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ON THE UNIQUENESS OF THE FOLIATION OF SPHERES
OF CONSTANT MEAN CURVATURE

IN ASYMPTOTICALLY FLAT 3-MANIFOLDS

JIE QING AND GANG TIAN

1. Introduction

In the description of the isolated gravitational system in general relativity a
space-like time-slice has the structure of a complete Riemannian 3-manifold with
an asymptotically flat end. Such an asymptotically flat end is diffeomorphic to
R3 \ B1(0), and the metric on it asymptotically approaches the Euclidean metric
near infinity:

gij = (1 +
2m

r
)δij + O(r−2),

where r is the Euclidean distance in R3. The constant m can be interpreted as the
total mass of the isolated system and is referred to as an ADM mass in literature
[ADM]. It has also been established in [B] that with reasonable conditions ADM
mass can be geometrically defined independent of the choices of a coordinate system
at infinity.

Often it is better to consider an asymptotically flat end as a perturbation of
the static time-slice of the Schwarzchild space-time. Let us start with a precise
definition of asymptotically flat 3-manifolds adopted from [HY] for our discussions
in this note as follows:

Definition 1.1. A complete Riemannian 3-manifold (M, g) is said to be an asymp-
totically flat 3-manifold with mass m if there is a compact domain K of M such
that M \K is diffeomorphic to R3\B1(0) and the metric g in this coordinate system
is given as

gij(x) = (1 +
m

2|x| )
4δij + Tij(x),

for all x ∈ R3 \ B1(0) with a constant C such that

(1.1) |∂lTij |(x) ≤ C|x|−2−l, 1 ≤ l ≤ 4,

where ∂ denotes partial derivatives with respect to the Euclidean coordinates.

The existence of a unique foliation of spheres of constant mean curvature near
the end in an asymptotically flat manifold is a very important question. Among
many applications, the unique foliation of spheres of constant mean curvature can
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1092 JIE QING AND GANG TIAN

be used to construct a geometrically canonical coordinate system at infinity of an
asymptotically flat end. It can also be used to define a geometric center of mass for
an isolated gravitational system (cf. [HY]). It was observed that the study of the
Hawking mass is related to stable constant mean curvature 2-spheres in an earlier
paper of Christodoulou and Yau [CY]. Indeed the uniqueness of the foliation of
spheres of constant mean curvature at the asymptotically flat end is helpful to the
study of Penrose inequality regarding the mass (cf. [Br]).

In this note we show that outside a given compact subset in an asymptotically
flat 3-manifold with positive mass there is a unique foliation of stable spheres of
constant mean curvature. Our main theorem1 is

Theorem 1.1. Suppose (M, g) is an asymptotically flat 3-manifold with positive
mass. Then there exists a compact domain K such that stable spheres of given
constant mean curvature which separates infinity from the compact domain K are
unique. Hence the foliation of stable spheres of constant mean curvature outside
the compact domain K in M is unique.

The existence of a foliation of stable spheres of constant mean curvature near
asymptotically flat ends was established by Huisken and Yau in [HY] (also see [Ye]).
Some uniqueness results with additional assumptions were also proven in [Br], [HY],
[Ye]. The major difficulty of establishing the uniqueness of spheres of given constant
mean curvature is that possible drifting of the spheres of constant mean curvature
presents a hurdle to any useful global a priori estimates on the curvature. As a
matter of fact, the uniqueness is known if one assumes no drifting (cf. [HY], [Ye]).
Moreover, it was proven in [HY] that, if the drifting was somehow mild, then the
uniqueness holds (cf. Theorem 5.1 on page 301 in [HY]).

Our main technical contributions can be summarized as follows: First, as a sharp
contrast to the Euclidean space, similar to (5.13) in [HY], we find the following scale
invariant integral which detects the nonzero mass. Suppose that N is a surface of
constant mean curvature in an asymptotically flat end (R3 \B1(0), g) with positive
mass m. Then

(1.2)
1
8π

∫

N

H

|x|ν · bdσ +
1
4π

∫

N

(ν · x)(ν · b)
|x|3 dσ ≤ Cm−1r−1

0 ,

where dσ is induced from the Euclidean metric, C > 0 is some constant, b is any
vector in R3, ν is the unit out-going normal vector of N in R3 with respect to the
Euclidean metric, and

(1.3) r0 = min{|x| : x ∈ N ⊂ R3 \ B1(0)},

provided that

(1.4)
∫

N
H2dµ < ∞,

1The uniqueness problem addressed here was referred to as the global uniqueness of stable
CMC surfaces in [HY]. Their result on this global uniqueness was stated in Theorem 5.1 in [HY].
They proved that for q > 1

2 , if H is sufficiently small, there is a unique stable constant mean
curvature surface of mean curvature H outside BH−q (0). It has been a long-standing question
whether stable constant mean curvature surfaces are unique outside a fixed compact subset. In
the paragraph after Theorem 5.1 on page 301, Huisken and Yau stated: “it is an open question
whether stable constant mean curvature surfaces are actually completely unique outside a fixed
compact subset.” Our main theorem gives an affirmative answer to this question.
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where dµ is induced from g. Secondly2, we are able to obtain estimates (cf. Corol-
lary 4.4 and Corollary 4.5 in Section 4), which are beyond one individual scale in
the blow-down analysis, via an asymptotic analysis used in an early work of ours
[QT]. The blow-down for a surface N of constant mean curvature H with the scale
H is defined as

(1.5) Ñ = {1
2
Hx : x ∈ N ⊂ R3 \ B1(0)} ⊂ R3.

The use of the asymptotic analysis introduced in Section 4 is the key which allows
us to obtain some finer estimates and untangle the problem that uniform roundness
and nondrifting of spheres of constant mean curvature hinge on each other. More
precisely, to eliminate the possible drifting, one carefully calculates the two integrals
in left-hand side of (1.2) for Ñ ,

(1.6)
1
4π

∫

Ñ

1
|x|ν · bdσ +

1
4π

∫

Ñ

(ν · x)(ν · b)
|x|3 dσ,

with some particular choice of b. If drifting happened, then the rescaled surface Ñ
would approach the origin. Then one evaluates the integrals over three different
regions: 1) the part of Ñ that is any fixed distance away from the origin; 2) the
part of Ñ that is near the origin in the scale of Hr0; 3) the transition between the
above two. We will employ Corollary 4.5 in Section 4 to show that the integrals on
the third region contribute something negligible. Consequently we are able to prove
that the drifting of stable spheres of constant mean curvature does not happen at
all in an asymptotically flat 3-manifold with positive mass. Then using the early
uniqueness results in [HY] and [Ye], for instance, Theorem 5.1 in [HY], we may
conclude our main theorem.

It is worthwhile to note that the uniqueness of spheres of a given constant
mean curvature outside the horizon in the Schwarzchild space is an interesting
open problem. In his thesis [Br], Bray proved that the coordinate spheres are the
unique minimizing surfaces of given constant mean curvature outside the horizon
in Schwarzchild space, in an attempt to prove the Penrose inequality regarding the
mass by the foliation of constant mean curvature surfaces. Theorem 1.1 above par-
ticularly implies that the coordinate spheres are the only stable sphere of constant
mean curvature near infinity of the Schwarzchild space which separates infinity from
the horizon.

The paper is organized as follows: In Section 2 we will obtain the curvature
estimates based on the Simons’ identity and the smallness of the integral of the
traceless part of the second fundamental form. In Section 3 we introduce the blow-
down analysis in all scales. In Section 4 we present the asymptotic analysis in [QT]
and prove a technical proposition. Finally in Section 5 we introduce a sense of the
center of mass and prove our main theorem.

2In [HY], a global estimate was sought after (cf. Lemma 5.6 in [HY]), with a compromise to
assume that the inner radius is not smaller than H−q for q > 1

2 . They stated in the paragraph
after Theorem 5.1 (page 21, [HY]) that their assumption on inner radius “seems to be optimal from
a technical point of view”. While in this paper we do different estimates in three different scales.
Particularly we establish some decay estimate for the intermediate scales by using an asymptotic
analysis developed in [QT].
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1094 JIE QING AND GANG TIAN

2. Curvature estimates

First let us recall the Simons’ identity [SSY], [Sj] for a hypersurface N in a
Riemannian manifold (M, g) (cf. Lemma 1.3 in [HY]):

∆hij = ∇i∇jH + Hhikhjk − |A|2hij + HR3i3j − hijR3k3k

+ hjkRklil + hikRkljl − 2hlkRiljk + ∇jR3kik + ∇kR3ijk
(2.1)

where A = (hij) is the second fundamental form for N in M , H = TrA is a mean
curvature, and Rijkl and ∇Rijkl are curvature and covariant derivatives of curvature
for (M, g). When N is a constant mean curvature hypersurface, we rather like to
rewrite it as an equation for the traceless part Å of A, i.e. Å = A − 1

2H:

∆Åij = HÅikÅjk − 1
2
H|Å|2δij − (|Å|2 +

1
2
H2)Åij

+ HR3i3j −
1
2
HR3k3kδij − ÅijR3k3k

+ ÅjkRklil + ÅikRkljl − 2ÅlkRlikj

+ ∇jR3kik −∇kR3ikj .

(2.2)

Lemma 2.1. Suppose that N is a constant mean curvature surface in an asymp-
totically flat end (R3 \ B1(0), g). Then

−|Å|∆|Å| ≤ |Å|4 + CH|Å|3 + CH2|Å|2

+ C|Å|2|x|−3 + CH|Å||x|−3 + C|Å||x|−4.
(2.3)

Note that, in an asymptotically flat end (cf. Definition 1.1 in Section 1),

(2.4) |Rijkl| ≤ C|x|−3, |∇Rijkl| ≤ C|x|−4.

We refer readers to [HY] for the calculations of curvature of the Schwarzchild space
and asymptotically flat ends.

Lemma 2.2. Suppose that N is a constant mean curvature surface in an asymp-
totically flat end (R3 \B1(0), g). Then

∫
N H2

e dσ is bounded if and only if
∫

N H2dµ
is bounded, provided that r0 is sufficiently large.

Proof. First one may calculate

(2.5) He = (1 +
m

2r
)2H + 2(1 +

m

2r
)−1 m

r3
x · ν + O(r−3),

where He is the mean curvature of N ⊂ R3 with respect to the Euclidean metric
(cf. Lemma 1.4 in [HY]). Hence

H2
e = H2 + O(r−1)H2 + O(r−2)H + O(r−3).

Following Lemma 5.2 in [HY] and the fact that g is quasi-isometric to the Euclidean
metric |dx|2, we have
∫

N
H2

e dσ ≤ C

∫

N
H2

e dµ ≤ C

∫

N
H2dµ + C(

∫

N
H2dµ)

1
2 (

∫

N
r−4dµ)

1
2 + C

∫

N
r−3dµ

≤ C

∫

N
H2dµ
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and
(1 − Cr−1

0 )
∫

N
H2dµ ≤ C

∫

N
H2

e dσ.

Thus the lemma is proved. !

Therefore, following Lemma 1 in [Si], we have

Lemma 2.3. Suppose that N is a constant mean curvature surface in an asymp-
totically flat end (R3 \ B1(0), g) with r0(N) sufficiently large, and that

∫

N
H2dµ ≤ C.

Then
C1H

−1 ≤ diam(N) ≤ C2H
−1.

We would like to point out that, if the surface N separates infinity from the
compact part, i.e. the origin is inside N ⊂ R3, then the above lemma implies

(2.6) C1H
−1 ≤ r1(N) ≤ C2H

−1,

where the outer radius r1(N) is defined as

r1(N) = max{|x| : x ∈ N ⊂ R3 \ B1(0)}.

Based on Michael and Simon [MS], one has the following Sobolev inequality (cf.
Lemma 5.6 in [HY]).

Lemma 2.4. Suppose that N is a constant mean curvature surface in an asymp-
totically flat end (R3 \ B1(0), g) with r0(N) sufficiently large, and that

∫

N
H2dµ ≤ C.

Then

(2.7) (
∫

N
f2dµ)

1
2 ≤ C(

∫

N
|∇f |dµ +

∫

N
H|f |dµ).

Now we are ready to state and prove the main curvature estimates:

Theorem 2.5. Suppose that (R3 \ B1(0), g) is an asymptotically flat end. Then
there exist positive numbers σ0, ϵ0 and δ0 such that for any constant mean curvature
surface in the end, which separates infinity from the compact part, we have

(2.8) |Å|2(x) ≤ C|x|−2

∫

Bδ0 |x|(x)
|Å|2dµ + C|x|−4,

provided that ∫

N
|Å|2dµ ≤ ϵ0

and r0(N) ≥σ0. Also, the corresponding a priori estimates for all covariant deriva-
tives of curvature hold consequently.

Proof. Recall that

−|Å|∆|Å| ≤ |Å|4 + CH|Å|3 + CH2|Å|2

+ C(|Å|2|x|−3 + CH|Å||x|−3 + C|Å||x|−4).
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Multiply the two sides with φ3, where φ is an appropriate cutoff function of small
support, and integrate

∫

N
−φ3|Å|∆|Å|dµ ≤

∫

N
φ3|Å|4dµ + C

∫

N
Hφ3|Å|3dµ + C

∫

N
H2φ3|Å|2dµ

+ Cr−1
0

∫

N
φ3(|Å|2|x|−2 + CH|Å||x|−2 + C|Å||x|−3)dµ

where
∫

N
−φ3|Å|∆|Å|dµ =

∫

N
∇(φ3|Å|)∇|Å|dµ

=
∫

N
φ2∇(φ|Å|)∇|Å| +

∫

N
2φ2|Å|∇φ∇|Å|dµ

=
∫

N
φ|∇(φ|Å|)|2dµ +

∫

N
φ|Å|∇(φ|Å|)∇φdµ +

∫

N
2φ2|Å|∇φ∇|Å|dµ

≥ 3
4

∫

N
φ|∇(φ|Å|)|2dµ − C

∫

N
φ|Å|2|∇φ|2dµ +

∫

N
2φ2|Å|∇φ∇|Å|dµ

≥ 1
2

∫

N
φ|∇(φ|Å|)|2dµ − C

∫

N
φ|Å|2|∇φ|2dµ

∫

N
φ3|Å|4dµ ≤ (

∫

supp(φ)
|Å|2dµ)

1
2 (

∫

N
(φ|Å|)6dµ)

1
2

and ∫

N
Hφ3|Å|3dµ ≤ (

∫

supp(φ)
H2dµ)

1
2 (

∫

N
(φ|Å|)6dµ)

1
2 .

For other terms
∫

N
H2φ3|Å|2dµ ≤ Cr−2

M

∫

supp(φ)
|Å|2dµ ≤ C|x0|−2

∫

supp(φ)
|Å|2dµ,

∫

N
φ3|x|−2|Å|2dµ ≤ C|x0|−2

∫

supp(φ)
|Å|2dµ,

∫

N
φ3H|x|−2|Å|dµ ≤ C|x0|−2(

∫

supp(φ)
|Å|2dµ)

1
2 ,

and ∫

N
φ2|x|−3|Å|dµ ≤ C|x0|−2(

∫

supp(φ)
|Å|2dµ)

1
2 .

Note that, for a given point x0, we may choose the cutoff function φ so that it has
the suppose of a disk of radius, say, δ0|x0| (δ0 to be determined). Now, combining
all terms, we have

∫

N
φ|∇(φ|Å|)|2dµ ≤ 2(

∫

N
|Å|2dµ)

1
2 (

∫

N
(φ|Å|)6dµ)

1
2

+ C(
∫

supp(φ)
H2dµ)

1
2 (

∫

N
(φ|Å|)6dµ)

1
2 + C|x0|−2(

∫

supp(φ)
|Å|2dµ)

1
2 .
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Applying the Sobolev inequality with f = φ3g3 where g = |Å|, we have

(
∫

N
(φg)6dµ)

1
2 ≤ C(3

∫

N
(φg)2|∇(φg)|dµ +

∫

N
H(φg)3)

≤ C(
∫

N
φ3g4dµ)

1
2 (

∫

N
|∇(φg)|2φdµ)

1
2 + (

∫

supp(φ)
H2dµ)

1
2 (

∫

N
(φg)6dµ)

1
2

≤ C(
∫

N
g2dµ)

1
2 (

∫

N
(φg)6dµ)

1
2 + C(

∫

supp(φ)
H2dµ)

1
2 (

∫

N
(φg)6dµ)

1
2

+ C

∫

N
|∇(φg)|2φdµ.

Thus

(2.9) (
∫

N
(φ|Å|)6dµ)

1
2 ≤ C|x0|−2(

∫

supp(φ)
|Å|2dµ)

1
2 ,

which implies

(2.10)
∫

N
(φ|Å|)4dµ ≤ C|x0|−2

∫

supp(φ)
|Å|2dµ.

Note that we have chosen δ0 small enough so that

C

∫

supp(φ)
H2dµ ≤ 1

8

and
∫

N |Å|2dµ ≤ ϵ0, where ϵ0 is small enough so that

C

∫

N
|Å|2dµ ≤ 1

8
.

Now we proceed to get the point-wise estimates. First, if we take f = u2 in the
Sobolev inequality, then

(
∫

N
u4dµ)

1
2 ≤ C(2

∫

N
|u||∇u|dµ +

∫

N
Hu2dµ)

≤ C(
∫

N
u2dµ)

1
2 (

∫

N
|∇u|2dµ)

1
2 + C(

∫

supp(u)
H2dµ)

1
2 (

∫

N
u4dµ)

1
2 .

When u has the support as the cutoff function φ, we have

(2.11) (
∫

N
u4dµ)

1
2 ≤ C(

∫

N
u2dµ)

1
2 (

∫

N
|∇u|2dµ)

1
2 .

To finish the point-wise estimates we use the following rather standard estimate:

Lemma 2.6. Suppose that a nonnegative function v in L2 solves

(2.12) −∆v ≤ fv + h

on B2R(x0), where ∫

B2R(x0 )
f2dµ ≤ CR−2

and h ∈ L2(B2R(x0)). Also, suppose that

(
∫

N
u4dµ)

1
2 ≤ C(

∫

N
u2dµ)

1
2 (

∫

N
|∇u|2dµ)

1
2
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holds for all u with support inside B2R(x0). Then

sup
BR(x0 )

v ≤ CR−1∥v∥L2 (B2R(x0 )) + CR∥h∥L2 (B2R(x0 )).

Proof. We will simply use the Moser iteration method. For convenience, we may
rescale so that we are working on B2. The correct scales would be

vR(x) = v(Rx), fR(x) = R2f(Rx), and hR = R2h(Rx).

Let k = ∥h∥L2 (B2 ) and v̄ = v+k. Multiply the equation with φ2v̄p−1 on both sides:
∫

|∇(φv̄
p
2 )|2 ≤ 2

p

∫
fφ2v̄p +

∫
hφ2v̄p−1 + C

∫
|∇φ|2v̄p.

Set f̄ = h
k + f ; we have

∫
|∇(φv̄

p
2 )|2 ≤ 2

p

∫
f̄φ2v̄p + C

∫
|∇φ|2v̄p.

Note that ∥f̄∥L2 (B2 ) ≤ 1 + ∥f∥L2 (B2 ). By the assumed Sobolev inequality, we have

(
∫

(φv̄
p
2 )4)

1
2 ≤ C(p

∫
|f̄ |φ2v̄p)

1
2 (

∫
φ2v̄p)

1
2 + C(

∫
|∇φ|2vp)

1
2 (

∫
φ2vp)

1
2 .

To handle the first term, we apply the Hölder inequality

(p
∫

|f̄ |φ2v̄p)
1
2 (

∫
φ2v̄p)

1
2 ≤ p

1
2 (

∫
|f̄ |2) 1

4 (
∫

φ2v̄p)
1
2 (

∫
(φv̄

p
2 )4)

1
4

≤ 1
2C

(
∫

(φv̄
p
2 )4)

1
2 + Cp(

∫
|f̄ |2) 1

2

∫
φ2v̄p.

Hence

(
∫

(φv̄
p
2 )4)

1
2 ≤ C(p∥f̄∥L2

∫
φ2v̄p +

∫
|∇φ|2v̄p).

Now, for i = 1, 2, . . . , let p = 2i and

φ =

{
1 ∀x ∈ B1+2−i ,

0 ∀x /∈ B1+2−i+1 .

Then

(
∫

B1+2−i

v̄2i+1
)2

−i−1
≤ C2−i

2i2−i

(
∫

B1+2−i+1

v̄2i

)2
−i

.

Thus

sup
B1

v ≤ sup
B1

v̄ ≤ C
∑

i=1 2−i

2
∑

i=1 i2−i

(
∫

B2

v̄2)
1
2 ≤ C(∥v∥L2 (B2 ) + ∥h∥L2 (B2 )),

whose scaled version gives the lemma. !

To get curvature estimates, we write the equation in such way as (2.12) that we
may apply the above lemma for

f = C(|Å|2 + H|Å| + H2 + r−3) and h = C(Hr−3 + r−4),

in light of (2.9) and (2.10). !
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3. Blow-down analysis

In order to understand a surface of constant mean curvature N in an asymptot-
ically flat end (R3 \ B1(0), g), we will need to blow down the surface in different
scales. We first consider, the blow-down by the scale H,

(3.1) Ñ =
1
2
HN = {1

2
Hx : x ∈ N}.

Suppose that there is a sequence of constant mean curvature surfaces {Ni} such
that

(3.2) lim
i→∞

r0(Ni) = ∞ and lim
i→∞

∫

Ni

H2dµ = 16π.

Then, by an argument similar to the proof of Lemma 2.2 in the previous section,
we have

(3.3) lim
i→∞

∫

Ni

H2
e dσ = 16π.

Hence, by the curvature estimates established in the previous section combining
the proof of Theorem 1 in [Si], we have

Lemma 3.1. Suppose that {Ni} is a sequence of constant mean curvature surfaces
in a given asymptotically flat end (R3 \ B1(0), g) and that

lim
i→∞

r0(Ni) = ∞ and lim
i→∞

∫

Ni

H2dµ = 16π.

Also, suppose that Ni separates infinity from the compact part. Then, there is
a subsequence of {Ñi} which converges in Gromov-Hausdorff distance to a round
sphere S2

1(a) of radius 1 and centered at a ∈ R3. Moreover, the convergence is in
C∞ sense away from the origin.

From the above lemma, the difficulty will be to study the possibility of having
the origin lying on the sphere S2(a), that is,

(3.5) lim
i→∞

r0(Ni) = ∞, and lim
i→∞

r0(Ni)H(Ni) = 0.

Then, in light of the curvature estimates we obtained in the previous section, we
may use the smaller scale r0(Ni) to blow down the surface

(3.6) N̂ = r0(N)−1N = {r−1
0 x : x ∈ N}.

Lemma 3.2. Suppose that {Ni} is a sequence of constant mean curvature surfaces
in a given asymptotically flat end (R3 \ B1(0), g) and that

lim
i→∞

r0(Ni) = ∞ and lim
i→∞

∫

Ni

H2dµ = 16π.

Also, suppose that
lim

i→∞
r0(Ni)H(Ni) = 0.

Then there is a subsequence of {N̂i} that converges to a 2-plane at distance 1 from
the origin. Moreover the convergence is in C∞ in any compact set of R3.
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As one would expect, the real difficulty is to understand the behavior of the
surfaces Ni in the scales between r0(Ni) and H−1(Ni). To start we consider the
intermediate scales ri such that

(3.7) lim
i→∞

r0(Ni)
ri

= 0 and lim
i→∞

riH(Ni) = 0

and blow down the surfaces

(3.8) N̄i = r−1
i N = {r−1

i x : x ∈ N}.

Lemma 3.3. Suppose that {Ni} is a sequence of constant mean curvature surfaces
in a given asymptotically flat end (R3 \ B1(0), g) and that

lim
i→∞

r0(Ni) = ∞ and lim
i→∞

∫

Ni

H2dµ = 16π.

Also, suppose that {ri} are such that

lim
i→∞

r0(Ni)
ri

= 0 and lim
i→∞

riH(Ni) = 0.

Then there is a subsequence of {N̄i} converging to a 2-plane at the origin in Gromov-
Hausdorff distance. Moreover the convergence is C∞ in any compact subset away
from the origin.

4. Asymptotic analysis

In this section we would like to apply the asymptotic analysis used in [QT] to
obtain some estimate that holds over the whole transition region between the scales
r0(Ni) and r1(Ni). But first, let us revise Proposition 2.1 in [QT] as follows. Let
us denote

∥u∥2
i =

∫

[(i−1)L,iL]×S1
|u|2dtdθ.

Lemma 4.1. Suppose u ∈ W 1,2(Σ, Rk) satisfies

∆u + A ·∇u + B · u = h in Σ,

where Σ = [0, 3L] × S1. Also, suppose that L is given and large. Then there exists
a positive number δ0 such that, if

∥h∥L2 (Σ) ≤ δ0 max
1≤i≤3

{∥u∥i + ∥∇u∥i}

and
∥A∥L∞(Σ) ≤ δ0, ∥B∥L∞(Σ) ≤ δ0,

then
(a) ∥u∥3 ≤ e−

1
2 L∥u∥2 implies ∥u∥2 < e−

1
2 L∥u∥1,

(b) ∥u∥1 ≤ e−
1
2 L∥u∥2 implies ∥u∥2 < e−

1
2 L∥u∥3, and

(c) If both
∫

L×S1 udθ and
∫
2L×S1 udθ ≤ δ0 max1≤i≤3{∥u∥i}, then

either ∥u∥2 < e−
1
2 L∥u∥1 or ∥u∥2 < e−

1
2 L∥u∥3.

Proof. For the convenience of readers we would like to present a proof here. The
first step is to establish the conclusions (a), (b) and

(c′) If
∫

L×S1
udθ =

∫

2L×S1
udθ = 0, then∥u∥2 < e−

1
2 L∥u∥1or∥u∥2 < e−

1
2 L∥u∥3
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for harmonic functions. By the separation of variables, we may write a harmonic
function as

v = a0 + b0t +
∞∑

n=1

{(an cos nθ + bn sin nθ)ent + (a−n cos nθ + b−n sin nθ)e−nt}.

Then it follows that

∥v∥2
i = 2π(a2

0L + a0b0L
2(2i − 1) +

1
3
b2
0L

3(3i2 − 3i + 1))

+
π

2

∞∑

n=1

e2nL − 1
n

{(a2
n + b2

n)e2n(i−1)L + (a2
−n + b2

−n)e−2(i−1)nL}.

We then claim

∥v∥2
2 <

1
2
(eL∥v∥2

3 + e−L∥v∥2
1)

provided that eL > 4, which can easily be verified. Hence (a) and (b) can easily be
verified for the harmonic function v. To show (c′) holds for v, we notice that

∥v∥2
2 <

1
2
e−L(∥v∥2

3 + ∥v∥2
1)

provided that eL > 4, since a0 = b0 = 0 under the assumptions of (c′). The second
step of the proof is to pass limits. For example, let us prove the conclusions (a)
and (b). Otherwise suppose that there are a sequence of functions ∥hk∥L2 (Σ) → 0
and a sequence of solutions uk satisfying the elliptic equations such that

1
2
(eL∥uk∥2

3 + e−L∥uk∥2
1) ≤ ∥uk∥2

2

when either (a) or (b) fails to hold. One may assume

1 ≤ ∥uk∥1 + ∥uk∥2 + ∥uk∥3 ≤ 3

since one may normalize them if necessary. Then the standard elliptic estimates
implies that uk converges, at least for a subsequence, to a harmonic function u
strongly on each compact subset of Σ. To see that u is not identically zero we
realize that ∥uk∥2 has to be bounded from below by a positive number and uk

strongly converges to u on the middle part [L, 2L] × S1. Notice that we may use
a diagonal method to have a subsequence uk converge to the harmonic function u
almost everywhere over Σ. Then

1
2
(eL∥u∥2

3 + e−L∥u∥2
1) ≤ lim

k→∞

1
2
(eL∥uk∥2

3 + e−L∥uk∥2
1)

≤ lim
k→∞

∥uk∥2
2 = ∥u∥2

2,
(4.1)

by the Fatou lemma, which contradicts with the conclusion of the first step. (c)
can be proven similarly. This finishes the proof of the lemma. !

We would like to point out that Proposition 2.1 in [QT] is overstated since it is
not correct for l > 3. But, in the proof of Proposition 3.1 in [QT], where Corollary
2.2 is used, one may replace the shifting cylinder with length 3L instead of 5L.
The proof still works the same, which is, one push in the direction of growth of the
cylinder of length 3L when Corollary 2.2 in [QT] applies and it gives the estimates
regardless of where one stops applying Corollary 2.2.
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Given a surface N in R3, recall from, for example, (8.5) in [Ka], that

(4.2) ∆ν + |∇ν|2ν = ∇He

where ν is the Gauss map from N −→ S2. For the constant mean curvature surfaces
in the asymptotically flat end (R3 \ B1(0), g),

(4.3) |∇He|(x) ≤ C|x|−3.

Therefore we consider that the Gauss map of the constant mean curvature surfaces
in the asymptotically flat end (R3 \ B1(0), g) is an almost harmonic map. Hence
we are in a situation which is very similar to that in [QT]. We will refer readers to
[QT] for rather elementary yet involved analysis since the proof we present here is
some modifications from the proof in [QT]. But, for the convenience of the readers,
we will in the following present the argument to make this paper self-contained as
much as possible. We will not carry the indices for the surfaces Ni if it does not
cause any confusion. Set

(4.4) Ar1,r2 = {x ∈ N : r1 ≤ |x| ≤ r2}.

A0
r1,r2

stands for the standard annulus in R2. We are concerned with the behavior
of ν on the part AKr0 (N),sH−1(N) of N where K will be fixed large and s will be
fixed small. The first difference from [QT] is that, while we had a fixed domain in
[QT], we need the following lemma in order to be in the position to use Lemma 4.1
in the above.

Lemma 4.2. Suppose that N is a constant mean curvature surface in a given
asymptotically flat end (R3 \B1(0), g) . Then, for any ϵ > 0 and Λ fixed, there are
ϵ0, s and K such that, if ∫

N
|Å|2dσ ≤ ϵ0

and Kr0(N) < r < sH−1(N), then (r−1Ar,e4Λr, r
−2ge) may be represented as

(A0
1,e4Λ , ḡ) where

(4.5) ∥ḡ − |dx|2∥C1(A0
1,e4Λ) ≤ ϵ.

In other words, in the cylindrical coordinates (S1 × [log r, 4Λ + log r], ḡc),

(4.6) ∥ḡc − (dt2 + dθ2)∥C1(S1×[log r,4Λ+log r]) ≤ ϵ.

This is a consequence of Lemma 3.3 in the previous section. Hence we may
introduce the following coordinates:

Ij = S1 × [log(Kr0(N)) + jL, log(Kr0(N)) + (j + 1)L],

where
j ∈ [0, n] and log(Kr0(N)) + (n + 1)L = log(sH(N)−1),

on the annulus AKr0 (N),sH(N)−1 . The first thing we want is to show (3.8) in [QT],
that is, for each j ∈ [2, n − 1], there is a geodesic γ such that

∫

Ij

|∇(ν − γ)|2dtdθ

≤ C (e−
i
2 L + e−

ln−i
2 L)(∥∇ν∥2

L2 (AKr0 (N),sH(N)−1 ) + r−2
0 ).

(4.7)
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To apply Lemma 4.1 to prove (4.7) we choose two points P, Q ∈ S2 such that

|P − 1
2π

∫

(j−1)L×S1
νdθ| ≤ C max

(j−1)L×S1
|P − ν|2,

|Q − 1
2π

∫

jL×S1
νdθ| ≤ C max

jL×S1
|Q − ν|2.

P and Q always exist because S2 is a smooth manifold. We construct a geodesic
γ connecting P and Q in S2. Since P and Q are very close, such a geodesic γ is
unique. We then consider the map

ν − γ : Σj =
k=j+1⋃

k=j−1

Ik → S2

and apply Lemma 4.1. The only reason that Lemma 4.1 (c) is not applicable to
ν − γ over Σj is

∫

Ij

|∇(ν − γ)|2dtdθ ≤ 1
δ2
0

∥∇H∥2
L2 (Σj)

≤ Cr−2
0 .

The last inequality is because of the size of Σj and (4.3). Otherwise, Lemma 4.1
(c) is applicable; then, we have

either (A) ∥ν − γ∥j < e−
1
2 L∥ν − γ∥j−1

or (B) ∥ν − γ∥j < e−
1
2 L∥ν − γ∥j+1.

Suppose that (A) holds. Then we shift to consider the map

ν − γ : Σj−1 =
k=j⋃

k=j−2

→ S2

and to conclude
∥ν − γ∥j−1 < e−

1
2 L∥ν − γ∥j−2

if Lemma 4.1 (a) is applicable to ν −γ over Σj−1. If the shifting tube Σ reaches I1,
then by the local gradient estimate (cf. the proof of Lemma 3.2 in [QT]) we have,
for 2 ≤ k ≤ j,

∥ν − γ∥k ≤ e−
k
2 L(∥∇ν∥2

L2 (AKr0 (N),sH(N)−1 ) + r−2
0 ).

If, otherwise, the shifting tube stops at Il, then Lemma 4.1 (a) implies that

∥ν − γ∥l ≤ Cr−2
0

as before. Hence, for l ≤ k ≤ j,

(4.8) ∥ν − γ∥k ≤ e−
k
2 L(∥∇ν∥2

L2 (AKr0 (N),sH(N)−1 ) + r−2
0 ).

Suppose that (B) holds instead. Similarly, in light of Lemma 4.1 (b), if the shifting
tube Σ stops at Ir, then we have, for j ≤ k ≤ r,

(4.9) ∥ν − γ∥k ≤ e−
n−k

2 L(∥∇ν∥2
L2 (AKr0 (N),sH(N)−1 ) + r−2

0 ).

We would like to point out that at this point our focus is to show (4.7) for Ij . We
do not really care about how far left l or how far right r would be. We will need
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some integral estimates to get (4.7) from the above L2 estimate (4.8) and (4.9)
using the equations over the domain

Σ′
j = S1 × [(j − 1

2
)L, (j +

1
2
)L].

Notice that this modification of the argument in [QT] is because the shifting tube
should be of length 3 instead of 5 in [QT]. The same broken geodesic argument in
[QT] now works here with no more modification and yields (4.7) for Ij with any
fixed j ∈ [2, n − 1].

Another difference from [QT] is that we are considering maps with tension fields
possibly blowing up at a point but with no energy concentration, while in [QT] we
were considering almost harmonic maps with concentration of energy but tension
fields uniformly bounded in L2. In cylindrical coordinates, the tension fields are

|τ (ν)| = r2|∇He| ≤ Cr−1 = Ce−t

for t ∈ [log(Kr0), log(sH−1)]. Thus,
∫

S1×[t,t+L]
|τ (ν)|2dtdθ ≤ Ce−2t

which decays nicely, but has no global L2 bounds exact because of the possibility
that the inner radius r0(N) and the outer r1(N) may not be in the same scale. To
get the growth (or decay) of the energy along the cylinder we need to use the Hopf
differential

Φ = |∂tν|2 − |∂θν|2 − 2
√
−1∂tν · ∂θν

and the stationary property, in complex variable z = t +
√
−1θ,

∂̄Φ = ∂ν · τ (ν)

to bound
∫
|∂tν|2 by

∫
|∂θν|2 (cf. [QT]) as follows:

∫

S1×[t,t+L]
|∂tν|2dtdθ ≤

∫

S1×[t,t+L]
|Φ|dtdθ +

∫

S1×[t,t+L]
|∂θν|2dtdθ.

By the elliptic estimates, we have
∫

S1×[t,t+L]
|Φ|dtdθ ≤

∫

N∩Bc
r

|Φ|dtdθ ≤ C(
∫

N∩Bc
r

|∇ν|2dσ)
1
2 (

∫

N∩Bc
r

|τ (ν)|2dσ)
1
2 ,

where N ∩ Bc
r is the part of N which is outside of Br and is a disk since N is a

sphere topologically (there is a very good reason not to use N
⋂

Br in the above
estimate). This is the only place one has to use the global L2 bound of the tension
field τ (ν). Fortunately the topology of N is a sphere that turns out to be very
crucial in carrying the above argument from [QT]. Hence, we have

(4.10)
∫

S1×[t,t+L]
|Φ|dtdθ ≤ C(

∫

N∩Bc
r

|τ (ν)|2dσ)
1
2 ≤ Ce−t.

Notice that in [QT] we instead used the fact that the tension fields are uniformly
bounded in L2 inside Bδ (cf. the lines between (3.8) and (3.9) in [QT]). The rest
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of the proof of Proposition 3.1 in [QT] works with no more modification. Thus we
have

Proposition 4.3. Suppose that {Ni} is a sequence of constant mean curvature
surfaces in a given asymptotically flat end (R3 \ B1(0), g) and that

lim
i→∞

r0(Ni) = ∞ and lim
i→∞

∫

Ni

H2dµ = 16π.

Also, suppose that
lim

i→∞
r0(Ni)H(Ni) = 0.

Then there exist a large number K, a small number s and i0 such that, when i ≥i0,

(4.11) max
Ij

|∇ν| ≤ C(
∫

BsH−1(Ni)
∩Ni

|∇ν|2dσ + r−1
0 )(e−

1
4 jL + e−

1
4 (ni−j)L),

where
Ij = S1 × [log(Kr0(Ni)) + jL, log(Kr0(Ni)) + (j + 1)L]

and
j ∈ [0, ni] and log(Kr0(Ni)) + (ni + 1)L = log(sH(Ni)−1).

This finer analysis improves our understanding of the blow-downs that we dis-
cussed in the previous section. Namely,

Corollary 4.4. Assume the same conditions as Proposition 4.3. Then the limit
plane in Lemma 3.2 and the limit plane in Lemma 3.3 are all orthogonal to the
vector a. In fact, we may choose s small and i large enough so that,

|ν(x) + a| ≤ ϵ

for all x ∈ Ni and |x| ≤ sH−1(Ni).

Also, we have

Corollary 4.5. Asume the same condition as Proposition 4.3. Let νi = ν(pi) for
some pi ∈ Ini

2
. Then

max
Ij

|ν − νi|

≤ C
1

1 − e−
1
4 L

(
∫

BsH−1(Ni)
⋂

Ni

|∇ν|2dσ + r−1
0 )(e−

1
4 jL + e−

1
8 niL)

(4.12)

for j ∈ [0, 1
2ni] and

max
Ij

|ν − νi|

≤ C
1

1 − e−
1
4L

(
∫

BsH−1(Ni)
⋂

Ni

|∇ν|2dσ + r−1
0 )(e−

1
8 niL + e−

1
4 (ni−j)L)

(4.13)

for j ∈ [12ni, ni].

The two corollaries above will be the key for us to calculate the integrals in the
next section to prove our main theorem.
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5. Center of mass

First let us recall that, for any embedded surface N in R3 and any given vector
b ∈ R3,

(5.1)
∫

N
Heν · bdσ = 0.

One may consider this as the first variation of the area of surface Nt = N +tb ⊂ R3.
On the other hand, if N is a constant mean curvature surface in the asymptotically
flat end (R3 \ B1(0), g), then

(5.2)
∫

N
Hν · bdσ = H

∫

N
ν · bdσ = 0,

since the flux is zero across any surface for a given constant velocity b. Thus, for
any constant mean curvature surface in the asymptotically flat end,

(5.3)
∫

N
(He − H)ν · bdσ = 0.

One may calculate and find

(5.4) He − H = m(
H

|x| + 2
ν · x
|x|3 ) + O(|x|−2)H + O(|x|−3).

Lemma 5.1. Suppose N is a surface of constant mean curvature in the asymptot-
ically flat end with positive mass m ̸= 0. Also, suppose that

∫

N
H2dµ < ∞

and r0(N) is sufficiently large. Then for any given b and for some C > 0,

(5.5)
1
8π

∫

N

H

|x|ν · bdσ +
1
4π

∫

N

(ν · x)(ν · b)
|x|3 dσ ≤ Cm−1r−1

0 .

Proof. Simply multiply both sides of (5.4) by ν · b and integrate over the surface
N . Then we have

1
8π

∫

N
(He − H)ν · bdσ =

m

8π

∫

N

H

|x|ν · bdσ +
m

4π

∫

N

(ν · x)(ν · b)
|x|3 dσ + O(r−1

0 ).

Here we used the Lemma 5.2 in [HY]. Then the lemma is proved due to (5.3). !

Now, we are ready to state and prove our main theorem in this note as follows:

Theorem 5.2. Suppose that {Ni} is a sequence of spheres of constant mean cur-
vature in a given asymptotically flat end with positive mass m ̸= 0 and that

lim
i→∞

r0(Ni) = ∞ and lim
i→∞

∫

Ni

H2dσ = 16π.

Also, suppose that Ni separates the infinity from the compact part. Then

(5.6) lim
i→∞

r0(Ni)
r1(Ni)

= 1.
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Proof. We may apply Lemma 3.1 for the blow-down

Ñ =
1
2
HN = {1

2
Hx : x ∈ N}.

If the surfaces Ñi stay away from the origin, i.e.

0 < C ≤ H−1
i r0(Ni)

for some positive constants C, then a subsequence of Ñi converges to a sphere S2(a)
of radius 1 and centered at a ∈ R3 in C∞ by the curvature estimates Theorem 2.5
in Section 2. Also notice that (2.6) implies that the blow-down surfaces Ñi always
stay within a bounded region in R3. On one hand, by (5.5) in Lemma 5.1, we have

(5.7)
1
4π

∫

S2 (a)

ν · b
|x| dσ +

1
4π

∫

S2 (a)

(ν · x)(ν · b)
|x|3 dσ = 0,

for any b. On the other hand, if b = − a
|a| , then

(5.8)
1
4π

∫

S2 (a)

ν · b
|x| dσ +

1
4π

∫

S2 (a)

(ν · x)(ν · b)
|x|3 dσ = |a|

due to an explicit calculation when the origin is inside. Therefore

a = 0 and lim
i→∞

1
2
r0(Ni)H(Ni) = lim

i→∞

r0(Ni)
r1(Ni)

= 1.

To conclude that this is all that can happen we need only to exclude the case when

(5.9) lim
i→∞

H−1
i r0(Ni) = 0.

Assume otherwise. According to Lemma 3.1, the blow-down sequence Ñi converges
to a unit round sphere S2(a) centered at a ∈ R3 with |a| = 1 in Hausdorff topology.
We will take b = − a

|a| . From Lemma 5.1, we know

(5.10) lim
i→∞

(
∫

Ñi

ν · b
|x| dσ +

∫

Ñi

(ν · x)(ν · b)
|x|3 dσ) = 0.

But, we claim, on the other hand,

(5.11) lim
i→∞

(
∫

Ñi

ν · b
|x| dσ +

∫

Ñi

(ν · x)(ν · b)
|x|3 dσ) = 4π

which gives us the contradiction. First, we have from explicit calculations

(5.12)
∫

S2 (a)

ν · b
|x| dσ =

4
3
π,

∫

S2 (a)

(ν · x)(ν · b)
|x|3 dσ =

2
3
π.

The first term in (5.11) is an easy term because of the uniform integrability

(5.13) lim
i→∞

∫

Ñi

ν · b
|x| dσ =

∫

S2 (a)

ν · b
|x| dσ =

4
3
π.

To deal with the second term in (5.11), we break up the integral into three parts.
For any fixed small number s > 0 and large number K > 0,

∫

Ñi

(ν · x)(ν · b)
|x|3 dσ =

∫

Ñi
⋂

Bc
s(0)

(ν · x)(ν · b)
|x|3 dσ

+
∫

Ñi
⋂

(Bs(0)\BKHr0 (0))

(ν · x)(ν · b)
|x|3 dσ +

∫

Ñi
⋂

BKHr0 (0)

(ν · x)(ν · b)
|x|3 dσ.

(5.14)
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Then

(5.15) lim
i→∞

∫

Ñi
⋂

Bc
s(0)

(ν · x)(ν · b)
|x|3 dσ =

∫

S2 (a)
⋂

Bc
s

(ν · x)(ν · b)
|x|3 dσ

and

lim
i→∞

∫

Ñi
⋂

BKH(Ni)r0 (Ni)(0)

(ν · x)(ν · b)
|x|3 dσ =

∫

P
⋂

BK(0)

(ν · x)(ν · b)
|x|3 dσ,

where P is the limit plane in Lemma 3.2. By Corollary 4.4, we know
∫

P

(ν · x)(ν · b)
|x|3 dσ = 2π,

due to a simple calculation. Notice that

(5.16)
∫

Ñi

ν · x
|x|3 dσ = 4π

for any i and

(5.17)
∫

S2 (a)

ν · x
|x|3 dσ = 2π

because the origin is on the sphere S2(a). Since

(5.18) lim
i→∞

∫

Ñi
⋂

Bc
s(0)

ν · x
|x|3 dσ =

∫

S2 (a)
⋂

Bc
s(0)

ν · x
|x|3 dσ,

(5.19) lim
i→∞

∫

Ñi
⋂

BKHr0 (0)

ν · x
|x|3 dσ =

∫

P
⋂

BK(0)

ν · x
|x|3 dσ

and

(5.20)
∫

P

ν · x
|x|3 dσ = 2π,

we know

(5.21) lim
i→∞,s→0,K→∞

∫

Ñi
⋂

(Bc
s(0)\BKHr0 (0))

ν · x
|x|3 dσ = 0.

Now we are ready to handle the difficult term: the integral over the transition
region in (5.14). Our goal is to show that

(5.22) lim
i→∞,s→0,K→∞

∫

Ñi
⋂

(Bs(0)\BKHr0 (0))

(ν · x)(ν · b)
|x|3 dσ = 0.

The key point is to use Corollary 4.5 to prove (5.22) from (5.21). Let νi be chosen
as in Corollary 4.5. Then

∫

Ñi
⋂

(Bs\BKHr0 )

(ν · x)(ν · b)
|x|3

= (νi · b)
∫

Ñi
⋂

(Bs\BKHr0 )

ν · x
|x|3 +

∫

Ñi
⋂

(Bs\BKHr0 )

(ν · x)((ν − νi) · b)
|x|3 .

(5.23)
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Hence we only need to deal with the second term on the right side of the above
(5.23). It is better to use the cylindrical coordinates used in Section 4.

∫

Ñi
⋂

(Bs(0)\BKHr0 (0))

(ν · x)((ν − νi) · b)
|x|3 dσ

=
ni∑

j=1

∫

Ij

(ν · x)((ν − νi) · b)
|x|3 A(t)dθdt

≤ C
ni∑

j=1

L max
Ij

|ν − νi|

= C

ni/2∑

j=1

L max
Ij

|ν − νi| + C

ni/2∑

j=ni/2+1

L max
Ij

|ν − νi|.

(5.24)

From (4.12) and (4.13), we have
∫

Ñi
⋂

(Bs(0)\BKHr0 (0))

(ν · x)((ν − νi) · b)
|x|3 dσ

≤ Cη(
ni/2∑

j=1

(e−
1
4Lj + e−

1
8 Lni) +

ni/2∑

j=1

(e−
1
8 Lni + e−

1
4 (ni−j)L))

≤ Cη(nie
− 1

8 niL + 2),

(5.25)

where

η =
∫

BsH−1(Ni)
∩Ni

|∇ν|2dσ + r−1
0

and η can be arbitrarily small as long as s → 0 and r0(Ni) → ∞. Thus (5.22) is
proved and the proof of the theorem is completed. !

Corollary 5.3. Suppose (R3 \ B1(0), g) is an asymptotically flat end with positive
mass. Then there exist a large number K > 0 and a small number ϵ > 0 such that,
for any H < ϵ, there exists a unique stable sphere N of constant mean curvature H
with N ⊂ R3 \ BK(0) and which separates infinity from the compact part. Hence
there exists a unique foliation of stable spheres of constant mean curvature near
infinity.

Proof. In light of Proposition 5.3 in [HY] we know

(5.26) lim
i→∞

∫

Ni

H2dµ = 16π,

provided each Ni is a stable sphere of constant mean curvature. Thus Corollary 5.3
follows from Theorem 5.2 above, Theorem 4.1 in [HY] and the proof of Theorem
5.1 in [HY]. !
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