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Abstract 

The fusiform face area (FFA) has commonly been deemed an 
area specialized for face processing. Many recent studies have 
challenged this view by showing that the FFA also responds to 
stimuli from domains in which the subject is an expert. We 
have developed neurocomputational models to explore the 
question of why an area initially devoted to face processing 
would later be recruited for other domains. Previous studies 
showed that the FFA could be a fine-level discriminator, 
spreading apart similar stimuli in its representational space. 
These characteristics would make it ideal for recruitment to 
other fine-level discrimination tasks. These initial findings have 
been challenged on  several accounts. Here we introduce new 
work showing that the expertise effect remains despite 
additional controls on the type and difficulty of the task 
presented. 
 
Keywords: Perceptual expertise; connectionist models; face 
recognition; object classification 

Introduction 
As its name suggests, the fusiform face area (FFA) has been 
identified as an area that is specific to processing faces. 
Imaging scans show increased activity of this area when face 
stimuli are presented when compared to activation when non-
face stimuli are presented (Kanwisher, McDermott & Chun, 
1997). Damage to the FFA tends to lead to prosopagnosia (an 
inability to recognize faces) and similar deficits, further 
implicating this area in facial recognition (De Renzi et al., 
1994). There is also electrophysiological evidence in the form 
of a maximum amplitude of a negative going wave about 170 
ms following a stimulus (the N170) that shows that faces may 
be handled differently at a neurological level (Eimer, 2000). 
Based on this evidence and psychological evidence showing 
that faces are processed differently at a behavioral level, 
many have concluded that the FFA is a face-specific 
processing module. 

The view of the FFA as a module for face processing has 
been challenged by evidence reporting that the fusiform face 
area seems to be recruited for other tasks as well. Experts in 
recognizing cars, birds, dogs, and Greebles (a class of 
artificial objects developed by Isabel Gauthier) also show 
increased activation of the fusiform face area (Gauthier et al., 
1999; Gauthier et al., 2000). Furthermore, visual experts 
show an increased amplitude N170 when shown images from 

their field of expertise when compared to items for which 
they are not experts (birds for bird experts, versus dogs for 
dog show judges) (Tanaka & Curran, 2003). In these studies, 
subjects are defined as being experts when their reaction 
times are as fast when verifying the category of an object at 
the subordinate or individual level as they are when verifying 
the category at the basic level.   

These findings suggest a different account of the function 
of the FFA, that the area is actually a subordinate-level, fine-
grained visual discrimination area. Humans become face 
experts at a young age, and later in life they may pick up 
additional areas of visual expertise as well. Under this 
account, earlier studies showing the FFA being highly active 
only in face processing did so because they did not choose 
non-face stimuli with which the subjects were experts. Recent 
studies (Grill-Spector, Knouf, & Kanwisher, 2004; Rhodes et 
al., 2004; Yovel & Kanwisher , 2004) that purport to refute 
the expertise claim never seem to achieve the stringent 
reaction time requirement of expertise (defined above) in 
their work. For example, although Grill-Spector et al. 
recruited car experts, they then tested their subjects on antique 
cars, which would presumably not be named quickly by their 
“experts.” Indeed, this would seem to be an example of an 
“other race effect” for cars, as it is already known that other 
race faces also produce a lower response in the FFA (Golby et 
al., 2001). 

In any case, if one assumes the expertise hypothesis, this 
leads to the question of what characteristics do these different 
expert-level tasks share that would cause one area of the brain 
to be used for them but not for basic-level tasks. It has been 
suggested that the FFA implements a process of fine level 
discrimination (Tarr & Gauthier, 2000). As we have shown 
elsewhere (Joyce & Cottrell, 2004), and elaborate on here, we 
believe that the main feature of this process is a 
transformation that takes similar visual items and magnifies 
the differences between them. This transformation generalizes 
to novel domains, and tuning of the transform allows the 
model FFA to acquire new expertise faster than an area that 
simply categorizes objects at the basic level (e.g., Lateral 
Occipital Complex (LOC)). This suggests that in a 
competition between cortical areas for processing a new task, 
the FFA would have a distinct advantage, thus explaining 
why the FFA would become recruited for novel expertise 
tasks – it simply learns them faster than an area that only 
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performs basic level processing. Computational models allow 
us the ability to examine such issues in more detail than can 
be achieved in human subjects, or even in monkeys. The main 
prediction such models make is that the variance of the 
responses of neurons in the FFA will be greater to objects of 
expertise (Sugimoto & Cottrell, 2001; Joyce & Cottrell, 
2004).  

These early models only examined the effects of expertise 
when learning Greebles, a class of objects designed 
specifically to have some special properties. Here we 
replicate and expand the earlier work, showing that the effect 
is not unique to Greebles. The original experiments also had 
the expert networks performing a greater number of 
discriminations and a more difficult task. Hence there were a 
larger number of outputs in the FFA model network 
compared to the basic level categorizer. Perhaps it was simply 
the number of distinctions being drawn by the expert 
networks that made them better at differentiating new 
categories (Michael Tarr, personal communication). In more 
recent work, Tran, Joyce, and Cottrell (2004) controlled for 
the number of classes being identified in a letter/font task, 
showing that the effect remained. However, the domains were 
letters rather than object categories, and the relative difficulty 
of the two tasks, recognizing letters versus recognizing fonts, 
was not controlled. This paper introduces a new set of 
controls and stimuli that address these concerns. 

In what follows, we first report on an experiment that 
suggests there is nothing special about Greebles as a novel 
expertise task; it turns out that an area that is a cup expert is 
faster at learning faces than one that is not. The second 
experiment demonstrates that the expertise advantage persists 
when the basic and expert tasks are equal in their difficulty 
and number of classifications being made. 

Experiment One 
The stimulus set consisted of the 300 64 x 64 8-bit grayscale 
images comprising five basic-level classes (books, cans, cups, 
faces, and Greebles) that were used in previous experiments 
(Sugimoto & Cottrell, 2001; Joyce & Cottrell, 2004). Each 
basic-level class of sixty images had twelve subordinate level 
categories, each composed of five instances of that class. 
Each subordinate class of faces was composed of images of a 
human face producing different facial expressions. 
Subordinate classes from other classes had individual 
instances formed by rotating an image by as much as 3 
degrees and shifting in a cardinal direction by a pixel. In 
earlier work Greebles were set aside for phase two training, 
during which the networks learned them as novel area of 
expertise (Joyce & Cottrell, 2004). To eliminate the 
possibility that the observed effects were unique to Greebles, 
the experiment was repeated with each of the object classes 
serving as the phase two stimulus set. 
 Images went through several stages of preprocessing before 
being presented to the networks. First they were run through a 
bank of Gabor wavelet filters of five different scales and eight 
orientations to approximate the processing that occurs in 
visual brain area V1. The result is z-scored and then 

submitted to principal component analysis in order to reduce 
the dimensionality to forty PCA projections. It should be 
noted that the phase two stimulus objects were not included in 
the PCA in order to have them be truly novel to the model. 
The results of the PCA were z-scored again before being fed 
to the networks. The networks themselves were standard 
feed-forward networks trained using back-propagation and 
initialized with random weights. There were forty input 
neurons (one for each principal component), sixty hidden 
units, and one output unit for each basic or subordinate level 
category. The learning rate was set to 0.01 with a momentum 
of 0.5 and the networks were initialized with random weights. 
 

 
Figure 1: Sample stimuli for experiment 1 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Network architecture 

During phase one, all networks were trained to discriminate 
between the four basic-level classes (ex. book, can, cups, 
faces). Expert networks were additionally trained to 
discriminate ten subordinate level classes for one of the four 
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phase one classes (ex. Bob, Carol, Anne). Thus, basic-level 
networks had 4 output units, while expert-level networks had 
14. Five networks of each type were trained, making 25 
networks in all. Training continued well past the point of 
leveling off, to 5120 epochs of training. At various points in 
the training, the network's weights were saved (after 1, 10, 20, 
40, 80, 160, 320, 640, 1280, 2560, and 5120 epochs).  

 During phase two, the weights of each of these saved 
networks were used as the initial weights of a network that 
was then trained on the phase two stimuli at the subordinate 
level. This required an additional 11 output neurons for the  
networks (1 for basic-level phase two discrimination, 10 for 
the subordinate-level), The total number of neurons during 
phase two were therefore 15 for basic-level networks (5 
basic-level categories, 10 subordinate level categories) and 25 
for expert networks (5 basic-level categories, 20 subordinate-
level categories). Training with the set of phase one stimuli 
continued during phase two. The second phase continued 
until error rates fell below .05 for the phase two stimuli.  

Results revealed that basic-level discriminations were 
learned more quickly than expert ones during phase one, 
showing that the expert-level tasks were more difficult (see 
Figure 3). More interestingly, however, the expert-level 
networks learned the new expert-level task in less time during 
phase two than the basic-level networks (see Figure 4). 
Although this was true even when the amount of training 
occurring in phase one was minimal or nonexistent (due to 
the fact that phase one training is still ongoing in phase two), 
the advantage increased as the amount of phase one training 
increased. These results follow the pattern displayed in earlier 
studies, showing that the effect is not unique to Greebles. 

 
Figure 3: Error rates during phase 1 as a function of time  
 

 

Experiment 2 
Several factors could be influencing the results of the first 
experiment. The subordinate level discriminations being 
made in this experiment are simply more difficult, possibly 
causing the phase one training of expert networks to extract 
more discriminating information, which then generalizes to 
the new categories. Secondly, the number of discriminations 
being made by the expert is far larger than the basic-level 
network (14 categories versus 4). Finally, the expert-level 
network is currently being trained to make all the basic-level 
distinctions in addition to their expert-level specialty.  
  

Figure 4: Time to learn new task (books, cans, cups, faces, and Greebles) as a function of phase one training. 
Note that the basic-level network (denoted by black) is consistently slower to learn the new task. 
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Figure 5: Six of the object classes for experiment two (cars, 

glasses, lamps, hats, chairs, and fish) 
 
 

To address these concerns, a new data set was constructed 
that would have additional controls in place. This new data 
set consisted of 13 basic level object classes (balls, brass 
instruments, cars, chairs, doughnuts, fish, fruits, glasses, 
guitars, hats, lamps, ships, and swords). Each basic class was 
composed of 13 subordinate-level classes with 5 instances per 
subordinate class. Images were gathered from Hemera.com 
and were shrunk to 64 x 64 pixels, grayscaled, and 
normalized for luminance and contrast. As in the earlier 
experiment, object instances were made by rotating the 
objects by up to 3 degrees and shifting by up to a pixel. Three 
of these classes (lamps, ships, and swords) were set aside for 
use during phase 2. The remaining 10 classes were used in 
phase one training for basic classification. The set of faces 
used in the first experiment were re-used for expert-level 
training. 

The basic network architecture and training procedures 
were identical to those described in the first experiment. Basic 
networks had one output unit corresponding to each of the ten 
basic-level classes. Expert networks had one output unit 
corresponding to each of ten faces. To model similar early 
stages of processing, the principle components were 
calculated with the combined data set but omitting the three 
object classes reserved for phase two. The total number of 
images in the basic and expert data sets was the same, but 

 
 

Figure 6: Error rates during phase 1 as a function of time 
 

 
 

 
 

 
 

Figure 7: Time to learn new task (lamps, ships, or swords) as 
a function of phase one training. Basic-level networks’ 
performance is shown in black, while expert networks’ 

performance is shown in pink. 
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during training a network was only exposed to one of the data 
sets. During phase two, an additional ten output units were 
added to discriminate between ten subordinate-level classes 
of a new class (lamps, ships, or swords), bringing the total 
number of outputs for both basic-level and expert networks to 
twenty. As in the previous experiment, training on the phase 
one stimuli was continued in phase two, with training ending 
when error rates on the phase two stimuli fell below a 
threshold. 

In this experiment, the two types of networks were matched 
in the number of discriminations they must make. Expert 
networks are no longer trained to do the basic level task in 
addition to the expert level one. The number of classes is 
larger and contains objects unlikely to be considered face-
like. Comparing Figures 3 and 6, we see that the two tasks are 
now approximately matched in their difficulty.  Despite these 
additional controls, the expertise effect remained strong 
(Figure 7). 

Analysis 
Examining the activation of the hidden units, there is a clear 
increase in the within-class variance for the expert-level 
networks compared to the basic-level networks. Intuitively, 
this makes sense, as an expert network must spread out its 
internal representation to differentiate between similar 
exemplars. A basic-level network, on the other hand, tries to 
map differing images into the same class, compressing its 
representation of each class. As the basic level networks 
become trained as experts during phase two, this difference 
diminishes. This is shown in Figure 8. 

Interestingly, this increased within-class variance for expert 
networks carried through to the unseen phase two stimuli 
(Figure 9). This means that the different subordinate classes 
for the new task are already differentiated to some extent in 
the representational space for the expert-level networks prior 
to the networks ever being exposed to phase two stimuli. This 
early differentiation makes the new task easier to learn. 

 
 

Figure 8: Ratios of within-class variance to total variance 
averaged over all stimuli. From left to right these are graphs 

where the phase two stimuli are: cans, cups, books, Greebles, 
and faces. Each bar represents a particular network in that 

training condition. Basic networks (shown in black) 
consistently have the least within-class variance during phase 

one, but they become more like the expert networks after 
receiving expert training in phase two. 

 

 
Figure 9: PCA of hidden unit activation for each class of 

networks after phase one training. Faces were the novel 
stimulus and are shown as black circles. The first two 

components are displayed. 

Conclusions 
Neural networks trained to perform subordinate level 
discrimination in one class of objects show an advantage 
when learning a new class of objects at the subordinate level 
when compared to networks trained at the basic level. This is 
because learning an expert-level task causes the network to 
spread out objects from the same class in its representational 
space, increasing the within-class variance of all classes, even 
unseen ones. The results were not specific to one object class 
and were robust to additional controls on the difficulty of task 
and number of discriminations being made. 

This provides further evidence for our contention that the 
FFA is recruited for new expertise tasks because of the way it 
treats its inputs: it magnifies small differences between 
homogeneous objects. Furthermore, this paper also confirms 
our position that it is the nature, not the number, of the 
distinctions that matter when visual objects are processed. 
That is, in the expert networks, they are given many objects of 
the same sort, and are required to distinguish among them. 
This problem clearly requires magnifying within class 
variance, in contrast to the basic level categorization process, 
which requires magnifying between class variance while 
minimizing within class variance.  

This paper therefore furthers our investigation into the issue 
of how the FFA, if one believes that it is a fine level 
discrimination area, becomes recruited for novel expertise 
tasks (the “visual expertise mystery”, Joyce & Cottrell, 2004). 
Here we have shown that again, visual expertise is a general 
skill – being a “fish expertise area” is a good prerequisite for 
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becoming a “sword expertise area,” as counterintuitive as that 
might seem. 
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