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UNIVERSITY OF CALIFORNIA, MERCED

Abstract
Computational Optimization
of Concentrating Solar Devices

by Christine Hoffman

In terms of efficiency, perovskite solar cells have seen the most fastest increase in effi-
ciency. While it took silicon over a decade to reach 20% efficiency, perovskite cells reached
similar efficiencies in a matter of years (NREL, 2019), making them the fastest advancing
solar technology in history. We will primarily focus on recent advancements in perovskite
luminescent solar concentrators (LSCs) with the theoretically optimal values for perovskite
LSCs of various compositions and thickness.

The Monte-Carlo simulation framework used to study the effectiveness of luminescent
solar concentrators (LSCs) will be established in detail. We use a similar framework to that
established by Sahin, Ilan, and Kelley, 2011 for semiconductor nanoparticles. Computa-
tional efficiency is improved through implementation of a vectorized Monte Carlo simulation
method. Perovskite LSCs are compared against previously used CdSe-CdTe quantum dots.
We thereby establish perovskite as a viable, highly efficient LSC as published by Nikolaidou
et al., 2016 and obtain ideal perovskite composition and thickness for optimal perovskite
LSC performance as published by Mendewala et al., 2019.

The other part of this thesis implements a deterministic ray tracing algorithm com-
bined with appropriate optimization methods to evaluate the performance of segmented
non-imaging solar thermal concentrators. Under user-specified parameters and constraints,
new concentrator configurations are obtained which optimize theoretical efficiency. Such
configurations have not yet been discussed in literature.

Pattern search, a gradient free optimization method, is employed to determine ideal seg-
ment positions. The presence of numerous local minima make gradient-based optimization
solvers ineffective.

HTTPS://WWW.UCMERCED.EDU/
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Chapter 1

Introduction

Renewable energy sources, such as solar, have seen rapid increases in recent years as green-
house gas reduction initiatives become more prevalent worldwide. Renewable energy produc-
tion has more than doubled between 2001 and 2018, with solar energy experiencing a thirteen
fold increase over this same period (Administration, 2019). Increases in solar efficiency and
decreasing costs have contributed to the impressive rise in solar energy production.

With rising levels of greenhouse gas emissions and pollution globally, many countries are
pushing towards expanding renewable energy. Solar energy alternatives have recently seen
a soar in popularity due to their lower environmental impact, recent plummets in costs, and
enhanced grid stability when compared with fossil fuel sources.

In recent years, renewable energy electricity costs have been comparable, or cheaper, than
fossil-based energy as solar PV costs decreased by 83% between 2010 and 2017 (IRENA,
2018). The decrease in costs are a result of increases in efficiency and decreasing manufac-
turing costs.

Some renewable energy sources, especially solar, specifically lend themselves to localized
energy production. Local energy production has many advantages over centralized energy
generation. In 2019, 25,281 power outages effected 28.4 million people, a 50% increase from
the 19 million affected in 2018 1.

A portion of these power outages were due to wildfire prevention measures. Some power
lines pass through windy, dry regions between the electricity plant and customer homes.
Power was preemptively turned off during times of high wildfire risk. In this way, centralized
energy generation can be more more vulnerable to power outages when any link from the
power plant to the customer is out of service. In addition, power outages from centralized
sources put entire regions without power, instead of a single individual home.

Solar energy can eliminate or reduce energy transmission distance, hence eliminating
outages caused by downed power lines. Localized rooftop solar enhance grid stability by
reducing large regional outages. Rooftop solar installations also reduce the amount of land
usage. Centralized power include a large power plant and extending power lines, both of
which require land resources.

1BloomEnergy California Power Outage Map https://www.bloomenergy.com/
bloom-energy-outage-map

https://www.bloomenergy.com/bloom-energy-outage-map
https://www.bloomenergy.com/bloom-energy-outage-map
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Some of the drawbacks of the decentralized nature of rooftop solar are maintenance
and repair costs that often fall on individual home and business owners instead of the
power company. In addition, the fragmented power supply system proves to be much more
complicated for power companies to regulate. Ideally there should always be enough power
generated to satisfy demand without producing a large oversupply of power that goes unused.

1.1 Main Types of Solar Energy

There are two main types of solar energy devices. The first, known as photovoltaics, or PVs,
convert the energy from the sun directly into electricity through the photoelectric effect.
The second, known as solar thermal, captures radiation from the sun in the form of heat.
While electricity from PV solar devices can be converted into heat, efficiency losses from
the conversion of solar radiation into electricity and then into heat makes process much less
efficient than directly using solar radiation as heat. Similarly, solar thermal energy can be
converted into electricity through the use of turbines.

PV solar cells are generally flat panels, as shown in Figure 1.1, whereas solar thermal
thermal technology typically has pipes to transport collected thermal heat to a heat ex-
changer and storage tank. Concentrating back mirrors curve around the receiving pipe, as
shown in Figure 1.2.

Figure 1.1: Flat rooftop PV solar panels

1.1.1 Advantages and Disadvantages of PV and Solar Thermal

PV solar is the most effective for localized electricity needs. Conversion of solar thermal
to electricity requires the installation of steam powered turbines powered whose size and
expense are only practical at the industrial level. Rooftop PV can provide electricity at
lower costs than that from fossil fuel sources. Consumers can even earn credits for electricity
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Figure 1.2: Solar thermal Compound Parabolic Concentrator

sold back to the grid when household electricity supply exceeds demand. However, the high
upfront cost of PV solar panel costs and installation is one of the largest deterrents.

In general rooftop PV systems require very little maintenance. However, when mainte-
nance is required, it is often the homeowners responsibility. Homeowners carry the burden
of installation and upkeep of any localized rooftop system, versus relying on power compa-
nies for generation and maintenance. Localized power generation provides some degree of
independence from outside power suppliers, depending on the amount of energy generated
and local storage capacity. Hence, localized systems are unaffected by centralized system
power outages.

Despite local system energy generation independence, most homeowners are not able
to go completely “off grid" due to the inability to generate and store enough electricity to
meet household demands all day and year round. PV solar cell electricity output is highly
variable, depending on the amount of sunlight received. Solar PV is considered a variable
renewable energy since electricity output dips considerably even when the sun moves behind
a cloud and immediately drops to zero when the sun sets.

Solar thermal, on the other hand, is better able to deal with solar fluctuations due to its
more natural built-in storage capacity. Unlike PV solar, which requires large battery packs
to store energy, solar thermal can store energy in the form of heat in insulated vessels. This
leads to more consistent energy output from solar thermal devices than solar PV.

In general, it is important to note that solar PV and solar thermal compliment, instead of
replace, one another. Solar PV is best able to provide household electricity needs. Compared
to the solar PV array size needed to reach household electricity requirements, a more compact
solar thermal system can satisfy household hot water heating demands. Although solar
thermal systems can be used for cooling, this requires the installation of an additional
evaporative cooling systems, which adds to cost, space, and maintenance.
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Advantages Disadvantages

Photovoltaics
low electricity cost high upfront costs
low maintenance costs homeowner maintained
reliable localized energy inconsistent electricity output
high electricity efficiency high storage costs

Solar Thermal
consistent energy output higher maintenance costs
reliable localized energy bulkier devices
lower-cost storage storage space required
efficient heat/cooling electrical conversion losses

Table 1.1: The above table shows the advantages and disadvantages of solar
thermal versus solar electric.

Solar Energy Storage

Photovoltaic solar panels, the most common form of solar energy, are only able to produce
energy during daylight hours and their energy output in megawatts with respect to time of
day is shown in grey in Figure 1.3. However, the total energy demand, shown in blue, peaks
in the evening around 8pm, often after the sun has set. This offset in renewable photovoltaic
solar energy availability and energy demand creates what is known as the "duck curve",
shown in orange. The "duck curve" is the shape of the graph created by subtracting the
solar energy supply from the energy demand curve.

The most notable problematic feature of this graph is the steepness of the graph around
5-7 pm. The evening decrease in solar photovoltaic energy that aligns with the peak time of
energy consumption usage creates a sudden increase in demand for another energy source,
often from nonrenewable sources. Storing solar photovoltaic energy requires the usage of
expensive battery storage, a major pitfall for maintaining affordable renewable electricity
during nighttime hours.

Energy storage capability is one advantage of solar thermal energy over solar photo-
voltaics. Solar thermal energy is naturally stored more cost effectively in the form of heat
in thermally insulated vessels. While solar thermal energy is still only produced during
daylight hours, it naturally lends itself to easier storage, particularly for short periods of
time.

Cost-effective short term energy storage creates the opportunity for solar thermal energy
to be used up to a few hours after sunset, when energy demand is the highest. Natural low-
cost thermal energy storage provides more consistent and flexible energy even during daylight
hours when PV systems might otherwise show a dip energy output.

The energy capacity of concentrating solar power has increased by ten times worldwide
between 2006 and 2016 (IRENA, 2018). The costs of concentrating systems will further
decrease as the number of installations expands.
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Figure 1.3: The following image shows the effect of wind and photovoltaic
solar on the energy demand. Image adapted from Reinhold, 2016.

1.2 Solar Thermal Concentrators

This part of the thesis will focus exclusively on solar thermal concentrators. The rest of this
chapter will specifically describe the design and setup of nonimaging concentrators, along
with their uses and recent advancements.

The following chapter will describe the ray tracing setup used to evaluate the performance
of various nonimaging solar thermal concentrator configurations, along with the optimization
procedure used for certain designs to obtain more ideal configurations for higher power
output. When installed, manufacturing and setup procedures introduce inherent flaws,
which we quantify using uncertainty quantification. We then summarize our work and
describe future research directions.

1.2.1 Main Categories of Solar Thermal Concentrators

There are two categories of concentrators: imaging and nonimaging. As the name suggests,
imaging concentrators form an image of the source onto the receiver, whereas nonimaging
concentrators do not.

Imaging optics produce clearly defined images of the source onto the receiver, as shown
in Figure 1.4. Rays do not cross and rays originating from the same point on the source
land at the same point on the receiver to produce that image. Imaging concentrators are
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Figure 1.4: An imaging optic is shown which produces an image of the
source onto the receiver.

currently used in existing large scale solar thermal systems due to their high concentration
ratios, which range from tens to the mid hundreds.

Nonimaging concentrators have comparatively much lower concentration ratios, generally
below 10 (Duffie and Beckman, 2013). Nonimaging solar concentrators rose in prominence
in the 1960’s with the discovery of compound parabolic concentrators (CPC) (Koshel, 2012).

Nonimaging optics do not necessarily form images of the sources, meaning that rays
originating from the same point on the source may not end up at the same location on
the receiver, as shown in Figure 1.5. Furthermore, rays may cross, as shown by the orange
rays which originate from the same point on the source but cross paths before striking the
receiver.

Tracking VS Non-Tracking

In terms of concentration, the main difference in imaging versus nonimaging is the acceptance
angle. Imaging requires tracking. Nonimaging concentrators allow a wide acceptance angle
without tracking or only partial season tracking. The non-tracking advantage of nonimaging
concentrators means there are fewer moving parts, and hence less maintenance required of
nonimaging concentrators. Imaging concentrators require a tracking device to maintain their
concentration ratios, which adds to the maintenance and cost of such devices.



Chapter 1. Introduction 8

Figure 1.5: A nonimaging optic is shown. Since an image in not necessarily
formed of the source on the receiver, rays originating from the same point on
the source may land at different location on the receiver and may even cross,
as shown by the purple and orange rays originating from distinct points on

the source.

Nonimaging concentrators are able to reflect incident radiation onto the aperture over
a range of incident angles. This wide limit is known as the acceptance angle of the
concentrator. Collecting all incident radiation within the acceptance angle means diffuse
radiation is also absorbed (Duffie and Beckman, 2013). Therefore, 100% of radiation within
the acceptance angle falls incident onto the receiver.

Temperature Differences

Nonimaging solar concentrators fill the temperature gap between flat plate absorbers and
large scale high temperature concentrating facilities. As shown in Figure 1.6, nonimaging
solar concentrators such as the Artic Solar XCPC achieve temperatures within the range of
approximately 100◦C − 200◦C. Such temperatures are ideal for use in industrial hot water,
industrial drying, desalination, and evaporative cooling.

1.2.2 Background on Nonimaging Solar Concentrators

Nonimaging solar concentrators have the advantage of being non-tracking solar devices,
meaning that no moving mechanical device is needed. As their name suggests, nonimaging
concentrators do not necessarily form an optical image of the source, but rather instead aim
to maximize all forms of solar light radiation, beam or diffuse, onto the receiver (Duffie and
Beckman, 2013). Of the earliest work on nonimaging optics, the most developed framework
was presented by Hinterberger and Winston, 1966.
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Figure 1.6: Nonimaging concentrators fill the temperature range gap be-
tween flat plat absorbers and high temperature concentrating facilities. Dia-

gram from Artic Solar (http://www.articsolar.com/).

Solar thermal concentrators have the natural ability to store the sun’s energy as heat,
which can even be used several hours after the sun sets. In addition, solar thermal con-
centrators naturally compliment solar electric systems in their ability to efficiently cool and
heat. Heating and cooling processes are generally electricity intensive and can quickly ex-
haust solar electric outputs. Nonimaging solar thermal concentrators have been utilized as a
heating system during colder months and as cooling systems using evaporative cooling tech-
niques during warmer months. Standard heating and cooling systems require large amounts
of electricity and are largely powered using fossil fuels, such as natural gas.

1.2.3 Concentration Ratio

A solar thermal concentrator is an optical device between a radiation source and a receiver
which causes more rays of sunlight to strike the receiver than if the receiver were to face
the sun and collect rays without the concentrating optical device. In other words, a con-
centrator increases energy density by decreasing receiver area from which heat losses occur
but retaining the same energy delivery as a flat-plate receiver of equivalent aperture area,
thereby increasing the concentration ratio.

The concentration ratio is a benchmark used to assess the effectiveness of a solar thermal
concentrator. A higher concentration ratio would correlate to a better concentrating optic.
Better concentrating optics direct higher amounts of additional energy onto the receiver,
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resulting in higher energy density increases compared to what the receiver would otherwise
receive without the optic. The two concentration ratios used commonly used to compare
solar thermal concentrators are the geometrical and optical concentration ratios.

Geometric Concetration Ratio

The geometric concentration ratio is defined as the ratio of the area of the aperture to
the area of the receiver, written as,

Cgeometrical =
Aa
Ar

(1.1)

where Aa is the area of the aperture, and Ar is the area of the receiver.
The receiver is the element where the radiation is absorbed and the aperture is the

opening through which the solar radiation enters the concentrator. The concentrator is the
optical system compoenent of the collector that directs radiation onto the receiver and the
collector is the term used for the complete system, which includes the aperture, receiver,
and concentrator (Duffie and Beckman, 2013). In this paper, the sun will be referred to as
the energy source, or simply source.

The maximum concentration ratio derived in Rabl, 1976 is based on the second law of
thermodynamics applied to the radiative heat exchange between the source and the receiver,
both of which are assumed to be a perfect blackbody. The Stephan-Boltzman law states
that the radiation power density from a perfect blackbody source onto any point at distance
R from the source will be,

Ps =
r2

R2
σT 4

s (1.2)

where σ = 5.67×10−8Wm−2K−4 is the Stefan Boltzmann constant, Ts is the equilibrium
temperature of the source, r is the radius of the source as viewed from the point at distance
R and Ps is the power density of the source at a point of distance R from the source. The
concentrator setup is shown in Figure 1.7.

The total power radiated from the source onto the aperture is then given by,

Ps→a = Aa
r2

R2
σT 4

s (1.3)

where Aa is the area of the aperture which in this case is at distance R from the source,
and Ps→a is the total power from the source onto the aperture. We are interested in the
maximum concentration ratio, meaning that of an ideal concentrator in which the total
power received at the aperture is also that received at the receiver. Hence,

Ps→r = Aa
r2

R2
σT 4

s (1.4)
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Figure 1.7: Sketch of the source of radius r radiating towards a concentrator
at a distance of R with aperture area Aa and receiver area of Ar. θs is the

half angle subtended by the source.

where Ps→r is the total power from the source onto the receiver.
Assuming the receiver is also a perfect blackbody, the total power radiated from the

receiver is,
Pr = ArσT

4
r (1.5)

where Ar is the area of the receiver and Tr is the equilibrium temperature of the receiver.
Only a fraction of the power from the receiver to the source, Fr→s, reaches the source,
meaning,

Pr→s = ArσT
4
r Fr→s (1.6)

where Pr→s is the total power from the receiver to the source. When Tr = Ts, the second
law of thermodynamics states that Ps→r = Pr→s. Therefore, combining equations (1.4) and
(1.6) yields the following ratio:

Aa
Ar

=
R2

r2
Fr→s (1.7)

Since the maxFr→s = 1, the maximum concentration ratio of equation (1.1) for linear
two dimensional concentrators is

max[Cgeometrical] = max
[Aa
Ar

]
=

1

sin(θs)
(1.8)

where θs is the half angle subtended by the source as shown in Figure 1.7. Note that
the while the geometric concentration ratio can have any value, the value of the geometrical
concentration limit is only meaningful when all of the light incident on the collector aperture
within the prescribed acceptance angle reaches the receiver without any loss (O’Gallagher,
2008). Applying the approximate half angle subtended by the sun from earth of θs = 0.27◦,
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the maximum possible concentration ratio for linear two-dimensional concentrators is 212
(Duffie and Beckman, 2013).

Optical Concetration Ratio

Note that equation (1.8) refers purely to the geometric concentration ratio and is used to
derive the maximum possible concentration ratio, whether physically possible or not. A more
accurate measure of the performance of an actual concentrator is the optical concentration
ratio. The optical concentration ratio is the portion of incident rays on the aperture within a
specified collecting angle that reach the receiver. The optical concentration ratio will always
be less than or equal to the theoretical maximum geometric concentration ratio (Winston
et al., 2005).

The optical concentration ratio is determined by integrating the averaged irradiance,
or radiance flux Ir, over the receiver area, Ar, and dividing this quantity over the solar
irradiance incident on the collector aperture, Ia. (Stine and Geyer, 2001).

Coptical =
I
Ar

∫
IrdAr

Ia
(1.9)

Optical efficiency can also be determined by tracing rays through a concentrator system
to find the proportion of incident rays on the aperture within a given collecting angle that
reach the receiver. In this paper, we will primarily use the optical concentration ratio as a
measure for the effectiveness of a particular concentrator configuration.

Figure 1.8: Diagram showing how the method of strings and edge ray
principle are used to design ideal 2D nonimaging solar thermal concentrators.

1.2.4 Compound Elliptical Concentrators (CECs)

Ideal two dimensional solar thermal concentrators are designed using the method of strings,
which utilizes principles from Hottel’s strings and the edge ray principle. Hottel’s strings
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were originally used to calculate radiation transfer between walls in a furnace (Winston,
Jiang, and Ricketts, 2018). The edge ray principle, based on Hamiltonian and Lagrangian
optics, states that redirecting all light rays emanating from the edges of the source towards
the edges of the receiver will ensure that all the light rays from the interior of the source
will also land on the receiver.

An example of an ideal 2D compound elliptical concentrator (CEC) setup is shown in
Figure 1.8. The linear source, shown on the left in red, and linear receiver, show on the
right in blue, must first be defined. A CEC is uniquely defined for any given extended linear
source and linear receiver. Every point on the source is assumed to radiate isotropically.
Cross strings AC ′ and A′C are drawn from the bottom of the source to the top of the receiver
and from the top of the source to the bottom of the receiver, respectively.

A concentrator is only considered ideal when every ray emanating from the source that
enters the aperture also eventually hits the receiver. Hence the solid black concentrator
arms must be designed such that all rays emanating from the source AA′ and crossing BB′
must be reflected by the concentrator onto CC ′. One way to design such a concentrator is
to use the cross strings to draw upper and lower concentrator arms based on what is known
as the edge ray principle (Winston, Jiang, and Ricketts, 2018).

The edge ray principle directs rays originating from the most extreme points on the
source, such as those at A and A’ onto the most extreme points on the receiver, C and C’
respectively. A unique ellipse can be defined by denoting two unique foci points A and C
and a point on the ellipse, C’. A portion of such an ellipse uniquely determines the solid
black top concentrator portion in Figure 1.8.

Figure 1.9: Source edge rays generated from one focus, shown in orange,
hitting the elliptical concentrator will be directed towards the edge of the

receiver corresponding to the opposite focal point of the ellipse.

By the properties of an ellipse, all rays generated from focus point A that cross the
aperture will hit the upper elliptical concentrator and be reflected to the opposite focus at
point C. All rays traveling within the cone between AB′ to AB will be reflected to point C
on the receiver, as shown in Figure 1.9. Note that the rays

−−→
AB′ and

−−→
AB hit the very edges
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of the concentrator on either side of the aperture. Determining whether such rays hitting
the exact edges of the aperture enter the aperture or not is impossible. Hence, such cases
are removed and assumed not to enter the aperture in ray tracing simulations mentioned
later in this paper.

Similarly, all rays generated from point A’ that cross the aperture will hit the lower
elliptical concentrator and be reflected to the opposite focus at point C’. This is due to the
fact that A’ is one focal point of the ellipse and C’ is the other of the bottom elliptical
concentrator. Only rays within the cone between A′B to A′B′ are reflected towards C’.
Rays at the exact extreme edges of this cone, namely rays

−−→
A′B to

−−→
A′B′, are not considered

to enter the aperture in ray tracing simulations.
Given that all rays generated on either edge of the source which enter the aperture are

concentrated onto the receiver, an argument of continuity implies that all rays generated from
the interior of the source that cross the aperture must also be concentrated onto the receiver.
Hence all rays from the source entering the aperture are concentrated onto the receiver.
Such concentrators are considered ideal since such designs can reach the thermodynamic
concentration ratio limit (Winston, Jiang, and Ricketts, 2018).

Note that the acceptance angle for a CEC is not fixed, but rather depends on the
location on the aperture. For example, any point D located on the aperture BB′ in Figure
1.8 would accept rays traveling within the cone AD to A′D. Given the acceptance angle
ray dependence on the location where it crosses the aperture, there is not a sharp cutoff in
incident radiation collected for a specific ray theta value at the aperture.

1.2.5 Asymmetric Nonimaging Concentrators

Figure 1.10: Asymmetry arises when the receiver is chosen not be parallel
with the source.
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When the uniquely defined source and the receiver for a CEC are not parallel, the
resulting concentrator shape will not be symmetric, as shown in Figure 1.10. Such collectors
are known as asymmetric nonimaging concentrators.

Figure 1.11: The cone of source edge rays generated, shown in orange, is
different at each end of the source.

1.2.6 Compound Parabolic Concentrators (CPCs)

Compound parabolic concentrators can be thought of as an extension of CECs with the
source at infinity, filling the entire plane. Consider any CEC with elliptical concentrator,

x2

a2
+
y2

b2
= 1 and eccentricity

√
1−

( b
a

)2

where a is the semi-major axis and b is the semi-minor axis. As the source goes to infinity,
the semi-major is extended until the eccentricity equals,

lim
a→∞

√
1−

( b
a

)2
= 1

Each side of the concentrator is now a parabola, since the conic section with eccentricity
equal to 1 is a parabola. However, since the source at infinity is now a plane, using the
previous method of concentrator design will result in a planar concentrator. In other words,
the concentrator and the receiver will be the same, resulting in simply a flat plate absorber.

Radiation from only a section of the sky within a specified acceptance angle will be
concentrated onto the receiver. A CPC is uniquely defined given a linear receiver and a
specified acceptance angle

1.2.7 Limitation of String Method Concentrators

The method described to design solar concentrators by the string method results in contin-
uously varying shapes. Such designs are not easy to manufacture since they require precise
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continuous bending of a highly reflective material. Furthermore, the approach is limited to
2D designs. While the design can be extended to three dimensions through either a trough
design symmetric about and axis or through a rotationally symmetric design that produces
what is known as Winston cones. Neither of these extensions is ideal in 3D, despite being
based off of the ideal 2D design. By not ideal in 3D, it is meant that not all rays that enter
the aperture are collected on the receiver. This is mainly due to skew rays that enter at
angles which do not lie in a plane that includes through the central axis of the CPC.

1.2.8 Current Design and Manufacturing Production

Current production of nonimaging solar thermal concentrators includes precise bending of
a reflective material, typically metal sheets. The sheet must not only bend, but also retain
the ideal compound parabolic concentrator (CPC) trough configuration. To achieve this,
continuous bending along with heat are required in trough production. Initial upfront costs
are seen as one of the largest barriers to solar energy installations (Concerned Scientists,
2017).

One manufacturer, Artic Solar, has turned to segmented nonimaging solar thermal con-
centrator trough designs such as those shown in Figure 1.12. Segmented nonimaging solar
thermal concentrator designs differ from the smooth ideal CPC design in that the troughs
are not a smooth curved surface, but rather consist of flat surfaces joined at the edges. Such
designs are also known as faceted concentrators. In this way, concentrators may be produced
from a single flat reflective piece of metal that is kinked at the various joints to the desired
angle between adjacent flat segments.

Reflective metal sheets are better able to retain their shape when kinked at joints to
form hinges of a desired angle rather than bent continuously into a smooth curve. Hence
concentrators made by hinging flat sheets may be produced more cheaply without signifi-
cant added heat or continuous bending. Hence manufacturing cost reduction is the driving
motivation for the segmented nonimaging solar concentrator designs discussed in this paper.

Despite the possible reduction in manufacturing costs, alternative designs to the ideal
nonimaging 2D compound parabolic concentrator (CPC) trough design also face a draw-
back; they are less than ideal, meaning less than ideal configurations do suffer from some
efficiency loss. The reduction in manufacturing costs may outweigh the reduction in ef-
ficiency since some companies, such as Artic Solar, are already choosing to manufacture
segmented nonimaging solar thermal concentrators rather than the traditional smooth CPC
design.

Current designs place segmented solar thermal concentrator joints at locations from a
discrete subset of points of the ideal CPC without optimization. The goal of this paper is
to compare the efficiency of segmented solar thermal concentrators with optimally placed
joints versus segmented solar concentrators with an equivalent number of joints placed at
discrete locations from the ideal CPC configuration.
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Figure 1.12: Commercial Segmented Solar Concentrator Produced by Artic
Solar. Diagram from Artic Solar (http://www.articsolar.com/)

In order to test the theoretical efficiency of various segmented solar concentrator designs,
a ray tracing model was implemented in Matlab. This ray tracing procedure is described in
the next section.
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Chapter 2

Computational Framework

The first chapter detailed the ideal design of ideal solar thermal concentrators. Some limita-
tions to this design were mentions in section 1.2.7 and some current manufacturing solutions
to these limitations was discussed in section 1.2.8, which included segmented solar concen-
trators. However, the theoretical efficiency of these concentrators has not been well studied.
This chapter outlines a new computational approach and optimization to address design
efficiency for various segmented solar concentrators setups under various constraints.

2.1 Shape Optimization Goals

Our main objective goals are to produce segmented solar thermal concentrators configura-
tions that are:

• Easy to manufacture

• Adaptable to different design criteria

• Highly efficient, optimal, and practical

• Optimized by a computationally fast approach

• Robust to manufacturing errors

Although ideal 2D CEC designs exist, the performance of these designs quickly changes
when the concentrator is approximated by segmented collocated linear segments. We aim
to remove the limitations of continuously varying shapes and 2D designs by taking a com-
putational approach.

This approach includes optimizing segmented solar concentrator efficiency for a given
number of segments. The result is a design that is relatively easy to manufacture, while
maximizing efficiency for the given design constraints.

Hence one of the primary goals is to achieve a concentrator design that can be manufac-
tured cheaper while minimally sacrificing on concentrator efficiency. We call such concen-
trators to be optimal. They are no longer ideal in terms of collecting every ray that enters
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the aperture, but they give the highest optical concentration ratio efficiency for the given
design parameters.

2.1.1 Easy to Manufacture

The primary advantage of linear segmented collocated concentrators is that they are easy
to manufacture. There are many factors that may contribute to the overall manufacturing
cost and ease. Some of these factors include:

• Linear segments instead of curved surfaces

• Low number of segments

• Symmetric

• Concentrator wing lengths

• Aperature size

• Absorber shape

• Concentrator interior angles

2.1.2 Adaptable to Various Design Criteria

In addition to being easy to manufacture, concentrator designs should be adaptable to
various design parameters. Many of these parameters may be chosen with manufacturing
ease in mind. Many parameters may have constraints which represent manufacturing limits
or other design preferences such as to meet space constraints.

• Trough or basic concentrator shape configurations

• Fixed number of segments

• Fixed wing lengths

• Maximum or fixed Aperature size

• Maximum concentrator width and length

2.1.3 Highly efficient, Optimal, and Practical

Concentrator designs should also be highly efficient and practical. Some aspects of design
which ensure that configurations are highly efficient within the specified parameter limits
include:

• Optimized concentrator configuration under given constraints
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• At least or more efficient than segmented linear collocated concentrators with vertices
placed along the ideal

• Convex

2.1.4 Optimized by a computationally fast approach

The optimizer used to determine the optimal concentrator configuration should be fast while
giving good results. A few things that we implimented to increase computational speed were:

• Vectorized ray tracer

• Single software for both ray tracer and optimizer to reduce communication lag between
various softwares

2.1.5 Robust to manufacturing errors

Finally, robustness is a requirement since small manufacturing errors should not result in
large efficiency losses.

• Limited efficiency losses with small design errors

• Inherent manufacturing errors do not compromise concentrator efficiency

2.2 Other Computational Optimization Work in Nonimaging
Optics

There has been a lot of optimization work done on continuum descriptions, which are very
different in nature physically. In contrast, there has not been much research on shape opti-
mization with particles in open source literature. Most commercial ray tracing software is
not designed for optimization and is designed only for point sources, instead of a continu-
ous source. The particle ray tracing model described in this paper uses extended sources
and integrates optimization into the same software as the ray tracing program. The com-
bined particle ray tracing gradient-free optimization method described in this paper has not
previously been employed to optimize nonimaging solar thermal concentrators.

We give an explicit method and optimization framework approach for nonimaging optic
concentrator designs. We show that generalized pattern search is effective for optimizing
nonimaging designs. We particularly show it’s effectiveness for low degree of segmented
reflectors. Then we use our method to draw conclusions on sensitivity analysis of various
concentrator designs.

A few problems that naturally arise that are unique to this optimization problem are
local minima and discretization. These are nontradiational optimization shape optimization
problems in the fact that they are discretized, have a ray tracer, the objective functions are
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locally flat and require derivative-free optimization methods. The ray tracer must also deal
with extended sources. We can also deal with enforcing convexity of shape by using pattern
search.

Some design work in the field of nonimaging optics has been done using the simultaneous
multiple surfaces (SMS) optical design method (Gimenez-Benitez et al., 2004). The software
implementing the SMS is proprietary of Light Prescriptions Innovators. The formalism for
the SMS is given in several papers.

Another formalism called the "Iterative generalized functional method of nonimaging
optical design" is described by Bortz and Shatz, 2007 and is implemented in a code called
NICOS (Shatz et al., 2008). Other work has been done on free-form surfaces for nonimaging
optics by Miñano et al., 2009.

The published work of the above mentioned groups describe formalisms that are amiable
to design. However, explicit methods are not given since their methods for nonimaging
optics designs has been implemented in proprietary softwares. We propose a method for
optimization approach for nonimaging optics and provide a complete explanation of the
method and implementation in this paper.

Marston, Daun, and Collins, 2010 present an optimization algorithm for designing and
optimizing concentrating solar collectors. They provide open source code for their method,
which includes stochastic ray tracing in Matlab and stochastic gradient-based optimization
using the modified Kiefer–Wolfowitz algorithm.

However, the authors admit that trials often fail to reach an optimum using the quadratic
line search. An insufficiently smooth objective function and regions far from optimal with
near-zero gradient are two suspected reasons that result in non-convergence. Furthermore,
their chosen segmented solar concentrator setup only reached efficiencies of about 30%
(Marston, Daun, and Collins, 2010).

They presented an explicit optimization method for various classes of nonimaging solar
concentrators, but the unsuitable choice of gradient-based optimization sometimes produced
impractical low performing designs. The other concentrating designs that were tested were
smooth curves that varied parameters of a family of functions. Such designs do not have
any apparent advantage over ideal concentrators in terms of efficiency nor reductions in
manufacturing costs.

Other groups explicitly propose designs aimed at reducing manufacturing costs through
the concatenation of a limited number of truncated cones (Jafrancesco et al., 2012). They
demonstrate that a truncated cone approximations with joints along the ideal concentrator
do not result in severe efficiency losses. However, they never optimize the cone joint locations
and the focus of their application is for use with heliostat fields.

2.3 Concentrator Configuration

We considered several different configurations of nonimaging concentrators. We will first
discuss what we will call the basic concentrator setup shown in Figure 2.1, which shares
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many things in common with the other designs.

2.3.1 Basic Concentrator Setup

Figure 2.1: Basic concentrator setup with linear source on left and linear
collocated concentrator segments on the right. The linear receiver, aperture,
and source are all considered to be fixed. The interior vertices are allowed to
move vertically up and down until an optimal concentrator configuration is

found.

A source on the left sends rays into the aperture, or opening of the concentrator. The
rays then reflect off of the linear collocated concentrator segments until they are either
rejected back out through the aperture or reach the receiver. The source, aperture, and
receiver are all considered fixed. Hence the vertices on each size of the aperture and the
receiver are considered fixed as well.

The other interior vertices are free to move into a configuration that maximizes the
percent of rays reaching the receiver from the source. The vertices may move only vertically,
as shown by the arrows in the basic concentrator setup of Figure 2.1, or vertex location may
be allowed to move both vertically and horizontally, depending on user preference. Vertically
and horizontally moving vertices is one configuration variation of the basic concentrator
setup, which only permits vertical variation.

Allowing more flexibility of vertex movements increases the number of degrees of freedom
in the optimizer and hence increases optimization difficulty. The process of optimizing the
location of these vertices will be discussed in the next chapter.

2.3.2 Increasing Vertices

With the basic concentrator setup selected, the number of concentrator vertices can be
gradually increased incrementally. When a large number of vertices is given to the optimizer,
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the initial placement of the vertices heavily influences the final optimal configuration found.
The heavy influence of the prior placement of the vertices to the final optimal location found
means that the initial vertex placement fed into the optimizer should not be arbitrary, but
should be rather good, although not optimal.

One way to ensure that the initial placement of vertices fed into the optimizer is not
vastly far away from concentrator configurations of high efficiency is to start with a low
number of vertices which can be more easily optimized with less influence of the prior and
incrementally increase the number of vertices after an optimal configuration is found at each
stage. We will describe the process starting with three vertices, or meaning just one interior
vertex to be optimized.

The y coordinate placement of the single interior vertex is initially optimized. The x
coordinate is placed equidistant between the x coordinate of that of the aperture and receiver
vertices. The number of interior vertices is then increased by creating a Piecewise Cubic
Hermite Interpolating Polynomial, defined as pchip in Matlab, through the initial three
vertices and placing two interior vertices whose x coordinates are equally spaced between
the x coordinates of the aperture and receiver vertices. Therefore the total number of vertices
on each concentrator wing is increased to four with one on the aperture, two interior vertices,
and one on the receiver.

The concentrator with initial two interior y vertex placement located along the inter-
polated Piecewise Cubic Hermite Interpolating Polynomial is then optimized. Again, the
Piecewise Cubic Hermite Interpolating Polynomial can be used to find the location of three
interior y vertex placement locations with x coordinate placement equally spaced between
the aperture and receiver x coordinate vertex locations. These interpolant vertex locations
may be used as the initial vertex placement for the next optimization iteration. This pro-
cess continues until the desired number of vertices is reached and ensures that initial vertex
configurations are not vastly far away from efficient configurations.
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Figure 2.2: Basic concentrator variation with linear source on left and linear
collocated concentrator segments on the right. The linear receiver and source
are considered to be fixed. The interior angles are allowed to move until an

optimal concentrator configuration is found.

2.3.3 Interior Angle Optimization

Instead of optimizing vertex locations and allowing concentrator segment lengths to vary,
such as in the basic concentrator design given in Figure 2.1, an alternative concentrator
configuration is to fix individual concentrator segment lengths and optimize the interior
angle between adjacent segments, such as is shown in Figure 2.2. In this configuration the
aperture is not considered fixed and becomes wider or narrower depending on the optimized
interior angles.

2.3.4 Trough Concentrator Configuration

The interior angle optimization can be combined with either a flat absorber, as is shown
in Figure 2.2, or a circular absorber, such as is shown in Figure 2.3. The linear absorber
is conformed into a circular segmented absorber along with several concentrator segments
along an approximate involute.

This configuration is particularly useful for trough concentrator designs whose absorber
has a flowing material, such as oil or sand, encompassed within a vacuum tube. Tubular
absorbers are the most commonly deployed design in practice.
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Figure 2.3: Basic concentrator variation with linear source above and
trough collocated concentrator below with circular receiver. The circular
receiver and linear source are considered to be fixed. The interior angles are

allowed to move until an optimal concentrator configuration is found.

2.4 Objective Function and Constraints

As shown in Figure 2.1 for the basic concentrator setup, the vertices on each size of the
aperture and the receiver are considered fixed. The other vertices are free to move to a
configuration that maximizes the percent of rays reaching the receiver. The position of the
interior vertices is denoted by, x̃, which may include only the y-coordinate values if the
x-coordinate values are to remain fixed or x̃ may concatenate x- and y-coordinate values so
the placement of both are optimized.

If the placement of the x-coordinate values are also to be optimized, some constraints
on the possible location of the x-coordinates is placed to prevent consecutive points from
crossing one another. For example, we initially placed the x-coordinate values at evenly
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spaced points between the aperture and receiver. One such constraint that we implemented
was to prevent points from crossing one another was to put a lower bound and upper bound
on the optimized x-coordinate location. The lower bounds were set as the midpoint between
the current x-value vertex coordinate and the x-coordinate of the previous vertex. Similarly,
the upper bounds were set as the midpoint between the current x-value vertex coordinate
and the x-coordinate of the next vertex.

2.4.1 Defining the Objective Function

The objective is to place the movable vertices in positions that maximize the number of
rays hitting the receiver that enter the aperture, which is similar to maximizing the op-
tical efficiency as defined in equation (1.9). However, most optimization methods seek to
minimize, not maximize, the objective function. Hence we turn this maximization problem
into a minimization problem by minimizing the additive inverse of the optical concentration
ratio, meaning our objective function to minimize becomes,

F (x) = − (number of rays collected on the receiver)
(total number of rays entering concentrator)

(2.1)

where the vector x = (x1,x2,x3, ...,xm) contains the coordinate points of the vertices of
the top polygonal reflector. We enforce symmetry, meaning that the points of the vertices
on the lower polygonal reflector are given by x = (−x1,−x2,−x3, ...,−xm).

The total number of rays entering the concentrator is proportional to the incoming
radiation flux. The proportional flux is what is measured on the absorber. The numerator
of equation 2.1 is the flux of radiation entering the aperture and the denominator is the flux
of radiation incident on the absorber. Hence the ratio of the collected flux on the absorber
over the total flux entering the concentrator is maximized.

For an ideal concentrator, F (x) = −1, meaning that all of the rays entering the solar
thermal concentrator are collected at the receiver. Since the ideal concentrator is a smooth
continuous curve, the discretized linear segmented solar thermal concentrator objective func-
tion F (x) will only approach −1 as the number of polygonal reflector vertices (i.e. length
of x) tends to infinity.

We are primarily interested in segmented solar thermal concentrators with low numbers
of segments on each wing. In this case we are far from configurations that closely represent
the ideal concentrator. Hence the ideal configuration may not be vertices placed exactly
along the ideal concentrator.

In optimizing the location of concentrator vertices, we will discuss the advantages and
pitfalls of various optimization techniques and why pattern search was ultimately found to
best deal with segmented solar concentrator optimization difficulties.
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2.4.2 Constraints

We implement constraints which enforce convexity. Without such constraints, we found that
the optimizer sometimes becomes stuck in non-convex designs. We only consider convex
designs to be practical and therefore implement a convexity constraint.

We have nonlinear constraints to enforce convexity implemented as,

c =
1

2
− all(di < 0) (2.2)

where di are determinants of consecutive concentrator segment vectors. Consecutive concen-
trator segment vectors are referred to as the vectors formed between consecutive vertices,

such as ~v1 =

[
(x2 − x1)
(y2 − y1)

]
and ~v2 =

[
(x3 − x2)
(y3 − y2)

]
where (x1, y1), (x2, y2), and (x3, y3) are

consecutive concentrator vertices as shown in Figure 2.4. When the concentrator is convex,
the sign of the determinant will be negative since sin θ < 0 where θ is the angle between ~v1

and ~v2.

Figure 2.4: This figure shows how the signed angle between consecutive
concentrator segment vectors is negative when that portion of the concentra-

tor is convex.

By a similar argument, if a portion of the concentrator is concave, such as that shown
in Figure 2.5, then the sign of the determinant will be negative since sin θ > 0 where θ is
the angle between ~v1 and ~v2.

Another way to write the determinants of consecutive concentrator segment vectors is,

di = ∆xi−1∆yi −∆xi∆yi−1 (2.3)

where

(∆xj ,∆yj) = (xj , yj)− (xj−1, yj−1) (2.4)
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Figure 2.5: This figure shows how the signed angle between consecutive
concentrator segment vectors is positive when that portion of the concentrator

is concave.

The convexity constraint may also be written mathematically as,

c =
1

2
−Πn

i=1(1−H(di)) (2.5)

where H is the heavyside function that is one if di is less than zero and and zero if di is
greater than zero. Hence equation (2.5) is 1

2 when all concentrator segments are aligned in
a convex arrangement and −1

2 when any two consecutive segment arrangement is concave.
Upper bound constraints can also be placed on the y coordinate values to prevent vertices

on the concentrator wings from being too far away from the center axis. Such constrainst
can also prevent interior angle optimized concentrators from opening too wide or becoming
too flat.

2.5 Source Ray Distribution and Number of Rays

Rays originate from all points along the linear source. However, coding requires discretiza-
tion, meaning rays originate from several fixed points along the linear source. The various
options for discretized light generation are described below.

2.5.1 Adaptive Source

The optimizer performs the best when starting with a limited number of degrees of freedom
and gradually incrementing the degrees of freedom following each consecutive optimization.
However, since additional degrees of freedom will be added, it is not always necessary to
find the most optimal configuration for lower degrees of freedom. Using fewer rays may be
adequate to achieve a sufficiently efficient design, even if it is not the most optimal for that
many vertices. Additional vertices may then be added using this sufficiently optimal design.
As the number of degrees of freedom, and hence the computational complexity, increases,
the number of rays also increases for increased precision.
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Hence it may be desired to progress through the concentrator configurations of lower
degrees of freedom more quickly so that the majority of computational time can be spent
optimizing higher degree concentrator configurations. In order to find a sufficiently opti-
mal design with fewer computing resources, the number of rays sent through low degree
concentrators can be reduced.

When the number of rays sent through the concentrator depends on the number of
degrees of freedom to be optimized, we call the source adaptive. An adaptive source changes
based on the degrees of freedom and sends more rays through the concentrator for harder
to optimize, higher degree concentrator configurations.

Let Njoints be the number of vertices, or joints, along the top portion of the concentrator.
For an adaptive source, the number of sources, Nsources, along the linear source is given by,

Nsources = Njoints × SPJ (2.6)

Where SPJ , the number of sources per joint is defined by the user. SPJ is typically
small, such as 2, to increase speed. The number of sources is defined as the number of
discrete source points along half of the linear source. The number of sources are evenly
distributed along the bottom half of the linear source from the lowest endpoint of the source
to the center.

Since symmetry is enforced, the upper and lower portions of the concentrator are reflec-
tionally symmetric around the central axis of the concentrator. Hence rays sent from the top
half of the source and the bottom half of the source will trace out reflectionally symmetric
paths. Since the ultimate destination of reflectionally symmetric rays is the same, meaning
either both reach the receiver or both are rejected and escape back through the aperture,
the destination of only one of the rays needs to be calculated by the ray tracer.

2.5.2 Fixed Source

An alternative way to define the number and position of rays generated from the linear
source is to use what we call a fixed source. A fixed source gets its name from the fact that
the number of rays sent through the concentrator for an optimization is fixed and does not
depend on the optimizer number of degrees of freedom. Hence, the number of sources is
given by,

Nsources = Kfixed × SPJ (2.7)

where Kfixed is a fixed constant, which we often choose to be 100.
For both the fixed and adaptive sources, the number of rays emanating from each source

is given by Nangles = Nsources. The angles are evenly distributed between the minimum and
maximum angle values of rays that may enter the concentrator. Hence the total number of
rays that are traced through the concentrator is given by,

Nrays = Nsources ×Nangles (2.8)
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2.5.3 Lambertian Source

The radiance from the sun is approximately a Lambertian emitter. A Lambertian emitter
has the property that it’s luminance is isotropic, meaning there is equal irradiance from any
angle when viewed at an equal distance from the source.

However, the intensity is proportional to the cosine of the angle with respect to the
central concentrator axis. Hence rays hitting the absorber are weighted with respect to the
cosine of their original theta values to imitate a Lambertian source in the following way,

F (x) =
(number of rays collected on the receiver)

(total number of rays entering concentrator)
cos (θinitial)∑

cos (θinitial)
(2.9)

Hence the rays incident on the absorber are weighted according to the cosine of their
origination angle from the source with respect to the concentrator. Equation 2.9 is essentially
a rescaled version of the objective function defined in equation 2.1.

The concentrator mirrors are assumed to be specular, not Lambertian, reflectors. There-
fore all mirror reflections are calculated using Snell’s Law.

2.6 Ray Tracing Basic Setup

Following standard ray tracing algorithms, rays originate at a source, such as the sun, and
are traced through the concentrator until the rays are either absorbed by the receiver or
escape back through the aperture. Since the distance from the sun to the concentrator is
unproportionally large compared to the magnitude of the dimensions of the concentrator,
the rays of the sun are instead modeled to be coming from a linear segment positioned close
enough to the concentrator that both can be fully viewed with a reasonably sized viewing
window.

The ray tracer is vectorized in Matlab and is highly efficient. The ray tracer communi-
cates directly with the built-in Matlab optimizers, decreasing communication lag between
platforms.

2.6.1 Ray Origination

Ray originate from N distinct points on the linear source segment, each point emitting rays
at N distinct angles θ. These angles are distributed according to a Lambertian source,
meaning that in general the rays are forward-peaked. For example, a ray originating from a

point
[
x0

y0

]
on the source travels in an initial direction θi.

2.6.2 Ray Intersection with Concentrator

The ray then travels some distance t before intersecting with segment on the segmented

solar thermal concentrator, meaning the new ray location is at
[
x0 + t cos(θi)
y0 + t sin(θi)

]
. The ray
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passes through the aperture and continues until it strikes either the absorber or one of the
flat reflective segments of the concentrator. Since the ray is only permitted to propagate
forwards, t > 0.

The initial concentrator configuration is determined by the coordinates of a specified
number of joints that will connect consecutive flat reflective segments. The x-values of these
points is determined by taking a vector of equally spaced points between the x-values of
the aperture and absorber. The y-values are initially determined by those on a straight line
connecting the top aperture point and the top most point on the absorber.

Since the concentrator is made out of linear line segments, the segments of the con-

centrator are described by
[
xA(1− s) + xBs
yA(1− s) + yBs

]
where 0 ≤ s ≤ 1. Hence (xA, yA) is one

segment endpoint and (xB, yB) is the other. The intersection of the ray with a segment of
the concentrator is be described by,

x0 + t cos(θi) =xA(1− s) + xBs (2.10)
y0 + t sin(θi) =yA(1− s) + yBs (2.11)

Rearranging, we achieve,

[
x0 − xA
y0 − yA

]
= s

[
xB − xA
yB − yA

]
− t
[
cos(θi)
sin(θi)

]
(2.12)

This can be written in the matrix form,

[
x0 − xA
y0 − yA

]
=

[
− cos(θi) (xB − xA)
− sin(θi) (yB − yA)

] [
t
s

]
(2.13)

Since we are interested in the values of t and s to determine the distance the ray traveled
before hitting a receiver segment and to also determine the location of intersection between
the ray and the receiver, we invert the matrix in Equation 2.13 to yield,

[
t
s

]
=

1

sin(θi)(xB − xA)− cos(θi)(yB − yA)

[
(yB − yA) −(xB − xA)

sin(θi) − cos(θi)

] [
x0 − xA
y0 − yA

]
(2.14)

There will be one unique pair of t and s values satisfying the conditions t > 0 and
0 ≤ s ≤ 1 corresponding to the unique segment of intersection of the ray and the receiver.
Due to numerical precision issues, after the initial reflection with a segment on the receiver,
this segment is excluded from the next ray-receiver intersection calculation. This means
that a ray can not intersect with the same segment on the receiver twice consecutively.
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2.6.3 Updating Ray Position and Propagation Angle

When a ray intersects with the receiver, it can either strike the concentrator on the top half
portion while traveling from left to right, strike the bottom half of the concentrator while
traveling from left to right, strike the top half of the concentrator while traveling from right
to left, or strike the bottom half of the concentrator while traveling right to left. These four
scenarios are described in the following sections.

Ray Strikes Concentrator Top Traveling Left to Right

Figure 2.6.3 describes a light ray, shown by a yellow dashed line, intersecting with a receiver
segment, shown by a solid black line. The light dashed yellow ray shows the direction path
of the ray, had it not intersected with the receiver and θi is the angular direction of the ray
initially with respect to the horizontal.

Upon reflection with the receiver segment, θr describes the new angular direction of the
ray. The inward pointing normalized vector normal to the receiver segment,

−→
N , is denoted

by a blue solid line. The red angle denoted by π is the angle of incidence. While the angle
of incidence is equal to the angle of reflection, note that in our depiction, π 6= θr since here
π is a relative angle of the incident ray with respect to the normal, whereas θr is an absolute
angle with respect to the horizontal.

From Figure 2.6.3 we see that ρi = π−αi and that cos(αi) =
−→
N ·
[
cos(θ)
sin(θ)

]
where

−→
N is the

inward pointed normalized vector normal to the solid black concentrator segment. Hence,

θr = θi + π + 2ρi (2.15)
= θi + π + 2π − 2αi (2.16)
= θi + π − 2αi (2.17)

= θi +

(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

]))
(2.18)

(2.19)

Ray Strikes Concentrator Bottom Traveling Left to Right

From Figure 2.6.3 we see that again ρi = π − αi and that cos(αi) =
−→
N ·

[
cos(θ)
sin(θ)

]
where

−→
N is the inward pointed normalized vector normal to the solid black concentrator segment.
Hence,
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θr = α− (2π − θi)− ρi (2.20)
= θi − π + 2αi (2.21)

= θi −

(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

]))
(2.22)

(2.23)

Ray Strikes Concentrator Top Traveling Right to Left

From Figure 2.6.3 we see that again ρi = π − αi and that cos(αi) =
−→
N ·

[
cos(θ)
sin(θ)

]
where

−→
N is the inward pointed normalized vector normal to the solid black concentrator segment.
Hence,

θr = θi + α− ρi (2.24)
= θi − π + 2α (2.25)

= θi −

(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

]))
(2.26)

(2.27)

Ray Strikes Concentrator Bottom Traveling Right to Left

From Figure 2.6.3 we see that again ρi = π − αi and that cos(αi) =
−→
N ·

[
cos(θ)
sin(θ)

]
where

−→
N is the inward pointed normalized vector normal to the solid black concentrator segment.
Hence,

θr = θi − α+ ρi

= θi + π − 2α

= θi +

(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

]))

In summary, the cases can be divided into the following two groups:
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θr = θi +

(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

])) θr = θi −

(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

]))

Overall the formula for the angle of reflection of any ray with concentrator can be defined
as,

θr = θi − sign
(
−→
Nx

[
cos(θ)
sin(θ)

])(
π − 2 arccos

(
−→
N ·

[
cos(θ)
sin(θ)

]))

The reflection angle defines the current propagation angle. The location of the rays are
then updated to the location of the intersection of each ray with the receiver. The updated
location, (x, y), serves as a starting point of the ray in the current propagation direction, θ,
which is defined by the reflection angle.

Each ray then again propagates a distance, t, before again intersecting with a segment on
the segmented solar thermal concentrator, the receiver, or passing back through the aperture.
Due to round-off errors, it is possible to get propagation distance around t = 10−16 in which
a ray intersects with the same segment twice. Since such a scenario is not physically possible
or desired, a ray is restricted from intersecting the same segment twice consecutively.

Once a ray intersects either the receiver or the aperture, this final destination is recorded
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and that particular ray is then removed from ray tracing algorithm. The ray tracing algo-
rithm continues until all rays have either been collected at the receiver or escaped back
through the aperture.

After the fate of all rays entering the concentrator has been determined, the objective
function is calculated based on the total number of rays collected on the receiver versus the
total number of rays that entered the concentrator aperture. The objective function value
for the given concentrator configuration input is then communicated to the optimizer to
assign an efficiency value for the given design.
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Chapter 3

Concentrator Optimization Methods

In this section we will begin by discussing gradient based optimization and why gradient
based methods fail in our particular case given the objective function behavior. Then we
will discuss a derivative-free optimization approaches to optimizing such problems. We will
primarily focus on the derivative free optimization approach called pattern search and the
derivative free prequels leading up to the development of the pattern search optimization
program.

3.1 Gradient Based Optimization and Its Failure

Standard techniques for optimization are gradient based. Some gradient based techniques
include line search, trust region methods, conjugate gradient, and Quasi-Newton. These
methods either directly compute or estimate the gradient (Nocedal and Wright, 2006).

Initially, a gradient based solver in Matlab, fmincon, which is a nonlinear programming
solver was implimented. However, this algorithm was ineffective at finding a minima. For
any vector input, x, of initial concentrator vertices, fmincon would immediately terminate,
stating that the gradient was already smaller than tolerance. This suggests that F (x) is
“flat" with respect to small variation in x, meaning fmincon is content with any initial shape.

Furthermore, our objective function is not differentiable and changes in any vertex may
completely change which rays reach the receiver and which ones do not. Since each vertex
controls the location and orientation of the adjacent flat reflector segments, changing one
vertex changes the direction in which rays reflect off these two reflector surfaces, which in
turn changes their total paths thereafter. Rays that had previously been collected by the
receiver may now be rejected, and conversely some rays that had previously been rejected
may now be collected.

Since such a large number of ray paths are altered drastically by a change in location of
any vertex, we can not effectively compute a gradient. Hence, all gradient based methods
are likely to fail. The fmincon interior point function uses the Rosebrock function as a
performance test. This gradient was sufficiently close to zero, thus halting any improvements
from being made from the initial configuration.
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3.1.1 Nondifferentiability of Objective Function

As is discussed in the results section of the next chapter and shown in Figure 4.4, the sim-
ulated objective function is locally flat everywhere with abrupt jumps or discontinuities,
meaning that the objected function is not differentiable. The scale on which these disconti-
nuities occurs depends on the discrete number of rays originating from the source and the
mesh scale at which we incrementally increase the y-coordinate values.

However, assuming an infinite number of rays are generated from the source and that the
y-coordinates may be infinitesimally adjusted, the objective function may be continuous or
must at least a piece-wise smooth, as shown previously. Each of the concentrator segments
is piecewise smooth and we would expect the incoming flux of radiation from the source
onto the receiver to change in a smooth manner. We expect that the flux, F , is a function
of the shape, S, denoted by F (S). We would also expect that a small perturbation in the
shape would result in an equally small perturbation in flux on the receiver,

F (S0 + εS1) ≈ F (S0) + εS1F
′(S0) (3.1)

Where εS1 = perturbation to the shape S0.
However, since we are not able to simulate an infinite number of rays originating from

our source, nor are we able to infinitesimally increment our concentrator vertices, derivative-
based methods will fail. Hence, we must turn to derivative-free alternatives.

3.2 Derivative-Free Optimization for Continuous Problems

Since gradient based methods were shown to be unsuccessful optimizing concentrator ver-
tices, we turned to derivative-free optimization methods. Since our problem has a plethora
of local minima, a derivative-free method would need to be effective in evading local minima
traps. Furthermore, our objective function has several discontinuities, which often makes
derivative-based methods unsuitable (Koziel and Yang, 2011).

In general derivative free methods are effective in avoiding local minima, able to obtain
global minima, fast, and relatively easy to program. However, many derivative free methods
are only effective for relatively low degrees of freedom.

Some derivative free models seek to minimize the objective function within a defined trust
region. Others include simulated annealing, conjugate-direction methods, pattern search
methods, and the simplex-reflection method of Nelder and Mead (Nocedal and Wright,
2006). Nelder Mead has a region whose average is minimized. However, it was later shown
that Nelder Mead could fail to converge to a local solution even on a convex two-dimensional
unconstrained minimization problem (Audet, 2014). The reason Nelder Mead may fail to
converge to a minimum of the objective function is due to the the fact that the uniform
linear independence property is not guaranteed to hold (Torczon, 1997).
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3.2.1 Coordinate Search: The Prequel of Pattern Search

Another early type of derivative free optimization was coordinate search, which polled 2n
trial points around the current iteration looking for improvement, or a point whose value
was smaller that that of the current value. An advantage of such a method is that it did not
require any kind of smoothness in the objective function, only that the objective function was
defined at each of the polling locations. The polling locations were defined in the directions
of the ith coordinate vector in Rn (Audet, 2014). The polling locations were located around
the current iteration, xk in the following manner:

Pk = xk ± δkei : i = 1, 2, ..., n

Polling was considered successful if one of the polling points Pk was smaller than the
current iterate xk. After a successful poll, the current iterate then moves to the new smaller
iterate Pk and δk > 0 remains either unchanged during the next poll, or it increases by some
expansion factor, such as a factor of 2. In an unsuccessful poll in which none of the polling
points Pk is smaller than the current iterate xk, then δk is decreased by some factor, such as
decreased by a factor of 1/2 (Conn, Scheinberg, and Vicente, 2009). The polling continues
until δk is smaller than some specified tolerance.

3.3 Pattern Search

Coordinate search lead to the development of the class of pattern search algorithms. Pattern
Search is also called Direct Search, terms first used by Hooke and Jeeves, 1961. Other names
include Derivative-Free Search, or Black-Box Search and such techniques are primarily used
on discontinuous or not differentiable objective functions. Pattern search algorithms expands
the use and flexibility of coordinate search by removing the requirement that polling points
exclusively be searched for strictly along coordinate bases.

Instead of coordinate bases in coordinate search, positive bases are used in pattern
search, which are minimal sets of directions whose nonnegative linear combinations span
Rn (Audet, 2014). Positive bases were first introduced into pattern search by Lewis, 1996.
Positive basis are not basis since they likely over span Rn. However, in this way only positive
linear combinations need be considered. Another advantage of utilizing positive bases is that
the algorithm may progress in the direction of steepest decent faster. The speed increase
in computation time when moving more accurately along a direction of steepest decent
generally outweighs the added computation at each step.

Another advantage of pattern search is its ability to adapt to landscape individual op-
timization problems. Different optimization problems will have different numbers of local
minima with varying distances between these local minima. Ideally optimizers must resist
setting in local minima so that the global minima may be obtained.

Another key difference between coordinate search and pattern search is that pattern
search allows for the general coarsening or refining of the mesh through the introduction of
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a mesh size adjustment parameter τ , such that

δk+1 = τ r
k
δ0 (3.2)

where rk is some positive or negative integer that depends on the iteration number k. In
order to converge, the sequence of mesh size parameters must satisfy the Mesh Gets Infinite
Fine Theorem, (Audet and Hare, 2017), namely,

lim
k→+∞

infδk = 0 (3.3)

While Conn, Scheinberg, and Vicente, 2009 state that δk may increase after a successful
poll, Audet, 2014 asserts that a defining difference between coordinate search and pattern
search is the ability of δk to increase in pattern search after a successful poll. Increasing
the mesh size parameter δk allows the algorithm to recover from a bad initial choice of the
parameter δ0 and avoid local minima.

Furthermore, pattern search is proven to have global convergence without the need of
enforcing sufficient decrease in interates, such as fraction of Cauchy decrease, fraction of
optimal decrease, or the Armijo-Goldstein-Wolf conditions (Torczon, 1997).

Although we do not utilize this method, there is an extension of the pattern search
method which adds additional trial points on a mesh in a region ||x− xk|| ≤ C∆k, where x
is from the mesh area, ∆k is the frame size parameter, and C is defined in the directions of
the positive basis spanning set. This method is called Mesh Adaptive Direct Search (MADS)
and also includes implementation of stochasticity into the courseness of the polling search.

The key difference in MADS is that a new parameter called the frame size parameter,
∆k is introduced. Instead of polling points only at mesh parameter distances δk along
the positive bases, now a points along the positive bases within the frame size parameter
0 < δk < ∆k. A similar convergence requirement is that the frame size parameter sequence
satisfies limk→+∞ inf∆k = limk→+∞ infδk = 0 (Audet and Hare, 2017).

3.3.1 Polling Method

Pattern search polls the objective function, F (x) on mesh points surrounding the current
vertex value. For example, assume the vertex is initially placed at x0 and polling takes place
along coordinate bases for simplicity.

During the first iteration, the objective function, F (x), is polled on the mesh points
surrounding x0 in the following manner,

F (x0 +
[
1 0

]
)

F (x0 +
[
0 1

]
)

F (x0 +
[
−1 0

]
)

F (x0 +
[
0 −1

]
)
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If F (xi) < F(x0), the poll is considered successful.
After a successful poll, the point x0 is updated to the new point x1. The mesh in the

next iteration is multiplied by an Expansion Factor. The default value is 2.

During the second iteration, the objective function is polled on the following mesh points
surrounding x1

F (x1 + 2 ∗
[
1 0

]
)

F (x1 + 2 ∗
[
0 1

]
)

F (x1 + 2 ∗
[
−1 0

]
)

F (x1 + 2 ∗
[
0 −1

]
)

If F (xi) < F(x1), the search is successful. If F (x1) < F(xi) for all xi in the above four
cases, the poll is considered unsuccessful.

After an unsuccessful poll, the current point remains the same, which in this case would
mean x2 = x1. The mesh in the next iteration is then halved, or multiplied by an appropriate
Contraction Factor.

In the third iteration, the objective function is polled on the mesh points surrounding
x2

F (x2 +
1

2
∗
[
1 0

]
)

F (x2 +
1

2
∗
[
0 1

]
)

F (x2 +
1

2
∗
[
−1 0

]
)

F (x2 +
1

2
∗
[
0 −1

]
)

The search continues until the difference between consecutive iteration points is smaller
than tolerance value.

3.4 Stopping Criteria and Parameter Values

Pattern search terminates when one of the following scenarios occurs: the mesh size, step
size or objective function value differences between consecutive points fall below defined
parameter tolerance values, or if the maximum number of iterations, function evaluations
or time limit have been exceeded (Works, 2020a).
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Table 3.1 lists the default values of the pattern search algorithm parameters in Matlab
that can be specified by the user.

Parameter Default Value
AccelerateMesh: 0

ConstraintTolerance: 1.0000e-06
FunctionTolerance: 1.0000e−06

InitialMeshSize: 1
MaxFunctionEvaluations: ’2000*numberOfVariables’

MaxIterations: ’100*numberOfVariables’
MaxTime: ∞

MeshContractionFactor: 0.5000
MeshExpansionFactor: 2

MeshTolerance: 1.0000e−06

PollMethod: ’GPSPositiveBasis2N’
PollOrderAlgorithm: ’consecutive’

ScaleMesh: 1
StepTolerance: 1.0000e−06

UseCompletePoll: 0
UseCompleteSearch: 0

UseParallel: 0
UseVectorized: 0

Table 3.1: The above table shows the Matlab pattern search parameters
that can be changed by the user with the default values listed (Works, 2020b).

Pattern search is considered successful in finding an appropriately optimum value if the
mesh size, step size or objective function value tolerances cause termination. On the other
hand, pattern search may terminate but fail to find an appropriate optimum if the maximum
number of iterations, function evaluations limit or time limit are exceeded. In these cases
the result may not be sufficiently optimal or some other constraint, such as user defined
linear and nonlinear constraints, may not be satisfied.

3.4.1 Pattern Search Applications

Pattern search has a wide range of applications to problems in which derivative based meth-
ods fail. Applications range from mechanical engineering to machine learning. A black box
optimizer called Google Vizier is used to optimize hyperparameters of machine learning sys-
tems at Google (Golovin et al., 2017). Pattern search is one specific optimization method
in the category of black box optimization.
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3.5 Linear and Nonlinear Constraints

The specific Pattern Search optimizer used by Matlab is the Augmented Lagrangian Pattern
Search (ALPS) whose goal is,

min
x
F (x) (3.4)

subject to the nonlinear constraints ci(x) ≤ 0, i = 1, ...,m and linear constraints, (lower bound) ≤

x ≤ (upper bound). Our nonlinear constraints arise from enforcing convexity and the linear
constraints prevent vertices from overlapping or taking extreme values, such as allowing a
vertex to lie far away from the rest.

Instead of directly minimizing the objective function F (x) exclusively, Pattern Search
sequentially minimizes the Lagrangian barrier function (Conn, Gould, and Toint, 1997),

Θ(x, λ, s) = F(x)−
m∑
i=1

λisilog(si − ci(x)) (3.5)

where components λi of the vector λ are non-negative Lagrange multiplier estimates and si
of the vector s are non-negative shifts, and ci(x) are our nonlinear inequality constraints
(Kolda, Lewis, and Torczon, 2006).

A constraint can be added to the problem using Lagrange multipliers. For example, to
find minx f(x) subject to the constraint that g(x) = 0, a Lagrangian multiplier function
L − f − λg, can be incorporated and requiring that ∇f = 0 and dL

dλ = 0 =⇒ g = 0.
Pattern search implements nonlinear inequality constraints through use of a non-negative
Lagrangian multiplier estimate λ in equation (3.5). The calculation of the Lagrangian mul-
tiplier estimates can be found in Conn, Gould, and Toint, 1991 and Conn, Gould, and Toint,
1997.

The initial Lagrangian multipliers λi are chosen by the algorithm and are decreased as
the iterations proceed. Similarly the si values decrease proportionally to λ. Intuitively the
reasoning behind decreasing λ and si as the algorithm progresses is to prevent the constraints
from overpowering the minimization process. Initially it is important to enforce convexity,
but as pattern search goes through more iterations, it should start approaching an optimum
minimum value to the objective function, and avoid purely satisfying the constraints.

Section 2.4.2 of the computational framework above discusses how we implemented non-
linear convexity constraints in detail. Computationally we only implemented a single c which
was able to encompass all the convexity constraints since it is either positive or negative
based on convexity.

This means that if the concentrator is concave at any joint, the convexity constraint fails
and is negative. c is only positive if the all the concentrator segments are aligned in convex
manner. It is either positive or negative based on convexity.
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Chapter 4

Concentrator Shape Optimization
Results

Chapter 1 provided and overview of solar energy and introduction to solar thermal tech-
nologies. Then chapter 2 set up the computational framework and goals for a ray tracing
architecture that determines the efficiency of a specified segmented solar concentrator design.
Then in chapter 3 we discussed relevant optimization approaches.

In this chapter we will demonstrate the necessity for using gradient-free optimization
techniques by showing objective function behavior, confirm pattern search effectiveness in
finding optimal concentrator configurations, explain the efficiency and cost advantage of
optimized segmented solar concentrators for low degree concentrators, and determine con-
centration configuration robustness for various designs.

4.1 Objective Function Behavior

To understand the nature of the objective function given in equation (2.1) and visually see
the reasons gradient based solvers fail, we will investigate the nature of the objective function
for a single interior movable vertex as shown in Figure 4.1. The vertices on either side of
the aperture and receiver remain fixed while the y-coordinate of a single interior vertex is
allowed to vary between the values of 1 to 6. The interior vertex has a fixed x-coordinate
midway between the x-coordinates of the aperture and receiver.

Using 100 angles of Lambertian distribution originating from each of the 100 sources, for
a total of 10,000 rays, the optical concentration ratio, or additive inverse of equation (2.1), of
each concentrator configuration was recorded. The y-coordinate was varied between 10,000
evenly spaced values between 1 and 6. The resulting graph of the negative objective function
versus the y-coordinate of the single moving vertex is shown in Figure 4.2.
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Figure 4.1: The above figure shows how the y-coordinate of a single joint
is changed between the values of 1 to 6.

Figure 4.2: The above graph shows how the optical efficiency changes with
the y-coordinate location of a single joint. Notice that neither the loca-
tion of the y-coordinate corresponding to that of a linear receiver, nor that
with the y-coordinate placed at the location along the ideal concentrator re-
sult in maximum optical efficiency. Furthermore, the graph has several local
maxima/minima, making gradient based methods ineffective at finding the

maximum.

The y-coordinate values corresponding to a linear concentrator is denoted by a green
circle and the y-coordinate position of the vertex lying on the ideal concentrator is denoted
by a red circle in Figure 4.2. Neither one of these gives a configuration that maximizes the
percentage of rays reaching the receiver, but rather some intermediate y value between these
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two configurations. Several local minima and maxima can be observed but overall the graph
appears quite smooth in areas, such as around the green open circle denoting the location
of the linear concentrator.

Figure 4.3: The above graph is a zoomed in version of the previous plot
showing optical efficiency versus y-coordinate joint placement. Notice how
even around the green circle denoting the location of the y-coordinate for
a linear concentrator there are several local minima and maxima, making

gradient based searches ineffective.

However, when zooming into Figure 4.2 in the seeming flat area around green circle of
the linear concentrator, we see that the graph no longer looks smooth and several local
minima and maxima become apparent, as shown in Figure 4.3.

Using an even finer mesh and zooming in even further around the green circle in Figure
4.2 we see that the graph is indeed locally flat almost everywhere, with abrupt jumps in the
optical efficiency as shown in Figure 4.4. Larger local minima and maxima are shown in
courser mesh plots, such as those in Figure 4.2, but even sections of the graph that previously
appeared relatively smooth when viewed from this coarser mesh also demonstrate a plethora
of local minima and maxima at the fine mesh scale of Figure 4.4. This fractal like nature of
local minima and maxima at various scale levels, combined with the locally flat everywhere
nature of the objective function make derivative-based solvers unsuccessful.

This fractal like behavior of local minima and maxima at different scales is also shown
when increasing the dimensions of the problem. When both the x and y coordinates of the
single vertex are allowed to vary as shown in Figure 4.5, irregular jumps in the objective
function are similarly seen, as can be shown in the contour plot in Figure 4.7. Although
the contour plot appears to indicate a smoothing for intermediate y-values between those
on the linear concentrator line and the ideal concentrator configuration, a finer mesh reveals
the same locally flat behavior with abrupt jumps is shown as that in Figure 4.4.
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Figure 4.4: With a mesh of 0.00002 around the location of the y-coordinate
for a linear concentrator, we see that the objective function is locally very

flat, with sudden jumps in optical efficiency.

The contour plot appears smooth, but as discussed in Figure 4.4, at the microscopic level
there is a fractal like structure that is rough with numerous discontinuities and undermines
gradient based approaches. It is piecewise constant, which makes derivatives impossible to
calculate.

4.2 Pattern Search Application

Given that the objective function is locally flat everywhere and that derivative-based opti-
mizers would be ineffective, we decided to apply pattern search, a derivative free optimizer.
The background, the advantages, and optimization method of pattern search are given in
section 3.3.

In this section we will show how we validated the effectiveness of pattern search for this
problem, selected appropriate algorithm parameters, and reduced the optimizer degrees of
freedom for faster, better optimized results.

4.2.1 Parameter Selection

We assessed the effectiveness of pattern search in finding practical optimal solutions while
manually adjusting a few parameters that we thought were of particular importance. In
particular, we found that decreasing the initial mesh size and the mesh tolerance gave more
accurate results in pattern search.

In addition, the maximum iterations were reduced to just 25 to prevent lengthy searches.
We found that most of the time lengthy searches were due to the optimizer getting stuck
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Parameter Chosen Value
InitialMeshSize: 0.1
MaxIterations: 25

MeshContractionFactor: 0.5000
MeshExpansionFactor: 2

MeshTolerance: 1.0000e−08

Table 4.1: The above table shows a subset of the Matlab pattern search
parameters, some of which are default values and some of which are user
defined. We varied these parameter values and assessed optimization perfor-
mance. The values shown are the parameters that we found are effective for

pattern search to reach appropriately optimum values.

in a bad design prevented the stopping criteria from being met or the convexity constraints
from being satisfied.

We found that most of the other default values worked quite well. While the values that
we found may not be absolutely ideal, we found them to be effective and sufficiently fast.
Finding even better parameter values is an optimization problem in itself. There are a lot
of degrees of freedom in selecting parameter values.

We were not able to utilize the vectorization feature of pattern search in Matlab. This
was due the fact that our objection function itself is vectorized since we send in all rays into
the concentrator at the same time. Utilizing the pattern search vectorization would require
higher dimensional arrays to be implemented to deal with a matrix, rather than a vector,
input into the ray tracer.

4.2.2 Degrees of Freedom Reduction

Pattern search is easily able to optimize the x and y coordinate location of a single vertex
as, such as that depicted in Figure 4.5. As the number of vertices increases, the number of
degrees of freedom to be optimized increases as well. Instead of increasing the degrees of
freedom by 2 with each additional vertex, the x locations of each vertex can remain fixed
while only allowing the y locations to be optimized, such as that depicted in Figure 4.1.

Reducing the number of degrees of freedom by fixing the x coordinate vertices for concen-
trators with larger numbers of vertices simplifies the optimization process and and prevents
vertices from bunching together. Fixing x vertex coordinates was shown effective and often
even produced better results than allowing x vertex movement. Allowing the x vertices to
move sometimes leads to configurations in which vertices are optimized to locations very
close to one other in the x direction.
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Figure 4.5: This figure shows how the coordinates of a single vertex can be
varied in both the x and y directions.

4.2.3 Optimization Validation

We then allowed pattern search to optimize the location of a single vertex for a linear
segmented solar concentrator of two segments, such as that in Figure 4.5. The optimized
concentrator is shown in red in Figure 4.6.

Figure 4.6: Efficiency Gain for Optimized Segmented Solar Concentrator
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The configuration and efficiency obtained by the pattern search optimized concentrator
is confirmed by the vertex location of highest efficiency found in Figure 4.7. This result
validates that pattern search is working as expected and is able to find the most optimal
concentrator configuration.

Again, note that the optimal location for the placement of a single vertex is at an
intermediate point between a linear concentrator in two dimensions. This is similar to the
result of a single vertex whose ideal location lies in between the green and red curves on the
graph of Figure 4.2.

The high efficiency jump in joint location optimization indicates the need for the opti-
mized placement of vertices for low degree linear segmented solar thermal concentrators. The
optimal y-coordinate placement is not along that for ideal concentrator nor is the optimal
x-coordinate equidistant between aperture and receiver.

Figure 4.7: Contour plot showing the percentage of rays collected for a
single vertex placed at given x and y coordinates.

4.3 Interior Angles Optimization

Instead of optimizing the joint vertex locations, it may be desirable to fix the overall con-
centrator length and optimize the interior angle of consecutive concentrator segments, as
shown in Figure 2.2.

When the vertex location is optimized, the concentrator segment lengths are free to vary
in length. When instead the interior angles of the concentrator are to be optimized, the
lengths of each of the concentrator segments must be fixed. Such concentrator designs may
be more favorable in manufacturing settings where concentrator wings must be made from
a fixed length of reflective metal material and optimization is then used to determine the
degree to which each joint must be bent for optimal efficiency.
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However, it is not obvious how segment lengths should be chosen. As shown by the
optimized concentrator in Figure 4.6, the two concentrator segments are not equal.

4.3.1 Segment Length Ratio Importance

Choosing the length of each concentrator segment length has an effect on the overall maxi-
mum optimal efficiency that may be obtained. Consider a concentrator with an overall fixed
wing length A+B, such as that shown in Figure 4.8.

Figure 4.8: Diagram on the concentrator segment ratio lengths.

Allow the lengths of A and B to vary, or rather the ratio of (length of A)
(length of B) is allowed

to vary while the overall length A + B remains fixed. The efficiency of the pattern search
optimized configuration for each ratio of lengths is shown in Figure 4.9

4.4 Small Number of Segments Advantage

Figure 4.6 also shows the real advantage of optimized segmented solar concentrators is when
there are just a few number of segments whose location is optimized. When a joint is simply
chosen along the ideal equidistant from the aperture and receiver, as shown by the ideal-
collocated configuration, such a concentrator configuration only performs at 77% efficiency.
On the other hand, the optimized concentrator boasts an efficiency of 88%, an 11% efficiency
gain.
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Figure 4.9: The above figure shows the effect of segment ratio lengths on
the overall optimized concentrator efficiency.

The (x, y) vertex position of the two linear segmented optimized concentrator in Figure
4.6 is similar to the optimal vertex location found in Figure 4.7. Optimized segmented solar
thermal concentrators show the most efficiency gain over their ideal-collocated counterparts
when there are fewer segments.

When the number of segments is large, we see that the segmented solar thermal concen-
trator often approaches the shape of the ideal solar thermal concentrator with increasing
efficiency. As the number of segments increases, the added increase from the optimization
process becomes less significant. Hence, ideal-collocated and optimized segmented solar
concentrators composed of a high number of linear segments on each wing do not show
significant efficiency differences.

To display the optimization advantage, Figure 4.10 shows the difference in efficiency
for an optimized concentrator of the specified number of segments versus a collocated ideal
concentrator with an equivalent number of vertices. The plot was produced starting with a
basic concentrator setup such as that in Figure 2.1 optimizing a single interior vertex.

There are a total of three vertices along each of the top and bottom concentrator wings
corresponding to one on the aperture, an interior vertex, and on the receiver. The x value
of the interior vertex is fixed half way between the x coordinate values of the aperture and
receiver vertex values. The respective optimized and ideal collocated segmented concentra-
tors are shown on the right with the respective efficiencies of each concentrator relative to
the number of segments is shown on the left.

The largest different between the two curves in Figure 4.10 is for low numbers of segments
with the greatest different being for a concentrator consisting of two segments. This shows
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Figure 4.10: As the number of segments increases, the efficiency of the ideal-
collocated segmented concentrator approximately equals the efficiency of an
optimized segmented collocated linear concentrator. However, the optimized
concentrators show much higher efficiency for low numbers of segments.

that concentrators consisting of a few number of segments show the most efficiency gains
when optimized versus simply choosing discrete points along the ideal.

4.5 Sensitivity Analysis

Assessing the sensitivity of various concentrator configurations is very important to predict
the performance of manufactured concentrators. Some analytical work has been done looking
at the error in the concentrator slopes and its effect on acceptance angles (Winston et al.,
2005). It is thought that nonimaging designs are more robust to manufacturing errors.

We take a computational approach instead of an analytical approach and directly quan-
tifying efficiency losses with respect to manufacturing errors. We provide a systematic
assessment of concentrator sensitivity under various degrees of manufacturing errors. This
approach and level of theoretical sensitivity assessment which quantifies manufacturing error
effects on device performance has not been done previously.

4.5.1 Sources of Concentrator Defects

In practice, concentrator segments would be manufactured and cut to specified lengths.
However, there is inherent error in cutting and connecting concentrator segments. Segment
length error would inevitably lead to a decrease in efficiency.
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The degree to which error is tolerated depends partly on the number of segments the
concentrator has. Clearly a concentrator with many segments, meaning many shorter seg-
ments, will require a machine with lower tolerance. Concentrators with only a few, longer
segments can allow a higher error tolerance.

We define noise relative to the length scale of the segments by the following equation:

ynoise = (length scale)× (random normal[0,noise deviation]) (4.1)

where
(length scale) =

(xreceiver top − xaperture top)

(number of segments on concentrator)
(4.2)

and the noise deviation varies from 0 to .05 in .01 increments.

Figure 4.11: Inherent manufacturing errors lead to decreased efficiencies.
The above figure shows how errors, modeled through adding noise to joint
placement, compromise efficiency. Concentrators with large numbers of seg-
ments, and hence have a large number of joints, are more prone to large
efficiency drops with too much noise since errors occur at each of the joint

locations.

In Figure 4.11, we see that concentrator efficiency decreases with increasing levels of
noise, as we would expect. However, there are particularly large drops in efficiency for
concentrators with a large number of segments.

The reason the amount of error plays a larger role in efficiency for a large number of
segments is likely due to the fact that error in each segment is contributing to the drop in
performance. Concentrators with fewer segments have fewer sources of error to occur, even
if deviation from the optimized location is larger.
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Low degree concentrators are the most robust to noise errors. We see that the difference
in performance for really low degree concentrators does not change much even when adding
as much as 5% noise.

However, as the number of segments increases, noise levels become more important.
Concentrators with a large number of segments, but also lots of noise show little to no
improvement over concentrators with fewer numbers of segments. This is especially true for
noise above 2%, after which device performance can actually decrease when adding more
segments, such as is the case for 5% noise.

4.6 Speed Assessment

The ray tracer is vectorized in Matlab and optimization is highly efficient when paired with
Matlab’s built in pattern search function. No communication between various platforms is
needed, increasing speed.

The output in Table 4.2 shows only 0.034882 seconds and 3 complete iterations and are
needed to achieve a mesh tolerance of less than 10−8 when optimizing the y coordinate of a
single vertex of the basic concentrator. Even when vertices are increased according to that
described in section 2.3.2, pattern search still only requires seconds to optimize 28 interior
vertices.

Table 4.2: The above display shows the Matlab console output when opti-
mizing the y coordinate of a single vertex of the basic concentrator.

Typically less than 7 iterations are required by pattern search to reach an optimum within
a tolerance of 10−8 with a run time of seconds. The mesh size decreases approximately by a
power of 10 with each displayed iteration. Since we have a nonlinear constrained problem,
the method column either displays ‘Increase penalty’, or ‘Update multipliers’, which refers
to changes implemented on the Lagrangian multipliers by the pattern search optimizer.

The maximum constraint column displays a positive value of 0.5 if the constraints are
not satisfied and 0 if the constraints are satisfied. The constraint is initially not satisfied
since the initial vertex lies on a linear concentrator wing, which is not convex. The column
f(x) refers to the value of the objective function.
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Chapter 5

Conclusions

Although ideal 2D CEC designs exist, the performance of these designs quickly changes
when the concentrator is approximated by segmented collocated linear segments. We aim
to remove the limitations of continuously varying shapes and 2D designs by taking a com-
putational approach.

5.1 Achievements and Results of Method

Our computational approach includes optimizing segmented solar concentrator efficiency for
a given number of segments. The result is a design that is relatively easy to manufacture,
while maximizing efficiency for the given design constraints. As outlined in 2.1, the primary
goal was to present an optimization method and resulting concentrator configurations that
are:

• Easy to manufacture

• Adaptable to different user designed configuration criteria and constraints

• Highly efficient, optimal, and practical

• Computationally fast

• Robust to slight changes caused by error

Our method addresses all of these goals. In addition, our method can be used to design
low degree efficient concentrator designs which have not been discussed in other literature.

5.1.1 Easy to Manufacture

One primary goal achieved was designing a concentrator that can be manufactured cheaper
while minimally sacrificing on concentrator efficiency. We call such concentrators to be op-
timal. They are no longer ideal in terms of collecting every ray that enters the aperture, but
they give the highest optical concentration ratio efficiency for the given design parameters.
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There are several factors which make may make linear segmented concentrators easier
and cheaper to manufacture, which include:

• Linear segments instead of curved surfaces

• Efficient low degree concentrators

• Symmetric

• Definable concentrator wing lengths

• Definable aperture size

• Definable absorber shape

5.1.2 Optimized by a computationally fast approach

We have shown that our method gives theoretically efficient designs and results in practical
configurations in seconds. Our vectorized ray tracing method in Matlab combined with Mat-
lab’s built in pattern search optimization give results in seconds. If one were to use multiple
softwares for the ray tracing and optimization, there would be a huge communication lag
between various softwares. We implement everything in Matlab and our method is also not
proprietary.

Our optimizer allows the user the adaptability to choose the number of vertices while
optimizing at each step. The number of vertices to be increased incrementally, optimizing
at each step, until the desired number of vertices is reached.

Hence, the optimizer used to determine the optimal concentrator configuration is fast
and also gives good results. This is make possible by using:

• Vectorized ray tracer

• Single software for both ray tracer and optimizer to reduce communication lag between
various softwares

• Any number of segments on reflector

5.1.3 Adaptable to Various Design Criteria

Our method also allows lots of user flexibility to specify design criteria. Some user speci-
fied parameters include the number of segments, optimization preferences such as interior
angle or vertex location optimization, and ray configuration. Hence, users can optimize a
configuration that fits their needs.

Users may also choose trough or basic concentrator configurations. These two configu-
rations optimize different aspects of the concentrator configuration: joint coordinate values
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or interior angles between consecutive segments. Optimizing the angles between consecu-
tive segments while keeping segment lengths fixed seems to be a more realistic portrayal of
the manufacturing process. However, optimizing interior angles moves the location of the
aperture.

Setups which require specific aperture sizes or the ability to increase the number of
segments may prefer joint coordinate optimization. Configurations with larger numbers of
segments were also less dependent on the initial configuration if segments were incremen-
tally increased with coordinate join locations were optimized. Both approaches lead to
comparably efficient designs overall.

Therefore, we addressed the fact that concentrator designs are adaptable to various
design parameters such as:

• Any absorber shape

• Select fixed wing lengths or maximum concentrator width/length

• Select a maximum or fixed aperture size

5.1.4 Robust to manufacturing errors

The new low degree designs that we were able to find with our optimization method dis-
played:

• Robust to slight changes, especially for low segmented designs

• Limited efficiency losses from small design errors

• Limited efficiency loss due to inherent manufacturing errors

5.1.5 Highly efficient, Optimal, and Practical

We were also able to show that pattern search is able to find the most optimal configuration
when optimizing over two degrees of freedom. Our method is also able to effectively find
optimal designs for higher degrees of freedom, with concentrator efficiency above segmented
ideal concentrators. We also enforce convexity, preventing the optimizer from becoming
stuck in impractical, non-convex configurations.

Optimized low segmented designs are also shown to result in the highest efficiency gains
compared to a segmented concentrator of collocated points along the ideal. Therefore, we
were able to show that our method results in:

• Optimized concentrator configurations under given constraints

• At least or more efficient than collocated segmented ideal concentrators
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• Optimized low segmented designs show the highest efficiency gains compared to col-
located points along the ideal

• Convexity can be enforced on the reflector shape

Overall, we showed that our method is not only fast, but is shown to be effective in finding
optimal designs specifically for low degree optimization problems. This is important since
these configurations are of most interest from a manufacturing, robustness, and efficiency
gains, as mentioned.

5.2 Limitations

This method is shown to give optimal designs specifically for low degree optimization prob-
lems. The optimization process becomes less effective for large degree problems since the
optimization becomes more difficult.

When given a larger number of variables to optimize, pattern search also becomes more
dependent on the prior, or the initial configuration of the concentrator. This is partially due
to convexity constraints that prevent such configurations. Hence, several joints are required
to move at once in the same direction to preserve convexity while moving substantially
from their initial locations. However, when convexity is not required, we found that pattern
search often finds a concave design and then is unable to correct itself and move back to a
convex design, causing the optimizer to become stuck in less optimal configurations.

Lower degree optimizations were also shown to be more robust to errors. Concentrators
consisting of fewer numbers of segments were more robust to manufacturing errors. Con-
centrators with higher numbers of segments showed more error propagation and an overall
substantial decrease in efficiency.

Overall our optimization method lends itself best to lower degree optimization problems,
which show more promising results in terms of optimizability, robustness, and manufacturing
advantage.
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Part II

Luminescent Solar Concentrators
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Chapter 6

Background on Solar Electric and
Luminescent Solar Concentrators

Section 1.1 talked about the two main forms of solar energy, solar electric and solar thermal,
and how they compliment each other in terms of uses and storage abilities. In this part
we will focus on solar electric energy and concentrators that may be used in tandem with
photovoltaic (PV) devices, specifically luminescent solar concentrators (LSCs).

6.1 Solar Photovoltaics (PVs)

Solar photovoltaics, commonly referred to as PVs, employ the photovolatic effect to create
electricity. PVs are most commonly comprised of silicon. PVs create electron flow through
the implementation of a P-N junction, which creates a field, or a space charge region. The
structure of a P-N junction used to create a photovoltaic cell is shown in Figure 6.1.

6.1.1 Formation of the P-N Junction

While the bulk of the cell is made up of silicon, a few other atoms are inserted into the
silicon crystalline structure, a process called doping. These impurities are added in specific
way to the upper and lower layers of a cell in order to create the space charge region at the
junction between these two layers.

In the upper layer, atoms with an extra valence electron with respect to silicon, such as
phosphorus or arsenic, is doped into the silicon crystalline structure (Laube, 2019). Pure
silicon binds into a diamond cubic lattice formation. The rigid silicon crystalline structure
binds to the minute quantities of group V dopant, such as phosphorus, in the same lattice
structure, but this creates an excess negative charge of this region (Honsberg and Bowden,
2019).

The overall negative charge of the upper region are the reason that the upper layer is
commonly referred to as the N layer. The dopant impurities add extra unbound electrons
to the crystal, meaning the region has an excess of electrons.

The lower layer is doped with atoms with one less valence electron with respect to silicon,
such as boron, aluminum or indium (Laube, 2019). The minute quantities of these group III
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impurities are similarly bound into the diamond cubic lattice formation of the bulk silicon
material, creating an overall positive charge in this region (Honsberg and Bowden, 2019).

The lower layer is often referred to as the P layer due to its overall positive charge. The
dopant atoms have one fewer electron for binding, meaning that the crystalline structure
is missing a binding electron to create the diamond cubic lattice structure at the location
sites of these dopants. This creates a region of excess positive charge that needs electrons
to properly bind.

Figure 6.1: This figure shows how a P-N junction is used to create a field, or
space charge region, at the interface of these two layers. When solar radiation
excites electrons near the surface of the photovoltaic cell, electrons are pushed
are pushed upwards by the field. The excess of electrons in the upper N region
pushes electrons through an outer circuit back towards the lower P region,

creating a current.
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6.1.2 Space Charge Region

Since the lower layer is in need of electrons to stabilize the diamond cubic lattice structure
in which the atoms are held, excess electrons from the upper layer flow across the interface
between the two. This flow of electrons away from the N layer near the intersection of the
P-N layers exposes the positive ionic cores of the group V elements within the lattice. The
positive ionic cores result from the additional proton in the nucleus of the group V elements
compared to silicon.

Similarly, as the excess negative electrons from the N region flow into the P region,
negative ionic cores are created at the locations of the group III impurities. This is due to
the fact that the group III elements have one fewer proton in their nucleus than silicon.

The positive ionic cores in the upper region and the negative ionic cores in the bottom
layer exposed near the interface due to this electron movement creates an electronic field,
as shown in Figure 6.1. This region on either side of the interface between the two layers is
referred to as the space charge region.

6.1.3 PV Electricity Generation

The top N layer is typically made as thin as possible. This is so that solar radiation passes
through the N layer and excites an electron in the space charge region. This excited electron
is pulled due to the electric field in this region and moves upward.

As the electron enters the N region, this region already has an excess of electrons, creating
the push of electrons needed to pass through an external load. This movement of electrons
generates a current, and thereby generate electricity from the photovoltaic effect.

6.1.4 Cost and Efficiency

Solar photovoltaics are effective in generating electricity from the sun. However, production
of photovoltaics can be expensive. Silicon PV cells must be carefully doped and crystallized
to preserve the diamond cubic lattice. Furthermore, the silicon used in the PV must be very
pure, contributing processing costs.

In addition, only certain wavelengths of sunlight are able to excite electrons in the silicon
lattice to create a current. This means that only a portion of sun’s radiation is turned into
electricity. Wavelengths above or below the band gap are lost by either passing through or
generate heat within the PV, further decreasing the efficiency of the PV. PVs more efficiently
convert longer wavelengths into electricity.

Some things added to silicon PVs to increase efficiency include multi-junction tandem
PVs and luminescent solar concentrators. Multi-junction PVs are made with different semi-
conductor materials in addition to silicon and include several P-N junctions. The additional
P-N junctions increase the amount of sunlight converted into electricity since each junction
has a different band-gap, or wavelength range which is converted into a current.
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6.2 Luminescent Solar Concentrators (LSCs)

Luminescent solar concentrators emerged in the 1970’s as a way to boost solar cell efficiencies
by concentrating solar solar radiation onto them (Debije and Verbunt, 2012). Luminescent
solar concentrators increase the electricity output of a PV cell by concentrating more sunlight
within the bandgap onto the PV than would otherwise strike the PV if faced directly towards
the sun.

The concentrating effect is due to the dimensional and material properties of LSCs. As
shown in Figure 6.2, the lateral top surface is larger than the edge areas, meaning the photon
density incident on the top surface is significantly larger than it would be on photovoltaic
at the edge if it directly faced the sun. Directing these extra photons onto the PV at the
edges creates the concentrator effect.

Figure 6.2: This figure shows a luminescent solar concentrator and the
various outcomes to sunlight entering through the top. Sunlight is either
reflected back through the top surface due to scattering, lost within the LSC

due to thermal heat losses, or collected at the PV on the edge.

The concentration factor is the ratio between incoming irradiance on the LSC top surface
and the irradiance that ends up at the edge of the LSC, where the PV is located (Rooij,
2019). This can be written as,

CLSC =
(irradiance on top surface in kW

m2 )

(irradiance at LSC edge in kW
m2 )

(6.1)
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Instead of the concentration factor, we determine LSCs performance in terms of efficiency,
defined as the ratio of incoming radiant flux on the top surface to that at the LSC edge.
Incoming light is modeled as photons, meaning efficiency can be written as the following
percentage,

ELSC =
(number of photons entering top surface)
(number of photons reaching PV at edge)

× 100% (6.2)

LSCs are typically made of a polymeric or glass waveguide with luminescent molecules
(Debije and Verbunt, 2012). Ideally luminescent molecules should have a broad absorption
spectrum, but also have a large Stokes shift to minimize self-absorption. The luminescent
molecules should also have a large quantum yield so that absorbed radiation is again emitted
as a photon of light and not lost.

Light enters through the top of the LSC. The bottom of the LSC is a mirror to double
the absorbing path length for incident radiation (Weber and Lambe, 1976). Entering light
must be absorbed by the luminescent material of the LSC within this distance or else it is
lost back through the top surface. Light lost through the top surface is considered scattered.

Light absorbed by the luminescent LSC material is then emitted as a photon of light
or lost due to self-absorption. The amount of absorbed light emitted by the luminescent
material depends on the quantum yield. Materials with high quantum yields, meaning a
large percentage of the absorbed light is emitted again as light, make the best LSCs.

The energy of absorbed light that is not emitted as another photon of light is lost to
self-absorption. This is commonly referred to as self-absorption losses. Although not a
completely accurate description, we will call this light to be lost to thermal or heat losses.
These losses may occur due to lattice vibrations.

Ideally, emitted light is guided through internal reflections to the edge of the LSC, inci-
dent on the PV. Light may undergo several absorption and emission events before reaching
the edge. The light that lands at an edge surface is referred to as collected light.

Ideally the extra concentration of photons onto the PV should more than compensate for
the added cost of attaching the LSC, overall reducing the cost of the solar electricity. LSCs
have not been applied commercially because they have not yet shown to be cost effective
even though panels of glass or polymer are far less expensive than the equivalent size solar
panel (Sholin, Olson, and Carter, 2007).

There have been several different studies of LSCs using different fluorescent dyes and
semiconductor quantum dots. Fluorescent generally have narrower absorption bands (Van
Sark et al., 2008) which limit LSC efficiency.

Since then quantum dots have been studied as luminescent particles for LSCs due to
their broader absorption spectrum. One drawback of most commonly used quantum dots
is that they emit in the visible region of the spectrum (Coropceanu and Bawendi, 2014),
though there have been quantum dots that better match the band gap of silicon. However,
quantum dot LSCs oxidize and degrade over time (Meinardi et al., 2015).
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6.3 Perovskite as LSC’s

Perovskite, as used in solar technologies, consists of a methylammonium ion (CH3NH+
3 )

surrounded by an octahedron of anions which also bond to lead (Pb) in a cubic crystalline
structure (Green, Ho-Baillie, and Snaith, 2014). The anion is a halogen ion which is typically
iodine (I), chlorine (Cl), bromine (B), or acetate (CH3COO−).

Interest in perovskite has recently exploded due to its high efficiencies and low cost.
Perovskite solar cells were derived from dye-sensitized solar cells. The liquid-based dye-
sensitized methylammonium lead halide perovskite on nanocrystalline TiO2 surface was
shown to produce a photocurrent first in 2009 (Park, 2015).

The 3-4% power conversion efficiency reached efficiencies above 20% in just a few years,
making it the fastest advancing solar technology in history. The current record perovskite
solar cell efficiencies lies at 25.2% (NREL, 2019). However, perovskite suffers from structural
instabilities that cause deterioration when exposed to humidity (Yang et al., 2015).

The recent growth in prominence of perovskite in the solar field motivated us to consider
the possibility to use them as LSCs due to their photoluminescent properties. Perovskite
has a broad absorption band, high quantum yields reaching up to 80% (Leijtens et al., 2015)
and a high refractive index of 2.5. The high refractive index increases the likelihood of total
internal reflection, decreasing the amount of photons lost back through the top surface.

In addition, perovskite is easily manufactured as thin films. These thin films can be
placed in areas where PVs is not possible since LSCs can also collect diffuse light. These
properties make perovskites good candidates for LSCs and may boost efficiencies enough to
make manufacturing cost effective.
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Chapter 7

Monte Carlo Framework

7.1 Introduction

This chapter will present a Monte Carlo (MC) computational framework for luminescent
solar concentrators (LSCs), extending the work done by Sahin, Ilan, and Kelley, 2011 in
the paper "Monte-Carlo simulations of light propagation in luminescent solar concentrators
based on semiconductor nanoparticles". We provide modifications to previous Monte-Carlo
simulations that improve flexibility and decrease computation time. We then extend this
improved Monte-Carlo technique to perovskite LSCs to gain deeper insight on the viability of
perovskite LSCs and determine the most ideal composition and thickness for such a device.

We will describe the steps of our photon tracking Monte Carlo simulation in detail. This
includes the use of the Beer-Lambert Law to determine absorption distances and emission
wavelengths and Fresnel and Snell Law conditions imposed on the boundary.

7.2 Monte Carlo Simulation Framework

Monte Carlo (MC) is a ray tracing technique that is a common tool used to simulate photon
transport (Jacques and Wang, 1995). Our Monte Carlo simulation accounts for radiation
losses through the top surface (from Fresnel equations) and losses due to photons not being
absorbed (based on Beer-Lambert law) or not emitted (based on quantum yield).

In this way, a photon trajectory is followed until it either:

• escapes back through the top surface

• reaches the photovoltaic (PV) cell

• is lost due to radiation effects (i.e. not emitted, and lost due to self-absorption)

Ideally a photon is absorbed and emitted exactly once before reaching the PV cell. With
multiple absorption occurrences, the chance of the photon reaching the PV cell decreases
due to the quantum yield. The quantum yield is the ratio of emitted photons to absorbed
photons. In other words, it is the probability that an absorbed photon is emitted.
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Figure 7.1: This figure shows the computational path of a photon through
a luminescent solar concentrator.

The computational path followed by a photon in our Monte Carlo method is shown in
Figure 7.1.
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7.2.1 Propagation Distance

As shown in the Monte Carlo photon tracking scheme in Figure 7.1, initially a photon is
launched into the LSC. A photon is launched with the following values:

• initial position (x, y, z)

• initial angle φ0 ∈ [0, π] with respect to the normal to the top surface

• angle θ0 ∈ [0, 2π) in the plane parallel to the top surface

Typically, we choose φ0 = 0, denoting a photon entering the LSC normal to the top surface.
The photon also carries with it an initial wavelength λ0, which is sampled randomly from
the normalized solar spectrum provided by NREL (Emery, 2000).

The photon then travels a propagation distance of ∆s before being absorbed, as deter-
mined by the Beer-Lambert law discussed in the next section. Before the photon is absorbed
at the propagation distance, ∆s, the photon may hit the walls of the LSC. The bottom sur-
face is assumed to be a perfect mirror, and reflects the photon in accordance to Snell’s
law.

7.2.2 Probability of Escape

However, if the photon hits the LSC top surface (i.e. the LSC-air boundary), it can be either
reflected or transmitted. A photon that is transmitted through the LSC top surface is said
to be “escaped". The Fresnel equations to provide a “probability" that the photon will be
reflected each time it reaches the top surface. The Fresnel equations are described in more
detail later in this paper.

Since statistically reliable results for the MC simulation are reached after approximately
105 photons are launched into the LSC (Sahin, Ilan, and Kelley, 2011), the amount of
photons reflected and transmitted through the top surface using the Fresnel coefficients as a
probability approach the portion of light that would be transmitted and reflected respectively
at the LSC top surface interface.

7.2.3 Collection

If the photon did not escape through the top surface over it’s propagation distance, the
Monte Carlo simulation then checks whether the photon reached a PV cell. PV cells are
assumed to be on all four sides of the LSC. Therefore, any photon that reaches a side wall
of the LSC is assumed to be “collected" by the PV.

7.2.4 Emission Probability

If the photon neither escapes from the LSC nor is collected by the PV over the propagation
distance ∆s, the photon is assumed to be absorbed by the LSC. The probability that the
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photon is then emitted is determined by the quantum yield. Photons that either escaped
from the LSC, reached the PV or were not emitted are respectively tagged and removed
from the MC simulation.

If the photon is emitted, the current position of the photon (x, y, z) is updated. It is also
assigned an updated wavelength sampled randomly from the normalized emission spectrum
of the LSC material and an updated direction, as determined by updated angles φ and θ.
These angles are assigned assuming isotropic emission, meaning there is an equal probability
that the photon is emitted in any spacial direction.

7.3 Absorption

The probability of a photon of wavelength λ being absorbed after a propagation distance of
∆s (in meters) is given by the Beer-Lambert Law (Sahin, Ilan, and Kelley, 2011),

p(∆s;λ) = 1− 10−ε(λ)M∆s (7.1)

whereM is the molar concentration of particles (mol/L), and ε(λ) is the extinction coefficient
(L/mol cm).

Assuming that ξ = 1− p(∆s;λ) is a uniformly distributed random variable in [0, 1], we
can invert equation (7.1) to obtain the propagation distance,

∆s = − 1

ε(λ)M
log10 ξ (7.2)

The extinction coefficient ε(λ) is determined by the absorption spectrum, which is shown
by the blue curve in Figure 7.2 below. Since photons with a wavelength near 300nm are
more readily absorbed by perovskites, the extinction coefficient will be higher and hence the
propagation distance will be shorter.

Perovskites do not readily absorb photons of wavelengths above 800nm, meaning that the
extinction coefficient ε(λ) for wavelength values in this range will be much smaller. Hence,
the propagation distance distance for photons of higher wavelength will be much longer since
they will go a further distance before being absorbed.

The perovskite reemission spectrum is shown by the red curve in Figure 7.2 (Nikolaidou et
al., 2016). Notice that the emission spectrum lies primarily in a wavelength range where the
perovskite does not readily absorb. Hence, emitted photons are unlikely to be reabsorbed.
This is ideal, since optimally photons are absorbed and emitted exactly once to prevent
losses due to the quantum yield.
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Figure 7.2: Absorption and Emission Spectra for Perovskites

7.4 Top Surface Reflection/Transmission

Since sunlight is unpolarized, the light inside the LSC is assumed to also be unpolarized.
Hence, the Fresnel reflection coefficient for light incident on the LSC-air interface at an angle
φ with respect to the normal is given by,

R(φ) =
1

2
R‖(φ) +

1

2
R⊥(φ) (7.3)

This can also be written as,
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(7.4)

where np is the refractive index of perovskites.
The reflection coefficient R(φ) is used as the probability that a photon striking the top surface

at an angle φ with respect to the normal is reflected. Hence, the transmission coefficient, T (φ) =
1−R(φ), is the probability that the photon is transmitted, or “escapes" from the LSC.

7.5 Emission
Photons absorbed by perovskite material are emitted only if ξ < (quantum yield of perovskites),
where ξ is randomly generated from a uniform distribution on [0, 1]. Emitted photons are isotropi-
cally distributed with updated values of θ ∈ [0, 2π) and φ ∈ (0, pi) defined by:
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θ = 2πξ (7.5)
φ = arccos (2ξ − 1) (7.6)

Where each ξ is a unique randomly generated variable from a uniform distribution on [0, 1].
The wavelength of the photon is also updated by randomly sampling from the normalized emis-

sion spectrum. In this way, the luminescence is said to be “memoryless" (Sahin, Ilan, and Kelley,
2011), meaning that the wavelength of the emitted photon is based solely on the emission spectrum
of perovskite and is independent of the wavelength of the photon prior to absorption.

The photon is then assigned a new propagation distance, ∆s according to equation (7.2) with
a newly chosen random variable ξ. The photon is then tracked again from it’s current position
(x, y, z), to it’s new position (x′, y′, z′) defined by,

x′ = x+ ∆s(sin (φ) cos (θ)) (7.7)
y′ = y + ∆s(sin (φ) sin (θ)) (7.8)
z′ = z + ∆s(cos (φ)) (7.9)

The process described above is repeated, as shown in Figure 7.1, until the photon either:

• Reaches PV cell

• Escapes from the LSC

• Gets lost due to radiation effects

7.6 Optical Efficiency
The solar-averaged optical efficiency η is the ratio of incident photons with solar-spectrum averaged
wavelengths λ to collected photons. Since the initial photon wavelengths in our Monte Carlo simula-
tion are sampled from a normalized solar spectrum, the solar-averaged optical efficiency η is just the
ratio of collected photons to incident photons. The number of incident photons is the total number
of photons used in the MC simulation.

One important role of MC simulations is to compute optimal LSC parameters. The usefulness
of an LSC is often measured by LSC gain Γ, where

Γ = η ×G (7.10)

with
G ≡ Areatop

AreaPV
(7.11)

The gain, G, is the ratio of the LSC top area (facing the sun) to the PV area on the edges of
the LSC. LSC gain is the product of the solar-averaged optical efficiency η and the gain, G. Hence,
LSC gain is a measure of the additional number of photons collected with an LSC versus exposing
the PV cell directly to the sun without an LSC.

An LSC is only meaningful when G > 1 since G = AreaPV

AreaPV
= 1 is exactly the number of photons

collected by PV cells without an LSC. Therefore, in addition to maximizing optical efficiency, we
also seek to optimize LSC gain Γ.
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LSC gains increases with the side length of a square perovskite thin film LSC. This shows
that perovskites are very effective at trapping light. This is due to their high refractive index,
nperovskite = 2.5, with respect to the surrounding air. Therefore, more photons are totally internally
reflected and collected by the PV cells at the edges.
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Chapter 8

Perovskites as Hightly Efficient LSCs

As discussed in section 6.3, Perovskite displays several properties that make them attractive for
implementation as LSCs. These properties include photoluminescense, a broad absorption band,
high quantum yields, high refractive index, and low-cost manufacturing techniques.

Our objective is to use our MC simulation framework of the previous section 7 to provide
insight into perovskite LSCs. We aim to compare the number of absorption occurrences between
perovskite and other common LSC materials, quantify optical efficiency, and optimize thickness and
composition for perovskite LSCs.

Here we discuss our goals in determining the theoretical feasibility for perovskite use as an LSC
by parameter and composition optimizations.

8.1 LSC Optimization Goals
Our main objective goals are to produce luminscent solar concentrators that have:

• Optimal compositions

• Limited losses due to self absorption and scattering

• Optimized dimensional designs

• Highly efficient

• Optimized by a realistic, computationally fast approach

Currently perovskite with a specified composition, thickness, and dimension is synthesized in the
lab and then various properties are measured. This includes quantum yield and efficiency. Producing
multiple samples and slowly varying a single parameter can be time consuming and expensive.

Furthermore, there are some properties that are not possible to measure. This is where theoreti-
cal computations provide insight into the behaviour of light inside of the device and even theoretically
optimize LSC design parameters to inform which designs may produce the highest efficiencies.

8.1.1 Optimal Compositions
LSCs can be made using a variety of material compositions, each with it’s own advantages and
downfalls. Theoretical computations can determine which compositions display more promising
potential to be an efficient LSC.

We will evaluate the effectiveness of the following compositions:
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• Perovskite thin film

• Perovskite quantum dots

• CdSe-CdTe quantum dots

• Perovskite using iodide halide

• Perovskite using chloride halide

• Perovskite using partial chloride/partial acetate halide

• Perovskite using acetate halide

8.1.2 Limited losses due to self absorption and scattering
The self absorption and scattering losses are influenced by the following factors:

• Number of absorption occurrences

• Refractive index

We aim to quantify the effect of these two properties on LSC performance.

8.1.3 Optimized dimensional designs
LSCs should also have optimized designs to maximize performance. The following design parameters
may be optimized:

• LSC thickness

• LSC length/width

• LSC concentration (when implementing quantum dots)

8.1.4 Highly efficient
LSCs are considered efficient when their gain, equation (7.10), is greater than 1. The higher the
gain, the more efficient the LSC. Various factors that effect LSC efficiency include:

• Absorption and emission spectra

• Quantum yield

• Refractive index

8.1.5 Optimized by a realistic, computationally fast approach
Finally, optimizing various aspects of LSCs is only practical when optimized by a computationally
fast approach. Furthermore, the computational approach should closely represent performance under
realistic conditions. The following aspects contribute to realistic, fast computation:

• Vectorized ray tracer

• Rays selected from normalized solar spectrum

• Incorporated parameters, such as refractive index, quantum yield, dimensions
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8.2 Fewer Reabsorption Occurrences Using Perovskites
Notice that there is very little overlap in the perovskite absorption and emission spectrum in Figure
7.2. Therefore, multiple absorption-emission events are less likely to occur than for other materials
used as LSCs, such as Rhodamine-B. Perovskites have a smaller region of overlap between the
emission and absorption spectra than either the organic dye Rhodamine-B or CdSe-CdTe quantum
dots, which have previously been studied as LSCs. The absorption and emission spectra of these
two materials are shown in Sahin, Ilan, and Kelley, 2011.

Figure 8.1: Comparison of the number of photon absorption occurrences
in CdSE-CdTe quatum dot LSCs vs. perovskite thin film and quantum dot

LSCs

Quantitatively, for a 5cm × 5cm square perovskite thin film of 800nm thickness, most photons
in the perovskite LSCs are absorbed and emitted exactly once or twice, as shown in Figure 8.1.
Photons undergoing absorption/emission exactly once is optimal for an LSC material since this
reduces self-absorption losses. Two absorption/emissions occurrences are the second most optimal
case, followed by three, and so on.

The majority of photons in CdSe-CdTe LSCs are not absorbed, as a result of its narrower
absorption spectra, which means fewer photons are absorbed, specifically in the range of the highest
solar radiance. In terms of absorption and emission spectra, perovskites make a more ideal LSC
material than previously used organic dyes, such as CdSe-CdTe or Rhodamine-B.
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8.3 Higher Percent of Collected Photons
Due to the higher number of photons absorbed by the LSC material in perovskite LSCs, a higher
percent of photons are collected in perovskite LSCs versus CdSe-CdTe quantum dot LSCs as shown
in Figure 8.2. This is despite the fact that perovskite LSCs display more non-radiative losses than
CdSe-CdTe quantum dots since perovskites have a lower quantum yield. CdSe-CdTe quantum dot
have a quantum yield of 90%, versus perovskite, which has a quantum yield around 70%.

Figure 8.2: Comparison of photons collected, lost through the top surface,
or lost due to non-radiative effects in perovskite thin film or quantum dot

and CdSe-CdTe quantum dot LSCs

This lower quantum yield of perovskite is displayed by the fact that both perovskite thin film
and quantum dots have more losses due to self-absorption, displayed in Figure 8.2 in blue labeled
“Not Reemitted". However, the significantly higher losses due to top surfaces losses in CdSe-CdTe
quantum dots make the overall percentage of collected photons much smaller than the percent col-
lected by perovskite LSCs. The high refractive index of perovskite, along with its broader absorption
spectrum decrease the amount of top surfaces losses compared to other LSC materials.

8.4 Optimal Perovskite Thickness
Gains much greater than 1 were obtained in perovskite LSCs. Gain increased with decreasing
thickness. When used in an application, a lower bound on LSC thickness must be determined
which is practical. Extremely thin LSCs are not practical since the power output will be negligible.
Therefore, it is better to optimize the percentage of collected photons with respect to perovskite
LSC thickness.
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Figure 8.3: Collected photons for various perovskite LSC quantum yields
and thicknesses.

As shown in Figure 8.3, the optimal thicknesses are in the upper-mid range around 600nm,
but depend on the quantum yield. For a specified quantum yield, there is a balances between the
negative effects in thin and thick LSCs films.

For example, thin films suffer from more top surface losses initially since more photons pass right
through the material and are not absorbed. On the other hand, as the LSC thickness increases,
photons have more material to pass through to reach the edges even with total internal reflection.
This increases the chance that photons will be absorbed again by the LSC material, increasing
self-absorption losses.

Our theoretical results in Figure 8.3 indicate that for a quantum yield of .6, optimum thickness
is obtained around 600nm. However, as quantum yield increases to .7, an optimal thickness would
increase to 700nm. This makes sense since higher quantum yields mean fewer self-absorption losses.
As the quantum yield increases, the thickness can be increased to reduce top-surface losses without
significantly increasing self-absorption losses.

Figure 8.4 shows that fewer photons are initially absorbed in thin LSCs, decreasing the percent
of collected photons. This again displays the balance between quantum yield and LSC thickness.

Thin LSCs absorb fewer protons initially, as can be seen in Figure 8.4, but they also have much
lower percentages of photons absorbed several times. This is due to the fact that thinner LSCs have
less photoluminescent material between the incident photons and the PV at the edges. Furthermore,
thinner LSCs are better able to serve as a wave guide, preventing photons from escaping through
the top surface.

Thicker LSCs absorb more photons initially, but have more photons lost internally due to non-
radiative effects. This effect is displayed in the fact that a higher percentage of photons undergo
several absorption and emission events before reaching the PV.
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Figure 8.4: Absorption occurrences for perovskite LSCs of various thick-
nesses

8.5 Optimal Perovskite Composition
Four different compositions of perovskite were compared to determine LSC composition optimality.
The halide anion was varied between 100% iodide, 100% chloride, 50% chloride with 50% acetate,
and 100% acetate.

The halide composition of perovskites effects quantum yield of the material. The quantum yields
of these four compositions were 38%, 52%, 83%, and 87% respectively.

As shown in Figure 8.5, increasing quantum yield resulted in an expected decrease in the amount
of photons lost due to non-radiative effects. This is shown by the decreasing amount of blue “Not
Reemitted" losses shown in the wedge bar chart inset moving left to right from 100% iodide to 100%
acetate.

However, 100% acetate showed slightly higher top surface losses, as shown by the thicker wedge
of “escaped" losses compared with other compositions. However, overall the slight increase in top
surface losses was significantly outweighed by the large decrease in self-absorption losses.

The percentage of collected photons, shown by the maroon bar wedge, for 100% acetate is more
than double that of 100% iodide anion. This notes a significant increase in performance using acetate
anion instead of iodide or other anions for use in making perovskite LSCs.
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Figure 8.5: Comparison of the number of absorption occurrences for various
halide anions

Since a high quantum yield corresponds to a higher percentage of absorbed photons that are
emitted, there is a higher number of photons absorbed and emitted multiple times. The composition
of 100% iodide had the highest number of photons absorbed exactly once, as shown by the bar graph
in Figure 8.5.

However, 62% of those absorbed photons were lost due to non-radiative effects. Quantum yield
is assumed to only effect emission, not absorbance, of the perovskite thin film. Therefore, it is
determined that perovskite made with 100% acetate make the most effective LSCs.
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Chapter 9

Conclusions

We presented a computationally efficient vectorized Monte Carlo simulation design for rectangular
LSCs. Our theoretical results indicate that perovskite LSCs make viable, efficient LSCs. We also
incorporated some improvements in speed and practicality compared to previous models that were
used in LSC studies.

9.1 Achievements and Results of Method
Our computational method addressed all of our goals:

• Optimal compositions

• Limited losses due to self absorption and scattering

• Optimized dimensional designs

• Highly efficient

• Optimized by a realistic, computationally fast approach

Our MC simulation also provides flexibility in both LSC material choice, and initial top surface
transmission angle. We do not require photons to enter the LSC perpendicular to the top surface,
unlike previous methods.

Monte Carlo can be used to optimize LSC composition and thickness, as well as to quantita-
tively evaluate the effect of various loss mechanisms, such as surface losses or non-radiative effects.
Theoretical Monte Carlo calculations may also be used to identify more suitable perovskite chemical
compositions to be used as LSCs.

Most importantly, our theoretical results provide insight into properties that are difficult to
measure, time consuming or expensive to obtain experimentally. Our theoretical Monte Carlo sim-
ulations provide insight into the number of absorption occurrences that photon undergo within an
LSC. Such measurements would be difficult to obtain experimentally. Our model is also able to
provide theoretical optimal values, such as LSC thickness. Optimizing thickness experimentally by
creating numerous samples of varying thickness is both more expensive and time consuming than
obtaining theoretical values.

9.1.1 Optimal Compositions
We investigated the following materials for use as LSCs:
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• Perovskite thin films

• Perovskite quantum dots

• CdSe-CdTe quantum dots

• Perovskite using iodide halide

• Perovskite using chloride halide

• Perovskite using partial chloride/partial acetate halide

• Perovskite using acetate halide

We found that 100% acetate halide anion perovskite thin films are likely the most viable candi-
dates for LSCs. The higher quantum yield of perovskites made with acetate makes them more ideal
candidates by reducing self-absorption losses.

9.1.2 Limited losses due to self absorption and scattering
The self absorption and scattering losses are influenced by the following factors:

• Number of absorption occurrences

• Refractive index

We quantified the effect of these two properties on LSC performance. We concluded that per-
ovskite LSCs, both thin film and quantum dot, have significantly fewer losses through the top surface
as compared to CdSe-CdTe quantum dots LSCs. This is due to the broad absorption spectrum of
perovskites, which absorb a large percentage of the light entering the LSC. A majority of the photons
that enter CdSe-CdTe quantum dot LSCs are not even absorbed once.

As previously mentioned, the probability of emission diminishes with number of absorption-
emission events due to the quantum yield. Therefore, most photons should ideally be absorbed
and emitted exactly once before reaching PV. The probability of absorption depends on the overlap
between adsorption and emission spectra. A much higher percentage of photons in perovskite LSCs
were absorbed exactly once as compared to CdSe-CdTe quantum dots.

Fewer photons undergo a large number of absorption occurrences in perovskite LSCs. Perovskites
have a lower quantum yield, which means more self-absorption losses. However, the increase in
initially absorbed photons and high refractive index help significantly decrease the top surface losses.
The decrease in top surface losses makes up for these increase in self-absorption losses. Overall,
perovskites LSCs collect a much larger percentage of photons at the edges of the LSC, where the
PV is located.

9.1.3 Optimized dimensional designs
We found that there is a balance between perovskite LSC thickness and quantum yield. For lower
quantum yields, a thinner LSC is more desirable. This reduces the distance photons must travel
within the LSC and therefore reduces the number of absorption occurrences. Fewer absorption
occurrences are preferred when the quantum yield is lower.

On the other hand, higher quantum yields can withstand more absorption occurrences without
incurring significant additional self-absorption losses. Therefore slightly thicker LSCs are preferred
for higher quantum yield perovskite LSCs so that more photons are absorbed initially.
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9.1.4 Highly efficient
Perovskite LSCs were shown to have theoretically high values of gain. Some characteristics that
contribute to the high efficiency of perovskite LSCs include:

• Broad absorption spectrum

• Large stokes shift between absorption and emission spectra

• Little overlap in absorption and emission spectra

• Fairly high quantum yield

• High refractive index

Photons undergo fewer absorption events with perovskite LSCs than with previously used dyes,
such as Rhodamine-B. This is due to decreased overlap in the absorption and emission spectra of per-
ovskites compared to other materials. Furthermore, more photons are absorbed by perovskites due
to their broad absorption spectra covering the solar spectrum as compared to CdSe-CdTe quantum
dots. However, perovskites do suffer from a slightly lower quantum yield than previously studied
CdSe-CdTe quantum dots.

9.1.5 Optimized by a realistic, computationally fast approach
The following aspects were incorporated into the LSC Monte Carlo simulation to provide realistic,
computational fast results:

• Vectorized ray tracer

• Rays selected from normalized solar spectrum

• Incorporated parameters, such as refractive index, quantum yield, dimensions

9.2 Monte Carlo/LSC Improvements
Below we list a few of the Monte Carlo simulation improvements that we implemented compared to
previously used simulations described for use in LSC studies such as that presented by Sahin, Ilan,
and Kelley, 2011 in the paper “Monte-Carlo simulations of light propagation in luminescent solar
concentrators based on semiconductor nanoparticles".

9.2.1 Increased Monte Carlo Efficiency and Flexibility
We implemented a vectorized Monte Carlo method, which resulted in increased computational effi-
ciency. The vectorized ray tracer is able to successfully evaluate the performance of any given LSC
with well defined parameters in a matter of seconds.

Additionally, our code only stores the essential information of each photon in its respective
column of a matrix of photons. This allows the Monte Carlo steps to be performed as matrix
operations on 105 photons or more simultaneously. Vectorized Monte Carlo simulations greatly
decrease the amount of computation time compared to methods which run in a loop.
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9.2.2 Flexibility
Our Monte Carlo method also does not assume that photons which fail to be absorbed within a
distance of twice the LSC thickness have “escaped". This offers increased modeling flexibility. For
example, the incident photons are no longer required to enter that LSC at an angle normal to the top
surface. This allows photons entering at a grazing angle to be collected by the side PV cell without
being absorbed by the LSC material. It also allows photons to be absorbed at at propagation
distance ∆s longer than twice the thickness, given that this still lies within the LSC.

Furthermore, this allows for a greater flexibility of LSC materials used within this Monte Carlo
framework. For example, LSC with non-fluorescent materials such as pure glass, can be simulated
since photons are not required to be absorbed and reemitted. In this way, we can simulate the
number of photons reaching the PV edges of a pure glass “LSC". Pure glass “LSCs" provide insight
into the number of photons that enter at grazing angles or near the LSC periphery and are collected
by the PV without being absorbed or emitted by the florescent LSC material.

Pre-Normalization to Solar Spectrum

Instead of finding the optical efficiency for individual wavelengths and then normalizing these optical
efficiencies to produce a solar averaged optical efficiency, our method samples photon wavelengths
directly from a normalized solar spectrum. This eliminates the need to normalize over the solar
spectrum after the Monte Carlo simulation is completed since the photons used in the simulation
are already proportional to the solar spectrum.

9.3 Considerations
Perovskite can be used to make highly viable LSCs with parameter optimization and when the
composition is chosen wisely. However, perovskite does suffer from stability issues. Perovskite needs
more stability improvements before it can become commercialized for use in LSCs since perovskite
currently degrades quickly. Rapidly degrading materials would not make sense economically, so
device stability should reach the approximate lifetime of the PV to which it is attached. However,
we did not look into these issues in depth.

Another challenge to our theoretical results was parameter precision. We were given parame-
ter values measured in a lab which suffer from instrumental sensitivity issues. In the absorption
and emission spectra data that we were given for perovskite, the absorption spectrum falls off to
approximately zero within the noise levels of the measuring device.

To rectify this issue, we use a cutoff value of 780nm wavelength. After this value, we considered
perovskite absorption to be zero. However, we discovered that the percentage of photons collected
are sensitive to this parameter. Whether this value is zero or some relatively small positive number
greatly effects the amount of self-absorption losses.
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