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Abstract
Covariance estimation for high-dimensional datasets is a fundamental problem in machine
learning, and has numerous applications. In these high-dimensional settings the number of
features or variables p is typically larger than the sample size n. A popular way of tackling
this challenge is to induce sparsity in the covariance matrix, its inverse or a relevant trans-
formation. In many applications, the data come with a natural ordering. In such settings,
methods inducing sparsity in the Cholesky parameter of the inverse covariance matrix can
be quite useful. Such methods are also better positioned to yield a positive definite estimate
of the covariance matrix, a critical requirement for several downstream applications. Despite
some important advances in this area, a principled approach to general sparse-Cholesky based
covariance estimation with both statistical and algorithmic convergence safeguards has been
elusive. In particular, the two popular likelihood based methods proposed in the literature
either do not lead to a well-defined estimator in high-dimensional settings, or consider only
a restrictive class of models. In this paper, we propose a principled and general method for
sparse-Cholesky based covariance estimation that aims to overcome some of the shortcom-
ings of current methods, but retains their respective strengths. We obtain a jointly convex
formulation for our objective function, and show that it leads to rigorous convergence guar-
antees and well-defined estimators, even when p > n. Very importantly, the approach always
leads to a positive definite and symmetric estimator of the covariance matrix. We establish
both high-dimensional estimation and selection consistency, and also demonstrate excellent
finite sample performance on simulated/real data.

Keywords Covariance estimation · High-dimensional data · Sparse Cholesky · Penalized
likelihood
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1 Introduction

In modern day applications, datasets where the number of variables is much higher than the
number of samples are more pervasive than they have ever been. One of the major challenges
in this setting is to formulate models and develop learning procedures to understand the
complex relationships and multivariate dependencies present in these datasets. The covari-
ance matrix is perhaps the most fundamental object that quantifies associations between the
variables in multivariate datasets. Hence, learning the covariance matrix in a principled way
is crucial in high-dimensional problems and enables the detection of the most important
relationships. For many applications, estimating the covariance matrix is an important first
step of a deeper, more nuanced analysis. Hence, it is critical to develop machine learning
methods which guarantee the positive definiteness of the resulting covariance estimate.

In particular, suppose we have i.i.d. observationsY1,Y2, . . . ,Yn from a p-variate normal
distribution with mean vector 0 and covariance matrix �. Note that � ∈ P

+
p , the space

of positive definite matrices of dimension p. In many modern applications, the number of
observations n is much fewer than the number of variables p. In such situations, parsimonious
models which restrict � to a lower dimensional subspace of P+

p are required for meaningful
statistical estimation. Let �−1 = T t D−1T denote the modified Cholesky decomposition of
� = �−1. Here T is a lower triangular matrix with diagonal entries equal to 1 (we will refer
to T as the Cholesky parameter), and D is a diagonal matrix with positive diagonal entries.
The entries of T and D have a very natural interpretation. In particular, the (nonredundant)
entries in each row of T are precisely the regression coefficients of the corresponding variable
on the preceding variables. Similarly, each diagonal entry of D is the residual variance of the
corresponding variable regressed on the preceding variables. Note that the discussion above
implicitly assumes a given ordering of the variables in the dataset. The Cholesky factor of
a positive definite matrix is not invariant to a reordering of the variables, and if we impose
sparsity in the Cholesky factor estimate, the resulting (inverse) covariance estimate can in
general be different for two different orderings. For a variety of applications however, a
natural ordering, such as time based or location based ordering, of the variables is available
(see Sects. 3.2, 3.4, for example) 1.

Owing to the interpretation of T and D discussed in the last paragraph, various authors
in the literature have considered sparse estimation of T as a means of inducing parsimony in
high-dimensional settings. Smith and Kohn (2002) develop a hierarchical Bayesian approach
which allows for sparsity in the Cholesky parameter. Wu and Pourahmadi (2003) develop
a non-parametric smoothing approach which provides a sparse estimate of the Cholesky
parameter,with a banded sparsity pattern.Huang et al. (2006) introduce a penalized likelihood
method to find a regularized estimate of � with a sparse Cholesky parameter. Rothman et al.
(2010) develop penalized likelihood approaches to provide a sparse banded estimator for T−1

(which can be regarded as the Cholesky parameter for the covariance matrix �). Shojaie and
Michailidis (2010) motivate sparsity in the Cholesky parameter T as a way of estimating
the skeleton graph for a Gaussian Directed Acyclic Graph (DAG) model. In recent parallel
work, Yu andBien (2016) develop a penalized likelihood approach to obtain a tapered/banded
estimator of T (with possibly different bandwiths for each row).

To the best of our knowledge, the methods in Huang et al. (2006) and Shojaie andMichai-
lidis (2010) are the only (non-Bayesian) methods which induce a general or unrestricted
sparsity pattern in the Cholesky parameter T of the inverse covariance matrix �. Both these

1 See the end of the introduction andSect. 2.6 for a discussion regardingCholesky basedmethods for unordered
data.
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methods represent important advances in the area. Regardless, the proposed methodologies
either do not lead to well-defined estimators in high-dimensional settings (when n < p) or
consider a restrictive class of models for estimation purposes. We on the other hand param-
eterize in terms of the classical Cholesky parameter (as opposed to the modified Cholesky
parameter), and construct an objective function which leads to well-defined covariance esti-
mators in a general setting. We elaborate on this below.

Huang et al. (2006) obtain a sparse estimate of T by minimizing the objective function

QChol(T , D) = tr
(
T t D−1T S

) + log |D| + λ
∑

1≤i< j≤p

|Ti j |. (1.1)

with respect to T and D, where S = 1
n

∑n
i=1 YiYT

i is the sample covariance matrix (note
that Y′

i s have mean zero). In other words, their proposed estimator for the covariance matrix

is T̂−1 D̂(T̂−1)t , where

(T̂ , D̂) = argmin(T ,D)QChol(T , D).

Let φi := (Ti j )
i−1
j=1 and S·i := (Si j )

i−1
j=1 respectively denote the vector of lower triangular

entries in the i th row of T and S for i = 2, 3, . . . , p. Let Si denote the i × i submatrix of S
starting from the first row (column) to the i th row (column), for i = 1, 2, . . . , p. It can be
established after some simplification (see Huang et al. 2006) that

QChol (T , D) =
{
S11
D11

+ log D11

}
+

p∑

i=2

{
(φi )t Si−1φ

i + 2(φi )t S·i + Sii
Dii

+ log Dii + λ‖φi‖1
}

,

where ‖x‖1 denotes the sum of absolute values of the entries of a vector x. It follows that
minimizing QChol(T , D) with respect to L and D, is equivalent to minimizing

QChol,i (φ
i , Dii ) = (φi )t Si−1φi + 2(φi )t S·i + Sii

Dii
+ log Dii + λ‖φi‖1 (1.2)

with respect to (φi , Dii ) for i = 2, 3, . . . , p, and setting D11 = S11. Huang et al. (2006)
propose minimizing each QChol,i (φ

i , Dii ) using cyclic block coordinatewise minimization,
where each iteration consists ofminimizing QChol,i with respect toφi (fixing Dii at its current
value), and then with respect to Dii (fixing φi at its current value). In particular, each row
i can be minimized separately from the other rows, i.e., there are p separate minimizations.
For ease of exposition, we will refer to the algorithm in Huang et al. (2006) as the Sparse
Cholesky algorithm. However, this Sparse Cholesky approach based on minimizing QChol,i

encounters a problem in high-dimensional settings (when n < p) for i > n. In the lemma
below, we show that when n < p, the global minimum value of QChol,i is −∞, and this
minimum value is attained at Dii = 0, which is undesirable as it leads to a singular estimate
for the covariance matrix �.

Lemma 1.1 The function QChol,i (φ
i , Dii ) is not jointly convex or bi-convex for 1 ≤ i ≤ p.

Moreover, if n < p, then

inf
φi∈Ri−1,Dii>0

QChol,i (φi , Dii ) = −∞,

for i > n. Moreover, this minimum is attained if and only if Dii = 0.

The proof of the lemma is provided in the supplemental document.
Let Tp denote the space of p × p lower triangular matrices with unit diagonal entries,

and Dp denote the space of p × p diagonal matrices with positive diagonal entries. Since
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{(φi , Dii )}pi=1 forms a disjoint partition of (T , D), it follows from Lemma 1.1 that if n < p,
then

inf
T∈Tp,D∈Dp

QChol (T , D) = inf
D11>0

QChol,1(D11) +
p∑

i=2

inf
φi∈Ri−1,Dii>0

QChol,i (φ
i , Dii ) = −∞,

and the infimum is achieved only if one of the Dii ’s takes the value zero (which is unacceptable
as it corresponds to a singular estimate �). Another issue with the approach in Huang et al.
(2006) is that since the function QChol,i is not a jointly convex or even bi-convex in (φi , Dii ),
existing results in the literature do not provide a theoretical guarantee that the sequence
of iterates generated by the block coordinatewise minimization algorithm of Huang et al.
(2006) (which alternates between minimizing with respect to φi and Dii ) will converge. If
the sequence of iterates does converge, it is not clear whether the limit is a global minimum
or a local minimum. Of course, convergence to a local minimum is not desirable as the
resulting estimate is not in general meaningful, and as described above, convergence to a
global minimum will imply that the limit lies outside the range of acceptable parameter
values.

We provide a simple illustration of this convergence issue in a setting with p = 8. We first
generate a positive definite matrix �0 = T t

0 D
−1
0 T0 in the following manner. Sixty percent

of the lower triangular entries of T0 are randomly set to zero. The remaining 40% entries are
chosen from a uniform distribution on [0.3, 0.7] and then assigned a positive/negative sign
with probability 0.5. Now, a p × p diagonal matrix D0 is generated with diagonal entries
chosen uniformly from [2, 5]. We then set n = p−1 and generate data from the multivariate
normal distribution with mean 0 and inverse covariance matrix �0. We initialize T and D to
be I8, and run the algorithm. After 4 interations, D77 jumps to 0 and stays there, as shown in
Fig. 1. This leads to a degenerate covariance matrix estimate.

Note that the sparsity patterns in T can be associated with a directed acyclic graph G =
(V , E), where V = {1, 2, . . . , p} and E = {i → j : i < j, Ti j �= 0}. Based on this
association, assuming that Dii = 1 ∀1 ≤ i ≤ p, Shojaie and Michailidis (2010) develop a
‘graph selection’ approach for obtaining a sparse estimate of T by minimizing the objective
function

QChol(T , Ip) = tr
(
T t T S

) + λ
∑

1≤i< j≤p

|Ti j |, (1.3)

where Ip denotes the identity matrix of order p (an adaptive lasso version of the above
objective function is also considered in Shojaie andMichailidis (2010)). It follows from (1.1)
and (1.3) that from an optimization point of view, the approach in Shojaie and Michailidis
(2010) is a special case of the approach in Huang et al. (2006). Note that fixing D = Ip
and only minimizing with respect to T significantly simplifies the optimization problem in
Huang et al. (2006). Moreover, the resulting function is now convex in T with a quadratic
term and an �1 penalty term. The authors in Shojaie andMichailidis (2010) provide a detailed
evaluation of the asymptotic properties of their estimator in an appropriate high-dimensional
setting (assuming that D = Ip). Owing to the interpretation of {Ti j }i−1

j=1 as the regression

coefficients of Yi on {Y j }i−1
j=1, this can be regarded as a least squares approach with lasso

penalty for sparsity selection in T. Hence, regardless of whether the true Dii ’s are all equal to
one or not, this is a valid approach for sparsity selection/graph selection, which is precisely
the goal in Shojaie and Michailidis (2010). Also, by substituting D = Ip in (1.2) it follows
that the approach in Shojaie and Michailidis (2010) is equivalent to performing p separate
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Fig. 1 Plot of the iterates for D77 for Sparse Cholesky in a setting with p = 8. It shows how the value jumps
to 0 (and stays there)

lasso regressions to obtain a sparse estimate of T . For ease of exposition, we will refer to the
algorithm developed in Shojaie and Michailidis (2010) as the Sparse Graph algorithm.

However, in many applications, the end goal is to obtain an accurate estimate of the
covariance matrix, which requires estimating both T and D. We now point out some issues
with making the assumption Dii = 1 ∀1 ≤ i ≤ p when the goal is estimation of � =
T−1D(T t )−1. Note that if cov(Y) = �, and if we define the vector of “latent variables”
Z = TY, then cov(Z) = D. Hence, assuming that Dii = 1 implies that the latent variables
in Z have unit variance, NOT the variables in Y. An assumption of unit variance for Y can
be dealt with by scaling the observations in the data. But scaling the data does not justify
the assumption that the latent variables in Z have unit variances. This is illustrated in the
simulation example in Sect. 3.1. Also, it is not clear if an assumption of unit variances for
the latent variables in Z can be dealt with by preprocessing the data another way. Hence,
assuming that the diagonal entries of D are 1 can be restrictive, especially for estimation
purposes. Indeed, the class of covariance matrices with Dii = 1 ∀1 ≤ i ≤ p has probability
zero under any probability measure on P

+ which is mutually absolutely continuous with
respect to Lebesgue measure.

One could propose an approach where estimates of T are obtained by minimizing (1.3),
and estimates of D are obtained directly from the Cholesky decomposition of the sample
covariance matrix S. However, this approach will not work when n < p as S is a singular
matrix in this case. To summarize, the approach in Shojaie andMichailidis (2010) is useful for
the purposes of sparsity selection/graph selection, but the assumption Dii = 1 ∀1 ≤ i ≤ p
can cause problems in obtaining accurate estimates of the entries of the covariance matrix
� = T−1D(T t )−1.

In this paper, we develop an �1 penalized approach, called Convex Sparse Cholesky
Selection (CSCS) which provides estimates for (T , D) (and consequently � and �) while
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Table 1 Comparison of methods inducing sparsity in the Chloesky parameter of the inverse covariance matrix

Property Method

Sparse Cholesky Sparse Graph CSCS

No constraints on sparsity pattern + + +

No constraints on D (for estimation) + +

Convergence guarantee to acceptable global minimum when n < p + +

Asymptotic consistency (n, p → ∞) + +

A “+” indicates that a specified method has the given property. A blank space indicates the absence of a
property

inducing sparsity in T . This approach overcomes the drawbacks of the methods in Huang
et al. (2006) and Shojaie and Michailidis (2010) while preserving the attractive properties of
these approaches. The key is to reparameterize in terms of the classical Cholesky parameter
for �, given by � = Lt L . In particular, It can be shown that the CSCS objective function
is jointly convex in the (nonredundant) entries of L , is bounded away from −∞ even if
n < p, and that the sparsity in the classical Cholesky parameter L is exactly reflected
in the (modified) Cholesky parameter T . Furthermore, we provide a cyclic coordinatewise
minimization algorithm to minimize this objective function, and show that the minimizer
with respect to each coordinate is unique and can be evaluated in closed form. When n < p,
our objective function is not strictly convex, and convergence of the cyclic coordinatewise
minimization algorithmdoes not immediately follow fromexisting results in the literature.We
show that recent results in Khare and Rajaratnam (2014) can be adapted in the current context
to establish convergence to a global minimum for the cyclic coordinatewise minimization
algorithm.We show that any globalminimum lies in the acceptable range of parameter values,
i.e., it leads to a positive definite estimate of the covariance matrix. We also establish high-
dimensional asymptotic graph selection and estimation consistency of the resulting estimator
under standard regularity assumptions. As explained in Sect. 4, proving consistency in the
current setting is non-trivially different than the consistency arguments considered in Khare
et al. (2015), Peng et al. (2009), Shojaie and Michailidis (2010) because the diagonal entries
of L are not assumed to be known in this paper.

A comparison of the relevant properties of the estimators developed in Huang et al. (2006)
(Sparse Cholesky), Shojaie and Michailidis (2010) (Sparse Graph) and this paper (CSCS)
is provided in Table 1. For ease of exposition, we refer to the algorithm in Huang et al.
(2006) as the Sparse Cholesky algorithm, and the one in Shojaie and Michailidis (2010) as
the Sparse Graph algorithm. Through experiments based on simulated and real datasets, we
demonstrate that CSCS can have significantly better graph selection as well as estimation
performance than Sparse Cholesky when n < p. These experiments also demonstrate that
CSCS can improve on the graph selection performance of Sparse Graph, and can lead to
significant improvements in covariance estimation performance.

As mentioned previously, our approach as well as that of Huang et al. (2006), Shojaie
and Michailidis (2010), Yu and Bien (2016) assumes the existence of a domain-specific
ordering of the the variables, which is available in a large variety of applications (see these
papers and Sects. 3.2 and 3.4 and for examples). However, in other applications, such an
ordering may not be apparent. In such settings, a possible solution is to consider the ordering
as an additional parameter in the objective function and optimize over it. This problem has
been studied in the recent literature, see Wagaman and Levina (2009), van de Geer and
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Buhlmann (2013), Aragam and Zhou (2015), Aragam et al. (2016); Zheng et al. (2017))
and the references therein. While such an approach is necessary in situations when a natural
ordering does not exist, the corresponding optimization problem also becomes significantly
complicated, and in general the resulting estimate can only be shown to be a local minimum
of the corresponding objective functions. The contribution of our paper is to show that when
a domain-specific ordering is available, one can develop faster, parallelizable algorithms, and
stronger algorithmic convergence (convergence to a global minimum, even when n < p) and
statistical consistency properties can be established. See Sect. 2.6 for a detailed discussion.

The remainder of the paper is organized as follows. Section 2 introduces theCSCSmethod,
and then studies relevant properties such as convergence, computational complexity. In Sect.
2.5, we compare and contrast the CSCSmethod (which induces sparsity in T ) with penalized
methods which induce sparsity in �. Section 3 illustrates the performance of the CSCS
method on simulated and real data. Section 4 establishes finite sample (non-asymptotic)
bounds for the accuracy of the CSCS estimator (Theorem 4.1). These bounds are then used
to establish high-dimensional asymptotic consistency (both estimation and model selection)
of the CSCS method (Theorem 4.2). The supplementary document contains proofs of some
of the results in the paper.

2 A convex approach for sparse Cholesky estimation

As pointed out in Lemma 1.1, if n < p, the infimum of QChol,n+1(φn+1, Dn+1,n+1) over the
range of acceptable values of (φn+1, Dn+1,n+1) is −∞. However, the infimum is attained
only if Dn+1,n+1 = 0, which is outside the range of acceptable values of Dn+1,n+1. Also,
since QChol(T , D) is not jointly convex in (L, D), their are no convergence guarantees for
the block coordinate-wise minimization algorithm proposed in Huang et al. (2006). Given
the attractive properties of convex functions and the rich theory for convex optimization, a
natural approach to address these issues is to develop a convex objective function for this
problem. Such an approach will also potentially lead to a deeper theoretical analysis of the
properties of the solution and corresponding algorithm. The objective function QChol(T , Ip)
used in Shojaie and Michailidis (2010) is jointly convex in T , but we want to avoid any
restrictive constraints on D.

2.1 The CSCS objective function

We will now show that all the goals mentioned above can be achieved by reparametrizing in
terms of the classical Cholesky parameter. Recall that the classical Cholesky decomposition
of � is given by � = Lt L , where L (which we will refer to as the classical Cholesky
parameter) is a lower triangular matrix with positive diagonal entries. We introduce the
following objective function

QCSCS(L) = tr
(
Lt LS

) − 2 log |L| + λ
∑

1≤ j<i≤p

|Li j |. (2.1)

The first two terms in QCSCS correspond to the (negative) Gaussian log-likelihood, and the
last term is an �1-penalty on the off-diagonal entries of L . To see the connection (and contrast)
between QCSCS and QChol (used for Sparse Cholesky), note that

Li j = Ti j/
√
Dj j for every i ≤ j . (2.2)
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Hence, Li j = 0 if and only if Ti j = 0, i.e., sparsity in T is equivalent to sparsity in L . After
reparametrizing QChol in terms of L (as opposed to (T , D)) and some simple manipulations,
we obtain the following objective function.

QChol(L) = tr
(
LLt S

) − 2 log |L| + λ
∑

1≤ j<i≤p

|Li j |L j j . (2.3)

Note that the first term in (2.3) is a quadratic form in the entries of L , and hence is jointly
convex in the entries of L . Since L is a lower triangular matrix, it follows that − log |L| =∑p

i=1 − log Lii , and hence the second term in (2.3) is also jointly convex in entries of L .
However, terms of the form |Li j |L j j are not jointly convex, and hence the penalty term in
(2.3) is not jointly convex either. On the other hand, the term λ

∑
1≤ j<i≤p |Li j | in (2.1) is

jointly convex in the entries of L . The following lemma immediately follows from (2.2) and
the discussion above.

Lemma 2.1 (Joint convexity) QCSCS(L) is jointly convex in the entries of L. Also, a global
minimizer of QCSCS will be sparse in L (and hence sparse in T ).

Let ηi = (Li j )
i
j=1 denote the vector of lower triangular and diagonal entries in the i th row

of L for 1 ≤ i ≤ p. Recall that Si denotes the i × i sub matrix of S starting from the first row
(column) to the i th row (column). Let Li · denote the i th row of L , for 1 ≤ i ≤ p. It follows
from (2.1), the lower triangular nature of L , and the definition of ηi that

QCSCS(L) = tr
(
LSLt) − 2

p∑

i=1

log Lii + λ
∑

1≤ j<i≤p

|Li j |

=
p∑

i=1

Li ·SLt
i · − 2

p∑

i=1

log ηii + λ

p∑

i=2

i−1∑

j=1

|ηij |

=
p∑

i=1

(ηi )T Siη
i − 2

p∑

i=1

log ηii + λ

p∑

i=2

i−1∑

j=1

|ηij |

=
p∑

i=1

QCSCS,i (η
i ), (2.4)

where

QCSCS,i (η
i ) = (ηi )T Siη

i − 2 log ηii + λ

i−1∑

j=1

|ηij | (2.5)

for 2 ≤ i ≤ p, and

QCSCS,1(L11) = L2
11S11 − 2 log L11. (2.6)

Equation (2.4) demonstrates that QCSCS decomposes into a sum of p functions, and the
functions in the sum depend on disjoint sets of parameters. We will use this decomposition
crucially for establishing attractive theoretical and computational properties such as high-
dimensional consistency and ability to parallelize.

Our next goal is to establish that the function QCSCS(L) is uniformly bounded below
over Lp , the space of p × p lower triangular matrices with positive diagonal entries. We
will assume that the diagonal entries of the sample covariance matrix S are strictly positive.
This basically means that none of the underlying p marginal distributions are degenerate.
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We now state a lemma from Khare and Rajaratnam (2014) which will play a crucial role in
this exercise.

Lemma 2.2 (Khare and Rajaratnam 2014) Let A be a k × k positive semi-definite matrix
with Akk > 0, and λ be a positive constant. Consider the function

h(x) = − log xk + xT Ax + λ

k−1∑

j=1

|x j |

defined on R
k−1 × R+. Then, there exist positive constants a1 and a2 (depending only on λ

and A), such that

h(x) ≥ a1xk − a2

for every x ∈ R
k−1 × R+.

Using (2.5), (2.6) along with the facts that Si is positive semi-definite and Sii > 0, it follows
from Lemma 2.2 that for every 1 ≤ i ≤ p, there exist positive constants ai and bi such that

QCSCS,i (η
i ) = (ηi )T Siη

i − 2 log ηii + λ

2

i−1∑

j=1

|ηij | + λ

2

i−1∑

j=1

|ηij |

≥ aiη
i
i − bi + λ

2

i−1∑

j=1

|ηij | (2.7)

for every ηi ∈ R
i−1 ×R+. The following lemma now follows immediately from (2.4), (2.7)

and the fact that {ηi }pi=1 forms a disjoint partition of L .

Lemma 2.3 For every n and p,

inf
L∈Lp

QCSCS(L) =
p∑

i=1

inf
ηi∈Ri−1×R+

QCSCS,i (η
i ) ≥ −

p∑

i=1

bi > −∞,

and QCSCS(L) → ∞ as |ηij | = |Li j | → ∞ for any j < i , or as ηii = Lii → 0. Hence, any

global minimum of QCSCS,i has a strictly positive value for ηii = Lii , and hence any global
minimum of QCSCS over the open set Lp lies in Lp.

2.2 Aminimization algorithm forQCSCS

We now provide an algorithm to minimize the convex objective function QCSCS(L). Since
{ηi }pi=1 form a disjoint partition of the (nonredundant) parameters in L , it follows that opti-
mizing QCSCS(L) is equivalent to separately optimizing QCSCS,i (η

i ) for 1 ≤ i ≤ p.
Consider, similar to Lemma 2.2, a generic function of the form

hk,A,λ(x) = −2 log xk + xT Ax + λ

k−1∑

i=1

|x j | (2.8)

from R
k−1 × R+ to R. Here k is a positive integer, λ > 0, and A is a positive semi-definite

matrix with positive diagonal entries. It follows from (2.5) and (2.6) that QCSCS,i (η
i ) =

hi,Si ,λ(η
i ) for every 1 ≤ i ≤ p. It therefore suffices to develop an algorithm to minimize a

function of the form hk,A,λ as specified in (2.8). Note that without the logarithmic term and

123



2070 Machine Learning (2019) 108:2061–2086

the restriction that xk > 0, the optimization problem for hk,A,λ would have been equivalent
to the lasso optimization problem for which several approaches have been developed in the
literature, such as the shooting algorithm inFu (1998), or the pathwise coordinate optimization
approach in Friedman et al. (2008), for example. However, these algorithms do not apply in
the current situation due to the presence of the logarithmic term and the condition xk > 0.

We will now derive a cyclic coordinatewise minimization algorithm for hk,A,λ. For every
1 ≤ j ≤ k, define the function Mj : Rk−1 × R+ → R

k−1 × R+ by

Mj (x) = inf
y∈Rk−1×R+:yl=xl∀l �= j

hk,A,λ(x). (2.9)

The following lemma (proof provided in the supplemental document) shows that the functions
{Mj }kj=1 can be computed in closed form.

Lemma 2.4 The function M j (x) defined in (2.9) can be computed in closed form. In partic-
ular,

(
Mj (x)

)
j =

Sλ

(
−2

∑
l �= j Al j xl

)

2A j j
(2.10)

for 1 ≤ j ≤ k − 1, and

(Mk(x))k =
−∑

l �=k Alk xl +
√(∑

l �=k Alk xl
)2 + 4Akk

2Akk
. (2.11)

Here Sλ is the soft-thresholding operator given by Sλ(x) = sign(x)(|x | − λ)+. Lemma 2.4
provides the required ingredients to construct a cyclic coordinatewiseminimization algorithm
to minimize hk,A,λ (see Algorithm 1). Now, to minimize QCSCS(L), we use Algorithm 1 to
minimize QCSCS,i (η

i ) for every 1 ≤ i ≤ p, and combine the outputs to obtain the a matrix
on Lp (see Algorithm 2). We refer to Algorithm 2 as the CSCS algorithm.

Note that although the function QCSCS,i is jointly convex in the entries of ηi , it is not in
general strictly convex if n < i , and does not necessarily have a unique global minimum.
Hence, it is not immediately clear if existing results in the literature imply the convergence
of Algorithm 2 to a global minimum of QCSCS . The next theorem invokes results in Khare
and Rajaratnam (2014) to establish convergence of Algorithm 2.

Theorem 2.1 If Sii > 0 for every 1 ≤ i ≤ p, then Algorithm 2 converges to a global
minimum of QCSCS.

The proof of the above theorem is provided in the supplemental document.

2.3 Selection of tuning parameter

The tuning parameter λ can be selected using a “BIC”-like measure, defined as follows:

BIC(λ) = ntr(S�̂) − n log |�̂| + log n ∗ E

where E denotes the number of non-zero entries in L̂ , n is the sample size, S is the sample
covariance and �̂ = L̂ t L̂ . The value of λ minimizing the function BIC(λ) can be chosen.

In Huang et al. (2006) and Shojaie and Michailidis (2010) the authors respectively pro-
pose tuning parameter choices based on cross-validation and scaled normal quantiles. These
procedures are described briefly in Sects. 3.2 and 3.1 respectively.
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Algorithm 1. (Cyclic coordinatewise algorithm for hk,A,λ)
Input: k, A and λ

Input: Fix maximum number of iterations: rmax
Input: Fix initial estimate: x̂(0)

Input: Fix convergence threshold: ε
Set r ← 1
converged = FALSE
Set x̂ current ← x̂(0)

Repeat
x̂old ← x̂ current

For j = 1, 2, · · · , k − 1
x̂ currentj ← (Mj (x current)) j

x̂ currentk ← (Mk (x current))k
x̂(r) ← x̂ current

## Convergence checking
If ‖x̂ current − x̂old‖∞ < ε

converged = TRUE
Else

r ← r + 1
Until converged = TRUE or r > rmax
Return final estimate: x̂(r)

Algorithm 2. (CSCS algorithm: minimization algorithm for QCSCS)
Input: Data Y1,Y2, · · · ,Yn and λ

Input: Fix maximum number of iterations: rmax
Input: Fix initial estimate: L̂(0)

Input: Fix convergence threshold: ε
For i = 1, 2, · · · , p

(η̂i )(0) ← i th row of L̂(0) (up to the diagonal)

Set η̂i to be minimizer of QCSCS,i obtained by using Algorithm 1

with k = i, A = Si , λ, rmax , x̂(0) = (η̂i )(0), ε

Construct L̂ ∈ Lp by setting its i th row (up to the diagonal) as η̂i

Return final estimate: L̂

2.4 Computational complexity of the CSCS algorithm

We now proceed to evaluate the computational complexity of the CSCS algorithm. Note that
the CSCS algorithm (Algorithm 2) involves p separate minimizations. In modern computing
environments, all of these minimizations can be run in parallel. In a parallelizable setting,
we define the computational complexity as a maximum number of computations among
all processes running in parallel. Hence, keeping the modern computing environment in
mind, the next lemma provides the computational complexity of CSCS in both parallel and
sequential settings. The proof of this lemma is provided in the supplemental document.

Lemma 2.5 (a) If all the p minimizations are run in parallel, the computational complexity
per iteration for Algorithm 2 is min(O(np), O(p2)).

(b) If all the p minimizations are run sequentially, the computational complexity per iteration
for Algorithm 2 is min

(
O

(
n

∑p
i=1 i

)
, O

(∑n
i=1 i

2
)) = min(O(np2, p3)).
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2.5 Comparison and connections with other methods—penalized sparse partial
correlationmethods

In this section we compare and contrast the CSCS method (which induces sparsity in the
Cholesky factor of �) with sparse partial correlation methods, i.e., penalized methods which
induce sparsity in the inverse covariance matrix � itself. The entries in the i th row of �

(appropriately scaled) can be interpreted as regression coefficients of the i th variable against
all other variables. Recall that the (non-redundant) entries in the i th row of T , on the other
hand, are the regression coefficients of the i th variable against only the preceding variables.
A natural question to ask is whether there is any connection between models which introduce
sparsity in the Cholesky factor of� and models which induce sparsity in � itself. In general,
the sparsity pattern in the Cholesky factor T of a positive definite matrix � is not the same
as the sparsity pattern in � itself. Note that a given pattern of zeros in the lower triangle a
p× pmatrix uniquely corresponds to a graph with vertices {1, 2, . . . , p}, where two vertices
do not share an edge whenever the corresponding entry is included in the pattern of zeros. It
is known that the sparsity pattern in � is exactly the same as its Cholesky factor if and only
if the corresponding graph is chordal (decomposable) and the vertices are ordered based on
a perfect vertex elimination scheme (see Paulsen et al. 1989).

We now summarize the relevant details of penalized methods which induce sparsity in
�. Such methods can be roughly divided into four categories: penalized likelihood methods
such as GLASSO (Banerjee et al. 2008; Friedman et al. 2008), penalized pseudo-likelihood
methods such as CONCORD (Khare et al. 2015), SPACE (Peng et al. 2009) and SYM-
LASSO (Friedman et al. 2010), Dantzig-selector type methods such as in Yuan (2010), Cai
et al. (2011), Liu and Luo (2015), and regularized score matching based methods such as
in Zhang and Zou (2014), Lin et al. (2016). The GLASSO objective function is comprised
of a log Gaussian likelihood term and an �1-penalty term for entries of �. Friedman et al.
(2008) present an algorithm for minimizing this objective function with has computational
complexity of O(p3) per iteration.2 Pseudo-likelihood based objective functions used in
CONCORD, SPACE and SYMLASSO are comprised of a log pseudo-likelihood trem which
is based on the regression based interpretation of the entries of �, and an �1-penalty term
for entries of �. These objective functions are typically minimized using cyclic coordinate-
wise minimization with a computational complexity of min(O(np2), O(p3)).3 Owing to
the regression based interpretation of the pseudo-likelihood, the minimization is done over
all symmetric matrices with positive diagonal entries (as opposed to GLASSO, where the
minimization is done over the set of positive definite matrices), and hence the minimizer
is not guaranteed to be positive definite. In many applications, the main goal is selection
of the sparsity pattern (network), and this does not pose a problem. In fact, getting rid of
the positive definiteness constraint is helpful in improving the performance of such methods
(as compared to GLASSO) in high-dimensional settings including increased robustness to
heavier tailed data (see Khare et al. 2015). The CONCORD algorithm, unlike SPACE and
SYMLASSO, provides crucial theoretical guarantees of convergence to a global minimum
of the respective objective function (while preserving all the other attractive properties of
SPACE and SYMLASSO).

2 In recent years, several adaptations/alternatives to this algorithm have been proposed in order to improve its
speed (see Hsieh et al. 2011; Mazumder and Hastie 2012 for instance). However, for these methods to provide
substantial improvements over the graphical lasso, certain assumptions are required on the number and size
of the connected components of the graph implied by the zeros in the minimizer.
3 Recently, a much faster proximal gradient based optimization method for the CONCORD objective function
has been developed in Oh et al. (2014).
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There is, in fact, an interesting parallel between CONCORD and CSCS. The CONCORD
objective function (scaled by 2

n ) is given by

Qcon(�) = −
p∑

i=1

2 logωi i + tr
(
�t�S

) + λ
∑

1≤ j<i≤p

|ωi j |.

On the other hand, it follows from (2.1) that the CSCS objective function can be written as

QCSCS(L) = −
p∑

i=1

2 log Lii + tr
(
Lt LS

) + λ
∑

1≤ j<i≤p

|Li j |.

Hence, from a purely mathematical point of view, CONCORD and CSCS are both optimizing
over the same objective function. The difference is that CONCORD optimizes the function
over the set of symmetric matrices with positive diagonal entries, whereas CSCS optimizes
the function over the set of lower triangular matrices with positive diagonal entries. Despite
this very close connection between the objective functions for CONCORD and CSCS, the
difference in the range of optimization leads to some critically important differences between
the respective optimization algorithms and estimators.

(a) (Computational Complexity) The p minimizations in the CSCS algorithm can be run
in parallel, giving it a distinct computational advantage over the CONCORD algorithm
(Khare et al. 2015) (which does not share this property). Even in the worst case, when
all the p minimizations for CSCS are implemented sequentially, the computational com-
plexity is the same as CONCORD (by Lemma 2.5).

(b) (Positive definiteness of resulting estimator of �) As discussed above, the CONCORD
estimator (and other pseudo-likelihood based estimators) for � is not guaranteed to be
positive definite. However, the estimator for� constructed by taking the CSCS estimator
and multiplying it by its transpose, is always positive definite.

We close this section by observing that as discussed above, the regression based interpretation
for the entries of � leads to a different objective function than the log Gaussian likelihood
for �. However, it can be easily shown that the objective function based on the regression
based interpretation for the entries of the Cholesky parameter T (or equivalently L) exactly
corresponds to the log Gaussian likelihood for T .

2.6 Comparison and connections with other methods—methods for DAG selection

As mentioned in the introduction, while a natural ordering of variables is available in several
applications, in many applications such an ordering may not be apparent. In such a setting,
the ordering too needs to be selected using the data. Methods to tackle this problem have
been studied in recent literature (see van de Geer and Buhlmann 2013; Aragam and Zhou
2015; Aragam et al. 2016 and the references therein, for a review). The method/algorithm
most relevant in the context of CSCS is the CCDr-�1 algorithm in Aragam and Zhou (2015).

Recall that element Tkj of lower triangular matrix T corresponds to coefficient for regu-
larized regression of X j onto preceding variables Xk , 1 ≤ k < j ≤ p. Given an ordering
of the variables, it is clear that coefficient for regressing Xk onto X j is not meaningful. As
such, setting Tjk = 0 is immediate in this context, and results in elements of upper triangular
matrix to be set to zero.

However, when variable ordering is not specified, it is not clear if Tjk = 0 or Tkj = 0,
and needs to be inferred. CCDr suggests heuristic-based selection between {Tjk, Tkj } by
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imposing that an appropriate choice should (1) result in a larger increase of a given scoring
function (2) assuming the choice does not create a cycle in resulting DAG. Hence, when
a variable ordering is not given, the matrix of regression coefficients selected by CCDr is
not necessarily lower triangular. However, due to the heuristic constraint that cycles are not
created, it can be row and column permuted to be put into a lower triangular matrix T . Hence,
CCDr can be thought of as performing a heuristic-based constrained optimization (based on
the DAG condition) of the same objective function as CSCS when �1 regularization is choice
of penalty.

Despite this very close connection between the objective functions for CCDr-�1 and CSCS
the difference in the range of optimization leads to some important qualitative differences
between the respective optimization algorithms and estimators.

(a) (Convexity) The minimization problem in the CCDr-�1 setting is not a convex problem,
as the set of all matrices with sparsity pattern consistent with aDAG is not convex. In such
settings, general results for coordinatewise minimization in the literature only guarantee
convergence of the sequence of iterates to a local minimum of the objective function.
On the other hand, for CSCS, the optimization problem is a convex problem (though not
strictly convex when n < p), and we are able to leverage this convexity to establish the
convergence of the sequence of iterates to a global minimum of the objective function.

(b) (Computational Complexity) The parallelizability of the p minimizations in the CSCS
algorithm, gives it a distinct computational advantage over the CCDr-�1 algorithm (which
is not parallelizable, as one needs to minimize over Tkj and Tjk simultaneously).

(c) (Asymptotic properties) To the best of our knowledge, high-dimensional consistency
results in Aragam et al. (2016) (a follow-up work to Aragam and Zhou (2015)) are
available only for a restricted version of the CCDr-�1 algorithm, where an estimate of
the DAG is obtained by minimizing the objective function

tr
(
T̃ t T̃ S

)
+ λ

∑

1≤i< j≤p

|T̃i j | (2.12)

as T̃ varies over the space of matrices with unit diagonal entries which can be converted
to a lower triangular matrices by (a row and column) reordering. As in the case of the
Sparse Graph algorithm in Shojaie and Michailidis (2010), an estimate of T obtained by
minimizing the function in (2.12) will give the sparsity structure to recover the DAG,
and also estimates of the appropriate regression coefficients of each variable on its pre-
decessors, but does not provide estimates of the conditional variances. These estimates
are required to construct the covariance matrix, which is the goal in many applications.
In other words, estimation consistency for the entire covariance matrix produced by the
general CCDr-�1 in Aragam and Zhou (2015) (which does provide estimates for the
conditional variances) are not available. On the other hand, Theorem 4.1 leverages the
parallelizability of CSCS to establish estimation consistency for the entire covariance
matrix produced by the CSCS algorithm.

3 Experiments

3.1 Simulated data: graph selection and estimation

In this section, we perform a simulation study to compare the graph/model selection and
estimation performance of CSCS, Sparse Cholesky and Sparse Graph.

123



Machine Learning (2019) 108:2061–2086 2075

Graph selection comparison
As stated in the introduction, the Sparse Graph algorithm is sensible and useful for model
selectionwhether or not the true conditional variances Dii are all equal to one or not (although
as we demonstrate later in this section, the assumption can lead to inaccuracies in estimation
when the true Dii ’s are not all equal to one). The goal of this experiment is to investigate
whether CSCS can lead to improved graph selection performance as compared to Sparse
Graph and Sparse Cholesky in high- dimensional settings.

For this purpose, we consider eight different settings with p ∈ {1000, 2000} and
n ∈ {p/8, p/4, p/2, 3p/2}. In particular, for each p ∈ {1000, 2000}, a p × p lower tri-
angular matrix T0 is generated as follows. We randomly choose 98% of the lower triangular
entries, and set them to zero. The remaining 2% entries are chosen randomly from a uniform
distribution on [0.3, 0.7] and then assigned a positive/negative sign with probability 0.5.
Now, a p × p diagonal matrix D0 is generated with diagonal entries chosen uniformly from
[2, 5]. For each sample size n ∈ {p/8, p/4, p/2, 3p/2}, 100 datasets, each having i.i.d. mul-
tivariate normal distribution with mean zero and inverse covariance matrix �0 = T t

0 D
−1
0 T0,

are generated.
The model selection performance of the three algorithms, CSCS, Sparse Cholesky, Sparse

Graph, is then compared using receiver operating characteristic (ROC) curves. These curves
compare true positive rates (TPR) and false positive rates (FPR), and are obtained by varying
the penalty parameter over roughly 40 possible values. In applications, FPR is typically
controlled to be sufficiently small, and therefore we focus on comparing portion of ROC
curves for which FPR is less than 0.15. In order to compare the ROC curves, Area-under-
the-curve (AUC) is used (see Fawcett 2006; Friedman et al. 2010).

Tables 2 and 3show the mean and standard deviation (over 100 simulations) for the
AUCs for CSCS, Sparse Cholesky and Sparse Graph when p ∈ {1000, 2000} and n ∈
{p/8, p/4, p/2, 3p/2}. It is clear that CSCS has a better model selection performance as
compared to Sparse Cholesky and Sparse Graph in all cases.

(a) As expected Sparse Cholesky performs significantly worse than other methods when
n < p, but its absolute and relative performance improves with increasing sample size,
especially when n > p.

(b) The tables also show that CSCS performs better model selection than Sparse Graph,
although the difference in AUC is not as pronounced as with Sparse Cholesky. In should
be noted that CSCS obtains higher AUC than Sparse Graph for each of the 800 datasets
(100 each for p ∈ {1000, 2000} and n ∈ {p/8, p/4, p/2, 3p/2}), and for all the eight
settings displayed in Tables 2 and 3

Mean AUC - 3 × Std. Dev. for CSCS > Mean AUC + 3 × Std. Dev. for Sparse Graph.

We also note that the variability is much lower for CSCS than the other methods.

It is worth mentioning that for each of the 800 datasets, the data was centered to zero mean
and scaled to unit variance before running each method. Firstly, this illustrates that scaling
the data does not justify assuming that the latent variable conditional variances {Dii }pi=1 are
identically 1, evidenced byCSCSperforming consistently bettermodel selection as compared
to Sparse Graph. Secondly, we observed that the three algorithms typically run much faster
when the data is scaled; therefore, data standardization was performed in the interest of time
given the extensive nature of our simulation study. Note that premultiplying a multivariate
normal vector by a diagonal matrix does not affect the sparsity pattern of the Cholesky factor
of the inverse covariance matrix. This approach helps accommodate the setting where the
variables have different marginal variances.

123



2076 Machine Learning (2019) 108:2061–2086

Table 2 Mean and Standard Deviation of area-under-the-curve (AUC) for 100 simulations for p = 1000

Solver n = 125 n = 250 n = 500 n = 1500

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Sparse Cholesky 0.012796 0.000045 0.018461 0.000108 0.078832 0.000122 0.127916 0.000027

Sparse Graph 0.113955 0.000200 0.129142 0.000048 0.135271 0.000066 0.138633 0.000026

CSCS 0.118440 0.000111 0.133958 0.000036 0.138492 0.000023 0.139891 0.000001

Each simulation yields a ROC curve from which the AUC is computed for FPR in the interval [0.01, 0.15].
The best results for each sample size are given in bold. CSCS achieves the highest AUC in each column

Table 3 Mean and Standard Deviation of area-under-the-curve (AUC) for 100 simulations for p = 2000

Solver n = 250 n = 500 n = 1000 n = 3000

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Sparse Cholesky 0.015131 0.000050 0.032391 0.000105 0.124284 0.000058 0.142678 0.000012

Sparse Graph 0.141957 0.000044 0.146362 0.000009 0.147984 0.000005 0.148742 0.000001

CSCS 0.144686 0.000019 0.147839 0.000004 0.148722 0.000002 0.148904 0.000001

Each simulation yields a ROC curve from which the AUC is computed for FPR in the interval [0.001, 0.15].
The best results for each sample size are given in bold. CSCS achieves the highest AUC in each column

Covariance estimation comparison
Recall that Sparse Cholesky, Sparse Graph and CSCS all provide sparse estimates of (T , D),
which can then be used to construct estimates of�. The goal of this experiment is to illustrate
that the assumption {Dii }pi=1 are identically 1 in the Sparse Graph approach can lead to
inaccuracies in the estimation of the entries of the covariance matrix, and these can be
improved by the CSCS approach, where no such assumption is required.

For this purpose, we consider the settings p = 1000 and n ∈ {p/2, 3p/2} and generate
50 datasets for a range of λ values similar to the model selection experiment above. The
true covariance matrix is generated using the same mechanism as in the “Graph selection
comparison” part. Figure 2 show the Frobenius norm difference (averaged over 50 indepen-
dent repetitions) between the true inverse covariance matrix and the estimate (||� − �̂||F ),
where �̂ is the estimated inverse covariance matrix for CSCS and Sparse Graph for a range
on penalty parameter values for n = 500.

For each method (CSCS and Sparse Graph), we start with a penalty parameter value near
zero (0.01) and increase it till the Frobenius norm error becomes constant, i.e., the penalty
parameter is large enough so that all the off-diagonal entries of the Cholesky parameter are
set to zero. That is why the range of penalty parameter values for the error curves is different
in the various parts of Fig. 2. For n = 500, if the error is measured in terms of estimating the
covariance matrix �, CSCS achieves a minimum error value of 0.2035 at λ = 0.2, and the
maximum error value of 0.9526 is achieved at λ = 60 (or higher) when the resulting estimate
of � is a diagonal matrix with the i th diagonal entry given by Sii for 1 ≤ i ≤ p. On the
the other hand, Sparse Graph achieves a minimum error value of 0.6635 at λ = 0.05, and a
maximum error value of 0.9996 at λ = 70 (or higher) when the resulting estimate of � is the
identity matrix. If the error is measured in terms of estimating the inverse covariance matrix
�, CSCS achieves aminimum error value of 0.363 at λ = 0.25, and themaximum error value
of 2.2 is achieved at λ = 0.05. On the other hand, Sparse Graph achieves a minimum error
value of 0.7725 at λ = 70 (or higher) when the resulting estimate of � is a diagonal matrix
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Fig. 2 a Frobenius Norm Error for � for CSCS (y-axis) with varying penalty parameter value (x-axis) for
n = 500, b Frobenius Norm Error for � for Sparse Graph averaged over 50 replications for n = 500 for
different penalty parameter values, c Frobenius Norm Error for � for CSCS (y-axis) with varying penalty
parameter value (x-axis) for n = 500, d Frobenius Norm Error for � for Sparse Graph averaged over 50
replications for n = 500 for different penalty parameter values

with the i th diagonal entry given by 1/Sii for 1 ≤ i ≤ p, and achieves amaximum error value
of 2.798 at λ = 0.05. If the penalty parameter is chosen by BIC (see Table 4) then CSCS has
a �-error value of 0.2334 and an �-error value of 0.4054 (corresponding to λ = 0.3) and
Sparse Graph has a �-error value of 0.7642 and an �-error value of 1.7658 (corresponding
to λ = 0.35). A similar pattern is observed for the case n = 1500. When the true latent
variable variances are not all equal to 1, it is clear that CSCS has a significantly superior
overall estimation performance than Sparse Graph. This comparison of the two methods is
to be interpreted in this non-equivariance setting.

123



2078 Machine Learning (2019) 108:2061–2086

Table 4 Frobenius Norm error for λ chosen by BIC for CSCS and Sparse Graph for p = 1000

n = 500(�) n = 1500(�) n = 500(�) n = 1500(�)

CSCS 0.4054 (0.0018) 0.4154 (0.0012) 0.2334 (0.0107) 0.2043 (0.0084)

Sparse Graph 1.7658 (0.0036) 1.9089 (0.0023) 0.7642 (0.0040) 0.7669 (0.0021)

The best results for each sample size are given in bold

3.2 Application to call center data

In this section we discuss the application of CSCS, Sparse Cholesky and Sparse Graph to
the call center data from Huang et al. (2006). The data, coming from one call center in a
major U.S. northeastern financial organization, contain the information about the time every
call arrives at the service queue. For each day in 2002, except for 6 days when the data-
collecting equipment was out of order, phone calls are recorded from 7:00am until midnight.
The 17-hour period is divided into 102 10-minute intervals, and the number of calls arriving
at the service queue during each interval are counted. Since the arrival patterns of weekdays
and weekends differ, the focus is on weekdays here. In addition, after using singular value
decomposition to screen out outliers that include holidays and days when the recording
equipment was faulty (see Shen and Huang 2005), we are left with observations for 239
days.

The data were ordered by time period. Denote the data for day i by Ni = (Ni,1, . . . ,

Ni,102)
′, i = 1, . . . , 239 where Ni,t is the number of calls arriving at the call centre for the

t th 10-minute interval on day i . Let yit = √
Nit + 1/4, i = 1, . . . , 239, t = 1, . . . , 102.

We apply the three penalized likelihood methods (CSCS, Sparse Graph, Sparse Cholesky) to
estimate the 102 × 102 covariance matrix based on the residuals from a fit of the saturated
meanmodel. That is, counts of each time period is centered bymean of that period. Following
the analysis in Huang et al. (2006), the �1 penalty parameter for all three methods was picked
using 5-fold cross validation on the training data set as follows. Randomly split the full
dataset D into K subsets of about the same size, denoted by Dv, v = 1, ..., K . For each v,
we use the data D − Dv to estimate �−v and Dv to validate. Then pick λ to minimize:

CV(λ) = 1

K

K∑

v=1

(
dv log |�̂−1−v| +

∑

i∈Iv
y′
i �̂−v yi

)

where Iv is the index set of the data in Dv , dv is the size of Iv , and �̂v is the inverse
variance-covariance matrix estimated using the training data set D − Dv .

To assess the performance of different methods, we split the 239 days into training and
test datasets. The data from the first T days (T = 205, 150, 100, 75), form the training
dataset that is used to estimate the mean vector and the covariance matrix. The mean vector
is estimated by the mean of the training data vectors. Four different methods, namely, CSCS,
Sparse Cholesky, Sparse Graph and S (sample covariance matrix) are used to get an estimate
of the covariance matrix. For each of the three penalized methods, the penalty parameter
is chosen both by cross-validation and the BIC criterion. Hence, we have a total of seven
estimators for the covariance matrix. The log-likelihood for the test dataset (consisting of the
remaining 239 − T days) evaluated at all the above estimators is provided in Table 5. For
all training data sizes, CSCS clearly demonstrates superior performance as compared to the
other methods. Also, the comparative performance of CSCS with other methods improves
significantly with decreasing training data size.
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Table 5 Test data log-likelihood values for various estimation methods with training data size
205, 150, 100, 75

Method Training data size

205 150 100 75

CSCS-CV −1090.447 −1369.181 −2225.907 −2841.348

CSCS-BIC −1072.75 −1364.145 −2214.729 −2849.931

Sparse graph-CV −1077.791 −2237.298 −3576.343 −4499.298

Sparse graph-BIC −1135.980 −2421.950 −3817.689 −4846.118

Sparse Cholesky-CV −1500.094 −2121.005 −3579.932 −496617558322

Sparse Cholesky-BIC −1523.409 −2178.738 −3584.160 −5444.471

S −1488.224 −7696.740 Not pd Not pd

The maximum of the likelihood values in each column is written in bold

Huang et al. (2006) additionally use the estimated mean and covariance matrix to forecast
the number of arrivals in the later half of the day using arrival patterns in the earlier half
of the day. Following their method, we compared the performance of all the four methods
under consideration (details provided in Supplemental Section G).We found that all the three
penalized methods outperform the sample covariance matrix estimator. However, as far as
this specific forecasting task is concerned, the differences in their performance compared to
each other are marginal. We suspect that the for the purposes of this forecasting task, the
estimated mean (same for all three methods) has a much stronger effect than the estimated
covariance matrix. Hence the difference in forecasting performance is much smaller than the
difference in likelihood values. Nevertheless, Sparse Cholesky has the best performance for
training data size T = 205, 150 (when the sample size is more than the number of variables)
and CSCS has the best performance for training data sizes T = 100, 75 (when the sample
size is less than the number of variables). See Supplemental Section G for more details.

3.3 Application to HapMap data

In this section, we analyze the HapMap phase 3 data from the International HapMap project
(Consortium et al. 2010). The data consist of n = 167 humans from the YRI (Yoruba in
Ibadan, Nigeria) population, andwe focus on p = 201 consecutive tag SNPs on chromosome
22 (after filtering out infrequent sites with minor allele frequency ≤ 10 %).

To assess the performance of different methods, we split the 167 individuals into training
and test datasets. The data from T randomly selected individuals (T = 100, 116, 133), form
the training dataset that is used to estimate the mean vector and the covariance matrix. The
mean vector is estimated by the mean of the training data vectors. CSCS, Sparse Cholesky
and Sparse Graph are then used to get an estimate of the covariance matrix. For each of the
penalized methods, the penalty parameter is chosen both by cross-validation and the BIC
criterion. For the Sparse Cholesky algorithm, the resulting estimates have at least one zero in
the diagonals of the D matrix, which results in a singular estimate of the covariance matrix
with a log-likelihood of negative infinity. Hence, in Table 6, we report the log-likelihood
for the test dataset (consisting of the remaining 167 − T individuals) evaluated at the four
estimators (CSCS-CV, CSCS-BIC, Sparse Graph-CV, Sparse Graph-BIC). For all training
data sizes, CSCS coupled with cross-validation clearly demonstrates the best performance
as compared to the other methods.
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Table 6 Test data log-likelihood values for various estimation methods with training data size T =
100, 116, 133

Training dataset Method

CSCS-CV Sparse graph-CV CSCS-BIC Sparse graph-BIC

100 1718.216 −2784.134 582.6724 −3477.754

116 866.771 −2012.598 488.7348 −2687.4

133 860.0983 −1338.959 293.1705 −1757.237

The maximum of the likelihood values in each row is written in bold

Table 7 TPR & FPR for cell
signalling pathway data Solver λi (α) = 2n− 1

2 Z∗
α

2p(i−1)

FP TP MCC

CSCS 0.5135 0.9444 0.4848

Sparse Cholesky 0.6216 0.9444 0.3916

Sparse graph 0.4595 0.7778 0.3277

The minimum FP rate value, the maximum TP rate value and the maxi-
mum MCC value in each column is written in bold

3.4 Application to flow cytometry data

In this section, we analyze a flow cytometry dataset on p = 11 proteins and n = 7466 cells,
from Sachs et al. (2003). These authors fit a directed acyclic graph (DAG) to the data, produc-
ing the network in Figure 7a (in Supplemental section H). The ordering of the connections
between pathway components were established based on perturbations in cells using molec-
ular interventions and we consider the ordering to be known a priori. This dataset is analyzed
in Friedman et al. (2008) and Shojaie and Michailidis (2010) using the GLASSO algorithm
and the Sparse Graph algorithms, respectively.

In Shojaie and Michailidis (2010), the authors recommend using the following equation

for penalty parameter selection: λi (α) = 2n− 1
2 Z∗

α
2p(i−1)

, where Z∗
q denotes the (1 − q)th

quantile of the standard normal distribution. This choice uses a different penalty parameter
for each row, and all the three penalized methods (Sparse Cholesky, Sparse Graph, CSCS)
can be easily adapted to incorporate this. As shown in Table 7, using this method for Sparse
Graph gives us a false positive rate of 0.46 and a true positive rate of 0.78, while Sparse
Cholesky has a false positive rate of 0.62 and a true positive rate of 0.94. Hence, while
Sparse Cholesky tends to find a lot of false edges, it fails to detect only one true edge. CSCS
also fails to detect only one edge and thus has a true positive rate of 0.94. However, it does
better overall compared to Sparse Cholesky as indicated by the lower false positive rate at
0.51. Figure 7 (in Supplemental section H) shows the true graph as well as the estimated
graph using CSCS, Sparse Cholesky and Sparse Graph. Matthew’s correlation coefficient
(MCC) is defined as

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

where TP, TN, FP and FN correspond to true positive, true negative, false positive and false
negative, respectively. The value ofMCC ranges from -1 to 1with larger values corresponding
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to better fits (-1 and 1 represent worst and best fits, respectively). CSCS attains the highest

MCC value using the penalty parameter according to λi (α) = 2n− 1
2 Z∗

α
2p(i−1)

indicating that

it has the best overall performance.

4 Statistical properties

In this section, we will first examine statistical properties of the CSCS algorithm in a
finite-sample (non-asymptotic) setting. Using these properties, we will establish estimation
consistency and model selection consistency (oracle properties) for the CSCS algorithm in
a high-dimensional setting, where the dimension p and the penalty parameter λ vary with
n. Our approach is based on the strategy outlined in Meinshausen and Buhlmann (2006)
and Massam et al. (2007). A similar approach was used by Peng et al. (2009) to establish
asymptotic properties of SPACE, which is a penalized pseudo likelihood based algorithm for
sparse estimation of �. Despite the similarity in the basic line of attack, there is an important
structural difference between the asymptotic consistency arguments in Peng et al. (2009) and
this section (apart from the fact that we are imposing sparsity in L , not �). For the purpose
of establishing statistical properties, the authors in Peng et al. (2009) assume that diagonal
entries of � are known, thereby reducing their objective function to the sum of a quadratic
term and an �1 penalty term in �. The authors in Shojaie and Michailidis (2010) also estab-
lish graph selection consistency of the Sparse Graph approach under the assumption that the
diagonal entries of L are 1. We do not make such an assumption for L , which leaves us with
p additional non-zero parameters, and additional logarithmic terms in the objective func-
tion to work with. Nevertheless, we are able to adapt the basic argument in this challenging
setting with an almost identical set of regularity assumptions as in Peng et al. (2009) (with
assumptions on � replaced by the same assumptions on L). In particular, we only replace
two assumptions in Peng et al. (2009) with a weaker and a stronger version respectively (see
Assumption (A4) and Assumption (A5) below for more details).

Recall that n is the sample size, p is the number of variables, and λ is the penalty parameter
in QCSCS . Let �̄ = L̄ t L̄ denote the true inverse covariance matrix, and η̄r denote the lower
triangular entries (including the diagonal) in the r th row of L̄ , for 1 ≤ r ≤ p. LetAr denote
the set of indices corresponding to non-zero entries in r th row of L̄ for 1 ≤ r ≤ p, and let
q = ∑p

r=1 |Ar |. Let �̄ = �̄−1 denote the true covariance matrix, and

s = min
1≤r≤p

min
j∈Ar

∣∣∣η̄rj
∣∣∣ .

We first establish a non-asymptotic (finite sample) result which holds for every hexatuple
(n, p, d, q, λ, s) satisfying certain algebraic constraints (see statement of Theorem 4.1) and
the following standard assumptions regarding bounded eigenvalues, sub-Gaussianity, and
incoherence.

• (A1 - Bounded eigenvalues) The eigenvalues of �̄ are bounded below by θmin > 0, and
bounded above by θmax < ∞.

• (A2 - Sub Gaussianity) The random vectorsY1, . . . ,Yn are i.i.d. sub-Gaussian i.e., there

exists a constant c > 0 such that for every x ∈ R
p , E

[
ex

′Yi
]

≤ ecx
′x. Along with

Assumption A1, this in particular implies that the sub-Gaussian norm of αTYi , with
αTα = 1, is bounded by a constant κ .
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• (A3 - Incoherence condition) There exists δ < 1 such that for every 1 ≤ r ≤ p and
j /∈ Ar ,

∣
∣
∣
∣
∣
�̄t

j,Ar

(
�̄ArAr + 2

(η̄rr )
2 r

)−1

sign
(
η̄rAr

)
∣
∣
∣
∣
∣
≤ δ.

Here, r is a |Ar | × |Ar | matrix with

(r ) j j ′ =
{
1 if j = j ′ = |Ar |,
0 otherwise.

This assumption is a version of the standard mutual incoherence condition needed for
establishing consistency for �1 penalized estimators, see for example (Peng et al. 2009;
Khare et al. 2015; Yu and Bien 2016). Roughly speaking, this condition ensures that for
each r , the correlation between the signal variables (all j such that L̄r j �= 0) and the
noise variables (all j such that L̄r j = 0) is not too strong.

Under these assumptions, the following non-asymptotic result can be established.

Theorem 4.1 Suppose that (A1)–(A3) are satisfied, and the hexatuple (n, p, d, q, λ, s) is
such that

• n > K1 log p
• s > (4θmax + 2)dλ

• qλ ≤ K2,

where K1, K2 are known constants (see Supplemental Section E). Then, the following holds
with probability at least 1 − 64

p .

(i) A solution of the minimization problem

inf
L∈Lp

QCSCS(L) (4.1)

exists.
(ii) Any solution L̂n of the minimization problem in (4.1) satisfies

‖L̂n − L̄n‖ ≤ (2θmax + 1)qλ.

and

sign(L̄ pn ,i j ) = sign(�̄pn ,i j ),

for every 1 ≤ j ≤ i ≤ p.

Here ‖ · ‖ denotes the operator norm, and sign(x) takes the values {−1, 0, 1} when x < 0,
x = 0, and x > 0 respectively. A proof of the above result is provided in the Supplemental
Section E.

The above non-asymptotic result can be easily converted into an asymptotic result estab-
lishing estimation and sign-consistency. In this setting, the dimension p = pn and the penalty
parameter λ = λn vary with n, and various quantities such as d, q, s defined above, now
depend on n. In particular, {�̄pn = L̄ t

pn L̄ pn }n≥1 denotes the sequence of true inverse covari-
ance matrices, η̄rn denotes the lower triangular entries (including the diagonal) in the r th row
of L̄ pn , for 1 ≤ r ≤ p, Ar

n denotes the set of indices corresponding to non-zero entries in
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r th row of L̄ pn for 1 ≤ r ≤ pn , and qn = ∑pn
r=1

∣
∣Ar

n

∣
∣. Also, �̄pn = �̄−1

pn denotes the true
covariance matrix for every n ≥ 1, and for every n ≥ 1,

sn = min
1≤r≤p

min
j∈Ar

n

∣
∣
∣η̄rn, j

∣
∣
∣ .

In addition to assumptions (A1)–(A3) (with p = pn and the bounds holding uniformly in
n), we need the following standard assumptions on the sequences sn , pn , dn , qn , and λn .

• (A4 - Signal size growth) sn√
dnλn

→ ∞, where dn = max1≤r≤pn |Ar |. This assumption
will be useful for establishing sign consistency. The signal size condition in Peng et al.
(2009) is sn√

qnλn
→ ∞, which is stronger than the signal size condition above, as dn ≤

qn . The difference in Assumption A4 and the corresponding assumption in Peng et al.
(2009) can be explained by the fact that the proposed optimization problem can be
broken into p separate row-wise optimization problems. Hence, the overall theoretical
and computational difficulty in estimating L lies in its densest row. This has also been
pointed out in Yu and Bien (2016).

• (A5 - Growth of pn , qn and λn) The following conditions hold: qn = o
(√

n
log pn

)
,

√
qn log pn

n = o(λn), λn
√

n
log pn

→ ∞ and qnλn → 0 as n → ∞. The growth conditions

in Peng et al. (2009) are the same as above (with qn denoting the sparsity in the true � in
Peng et al. (2009)), expect that qnλn → 0 above is replaced by the weaker assumption√
qnλn → 0.

The asymptotic consistency result stated below follows immediately from Theorem 4.1.

Theorem 4.2 Under Assumptions (A1)–(A3) (with p = pn and the bounds holding uniformly
in n), and (A4)–(A5), the following event happens with probability tending to 1 as n → ∞:
A solution to the minimization problem infL∈Lpn

QCSCS(L) exists, and any such solution

satisfies sign(L̂ pn ,i j ) = sign(L̄ pn ,i j ) for every 1 ≤ i ≤ j ≤ p, and ‖L̂ pn − L̄ pn‖ ≤
(2θmax + 1)qnλn.

5 Discussion

This paper proposes a novel penalized likelihood based approach for sparse Cholesky based
covariance estimation for multivariate Gaussian data, when a natural ordering of variables
is available. The goal is to overcome some of the shortcomings of current methods, but at
the same time retain their respective strengths. We start with the objective function for the
highly useful Sparse Cholesky approach in Huang et al. (2006). Reparametrization of this
objective function in terms of the inverse of the classical Cholesky factor of the covariance
matrix, along with appropriate changes to the penalty term, leads us to the formulation of the
CSCS objective function. It is then shown that the CSCS objective function is jointly convex
in its arguments. A coordinate-wise minimization algorithm that minimizes this objective,
via closed form iterates, is proposed, and subsequently analyzed. The convergence of this
coordinate-wise minimization algorithm to a global minimum is established rigorously. It is
also established that the estimate produced by the CSCS algorithm always leads to a positive
definite estimate of the covariance matrix—thus ensuring that CSCS leads to well defined
estimates that are always computable. Such a guarantee is not available with the Sparse
Cholesky approach when n < p. Large sample properties of CSCS establish estimation
and model selection consistency of the method as both the sample size and dimension tend
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to infinity. We also point out that the Sparse Graph approach in Shojaie and Michailidis
(2010), while always useful for graph selection, may suffer for estimation purposes due the
assumption that the conditional variances {Dii }pi=1 are identically 1. The performance of
CSCS compared to Sparse Cholesky and Sparse Graph is also illustrated via simulations and
application to a call center dataset, HapMap dataset, and a flow cytometry dataset. These
experiments complement and support the technical results in the paper by demonstrating the
following.

(a) When n < p, it is easy to find examples where Sparse Cholesky converges to its global
minimum which corresponds to a singular covariance matrix (Fig. 1).

(b) When n < p, the graph selection and estimation performance of CSCS is significantly
better than Sparse Cholesky, due to the fact that Sparse Cholesky either converges to a
global minimum with singularity issues, or to a local minimum (Sects. 3.1 and 3.2).

(c) For graph selection, CSCS is competitive with Sparse Graph and can have better per-
formance as compared to Sparse Graph. Although the improvement may not sometimes
be as significant as that over Sparse Cholesky, these results demonstrate that CSCS is a
useful addition to the high-dimensional DAG selection toolbox (Sects. 3.1 and 3.4).

(d) For estimation purposes, CSCS can lead to significant improvements in performance over
Sparse Graph (Sect. 3.1).
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