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WATER RESOURCES RESEARCH, VOL. 26, NO. 12, PAGES 2897-2902, DECEMBER 1990 

Error Analysis and Stochastic Differentiability 
in Subsurface Flow Modeling 

HtJoo A. LOAICIGA 

Department of Geography, University of California, Santa Barbara 

MIGUEL A. MARIlC,10 

Department of Land, Air, and Water Resources and Department of Civil Engineering, University of California, Davis 

In the stochastic analysis of steady aquifer flow, the log hydraulic conductivity is the random 
"input" and the piezometric potential is the random "output." Their joint behavior is governed by a 
differential equation that, in view of the random nature of its dependent (piezometric potential) and 
independent (log hydraulic conductivity) variables, represents a stochastic differential equation. The 
analysis of the distributional properties of the piezometric potential field involves the product of the 
gradients of log hydraulic conductivity and of the piezometric potential. Previous research in this field 
assumes that such product of gradients is small in some sense. This paper derives a closed-form 
expression for the standard deviation, and hence the order of magnitude, of the product of the random 
gradients of log hydraulic conductivity and of piezometric potential. It was found in this research that 
for statistically homogeneous log hydraulic conductivity fields (1) the product of the random gradients 
may or may not have a zero mean, depending on whether the specific discharge is a constant or a 
random quantity, respectively; (2) under joint normality of the log hydraulic conductivity and the 
piezometric potential fields, their random gradients are statistically independent if the specific 
discharge is constant but are dependent when the specific discharge is random; (3) the standard 
deviation of the product of random gradients is proportional to the variance of log-hydraulic 
conductivity times a term involving three quantities: the covariance of the piezometric potential, the 
covariance of the log hydraulic conductivity, and the cross covariance of the latter two fields; (4) a 
necessary and sufficient condition for the smallness of the product of random gradients is that the 
second derivatives of the covariance of the log hydraulic conductivity, the covariance of the 
piezometric potential, and the cross covariance of the latter two random fields be finite and that the 
variance of log hydraulic conductivity be much less than one. This paper also reviews some 
fundamental principles on the stochastic analysis of random fields and their importance to the 
modeling of log hydraulic conductivity fields and to the analysis of subsurface flow. Specifically, the 
paper highlights the role of Gaussian distributional assumptions in deriving key results of stochastic 
groundwater flow via perturbation analysis. 

INTRODUCTION 

Consider steady state flow in an aquifer (tensorial notation 
is used) 

K =0 (1) 
Oxi 

where K is the hydraulic conductivity and 4• is the piezomet- 
ric potential. The piezometric potential and the logarithm of 
hydraulic conductivity (i.e., the log hydraulic conductivity) 
are expressed as the sum of a mean and a (zero mean) 
perturbation, 

•b = H + h (2) 

In K = F + f (3) 

where the lowercase variables represent the perturbations. 
In a statistically homogeneous aquifer, the log hydraulic 
conductivity has a constant mean (F) and its perturbation f 
has an isotropic covariance. Interestingly, even if the log 
hydraulic conductivity field is statistically homogeneous the 
piezometric potential is not [Bakr et al., 1978; Dagan, 1985]. 

Copyright 1990 by the American Geophysical Union. 
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In the developments of this paper it will be assumed that the 
perturbation can be approximated as a statistically homoge- 
neous random field for the purpose of the error analysis (this 
assumption is consistent with previous studies of stochastic 
subsurface flow based on the spectral representation of 
statistically homogeneous fields (see Gelhar [1986] for a 
review) for the piezometric potential). This assumption turns 
out to be viable as shown by Dagan [1985] in an error 
analysis study based on Fourier transforms of generalized 
functions. Substitution of the fight-hand sides of (2) and (3) 
into (1), taking the expected value (E) of the resulting 
expression and subtracting it from (1), yields the stochastic 
differential equation relating piezometric potential perturba- 
tions to log hydraulic conductivity perturbations (F in (3) is 
assumed constant), 

• + • • + E = 0 (4) 
O X i c) X i O X i c) X i c) X i c) X i 

Equation (4) is the basis for the analysis in this paper. 
Previous stochastic analyses of aquifer flow have neglected 
the term within braces in (4) that involves the product of 
random gradients off and h (see, for example, the review by 
Gelhat [1986]). It should be indicated that there are alterna- 
tive approaches to modeling groundwater flow within a 
stochastic framework besides the perturbation analysis. One 
such alternative approach is based on functional analysis 
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2898 LOAICIGA AND MARIIqO: SUBSURFACE FLOW MODELING 

[Serrano et al., 1985; Unny, 1989]. Another promising ap- 
proach to stochastic groundwater flow modeling is based on 
numerical simulation [Ababou, 1987]. The latter two ap- 
proaches have appeared only recently in the hydrologic 
literature whereas the perturbation analysis has received 
more attention in groundwater flow analysis. 

The purpose of this work is (1) to derive a general, 
closed-form, expression for the order of magnitude of the 
product of random gradients of f and h; and (2) to derive 
necessary and sufficient conditions for the smallness of the 
product of random gradients. The approach to be followed is 
first to compute the standard deviation of the product of 
random perturbations in terms of the covariances and cross 
covariances of the log hydraulic conductivity and piezomet- 
ric potential fields (the standard deviation is a measure of the 
order of magnitude of the product of gradients off and h). 
Subsequently, the necessary and sufficient conditions for the 
smallness of the product of random gradients are estab- 
lished. First, however, a few foundational concepts concern- 
ing random gradients and stochastic differentiability and 
continuity are reviewed. 

SOME IMPORTANT RESULTS ON STOCHASTIC 

DIFFERENTIABILITY 

The random gradients in (4) are meaningful in a mean 
square sense only, since the formal, deterministic, limit for 
partial differentiation, 

f (xl, ' ' ' , xj + &, ' ' ' , Xn) - f (xl, ' ' ' , xj, ' ' ' , Xn) 
lim 

&-->0 

is not defined for a random variable f. Instead, the differen- 
tiability of a random field (with finite second moments) 
requires the concept of mean square convergence. For 
example, the operation, 

(5) 

f(x) 

i i : : i : 
i : i i : i 

i i i i i i 
i i i i i 

•(1 •(2 •(3 k4 •:5 

Fig. 1. A two-valued stochastic process. 

(r is the separation distance between vector locations x• and 
x2 and rj is the jth component of the separation vector). For 
example, the exponential, three-dimensional, and isotropic 
covariance model for log hydraulic conductivity, 

aSS(r) = o'f exp (-r/A) (10) 

(A is the correlation scale and rr• is the variance of log 
hydraulic conductivity) satisfies condition (7). On the other 
hand, the one-dimensional (n = 1) case of (10) does not 
satisfy (7), meaning that the gradient of a (point) one- 
dimensional random field with exponential covariance is not 
defined. Because of (7), the covariance models for random 
fields appearing in stochastic differential equations (such as 
in (1)) must be properly chosen to ensure compatibility of the 
random gradients with the definition of mean square differ- 
entiability (see (6)). In order to satisfy (7) it usually suffices 
to average the random field variable over a spatial domain 
[Vanmarcke, 1983]. Otherwise, the choice of admissible 
covariance models for point random fields may be problem- 
atic when dealing with spatial processes governed by differ- 
ential equations such as (1) that involve derivatives of field 
variables. 

To illustrate the rather abstract nature of the concepts of 

lim E{ f(x•' ' " ' xj + &, ... , Xn) - f(x•, "' , xj, " ' , Xn) ,• 0 • 2 (6) 

means that [Papoulis, 1965] 
If the limit in (6) exists, then the random field fis said to be 
stochastically differentiable or differentiable in mean square. 
It is in the true sense of (6) that random gradients are defined 
in this work. Based on (6) it is easily shown that a necessary 
and sufficient condition for stochastic differentiability of a 
statistically homogeneous random field (f) is that its cova- 
riance (Off) have the following property [Priestley, 1981] 

where 

aass(') 

r=O 

= 0 for all j (7) 

continuity and differentiability for statistically homogeneous 
fields, relative to their counterparts for deterministic func- 
tions, it is worthwhile to examine the line process in Figure 
1. Shown there is a process that takes only two possible 
values, say A or B, and the distances {xj} at which the 
transitions occur from a Poisson process (with parameter A). 
The process of Figure 1 could be thought of as representing 
a complex stratified formation with two predominant perme- 
ability values, A or B [Davis, 1986]. It may be shown (see the 
appendix) that the process in Figure 1 is statistically homo- 
geneous with an exponential covariance function, 

(rff(r) = o'f exp (11) 

/ n \ 1t2 

V=, / 

ß x2), 

(8) 

j= 1, 2,..., n (9) 

where v = 1/2A and rr• is the variance of the two,valued 
process. The process of Figure 1 is stochastically continuous 
[Priestley, 1981] in a mean square sense, i.e., 

lim E{f(x) -f(x0)} 2 = 0 (12) 
X'--• X0 
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LOAICIGA AND MARIlqO: SUBSURFACE FLOW MODELING 2899 

at any x = x0; yet, fis not stochastically differentiable, since 
(11) does not satisfy (7). What one sees in Figure 1 is a 
realization (of the random process f) which, if taken as a 
deterministic function, would clearly be discontinuous and 
nondifferentiable in a classical sense. The mean square 
properties of a random field (continuity and differentiability) 
do not necessarily coincide with those suggested by the 
geometric structure of its individual realizations as shown in 
the example of Figure 1. 

Several important issues have been brought up in this 
section that play a central role in the stochastic analysis of 
subsurface flow: (1) the role of spatial averaging vis/t vis 
point random processes in relation to the choice of covari- 
ance model and the existence of random gradients; and (2) 
the importance of statistical homogeneity in the analysis of 
stochastic differential equations, in particular, in the study of 
gradients of random fields. These two issues are key to the 
error analysis that follows. 

ORDER OF MAGNITUDE OF THE PRODUCT 

OF RANDOM GRADIENTS 

TWO questions are addressed in this section: (1) what is the 
expected value of the productf•h• (= (0fi0 xi)(Oh/O xi)) in (4)?, 
and (2) what is the standard deviation of this product of 
random gradients? The expected value is a measure of 
central tendency or location, whereas the standard deviation 
measures dispersion about the mean and, hence, indicates 
the order of magnitude of the product of random gradients. 
From the analysis of the second moment of the product of 
random gradients it is possible to determine conditions for 
the smallness of this term and, thus, its relative importance 
in stochastic differential equation (4). It should be noted that 
Cushman [ 1983] argued that the product of random gradients 
can be the dominant term in the stochastic differential 

equation (4). 

Expected Value of the Product of Random Gradients 

The analysis begins with Darcy's law, 

OH 
K • = -qi (13) 

Oxi 

in which qi is the specific discharge. Substitution of (2) into 
(13) and taking expected value yields (observing that expec- 
tation and differentiation operations commute within a mean 
square context) 

OH 

-E(qi/K) (14) 
Oxi 

The right-hand side of (14) is worth a close examination. If 
qi is a constant, then the right-hand side of (14) can be 
expressed in terms of the mean and variance of log hydraulic 
conductivity (see (3), and assuming that hydraulic conduc- 
tivity is lognormally distributed) so that (14) becomes 

OH 

• = -qi/exp (F + •r;/2) (15) 
Oxi 

and it follows at once that 

02H 
= 0 (16) 

Oxi Oxi 

since the right-hand side of (15) is a constant also. It is 
straightforward to show that the mean equation correspond- 
ing to (1) (and obtained by substituting (2) and (3) into (1) and 
then taking the expected value of the resulting expression) is 
given by 

• + E = 0 (17) 
OX i OX i 

From (16) and (17) it follows that 

E = 0 qi constant (18) 

and the expected value of the product of random gradients is 
zero (a result similar to (18) was obtained by Gelhar and 
Axness [1983] using spectral analysis). Notice that since the 
perturbations f and h have zero mean, the left-hand side of 
(18) is equal to the cross covariance of the random gradients 
(o-f/n;) evaluated at the origin 

O'fi'h[ I ? = 0 = O'fi'h [ (0) = 0 qi constant (19) 

If the pe•urbations fand h are jointly normal or Gaussian (in 
factf is by assumption norm• and h is approximately normal 
[see Dagan, 1985]) then (19) indicates that the random 
gradients f•(=Of/Oxi) and h•(=Oh/Oxi) , at any pa•icular 
point, are independent when the specific discharge is as- 
sumed constant. 

If the specific discharge qi in (13) is not a constant but, 
rather, a random variable with spatial variability, then the 
fight-hand side of (14) depends on the spatial coordinates. In 
this case it is easily seen from (14) and (17) that 

E = E • (qi/K) qi random (20) 
Oxi 

and the product of random gradients of the pe•urbations has 
nonzero mean. Notice, however, that substitution of (13) for 
qi in (20) and using the fact that & = H + h, where 
E[O2h/Ox•] equals zero, yields 

(Of on} { 02H • E • • = -E qi random (21) 0 0 x O 
Equation (21) shows that whenever the gradient of H, V. H, 
is a constant, then the cross covafiance of the pe•urbations 
fand h at zero would vanish even if the specific discharge qi 
is random. Incidentally, under the assumption of jointly 
normal pe•urbations, (21) shows that the random gradients 
of the pe•urbations f and h are not in general independent of 
each other when the specific discharge is random. This is a 
result of a much more intuitive appeal from a physical 
standpoint than that derived in (18) under the assumption of 
a constant specific discharge. 

The previous an•ysis has shown that the nature of the 
specific discharge (i.e., random or constant) is an impo•ant 
determinant of the distributional properties of the product of 
gradients of the log hydraulic conductivity and piezometfic 
potenti•. The expected value of the product of random 
gradients is not in general equal to zero, but rather, its value 
depends on the nature of the mean gradient of the potentio- 
metric potential. The reader is refe•ed to Gutjahr and 
Gelhar [1981] for a relevant discussion on the role of the 
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nature of the specific discharge in one-dimensional subsur- 
face flow problems. 

Standard Deviation of the Product of Random 
Gradients 

The mean or expected value of a random variable is a 
measure of central tendency: it tells of the likely average 
value of the random variable. However, the standard devi- 
ation is the true measure of the order of magnitude of a 
random variable since it describes the dispersion or variabil- 
ity of the random variable about the mean. An analysis of the 
standard deviation of the product of random gradients fol- 
lows next. 

Let the random variable z be defined as follows (the 
subindex i is now fixed): 

z =f[h[ (22) 

The expected value of z is given by either (19) or (21), 
depending on whether or not the specific discharge is con- 
stant. The covariance of the field z(rrzz) is, by definition 
(where the subindex i is now fixed), 

tree(r) = E{f/(x + r)h[(x + r)f/(x)h/(x)} - E{f/(x)h/(x)} 2 (23) 

in which x and r are position and shift vectors, respectively. 
We seek to determine the covariance in (23) and then 
evaluate it at the origin (r = 0) to obtain the variance (and, 
therefore, the standard deviation) of z. Unfortunately, the 
probability distribution of z is hopelessly complicated. The 
only viable possibility to evaluate the right-hand side of (23) 
is by assuming that f• and h• are jointly Gaussian. The 
Gaussian assumption on the product of gradients, z, will 
provide us with an approximation to the order of magnitude 
of f•h• and the results to be obtained should be interpreted 
accordingly. 

Using a result on the fourth moment about the mean of a 
bivariate normal distribution [Anderson, 1985], it is readily 
shown that the first term within braces in the fight-hand side 
of (23) (call it T) is given by the following expression, 

r = rrfi, h , (0) 2 + rrfif[ (r)rrhi,h[ (r) + rrfi, h , (r)rrhif[ (r) (24) 

(notice that rrf; h;(r) = rrh;•(--r)), where rrf; h;(r) represents 
the cross covariance of the gradients f• and h• separated by 
a distance, r, 

rrfi,h[ (T) = E •Xi x +, •Xi x (25) 
and similar definitions hold for the other covariance terms in 

the right-hand side of (24). We seek to express the covari- 
ances of the random gradients in the right-hand side of (23) 
and (24) in terms of the second derivatives of the cross 
covariances of f and h to obtain results more amenable to 
analysis. For the purpose of illustration, consider the deri- 
vation of the cross covariance of the product of gradients. 
Because of the statistical homogeneity and zero mean as- 
sumptions off and h one can write 

rrfh(r) = E[f (x + r)h(x)] 

= E[f(xl + rl,''' , xi q- •'i,''' , Xn q- •'n)h(xi, ''' , Xn)] 

(26) 

(where r is the separation distance defined in (8)). Taking the 
partial derivative with respect to ri in (26) yields 

By letting 

•ri'(r) = E •ri (x + r)h(x) (27) 

X[-- X i q- ri for all i (i = 1, 2, 3) (28) 

Equation (27) can be rewritten as follows, 

• = E (xi,'", x/, ''', x[•) 

ß h(x• - rl,'" , x[- •'i,''' , X• -- •'n)] (29) 
which implies, after differentiation with respect to r i (and 
using the chain rule of differentiation), that 

OTi OTi = -E •Xi' x' •Xi •'-, (30) 
and letting r = 0 in (30) results in 

E[f[hi• = - rr• hi (0) (3 l) 

where 

(O)- hi (32) 

Equation (31) expresses the expected value of the product 
of random gradients. It is equal to minus the second deriv- 
ative of the cross covariance of log hydraulic conductivity 
and piezometric potential. The derivation of (31) has led us, 
following a completely independent route, to expressions 
alternative to those presented in (18) and (21). While (31) was 
obtained from statistical considerations, (18) and (21) were 
derived from the governing flow equation. A corollary to (18) 
and (31) is that 

rrj{. (0) = 0 (33) 

when the specific discharge (qi) is constant, and from (21) 
and (31) 

rr" (0)=E{ 02H • f,.hi 0 xi 0 xiJ 
(34) 

when qi is random. Equations (33) and (34) provide informa- 
tion about the behavior of the cross covariance of the log 
hydraulic conductivity and piezometric potential perturba- 
tions at the origin (r = 0). 

Operating on each of the terms on the fight-hand side of 
(24) (in a manner similar to that leading to (31)) permits 
expressing them in terms of the second derivatives of the 
corresponding cross covariances of the log hydraulic con- 
ductivity andpiezometricPo/ential perturbations.•aluat - 
ing the resulting expression for (24) at r = 0, substituting it 
into the fight-hand side of (23), and taking the square root 
yields the standard deviation of the product of random 
gradients (rr z), 
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= (0): + (0)} 
Using a result by Dagan [1985] stating that the cross 
covariances •rf/h, and •rh,h, are proportional to the variance of 
log hydraulic conductivity (•r]), (35) simplifies to 

•r z = •r]{R• h, (0) 2 + R•f, (O)Rj•,h, (0)} 1/2 (36) 

in which Rfih, denotes the cross correlation of f and h and 
similar definitions hold for Rf.A and Rh,h,. Dagan [1985] has 
provided closed-form expressions for the cross correlations 
appearing in (36). 

DISCUSSION AND CONCLUSIONS 

Equation (36) constitutes a key result of this work. It 
follows from that result that the order of magnitude of the 
product of random gradients is directly proportional to (1) 
the variance of log hydraulic conductivity and (2) the cross 
covariance of log hydraulic conductivity and piezometric 
potential as well as the (auto) covariances of these two 
random fields. One of the most interesting implications of the 
error analysis conducted in this work is the parallelism with 
the findings obtained by Dagan [1985] on the behavior of 
first-order piezometric potential approximations. In our 
work, the goal was to obtain criteria under which the 
stochastic differential equation governing the distribution of 
piezometric potential (see (4)) could be linearized by neglect- 
ing the nonlinear terms associated with the product Of 
random gradients. Dagan [1985] examined the error in- 
volved in using a first-order approximation for the piezomet- 
ric potential in an asymptotic expansion via infinite power 
series. Dagan [1985] wrote 

In a recent paper, Gutjahr [1984] has shown that if the log- 
conductivity and head fields are jointly normal, the first-order 
approximation becomes exact and is valid for arbitrary •rf. The 
present study indicates that this is not the case, in the sense that 
the first-order approximation has to be supplemented by addi- 
tional terms. Nevertheless, for small to moderate values of •r], 
it is seen that these additional terms may be neglected. 

Our result (36) reinforces those statements by Dagan 
[1985] and it unambiguously indicates that (1) the lineariza- 
tion of the stochastic differential equation for steady state 
flow (see (4)) requires small values of of and small values of 
the square root term involving the products of log hydraulic 
conductivity and piezometric potential cross covariance and 
covariances in (36); and (2) the often quoted condition 
[Gutjahr, 1984] 

2 

•rf << 1 (37) 

for the smallness of nonlinear terms in (4) is only valid 
provided that the second derivatives of the cross covari- 
ances and covariances of the log hydraulic conductivity and 
piezometric potential (see (36)) are finite and small also. 

A second result of this work concerns the expected value 
of the product of random gradients. Specifically, it is always 
zero when the specific discharge is constant (see (18)). 
Otherwise, the mean of the product of random gradients is 
nonzero (see (21)) unless the mean piezometric gradient is 
constant. This result concerning the expected value of the 
product of random gradients and the role of the specific 
discharge in a three-dimensional context seems to be novel, 
although Gelhat and Axness [1983] provided a solution to 

this problem for the case of constant specific discharge in 
one-dimensional flow. Gutjahr and Gelhat [1981] examined 
the role of the specific discharge (constant or random) in 
one-dimensional flow. The importance of the expected value 
of random gradients in the error analysis of stochastic 
subsurface flow becomes evident when an alternate form of 

the stochastic differential equation (4) is used, i.e., 

02h 02H Of OH Of Oh 
• + • + • • + • • = 0 (38) 
Oxi Oxi Oxi Oxi Oxi Oxi Oxi Oxi 

((38) is obtained by adding the expected value of (1) to (4)). 
From (38) it is clear that both the expected value and the 
standard deviation of the product of random gradients deter- 
mine its magnitude relative to other terms in (38). 

A third contribution of this research has been in analyzing 
the meaning of mean square concepts (in particular, conti- 
nuity and differentiability) in the context of subsurface flow 
analysis. Specifically, we have analyzed: (1) the conditions 
for the existence of a random gradient (7); (2) the role of 
spatial averaging in the proper selection of covariance mod- 
els vis fi vis the restrictions on the covariance structure of 

point random fields; and (3) the profound difference between 
the deterministic continuity and differentiability of a realiza- 
tion of a random field (Figure 1) and the properties of the 
random field itself. The paper has also shown the role of the 
Gaussian distributional assumptions in the stochastic analy- 
sis of groundwater flow. This is a sine qua non condition to 
derive closed-form results for the moments of the piezomet- 
ric potential. The same type of error analysis can also be 
carried out for transient systems, although at considerably 
more difficulty and leading to significantly more complex 
results that those derived from the steady state case. 

As a final conclusion, this research points to the need for 
opening new avenues of nonlinear analysis of stochastic 
differential equations in subsurface flow studies. The ratio- 
nale for such a type of analysis arises from two facts: (1) the 
closed-form results obtained from linear analysis are some- 
what limited in revealing the behavior of piezometric poten- 
tial fields (i.e., limited to covariance characteristic Gaussian 
fields); and (2) empirical evidence [Bakr, 1976; Delhomme, 
1979; Hufschmied, 1985] of sampling studies revealing large 
conductivity variability (•rf > 1) is in little agreement with 
one of the basic conditions for the validity of first-order or 
linear analysis of stochastic subsurface flow. The limitations 
of classical time domain and spectral methods to cope with 
nonlinear stochastic differential equations suggest future 
intensive activity in the application of numerical and simu- 
lation methods to tackle these kinds of problems. 

APPENDIX 

In proving (11), the covariance function of the two-valued 
process represented in Figure 1, let 

B - A) )N(x) =•+ w0(--1 (A1) f(x) 2 2 
A+B 

where w 0 is a binary process such that 

w0 = 1 with probability 1/2 

w0 =- 1 with probability 1/2 
(A2) 
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and N(x) is a Poisson process with parameter A. Moreover, 
w 0 and N(x) are independent processes. The expected value 
off(x) is easily derived, 

A+B 
E[f(x)] - (A3) 

2 

result (A3) follows from the independence of w0 and N(x) 
and the fact that the expected value of w0 is equal to zero. 
The covariance off(x) is defined by 

O'ff(X -- S) = E[f (x)f (s)] - E[f (x)]E[f (s)] x > s (A4) 

Substitution of (A1) into (A4), and using the fact that w 0 is 
zero mean and independent of N(x) yields 

o'ff(x - $) = 2 E(wo)2E[( - 1)N(x)( -- 1) N(s)] (A5) 
The term in (A5) involving the Poisson process can be 
conveniently rewritten to use the independence of nonover- 
lapping increments of a Poisson process [Parzen, 1962], 

E[(- 1) N(x)( -- 1) N(s)] = E[(- 1) N(x) + N(s)- N(s)(_ l)N(s)] 

= E[(--1)N(x)-N(s)]E[(--1)N(s)] 2= e-2'•(x-S)l (A6) 

Finally, E(w0) 2 is easily verified to be equal to one, which 
along with result (A6) yields the covariance of f in (AS) 
(letting • = x - s and v = 1/2A), 

B - A) 2 e -r/v cryf (r) = 2 
which is precisely equal to (1 l) since 

2 E[w•((-1)N(')) 2]= B-A 2 = E(wo) 2 
2 

2 (1)(1) = 2 
completing the proof. 
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