kλej = q(βj ,λ)ej. (1.28)

Denote the natural dual basis {f 1, f 2, . . . , fn+1} for V (ω1)∗ corresponding to

{e1, e2, . . . , en+1} so that f i(ej) = δij.

Finally, we note that there is an isomorphism between quantum SLn+1 and

the quantum algebra of matrix coefficients Cq(sln+1).

Theorem 1.57 ([12, Theorem 1.4.1]).
{
cω1

f i,ej
| i, j = 1, 2, . . . n+ 1

}
is a generat-

ing set for the algebra Cq(sln+1). Moreover, there exists a k-algebra isomorphism

κ : Oq(SLn+1)→ Cq(sln+1) so that κ(Xij) = cω1

f i,ej
.

Using the isomorphism from Theorem 1.57 we will often abuse notation and

denote cω1

f i,ej
by Xij.
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Chapter 2

Quantum Unipotent Radicals of

the Standard Borel Subgroups

2.1 Quantum Standard Borel Subgroups

Definition 2.1. The quantized coordinate ring of the positive (negative)

standard Borel subgroup or the quantum positive (negative) standard

Borel subgroup of quantum SLn+1 is

Oq(B
+) := Oq(SLn+1)/〈Xij | i > j〉 and Oq(B

−) := Oq(SLn+1)/〈Xij | i < j〉.

We will often abuse notation and denote simply by Xij the coset containing

Xij. We note that these algebras are quantizations of the standard Borel subgroup
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since as q → 1 for the above subgroup, we recover the coordinate ring of the

standard Borel.

Definition and Structure of Oq(N
±) and Oq(N

±)′

Note that in Oq(B
+) (resp. Oq(B

−)) that Xij = 0 for i > j (resp. i < j).

Moreover, since the quantum determinant is 1, relation (1.23) inOq(B
±) simplifies

to

X11 · · ·Xn+1,n+1 = 1.

Moreover, by relation (1.22) in Oq(B
±) we have XiiXjj = XjjXii. Taking these

two facts together we can conclude that for all i = 1, 2, . . . , n + 1 the elements

Xii are in fact, invertible in Oq(B
±). Therefore we may define in Oq(B

+) two

subalgebras

Oq(N
+) : = k

〈
X−1
ii Xij | 1 ≤ i < j ≤ n+ 1

〉
Oq(N

+)′ : = k
〈
XijX

−1
jj | 1 ≤ i < j ≤ n+ 1

〉
.

These are natural choices because they both become isomorphic to Oq(N
+) when

q → 1. We may analogously define subalgebras in Oq(B
−) by

Oq(N
−) : = k[

〈
X−1
jj Xji | 1 ≤ i < j ≤ n+ 1

〉
Oq(N

−)′ : = k
〈
XjiX

−1
ii | 1 ≤ i < j ≤ n+ 1

〉
.
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Having defined the algebrasOq(N
±) andOq(N

±)′, we now analyze their structure.

Lemma 2.2. Define for 1 ≤ i < j ≤ n + 1 the elements yij = X−1
ii Xij and

zij = XijX
−1
jj in Oq(B

+). The following are defining relations for Oq(N
+) and

Oq(N
+)′ respectively:

yijyim = qyimyij (j < m) (2.1)

yijylj = qyljyij (i < l) (2.2)

yijylm = ylmyij (i < l, j > m) (2.3)

yijylm =


ylmyij if j < l

q−1ylmyij + q−1q̂yim if j = l

ylmyij + q̂yimylj if j > l

(i < l, j < m) (2.4)

zijzim = qzimzij (j < m) (2.5)

zijzlj = qzljzij (i < l) (2.6)

zijzlm = zlmzij (i < l, j > m) (2.7)

zijzlm =


zlmzij if j < l

q−1zlmzij + q−1q̂zim if j = l

zlmzij + q̂zimzlj if j > l.

(i < l, j < m) (2.8)
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Proof. First we show that the generators yij of Oq(N
+) satisfy the relations (2.1)

– (2.4) above. Note, that from the relations (1.21) and (1.22) in Oq(SLn+1), the

elements Xii commute with Xlm in Oq(B
+) whenever l,m 6= i.

For j < m and i = l

yijyim = X−1
ii XijX

−1
ii Xim = q−1X−1

ii XijXimX
−1
ii

= X−1
ii XimXijX

−1
ii = qX−1

ii XimX
−1
ii Xij = qyimyij.

For i < l and j = m

yijylj = X−1
ii XijX

−1
ll Xlj = X−1

ii X
−1
ll XijXlj = qX−1

ii X
−1
ll XljXij

= qX−1
ll X

−1
ii XljXij = qX−1

ll XljX
−1
ii Xij = qyljyij.

For i < l and j > m

yijylm = X−1
ii XijX

−1
ll Xlm = X−1

ii X
−1
ll XijXlm = X−1

ii X
−1
ll XlmXij

= X−1
ll X

−1
ii XlmXij = X−1

ll XlmX
−1
ii Xij = ylmyij.

For i < l, j < m, and j < l

yijylm = X−1
ii XijX

−1
ll Xlm = X−1

ii X
−1
ll XijXlm = X−1

ii X
−1
ll XlmXij

= X−1
ll X

−1
ii XlmXij = X−1

ll XlmX
−1
ii Xij = ylmyij.
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For i < l, j < m, and j = l

yijylm = X−1
ii XijX

−1
ll Xlm

= q−1X−1
ii X

−1
ll XijXlm = q−1X−1

ii X
−1
ll (XlmXij + q̂XimXlj)

= q−1X−1
ii X

−1
ll XlmXij + q−1q̂X−1

ii X
−1
ll XimXlj

= q−1X−1
ll X

−1
ii XlmXij + q−1q̂X−1

ii XimX
−1
ll Xlj

= q−1X−1
ll XlmX

−1
ii Xij + q−1q̂X−1

ii Xim = q−1ylmyij + q−1q̂yim.

For i < l, j < m, and j > l

yijylm = X−1
ii XijX

−1
ll Xlm = X−1

ii X
−1
ll XijXlm = X−1

ll X
−1
ii XijXlm

= X−1
ll X

−1
ii (XlmXij + q̂XimXlj) = X−1

ll X
−1
ii XlmXij + q̂X−1

ll X
−1
ii XimXlj

= X−1
ll XlmX

−1
ii Xij + q̂X−1

ii XimX
−1
ll Xlj = ylmyij + q̂yimylj.

We now show that the above relations are a defining set of relations for

Oq(N
+). Let B be the algebra generated by {bij | 1 ≤ i < j ≤ n + 1} pre-

sented with relations analogous to those in (2.1)-(2.4) above but replacing yij

with bij. Let ψ be the k-algebra homomorphism ψ : B → Oq(N
+) defined by

ψ(bij) = yij.
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Order the Xij lexicographically in Oq(B
+) omitting Xn+1,n+1. As asserted in

the proof of [8, Lemma 2.8] , the set of monomials ordered in this way is linearly

independent.

This is still true if we allow ordered monomials with negative exponents on

Xii. Moreover since the Xii commute up to scalars with every Xlm in Oq(B
+)

then the set of ordered monomials in the yij is linearly independent, hence forms

a basis for Oq(N
+).

Now the monomials in the bij form a spanning set for B. Hence ψ maps a

spanning set of B to a basis of Oq(N
+). Therefore ψ is an isomorphism.

It can be similarly verified that the relations (2.5)-(2.8) give a presentation of

Oq(N
+)′.

Theorem 2.3. The algebras Oq(N
±) and Oq(N

±)′ are all isomorphic.

Proof. From Lemma 2.2 it is immediate that Oq(N
+) ∼= Oq(N

+)′ since the alge-

bras have the same presentation.

From [25, Proposition 3.7.1] there exists a transpose homomorphism τ :

Oq(SLn+1) → Oq(SLn+1) so that τ(Xij) = Xji for all i, j ∈ {1, 2, . . . , n + 1} .

This is an automorphism of Oq(SLn+1) that maps 〈Xij | i > j〉 onto 〈Xij | i < j〉.

Therefore there is an induced isomorphism τ : Oq(B
+)→ Oq(B

−).

Observe that

τ(X−1
ii Xij) = X−1

ii Xji = q−1XjiX
−1
ii
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and

τ(XijX
−1
jj ) = XjiX

−1
jj = q−1X−1

jj Xji

for all i < j. Hence, τ maps Oq(N
+) onto Oq(N

−)′ and so Oq(N
+) ∼= Oq(N

−)′.

Similarly τ maps Oq(N
+)′ onto Oq(N

−). Therefore Oq(N
+)′ ∼= Oq(N

−)

Using this theorem we will refer to either Oq(N
+) or Oq(N

+)′ as a positive

quantized unipotent subgroup or positive standard Borel. Similarly, Oq(N
−)

or Oq(N
−)′ are a negative quantized unipotent subgroup. Notice that as

q → 1 we have a commutative k-algebra which matches the usual presentation

for O(N±).

2.2 The Algebras of Coinvariants for Oq(B
±)

Oq(B
±) as Hopf Algebras

Define I− := 〈Xij | i > j〉 and I+ := 〈Xij | i < j〉 in Oq(SLn+1). We now

show that I± are Hopf ideals.

Lemma 2.4. I± are Hopf ideals in Oq(SLn+1).

Proof. It is clear that I+ ⊂ ker ε. If i < j then
∑j−1

k=1Xik ⊗Xkj ∈ Oq ⊗ I+ and∑n+1
k=j Xik ⊗Xkj ∈ I+ ⊗ Oq. Hence ∆(Xij) ∈ Oq ⊗ I+ + I+ ⊗ Oq. Since ∆ is an

algebra homomorphism we have ∆(I+) ⊂ I+ ⊗Oq +Oq ⊗ I+.
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Now since i < j then each monomial in Mji is of the form

q`(σ)X1,σ(1) · · ·Xi−1,σ(i−1)Xi,σ(i+1) · · ·Xj−1,σ(j)Xj+1,σ(j+1) · · ·Xn+1,σ(n+1)

where is σ is some permutation on I = {1, 2, . . . , î, . . . n + 1}. If σ is not the

identity there is a k ∈ I so that σ(k) > k. Hence the above monomial is in I+

since it contains either the term Xk,σ(k) or Xk−1,σ(k), both of which are in I+. If σ

is the identity then again the above monomial is in I+ since it contains the term

Xi,i+1 which again is in I+.

Thus for every σ, the monomials terms of Mji are in I+. Hence S(Xij) =

qi−jMji ∈ I+. Since S is an antihomomorphism then S(I+) ⊂ I+. Therefore I+

is a Hopf ideal.

A similar argument also shows that I− is a Hopf ideal.

Since Oq(B
±) = Oq(SLn+1)/I∓ then Oq(B

±) are Hopf algebras induced from

the Hopf algebra structure of Oq(SLn+1). We denote the comultiplication, counit,

and antipode of the Hopf algebra of Oq(B
±) by ∆B± , εB± , and SB± respectively,

when emphasis is needed, otherwise we will retain the standard notation ∆, ε,

and S. Specifically we note that for Xij ∈ Oq(B
+) and Xrs ∈ Oq(B

−) we have

∆B+(Xij) =
∑
i≤k≤j

Xik ⊗Xkj and ∆B−(Xrs) =
∑
r≥k≥s

Xrk ⊗Xks.
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The Quantum Standard Maximal Torus

In the classical setting the coordinate ring of the standard maximal torus of

O(SLn+1) is

O(T ) ∼= O(SLn+1)/〈Xij | i 6= j〉.

We may therefore define the quantized coordinate ring of the standard

maximal torus for SLn+1 or quantum standard maximal torus by

Oq(T ) := Oq(SLn+1)/〈Xij | i 6= j〉.

Denote by Yii the coset containing Xii in Oq(T ). We first note that Oq(T ) is

generated by the Yii where i = 1, 2, . . . , n + 1. It is straightforward to check

that YiiYjj = YjjYii for all i, j ∈ {1, 2, · · · , n + 1}. Thus Oq(T ) is actually a

commutative algebra. Moreover since the quantum determinant is 1 in Oq(SLn+1)

this implies that

Y1,1 · · ·Yn+1,n+1 = 1

That is, each of the Yii are invertible. Therefore we have, in fact, Oq(T ) ∼=

O(T ). Moreover, since Oq(T ) = Oq(SLn+1)/(I+ + I−) this implies that Oq(T ) is

also a Hopf algebra induced from Oq(SLn+1). We denote the comultiplication,

counit, and antipode by ∆T , εT , and ST respectively, when emphasis is needed.
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Specifically, we note that for Yii ∈ Oq(T ) we have

∆T (Yii) = Yii ⊗ Yii.

Oq(T )-coactions on Oq(B
±)

There are natural projection homomorphisms p± : Oq(B
±) → Oq(T ) defined

by p±(Xii) = Yii and p±(Xij) = 0 for i 6= j. Therefore using these maps as well

as the comultiplication maps ∆ on Oq(B
±) we define the maps η± : Oq(B

±) →

Oq(B
±)⊗Oq(T ) by

η± := (id⊗ p±)∆.

Since p± and ∆ are k-algebra homomorphisms, so are η±. Similarly the maps

θ± : Oq(B
±) → Oq(T ) ⊗ Oq(B

±) defined by θ± := (p± ⊗ id)∆ are k-algebra

homomorphisms. Specifically, since p±(Xij) = 0 for i 6= j and p±(Xii) = Yii this

implies that for Xij ∈ Oq(B
±) we have

η±(Xij) = Xij ⊗ Yjj θ±(Xij) = Yii ⊗Xij.

In fact η± and θ± are comodule homomorphisms which we now show.

Lemma 2.5. η±and θ± are right (resp. left) Oq(T )-comodule maps. Hence,

Oq(B
±) are right (resp. left) Oq(T )-comodule algebras.
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Proof. We need to verify that (ρ± ⊗ id)ρ± = (id⊗∆T )ρ±. It suffices to verify it

on the Xij ∈ Oq(B
±) since ρ± and ∆T are k-algebra homomorphisms. Note that

(ρ± ⊗ id)ρ±(Xij) = (ρ± ⊗ id)(Xij ⊗ Yjj) = Xij ⊗ Yjj ⊗ Yjj

and

(id⊗∆T )ρ±(Xij) = (id⊗∆T )(Xij ⊗ Yjj) = Xij ⊗ Yjj ⊗ Yjj.

Hence θ± is a right Oq(T )-comodule map. In the same way we can show η± are

left Oq(T )-comodule maps.

Since θ± is also a k-algebra homomorphism we have Oq(B
±) are right Oq(T )-

comodule algebras with these structure maps. Similarly, η± will also make

Oq(B
±) into left Oq(T )-comodule algebras.

Oq(N
±) as Coinvariants

Theorem 2.6. Let A± = Oq(B
±)co η± then A±#Oq(T ) ∼= Oq(B

±). Similarly let-

ting

C± = Oq(B
±)co θ± then Oq(T )#C± ∼= Oq(B

±).

Proof. Let r± : Oq(T ) → Oq(B
±) be the k-algebra homomorphism such that

r±(Yii) = Xii. Define r± : Oq(T )→ Oq(B
±) by r± = r±ST . Then

(r± ∗ r±)(Y ) =
∑
(Y )

r±(Y1)r±(Y2) = r±

∑
(Y )

Y1ST (Y2)

 = r±(εT (Y ) · 1) = ε(Y ) · 1
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for all Y ∈ Oq(T ). Similarly, (r±∗r±)(Y ) = ε(Y ) ·1. Hence, r± is the convolution

inverse of r±.

To check that r± is a right Oq(T )-comodule map we need to show that η±r± =

(r± ⊗ id)∆T . Since r± and η± are k-algebra homomorphisms, it is sufficient to

show the equality holds on the Yii ∈ Oq(T ). This holds because

η±r±(Yii) = η±(Xii) = Xii ⊗ Yii

and

(r± ⊗ id)∆T (Yii) = (r± ⊗ id)(Yii ⊗ Yii) = Xii ⊗ Yii.

Hence, r± are right Oq(T )-comodule homomorphisms. Therefore Oq(B
±) is an H-

cleft extension. Moreover, by the above discussion, using the result of [2] there is a

k-algebra isomorphism Φ± : A±#Oq(T )→ Oq(B
±) where Φ±(X#Y ) = Xr±(Y ).

Similarly, by making the appropriate changes to the above proof, there is

a k-algebra isomophrism Ψ± : Oq(T )#C± → Oq(B
±) defined by Ψ(Y#X) =

r±(Y )X.

It is natural to ask what are the coinvariants for Oq(B
±) using the structure

maps η± or θ±? Note that for any X−1
jj , Xij ∈ Oq(B

±)

η±(XijX
−1
jj ) = η±(Xij)η

±(X−1
jj ) = (Xij ⊗ Yjj)(X−1

jj ⊗ Y −1
jj ) = XijX

−1
jj ⊗ 1.
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That is XijX
−1
jj ∈ Oq(B

±)co η± . Similarly, X−1
ii Xij ∈ Oq(B

±)co θ± . Since η±

and θ± are algebra homomorphism this implies that Oq(N
±)′ is a subalgebra of

Oq(B
±)co η± and Oq(N

±) is a subalgebra of Oq(B
±)co θ± . In fact these algebras

are exactly the coinvariants for η± and θ± which we now show.

Theorem 2.7. Oq(N
±)′ = Oq(B

±)co η± and Oq(N
±) = Oq(B

±)co θ±.

Proof. From our discussion we have shown that Oq(N
±)′ ⊆ Oq(B

±)co η± . Since

the map Φ± from Theorem 3.19 is an isomorphism of A± ⊗Oq(T ) onto Oq(B
±),

it is sufficient to show that Φ± maps Oq(N
±)′ ⊗Oq(T ) onto Oq(B

±).

Notice that

Φ±(Oq(N
±)′ ⊗Oq(T )) = Oq(N

±)′r±(Oq(T )) ⊆ Oq(B
±).

Therefore we need only show that Oq(N
±)r±(Oq(T )) is a subalgebra that contains

all the Xij to prove the proposition.

Let L± be the subalgebra generated by {X±1
ii | 1 ≤ i ≤ n + 1} in Oq(B

±).

Note that the image of the maps r± from Theorem 3.19 is L±. Using the projec-

tion homomorphism p±, it is straightforward to check that p±r± = idOq(T ) and

r±p± = idL± . Hence r± is an isomorphism from Oq(T ) to L±. Since each of

the Xkk commutes up to a scalar with each of the Xij ∈ Oq(B
±) we have that

Oq(N
±)′r±(Oq(T )) is a subalgebra of Oq(B

±).
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Now for X−1
jj , Xij ∈ Oq(B

±) with i 6= j we have

Φ±(XijX
−1
jj ⊗ Yjj) = XijX

−1
jj r

±(Yjj) = XijX
−1
jj Xjj = Xij.

Hence, Oq(N
±)′r±(Oq(T )) = Oq(B

±). Therefore Oq(N
±)′ = Oq(B

±)co η± .

In the same way one can use the isomorphism Ψ± to showOq(N
±) = Oq(B

±)co θ± .

Finally we have the following corollary.

Corollary 2.8. Oq(B
±) ∼= Oq(T )#Oq(N

±) ∼= Oq(N
±)#Oq(T ).

Proof. The first isomorphism follows directly from Theorem 3.19 and Theorem

2.7. For the second isomorphism we note that Theorem 3.19 and Theorem

2.7 imply that Oq(B
±) ∼= Oq(N

±)′#Oq(T ). Since from Theorem 2.3 we have

Oq(N
±) ∼= Oq(N

±)′ the second isomorphism holds.

2.3 The Restriction Map and Cq(b
±)

Having investigated Oq(B
±) and Oq(N

±) we now switch to the quantum func-

tion algebra or algebra of matrix coefficients Cq(sln+1). In order to do this though

we first need some background.

For any element c ∈ Cq(sln+1) we may restrict the domain of c to the subal-

gebra U+
q (sln+1) (resp. Uq(b

−)). This induces a well-defined k-algebra homomor-

phism from Cq(sln+1) to Uq(b
−)∗ (resp. Uq(b

−)∗). Let ρ+ (resp. ρ−) denote this

69



restriction homomorphism and denote im ρ+ by Cq(b
+) (resp. im ρ− by Cq(b

−)).

For c ∈ Cq(sln+1) we denote ρ+(c) by c. From this convention we note that c 6= 0

if and only if c(u) 6= 0 for some u ∈ U≥0
q (sln+1).

We now wish to better understand ρ+(cω1

f i,ej
) which, using the conventions

above, we denote by X ij.

Example: Matrix Coefficients for V (ω1) in Cq(b
±)

We wish to understand Cq(b
±) and to do so we will start trying to understand

the “basic” elements X ij ∈ Cq(b±). Since U≥0
q (resp. U≤0

q ) is spanned by mono-

mials of the form KλEI (resp. KλFI) where λ ∈ ZΦ+ and I ∈ P+, to understand

any X ij it is sufficient to understand where it maps each of these elements.

Lemma 2.9. For λ ∈ ZΠ and I a finite sequence of elements from {1, 2, . . . , n+

1} we have the following:

For i ≤ j,

X ij(KλEI) =


q(βi,λ) if I = ∅ and i = j

q(βi,λ) if I = (i, i+ 1, · · · , j − 2, j − 1) and i < j

0 otherwise.

where βi = −ωi−1 + ωi.

For i > j, then X ij(KλEI) = 0.
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Proof. By equation (1.12) if i < j we have EIej = ei if and only if I =

(i, i+ 1, · · · , j − 2, j − 1) and EIej = ej if and only if I = ∅. Furthermore, if

I is any other finite sequence of elements from {1, 2, . . . , n+ 1} then EIej = 0 for

all j = 1, 2, . . . , n + 1. Hence by equation (1.28) if i < j and I = (i, · · · , j − 1)

we have KλEIej = q(βi,λ)ei and if I = ∅ then KλEIej = q(βi,λ)ej. Thus if i ≤ j

then Xij(KλEI) is as indicated.

Note that for all the Ei we have Eiej is either 0 or a weight vector of lower

weight. Hence, for i > j there is no EI so that EIej = ei. Therefore for i > j

we have f i(EIej) = 0 for all EI . Hence, X ij(KλEI) = 0 for all λ ∈ ZΦ+ and I a

finite sequence with entries in {1, 2, . . . , n+ 1}.

2.4 The Dual Pairing

By [3] Corollary 3.3, if n+1
√
q ∈ k there exists a unique nondegenerate bilinear

pairing (−,−) : Ǔ≤0
q × Ǔ≥0

q → k defined by the following properties: for all

u, u′ ∈ Ǔ≥0 and all v, v′ ∈ Ǔ≤0 and all µ, ν ∈ Λ and α, β ∈ Π

(u, vv′) = (∆(u), v′ ⊗ v) (uu′, v) = (u⊗ u′,∆(v))

(Kµ, Kν) = q−(µ,ν) (Fα, Eβ) = −δαβ q̂−1

(Kµ, Eβ) = 0 (Fα, Kµ) = 0
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We note there is a pairing on U≥0
q (sln+1)× U≥0

q (sln+1) defined in [15, p. 6.12] as

well as [16, p. 9.2.10] with the same properties as above.

The bilinear pairing above can be restricted to a bilinear pairing on Ǔ≤0
q ×U≥0

q .

In fact the assumption that n+1
√
q ∈ k is not needed to have a well defined dual

pairing on Ǔ≤0
q × U≥0

q . Since we will primarily be studying this pairing, we

remove this assumption. We now show that the pairing in nondegenerate by

slightly modifying the proof in [3, Corollary 3.3].

Theorem 2.10. The dual pairing on Ǔ≤0
q × U≥0

q is nondegenerate.

Proof. By [15, p. 4.7] , U+
q and U−q are ZΠ-graded with degEα = α and detF−α =

−α for α ∈ Π. For each µ ∈ ZΠ denote a basis of U+
µ by {uµi }. By [15, Corollary

8.30] , the pairing when restricted to U−−µ × U+
µ with µ ∈ ZΠ is nondegenerate.

Therefore, we may select a corresponding dual basis of U−−µ, which we denote by

{v−µi }, with the property that (v−µi , uµj ) = δij.

Suppose that y ∈ Ǔ≤0
q so that (y, x) = 0 for all x ∈ U≥0

q (sln+1). We may write

y =
∑

µ′∈ZΠ,i

v−µ
′

i pµ′,i(K)

where

pµ′,i(K) =
∑
λ′∈Λ

cµ
′,i
λ′ Kλ′
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for some scalars cµ
′,i
λ′ . It follows from [15, 6.10(3) and 6.10(4)] that if µ ∈ ZΠ

then for all η ∈ ZΠ and all j we have

0 = (y, uµjKη) =
∑
λ′∈Λ

cµ,jλ′ q
−(η,λ′).

Notice that for all λ′ ∈ Λ there exist scalars λ′1, . . . , λ
′
n ∈ Z so that λ′ = λ′1ω1 +

· · · + λ′nωn. Therefore, for each m = (m1, . . . ,mn) ∈ Zn, setting η = −(m1α1 +

· · ·+mnαn) we get

0 =
∑
λ′∈Λ

cµ,jλ′ q
−(η,λ′) =

∑
λ′∈Λ

cµ,jλ′ q
m1λ′1 · · · qmnλ′n = pµ,j(q

m1 , . . . , qmn) = pµ,j(q
m)

where

pµ,j(x1, . . . , xn) =
∑
λ′∈Λ

cµ,jλ′ x
λ′1
1 · · · xλ

′
n
n .

Since q is not a root of unity, it follows from [3, Lemma 3.2] that pµ,j = 0 for all

µ ∈ ZΠ and all j. Hence, y = 0.

Suppose for x ∈ U≥0
q (sln+1) that (y, x) = 0 for all y ∈ Ǔ≤0

q . Since x ∈ Ǔ≥0
q it

follows from the nondegeneracy of (−,−) on Ǔ≤0
q × Ǔ≥0

q that x = 0.

Using this dual pairing we define the map φ : Ǔ≤0
q → (U≥0

q )∗ by

φ(u)(v) = (u, v).
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The map φ is a k-algebra homomorphism and since the bilinear form is nonde-

generate by Theorem 2.10, φ is injective.

For I = (i1, i2, . . . , iN) define wt I = αi1 +αi2 + · · ·+αiN . We say that J ⊆ I if

J is a subsequence of I. For J ⊆ I we denote I−J to be the sequence remaining

when the subsequence J is removed.

It is shown in [15, 6.8(8) and 6.12] that (FI , EJ) = 0 unless wt I = wt J . If

follows that ker(φ(FI)) has finite codimension for every I. Similarly, kerφ(Kµ)

has codimension 1. Hence φ(u) ∈ (U≥0
q (sln+1))◦ for all u ∈ Ǔ≤0

q .

Lemma 2.11. For the map φ we have φ(K−βi+αiFi) = −q−1q̂−1X ii+1 and φ(K∓βi) =

X
±1

ii .

Proof. From [15, 6.9 (2)] it follows for all µ, λ ∈ Λ that (Kµ, KλEI) = 0 if and

only if I 6= ∅. Using this fact we get

φ(K−βi+αiFi)(KλEi) = (K−βi+αiFi, KλEi) = (K−βi+αi ⊗ Fi,∆(KλEi))

= (K−βi+αi ⊗ Fi, Kλ+αi ⊗KλEi +KλEi ⊗Kλ)

= (K−βi+αi , Kλ+αi)(Fi, KλEi) + (K−βi+αi , KλEi)(Fi, Kλ)

= (K−βi+αi , Kλ+αi)(Fi, KλEi)

= (K−βi+αi , Kλ+αi)(∆(Fi), Ei ⊗Kλ)

= (K−βi+αi , Kλ+αi)(Fi ⊗K−αi + 1⊗ Fi, Ei ⊗Kλ)

= (K−βi+αi , Kλ+αi) ((Fi, Ei)(K−αi , Kλ) + (1, Ei)(Fi, Kλ))
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= (K−βi+αi , Kλ+αi)(Fi, Ei)(K−αi , Kλ)

= −q−(−βi+αi,λ+αi)q̂−1q(αi,λ) = −q−1q̂−1q(βi,λ).

Now suppose I 6= (i). It follows from [15, 6.8 (1)] , for λ ∈ ZΠ and I a finite

sequence of elements in {1, 2, . . . , n}

∆(KλEI) =
∑
J⊆I

cI,JKλKJEI−J ⊗KλEJ

for some scalars, cI,J . Hence, we have

φ(K−βi+αiFi)(KλEI) = (K−βi+αiFi, KλEI) = (K−βi+αi ⊗ Fi,∆(KλEI))

=

(
K−βi+αi ⊗ Fi,

∑
J⊆I

cI,JKλKJEI−J ⊗KλEJ

)

=
∑
J⊆I

cI,J(K−βi+αi , KλKJEI−J)(Fi, KλEJ).

It follows from [15, 6.8 (7)] that (Fi, KλEJ) = 0 if and only if J 6= (i). More-

over, if J = (i) then since I 6= (i) we have that I − J 6= ∅. This implies

(K−βi+αi , KλKJEI−J) = 0. Therefore, we have φ(K−βi+αiFi)(KλEI) = 0. There-

fore, we have

φ(K−βi+αiFi)(KλEI) =


−q−1q̂−1q(βi,λ) if I = (i)

0 if I 6= (i).
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Similarly,

φ(K∓βi)(Kλ) = (K∓βi , Kλ) = q±(βi,λ)

Moreover, if λ ∈ ZΠ and I is a finite sequence of elements from {1, 2, . . . , n} and

I 6= ∅ we have

φ(K∓βi)(KλEI) = (K∓βi , KλEI)

= (K∓βi ⊗K∓βi , EI ⊗Kλ)

= (K∓βi , EI)(K∓βi , Kλ)

= 0.

Hence,

φ(K∓βi)(KλEI) =


q±(βi,λ) if I = ∅

0 otherwise

By Lemma 2.9,

X i,i+1(KλEI) =


q(βi,λ) if I = (i)

0 otherwise

and

X
±1

ii (KλEI) =


q±(βi,λ) if I = ∅

0 otherwise.
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Since U≥0
q (sln+1) is spanned by the elements of the form KλEI where I is a

finite sequence of elements from {1, 2, . . . , n} and λ ∈ ZΠ then φ(K−βi+αiFi) =

−q−1q̂−1X i,i+1 and φ(K∓βi) = X
±1

ii .

Lemma 2.12. Cq(b
+) is generated by

{
X
±1

ii , Xj,j+1 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n
}

.

Proof. Denote
{
X±1
ii , Xi,i+1 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n

}
in Oq(B

+) by S. Since

for all 1 ≤ i ≤ n− 1, Oq(B
+) has the relation

Xi,i+1,Xi+1,i+2 −Xi+2,i+1Xi,i+1 = q̂Xi+1,i+1Xi,i+2.

By multiplying both sides by X−1
i+1,i+1 we see Xi,i+2 ∈ S for all 1 ≤ i ≤ n− 1.

Continuing inductively if Xi,i+k ∈ S for all 1 ≤ i ≤ n− k since

Xi,i+kXi+k,i+k+1 −Xi+k,i+k+1Xi,i+k = q̂Xi+k,i+kXi,i+k+1

multiplying by X−1
i+k,i+k we get Xi,i+k+1 ∈ S for all 1 ≤ i ≤ n − k. Therefore

Xij ∈ S for all 1 ≤ i ≤ j ≤ n + 1. Hence S generates Oq(B
+). Using the

isomorphism induced from Corollary ??, the proposition follows.

The following theorem can be found in [16, p. 9.2.12] however, in the present

case we may prove it more simply.

Theorem 2.13. The map φ is an isomorphism of Ǔ≤0
q onto Cq(b

+).
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Proof. Note that ∓β1 = ∓ω1 so then

φ(K∓ω1) = φ(K∓β1) = X
±1

11 ∈ Cq(b+).

Proceeding inductively, we see that if φ(K∓ωi−1
) ∈ Cq(b+) then since φ(K∓βi) =

X
±1

ii we have

φ(K∓ωi) = φ(K∓βi)φ(K∓ωi−1
) = X

±1

ii φ(K∓ωi−1
) ∈ Cq(b+)

It then follows that φ(Kµ) ∈ Cq(b+) for all µ ∈ Λ.

Finally, we note that βi − αi = βi+1 for 1 ≤ i ≤ n. Therefore we have for

1 ≤ i ≤ n that

φ(Fi) = φ(Kβi−αiK−βi+αiFi) = φ(Kβi+1
)φ(K−βi+αiFi) ∈ Cq(b+).

Since the Kµ with µ ∈ Λ and the Fi generate Ǔ≤0
q , then im φ ⊆ Cq(b

+).

Conversely, since the X
±1

ii and X i,i+1 generate Cq(b
+) it follows that im φ =

Cq(b
+). Since the dual pairing is nondegenerate, φ is injective. Hence, φ is a

k-algebra isomorphism.

Corollary 2.14. If ω : Ǔ≥0
q → Ǔ≤0

q is the Cartan homomorphism then φ ◦ ω

restricted to U+
q induces an isomorphism onto ρ+(κ(Oq(N

+)′)).
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Proof. The Cartan homomorphism is defined by ω(Kλ) = Kλ and ω(Ei) = Fi. It

is clear that ω is an isomorphism, so φ◦ω is an isomorphism. Hence φ◦ω restricted

to U+
q is an injective k-algebra homomorphism. Moreover, from Theorem 2.13

for i = 1, 2, . . . , n

φ◦ω(Ei) = φ(Kβi+1
)φ(K−βi+αiFi) = X

−1

i+1,i+1

(
−q−1q̂−1X i,i+1

)
= −q̂−1X i,i+1X

−1

i+1,i+1.

Since ρ+(κ(Oq(N
+)′)) is generated by the X i,i+1X

−1

i+1,i+1 for i = 1, 2, . . . n then

φ ◦ ω when restricted to U+
q is an isomorphism.

Theorem 2.15. There is a k-algebra isomorphism ψ : U+
q → Oq(N

+)′ such that

ψ(Ei) = −q̂−1Xi,i+1X
−1
i+1,i+1 for 1 ≤ i ≤ n.

Proof. This follows from Corollary 2.14 and the fact that, ρ+ and κ are isomor-

phisms.

We note that since the Cartan automorphism ω is an isomorphism of U+
q onto

U+
q it also follows form Theorem 2.15 that U−q

∼= Oq(N
+)′.

In conclusion, we have shown that the algebras Oq(N
±) = Oq(B

±)co θ± ,

Oq(N
±)′ = Oq(B

±)co η± , and U±q are all isomorphic from Theorem 2.3, Theo-

rem 2.7, and Theorem 2.15 .
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Chapter 3

Quantum Unipotent Radicals of

Standard Parabolic Subgroups

Let n be a fixed positive integer.

3.1 Standard Parabolic Subgroups

Recall from the Introduction that a standard parabolic subgroup of SLn is

a group that contains a standard Borel subgroup, B±. This implies that the

matrices in a standard parabolic subgroup are in “upper (lower) block diagonal

form.” Since parabolic subgroups are closed subvarieties of SLn, we first describe

the coordinate ring of a standard parabolic, and then “quantize” this to define

quantum standard parabolic subgroups of SLn.
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Definition 3.1. A partition of n is a set P = {P1, . . . , Pk} where each Pi is a

nonempty subset of {1, . . . , n} so that

(a)
⋃k
i=1 Pi = {1, . . . , n}

(b) Pi ∩ Pj = ∅ for i 6= j

(c) For each i = 1, . . . , k − 1 each element of Pi is less than every element of

Pi+1.

The idea behind Definition 3.1, is that the partition of n determines a “block

diagonal” for matrices in SLn. Using this block diagonal, a standard parabolic

subgroup of SLn is a subgroup that is composed of matrices that are zero below

(above) the block diagonal.

Also note that this definition for a partition of n is different from the usual

definition found in combinatorics. In that definition a partition of n is a se-

quence of positive integers (n1, . . . , nk) so that n1 + · · ·nk = n. However, the

two are related – for if P is a partition of n (in the sense of Definition 3.1) then

(|P1|, . . . , |Pk|) is a partition of n in the combinatorial sense.

For each j ∈ {1, 2, . . . , |P |} denote the sets

P>j :=
⊔
l>j

Pl and P≥j :=
⊔
l≥j

Pl.

Similarly, define P<j and P≤j. For convenience if |P | = k we adopt the convention

that Pk+1 = ∅ and P0 = ∅.
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For P a partition of n, with |P | = k, define the following subsets of

{1, 2, . . . , n} × {1, 2, . . . , n}:

C+
P :=

k⋃
i=1

(Pi × P>i) and C−P :=
k⋃
i=1

(P>i × Pi).

It easy to check that C+
P =

⋃k
i=1(P<i × Pi) and C−P =

⋃k
i=1(Pi × P<i).

Therefore a parabolic group relative to a partition P is

P±P = {(aij) ∈ SLn | (i, j) ∈ C±P }.

Let xij be the coordinate functions in O(SLn) and define the following ideals

in O(SLn):

T+
P :=

〈
xij ∈ O(SLn) | (i, j) ∈ C+

P

〉
and T−P :=

〈
xij ∈ O(SLn) | (i, j) ∈ C−P

〉
.

For the coordinate rings of the standard parabolic subgroups of SLn

relative to P we have

O(P±P ) ∼= O(SLn)/T∓P .

Moreover, for the coordinate ring of the standard Levi subgroup of SLn

relative to P we have

O(LP ) ∼= O(SLn)/(T+
P + T−P ).
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3.2 Quantum Standard Parabolic Subgroups

We may now define the quantized coordinate ring of the standard parabolic

in direct analogy with the classical case.

Let P be a partition of n and define the following ideals in Oq(SLn):

I+
P :=

〈
Xij | (i, j) ∈ C+

P

〉
and I−P :=

〈
Xij | (i, j) ∈ C−P

〉
.

Definition 3.2. For P a partition of n, define the quantized coordinate rings

of the standard parabolic subgroups of SLn relative to P by

Oq(P
±
P ) := Oq(SLn)/I∓P .

We will often abuse notation and refer to the coset which contains Xij in

Oq(P
±
P ) simply by Xij. Similarly, we will refer to the coset which contains the

quantum minor [I | J ] in Oq(P
±
P ) simply by [I | J ].

We note that this definition for quantum parabolic groups is not standard;

however, it is equivalent to the definition of quantum parabolic groups given in

[25, Section 6.1].
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Examples

i. If P = {{1}, {2}, . . . , {n}} then I+
P = 〈Xij | i < j〉 and I−P = 〈Xij | i > j〉.

Therefore, Oq(P
±
P ) = Oq(B

±) from Chapter 2.

ii. If P = {{1, . . . , n}} then I±P = 0 . Therefore, Oq(P
±
P ) = Oq(Sln).

Lemma 3.3. Let P be a partition of n. For 1 ≤ i < s ≤ n and 1 ≤ j < t ≤ n if

(i, j) or (s, t) in C±P then (i, t) or (s, j) is in C±P .

Proof. Let i ∈ Pl. If (i, j) ∈ C+
P then j ∈ P>l. Since t > j then t ∈ P>l and so

(i, t) ∈ C+
P . Similarly, if (s, t) ∈ C+

P , then s ∈ Pr for some r ≥ l and t ∈ P>r. It

follows that t ∈ P>l and therefore (i, t) ∈ C+
P .

A similar proof also works for C−P .

Theorem 3.4. Let P be a partition of n. The algebras Oq(P
±
P ) are noetherian

domains.

Proof. Since Oq(SLn) is noetherian, it follows that Oq(P
±
P ) is as well.

Define the following ideals of Oq(Mn):

J+
P :=

〈
Xij | (i, j) ∈ C+

P

〉
J−P :=

〈
Xij | (i, j) ∈ C−P

〉
.

Using Lemma 3.3, if follows from [9, Lemma 3.2] that J±P are completely

prime ideals in Oq(Mn). Let D be the quantum determinant of Oq(Mn). It is

clear that Dm 6∈ J±P for all positive integers m. Therefore, by [7, Theorem 10.20]
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the extension ideal, (J±P )e in Oq(GLn) is a prime ideal. In fact, (J±P )e is in H+-

spec, where H+ is the natural torus action on Oq(GLn) (See (1.24)). From [1,

Lemma II.5.16] there is a bijection between the H+-spec of Oq(GLn) and the H-

spec of Oq(SLn). Using this bijection it follows that I±P is an H-prime of Oq(SLn).

Finally, from [1, Lemma II.5.17] we have that I±P is completely prime. Therefore,

Oq(P
±
P ) is a domain.

Preliminary Relations in Oq(P
±
P )

Lemma 3.5. Let P be a partition of n with Pi ∈ P and J ⊂ {1, . . . , n} so that

|Pi| = |J |.

(i) If J ∩ P<i 6= ∅ then [Pi | J ] ∈ I−P . Hence, [Pi | J ] = 0 in Oq(P
+
P ).

(ii) If J ∩ P>i 6= ∅ then [J | Pi] ∈ I−P . Hence, [J | Pi] = 0 in Oq(P
+
P ).

(iii) If J ∩ P>i 6= ∅ then [Pi | J ] ∈ I+
P . Hence, [Pi | J ] = 0 in Oq(P

−
P ).

(iv) If J ∩ P<i 6= ∅ then [J | Pi] ∈ I+
P . Hence, [J | Pi] = 0 in Oq(P

−
P ).

Proof. Let j ∈ P<i ∩ J . Note for all iα ∈ Pi that 〈Xiα,j〉 ⊂ I−P . Since each

monomial term of [Pi | J ] contains an element of 〈Xiα,j〉 for some iα ∈ Pi, it

follows that [Pi | J ] ∈ I−P . Hence, [Pi | J ] = 0 in Oq(P
+
P ).

The other cases are proven similarly.
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For index sets I, J ⊆ {1, 2, . . . , n} define

`(I, J) := |{(i, j) | i ∈ I, j ∈ J, i > j}| .

Recall from [24, Proposition 1.1] the following q-Laplace relation in Oq(SLn):

Theorem 3.6 ([24, Proposition 1.1 ]). Let I, J ⊆ {1, 2, . . . , n} with |I| = |J |.

For I1, I2 ⊂ I with |I1|+ |I2| = |I| then

∑
J1tJ2=J
|Jl|=|Il|

(−q)`(J1,J2)[I1 | J1][I2 | J2] =


(−q)`(I1,I2)[I | J ] if I1 ∩ I2 = ∅

0 if I1 ∩ I2 6= ∅.

For each Pi ∈ P denote

DPi := [Pi | Pi].

Theorem 3.7. For P = {P1, P2, . . . , Pk} a partition of n, we have

DP1DP2 · · ·DPk−1
DPk = D = 1

in Oq(P
±
P ) .

Proof. Let i ∈ {1, 2, . . . k + 1}. Setting I1 = P<i−1 and I2 = Pi−1 it follows from

Theorem 3.6 that

[P<i | P<i] =
∑

J1tJ2=P<i

(−q)`(J1,J2)[P<i−1 | J1][Pi−1 | J2]

86



where |J1| = |P<i−1| and |J2| = |Pi−1|. However, by Lemma 3.5 if J2 ∩ P<i−1 6= ∅

then

[Pi−1 | J2] = 0 in Oq(P
+
P ). Therefore, the only nonzero term on the right

hand side of the equality occurs when J2 = Pi−1. Hence, J1 = P<i−1. Since

`(P<i−1, Pi−1) = 0, we get the following relation in Oq(P
+
P ):

[P<i | P<i] = [P<i−1 | P<i−1][Pi−1 | Pi−1].

In particular,

D = [P<k | P<k][Pk | Pk] and [P<2 | P<2] = [P1 | P1].

Thus,

D = [P<k | P<k][Pk | Pk] = [P<k−1 | P<k−1][Pk−1 | Pk−1][Pk | Pk]

= · · · = [P1 | P1][P2 | P2] · · · [Pk−1 | Pk−1][Pk | Pk] = DP1DP2 · · ·DPk−1DPk

in Oq(P
+
P ). A similar proof also works in Oq(P

−
P ).

Theorem 3.8. Let P be a partition of n with Pi, Pj ∈ P and i < j. The following

relation holds in Oq(P
±
P ):

DPiDPj = DPjDPi .
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Proof. For iα, iβ ∈ Pi and jγ, jδ ∈ Pj relation (1.22) simplifies to XiαiβXjγjδ =

XjγjδXiαiβ in Oq(P
±
P ). The relation follows easily from this.

Corollary 3.9. For P a given partition of n we have DPi is invertible in Oq(P
±
P )

for all Pi ∈ P .

Proof. This follows directly from Theorems 3.7 and 3.8.

For P a partition of n and Pi ∈ P where the elements of Pi are placed in

increasing order, we denote the αth term of Pi by iα. Similarly, denote the βth

term of P>i by iβ. For each iα ∈ Pi and iβ ∈ P>i denote the quantum minor

MPi
iαiβ

:= [Pi | (Pi \ iα) ∪ {iβ}] .

Theorem 3.10. Let P a partition of n and Pi ∈ P . For iα ∈ Pi and iβ ∈ P>i,

the following relation holds in Oq(P
+
P ):

Xiαiβ =
∑
iγ∈Pi

−
(
−qγ−|Pi|−1

)
XiαiγM

Pi
iγ iβ

D−1
Pi
.

Proof. Set I = J = Pi ∪ {iβ} and I1 = {iα} with I2 = Pi. Since I1 ∩ I2 6= ∅,

Theorem 3.6 implies

∑
j∈J

(−q)`({j},(J\j))[iα | j][Pi | J \ j] = 0. (3.1)
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If j ∈ Pi then j = iγ for some γ. In this case it is clear that ` ({iγ}, J \ iγ) = γ−1.

Similarly, if j = iβ then `({iβ}, {J \iβ}) = `({iβ}, Pi) = |Pi|. Thus, (3.1) becomes

∑
iγ∈Pi

(−q)γ−1[iα | iγ][Pi | J \ iγ] + (−q)|Pi|[iα | iβ][Pi | Pi] = 0.

Since [iα | iγ] = Xiαiγ and [Pi | J \ iγ] = MPi
iαiγ

as well as [iα | iβ] = Xiαiβ and

[Pi | Pi] = DPi , Corollary 3.9 completes the proof.

Theorem 3.11. For P a partition of n with Pi ∈ P where iα ∈ Pi and iβ ∈ P>i,

the following relation holds in Oq(P
+
P ):

DPiM
Pi
iαiβ

= qMPi
iαiβ

DPi . (3.2)

Proof. Let iλ, iµ ∈ Pi. From [8, Lemma 5.2] we have XiλiµDPi = DPiXiλiµ .

Moreover, from [25, Lemma 4.5.1], following the proof in [8, Lemma 5.2] we have

DPiXiλiβ − qXiλiβDPi = q̂
∑
iγ∈Pi
iγ<iλ

(−q)•Xiλiγ [(Pi \ iγ) ∪ {iβ} | Pi].

Since (Pi\iγ)∪{iβ}∩P>i 6= ∅ we have from Lemma 3.5 that DPiXiλiβ = qXiλiβDPi

in Oq(P
+
P ). Since MPi

iαiβ
is the sum of monomials that contain exactly one Xiλiβ

for some iλ ∈ Pi and the other terms are Xiλiµ , it follows that MPi
iαiβ

DPi =

qDPiM
Pi
iαiβ

.
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Theorem 3.12. Let P a partition of n with Pi, Pj ∈ P where i < j. For jγ ∈ Pj

and jδ ∈ P>j with iα ∈ Pi and iβ ∈ P>i, the following relations hold in Oq(P
+
P ):

DPiM
Pj
jγjδ

= M
Pj
jγjδ

DPi (3.3)

MPi
iαiβ

DPj = qDPjM
Pi
iαiβ

if iβ ∈ Pj (3.4)

MPi
iαiβ

DPj = DPjM
Pi
iαiβ

if iβ 6∈ Pj. (3.5)

Proof.

(i) Let iλ, iµ ∈ Pi and jη ∈ Pj. For all jθ ∈ P≥j relation (1.22) simplifies to

XiλiµXjηjθ = XjηjθXiλiµ in Oq(P
+
P ). Since DPi is the sum of monomials

that contain Xiλiµ and M
Pj
jγjδ

is the sum of monomials that contain Xjηjθ , it

follows that DPi and M
Pj
jγjδ

commute and (3.3) follows.

(ii) Let iλ, iµ ∈ Pi. It is straightforward to check that XiλiµDPj = DPjXiλiµ .

(See the proof of Theorem 3.8.) Moreover, for iβ ∈ Pj, it follows from [25,

Lemma 4.5.1] following the proof in [8, Lemma 5.2] that

XiλiβDPj − qDPjXiλiβ = q̂
∑
jγ∈Pj
jγ<ıλ

(−q)•[Pj | (Pj \ jγ) ∪ {iλ}]Xjγ iβ .

Since ((Pj \ jγ) ∪ {iλ}) ∩ P<j 6= ∅, we have from Lemma 3.5 that

XiλiβDPj = qDPjXiλiβ
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in Oq(P
+
P ). Since MPi

iαiβ
is the sum of monomials that contain exactly

one Xiλiβ for some iλ ∈ Pi and the other terms are Xiλiµ , it follows that

MPi
iαiβ

DPj = qDPjM
Pi
iαiβ

.

(iii) Let iλ, iµ ∈ Pi. It is straightforward to check that XiλiµDPj = DPjXiλiµ .

Moreover, for iβ 6∈ Pj we have from relations (1.22) and (1.21) for all jγ, jδ ∈

Pj that XiλiβXjγjδ = XjγjδXiλiβ in Oq(P
+
P ). It follows that XiλiβDPj =

DPjXiλiβ in Oq(P
+
P ). Since MPi

iαiβ
is the sum of monomials that contain

exactly one Xiλiβ and the other terms are Xiλiµ , it follows that MPi
iαiβ

DPj =

DPjM
Pi
iαiβ

.

More Relations in Oq(P
±
P )

Let P be a partition of n. For all Pi ∈ P , iδ ∈ Pi, and iγ ∈ P<i define in

Oq(P
+
P )

W Pi
iγ iδ

:= [{iγ} ∪ (Pi \ iδ) | Pi].

Similarly, for all Pi ∈ P , iγ ∈ P<i, and iδ ∈ Pi define in Oq(P
−
P )

mPi
iγ iδ

:= [Pi | {iγ} ∪ (Pi \ iδ)].
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Finally, for all Pi ∈ P , iβ ∈ P>i, and iα ∈ Pi define in Oq(P
−
P )

wPiiαiβ := [(Pi \ iα) ∪ {iβ} | Pi].

We note that there are relations in Oq(P
±
P ) analogous to those in Theo-

rems 3.10, 3.11 and 3.12, involving W Pi
iγ iδ

, mPi
iγ iδ

, or wPiiαiβ . The proofs are similar

to the proofs in these theorems and we simply state the results explicitly below.

Theorem 3.13. Let P be a partition of n with Pi, Pj ∈ P where i < j.

If iα ∈ P<i and iβ ∈ Pi with jγ ∈ P<j and jδ ∈ Pj, the following relations hold

in Oq(P
+
P ):

W
Pj
jγjδ

DPj = q−1DPjW
Pj
jγjδ

W Pi
iαiβ

DPj = DPjW
Pi
iαiβ

DPiW
Pj
jγjγ

= q−1W
Pj
jγjδ

DPi if jγ ∈ Pi

DPiW
Pj
jγjδ

= W
Pj
jγjδ

DPi if jγ 6∈ Pi

If iα ∈ P<i and iβ ∈ Pi with jγ ∈ P<j and jδ ∈ Pj, the following relations hold

in Oq(P
−
P ):

m
Pj
jγjδ

DPj = q−1DPjm
Pj
jγjδ
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mPi
iαiβ

DPj = DPjm
Pi
iαiβ

DPim
Pj
jγjγ

= q−1m
Pj
jγjδ

DPi if jγ ∈ Pi

DPim
Pj
jγjδ

= m
Pj
jγjδ

DPi if jγ 6∈ Pi

If iα ∈ Pi and iβ ∈ P>i with jγ ∈ Pj and jδ ∈ P>j, the following relations hold

in Oq(P
−
P ):

DPiw
Pi
iαiβ

= qwPiiαiβDPi

DPiw
Pj
jγjδ

= w
Pj
jγjδ

DPi

wPiiαiβDPj = qDPjw
Pi
iαiβ

if iβ ∈ Pj

wPiiαiβDPj = DPjw
Pi
iαiβ

if iβ 6∈ Pj

Theorem 3.14. Let P be a partition of n and Pi ∈ P .

For iα ∈ P<i and iβ ∈ Pi, the following relation holds in Oq(P
+
P ):

Xiαiβ =
∑
iγ∈Pi

−
(
−qγ−|Pi|−1

)
D−1
Pi
W Pi
iαiγ

Xiγ iβ .

For iα ∈ Pi and iβ ∈ P<i, the following relation holds in Oq(P
−
P ):

Xiαiβ =
∑
iγ∈Pi

−
(
−qγ−|Pi|−1

)
Xiαiγm

Pi
iβiγ

D−1
Pi
.
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For iα ∈ P>i and iβ ∈ Pi, the following relation holds in Oq(P
−
P ):

Xiαiβ =
∑
iγ∈Pi

−
(
−qγ−|Pi|−1

)
D−1
Pi
wPiiγ iαXiγ iβ .

3.3 The Algebras of Coinvariants for Oq(P
±
P )

Proposition 3.15. I±P are Hopf ideals.

Proof. If |P | = 1 then I±P = 0 and the result is trivial. Therefore, we may assume

that |P | > 1.

It is clear that I+
P ⊂ ker ε. For each Xij ∈ I+

P there exists an r so that i ∈ Pr

and j ∈ P>r. Comultiplication of Xij becomes

∆(Xij) =
n∑
t=1

Xit ⊗Xtj =
∑
t∈P<r

Xit ⊗Xtj +
∑
t∈Pr

Xit ⊗Xtj +
∑
t∈P>r

Xit ⊗Xtj.

(3.6)

But for t ∈ P≤r since j ∈ P>r then Xtj ∈ I+
P . Moreover for t ∈ P>r since i ∈ Pr

then Xit ∈ I+
P . Therefore ∆(Xij) ∈ I+

P ⊗Oq(SLn) +Oq(SLn)⊗ I+
P .

Let L = {1, 2, . . . , ĵ, . . . , n} and M = {1, 2, . . . , î, . . . , n}. Ordering the el-

ements of L and M sequentially, let lk and mk be the kth terms of L and M ,

respectively. From the definition of the antipode we have

S(Xij) = qi−j[L |M ] =
∑

σ∈Symn−1

(−q)`(σ)Xl1mσ(1) · · ·Xln−1mσ(n−1)
.
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Note, for any σ ∈ Symn−1 we may interpret σ acting on M by σ(mk) = mσ(k).

Thus, to show that S(Xij) ∈ I+
P , it is sufficient to show that for any σ ∈ Symn−1

there is a k ∈ {1, 2, . . . , n − 1} so that Xlkσ(mk) ∈ I+
P . To do this, we need to

show that for all σ ∈ Symn−1 there is a k ∈ {1, 2, · · · , n − 1} so that lk ∈ P≤r

and σ(mk) ∈ P>r.

Since Xij ∈ I+
P , from above there is a natural number r so that i ∈ Pr and

j ∈ P>r. It follows that i < j and so lk ≤ mk for all k. In fact, i < mk ≤ j if and

only if lk < mk. This implies that if mk ∈ P≤r then lk ∈ P≤r.

There are two possibilities for σ ∈ Symn−1 to consider. Either there is an

mk ∈ M so that mk ∈ P≤r and σ(mk) ∈ P>r or there is not. If the former, then

from the previous discussion lk ∈ P≤r and we are done. If σ is in the latter case

then for all mk ∈ P≤r we must have σ(mk) ∈ P≤r. Consequently, for all mk ∈ P>r

we have σ(mk) ∈ P>r. Let mt = minP>r. Then i < mt ≤ j. This implies that

lt < mt. Since mt is minP>r then lt ∈ P≤r. However, since σ(mt) ∈ P>r again

we are done.

It can similarly be shown that I−P is a Hopf ideal.

It follows from Theorem 3.15 that Oq(P
±
P ) are Hopf algebras induced from

the Hopf algebra structure of Oq(SLn). For clarity we may denote the counit,

comultiplication, and antipode in Oq(P
±
P ) by εP± , ∆P± , and SP± respectively,

otherwise we will keep the usual notation of ε, ∆, and S.
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We note from (3.6) that if iα ∈ Pi then

∆P+(Xiαiβ) =
∑
iγ∈Pi

Xiαiγ ⊗Xiγ iβ +
∑
iγ∈P>i

Xiαiγ ⊗Xiγ iβ

and

∆P−(Xiαiβ) =
∑
iγ∈P<i

Xiαiγ ⊗Xiγ iβ +
∑
iγ∈Pi

Xiαiγ ⊗Xiγ iβ .

We also note that for Pi ∈ P and iβ ∈ P>i then from (1.26) we have

∆
(
MPi

iαiβ

)
= ∆ ([Pi | (Pi \ iα) ∪ {iβ}]) =

∑
|J |=|Pi|

J⊂{1,2,...,n}

[Pi | J ]⊗ [J | (Pi \ iα) ∪ {iβ}].

However, by Lemma 3.5, we have that if J ∩P<i 6= ∅ then [Pi | J ] = 0 in Oq(P
+
P ).

Thus, we have

∆P+

(
MPi

iα,iβ

)
=
∑
|J |=|Pi|
J⊂P≥i

[Pi | J ]⊗ [J | (Pi \ iα) ∪ {iβ}].

Similarly,

∆P+

(
W Pi
iγ iδ

)
=
∑
|J |=|Pi|
J⊂P≤i

[{iγ} ∪ (Pi \ iδ) | J ]⊗ [J | Pi]

∆P−

(
mPi
iγ iδ

)
=
∑
|J |=|Pi|
J⊂P≤i

[Pi | J ]⊗ [J | {iγ} ∪ (Pi \ iδ)]
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∆P−

(
wPiiαiβ

)
=
∑
|J |=|Pi|
J⊂P≥i

[(Pi \ iα) ∪ {iβ} | J ]⊗ [J | Pi].

Finally, we note that Lemma 3.5 also implies that ∆P±(DPi) = DPi ⊗DPi for all

Pi ∈ P .

Levi Subalgebra Oq(LP )

Definition 3.16. The quantized (standard) Levi algebra of Oq(SLn) rela-

tive to P is the algebra defined by

Oq(LP ) := Oq(SLn)/(I+
P + I−P ).

For iα, iβ ∈ Pi we denote the coset containing Xiαiβ in Oq(LP ) by Yiαiβ . It

is clear that Oq(LP ) is generated by {Yiαiβ | Pi ∈ P, iα, iβ ∈ Pi}. We will also

abuse notation and denote by DPi the quantum minor [Pi | Pi] in Oq(LP ).

Since I±P are Hopf ideals, Oq(LP ) is also a Hopf algebra induced from Oq(SLn).

We denote the comultiplication, counit, and antipode by ∆L, εL, and SL respec-

tively, when emphasis is needed. Specifically, for all Pi ∈ P we note that for

iα, iβ ∈ Pi

∆L(Yiαiβ) =
∑
iγ∈Pi

Yiαiγ ⊗ Yiγ iβ (3.7)
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and

∆L(DPi) = DPi ⊗DPi .

We also define the subalgebras Oq(S
±
P ) in Oq(P

±
P ) to be the algebras generated

by

{Xij | Pk ∈ P, i, j ∈ Pk}.

Oq(LP )-coactions on Oq(P
±
P )

There exist natural projection homomorphisms p± : Oq(P
±
P ) → Oq(LP ) such

that

p±(Xiαiβ) =


Yiαiβ if iα, iβ ∈ Pi some Pi ∈ P

0 otherwise.

(3.8)

It is clear that p± is surjective when restricted to Oq(S
±). Lemma 3.5 implies

that

p± ([Pi | J ]) =


DPi if J = Pi

0 otherwise

and p± ([J | Pi]) =


DPi if J = Pi

0 otherwise.

Using these maps, as well as the comultiplication maps, ∆ and identity maps,

idP± on Oq(P
±
P ), we define the maps η± : Oq(P

±
P ) → Oq(P

±
P ) ⊗ Oq(LP ) and
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θ± : Oq(P
±
P )→ Oq(LP )⊗Oq(P

±
P ) by

η± := (idP± ⊗ p±)∆ and θ± := (p± ⊗ idP±)∆.

Since p± and ∆ are k-algebra homomorphisms, so too are η± and θ±. We

note for iα ∈ Pi and jβ ∈ Pj we have

η±(Xiαjβ) =
∑
jγ∈Pj

Xiαjγ ⊗Xjγjβ θ±(Xiαjβ) =
∑
iγ∈Pi

Xiαiγ ⊗Xiγjβ .

We also note that

η+(W Pi
iγ iα

) = W Pi
iγ iβ
⊗DPi θ+(MPi

iαiβ
) = DPi ⊗M

Pi
iαiβ

η−(wPiiαiβ) = wPiiαiβ ⊗DPi θ−(mPi
iγ iα

) = DPi ⊗m
Pi
iγ iα

.

Finally,

η±(DPi) = DPi ⊗DPi and θ±(DPi) = DPi ⊗DPi .

It is easily checked that η± and θ± are comodule structure maps, i.e., Oq(P
±
P )

is a right Oq(LP )-comodule algebra via η± and similarly, Oq(P
±
P ) is a left Oq(LP )-

comodule algebra via θ±.
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Lemma 3.17. Let P be a partition of n with |P | = k. Let M =
⊗k

i=1Oq(M|Pi|).

There exists a surjective algebra homomorphism φ : M → Oq(LP ) so that 1 ⊗

· · · 1⊗Xiljl ⊗ 1 · · · ⊗ 1 7→ Y(|P<l|+il)(|P<l|+jl) for all Xiljl ∈ Oq(MPl).

Proof. For each Pi ∈ P , define a map φi : Oq(MPi) → Oq(LP ) by Xlm 7→

Y(|P<i|+l)(|P<i|+m). It is straightforward to check that these maps are k-algebra

homomorphisms.

Define the map φ :
∏k

i=1 Oq(M|Pi|) → Oq(LP ) defined by φ(a1, . . . , ak) =

φ1(a1) · · ·φk(ak). Again, it is straightforward to check that φ is a surjective

multilinear map. Moreover, if is, js ∈ Ps and lt,mt ∈ Pt with s 6= t then Yisjs and

Yltmt commute. It follows that

φ(1, · · · , Xisjs , · · · , 1)φ(1, · · · , Xltmt , · · · , 1)

= φ(1, · · · , Xltmt , · · · , 1)φ(1, · · · , Xisjs , · · · , 1)

for all Xisjs ∈ Oq(M|Ps|) and all Xltmt ∈ Oq(M|Pt|) with s 6= t. By the universal

property for the tensor products of algebras, there exists an algebra homomor-

phism φ described above.

Lemma 3.18. The map p± is an isomorphism of Oq(S
±
P ) onto Oq(LP ).

Proof. Let φ : M → Oq(LP ) be the homomorphism from Lemma 3.17 and let

p±S = p± |Oq(S±P ).
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It follows from the proof of Theorem 3.40 that GK.dimM = GK.dimOq(LP )+

1. Notice that there exists a surjective algebra homomorphism φ′ : M → Oq(S
+
P )

so that p+
Sφ
′ = φ. Since D1 ⊗ · · ·Dn − 1 ∈ kerφ′ it follows from [20, Proposition

3.15] that GK.dimOq(S
+) ≤ GK.dimM − 1 = GK.dimOq(LP ). However, since

Oq(LP ) = p+
S (Oq(S

+
P )) it is not possible for GK.dimOq(S

+) < Oq(LP ). Therefore,

ker p+
S = 0.

Similarly results hold for p−S .

Therefore, by Lemma 3.18 we may define homomorphisms r± : Oq(LP ) →

Oq(P
±
P ) by r± := (p±)−1 where p± is restricted to Oq(S

±). Notice that

r±(Yiαiβ) = Xiαiβ . (3.9)

Note, from Corollary 3.9 we have that the DPi ∈ Oq(LP ) are invertible which

implies that ∆L(D−1
Pi

) = D−1
Pi
⊗D−1

Pi
.

Oq(P
±
P ) as the Smash Product of Coinvariants

Theorem 3.19. Let A± = Oq(P
±
P )co η± then A±#Oq(LP ) ∼= Oq(P

±
P ). Similarly

letting C± = Oq(P
±
P )co θ± then Oq(LP )#C± ∼= Oq(P

±
P ).
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Proof. Let r± be the homomorphism from (3.9). Define r± : Oq(LP ) → Oq(P
±
P )

by r± = r±SL. Note we have

(r± ∗ r±)(Y ) =
∑
(Y )

r±(Y1)r±(Y2) = r±

∑
(Y )

Y1SL(Y2)

 = r±(εL(Y ) · 1) = εL(Y ) · 1

for all Y ∈ Oq(LP ). Similarly, (r± ∗ r±)(Y ) = εL(Y ) · 1. Since r±(1) = 1 then r±

is the convolution inverse of r±.

To check that r± is a right Oq(LP )-comodule map we need to show that

η±r± = (r± ⊗ id)∆L, but since r± and η± are k-algebra homomorphisms, it is

sufficient to show the equality holds on the Yij ∈ Oq(LP ). Indeed,

η±r±(Yiαiβ) = η±(Xiαiβ) =
∑
iγ∈Pi

Xiαiγ ⊗ Yiγ iβ

and

(r± ⊗ id)∆L(Yiαiβ) = (r± ⊗ id)

∑
iγ∈Pi

Yiαiγ ⊗ Yiγ iβ

 =
∑
iγ∈Pi

Xiαiγ ⊗ Yiγ iβ

for all Pi ∈ P , iα, iβ ∈ Pi. Hence, r± are right Oq(LP )-comodule homomor-

phisms. Therefore we have Oq(P
±
P ) is an H-cleft extension. Moreover, using

Theorem 1.18 we have a k-algebra isomorphism Φ± : A±#Oq(LP ) → Oq(P
±
P )

where Φ±(X#Y ) = Xr±(Y ).
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Similarly, by making the appropriate changes to the above proof, there is a

k-algebra isomorphism Ψ± : Oq(LP )#C± → Oq(P
±
P ) defined by Ψ±(Y#X) =

r±(Y )X.

Quantized Standard Unipotent Subgroups of P±P

It is natural to ask what are the coinvariants for Oq(P
±
P ) using the structure

maps η± or θ±. Note, for the elements D−1
Pi
MPi

iαiβ
∈ Oq(P

+
P ) we have

θ+(D−1
Pi
MPi

iαiβ
) = θ+(D−1

Pi
)θ+(MPi

iαiβ
) = (D−1

Pi
⊗D−1

Pi
)(DPi ⊗M

Pi
iαiβ

) = 1⊗D−1
Pi
MPi

iαiβ
.

That is, D−1
Pi
MPi

iαiβ
∈ Oq(P

+
P )co θ+ . Similarly, wPiiαiβD

−1
Pi
∈ Oq(P

−
P )co η− , W Pi

iγ iα
D−1
Pi
∈

Oq(P
+
P )co η+ , and D−1

Pi
mPi
iγ iα
∈ Oq(P

−
P )co θ− .

Define the following subalgebras of Oq(P
+
P )

Oq(N
+
>P ) : = k

〈
D−1
Pi
MPi

iαiβ
| Pi ∈ P, iα ∈ Pi, iβ ∈ P>i

〉
(3.10)

Oq(N
+
<P ) : = k

〈
W Pi
iγ iδ
D−1
Pi
| Pi ∈ P, iγ ∈ P<i, iδ ∈ Pi

〉
. (3.11)

Similarly, define the subalgebras of Oq(P
−
P )

Oq(N
−
<P ) : = k

〈
D−1
Pi
mPi
iγ iδ
| Pi ∈ P, iγ ∈ P<i, iδ ∈ Pi

〉
(3.12)

Oq(N
−
>P ) : = k

〈
wPiiαiβD

−1
Pi
| Pi ∈ P, iα ∈ P>i, iβ ∈ Pi

〉
. (3.13)
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Since η± and θ± are algebra homomorphisms, from the above discussion

Oq(N
+
>P ) and Oq(N

+
<P ) are subalgebras of Oq(P

+
P )co θ+ and Oq(P

+
P )co η+ . Sim-

ilarly, Oq(N
−
<P ) and Oq(N

−
>P ) are subalgebras of Oq(P

−
P )co θ− and Oq(P

−
P )co η− .

In fact, these algebras are exactly the coinvariants for η± and θ± which we now

show.

Theorem 3.20. Oq(N
+
>P ) = Oq(P

+
P )co θ+ and Oq(N

−
<P ) = Oq(P

−
P )co θ−. Simi-

larly, Oq(N
+
<P ) = Oq(P

+
P )co η+ and Oq(N

−
>P ) = Oq(P

−
P )co η−.

Proof. From the discussion above it follows that Oq(N
+
>P ) ⊆ Oq(P

+
P )co θ+ . The

map Ψ+ from the proof of Theorem 3.19 is an isomorphism of Oq(LP )#C+

onto Oq(P
+
P ), thus it is sufficient to show that Ψ+ maps Oq(LP )#Oq(N

+
>P ) onto

Oq(P
+
P ).

Notice that

Ψ+(Oq(LP )#Oq(N
+
>P )) = r+(Oq(LP ))Oq(N

+
>P ) ⊆ Oq(P

+
P ).

It follows that r+(Oq(LP ))Oq(N
+
>P ) is a subalgebra of Oq(P

+
P ). Therefore, we

need only show that this subalgebra contains all the Xij that generate Oq(P
+
P )

to prove the Theorem.

For iα, iβ ∈ Pi we note that

Ψ+(Yiαiβ#1) = r+(Yiαiβ) = Xiαiβ .
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Moreover, for iα ∈ Pi and iβ ∈ P>i the relation from Theorem 3.10 and Theo-

rem 3.11 gives us

Xiαiβ =
∑
iγ∈Pi

−(−qγ−|Pi|)XiαiγD
−1
Pi
MPi

iγ iβ
.

Hence,

Ψ+

∑
iγ∈Pi

−(−qγ−|Pi|)Yiαiγ#D−1
Pi
MPi

iγ iβ

 =
∑
iγ∈Pi

−(−qγ−|Pi|)r+(Yiαiγ )D
−1
Pi
MPi

iγ iβ

=
∑
iγ∈Pi

−(−qγ−|Pi|)XiαiγD
−1
Pi
MPi

iγ iβ

= Xiαiβ .

Therefore, the generators of Oq(P
+
P ) are contained in the image of Ψ+. Hence,

Oq(N
+
>P ) = Oq(P

+
P )co θ+ .

By a similar argument using Ψ− from from the proof of Theorem 3.19, and

Theorems 3.13 and 3.14 we have Oq(P
−
P )co θ− = Oq(N

−
<P ) . Finally, using Φ±

from the proof of Theorem 3.19, and Theorems 3.13 and 3.14, one can also show

that Oq(N
+
<P ) = Oq(P

+
P )co η+ and Oq(N

−
>P ) = Oq(P

−
P )co η− .

Corollary 3.21. For P a partition of n we have the following k-algebra isomor-

phisms

Oq(P
+
P ) ∼= Oq(LP )#Oq(N

+
>P ) ∼= Oq(N

+
<P )#Oq(LP )
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Oq(P
−
P ) ∼= Oq(LP )#Oq(N

−
<P ) ∼= Oq(N

−
>P )#Oq(LP ).

Proof. This follows directly from Theorem 3.19 and Theorem 3.20.

Definition 3.22. The algebras from (3.10) and (3.11) are called quantized

standard positive unipotent subgroups of P+
P . Similarly, the algebras from

(3.12) and (3.13) are called quantized standard negative unipotent sub-

groups of P−P . Collectively, they are called the quantized standard unipotent

subgroups.

3.4 Isomorphisms of Unipotent Radical Subal-

gebras

Let w0 be the longest element in Symn. For P a partition of n where |P | = k,

denote w0(P ) to be the partition of n such that w0(P )k−i+1 = w0(Pi). Note, for

any i, j ∈ {1, 2, . . . , n} with i < j then w0(i) > w0(j).

From [25, Section 3.7] there exist a transpose automorphism τ : Oq(Mn) →

Oq(Mn) defined by τ(Xij) = Xji and an anti-automorphism ξ : Oq(Mn) →

Oq(Mn) defined by ξ(Xij) = Xw0(j),w0(i). It is clear that τ 2 = id and since

w2
0 = 1 then ξ2 = id. We note from [25, Lemma 4.3.1] that for index sets
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I, J ⊂ {1, 2, . . . , n} where |I| = |J | then

τ([I | J ]) = [J | I] and ξ([I | J ]) = [w0(J) | w0(I)]. (3.14)

It is clear that τ(D) = D. Moreover, since w0({1, 2, . . . , n}) = {1, 2, . . . , n} it

follows that ξ(D) = D. Hence, τ induces an automorphism and ξ induces an anti-

automorphism of Oq(SLn), respectively. We will abuse notation and continue to

denote these maps by τ and ξ.

Lemma 3.23. Let P be a partition of n.

(i) The map τ induces algebra isomorphisms τ∓P : Oq(P
±
P )→ Oq(P

∓
P ).

(ii) The map τ induces a Hopf algebra isomorphism τL : Oq(LP )→ Oq(LP )cop.

(iii) The map ξ induces algebra isomorphisms ξ±P : Oq(P
±
P )→ Oq

(
P±w0(P )

)op

.

(iv) The map ξ induces a Hopf algebra isomorphism ξL : Oq(LP )→ Oq(LP )op.

Proof. If Xij ∈ I±P then τ(Xij) = Xji ∈ I∓P and so τ(I±P ) ⊆ I∓P . Conversely, since

τ 2 = id, then I±P ⊆ τ(I∓P ). Thus, I∓P ⊆ τ(I±P ) ⊆ I∓P and so τ(I±P ) = I∓P . Hence,

τ induces algebra homomorphisms τ∓P : Oq(P
±
P ) → Oq(P

∓
P ). Moreover, for all

Xij ∈ Oq(P
+
P ) and all Xkl ∈ Oq(P

−
P ) we get

τ+
P τ
−
P (Xij) = τ+

P (Xji) = Xij and τ−P τ
+
P (Xkl) = τ+

P (Xlk) = Xkl.

That is τ+
P τ
−
P = idP+ and τ−P τ

+
P = idP− . Therefore, τ±P are isomorphisms.
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From [25, Proposition 3.7.1 (2)] we have that τ is a Hopf algebra automor-

phism from Oq(SLn) → Oq(SLn)cop. It follows from the above discussion that

τ(I+
P + I−P ) = I+

P + I−P . Hence, from Proposition 3.15 the induced homomorphism

τL : Oq(LP )→ Oq(LP )cop is also a Hopf algebra homomorphism. Since τ 2
L = idL

we have τL is a Hopf algebra isomorphism.

Similar proofs also hold for ξ±P and ξL noting that ξ is an anti-automorphism

of Oq(SLn) and ξ(I±P ) = I±P .

Proposition 3.24. The maps τ∓P from Lemma 3.23 restricted to Oq(N
±
>P ) give

isomorphisms onto Oq(N
∓
>P ). Also, the maps τ∓P restricted to Oq(N

±
<P ) give iso-

morphisms onto Oq(N
∓
<P ). Finally, ξ±P restricted to Oq(N

±
>P ) gives

anti-isomorphisms onto Oq(N
±
<w0(P )) and ξ±P restricted to Oq(N

±
<P ) gives anti-

isomorphisms onto Oq(N
±
>w0(P )).

Proof. Let Pi ∈ P . We first note that for all DPi ∈ Oq(P
+
P ) we have τ−P (DPi) =

DPi .We also note that

τ−P

(
MPi

iαiβ

)
= τ−P ([Pi | (Pi \ iα) ∪ {iβ}]) = [(Pi \ iα) ∪ {iβ} | Pi] = wPiiαiβ

for all MPi
iαiβ
∈ Oq(P

+
P ). Hence, for DPi ,M

Pi
iαiβ
∈ Oq(N

+
>P ) it follows from Theorem

3.11 that

τ−P

(
D−1
Pi
MPi

iαiβ

)
= τ−P

(
q−1MPi

iαiβ
D−1
Pi

)
= τ−P

(
q−1MPi

iαiβ

)
τ−P
(
D−1
Pi

)
= q−1wPiiαiβD

−1
Pi
.
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Hence τ−P (Oq(N
+
>P )) ⊆ Oq(N

−
>P ).

Conversely, for wPiiαiβD
−1
Pi
∈ Oq(N

−
>P ), we have

τ−P (qD−1
Pi
MPi

iαiβ
D−1
Pi

) = wPiiαiβD
−1
Pi
.

Therefore, the generators of Oq(N
−
>P ) are contained in the image of τ−P and the

inclusion becomes an equality. Since τ−P is an isomorphism on Oq(P
+
P ), it follows

from the above that the restriction to Oq(N
+
>P ) is an isomorphism onto Oq(N

−
>P ).

The other statements are proven similarly.

Theorem 3.25. For P a partition of n we have the following k-algebra isomor-

phisms

Oq(P
+
P ) ∼= Oq(LP )cop#Oq(N

−
>P ) ∼= Oq(N

−
<P )#Oq(LP )cop

Oq(P
−
P ) ∼= Oq(LP )cop#Oq(N

+
<P ) ∼= Oq(N

+
>P )#Oq(LP )cop.

Proof. Let Pi ∈ P . We note that for all iα, iβ ∈ Pi, if r± is the map defined in

equation (3.9) we have

r∓(τL(Yiαiβ)) = r∓(Yiβiα) = Xiβiα = τ∓P (Xiαiβ) = τ∓P (r±(Yiαiβ)).

Hence, r−τL = τ−P r
+. Since τL : Oq(LP ) → Oq(LP )cop is a Hopf algebra iso-

morphism and since the antipode for Oq(LP )cop is S−1
L , from Theorem 3.23 we
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have

r−τL = r−SLτL = r−τLS
−1
L = τ−P r

+S−1
L = τ−P r

+.

Therefore, the maps τ∓P and τL are H-cleft intertwining maps.

From Proposition 3.24 the restriction of τ−P is an isomorphism of, Oq(N
+
<P )

onto Oq(N
−
<P ). Thus, the map

(τ−P #τL) : Oq(N
+
<P )#Oq(LP )→ Oq(N

−
<P )#Oq(LP )cop

is an algebra isomorphism from Proposition 1.17. It follows from Corollary 3.21

that Oq(P
+
P ) ∼= Oq(N

−
<P )#Oq(LP )cop.

The other statements follow similarly.

Theorem 3.26. All of the algebras from Theorem 3.25 and Corollary 3.21 are

isomorphic to Oq(P
±
P ) and hence, are isomorphic to each other. Moreover, all of

these algebras are anti-isomorphic to Oq

(
P±w0(P )

)
.

Proof. This follows from Lemma 3.23.

A succinct way to state Theorem 3.26 (ignoring some details) is that the quan-

tized standard parabolic group is the smash product of the quantized standard

Levi algebra and a quantized standard unipotent subgroup.
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3.5 Structure of Oq(N
+
>P )

Next, we will show that Oq(N
+
>P ) is a CGL extension, and hence can give an

explicit presentation for this algebra. To do this we first need relations involving

the quantum minors DPi ,M
Pi
iαiβ
∈ Oq(P

+
P ).

Relations with Quantum Minors in Oq(P
+
P )

Lemma 3.27. Let P be a partition of n with Pi ∈ P . For iα, iγ ∈ Pi with iα < iγ

and iβ, iδ ∈ P>i with iβ < iδ, the following relation holds in Oq(P
+
P ):

DPi [Pi | (Pi \ {iα, iγ}) ∪ {iβ, iδ}] = qMPi
iγ iβ

MPi
iαiδ
− q2MPi

iαiβ
MPi

iγ iδ
.

Proof. We first note that from [18, Theorem 2.1] for J1, J2, K ⊂ Pi∪{iβ, iδ} with

|J1|, |J2| ≤ r and |K| = 2r − |J ′| − |J ′′| > r then we have the following relation

in Oq(P
+
P ):

∑
K′tK′′=K

(−q)`(J1,K′)+`(K′,K′′)+`(K′′,J2)[Pi | K ′ t J1][Pi | J2 tK ′′] = 0. (3.15)

Case (i) |Pi| = 2 that is, Pi = {iα, iγ}.

Set

J1 = ∅ J2 = {iδ} K = {iα, iγ, iβ}

111



and r = 2. Applying (3.15) the only possibilities for K ′ and K ′′ are

K ′1 = {iα, iγ} K ′2 = {iα, iβ} K ′3 = {iγ, iβ}

K ′′1 = {iβ} K ′′2 = {iγ} K ′′3 = {iα}

and for these possibilities,

`(J1, K
′
1) + `(K ′1, K

′′
1 ) + `(K ′′1 , J2) = 0

`(J1, K
′
2) + `(K ′2, K

′′
2 ) + `(K ′′2 , J2) = 1

`(J1, K
′
3) + `(K ′3, K

′′
3 ) + `(K ′′3 , J2) = 2.

Hence, (3.15) becomes

[Pi | Pi][Pi | {iβ, iδ}]− q[Pi | {iα, iβ}][Pi | {iγ, iδ}] + q2[Pi | {iγ, iβ}][Pi | {iα, iδ}] = 0.

It follows that DPi [Pi | iβ, iδ] = qMPi
iγ iβ

MPi
iαiδ
− q2MPi

iαiβ
MPi

iγ iδ
.

Case (ii) |Pi| ≥ 3.

Set J = (Pi \ {iα, iγ}) with

J1 = J \min J J2 = {min J, iδ} K = Pi ∪ {iβ}
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and r = |Pi| and apply (3.15). Since K ′ tK ′′ = K and K ′ t J1 and K ′′ t J2, the

only possibilities for K ′ and K ′′ are

K ′1 = {min J, iα, iγ} K ′2 = {min J, iα, iβ} K ′3 = {min J, iγ, iβ}

K ′′1 = J1 ∪ {iβ} K ′′2 = J1 ∪ {iγ} K ′′3 = J1 ∪ {iα}.

To compute `(J1, K
′
1) we note that every element in J1 is greater than min J .

Therefore, there are are r − 3 elements greater than min J . Similarly, there are

r − α − 1 elements in J1 greater than iα and r − γ elements in J1 greater than

iγ. Hence

`(J1, K
′
1) = (r − 3) + (r − α− 1) + (r − γ) = 3r − α− γ − 4.

In the same way we also get

`(K ′1, K
′′
1 ) = α + γ − 5 and `(K ′′1 , J2) = r − 2.

Therefore,

`(J1, K
′
1) + `(K ′1, K

′′
1 ) + `(K ′′1 , J2) = 4r − 11.
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In a similar way, we have

`(J1, K
′
2) + `(K ′2, K

′′
2 ) + `(K ′′2 , J2) = 4r − 10

`(J1, K
′
3) + `(K ′3, K

′′
3 ) + `(K ′′3 , J2) = 4r − 9.

Since

J1 ∪K ′1 = Pi J2 ∪K ′′1 = (Pi \ {iα, iγ}) ∪ {iβ, iδ}

J1 ∪K ′2 = (Pi \ iγ) ∪ {iβ} J2 ∪K ′′2 = (Pi \ iα) ∪ {iδ}

J1 ∪K ′3 = (Pi \ iα) ∪ {iβ} J2 ∪K ′′3 = (Pi \ iγ) ∪ {iδ}

equation (3.15) simplifies to

(−q)4r−11DPi [Pi | (Pi \ {iα, iγ}) ∪ {iβ, iδ}] + (−q)4r−10MPi
iγ iβ

MPi
iαiδ

+(−q)4r−9MPi
iαiβ

MPi
iγ iδ

= 0.

It follows that DPi [Pi | (Pi \{iα, iγ})∪{iβ, iδ}] = qMPi
iγ iβ

MPi
iαiδ
− q2MPi

iαiβ
MPi

iγ iδ
.

We may give the set of all nonempty subsets of {1, 2, . . . , n} with the same

cardinality a partial order by the following rule: for I, J ∈ {1, 2, . . . , n} with

I = {i1 < i2 < · · · < ik} and J = {j1 < j2 < · · · < jk} we set I ≤ J if and only

if it ≤ jt for t = 1, 2, . . . , k.
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Let I, J,M,N ⊂ {1, 2, . . . n} so that |I| = |J | and |M | = |N |. Define the

family

{< I||M} := {S ⊂ I ∪M | S ⊃ I ∩M with |S| = |I| and S < I}

and

{> J ||N} := {T ⊂ J ∪N | T ⊃ J ∩N with |T | = |J | and T > J}.

For T ∈ {> J ||N} and S ∈ {< I||M} define

T \ := (J ∪N) \ (T ∪ (J ∩N)) and S\ := (I ∪M) \ (S ∪ (I ∩M)).

Define

L (S, I,M) := `((S \ S\) ∪ (I \M), S \ I)− `((S \ S\) ∪ (I \M), I \ S)

L \(T, J,N) := `((T \ \ T ) ∪ (J \N), T \ J)− `((T \ \ T ) ∪ (J \N), J \ T ).

For any set X we denote X \ {x} simply by X \ x.

For any nonnegative integer d recall from Definition 1.29 that

[d]−q =
(−q)d − (−q)−d

(−q)1 − (−q)−1
.
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For each l = 1, 2, . . . , k set dl = |[1, il] ∩ J | − l + 1. Using this, define

ξq(I; J) = [d1]−q[d2]−q · · · [dk]−q.

Since many of of our calculations will use [5, Theorem 6.2, and Corollary 6.3] we

remind the reader of these theorems.

Theorem 3.28 (Theorem 6.2 [5]). For I, J,M,N ⊂ {1, 2, . . . , n} with |I| = |J |

and |M | = |N |, then

q|I∩M |[I | J ][M | N ] + q|I∩M |
∑

S∈{<I||M}

λS[S | J ][S\ | N ]

= q|J∩N |[M | N ][I | J ] + q|J∩N |
∑

T∈{>J ||N}

µT [M | T \][I | T ]

where

λS = q̂|I\S|(−q)L (S,I,M)ξq(I \ S;S \ I) µT = q̂|T\J |(−q)L \(T,J,N)ξq(T \ J ; J \ T ).

Theorem 3.29 (Corollary 6.3 [5]). For I, J,M,N ⊂ {1, 2, . . . , n} with |I| = |J |

and |M | = |N |, then

q|J∩N |[I | J ][M | N ] + q|J∩N |
∑

S∈{<J ||N}

λS[I | S][M | S\]

= q|I∩M |[M | N ][I | J ] + q|I∩M |
∑

T∈{>I||M}

µT [T \ | N ][T | J ]
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where

λS = q̂|J\S|(−q)L (S,J,N)ξq(J \ S;S \ J) µT = q̂|T\I|(−q)L \(T,I,M)ξq(T \ I; I \ T ).

Theorem 3.30. Let P be a partition of n with Pi ∈ P . For iα, iγ, iδ ∈ Pi and

iβ ∈ P>i, the following relations hold in Oq(P
+
P ):

MPi
iδiβ

Xiγ iδ = q−1Xiγ iδM
Pi
iδiβ

+ q̂
δ−1∑
η=1

qη−δXiγ iηM
Pi
iηiβ

(3.16)

MPi
iαiβ

Xiγ iδ = Xiγ iδM
Pi
iαiβ

for iα 6= iδ (3.17)

DPiXiγ iδ = Xiγ iδDPi . (3.18)

Proof.

(i) Set I = Pi and J = (Pi \ iδ) ∪ {iβ} with M = {iγ} and N = {iδ}. Since

I ∩M = {iγ} and I ∪M = Pi, there is no set S with I ∪M ⊃ S ⊃ I ∩M

with |S| = |I| so that S < I. Hence, {< I||M} = ∅. Moreover, since

J ∪ N = Pi ∪ {iβ} and J ∩ N = ∅ the only sets T with T ⊂ J ∪ N and

T ⊃ J ∩N with |T | = |J | and T > J are

Tη := (Pi \ iη) ∪ {iβ}
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where η = 1, 2, . . . , δ − 1. This implies T \η = {iη}. To calculate λTη we note

that J \N = J and

Tη \ J = {iδ} J \ Tη = {iη} T \η \ Tη = {iη} Tη \ T \η = Tη.

Hence,

L \(Tη, I, J) = `(J, {iδ})− `(J, {iη}) = µ− δ + 1− (µ− η) = η − δ + 1.

Finally, since

ξq ({iδ}; {iη}) = [1]−q = 1

we get from Theorem 3.28 that

q[I | J ][M | N ] = [M | N ][I | J ] +
δ−1∑
η=1

q̂qη−δ+1[M | T \η ][I | Tη].

That is, MPi
iδiβ

Xiγ iδ = q−1Xiγ iδM
Pi
iδiβ

+ q̂
∑δ−1

η=1 q
η−δXiγ iηM

Pi
iηiβ

.

(ii) Set I = Pi and J = (Pi \ iα) ∪ {iβ} with M = {iγ} and N = {iδ}. Then

I ∩ M = {iγ} and I ∪ M = Pi. Note that there is no set S such that

S ⊃ {iγ} and S ⊂ Pi with S < I. Hence, {< I||M} = ∅. Similarly, since

J ∩N = {iδ} and J ∪N = J there is no set T where T ⊃ {iδ} with T ⊂ J
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so that T > J . Hence, {> J ||N} = ∅. Therefore, from Theorem 3.28 we

have

q[I | J ][M | N ] = q[M | N ][I | J ].

That is, MPi
iαiβ

Xiγ iδ = Xiγ iδM
Pi
iαiβ

.

(iii) Since DPi is a central element in M|Pi|, it follows that DPiXiγ iδ = Xiγ iδDPi .

Theorem 3.31. Let P be a partition of n and Pi, Pj ∈ P with i < j. For

iα, iβ, iγ, iδ ∈ Pi with jα ∈ Pj and jβ ∈ P>j, the following relations hold in

Oq(P
+
P ):

M
Pj
jαjβ

Xiγ iδ = Xiγ iδM
Pj
jαjβ

(3.19)

DPjXiαiβ = XiαiβDPj . (3.20)

Proof.

(i) Set I = Pj and M = {iγ}. Since i < j then I∪M = Pj∪{iγ} and I∩M = ∅.

Note, for every jη ∈ Pi we have jη > iγ. Hence, there is no set S so that

S ⊂ I ∪M and S ⊃ I ∩M with S < I. Therefore, {< I||M} = ∅.

Set J = (Pj \ jα) ∪ {jβ} and N = {iδ}, then J ∪ N = (Pj \ jα) ∪ {jβ, iδ}

and J ∩ N = ∅. Note for any T > J with T ⊂ J ∪ N and T ⊃ J ∩ N we

must have T \ ∩ Pj 6= ∅. Hence, [iγ | T \] ∈ I−P . Therefore, by Theorem 3.28
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we have in Oq(P
+
P )

[I | J ][M | N ] = [M | N ][I | J ].

That is, M
Pj
jαjβ

Xiγ iδ = Xiγ iδM
Pj
jαjβ

.

(ii) We note that for any jη, jθ ∈ Pj that XiαiβXjηjθ = XjηjθXiαiβ in Oq(P
+
P ).

Consequently, DPjXiαiβ = XiαiβDPj .

Theorem 3.32. Let P be a partition of n and Pi, Pj ∈ P with i < j. For

jγ, jδ ∈ Pj and iα ∈ Pi and iβ ∈ P>i the following relations hold in Oq(P
+
P ):

MPi
iαiβ

Xjγjδ = XjγjδM
Pi
iαiβ

for iβ ∈ P<j (3.21)

MPi
iαiβ

Xjγjδ = XjγjδM
Pi
iαiβ

+ q̂Xjγ iβM
Pi
iαjδ

for iβ ∈ Pj and iβ < jδ (3.22)

MPi
iαiβ

Xjγjδ = qXjγjδM
Pi
iαiβ

for iβ ∈ Pj and iβ = jδ (3.23)

MPi
iαiβ

Xjγjδ = XjγjδM
Pi
iαiβ

for iβ > jδ (3.24)

DPiXjγjδ = XjγjδDPi . (3.25)

Proof. Set I = Pi and M = {jγ}. Since i < j then I ∪ M = Pi ∪ {jγ} and

I ∩M = ∅. Note for every iη ∈ Pi that iη < jγ. Hence, there is no set S so that

S ⊂ I ∪M and S ⊃ I ∩M = ∅ with S < I. Therefore, {< I||M} = ∅. Thus,
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Theorem 3.28 simplifies to

[I | J ][M | N ] = q|J∩N |[M | N ][I | J ] + q|J∩N |
∑

T∈{>J ||N}

λT [M | T \][I | T ].

We now consider each case separately.

(i) Set J = (Pi \ iα) ∪ {iβ} and N = {jδ}, then J ∪ N = (Pi \ iα) ∪ {iβ, jδ}

and J ∩ N = ∅. Notice that since iβ ∈ P<j then iβ < jδ. Therefore, any

T > J with T ⊂ J ∪ N and T ⊃ J ∩ N must have T \ ∩ P<j 6= ∅. Hence,

[iα | T \] ∈ I−P . That is, in Oq(P
+
P ) the relation from Theorem 3.28 simplifies

to

[I | J ][M | N ] = [M | N ][I | J ],

i.e., MPi
iαiβ

Xjγjδ = XjγjδM
Pi
iαiβ

.

(ii) Set J = (Pi \ iα) ∪ {iβ} and N = {jδ}. For each iη ∈ J denote

Tη = (J \ iη) ∪ {jδ}

It is clear that Tη > J for all iη ∈ J and that {> J ||N} consists of exactly

these Tη. Now, for iη 6= iβ we have T \η = {iη} and T \η ∩ P<j 6= ∅. Hence,

[jγ | T \η ] ∈ I−P . Therefore, the relation from Theorem 3.28 simplifies in
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Oq(P
+
P ) to

[I | J ][M | N ] = [M | N ][I | J ] + λTβ [M | T \β][I | Tβ]

where Tβ = (J \ iβ) ∪ {jδ}. To calculate λTβ we note that J \N = J and

Tβ \ J = {jδ} J \ Tβ = {iβ} T \β \ Tβ = {iβ} Tβ \ T \β = Tβ

Therefore, λTβ = q̂ since

L \(Tβ, J,N) = `(J ; {jδ})− `(J ; {iβ}) = 0 and ξq({jδ}; {iβ}) = [1]−q = 1.

It follows that MPi
iαiβ

Xjγjδ = XjγjδM
Pi
iαiβ

+ q̂Xjγ iβM
Pi
iαjδ

.

(iii) Set J = (Pi \ iα) ∪ {iβ} and N = {jδ}. Hence, J ∪ N = (Pi \ iα) ∪ {iβ}

and J ∩ N = {iβ}. We note that for any set T with T ⊂ J ∪ N and

T ⊃ J∩N = {iβ} so that T > J we have T \∩P<j 6= ∅. Hence, [iα | T \] ∈ I−P .

Therefore, in Oq(P
+
P ) the relation from Theorem 3.28 simplifies to

[I | J ][M | N ] = q[M | N ][I | J ].

That is, MPi
iαiβ

Xjγjδ = qXjγjδM
Pi
iαiβ

.
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(iv) Set J = (Pi \ iα) ∪ {iβ} and N = {jδ}. Hence, J ∪N = (Pi \ iα) ∪ {jδ, iβ}

and J ∩N = ∅. We note that for any set T with T ⊂ J ∪N and T ⊃ J ∩N

so that T > J we have T \ ∩ P<j 6= ∅. Hence, [iα | T \] ∈ I−P . Therefore, in

Oq(P
+
P ) the relation from Theorem 3.28 simplifies to

[I | J ][M | N ] = [M | N ][I | J ].

That is, MPi
iαiβ

Xjγjδ = XjγjδM
Pi
iαiβ

.

(v) Since DPi is a central element of M|Pi| it follows that DPiXjγjδ = XjγjδDPi .

Theorem 3.33. Let P be a partition of n with Pi ∈ P . For iα, iγ ∈ Pi with

iα < iγ and iβ, iδ ∈ P>i with iβ < iδ, the following relations hold in Oq(P
+
P ):

MPi
iαiβ

MPi
iαiδ

= qMPi
iαiδ

MPi
iαiβ

(3.26)

MPi
iαiβ

MPi
iγ iβ

= q−1MPi
iγ iβ

MPi
iαiβ

(3.27)

MPi
iαiβ

MPi
iγ iδ

= MPi
iγ iδ
MPi

iαiβ
(3.28)

MPi
iαiδ

MPi
iγ iβ

= MPi
iγ iβ

MPi
iαiδ
− q̂MPi

iαiβ
MPi

iγ iδ
. (3.29)
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Proof. Set I = M = Pi. We first note that since {< I||M} = ∅, Theorem 3.28

simplifies to

q|Pi|[I | J ][M | N ] = q|J∩N |[M | N ][I | J ] + q|J∩N |
∑

T∈{>J ||N}

µT [M | T \][I | T ].

(i) Set J = (Pi \ iα)∪{iβ} and N = (Pi \ iα)∪{iδ}. Note that J ∩N = (Pi \ iα)

and J ∪N = (Pi \ iα) ∪ {iβ, iδ}. Hence, the only possibilities for T so that

|T | = |J | with T ⊂ J ∪N and T ⊃ J ∩N are J and N . Since N > J , the

relation above simplifies to

q|Pi|[I | J ][M | N ] = q|Pi|−1[M | N ][I | J ] + q|Pi|−1q̂[M | J ][I | N ].

However, since N ∩ P>i 6= ∅ then [I | N ] = 0 in Oq(P
+
P ) by Lemma 3.5. It

follows that MPi
iαiβ

MPi
iαiδ

= qMPi
iαiδ

MPi
iαiβ

.

(ii) Set J = (Pi \ iα) ∪ {iβ} and N = (Pi \ iγ) ∪ {iβ}. Note that J ∩ N =

(Pi \ {iα, iγ}) ∪ {iβ} and J ∪N = Pi ∪ {iβ}. The only possibilities for T so

that |T | = |J | with T ⊂ J ∪N and T ⊃ J ∩N are J and N . None of these

sets have the property that T > J so {> J ||N} = ∅. Hence, by Theorem

3.28 we get

q|Pi|[I | J ][M | N ] = q|Pi|−1[M | N ][I | J ].

It follows that MPi
iαiβ

MPi
iγ iδ

= q−1MPi
iγ iβ

MPi
iαiβ

.
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(iii) Set J = (Pi \ iα) ∪ {iβ} and N = (Pi \ iγ) ∪ {iδ}. Note that J ∩ N =

(Pi \ {iα, iγ}) and J ∪N = Pi ∪ {iβ, iδ}. Hence, the only possibilities for T

so that |T | = |J | with T ⊂ J ∪ N and T ⊃ J ∩ N with the property that

T > J are

T1 = (Pi \ iα) ∪ {iδ} or T2 = (Pi \ {iα, iγ}) ∪ {iβ, iδ}.

To compute λTi we note that J \N = {iγ, iβ} and

T \1 = (Pi \ iγ) ∪ {iβ} T \2 = Pi

T \1 \ T1 = {iα, iβ} T \2 \ T2 = {iα, iγ}

T1 \ J = {iδ} T2 \ J = {iδ}

J \ T1 = {iβ} J \ T2 = {iγ}.

Therefore,

L \(T1, J,N) = `({iα, iγ, iβ}, {iδ})− `({iα, iγ, iβ}, {iβ}) = 0 + 0 = 0

L \(T2, J,N) = `({iα, iγ, iβ}, {iδ})− `({iα, iγ, iβ}, {iγ}) = 0− 1 = −1.

Similarly,

ξq(T1 \ J ; J \ T1) = 1 and ξq(T2 \ J ; J \ T2) = 1.
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Thus, λT1 = q̂ and λT2 = q̂(−q)−1. Therefore, by Theorem 3.28 we have

q|Pi|[I | J ][M | N ] = q|Pi|−2[M | N ][I | J ]

+ q|Pi|−2q̂[M | T \1 ][I | T1] + q|Pi|−2(−q−1)q̂[M | T \2 ][I | T2].

That is,

MPi
iαiβ

MPi
iγ iδ

= q−2MPi
iγ iδ
MPi

iαiβ
+ q−2q̂MPi

iγ iβ
MPi

iαiδ
+ q−2(−q−1)q̂DPi [Pi | T2].

However, by Lemma 3.27 we have DPi [Pi | T2] = qMPi
iγ iβ

MPi
iαiδ
−q2MPi

iαiβ
MPi

iγ iδ
.

Therefore

MPi
iαiβ

MPi
iγ iδ

= q−2MPi
iγ iδ
MPi

iαiβ
+ q−2q̂MPi

iγ iβ
MPi

iαiδ

+ q−2(−q−1)q̂
(
qMPi

iγ iβ
MPi

iαiδ
− q2MPi

iαiβ
MPi

iγ iδ

)
= q−2MPi

iγ iδ
MPi

iαiβ
+ q−2q̂MPi

iγ iβ
MPi

iαiδ
− q−2q̂MPi

iγ iβ
MPi

iαiδ

+ q−1q̂MPi
iαiβ

MPi
iγ iδ

= q−2MPi
iγ iδ
MPi

iαiβ
+MPi

iαiβ
MPi

iγ iδ
− q−2MPi

iαiβ
MPi

iγ iδ
.

It follows that MPi
iαiβ

MPi
iγ iδ

= MPi
iγ iδ
MPi

iαiβ
.

(iv) Set J = (Pi \ iα)∪{iδ} and N = (Pi \ iγ)∪{iβ}. Then J ∪N = Pi ∪{iβ, iδ}

and J ∩N = Pi \ {iα, iγ}. The only possibility for T so that |T | = |J | with
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T ⊂ J ∪N and T ⊃ J ∩N with the property that T > J is

T = (Pi \ {iα, iγ}) ∪ {iβ, iδ}.

To compute λT we note J \N = {iγ, iδ} and

T \ = Pi T \ \ T = {iα, iγ} T \ J = {iβ} J \ T = {iγ}.

Therefore we get

L \(T, I, J) = `({iα, iγ, iδ}, {iβ})− `({iα, iγ, iβ}, {iγ}) = 1− 1 = 0.

Similarly, we have

ξq(T \ J ; J \ T ) = 1.

Therefore, λT = q̂ and we have the relation

q|Pi|[I | J ][M | N ] = q|Pi|−2[M | N ][I | J ] + q|Pi|−2q̂[M | T \][I | T ].

That is,

MPi
iαiδ

MPi
iγ iβ

= q−2MPi
iγ iβ

MPi
iαiδ

+ q−2q̂DPi [Pi | T ].
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However, by Lemma 3.27 we have DPi [Pi | T ] = qMPi
iγ iβ

MPi
iαiδ
−q2MPi

iαiβ
MPi

iγ iδ
.

Substituting this into the equation, we have

MPi
iαiδ

MPi
iγ iβ

= q−2MPi
iγ iβ

MPi
iαiδ

+ q−2q̂
(
qMPi

iγ iβ
MPi

iαiδ
− q2MPi

iαiβ
MPi

iγ iδ

)
= q−2MPi

iγ iβ
MPi

iαiδ
+ q−1q̂MPi

iγ iβ
MPi

iαiδ
− q̂MPi

iαiβ
MPi

iγ iδ

= MPi
iγ iβ

MPi
iαiδ
− q̂MPi

iαiβ
MPi

iγ iδ
.

For Pi, Pj ∈ P with iα ∈ Pi and jδ, jγ ∈ Pj denote

M
Pj Pi
(iαjδ),jγ

:=

|Pj |−γ∑
η=1

(−q)1−ηM
Pj
jγ+η ,jδ

MPi
iαjγ+η

+ (−q)γ−|Pj |DPjM
Pi
iαjδ

 .

Theorem 3.34. Let P be a partition of n and Pi, Pj ∈ P with i < j. For iα ∈ Pi

with iβ ∈ P>i and jγ ∈ Pj with jδ ∈ P>j, the following relations hold in Oq(P
+
P ):

MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

for iβ ∈ P<j (3.30)

MPi
iαiβ

M
Pj
jγjδ

= qM
Pj
jγjδ

MPi
iαiβ

for iβ ∈ Pj but iβ 6= jγ (3.31)

MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

+ q̂M
Pj Pi
(iαjδ),jγ

for iβ ∈ Pj and iβ = jγ (3.32)

MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

+ q̂M
Pj
jγ iβ

MPi
iαjδ

for iβ ∈ P>j and iβ < jδ (3.33)

MPi
iαiβ

M
Pj
jγjδ

= qM
Pj
jγjδ

MPi
iαiβ

for iβ ∈ P>j and iβ = jδ (3.34)

MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

for iβ ∈ P>j and iβ > jδ. (3.35)

128



Proof. Set I = Pi and M = Pj. Since i < j it follows that {< I||M} = ∅.

Set J = (Pi \ iα) ∪ {iβ} and N = (Pj \ jγ) ∪ {jδ}. For T ∈ {> J ||N} since

Pi ⊂ P<j, if Pi∩T \ 6= ∅ then [Pj | T \] = 0 in Oq(P
+
P ) by Lemma 3.5 (i). Since we

are concerned with relations in Oq(P
+
P ) we need only consider the T ∈ {> J ||N}

so that Pi ∩ T \ = ∅, which is equivalent to T ⊃ J ∩ Pi. Hence, Theorem 3.28

simplifies in Oq(P
+
P ) to

[I | J ][M | N ] = q|J∩N |[M | N ][I | J ] + q|J∩N |
∑

T∈{>J ||N}
T⊃J∩Pi

λT [M | T \][I | T ]. (3.36)

We now consider each case individually.

(i) First note that J ∩N = ∅ and J ∩Pi = Pi \ iα. If iβ 6∈ T then iβ ∈ T \. Since

iβ ∈ P<j then T \ ∩ P<j 6= ∅, hence [M | T \] = 0 in Oq(P
+
P ) by Theorem

3.5 (i). If iβ ∈ T then since we are only considering T ⊃ J ∩ Pi then this

implies that T = J . Since T 6> J equation (3.36) simplifies to

[I | J ][M | N ] = [M | N ][I | J ].

That is, MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

.

(ii) Since iβ ∈ Pj then iβ = jη for some jη ∈ Pj except iβ 6= jγ. Hence,

J ∪N = (Pi \ iα)∪ (Pj \ jγ)∪{jδ} and J ∩N = {iβ}. Notice, since we need

only consider T ⊃ J ∩ Pi = Pi \ iα and since T ⊃ {iβ} then we must have
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T = J . However, since T 6> J equation (3.36) simplifies to

[I | J ][M | N ] = q[M | N ][I | J ].

That is, MPi
iαiβ

M
Pj
jγjδ

= qM
Pj
jγjδ

MPi
iαiβ

.

(iii) Note that J ∪N = (Pi \ iα)∪Pj ∪{jδ} and J ∩N = ∅. It is straightforward

to verify that the only T ∈ {> J ||N} with T ⊃ J ∩ Pi are

Tη := (Pi \ iα) ∪ {jγ+η}

where η = 1, 2, . . . , |Pj| − γ and

Tδ := (Pi \ iα) ∪ {jδ}.

To compute λTη we note J \N = J and

T \η = (Pj \ jγ+η) ∪ {jδ} T \η \ Tη = Tη Tη \ J = {jγ+η} J \ Tη = {jγ}.

Therefore,

L \(Tη, J,N) = `((Pi \ iα) ∪ (Pj \ jγ+η) ∪ {jδ}{jγ+η})

− `(((Pi \ iα) ∪ Pj \ jγ+η) ∪ {jδ}, {jγ})
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= |Pj| − (γ + η) + 1− (|Pj| − γ) = 1− η

and ξq(Ti \ J ; J \ Ti) = 1. Thus, λTη = q̂(−q)1−η. Similarly, to compute λTδ

we note that

T \δ = Pj T \δ \ Tδ = Pj Tδ \ J = {jδ} J \ Tδ = {jγ}.

Therefore,

L \(Tδ, I, J) = `((Pi \ iα) ∪ Pj, {jδ})− `((Pi \ iα) ∪ Pj, {jγ})

= 0− (|Pj| − γ) = γ − |Pj|.

and ξq(Tδ \ J ; J \ Tδ) = 1. Thus, λTδ = q̂(−q)γ−|Pj |. Therefore, equation

(3.36) becomes

[I | J ][M | N ] = [M | N ][I | J ]

+

|Pj |−γ∑
η=1

q̂(−q)1−η[M | T \η ][I | Tη] + q̂(−q)γ−|Pj |[M | T \δ ][I | Tδ].

That is,

MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ
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+ q̂

|Pj |−γ∑
η=1

(−q)1−ηM
Pj
jγ+η ,jδ

MPi
iαjγ+η

+ (−q)γ−|Pj |DPjM
Pi
iαjδ


= M

Pj
jγjδ

MPi
iαiβ

+ q̂M
Pj Pi
(iαjδ),jγ

.

(iv) We have J ∪N = (Pi \ iα) ∪ (Pj \ jγ) ∪ {iα, jβ} and J ∩N = ∅. Since i < j

then iβ < jε for all jε ∈ Pj. Similarly, since iβ ∈ P>i then iβ > iη for all

iη ∈ Pi. Since iβ < jδ the only element in J ∪N larger than iβ is jδ. Since

we need only consider T ∈ {> J ||N} such that T ⊃ J ∩ Pi it is clear that

the only such T is T = (Pi \ iα) ∪ {jδ}.

Now, to compute λT we note

T \ = Pj \ {iβ} T \ \ T = T T \ J = {jδ} J \ T = {iβ}.

Hence,

L \(T, I, J) = `((Pi \ iα) ∪ (Pj \ jγ) ∪ {iβ}, {jδ})

− `((Pi \ iα) ∪ (Pj \ jγ) ∪ {iβ}, {iβ}) = 0

and ξq(T \J ; J \T ) = 1. Therefore, λT = q̂. Thus, equation (3.36) simplifies

to become

[I | J ][M | N ] = [M | N ][I | J ] + q̂[M | T \][I | T ].
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That is, MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

+ q̂M
Pj
jγ iβ

MPi
iαjδ

.

(v) Since jβ = lδ we have J ∪N = (Pi \ iα)∪ (Pj \ jγ)∪ {jδ} and J ∩N = {jδ}.

Since J ∩ Pi = Pi \ iα ⊂ T and since we must have jδ ∈ T then T = J .

Therefore, equation (3.36) simplifies to

[I | J ][M | N ] = q[M | N ][I | J ].

That is, MPi
iαiβ

M
Pj
jγjδ

= qM
Pj
jγjδ

MPi
iαiβ

.

(vi) We have J ∪ N = (Pi \ iα) ∪ (Pj \ jγ) ∪ {jδ, iβ} and J ∩ N = ∅. Since

i < j and iβ > jδ then iβ is the largest element in J ∪ N . Since iβ ∈ J if

iβ 6∈ T then T 6> J . Hence, iβ ∈ T . Moreover, since we need only consider

T ∈ {> J ||N} so that J ∩ Pi ⊂ T and iβ ∈ T with |T | = |J | then T = J .

Therefore, equation (3.36) above simplifies to

[I | J ][M | N ] = [M | N ][I | J ].

That is, MPi
iαiβ

M
Pj
jγjδ

= M
Pj
jγjδ

MPi
iαiβ

.
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Relations in Oq(N
+
>P )

Let P be a partition of n. Now that we have some relations in Oq(P
+
P )

involving the quantum minors DPi and MPi
iαiβ

, we can deduce some relations in

Oq(N
+
>P ).

For Pi ∈ P with iα ∈ Pi and iβ ∈ P>i denote the generators of Oq(N
+
>P ) by

xPiiαiβ := D−1
Pi
MPi

iαiβ
.

Moreover, for Pi, Pj ∈ P with iα ∈ Pi and jδ, jγ ∈ Pj denote

x
Pj Pi
(iαjδ),jγ

:= D−1
Pj
D−1
Pi
M

Pj Pi
(iαjδ),jγ

.

It follows from (3.3) and Theorem 3.8 that

x
Pj Pi
(iαjδ),jγ

=

|Pj |−γ∑
η=1

(−q)1−ηx
Pj
jγ+ηjδ

xPiiαjγ+η + (−q)γ−|Pj |xPiiαjδ .

Theorem 3.35. Let P be a partition of n with Pi ∈ P .

For iα, iγ ∈ Pi with iα < iγ and iβ, iδ ∈ P>i with iβ < iδ, the following relations

hold in Oq(N
+
>P ):

xPiiαiβx
Pi
iαiδ

= qxPiiαiδx
Pi
iαiβ

(3.37)

xPiiαiβx
Pi
iγ iβ

= q−1xPiiγ iβx
Pi
iαiβ

(3.38)
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xPiiαiβx
Pi
iγ iδ

= xPiiγ iδx
Pi
iαiβ

(3.39)

xPiiαiδx
Pi
iγ iβ

= xPiiγ iβx
Pi
iαiδ
− q̂xPiiαiβx

Pi
iγ iδ
. (3.40)

Let Pj ∈ P with i < j let iα ∈ Pi with iβ ∈ P>i and jγ ∈ Pj with jδ ∈ P>j. The

following relations hold in Oq(N
+
>P ):

xPiiαiβx
Pj
jγjδ

= x
Pj
jγjδ

xPiiαiβ for iβ ∈ P<j (3.41)

xPiiαiβx
Pj
jγjδ

= x
Pj
jγjδ

xPiiαiβ for iβ ∈ Pj but iβ 6= jγ (3.42)

xPiiαiβx
Pj
jγjδ

= q−1x
Pj
jγjδ

xPiiαiβ + q−1q̂x
Pj Pi
(iαjδ),jγ

for iβ ∈ Pj and iβ = jγ (3.43)

xPiiαiβx
Pj
jγjδ

= x
Pj
jγjδ

xPiiαiβ + q̂x
Pj
jγ iβ

xPiiαjδ for iβ ∈ P>j and iβ < jδ (3.44)

xPiiαiβx
Pj
jγjδ

= qx
Pj
jγjδ

xPiiαiβ for iβ ∈ P>j and iβ = jδ (3.45)

xPiiαiβx
Pj
jγjδ

= x
Pj
jγjδ

xPiiαiβ for iβ ∈ P>j and iβ > jδ. (3.46)

Proof. For iα, iγ ∈ Pi with iα < iγ and iβ, iδ ∈ P>i with iβ < iδ by Theorem 3.11,

DPi commutes with MPi
iαiβ

, MPi
iαiγ

,MPi
iγ iβ

, and MPi
iγ iδ

Hence, relations (3.37) – (3.40)

follow from (3.26) – (3.29).

Now, for Pi, Pj ∈ P with i < j and iα ∈ Pi with iβ ∈ P>i and jγ ∈ Pj with

jδ ∈ P>j by Theorem 3.11 and relation (3.5) we have that DPi commutes with

M
Pj
jγjδ

and DPj commutes with MPi
iαiβ

. Moreover, by Theorem 3.8, DPi commute

with DPj . Hence, relations (3.41) follows from (3.30) and relations (3.44) – (3.46)

follow from (3.33) – (3.35).
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(i) For relation (3.42) using relations (3.31), (3.3), and (3.4) along with Theo-

rem 3.8 we have

xPiiαiβx
Pj
jγjδ

= D−1
Pi
MPi

iαiβ
D−1
Pj
M

Pj
jγjδ

= q−1D−1
Pi
D−1
Pj
MPi

iαiβ
M

Pj
jγjδ

= q−1D−1
Pj
D−1
Pi
MPi

iαiβ
M

Pj
jγjδ

= D−1
Pj
D−1
Pi
M

Pj
jγjδ

MPi
iαiβ

= D−1
Pj
M

Pj
jγjδ

D−1
Pi
MPi

iαiβ
= x

Pj
jγjδ

xPiiαiβ .

(ii) For relation (3.43) using relations (3.32), (3.3), and (3.4) along with Theo-

rem 3.8 we have

xPiiαiβx
Pj
jγjδ

= D−1
Pi
MPi

iαiβ
D−1
Pj
M

Pj
jγjδ

= q−1D−1
Pi
D−1
Pj
MPi

iαiβ
M

Pj
jγjδ

= q−1D−1
Pj
D−1
Pi
MPi

iαiβ
M

Pj
jγjδ

= q−1D−1
Pj
D−1
Pi

(
M

Pj
jγjδ

MPi
iαiβ

+ q̂M
Pj Pi
(iαjδ),jγ

)
= q−1D−1

Pj
D−1
Pi
M

Pj
jγjδ

MPi
iαiβ

+ q−1q̂D−1
Pj
D−1
Pi
M

Pj Pi
(iαjδ),jγ

= q−1D−1
Pj
M

Pj
jγjδ

D−1
Pi
MPi

iαiβ
+ q−1q̂D−1

Pj
D−1
Pi
M

Pj Pi
(iαjδ),jγ

= q−1x
Pj
jγjδ

xPiiαiβ + q−1q̂x
Pj Pi
(iαjδ),jγ

.
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Action of Oq(LP ) on Oq(N
+
>P )

Recall that there is a natural right Oq(LP ) action on Oq(N
+
>P ) given by

x.Y =
∑
(Y )

r+(SL(Y1))xr+(Y2)

for Y ∈ Oq(LP ) and x ∈ Oq(N
+
>P ).

Theorem 3.36. Let P be a partition of n with Pk, Pi, Pj ∈ P with k < i < j.

For iα, iγ, iδ ∈ Pi and iβ,∈ P>i and kλ, kµ ∈ Pk and jσ, jθ ∈ Pj, the right Oq(LP )

action on Oq(N
+
>P ) satisfies the following:

xPiiαiβ .Ykλkµ = δkλkµx
Pi
iαiβ

(3.47)

xPiiαiβ .Yiγ iδ = δiγ iδx
Pi
iαiβ

for iα 6= iδ (3.48)

xPiiαiβ .Yiγ iδ = q−1δiγ iδx
Pi
iαiβ

+ q̂
δ−1∑
ε=1

qε−δδiγ iεx
Pi
iεiδ

for iα = iδ (3.49)

xPiiαiβ .Yjσjθ = δjσjθx
Pi
iαiβ

for iβ ∈ P<j (3.50)

xPiiαiβ .Yjσjθ = δjσjθx
Pi
iαiβ

+ q̂δjσiβx
Pi
iαjθ

for iβ ∈ Pj and iβ < jθ (3.51)

xPiiαiβ .Yjσjθ = qδjσjθx
Pi
iαiβ

for iβ ∈ Pj and iβ = jθ (3.52)

xPiiαiβ .Yjσjθ = δjσjθx
Pi
iαiβ

for iβ > jθ. (3.53)
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Proof. From Theorem (3.31) and from the comultiplication (3.7) we have

xPiiαiβ .Ykλkµ =
∑
kη∈Pk

r+(SL(Ykλkη))D
−1
Pi
MPi

iαiβ
r+(Ykηkµ)

=
∑
kη∈Pk

r+(SL(Ykλkη))D
−1
Pi
MPi

iαiβ
Xkηkµ

=
∑
kη∈Pk

r+(SL(Ykλkη))XkηkµD
−1
Pi
MPi

iαiβ

=
∑
kη∈Pk

r+(SL(Ykλkη))r
+(Ykηkµ)D−1

Pi
MPi

iαiβ

= r+(εL(Ykλkµ))xPiiαiβ = δkλkµx
Pi
iαiβ

.

If iα 6= iδ, from equations (3.17) and (3.18) and from the comultiplication

(3.7) we have

xPiiαiβ .Yiγ iδ =
∑
iη∈Pi

r+(SL(Yiγ iη))D
−1
Pi
MPi

iαiβ
r+(Yiηiδ)

=
∑
iη∈Pi

r+(SL(Yiγ iη))D
−1
Pj
MPi

iαiβ
Xiηiδ

=
∑
iη∈Pi

r+(SL(Yiγ iη))XiηiδD
−1
Pi
MPi

iαiβ

=
∑
iη∈Pi

r+(SL(Yiγ iη))r
+(Yiηiδ)D

−1
Pi
MPi

iαiβ

= r+(εL(Yiγ iδ))x
Pi
iαiβ

= δiγ iδx
Pi
iαiβ

.
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If iα = iδ, from equations (3.16) and (3.18) and from the comultiplication

(3.7) we have

xPiiαiβ .Yiγ iδ =
∑
iη∈Pi

r+(SL(Yiγ iη))D
−1
Pi
MPi

iαiβ
Xiηiδ

=
∑
iη∈Pi

r+(SL(Yiγ iη))D
−1
Pi

(
q−1XiηiδM

Pi
iαiβ

+ q̂

δ−1∑
ε=1

qε−δXiηiεM
Pi
iεiβ

)

=
∑
iη∈Pi

(
q−1r+(SL(Yiγ iη))XiηiδD

−1
Pi
MPi

iαiβ

)

+
∑
iη∈Pi

(
q̂
δ−1∑
ε=1

qε−δr+(SL(Yiγ iη))XiηiεD
−1
Pi
MPi

iεiβ

)

=
∑
iη∈Pi

q−1r+(SL(Yiγ iη))XiηiδD
−1
Pi
MPi

iαiβ

+ q̂
δ−1∑
ε=1

qε−δ
∑
iη∈Pi

r+(SL(Yiγ iη))XiηiεD
−1
Pi
MPi

iεiβ

= r+(εL(Yiγ iδ))q
−1D−1

Pi
MPi

iαiβ
+ q̂

δ−1∑
ε=1

qε−δr+(εL(Yiγ iε))D
−1
Pi
MPi

iεiβ

= δiγ iδq
−1xPiiαiβ + q̂

δ−1∑
ε=1

qε−δδiγ iεx
Pi
iεiδ
.

If iβ ∈ P<j, using equations (3.21) and (3.25) and from the comultiplication

(3.7) we have

xPiiαiβ .Yjσjθ =
∑
jη∈Pj

r+(SL(Yjσjη))D
−1
Pi
MPi

iαiβ
Xjηjθ =

∑
jη∈Pj

r+(SL(Yjσjη))XjηjθD
−1
Pi
MPi

iαiβ

= r+(εL(Yjσjθ))D
−1
Pi
MPi

iαiβ
= δjσjθx

Pi
iαiβ

.
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If iβ ∈ Pj and iβ < jθ, using equations (3.22) and (3.25) and from the comul-

tiplication (3.7) we have

xPiiαiβ .Yjσjθ =
∑
jη∈Pj

r+(SL(Yjσjη))D
−1
Pi
MPi

iαiβ
Xjηjθ

=
∑
jη∈Pj

r+(SL(Yjσjη))D
−1
Pi

(
XjηjθM

Pi
iαiβ

+ q̂XjηiβM
Pi
iαjθ

)
=
∑
jη∈Pj

(
r+(SL(Yjσjη))XjηjθD

−1
Pi
MPi

iαiβ
+ q̂r+(SL(Yjσjη))XjηiβD

−1
Pi
MPi

iαjθ

)
= r+(εL(Yjσjθ))D

−1
Pi
MPi

iαiβ
+ q̂r+(εL(Yjσiβ))D−1

Pi
MPi

iαjθ

= δjσjθx
Pi
iαiβ

+ q̂δjσiβx
Pi
iαjθ

.

If iβ ∈ Pj and iβ = jθ, using equations (3.23) and (3.25) and from the comul-

tiplication (3.7) we have

xPiiαiβ .Yjσjθ =
∑
jη∈Pj

r+(SL(Yjσjη))D
−1
Pi
MPi

iαiβ
Xjηjθ =

∑
jη∈Pj

qr+(SL(Yjσjη))XjσjθD
−1
Pi
MPi

iαiβ

= qr+(εL(Yjσjθ))D
−1
Pi
MPi

iαiβ
= qδjσjθx

Pi
iαiβ

.

If iβ > jθ, using equations (3.24) and (3.25) and from the comultiplication

(3.7) we have

xPiiαiβ .Yjσjθ =
∑
jη∈Pj

r+(SL(Yjσjη))D
−1
Pi
MPi

iαiβ
Xjηjθ =

∑
jη∈Pj

r+(SL(Yjσjη))XjηjθD
−1
Pi
MPi

iαiβ

= r+(εL(Yjσjθ))D
−1
Pi
MPi

iαiβ
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= δjσjθx
Pi
iαiβ

.

GK-dimension for Oq(N
+
>P )

Having found some relations in Oq(N
+
>P ) we wish to find the GK-dimension

for Oq(N
+
>P ). This will help us in showing that Oq(N

+
>P ) is a CGL extension. To

find the GK-dimension, we first need to return to Oq(P
±
P ) and find bounds on

the GK-dimension for Oq(P
±
P ) as well as finding the GK-dimension for Oq(LP ).

We may define an ordering on the generators of Oq(SLn) by the following rule:

for Xij, Xkl ∈ Oq(SLn) we have Xkl <rlex Xij if and only if k < i or k = i and

l > j. We may similarly define another ordering by Xkl <clex Xij if and only if

l < j or l = j and k > i. Note that <rlex and <clex are in fact well-orderings on

the generators of Oq(SLn). Let S+
P be the sequence of generators from I+

P ordered

sequentially using <rlex. Similarly, let S−P be the sequence of generators from I−P

ordered sequentially using <clex. Observe that

|S+
P | =

k∑
i=1

|Pi||P>i| and |S−P | =
k∑
i=1

|Pi||P<i|. (3.54)

Definition 3.37 (Definition 4.1.13 [22]). A sequence of elements a1, . . . , aN in a

ring R is a normalizing sequence if for each j ∈ {0, 1, 2, . . . , N −1} the image

of aj+1 in R/
∑j

i=1 aiR is normal and
∑N

i=1 aiR 6= R. The ideal generated by

such a sequence is called polynormal.
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Let R = Oq(SLn). For each element Xij of S+
P , let

R+
ij :=

∑
Xkl<rlexXij

XklR.

We note that <rlex induces an inclusion on the right ideals Rij from Lemma 3.38.

That is, R+
ij ⊂ R+

st if and only if Xij <rlex Xst. We may similarly define right

ideals R−ij from S−P using <clex.

Lemma 3.38. Let P be a partition of n. The ideals I±P are polynormal. Moreover,

I+
P + I−P is also a polynormal ideal.

Proof. If |P | = 1 then S±P = ∅. Since I±P = 0 the statement holds trivially.

Therefore, we suppose that |P | > 1.

To show S+
P is a normalizing sequence, we need to show that the image of

each Xij ∈ S+
P is normal in Oq(SLn)/R+

ij. To do this, it sufficient to show that

Xij is normal modulo R+
ij with respect to each of the generators of Oq(SLn).

Let Xst ∈ Oq(SLn). If i ≤ s and j ≥ t or i ≥ s and j ≤ t, then Xij commutes

or q-commutes with Xst and Xij normalizes Xst. Therefore, we only need to

consider the case where Xij and Xst are “NW” or “SE” from each other. That

is, if i < s and j < t or i > s and j > t.

If i < s and j < t then XijXst = XstXij + q̂XitXsj. In this case we have

Xit <rlex Xij and so XitXsj ∈ R+
ij. Similarly, if i > s and j > t then again

XstXij = XijXst+ q̂XsjXit and Xsj <rlex Xij and so XsjXit ∈ R+
ij. It follows that
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Xij is normal modulo R+
ij with respect to any generator of Oq(SLn). Therefore,

S+ is a normalizing sequence and I+
P is a polynormal ideal.

A similar proof also works for S−P replacing <rlex with <clex and R+
ij with R−ij.

Finally, denote S+
P ∪ S

−
P the sequence of elements of S+

P followed by those of

S−P . To show S+
P ∪ S

−
P is a normalizing sequence, since S+

P and S−P are already

normalizing sequences, it is sufficient to show that the lowest element of S−P , Xn1,

is normal modulo the right ideal generated by S+
P to prove the Lemma. However,

since Xn1 is normalizes all the generators of Oq(SLn) this is trivial.

Let A±P be the right ideals in Oq(SLn) generated by S±P .

Proposition 3.39. Let P be a partition of n. All the R±ij are two-sided ideals.

Moreover, the A±P are two-sided ideals equal to I±P .

Proof. If |P | = 1 then S±P = ∅. It follows that the right ideal generated by S±P

and I±P are both 0 and the theorem holds. Therefore we suppose that |P | > 1.

We proceed inductively to show that all the right ideals R+
ij are two-sided.

It is trivial that R+
1n is a two-sided ideal. Let Xi′j′ be the immediate successor

to Xij in S+
P and suppose that R+

ij is a two-sided ideal. We wish to show that

R+
i′j′ is also a two-sided ideal. Since Xi′j′ is the immediate successor of Xij we

have R+
i′j′ = XijR + R+

ij from the definition of R+
i′j′ . Moreover, it follows from

Lemma 3.38 that RXij ⊆ XijR + R+
ij. Therefore, since R+

ij is a two-sided ideal
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we have

RR+
i′j′ = R(XijR +R+

ij) ⊆ (RXij)R +R+
ij ⊆ (XijR +R+

ij)R +R+
ij ⊆ R+

i′j′ .

That is, R+
i′j′ is a two-sided ideal. Hence, all the R+

ij are two sided ideals. A

similar proof replacing <rlex with <clex can also show that the R−ij are two-sided

ideals.

It is clear that

A+
P = XmaxP<k maxPkR +R+

maxP<k maxPk
.

In a similar way to above, since R+
maxP<k maxPk

is a two-sided ideal, we have that

A+
P is also a two-sided ideal. A similar proof also shows A−P is a two-sided ideal.

Since A±P are two-sided ideals and since I±P are the ideals generated by S±P ,

they are equal.

Theorem 3.40. For P a partition of n with |P | = k we have

GK.dim
(
Oq(P

+
P )
)
≥ (n2 − 1)−

k∑
i=1

|Pi||P<i|

GK.dim (Oq(P
−
P )) ≥ (n2 − 1)−

k∑
i=1

|Pi||P>i|.
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Moreover,

GK.dim (Oq(LP )) = (n2 − 1)−
k∑
i=1

|Pi||P<i| −
k∑
i=1

|Pi||P>i|.

Proof. Since the quantum determinant D is a central element of Oq(SLn) [19, 9.2

Proposition 9], it follows from [22, Theorem 4.1.13 ] and [1, Corollary II.9.18]

that GK.dim (Oq(SLn)) = n2 − 1.

By Lemma 3.38 and [22, Theorem 4.1.13] we have

height (I±P ) ≤ height (I±P /A
±
P ) + |S±P |.

However, by Proposition 3.39 we have that A±P = I±P . Therefore,

height (I−P ) ≤
k∑
i=1

|Pi||P<i| and height (I+
P ) ≤

k∑
i=1

|Pi||P>i|.

Since, by [1, Corollary II.9.18] we have that I±P satisfies Tauvel’s height formula,

i.e.

GK.dim (Oq(SLn)) = height (I±P ) + GK.dim (Oq(SLn/I
±
P )),
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it immediately follows that

GK.dim (Oq(P
+
P )) ≥ (n2 − 1)−

k∑
i=1

|Pi||P<i|

GK.dim (Oq(P
−
P )) ≥ (n2 − 1)−

k∑
i=1

|Pi||P>i|.

Moreover, using Lemma 3.38 and [22, Theorem 4.1.13] we have

height (I+
P + I−P ) ≤ |S+

P ∪ S
−
P |.

By a similar argument to above, it follows that

GK.dim (Oq(LP )) ≥ (n2 − 1)−
k∑
i=1

|Pi||P<i| −
k∑
i=1

|Pi||P>i|. (3.55)

Let φ be the map described in Lemma 3.17. Let Di be the quantum de-

terminant of Oq(M|Pi|). Using Theorem 3.7 it is easy to verify that that D1 ⊗

· · · ⊗ Dk − 1 ∈ kerφ. Moreover, since each Oq(M|Pi|) is a domain we have that

D1⊗ · · · ⊗Dk − 1 is a regular element. Therefore, from [20, Proposition 3.15] we

have

GK.dim (M/ kerφ) + 1 ≤ GK.dim (M).

Since Oq(M|Pi|) is a finitely generated iterated skew polynomial ring, it follows

from [13, Lemma 2.2] that GK.dimOq(M|Pi|) = |Pi|2. Hence, [20, Lemma 3.10]
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implies

GK.dim (M) ≤
k∑
i=1

|Pi|2.

Since Oq(LP ) ∼= M/ kerφ we have

GK.dim (Oq(LP )) ≤
k∑
i=1

|Pi|2 − 1.

Since
k∑
i=1

|Pi|2 = n2 −
k∑
i=1

|Pi||P<i| −
k∑
i=1

|Pi||P>i|

it follows that

GK.dim (Oq(LP )) ≤ (n2 − 1)−
k∑
i=1

|Pi||P<i| −
k∑
i=1

|Pi||P>i|. (3.56)

Combining (3.55) and (3.56) gives us the desired result.

Corollary 3.41. Let P be a partition of n. We have that

GK.dim (Oq(N
+
>P )) ≥

k∑
i=1

|Pi||P>i|.

Proof. Let W be the subspace spanned by the Yiαiβ ∈ Oq(LP ) and 1. Note that

W is a generating subspace for Oq(LP ). Similarly, if V is the subspace spanned

by the generators xPiiαiβ of Oq(N
+
>P ) and 1, then V is a generating subspace for

Oq(N
+
>P ). From Theorem 3.36 we have V.Oq(LP ) ⊆ V . Moreover, from (3.7) we
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have ∆(W ) ⊆ W ⊗Oq(LP ). Hence, Lemma 1.25 implies

GK.dim (Oq(N
+
>P )) ≥ GK.dim (Oq(P

+
P ))−GK.dim (Oq(LP )).

Theorem 3.40 then gives the desired result.

If |P | = 1 then Oq(P
±
P ) ∼= Oq(SLn) and therefore the quantum unipotent

subgroups are trivial. From now on, unless indicated otherwise, we assume |P | >

1.

We may give the set of generators of Oq(N
+
>P ) a total ordering, <N+ by the

following rule: xPiiαiβ <N+ x
Pj
jγjδ

if and only if i < j, or i = j and iα > jγ, or i = j

and iα = jγ and iβ < jδ.

For Pj ∈ P with jγ ∈ Pj and jδ ∈ P>j define

R
Pj
jγjδ

:= k
〈
xPiiαiβ | x

Pi
iαiβ

<N+ x
Pj
jγjδ

〉
and R

Pj
jγjδ

:= k
〈
xPiiαiβ | x

Pi
iαiβ
≤N+ x

Pj
jγjδ

〉
.

We note that xPiiαiβ <N+ x
Pj
jγjδ

if and only if R
Pi
iαiβ
⊂ R

Pj
jγjδ

. It follows that all

the algebras R
Pj
jγjδ

form an ascending chain of subalgebras of Oq(N
+
>P ). Denote

this chain by RP . We note that if Ri = R
Pj
jγjδ

is the ith term in the chain, then

Ri−1 = R
Pj
jγjδ

and

Ri = Ri−1

〈
x
Pj
jγjδ

〉
.
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Consequently, the length of this chain is
∑

Pi∈P |Pi||P>i|. We also note that R1 is

a polynomial ring in one variable and the highest element in the chain is Oq(N
+
>P ).

Lemma 3.42. Let P be a partition of n. Let Pj ∈ P and jγ ∈ Pj and jδ ∈ P>j.

For each generator xPiiαiβ of R
Pj
jγjδ

there exist scalars λPiiα,iβ so that

x
Pj
jγjδ

xPiiαiβ − λ
Pi
iα,iβ

xPiiαiβx
Pj
jγjδ
∈ RPj

jγjδ
.

Proof. Let xPiiαiβ be a generator of R
Pj
jγjδ

. We note that for i < j and iα ∈ Pi that

xPiiαjδ ∈ R
Pj
jγjδ

. Moreover, for η ∈ {1, . . . , |Pj| − γ} we have that x
Pj
jγ+ηjδ

, xPiiαjγ+η ∈

R
Pj
jγjδ

. It follows that x
Pj Pj
(iαjδ),jγ

∈ RPj
jγjδ

. Therefore, by (3.43) we have

x
Pj
jγjδ

xPiiαiβ − qx
Pi
iαiβ

x
Pj
jγjδ
∈ RPj

jγjδ
.

For iα, iβ ∈ Pi with iα > jγ and iβ < jδ we have that xPijγ iβ , x
Pi
iαjδ
∈ R

Pj
jγjδ

.

Therefore, by (3.40) we have x
Pj
jγjδ

xPiiαiβ − x
Pi
iαiβ

x
Pj
jγjδ
∈ RPj

jγjδ
.

For i < j with iα ∈ Pi and iβ ∈ P>j with iβ < jδ we have that xPiiαjδ , x
Pj
jγ iβ
∈

R
Pj
jγjδ

. Therefore, by (3.44) we have x
Pj
jγjδ

xPiiαiβ − x
Pi
iαiβ

x
Pj
jγjδ
∈ RPj

jγjδ
.

Finally, for all other cases it follows from Theorem 3.35 that there exist scalars

λPiiα,iβ so that

x
Pj
jγjδ

xPiiαiβ − λ
Pi
iα,iβ

xPiiαiβx
Pj
jγjδ

= 0 ∈ RPj
jγjδ

.
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Theorem 3.43. Let P be a partition of n. We have that

GK.dim (Oq(N
+
>P )) =

k∑
i=1

|Pi||P>i|.

Moreover, for all Pj ∈ P and jγ ∈ Pj and jδ ∈ P>j we have

GK.dim
(
R
Pj
jγjδ

)
= 1 + GK.dim

(
R
Pj
jγjδ

)
.

Proof. We note that using Lemma 3.42, the proof of [22, Proposition 8.6.7] can

be modified to show that

GK.dim
(
R
Pj
jγjδ

)
≤ 1 + GK.dim

(
R
Pj
jγjδ

)
.

Hence, each subalgebra in the chain RP has GK-dimension at most one more

than the subalgebra immediately preceding it. Since the lowest element of the

chain RP is a polynomial ring in one variable, the GK-dimension of this algebra

is 1. Moreover, since the highest element of the chain is Oq(N
+
>P ), it follows that

the 1 ≤ GK.dim (Oq(N
+
>P ) ≤

∑k
i=1 |Pi||P>i|. By, Corollary 3.41 we then have

that GK.dim (Oq(N
+
>P )) =

∑k
i=1 |Pi||P>i|. It immediately follows that

GK.dim
(
R
Pj
jγjδ

)
= 1 + GK.dim

(
R
Pj
jγjδ

)
.
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H-action on Oq(N
+
>P )

Lemma 3.44. Let P be a partition of n. The H-action on Oq(SLn) from (1.25)

induces a rational H-action by algebra automorphisms on Oq(P
+
P ). Moreover,

this action has the property that

(u, v).DPi =

(∏
iλ∈Pi

uiλviλ

)
DPi

(u, v).MPi
iαiβ

=

∏
iλ∈Pi

uiλ
∏
iµ∈Pi
iµ 6=iα

viµ

 viβM
Pi
iαiβ

for (u, v) ∈ H and for all Pi ∈ P with iα ∈ Pi and iβ ∈ P>i.

Proof. We first note that I±P is generated by H-eigenvectors. It follows that there

are induced actions of H on Oq(P
±
P ). From [1, Theorem II.2.7], the induced action

H-action on Oq(P
±
P ) is rational.

If |Pi| = k, we have

(u, v).DPi = (u, v).[Pi | Pi] = (u, v).

 ∑
σ∈Symk

(−q)`(σ)Xi1iσ(1) · · ·Xikiσ(k)


=

∑
σ∈Symk

(−q)`(σ)ui1viσ(1)Xi1iσ(1) · · ·uikviσ(k)Xikiσ(k)

=
∑

σ∈Symk

(
k∏
j=1

uijviσ(j)

)
(−q)`(σ)Xi1iσ(1) · · ·Xikiσ(k) .
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However, since for any σ ∈ Symk

k∏
j=1

uijviσ(j) =
k∏
j=1

uijvij =
∏
iλ∈Pi

uiλviλ

we have

∑
σ∈Symk

(
k∏
j=1

uijviσ(j)

)
(−q)`(σ)Xi1iσ(1) · · ·Xikiσ(k) =

(∏
iλ∈Pi

uiλviλ

)
DPi .

In the same way we also have,

(u, v).MPi
iαiβ

=

∏
iλ∈Pi

uiλ
∏
iµ∈Pi
iµ 6=iα

viµ

 viβM
Pi
iαiβ

.

Proposition 3.45. Let P be a partition of n. For Pi ∈ P with iα ∈ Pi and

iβ ∈ P>i then

(u, v).xPiiαiβ = v−1
iα
viβx

Pi
iαiβ

for all (u, v) ∈ H.

Proof. From Lemma 3.44 it follows that

(u, v).D−1
Pi

=

(∏
iλ∈Pi

uiλviλ

)−1

D−1
Pi
.
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Therefore, we have

(u, v).xPiiαiβ = (u, v).D−1
Pi
MPi

iαiβ

=

(∏
iλ∈Pi

uiλviλ

)−1

D−1
Pi

∏
iλ∈Pi

uiλ
∏
iµ∈Pi
iµ 6=iα

viµ

 viβM
Pi
iαiβ

= v−1
iα
viβD

−1
Pi
MPi

iαiβ
= v−1

iα
viβx

Pi
iαiβ

.

Let P be a partition of n. For each h ∈ H define the map τh : Oq(N
+
>P ) →

Oq(P
+
P ) by

τh(x) := h.x (3.57)

for all x ∈ Oq(N
+
>P ). Since the H-action is by algebra homomorphisms, τh is an

algebra homomorphism. Since each generator of Oq(N
+
>P ) is an H-eigenvector,

τh is an automorphism of Oq(N
+
>P ).

For Pj ∈ P and jγ ∈ Pj and jδ ∈ P>j define h
Pj
jγjδ

= (u, v) ∈ H where

uk :=


q−2 if k = jγ

1 if k = jδ

q−1 otherwise

and vk :=


q2 if k = jγ

1 if k = jδ

q otherwise.
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We note that the restriction of τ
h
Pj
jγjδ

to R
Pj
jγjδ

is an automorphism of R
Pj
jγjδ

.

We denote this restriction by τ
Pj
jγjδ

. Using Proposition 3.45 it is straightforward

to verify for each generator xPiiαiβ ∈ R
Pj
jγjδ

that

τ
Pj
jγjδ

(xPiiαiβ) =



q−1xPiiαiβ if i = j and iα = jγ

q−1xPiiαiβ if i = j and iβ = jδ

xPiiαiβ if i = j and iα > jγ and iβ > jδ

xPiiαiβ if i = j and iα > jγ and iβ < jδ

xPiiαiβ if i < j and iβ ∈ P<j

xPiiαiβ if i < j and iβ ∈ Pj but iβ 6= jγ

qxPiiαiβ if i < j and iβ ∈ Pj and iβ = jγ

xPiiαiβ if i < j and iβ ∈ P>j and iβ < jδ

q−1xPiiαiβ if i < j and iβ ∈ P>j and iβ = jδ

xPiiαiβ if i < j and iβ ∈ P>j and iβ > jδ.

(3.58)

Define the map δ
Pj
jγjδ

on R
Pj
jγjδ

by

δ
Pj
jγjδ

(x) := x
Pj
jγjδ

x− τPjjγjδ(x)x
Pj
jγjδ

(3.59)
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for all x ∈ RPj
jγjδ

. Since τ
Pj
jγjδ

is defined using the H-action, it is straightforward to

check that δ
Pj
jγjδ

is a τ
Pj
jγjδ

-derivation and from the relations of Theorem 3.35 that

δ
Pj
jγjδ

(xPiiαiβ) =



0 if i = j and iα = jγ

0 if i = j and iβ = jδ

0 if i = j and iα > jγ and iβ > jδ

−q̂xPijγ iβx
Pi
iαjδ

if i = j and iα > jγ and iβ < jδ

0 if i < j and iβ ∈ P<j

0 if i < j and iβ ∈ Pj but iβ 6= jγ

−q̂xPj Pi(iαjδ),jγ
if i < j and iβ ∈ Pj and iβ = jγ

−q̂xPiiαjδx
Pj
jγ iβ

if i < j and iβ ∈ P>j and iβ < jδ

0 if i < j and iβ ∈ P>j and iβ = jδ

0 if i < j and iβ ∈ P>j and iβ > jδ

(3.60)

for xPiiαiβ ∈ R
Pj
jγjδ

.

Having defined an automorphism τ
Pj
jγjδ

and a τ
Pj
jγjδ

-derivation δ
Pj
jγjδ

on R
Pj
jγjδ

, it

should not be surprising that R
Pj
jγjδ

is a skew polynomial ring over R
Pj
jγjδ

.

155



Theorem 3.46. Let P be a partition of n. For Pj ∈ P and jγ ∈ Pj and jδ ∈ P>j

then

R
Pj
jγjδ

= R
Pj
jγjδ

[x
Pj
jγjδ

; τ
Pj
jγjδ

, δ
Pj
jγjδ

].

Proof. Since τ
Pj
jγjδ

is an automorphism and δ
Pj
jγjδ

is a τ
Pj
jγjδ

-derivation, it follows that

there exists a skew polynomial ring R
Pj
jγjδ

[b
Pj
jγjδ

; τ
Pj
jγjδ

, δ
Pj
jγjδ

]. Since R
Pj
jγjδ

has a finite

dimensional generating subspace V such that τ
Pj
jγjδ

(V ) = V and δ
Pj
jγjδ

)(V ) ⊆ V 2,

it follows from [13, Lemma 2.2] that

GK.dim (R
Pj
jγjδ

[b
Pj
jγjδ

; τ
Pj
jγjδ

, δ
Pj
jγjδ

]) = GK.dim (R
Pj
jγjδ

) + 1. (3.61)

From (3.59) there exists an algebra homomorphism φ : R
Pj
jγjδ

[b
Pj
jγjδ

; τ
Pj
jγjδ

, δ
Pj
jγjδ

]→

R
Pj
jγjδ

which is the identity on R
Pj
jγjδ

and b
Pj
jγjδ
7→ x

Pj
jγjδ

.

It is clear that φ is surjective. Suppose kerφ 6= 0. In view of (3.61), [20,

Proposition 3.15] implies that

GK.dim (R
Pj
jγjδ

) ≤ GK.dim (R
Pj
jγjδ

).

Since this contradicts Theorem 3.43, we must have that kerφ = 0. It follows that

φ is an isomorphism.
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Properties of δ
Pj
jγjδ

and τ
Pj
jγjδ

Lemma 3.47. Let P be a partition of n. For Pj ∈ P with jγ ∈ Pj and jδ ∈ P>j

we have

δ
Pj
jγjδ

τ
Pj
jγjδ

= q2τ
Pj
jγjδ

δ
Pj
jγjδ

.

Proof. Since τ
Pj
jγjδ

is an automorphism, this is equivalent to (τ
Pj
jγjδ

)−1δ
Pj
jγjδ

τ
Pj
jγjδ

=

q2δ
Pj
jγjδ

. Since both sides of the equation are τ
Pj
jγjδ

-derivations, we can apply

Lemma 1.28, and therefore need to show equality on the generators of R
Pj
jγjδ

.

Let xPiiαiβ a generator of R
Pj
jγjδ

. For i = j with iα > jγ and iβ < jδ, from (3.58)

and (3.60)

q2τ
Pj
jγjδ

δ
Pj
jγjδ

(xPiiαiβ) = q2(−q̂)τPjjγjδ(x
Pi
jγ iβ

)τ
Pj
jγjδ

(xPiiαjδ)

= q2q−2(−q̂)xPijγ iβx
Pi
iαjδ

= δ
Pj
jγjδ

τ
Pj
jγjδ

(xPiiαiβ).

Similarly, for i < j and iβ ∈ P>j then

q2τ
Pj
jγjδ

δ
Pj
jγjδ

(xPiiαiβ) = q2(−q̂)τPjjγjδ(x
Pi
iαjδ

)τ
Pj
jγjδ

(x
Pj
jγ iβ

)

= q2q−2(−q̂)xPiiαjδx
Pj
jγ iβ

= δ
Pj
jγjδ

τ
Pj
jγjδ

(xPiiαiβ).
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Moreover, for i < j and iβ ∈ Pj and iβ = jγ then

q2τ
Pj
jγjδ

δ
Pj
jγjδ

(xPiiαiβ)

= q2(−q̂)

|Pj |−γ∑
η=1

(−q)1−ητ
Pj
jγjδ

(x
Pj
jγ+ηjδ

)τ
Pj
jγjδ

(xPiiαjγ+η) + (−q)γ−|Pj |τPjjγjδ(x
Pi
iαjδ

)


= q2(−q̂)q−1

|Pj |−γ∑
η=1

(−q)1−ηx
Pj
jγ+ηjδ

xPiiαjγ+η + (−q)γ−|Pj |xPiiαjδ


= δ

Pj
jγjδ

(qxPiiαiβ) = δ
Pj
jγjδ

τ
Pj
jγjδ

(xPiiαiβ).

Finally, for any other xPiiαiβ ∈ V , since τ
Pj
jγjδ

(xPiiαiβ) is a scalar multiple of xPiiαiβ we

have q2τ
Pj
jγjδ

δ
Pj
jγjδ

(xPiiαiβ) = 0 and δ
Pj
jγjδ

τ
Pj
jγjδ

(xPiiαiβ) = 0.

Proposition 3.48. Let P be a partition of n. For all Pj ∈ P and jγ ∈ Pj and

jδ ∈ P>j we have that δ
Pj
jγjδ

is locally nilpotent on R
Pj
jγjδ

.

Proof. By Lemma 1.32, it is sufficient to show that (δ
Pj
jγjδ

)2(xPiiαiβ) = 0 for all xPiiαiβ

a generator of R
Pj
jγjδ

. If i = j and iα > jγ and iβ < jδ then from (3.60) we have

δ
Pj
jγjδ

(xPijγ iβx
Pi
iαjδ

) = τ
Pj
jγjδ

(xPijγ iβ)δ
Pj
jγjδ

(xPiiαjδ) + δ
Pj
jγjδ

(xPijγ iβ)xPiiαjδ = 0.

Similarly, if i < j and iβ ∈ P>j and iβ < jδ then

δ
Pj
jγjδ

(xPiiαjδx
Pj
jγ iβ

) = τ
Pj
jγjδ

(xPiiαjδ)δ
Pj
jγjδ

(xPijγ iβ) + δ
Pj
jγjδ

(xPiiαjδ)x
Pj
jγ iβ

= 0.
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Moreover, if i < j and iβ ∈ Pj with iβ = jγ then

δ
Pj
jγjδ

(x
Pj Pi
(iαjδ),jγ

) = δ
Pj
jγjδ

|Pj |−γ∑
η=1

(−q)1−ηx
Pj
jγ+ηjδ

xPiiαjγ+η

+ (−q)γ−|Pj |δPjjγjδ(x
Pi
iαjδ

)

=

|Pj |−γ∑
η=1

(−q)1−η(τ
Pj
jγjδ

(x
Pj
jγ+ηjδ

)δ
Pj
jγjδ

(xPiiαjγ+η) + δ
Pj
jγjδ

(x
Pj
jγ+ηjδ

)xPiiαjγ+η)

= 0.

Thus (δ
Pj
jγjδ

)2(xPiiαiβ) = 0 in the above cases. Since, δ
Pj
jγjδ

(xPiiαiβ) = 0 for all other

xPiiαiβ , we are done.

Oq(N
+
>P ) is a CGL Extension

Theorem 3.49. Let P be a partition of n. Let X+
P be the sequence of generators

of Oq(N
+
>P ) ordered sequentially using <N+. Let xi = x

Pj
jγjδ

be the ith term in the

sequence with τi = τ
Pj
jγjδ

and δi = δ
Pj
jγjδ

. The ring Oq(N
+
>P ) is a CGL extension

equal to

k[x1][x2; τ2, δ2] . . . [xm; τm, δm].

Proof. Let Ri = R
Pj
jγjδ

and Ri = R
Pj
jγjδ

. Since Ri = Ri−1, Theorem 3.46 gives us

that Ri = Ri−1[xi; τi, δi]. Since Oq(N
+
>P ) = Rm, repeatedly applying the theorem

gives us that Oq(N
+
>P ) is the skew polynomial ring above.
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Notice that

h
Pj
jγjδ

.x
Pj
jγjδ

= q−2x
Pj
jγjδ

.

The fact that Oq(N
+
>P ) is a CGL extension follows from this fact, the definition

of τi, (3.58), Proposition 3.45, and Proposition 3.48.

Theorem 3.50. The relations from Theorem 3.35 give a presentation of Oq(N
+
>P ).

Proof. This is a direct consequence of Theorem 3.49.

Notice that as q → 1 we recover the relations for the coordinate ring for the

unipotent radical of a a standard parabolic group in SLn.

Definition 3.51. Let R be a domain. A prime element in R is any nonzero

normal element p ∈ R such that Rp is a completely prime ideal. A noncommu-

tative unique factorization domain (UFD) is a domain R such that each

nonzero prime ideal of R contains a prime element.

The fact that Oq(N
+
>P ) is a GCL extension gives us many useful properties

for this ring. For instance, from [21, Theorem 3.7] it follows that Oq(N
+
>P ) is

a noncommutative UFD. It also follows from [10, Theorem 4.7] that Oq(N
+
>P )

satisfies the Dixmier-Moeglin Equivalence.

In fact, using the isomorphisms from Section 3.4, we have the following result.

Theorem 3.52. Let P be a partition of n. The rings Oq(N
±
>P ) and Oq(N

±
<P ) are

noncommutative UFDs and satisfy the Dixmier-Moeglin Equivalence.
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