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ABSTRACT

Apparent ambiguitieé of definitions of masses and lifetimes of unstable
particles that depend either on the introduction of unpertprbed Hamiltonians
and their eigenstates, or on an assumed correspondence between resonances and
elementary fields, are noted. The S-matrix definition is unémbiguous; the
positions of poles in the first unphysical éheets are given by the zeros of
the Fredholm denominaﬁ&f function, which is"a function only of an appropriate
center-of-mass energy. The mass and lifetime of a particle are cohseqpently
independent of the variables of the scattering process or of the particular
process to which the particle contributes. The invariancé of the Fredholm
denominator under charge conjugation, which is a conseguence of CPT invariance,
ensures the equality of masses and lifetimes of relatively conjugate anti-
particles.

Unstable particles are closely akin to stable ones; by the factorization

~ of the residues of unstable-particle poies, unstable-particle scattering

functions quite analogous to ordinary scattering functions can be unambiguously
defined. Like ordinary séattering functions they are defined only on the mass
shell, the fixed masses of the unstable particles being well-defined complex
numbers. The needed factorizability of the residue is an immediate consequence
of Fredholm's second theorem., The continuation, by means of unitarity, through

the multiparticle physical cuts onto unphysical sheets is discussed.
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I. INTRODUCTION

Iuders and Zuminol.have given a proof that the mass and lifetime of
a particle are the same as those of its conjugate antipartiecle. Their proof
is based on an examination of the positions of poles in matrix elements of
the formal resolvent of the exact Hamiltonian. The matrix elements used
are those corresponding to single-particle eigenstates of an unperturbed
Hamiltonian. That suqh quantities exist, in a rigorous sense, 1s somewhat
doubtful. In field theory exact and unperturbed Hamiltonians appear usually
to act iﬁ mutually orthogonal subspaces, the action of one Hamiltonian on
eigenstates of the other being undefined°2-6 As a consequence, methods that

avoid the use of unperturbed eigenstates are now generally employed in

rigorous work. Whether these rigorous methods can provide answers to questions

regarding lifetimes of unstable particles is not yet known.

Beyond this technical difficulty there is the practical guestion of
whether the definition of the mass and lifetime introduced by these authors
is unique. Does it depend, for instance, on the choice of unperturbed
Hamiltonians or on the choice of eigenstate? Zumino has proposed elsewhere7
that one should use the unperturbed vacuum sfate rather than the unperturbed
one-particle state.

A number of other definitions for the mass and lifetimes of unstable

particles have been proposed and studied.BnlS The most prominent general

definition is the one of Peierls, who suggests that the mass and lifetime be
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defined. by thé position of a pole :in the dpe-particle propagator, the
‘two-point Green's functions: Thieﬁdefinitiop‘has the "advantage of obviously
not depending on:an arbitrary separation into parts of the ekact Hamiltonian.
HoWever,_itfintroduces>phe‘very bbscure guestion of the cofinection between
fields end particles: -Which field, if any, is it that corresponds to a

particular obgerved. resonance?  The work of Zimmermanlédand I\I:Lehi.J:Lm:a.]"-7 has

. emphasized that a stable particle need not be associated with a fundamental

field, and Schwinger 14, “has stressed that & fundamental field rieed not possess
a stable particle.‘ As' the situation is probably the same for unstable
particles, the entire question of what relations, if any, exist between the
basic fields and the observed:stable and unetable particles (resonances)

" becomes .an ecute basic problem for all of field theory;;ﬁ- In the present

- context, Sinée-the Green's functioﬁ'depende.on'which field is used, the

. propagator.-definition apparéntly becomes embiguous unless & unique correspond-
" ence between unstable particles and fielde can'be established.

In this paper qpestione involving the masses and lifetimes of unstable
particlee are examined 1n the framework of snmatrix theory. An important
virtue of this approach 1s the direct and unambiguoue manner 1n which unstable
particles are treated. That S-matrix theory should be well adapted to the
treatment of unstable particles might at first appear surprising, for in
S-matrix theory, mueh more than in field theory, the stable particles have,
at the qutsé?;[g menifeetly preferred_etatue,->Yetr;nvspite.of¢this it

vdevelops that a natural framework:fer the discussion of unstable particles
is provided, one in which stable and unstable particles are closely related
and are tréated on'a qpite similar footingp R . |
| In' an' S-matrix approach “the mass and lifetime of an unstable particle
are defined by the positidﬁgéf”gfpéie*of'%he's‘hetfixﬁin a center-of-mass

energy variable.lg’go
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A first requirement on an acceptable definition of the mass and

- lifetime of an unstable particle is that it provide unique, unambiguous
universal constants that do not depend on the particular process in which
the particle occurs, or on other free variables.21 Accordingly, our first
task is to veriﬁy that the position in the center-of-mass energy plane of
the pole corresponding to an unstable particle depends neither on the other
variables of the;S matrix, nor on the process in which it bccﬁrs. In doing
this we shall obtain an equation defining the position of the pole. The
use of CPT invariance aliows this to be shown invariant under charée
conjugation, which proves that the mass and lifetime of a farticle afe
equal to those of its'conjﬁgate antiparticle. Further anaiysis shows a
quite close relationship between stable and unstable partiéles. A general
proof of the'factoringilixy of residues.of simple poles of the-5 matrix is
given, and the continuation of the S matrix through'multip§rticle cuts by

means of unitarity is discussed.

II. FUNDAMENTAL EQUATIONS
The basis of the analysis will be the S-matrix formalism developed
in reference 22. A general process is described by a function M(K', -ﬁ"),
which is a covariant genefalization of the scattering function R =S - 1.
In this formalism the covariant unitarity relation takes the form
~ * ~ ~ ~ * ~
‘MK', -K") + M (K", -K') = -2 [ MK', -K) K- M (K", -K).
(2.1)
Neglecting for the moment contributions associated with disconnected parts,
which are discussed in Section V, we write the M function in the center-of-mass

frame in terms of the matrix M(E+) defined by

@

LY}
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M(K', -K") = (@, A, T | ME)| @, A", T ) NE) | (2.2a)
C.ole a FE
where N(E)  is the normalization factor,‘25
L o -
NE) = [ (2x)” (' - E) 8(R*) (2x)” ®(E" - E) (") 1 . (2.2v)

)

Here E" and E' are the total c.m. energies of the initial and final
particles, and P' and P" are the correépondihg total momenta. The
symbols A, Q, and T represent sets of variables describing spin states,
angle variables, and the energies of various subsystems of particles,
respectively. The plus on E_ indicates we are considering M(E;)‘ to be
the limit from above the real energy axis of a function defined there. Type
variables have»been‘suppreSSed‘on the right of (2.2a).

In térms of the matrix M(E) the unitarity relations take the form
1‘ ) .’_ . .i, . ' .
ME,) + MU(E) = M(E+), o(E) MI(E) , (2.3)

~ where the dagger represents Hermitian conjugation and p(E) is the density-

of-states factor defined bj

dhki 00 2 2.~
I —— ox e(ki Yom S(ki - m, )K»q

i (2n)
- & ar(en) ™t aE ap p(E, 8, T) , - (2.4

o(E, @, T') _being the diagonal elements of the matrix - p(E) , Matrix
multiplication is understood to mean integrations over dQ and dI' , together
with sums over the spin states and the various particle combinations

(configurations) that are energetically allowed at the specified energy.
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The symbol M(E_) is defined to be the 1limit from below the real

energy axis of the matrix defined there,by24
tp* r
ME) = -MIE) (ImE <0) . (2.5)

The unitarity relation, Eq. (2.3), can then be written in the alternative

form
M(E,) - ME) = M(E) o(E,) M(E) . (2.38)

The matrix p(E) has a different form in each interval of the
energy axis, a new subspace being added at each threshold energy. We shall
represent by pN(E) the expression for p(E) that is valid in the Nth
interval. The continuation of M(E+) clockwise through phe Nth interval
will be represented by ‘Mﬁ(E),N‘and’ MN:i(E)t mi&l“represént:the,counterClock-
wise continuation of  M(E_) through the Eth'intervgl. In terms of these
values on‘sheets adjacent to the physical sheet Egs. (2.3) and (2.3%a) can be

written, for E in the Nth interval, in the forms

uE,) + ufE) - - uE) oNE,) ulE) | (2.6)
and |
ME,) - M () - ME) o' (E,) M (2, (2.6a)

By virtue of the postulated analyticity25 of M(E) on the boundary of the

physical sheet, these relations, valid for real E , imply that the equations

me) + M TE") = -MmE) o(E) T(E") (2.7)
and
M(E) - M (E) = u(E) o' (E) M 4 (E) | (2.7a)
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considered as functions of the complex variable E , are valid in a neighbor-
hood of the interior points of the Nth interval.
Multiplying Egs. (2.7) and (2.7a) by (pN(E))l/Q' on both the right

and left, and solving, one obtains, formally,

(FEnM? wl@) (@)Y2 - F ((2)) 2 u(m)(o(m)) />

(e (2.8)
,and
@M u @) (FEnY? - P (FEnY2ue Ment?
" N ST(E)
(2.8@)
where the quantity
My = o (@) ueE) (o)) M2 | (2.9)

has been introduced. Here IN is the unit matrix in the subspace where

hN_E?% 0 . In terms of SN(E)"alone these equations become

* . T 1
(s Vg = e—— : . (2.10)
N (E)) T |
and
el/2 (s _IE(E) - .IN)el/2 = -—-————§ (SN(E) - IN) , (2.10a)
N S (E)

where we have used the relation
N,o* 0 Ny - |
(o (E) ). = o (B) (2.11)

which follows from the reality of pN(E) in the Nth interval, and the
quantity el/2 defined by

/2 (DN-II(E) M2 o (Nmy )M (2.12)
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Equation (2.10) is the simple expression of unitarity. The general
relativistic kinematic factors for the multiparticle processes are displayed
in (2.9). The quantity € is a matrix that gives plus or minus unity when
acting on states of odd or even numbers of particles respectively, If only
even numbers of particles ocecur ;n the configurations associated with an
~interval N, Eq. (2.10a) simplifies to

s T = 1 s (2.13
() L )

a result which is well known.26 Equation (2.13) says that continuation
through an interval associated with only even numbers of particles gives
two-sheeted Riemann surfaces.

The sheets obtained by continuing clockwise from the physical sheet
through some physical interval of the energy axis will be called first
unphysical sheets. These are the unphysical sheets whose points are closest,
on the Riemann surface, to the physical points, and whose poles, consequently,
if close to the physical interval give the usual resonance effects. The value

of S(E) on these sheets is given directly by

ORI DL

E)'l (2.14)

3

where SN(E) is evaluated on the physical sheet; s on the First unphysical

sheet is the Hermitian adjoint of the inverse of SN at the conjugate point

on the physical sheet. h ' ' ' v
SN(E) will have various cuts on the physical sheet and these will

evidently be reflected as cuts on the first unphysical sheets. The only

other singularities on the first unphysical sheets will be at points E%

for which the inverse of SN(E) fails to exist.
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If SN(E)frwere a-matrix ‘of finite order on discrete indices, the

expression for the inverse would be

. N o ‘ o
(SN(E))-I _ adj SNSEZH U : : : : (2.15)
det S (E) ' :

Both the numerator and denominetor; being:finite dombinatibns of matrix
elements of SN(E) , would be regular at regular points of . SN(E) . Hence
the onlyvpossible singularities of the inverse in a domain of regularity of
SN(E) would be points where the determinant in the denominator vanishes.
This determinant could vanish only at isolated points -of any domain of
- regularity of SN(E)_ that included the physical points, since otherwise
if would vanish idenﬁically, which would conflict with uniterity at the
physical points. Thus the only singularities in the images of fhe interior
of the physical sheet would be isolated poles. The positions of such a pele,
being at a zero of det S(E) , a function of E alone,Awould be independent |
of the other variableso-'lt would consequently occur at the}same point in any
matrix element in which it occurred, not wander about as a function of the
remaining Variables of § . |

Our matrix SN(E) is‘generally not of finite order in discrete
indices. It is a function_of_the many continucus variables xepresented by
the sets Q and T . The .direct generalization of the expression (2.15),
used above, to the case of continuous variables is provided by Fredholm
theory. So the immediate task 1s to verify that the conditions needed for
the validity of Fredholm theory are-satisfied, and to thereby establish

rigorously the analogs oOf the properties described above.
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.III. APPLICABILITY OF FREDHOLM THEORY

The standard Fredholm equation is

#(x) = £(x) + 2 I{ K(x,y) #(y)dy . - (3.2)

In matrix notation the case AN = -1 becomes
(L+XK)f = s¢g = ¢ , - : (3.2)

the formal solution of which is
¢ = (1+XK) s =str . (3.3)

Fredhoim théory gives an explicit expression for the inverse 6perator. This

we write as

-where U :
' 2 3 (3)
“detS = I+TrK + (g_r?,_ k() %5—— + - (3.5)
and ‘
2
adj§ = Tdets - [ K+ Tr k2 +%’—?—K(3) £ oeee ] 5.6)
»‘ - 3.

Here K(n) Ais an operator in a space that is an n~fold tensor product of
copies of the original ‘space. It is .defined in terms of the determinant

of an n-by-n matrix of K's by the.equation
( X4 Xel ‘ _'v' ;.Xn |K( ) l yl’ .Vg) e,y )

n

(xy- I -3'1')(31 &l yg)oeee €y [KD 3,)

{

LICIE S B R B AN I I A I I A R I I N IR IR 2K I B B B IR N BN N

Gy JK| yy) weeeesenseneenn(x [€] y)) C (3.7)
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The symbol Tr stands for trace, the sum (integral) over equated corresponding
initial and final variables.

To apply the formula to our case we make the identification (see Eq. 2.9)

k= FanumTEnt? L I X

27

A sufficient condition™! for the existence of'the'numerator and denominator
in (3.4) is the boundedness of K- over the region R, which will be chosen
to be bounded.

The postulate of maximal analyticity states that M(E) is a meromorphic
function of all its variables at all values of these variables corresponding
to points on the physical sheet,ihclﬂding its boundary points, except at certain
boundary'points called singularities required by unitarity, which are the
generalized branch points terminating the cuts that bound the physical sheet,
‘and except also at §oints at which the expressions ki(a, I', E) for the
individual momentum-energy four-vectorsare not regular. The only poles
allowed on the physical sheet are those aésociaﬁed with the stable particles.
The points of the physical sheet are points in the space Qf reduced variables
(', rf, E, ", T") " such that the set of points - ki(a1;~r', E), kj(Q", ™, E)}
is a point of the physical sheet constructed in the manner given in
reference 22.

Consider first’valﬁes of E%’ sﬁcﬁ:that the points fepresented by
(e, T, B, ", ™) are regular points of the physical sheef for all (real)
physical values of the (, T) in R . Eor'theSe-‘E% the M(E) 1is analytic
hence cOﬁtinﬁoUs,'dvér thé'CIosed region ' R . Thus M(E) is bounded over R,
_and the numerator and denominator on the right ‘of -

(sE)) = (NEpTt - S E | (5.9)

“def SN(E)” Lo
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are well-defined functions, provided the ,(pN(E))l/Ql_inA

M (FEnY? ey ME)YR | (3.10)

SN(E)ﬂ

are bounded over R .

The matrix pN(E) is a tensor product éxtendingvover the density-of-
‘states matrices pc(E) of the various configurations that are available in
interval N . Specifically, pQ(E)_vis given by .

oe) = TN p(m) = 1 oofE) , | (3.12)

2 , ® : :

where pc(E)tvacts.in the subspace corresponding to the cth configuration,
GCN 1is unity if the cth configuration is available (energetically allowed)
in the Nth interval, otherwise zero, and _BN is the operator that projects
onto the»subspace~oﬁ_configurgtions;available"inﬁthejgkhhinterval.;:To showe., - .
the existence of the numerator and denominator of (3.9) it is sufficient to
show that the variables Q -and I' can be chosen so that the physical region
R is a bounded region and the corresponding functions p(R, T', E) - bounded
over R .

The density matrix p(E) is easily computed using the relativistic

formulas (see Appendix A)

Noa%g, R N alg o

n o > 1 - _ &f 1 4E_ 4o .
. w, E r E ' 4 “Fn T
=0 i n=1 W n=1

Here (ki’-wi) are the momentum-energy vectors of the (N + 1) particles,
(g, E) is the total energy-momentum ‘and E;  is the center-of-mass. energy
of the system Z£ consisting of particles zero through un . . The vector o
is the momentum of particle n Jmegsured ip_the,rest framgrof the system Z;,

and Rn and a, represent its angles and maéhifude. The whr is the

reduced energy
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.wnr RN qng ' mn? \/qna : (En'.l)? /En: ’

Making the identifications

where

. N

iR = 1T a4aa ,

. . n
n=1

' N-1

ar = o dE /ex
n=1

we have, ﬁsing the definition'(Q.h), the relatiﬁistic multiparticle phase;

space factor

N o« N
I 1 q“2 T m K5 .
N o=l (20)° i=0 7t
The boundedness of © p is apparent; in fact it vanishes like: q, on the

boundary where the nth relative momentum vanishes and like

(3(N+1)-5)/2

(E - &m,)

5 at the energy threshold.

Inspection of the Fredholm solution shows the uniqueness of the
definition of the masses and lifetimes associated with the poles of the
type we have been discussing; the zeros of the det SN(E) can océur only
at isolated points of the domain of analyticity of SN(E), and the associated
poles cannot wander about as: functions of the remaining variables. It is,
of course, not necessary that the pole be present in every matrix element
of M, as there can be compensating zeros in.the numerator. Indeed, if the

nonvanishing matrix elements of ‘M :were to. group into small submatrices along
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the diagonal, in some ;epresentation—aas Would'happen if there were conservation
laws-~-then the vanishing of fhé determinant aséociated With a submatrix would
produce poles only in this submatrix, at the image point in the unphysical
sheet. This accords with the physical expectation that a resonance will
appear in all reactions having the same gquantum numbers, but not in others.
S0 far we have considered only those »E* such that for all (a, )
in R the points (Q', I'', E, Q", I'") are on the physical sheet. The
denominator, det SN(E) , 1s of course a function of E alone so that a
zero of this function persists when 2 and I' are continued outside of R .,
(The integrations in  and T will continue to be over R , of course.
It is the free variables in adj S that will be freed.) For the original
values of 'E% the Fredholm formula will continue to define the function s0
long as the kernels.remain regular. ..As we.continue:rin the.various variables
boundary points of the domain of wvalidity of the Fredholm formula will be
reéched when singularities of the kernels reach the region.of integration R .
The usual situation will be that a single singularity comes to some interior
point of R . But if this occurs one can distort the contour of integration
away from the singularity and thereby extend the domain of validity of the
Fredholm theory. Aslremarked by Polkinghorne, the situation is very similar
to what he and others have been doing using Feynman type formulas. One can
continue to use the Fredholm formula unless.a singularity of the kernel comes
to an end point of the integration region; or pinches the contour against
another of its singuiarities; or retreats to infinity carrying the contour
with it. One would expect that a detailed anélysis would'show that the
limits of the domain of applicability would be just at the second sheet cuts
given by the Landau equations, with both.first and second type singularities

included. But the unstable particle poles, and their associated branch

-
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" points, would now come out automatically from the vanishing of the Fredholm
denominator and from the pinching of the contours ageinst these poles. The
pursuit of these questions is outside the scope of this paber.

There are similar epressions'defining the scattering function in
 the sheets obtained by counterclockwise continuation up from the bottom of
 the energy cuts [see (2.10a)]. Using the expressions obtained for the
values on the various unphysical sheets, one can continue the right-hand
gide of (5.9)-tﬁrough'cuts onto unphysical sheets and establish the existence
of 'SN(E) ~on second-order unphysical sheets, and so on.

The methods discuésed here allow continuation only through the energy
cuts associated with physical processes, where the simple unitarity relations
are valid; what types of singularities lurk behind other cuts we do not know.
However, it is reasonable to apply the name "particle poles™ to the simple
poles of the type we have been discussing, which are associated with the
vanishing of a Fredholm denominator A(E) . If this terminology is adopted
the masses and lifetimes of the unstable particles will be fixed constants
of nature, just like those of the stable particles. By reversing Eq. (3.9)
and considering it an expression for S on the physical sheet in terms of
S on the first unphysical sheet, the stable particle poles are seen to be
a special case of the particle poles defined above; they correspond to the
vanishing of the Fredholm determinant on the first unphysical sheet (see
below).

In view of these.simiiarities between stable and unstable particles,
the idea of introducing'unstableéparticle scattering functions presents
itself, These functions would, like ordinary scattering functions, be
defined only on a manifold consistent with mass and conservation-law constraints,

but the masses would now be fixed complex numbers, the fixed masses of the °

unstable particles.
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These generalized scattering functions can be defined by factorization

.of residues of particle poles. That is, for ordinary M functions the

unitarity relations imply that the residue of a stable-particle pole of an

M. funetion is a product of two other M functions, provided the class of

M functions is extended to include also the three-partiele functions usually
called coupling constants. Accordingly, let us apply the name "generalized M
funetion" to each of the two factors of the residue of a single-particle pole
of any (connected) generalized M function, where a single-particle pole is
defined to be the pole associated with a simple zero of a Fredholm denominator
NE).

That the residue of a pole associated with a simple zero of the
Fredholm determinant is just a product of two factors is an immediate
consequence of Firedholm's second theorem. This theorem:ssays that-if -
det S(Er) = 0 , then for any V' +the quantity

'V = adj S(Er)V' K (5.12)
is a solution of the equation’
S(E )V = o . o | (3.13)
Moreover, it says that aside from multiplicative constants, this solution is

unique, provided adj S(Er) is not identically zero. . The immediate consequence

is factorizabiiity:
(a |adj s(Er)| B) = V, wBT' . (3.14)

Ir adj-S(Er) were identically zero, then, by virtue of its analyticity in
E , each term in adj S(E) would contain at least one power of (E - Er)'

But then if det S(E) had a simple zero the inverse



UCRL-10261

-17-

s7Y(g) - g}g—%(% E - | - (3.15)

would be regular at E = Er ) qnd there would be no pole.

The argument can‘be reversed to show that if the residue is»
factorizable then the determinant of the image point has a simple zero.
This justifies the statemernt made earlier that the stable-particle poles
are a special case of "particle poles".

It will bé observed that Fredholm theory not only gives a simple
.prOOf of factorizability, but also provides an explicit formumla for the
product of the two factors and hence also, aside from an indeterminant scale
factof, for the individual M functions: every M function will be
expressed explicitly in terms of others by means of Fredholm formulas.
This gives, for example, explicit expressions for coupling constants in terms
of the scattering functions at image points. The expressions also provide a
basis for the analysis of the properties of the generalized M functions.

For instance, from the anti-Hermitian analyticity property of M functions,
___ T, % _* %
(@ M (E)| B) = M(0; E; B) = -M (a3 E;B), (3.16)

‘and the relation

E;imﬁ (B - Er) Mc(a; E; B) = Res Mc(a; E_; g) (3.17)
r

= -iM(o; B 7) o My(25 E 5 B)
(3.18)
which defines the generalized {M_ function Mi , one concludes that, with
the appropriate choice. of the indeterminant scale factér, Ml is also
anti-Hermitian analytic. In (3.18) the variable 7y corresponds to one

particle of mass Er .



UCRL-10261

-18-

The usual spinor transformation properties.are.easily established
for generalized M functions, which may play an important role in the
development of S-matrix theory. We have mentioned them here to emphasize -

the close kinship of stable aﬁd unstable“particiesi

- IV, EQUALITY OF THE MASSES AND LIFETIMES OF CONJUGATEYANTIPARTICLES

The mass and lifetime of a pafticlelare determined by the positiog
of the zero of a Fredholm denominator, . A($)‘. That .a pgrtic}g has the same
mass and lifetime as its conjugate antipartiecle follows frpm the invariance
of A under charge conjugation. This, as wil; now;befshown,,is.a consequence
of invariance under CPT. Consider fixst the firstuterm_in thevfbrmpla for
det SN(E)o It may be written

Tr K(E, T) = T K{K" W(kt, R k'.T (E, T) , (%.1)

where

5(E, T) = N(E)BT;T B

a(Q! - Q") (Il -T") . o (ke2)
Here T 1is a set of type variables and N(E) is defined in (2.2). The CPT

28
identity is, for T' = T" ,

Wik, &) = W@, K , (4.3)

T)
where the subscript T on K indicates a transposition of the order of the

variables of K . Substitution of (4.3) into (4.1) gives
‘ at ~
Tr K(E, T) = = [ BNWE”-KE)KH;rﬁm,T), (hok)
P I KtK" - . ] . o ) .

where the superscript"tr'IOn Etr’-indicatesithe change. of order of spin
indices needed to ‘compensate for-thé reversed order of variables on the two

sides of (4.3).
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‘. This term, Tr K(E, T), 'is to be compared to.the charge-conjugate

expression -

Tr K(B, T,) = I KIK e, &) K3 s, 1), (W)
in which T is the set of type variables obtained by changing each type
igdex of the set T +to the index specifying the conjugate antiparticle. An
equivalent eXpréssion is

.TrK(E,;‘T;) = = K{K" ‘BE(K"C, ,'ﬁ'é) K_"‘?} 8(E, T) , (4.6)
where K'c and K"c have type variable T'c and 'I‘"c respectively. The
fact that X' and K" are dummy variables has been used to interchange the
prime and double prime.

Recalling that K 1is the set obtained from K by réversing the
order of variables, changing all particlé—type indices to thqse specifying
the corresponding antiparticle, and dotting the spinor indices,.ﬁe see that
K"c and %"T differ only in that their spinor indices are relatively dotted.

The rules for changing the spinor index types on M functions have
been derived in SI and SII. The "met:ig tensors" that effect the changes
are h |

NGBy -1
AR RIS A

8y = (k. - aﬁéz)mi":L Sy

(k.7)
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When these are contracted with M . functions, following the usual contraction
rule that upper indices contract with lower, one obtains the M functions
with altered index type. The matrices C and C-l are tQ mu;tiply M from
the left; transposed.matfices ghéula bé used if they multiply(frbm the righti'
Appiication of thes¢ rules gives

MN(‘I‘('"E;, K'p) = Cx s, & )k'-3 C’l:.f T (4.8)
| (K") s &y

“Here it has been assumed, With no loss of generality, that the original

indices of K' and K" are all lower undotted. Using the relations

C) Ki.;tr‘c - Kl.q- . | (l;,9)

and

. K''G K'o¢ = I , IR . (4.10)

one fihds thaf '

Tr K(E, T) Tr K(E, Tc) " SO _ o (h11)

Thus fhe first term of the seriéé for A ;ié ihvariant under Chafge conjugation,
asAa consequence of CPT invariance. | | “
The proof carries over with minor éhanges to the trace of any power
of K(E, T). Since every term in the absolutélyrconvefgént series for A is
a combination of traces of products of powers of K , we obtain the desired

result,

NE, T) = AE, Tc) . (k.12)

In the extension of the proof to traces of products of K(E, T), one

problem regarding phase factors arises. The general CPT identity is
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M, &) = (0)ME KD g, ey
(-l)N(K" "K") G(K', -'K") M(ﬁ”T’ _KIT) , : (4.13)

where N(K) is the number of dotted indices of the set K, and o(K) is
the phase factor associated with the reversal of order of variables of K .
The normal connection between spin and statistics requires o(K?, sﬁ") to

1 _~' .
be (-1)1\7(K » =K") if T''= T" . This fact was used in Eq. (4.3). The
unitarity relations together with analyticity and the normal connection

between spin and statistics require that

i

o (k, K1) | (4.14)

o(k', -K)

and .

i

o, &) = ok, B (-0 B g, gy (k1)

These conditions ensure that, in the trace of a product of K's, the factors

(-l)N will just cancel the o¢'s as they do for the First power of K .
2

V. PROBLEM OF THE DISCONNECTED PARTS

Complications due to discdnnectéd parts have been ignored in the
foregoing sections. The problem is this: the analyticity postulate states
that except for specified singularities the M functions are analytic on their
physical shéeﬁs; bouﬁdafies included. These sheets lie in manifolds
constrained by the mass conditions and conservation laws. Since it is
possible that certain subsets of particles scatter independently of the
rest, there may be terms in an M function, and hence also in the S function,

that are restricted not only by the overall conservation law, but also by
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additional conservation laws that refer to subsets of partlcles. The physical
sheets for these :terms lie in the correspondingly restrlcted manifold. Statéed
symbolically, the S function can be decomposed into a sum of terms,

s(k) = £ sPx) , (5.1)

where p runs over the possible partitions of the set K . The function
SP(K) is noﬁZero3only in the manifold defined by the vanishing of ‘the sums
of the momentum-energy vectors of each of the subsets Kip" of the pth
partition. The physical sheetsvreferre@ tq_lnvthevanalyticity postulate are
sheets in the manifolds aSSociatea‘with the,varlous,'MP(K)_.

A distinguished partition is the partition into a single set
kP = g . The associated M'(K) , calledlthe éenﬁected part of M(K), will
be denoted by MC(K) + The sum of the remaining terms, called the disconnected
parts, will be denoted by M (K) . In the preceding sections the contributions
M (K) were systematlcally ignored.

When the contributions from the disconnected parts are 1ncluded the

original unltarity relatlon,
M(K', -K") + M (K", -K') = -2 [ MK', -XK) K-0 M (K", -K) , (5.2)

breaks into & set of equations; the distinguished one of which is.

ot T;:: ) : v 1. ) : .'_.-r-,,,-z .'; 1— -_ . "M 1— .
Mo TN = Mo e MGT - Mg e - Moelgl - (Mg Ml -
‘ (5.3)
Here arguments E, should be supplied as in Eq. (2.3). .The subscrlpt ¢ on

the. last term means we .are to take.only the connected parts, the parts whose
graphical representation is a connected diagram.. The contributions to (5.2)

included in (5.3) are those in which there is only the single overall
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conservation law; the other terms of (5.2), which correspond to different
partitions p -of the set K , will vanish except over restricted submanifolds.
In order to proceed, we make the ansatzthat the function SP(K) has

the form
sP(k) = a(k) T s (xP) . - - (5.4)
b i ¢

Here aP(K) is a phase factor that depends on the order of variables and
Sc(K) , the connected part of S(K) , is identical to MC(K) except for the
case in which K contains only two variables. In this case MC(K) vanishes,

whereas SC(K) = SC(K', -K")  is the connected no-scattering term

(2)* 8" (kt - K") By

s (K', -K")
¢ (2n) 2m 6(k'2 - m2)

w

- 2 ()’ - k) b (5.5)

"t"ﬁ" . 3

whose value is fixéd by the normalization conventions.

The ansatz (5.4) éorresponds to the physical assum?tiﬁn thét dynamical
effects of particies upon.one another arévassociated with momentum-energy
transfers. Mathematically, Eq. (5.4) effects a tremendous simplificafiﬁn of
the equations, for the contributions to (5.2) that are not in the distinguished
part (5.3) become products of the distinguished parts of other equations (5.2),
which have the subsets kip in place of K . Certain consisﬁency require-
ments are imposed on the qp . Because of this redundancy of the‘eqpations
it becomes sufficient to considerlénly the distinguished or conneéted part
(5.3) of the general unitgritybrelation (5.2).

For the_simple case oquontinu@tion throﬁgh'two—particle cuts there

are no disconnected parts Md ; in the associated two-particle subspaces, and
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the analysis of the previous sections is applicable:
Let us consider continuation through a three-particle cut. The
-initial and final configuration containing these three particles are now in
the associated subspace and there can be disconnected parts of the type

represented in Fig. 1.

/

Also, the term (MEAD'MET)é on the right of (5°5) will have-contributions
of the type represented in Fig. 2. These latter give contributions on the
right of (5.3) proportional to 2n5(m2 - k2) , where m is the mass of the
exchanged particle and k is its momentum-energy, expressed in terms of the‘
external momentum vectors. |

| These mass d~function contributioﬁs on the right can be eliminated

by replacing '(Mc + Mc*) on the left by (M} + Mrf) , where
‘M = M + M . o (5.6)

The second term on the right, ‘Mb , 1s a pole contribution, the function

. -1 -
obtained by replacing the 2n5(k2 - me 2)

T .
) in (Md § Md )c by ilk m
For many-particle M Punctions, it is only after both the disconnected parts

and the pole contributions have been removed from M +that the reméindér, Mr ,

is regular in the physical region; the pole contributions are among those '

required by unitafity and exéept fbrrﬁhe fwo-pérticle écsttering functions
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these pole singularities pass through physical regions.

" In terms of the regular part, Mi , the unitarity relation reads .

M+ MrT.H = -0, _i+»Mp)A p('Mrf + M;) + Md p(Mrf + MPT)

+ (M, + Mp) p MJ + (M0 MdT)r 1,

(5.7)
where (M P M +) is the bart of (M p M +) that remains aftef parts
assoclated with pole contrlbutlons have been removed Fof tﬁe cese of three
intermedlate particles all contributions to (M o} M ) are of the type
shown in Fig. 2 and (M pM ) is zero. |

To solve for MrT one first rearranges_the terms of (5.7) to give

t : wt - . om T + t
M + (Md + Mb + Mr)er = -(M} + Mp) ;:)(Mp + My ) o+ M; P Mp + Mr] .
(5.8)
{511 : . | ¢ Ny1/2 .
Multiplication on the right and left by (p ) and the introduction of

A (pl\f)l/z . (QN)I/Q

brings this to the form

torntenntanat
(1+Ry + R+ Rr)RrT - ~IRJ(Q +R +R)T +RR T+ RR RdRp 1,

(5.9)

where the superscript N has been dropped. As before, RTV can be con-

. M * . )
sidered a function of E in the first unphysical sheet associated with

interval N .
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On the right-hand side.of~(5.9).all:the quantities .are known. In
particular, the R&tv:is.known onkthe unphysical sheet as a result of the
analysis_for two-particle cuts. We assume now that we are considering
the leadiﬁg three;pérficlé branéh cut, in which case enérgj”cohsefvation

ensures that the energy E_ of the two-particle part of RaT (see Fig. 1)

d
is less than the three-particle threshold. Consequently, the continuation

~in E takes E., through a two-particle cut. The exact details here depend

d
on.the particular way the variables ' are chosen, but in general the two-
pé%ticleLenérgieé éitherjsfay real or mové througﬁ their two-particle cuté
as tﬁe thiee-partiéle energy is dontinued fhrough.ihé three-pérticlé éuté.
The'function RPT .is known in ﬁerms o%tyhé{£wb-paftiéiéparﬁs"Rd :and RdT°

| The problém is on the 1eft-haﬁd éide.\/The contributidnéA Rd 7ha§é,
according to (501); (5°h5; and (2:2), éoﬁéérvafion—law 5 functions, for
only the sipgle overall copservatioﬁ—law ) funqtioq%was factored out in
passing to the reduced variables. . As a consequence Rd ,.ana in fact also
RP, is unbounded, and Fredholm theory is not immediately applicable.

The resolution of the disconneéted part problem'ligs ;n closer attention
to another problem, that of overlapping cuts. Wheﬁ oneipasses to processes
involving more than two partiecles in the initial or final configurations the
physiecal cut is generélly overlaid with various cuts correspondingvto_subsets
of particles interacting among themselves. That is, the singularities required
by unitarity Will'includefnot only the thresholds bqr;esponding to the total
energy variable, indicated in Fig. 3, but also the thresholds associated with

subsets of particles, as indicated in Fig. 4. Correspondingly, in the left-
A\
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hand side of the unitarity relationm, M(a; E; B) - M(a%, E%, B%) , it is not
only the total energy ﬁariable E. th;t‘hds cuts séparéting E from ‘E% K
there will be similar cuts in all the partial energies.

To simplify the discussion suppose we consider the continuation
through the one-nucleon, tﬁo-méson cut, and consider only ﬁhe disconnected

parts associated with n-x scattering (see Fig. 5). ILetting E be the total

W
-- *v J { -== ST ':‘Q“L“.O‘ il
Fig. 5a | Fig. 5b Fig. 5¢

energy and W the energy of the xn-x subsystem, and suppressing the other

variables, one obtains the unitarity relation

s ES W) - MW S ES W)

= J D B W e MW B ; W"_>]c

+ [ W' E e ME_, W"_)]c ) (5.10)

where W' and W' are the energies of the initial and final meson subsystems.
The last term on the right is the two-particle iﬁtermédiate state contribution.
The function M(W'; E; W") has independent cuts in all three variables,
corresponding to the vanishing of the phase space factors in the three-particle
and two-particle systems, Dividing the discéntinhity iﬁtd the‘discohtinuities
across the various cuts we write the left-hand side of the unitarity equation

as a sum of three terms:
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= r ., R . -. t ."" . “n“" o ' R '
B = MW E,+.’A‘_“’_+), - MW ESW _) L _(5».119.)
] » .omn . "oy o . ‘
by = Mc(w+; E; W _) - Mc(-w’.+; E;W ) _— : © (5.11b)
Bpp = MW GES;W ) - MW S E;W ) . ~ (5.11e)

Referring to Fig. 5, we write the right-hand side as a sum of three corresponding

terms:
D = JM (W' 5 E; W )e MW ) (5.12a)

V ' b4 . N ’ A . . ‘" 71 « 7 . "
Dy = JMW G ES W MO ESW ) + MW E e M(E W )

( 5,12b)‘

Ju() o MW ESW ) | (5.12c§)

<

Let us suppose, for the moment, that the corresponding terms on the

right and left are equal. The eguation AW" = Dﬁ" gives

=
"

‘, , t . M -1 et
MW B W )e [o7h - () ]

[

: S Lo -1 tr"
Ju' s EsW Jel o7+ MW )] (5.13)
and the‘eqpation' Aw;'=’Dﬁ, gives

] -]
s BEsW ) = [ [ o7 + Md(.w'-'+)] pMW' G E; W) . o (5.14)
These, in conjunctiohAwith”the‘uhitarity felatiéh h

-1 -1

ot v wfw e et @1 = 0, (5.)

give
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t 1"
[MW 5 B W) e MW E;W ) = [ MW ;E ;W )oMW;E W ),
(5.16)
which allows the equation AE = DE to be written in the form
1
MW ES W) - MW G ES W) = M ES W oM (W E W)

', '
+f MC(W E+)p MC(E_, wo) .

+"

(5.17)

The same procedure works for the two-to-three, the three-to-two, and the
two-to-two sectors. The result is that if one specifies that the final and
initial subsystem energies are always to be taken with positive and negative
imaginary parts, respectively, then one obtains the unitarity relations without
the disconnected parts.

| The above discussion is predicated on the assumption that the
corresponding terms in (5.11) and (5.12) are equal. This is essentially

29

the aSsumption made by Ball, Frazer and Nauenberg in their discussion of
disconnected parts and unstable particles. They consider it tovbe a generalized
form of the unitarity condition.

The generalized unitarity relations of Cutkosky'have not yet been
derived from S-matrix postulates. This is the necessary first task in the
development of S-matrix theory into a complete dynamical system. Pending the
establishment of these relations the discussion in this section should be
considered tentative. However, it may be noted that the equations AW' = DW'

and AW" = DW" are just what would be obtained by a continuation of the

unitarity relations from the eross channel (below threshold). One must confirm,
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by a detailed examination of the singularities required by unitarity, that
in this continuation no branch cuts are encountered that invalidate the
relations. A preliminary analysis indicates that the continuation is indeed
permitted.

So far only the =n-x disconnected part has been‘cqnsideredo However,
similar analyses can be used to rembve the other disconﬁected partss. Contri-
butions in which two discomnected parts contribute simultaneously on the
right, as in Fig. 2, give the pole contributions discussed previously.

A suffieient condition for the applicability of Fredholm theory is
the boundness of the kernel. For the many-particle case the kernel may, however,
not always be bounded, because various singularities required by unitarity
may enter the physical region. The simplest of these are the poles from cross
channels already discussed° Also, various anomalous threshelds cah enter the
physical regions of cross channels. To cover such cases one can use the
extension of Fredholm theory to the case of square integrable kernelso50
For instance, anomalous thresholds associated with triangle diagrams give
logarithmic singularities, which are lecally square integrable. The pole
contributions, however, are not square integrable, A way must be found to
“deal with these singularities, and with other possible singularities required
by unitarity that enter the physical region, before the developments given
in this paper can be applied to the poles cn unphysical sheets obtained by

continuation through multiparticle branch cuts.
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APPENDIX A: REIATIVISTIC PHASE-SPACE FACTOR -

The phase-space density matrizx p has been defined by the equation

it = & KD - = — & dl (e, T, E) . (A.1)
i=0 (2n) i (2r)” 2x SR

The coordinates @ and TI' will be introduced in the following way:
Let the subsystém compqsed of particles zero through n be called the nth
subsystem. Let its rest frame and rest mass be denoted by Zn and Mh R
respectively. Let kij and Kij denote the momentum.vectors of the ith
particle and the ith subsystem, respectively, as measured in Zj . These

guantities are related by the equations

\/k: 2 + m 2 + \j K 2 + M .2
no .- nm . n n-1,n n-1

\/k2+m2+\/;2+M2. (A.2)
nn n nn n-1

The total rest energy is E = MN . For angle variables let us choose the

=
I

angles describing the N vectors L (n=1,2,°++,N), and for the I +the
N - 1 guantities M (n=1,c++,N-1). These, together with E = My and P,
give the required 3(N + 1),

The Jacobian of the transformation is calculated in two steps. First
we take the variables k; (i = 0,¢°+,N) to the variables k.. (i = 0,+++,N)

with defined to be the total momentum P. The Jacobian of this

%00

transformation is

g, = | @ m] |m (a;nr) Mo (A.3)
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where the reduced energy of the nth subsystem is
SR 5 g
r v knn + om) \/knn + Mn-l
n = o |
n n nn n-1

- V/ Ko V/ nn n—l My (A'h)
Transforming to these new variables, we have
N [k _dk © N a5 N dM
il —29——-;-3 Ko J) = 5 dhp = I -2 5,  (a.5)
n=1 2(2n) n=1 2n
. _ 2 N=1 S ' . v
vhere dI' has been interpreted as T (dM /2¢) . The Jacobian
n=1

B(Mﬁ)/a(knng) , which is the determinant of a triangular matrix, is

N a»M

I = T —= (8.6)
2. . n=1. 0K g*. . T _ : C
nn
N | &/k 2 + m 2 + \Zk‘ 2 T+ M 2
= O —]; Ly nn n. _nn - n-1 ‘
3 : =, _
n=1 k + m?2 k 2 4+ M 2
nn n nn . -1
N -1
1 N
= I - J N
n =0
Thus we have
N . N knn N
= I m, I ‘2.. Keo . . (A.?)
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To display the behavior near“threshold one may replace the Mn by

al . o . _ ) C ~ 2 ;
M, = M -M° = M- (Mn_l + mn) ~ ko /2mn (A.8)
and introduce
N 1 N knn2
1 —_ . . ~r
E' = 2 M 2~ = = . (A.9)
n=1 i=1 2m
n .
In terms ofvthe dimensionless quantities
X2 - M_fur (A.10)
n n .
we have
N d.M'n ; X N knn d.M'n
p I = = I m, I Keo
n=1 " My 320 1 npe1 (on)?
(A.11)
N-1 .
= .p' ‘g—-%:' H d.)( 2 P
n=1 n
with ‘
1/2
IR mo (e TN T x| (s(w)-5)/2
o' > = I m I 3 (B1) K.o ,
My im0 1 2 (2x)
red,3/2
N (em TN x o (3(we1)-5)/2
> 2n T 3 E Keo (A.12)
- 2(2x)

The boundaries of the physical region.are at :Xn =0, for any n , and at

E=0. The Xn are bounded by the: condition that X Xn

2=.lo
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that the various ki(Q, T, E) are analytie functions in the interior
of the interval. The choice of variables is discussed later.

The continuation of scattering functions through the two-particle branch

,l»qpﬁ‘by nmeans of the unitarity relation has been studied by many people:

:J. Gunson and J. G. Taylor, Phys. Rev. 119, 1121 (1961) and 121, 343 (1961);

R. Oehme, Phys.'Rev. 121, 1840 (1961); W. Zimmerman, Nuovo cimento 21, 249
(1961); R. Blankenbecler, N. L. Goldberger, S. W. MacDowell, and S. B.
Treiman, Phys. Rev. 123, 629 (1961); P. G. O. Freund and R. Karplus, Nuovo
cimento g;, 519-531 (1961).

For the case of complex kernels in many dimensions see W. J. Sternberg

gnd T. L. Smith, Theory of Potential and Spherical Harmonics (The
University of Toronto Press, Toronto, Canada, 1946).

See SI. The normal connection between spin and statistics is also
used in (4.3).

J. S. Ba;l, W. R. Frazer and M. Nauenberg, Scattering and Production
Amplitudes with Unstable Particles, submitted to Phys. Rev.

F. Smithies, Integral Equations (Cambridge University Press, Cambridge,

1958).
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