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fuvid L. Judd 

Department of Physics and Lawrence Berkeley Laboratory 
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August 29, 1975 

ABSTRACT 

A new theory of small-amplitude gravity waves on any given 

steady two-dimensional deep flow is developed. Rigorous solutions of 

linearized equations in curvilinear coordinates for quasi-sinusoidal 

traveling waves are indicated for the dispersion relation, wave 

amplitude, wave-number, phase and group velocities, wave energy, energy 

flux, and its spatial change; all are functions of known surface flow 

speed and equivalent "gravity" reduced from g by surface tilt and 

modified by centrifugal acceleration. A WKB approximation is justified 

and employed for all but special classes of small waves traveling on 

all given Stokes wave-trains, including maximum and near-maximum trains 

(except at their crests); for these flows analytical models are devel-

oped. Spatial change of small-wave energy flux differs greatly, for 

all wave-like and most other steady flows, from that in the widely-used 

"radiation stress tensor" theory of Longuet-Higgins and Stewart. It 

is argued that the linearized results retain quasi-quantitative validi~ 

for finite amplitudes; they are used to·analyze particle acceleration 

at a confluence of crests, and to describe in detail a mechanism for 

triggering whitecapping of large waves by small shorter ones moving up 

their downwind sides. 
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I. INTRODUCrION 

The behavior of gravity waves on water has always fascinated 

the eyes and ch'3,]Jl'nged the reasoning powers of men. Scientific 

observations and mathematical analyses of' their properties have 

proceeded hand in hand with the general advance of experimental and 

theoretical science from its beginnings to the present. An impressive 

body of observational data and theoretical calculations has been 

accumulated on this aspect of what is now often termed the air-sea 

interface, but it appears that we have only scratched the surface of 

many difficult problems which are of practical importance to physical 

oceanography, meteorology, and other areas of study and application. 

An illustration of the incompleteness of our knowledge is . 

provided by the problem of the interaction of two trains'of waves 

having different wavelengths and amplitudes. This problem may be 

considered an idealization of the interaction problem in a real wind­

generated wave field characterized by a statistical distribution of 

amplitudes, wavelengths, phases, and directions of propagation. Many 

authors have carried out elaborate calculations to explore these 

interactions. These include studies linearized with respect to various 

small quantities; sophisticated higher-order perturbation analyses, 

sometimes based on techniques, and using notations, borrowed from 

quantum theory; and interesting new methods appropriate to the general 

study of nonlinear waves in dispersive media. There is much heavy 

weather to be encountered in trying to make a safe passage through 

this sea of papers, yet no one seems to have put forward in simple but 

elegant form a fully adequate treatment, in linear approximation, of 

the behavior of a wave train superposed on an arbitrary steady wave-

- .. 
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like or other nonuniform flow in deep water~ The methods developed 

here lead to such a treatment and shed new light on this behavior. 

The evaluation of energy associated with these wave trains, its 

propagation, and the exchange of energy between a ,wave train and a 

given steady flow (whether or not it represents another train of waves) 

has occupied many investigators, with fre~uent reference being made in 

recent years to the concept of a radiation stress tensor introduced in 

1960 by Longuet-Higgins and Stewart. The methods we develop here for 

two-dimensional flows lead directly (for linearized waves) to 

expressions for wave energy, energy flux, and energy interchange. We 

find that the L-H&S radiation stress must be multiplied by a correctim 

factor which tends to zero for small-amplitude wave-wave interactions. 

Another example of our incomplete knowledge is provided by the 

phenomenon of whitecapping or breaking over of waves in deep water. 

This is obviously the mechanism preventing unlimited growth of wave 

energy from the wind, and is of fundamental import~nce in determining 

the character of wind-generated wave spectra, but its details still do 

not appear to be completely understood. Dr. William van Dorn of the 

Scripps Institution of Oceanography told me that he attached importance 

to the role of small waves of short wavelength traveling, relative to 

longer waves of near-maximum height, up their downwind sides, in 

* providing a mechanism for triggering the breaking of the large waves. 

* I later became aware of the papers of Phillips (1963), Longuet­

Higgins (1969~ and Hasselmann (1971) relating to this mechanism of 

whitecapping. The contribution of the present work to this problem 

is principally to provide and justify ~uantitative expressions for 

the growth of small short waves near the crests of long high ones, 

and for their exchange of energy. 

o n O· 
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An experimental program to observe this type of interaction was 

proceeding in his laboratory. There did not seem to be an appropriate 

analytical treatment with which to compare such observations, so the 

work described herein was begun with the aim of filling this gap, but 

has led beyond it to more general results. - . 
This work was originally designed to extend and generalize the 

calculation by Longuet-Higgins and stewart (1960), henceforth called 

LS I, of variations of amplitude and wave-number of a train of short 

waves p:1ssing through a train of longer waves. They used eXp:1nsions 

in Cartesian coordinates, neglecting terms of second and higher orders 

in each amplitude and keeping only quadratic interaction terms of first 

order in each. They also assumed that the ratio of short to long 

wavelengths was very small. In addition, the generally used assumptllrs 

of constant pressure at the interface and of incompressible, irrota-

tional, inviscid flow were made, surface tension was neglected, and the 

problem solved was in two space dimensions. Their results for these 

variations in deep water were obtained as a prelude to the case of 

finite depth and the introduction of their radiation stress tensor. 

Our calculations retain their general assumptions, are confined 

to the deep-water limit, and also treat flow in two space dimensions. 

However, the restriction to terms of first order in the long-wave 

amplitude is fully removed; these waves may be of any height up to the 

instability limit. Only the train of short waverength is treated in 

linear approximation. In addition, the ratio of short to long wave-

lengths is arbitrary; some implications of near-equalitY·':/3.re discussed . 
.. 

We may choose the long-wave flow pattern to be a given steady 

train of "Stokes waves" of finite 'amplitude. However, the periodic 

character of such a flow, which is stationary in our coordinates, i~ not 
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of importance; our work constitutes a linearized treatment of a wave 

train superposed on an arbitrary steady nonuniform flow. A special 

case of this problem was treated by Longuet-Higgins and Stewart (1961), 

denoted by LS II below. Because our results include as special cases 

some of the problems attacked in both LS I and LS II we are able to 

draw an important distinction between wave-like steady flows and others 

having negligible surface profile inclination and curvature. Within 

the domain limited by our linearization of one wave-train, we find the 

form of energy exchange to be significantly different from that pre-

dicted from the radiation stress theory of LS I and LS II. 

Treating the small waves $ linear will limit the rigor of 

applying the results to the triggering of whitecapping, but it seems 

a necessary first step and provides a framework for comparison with 

wave-tank experiments. One may remark that nature has frequently been 

kind enough to allow a greater domain of usefulness to linearized 

analyses than the linearizers have had any right to expect. This 

appears to be the case with respect to many properties of gravity 

waves of large amplitude, in spite of their strikingly nonlinear 

features. 

II. SUMMARY OF RESULTS 

A major part of the present work may be described as the 

development of a small-signal theory of the propagation of gravity 

waves on a steady but otherwise arbitrary two-dimensional flow of an 

ideal liquid. After defining the given steady flow we introduce 

curvilinear coordinates appropriate to its free surface, and derive 

linear partial differential equations for the velocity potential and 

surface displacement of a small disturbance on it. We obtain a general 

f'\ 
i.) (1 0 
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~uasi-sinusoidal traveling-wave solution of these e~uations, and from 

it obtain the dispersion relation and expressions for wave-number, 

amplitude, phase and group velocities, wave energy, energy flux, and 

its spatial rate of change at any point on the given free surface. 

These expreqsions are rigorous 'solutions of the linearized problem. 
• I 

Their interpretation is straightforward and exhibits the physical 

concepts clearly; it is especially simple if aWKB approximation is 

well justified. We discuss this approximation mainly in connection 

with wave-like steady flows. We prove WKB validity for a large and 

important portion of the entire small-wave spectrum on all steady long-

wave trains except those of nearly-maximum height; for these its 

validity is proved for all but a well-defined fraction of this portion. 

With this exception, the approximation is valid for all small waves 

propagating in bottom-fixed coordinates in the same direction but with 

lesser phase velocities; these are the waves traveling up the downwind 

sides of the longer waves. Some of these waves are not short with 

respect to the waves of the given flow. The properties of all other 

linearized waves are contained in our general expressions and can be 

worked out as desired. The WKB approximation becomes invalid on some 

If " wave-like flows only for small waves of great length and for anomalous 

waves with group velocity nearly the same as the phase velocity of the 

given wave train; their existence and properties have been noted by 

others. 

The results of LS I for amplitude and wave-number changes emerge 

as special cases of ours in the limit of small-amplitude long waves of 

great length as expected, but our more general results are obtained by 

a simpler calculation once our foundation has been laid. They depart 



-7-

significantly from those of LS I for long waves of large height. In 

p3.rticular" for rather short small waves the wave-number increases much 

more rapidly in a small region near the crest of a long wave of nearly-

maximum height. This region is 1.B.rger for longer short waves and 

includes the entire long-wave profile if the trshort tr and trlong '! wave-

lengths are comIRrable. Variations of amplitude, wave-number, energy, 

and energy flux in this region, and in the more familiar one, are 

described by limiting forms of the more general results. 

In order to generate analytically tractable expressions for 

these results, and to test the validity of the WKB approximation on 

which their simple form depends, we have developed an extremely simple 

and fairly accurate mathematical model of the profile of a wave of 
/ 

maximum height. This model may have uses in other contexts. In 

addition, we have made an approximate analysis of flow properties near 

the crests of waves of nearly maximum height, which enables us to 

estimate the p3.rticular'waves for which the WKB approximation becomes 

invalid in this region, as well as to establish the forms of upper 

limits on the growth of wave-number and amplitude. These mathematical 

models are described in a comp3.nion p3.per, in which comparisons are 

also made with the model profile of Longuet-Higgins (1973). 

The comparison of our results for waves on an arbitrary steady 

nonuniform flow with those of LS II is of p3.rticular interest. Because 

our results are two-dimensional the comparison is with the flow they 

describe as vertically upwelling. Their results for wave-number and 

amplitude changes are obtained in differential form from a linearized 

calculation for a specific shape of flow; they are expressed in terms 

of the co-moving phase velocity which itself depends on position along 

o a 
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the flow through the wave-number. In contrast, our results are obtained 

directly in integrated form and depend only on knoWn properties of the 

arbitrarily given flow; they must be differentiated to make comparisons. 

Their differential forms agree with our more general ones only for the 

very special flow shape they selected, and will differ for any flow 

with appreciable surface tilt or curvature; however, their integrated 

results for wave-number and amplitude agree with ours. 

" They employ their amplitude result as a criterion for deciding 

among several alternative general expressions for interchange of energy 

between waves and a given flow. However, their expressions for wave 

energy, energy flux, and its spatial rate of change are all in disagree-

ment with ours except on their particular flow shape. We show that the 

general energy relation they select, which depends on their radiation 

* stress, must be greatly modified for small waves riding on all wave-

like steady flows. This result is important because their radiation 

stress has been used by many workers in the study of wave-wave inter-

actions. We introduce a "wave-interaction function" which appears as 

a factor multiplying their radiation stress, and show that it is very 

small on wave-like steady flows unless they are of nearly-maximum 

height, and even there is small except near their crests. 

The various differences mentioned above and described in detail 

below are all related to a local p3.rameter G of the given flow. This 

* Whitham (1962) expressed dissatisfaction with their radiation stress 

and discussed energy transport for finite depth but his analysis 

does not appear to be directly extendable to the deep water limit. 

See also our comments in Section XIII on the "previously overlooked 

mechanism" described by Hasselmann (1971). 
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is the component of the equivalent or effective gravity-like accel-
r, , ~',.:"'! ;'. "J. ...~:;~ ~'~J_-': \"; (j::t .;:. J .:,.U ~1 ~~l 'j ""f C)" 'J r:~.) f~O j' ~tB.Le f:~ .~:~.ct::r ':';" ') "L:.! ~":: .f' ::", I~~·'.( .i:. :).'};;j' J: 

eration normal to the given free surface experienced by the small 

waves; G is reduced from the acceleration of gravity 
,;.: ~.'(;f.f.J~..;JJ rj}:J(J ~.~ ,~.;.t(,~:· ~.~~ :;. r}~))' .~!r:.): i,~f/,;'.[ ~~'q~L"x:" .... ;.::' r~. ~.~ r.J'.· ~ 

g by surface 

replaces g both in the small-wave dispersion relation and in the 
JJ':../~.,~f '..,.l::~.,.L;j~:~:.:i:,:"~ ::)L;f~J' n: ~;:.J(:1·~:~;\.J, .. l :···l.·.~J;\ CJ"":J:~.~,,,~·'.l LT.:~.: .. ~~.t :)(Lt ..... r1·l~:'.~)L; C';.:~ 

expression for small-wave energy; we exhibit the interesting property 

of most wave-like'Ost'elidy::tlow,SYthat:C s2Jfs' di6~'eiylp~dpb~t:iX)~k:i to the 

'ue ,;rs;~fac'e',f]jo"'iW speed rd' I'f,,;this pr\)iiortf:0iialitY:!'.:f:s';exa.d~[]:there is, in our 

,; lTinea.r.)iz ed,~;tr.ea:tment: bf t:ne:1"smalJl~ wa've f:;~~ ri6'i!e~"i:!ndrigEt OJ!" l~he:rgy: b etwe en 

" c.:i';the ·two ::w'a ve:,tra;iris; ",hdwe;ve-r:,' :th1's::Uls ~tibt;;tr·li'Ei'·6r:t ne'ar1:§fim!3:x1rnUm waves 

': f:. (a;nd, .les:ped.ally! .• near) ·,the ir; '(!r;est·s'}..o~· f·or' ~ilbw'S:',:brj)d 6n~ftarit·~ '::s~ll 

.1L .. ' "ie .,U·:;'0l'.i"':)1·.:Ther !f'pnctiptJ. :: -G) jha;s::,another- '.ihtere·st"ihgJ.i:>fbpejftJ;Jii('rn~ only 

.:. I "';<.' : ... ~ef'fect,on J,:our,:disper.si"OD);relat'iOIis'of :a:)·Iii.od~r~te'~(d~partute:W6rr{; validity 

~'·F1' n :. J. crJ'\!l The I{small.ne's S;·'bf:C tIle" productT;j~k . '()fGsmal['..).wafv~J a;rn:p:I-Hude and 

~';j~Twa.ve ~number".;(:is'(,a..:: measure[:'0f the::valldity '(5f\.!f:'ine~rizat10N:; ~'I:h;'addi t ion, 

: ,thei:;growth:.::of t}lis ~od.uct,'.ri1easUres·.the approci:t:h t6warc("maxltnum height. 

We hqpe;.,that. ,our'result.s';retain arl.'>elenient:of,.ifq:w3il:itati VEa VciiHfity 

Q,ey:ond·,thec;domairf:.,of,;rqu.a:si .. lineaf'ity(up toward Ftlie t::staoi1itY'il'Ymit . 

. ' '. ,~.j 1 )-{:ithin;'thei; 'ld.m~:ta trons of: ,)t'h.:i:s .f:plaus 1ble', ex.t'erfsfori'i we": lla've"TfrlV'e s -

'11)') f1 itigated ct.he.' acdeleram.;on of! surface "'p:i.irti:6-les ':'b:l flufd:"at·;·a;·i"C'ohfluence 

of wave crests. The results support our conjectu:r'e~<Jtnat~,::t:ri:l'i3)(atcel­

':;')i:'J"eratiohma:y rarige' .. p;etwe:en 'c.~ "g;f.1.'a:nd·! :g: 0:fbr':'limit::i;tig 'Cs{tuations on the 

• - f' .. '" 't , ..: ". ,. _._ : .. ~ 
border, 'off instabH,±ty' : :":'we/e'xhib'it" 'exalhpl"es':i'ti')~whi'brFiH :faJng-es'',,()v 

~'. \.... . , ~ ). 

L~'UJl·.;.t'(!r.o~ ., ... ~.g,:,:to, "3gy'4+.;" -'{[n':·the;;J""Cbnt!1\lcri'ng.'::sec:t:r0ti'!we~ ail~o ~:€five:~::a::i(:qual-
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itative picture of the relation of our results to the triggering of 

whitecapping. 

This description indicates that our methods may be useful in 

other hydrodynamical free-surface problems. Therefore we have tried 

to describe them clearly and completely in the sections that follow. 

, ' 

III. THE LONG -WAVE TRAIN OR OTHER STEADY FLOW 

In coordinates fixed with respect to deep water at rest, our 

long-wave train mdves to the left with phase velocity u 
o 

The 

shorter-wave trains to be emphasized below also move to the left in 

these coordinates with a smaller speed. We adopt a coordinate system 

which moves with the long-wave crests; their flow rattern is then 

steady and is assumed known in full detail. For wave-like flows such 

knowledge could in principle be gained (1) by keeping many terms of the 

Stokes exransion, (2) from more sophisticated techniques, such as those 

reviewed by Wemusen (1960), or (3) from the output of a digital 

calculation on a large computer. Alternatively, any suitable nonwave-

like steady flow may be postulated. The velocity potential of the 

steady flow is §(x,y); its velocity is U = V.!, and if§ = 0 • 

With Y increasing upward and x to the right, we have § ~ U x 
o 

. wave-like flows as y -+ -00. Because of our choice of leftward 

for 

propagation in bottom-fixed coordinates, both u 
o 

and the velocity of 

propagation of the shorter waves to be emphasized are positive in our 

coordinate system. 

The free surface is defined by y = Yf(x). On this surface 

there are two boundary conditions: (ej)/ex)(dYf/dx) = ep/ey , 

expressing the kinematic condition that flow at the surface is rarallel 

... 
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to it, and 
1 -+ 2 

-pip == gyf(x) + 2' I 9 JI == constant, expressing conserva-

tion of potential plus kinetic energy, t~ough the Bernoulli relation, 

for particles flowing along the surface streamline. The free surface 

departs from the horizontal by an angle a; its slope is given by 

tan a == dYf/dx. We reserve the scalar symbol U for flow speed at 

the surface; of == (op/ox)2 + (oj)/oy)2 at y == Yf(x). 'In what follows 

we assume that Yf(x) and U(x) are known; they contain all we need 

to know about the steady flow. 

IV. CURVILINEAR COORDINATE SYSTEMS 

We introduce curvilinear coordinates (s, n) in the neighborhocxi 

of the unperturbed free surface, whose equation becomesn == O. Dis-

tance normal to this surface, measured positive away from the fluid, 

is n distance measured along the surface in the direction of 

increasing x from some fixed reference point is s. A point in the 

neighborhood of the surface has the value of s associated with the 

base of the perpendicular of length n from the point to the surface. 

These locally defined (s,n) cordinates, shown in Figure la, are useful 

in the differential neighborhood of n == 0 because they have metrical 

simplicity (they measure lengths directly) and are orthogonal there 

but are inappropriat~ for investigations at finite values of n where 

their metric properties are less simple; the system even becomes 

singular where the perpendiculars intersect. 

An orthogonal set of curvilinear coordinates shown in Figure Ib 

and having useful properties throughout the flow is provided by the 

equipotentials J == constant and streamlines if == constant of the 

complex velocity potential W(z) == W(x + iy) ==p(x,y) + i'f{x,y) of the 

gi ven flow. This function may be extended as far as needed by analyti,c 

o 
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continuation outside the unperturbed free surface with due regard, in 

their differential neighborhoods, for branch points which appear at the 

crests of a wave of maximum height; it is therefore valid to extrapolate 

properties of this unperturbed flow beyond its boundary by a Taylor 

series in the displacement of a small added wave. 

We will employ the (f,}D coordinates in Section VI, because 

of the useful property that under a transformation of coordinates from 

(x,y) . to (p, p) 
:~2/~_2 operator a ox 

by a conformal mapping W(z) = jj + 

-:,.2/ A _2 + 0 v~ becomes proportional to 

(Morse and Feshbach (1953), sections 5.1 and 10.2). 

iijr the Laplacian 

+ 

The surface boundary c.onditions at n = 0 for steady flow are 

9P/dn == 0 and gYf(s) + ~ uf(s) = constant in these coordinates. The 

tangential component a of acceleration a of a surface particle is 
s 

* given by dU/dt == (dU/ds)(ds/dt) == uu' differentiating the Bernoulii 

boundary condition with respect to s, and noting that dx/ds = cos a, 

a 
s 

-+ a • A 

e 
S 

= UU' -g sin a , 

-+ 
the tangential component of g, as on any inclined surface without 

-+ 
friction. The normal component a of a is centripetal and has 

n 

magnitude uf/R, with R the radius of curvature of the surface. We 

take R positive where the surface is concave upward; in these 

coordinates R-l = da/ds = a' , and 

a 
n == 

-+ 
a . A 

e 
n = ufa' • 

A prime denotes a derivative with respect to s of a quantity 

depending only on s . , A A 

e and e are unit vectors. s n 
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For a wave of maximum height a' -+ 0 
o and a -+ ±30 near the crests, 

so that a -+ 0 and a -+ 
n s 

The complete Bernoulli equation holds throughout the fluid in 

the form (pip) + 2
1- I~ ;[12 

v ~ + gy = constant for steady flow. 

Taking the normal component of the gradient of this equation, evaluated 

at the surface n = 0, we have 

1 A 
+ - e 2 n 

2 
V 1"7 j I 

On the surface, dy/On = cos a; the second term is 

A 

e 
n 

• [Ud(ve )/ds] = e . s . n + tfde Ids 1 
s 

where we have used de Ids = a'e s n 
Therefore on n o 

= g cos a + tfa' 

tfa' , 

The first term in the pressure gradient supports the fluid against the 

normal component of gravity while the second provides the force to 

produce centripetal acceleration. We shall need this quantity in the 

following section. 

The curvature of the surface streamline is given by 

A 
e 

n 
V tn Iv .J I" and that of an equipotential, at the surface, by 

A 

e 
s 

~ IJ I~ 71:1 Th t t· 1 R-l and u'/u v J!·n v p ese curva ures are, respec l ve y, 

in magnitude. We have already defined the sign of the equi-

potentials are concave in the direction of increasing s if. U' is 

positive. 

V. DERIVATION OF THE WAVE mUATION 

We now add a small time-dependent perturbation ¢(s,n,t) to 

the velocity potential. The displaced surface will be located at 

n = s(s,t). The gravitational potential associated with S is 

000 
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g; cos a: (see Figure 2). The quantities ¢, ,;, and their derivatives 

are taken as small of first order, and higher order terms are dropped. 

To develop the kinematic boundary condition on the displaced free 

surface we note that the component of flow velocity at n = ~ (s, t) 

which is normal to the direction of the unperturbed surface at the 

same value of s is given by 

A 

e 
n 

The second term may be evaluated by considering sand n to form a 

~,,2it/~~2 = _~,,2;r/"s2 = -~u' locally Cartesian system, whence SO p, un - SO 1:', ° - s on 

n = 0 since vFj) = O. Alternatively, we may notice that the flow 

velocity "9/ is rotated as we move outward along an equipotential, 

so as to remain orthogonal to it; this develops an outward component 

equal to its magnitude U times the rotation angle. For small ; 

this angle has magnitude ;U'/U (where U'/U is the equipotential's 

curvature) and is a rotation toward n = 0, generating an inward 

normal component, if U' is positive. Thus the second term is 

-u(gU'/u) = -sU', in agreement with the first evaluation. 

The boundary itself moves normal to the unperturbed boundary 

with velocity dg/()t, so the net normal velocity is 

(d¢/dn) 'n=o - U' g dg/()t • The tangential component of velocity, 

djJ/dS = u, is needed only to zero order. The ratio of these velocity 

• J 
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components is the sloped~/ds, to first order. Thus the linearized 

kinematic boundary condition is 

Since dU/dt 0, we may write this as 

d¢ 
Ud; 

on n == 0 . " 

on n == 0 1 

The Bernoulli surface condition for time-dependent flow is 

o 
n=~ 

cancelling the terms pertaining to the steady flow at nO, we have 

to first order in ~ and ¢ 

[(~ + U }.) ¢ +~ , gnov1v jl2 + g, cos a] o . 
n=O 

The gradient term was evaluated in the preceding section; the 

2 r _p-l(:4.-/:::"'~) coefficient of ~ is g cos a + va , equal to Vi-' un on 

n = O. It represents the equivalent or effective gravity-like accel-

erationexperienced by the small waves; it is reduced by tilt 

(g ~ g cos a) and altered by centrifUgal acceleration (if a , 

Thus our Bernoulli condition is 

L (1 I, 0 n"" 
j ')I '" 
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G~ on 

which may be written as 

on 

The linearized kinematic and Bernoulli boundary conditions 

above are simpler, and display the physical considerations more clearly, 

than those resulting from their expression in cartesian coordinates, 

. utilizing a displaced free surface located at y:= Yf(x) + S(x,t) 

(see Figure 2b): 

and 

0, 

o. 

It was a tedious and nontrivial exercise to demonstrate in detail the 

e~uivalence of these pairs of e~uations in the different coordinate 

systems; this will not be done here. In addition to the inherent 

complexity of the second pair, the two sets differ intrinsically due 

to the angular displacement of the (s,n) axes which varies as a 

function of s or x. The Cartesian set ac~uires several additional 

terms when altered (as in LS I) through Taylor expansions in Yf 

(implying that the long-wave amplitude is also small of first order),. 

! so as to be evaluated at y:= O. Comparison of the resulting e~uations 

with ours then becomes even more tedious, although the Cartesian 

.r 

'" t' 
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second-order partial differential equations for ¢ obtained before 

and after this additional expansion (in the limit of small Yf) can 

be shown, again with difficulty, to be identical. 

Inserting Us from the second boundary condition into the 

first and multiplying by U/G we obtain the linearized wave equation 

for ¢: 

. J ifc 
+ G ds ¢ o on n o. 

From the form of this equation it is evident that the quantities U/G 

and if/G are the appropriate local (space-varying) units of time and 

,length, respectively; both are known functions of s. He may define a 

dimensionless distance cr along the unperturbed surface by 

cr is a known function of s. The cor-

responding dimensionless normal distance ~ may be defined near 

n = 0 by d~ = (G/if)dn = (G/U3 )df, and a local time T by 

dT = (G/U)dt; then 

We emphasize that the linearized partial differential equations 

developed here constitute one of our most important results. The use 

we have made of them in this paper suggests that their generalization 

to other hydrodynamical and oceanographic free-surface and other 

interface problems can be expected to yield results of greater physical 

clarity in simpler form and with less effort than by Cartesian expan-

sions. We will not undertake here to extend them to the cases of ~te 

depth, three space dimensions, or j.nternal waves at a curved interface, 

although these extensions should be practical and equally effective. 

8 q 
~ .. (1 0 



VI. STh1ULTANEOUS SOLUTION OF LAPLACIAN AND WAVE EQUATIONS 

The simplest limiting situation is that in which the long-wave 

train-has zero amplitude and the fluidi.s at rest, with--a horizontal 

surface, in bottom-fixed coordinates. ThenU = U , o 

s = x, n = y, and} = U s. The Laplacian becomes o 

G = g, 

[(d
2

/dS
2

) + Ccf- /00.2 ) J¢ = 0 and the wave equation becomes 

ex = 0, 

[(djdt) + U (d/ds)J2¢ + g("d¢/Oo.) = O. o The traveling wave solution is 

k n 
¢ = A e 0 

o 
2 

(U k - CD) o 0 

cos(k s - rut), the dispersion relation is 
o 

= gk , 
o 

the phase velocity is v = CD/k = U 
P 0 0 

we have the expected linearized gravity waves traveling in both 

directions with phase velocity 

moving fluid. 

1 

(g/k)2 relative to the uniformly 
o 

We therefore seek a solution reducing to this form in this 

limit, which will be particularly appropriate for waves sufficiently 

short that the fractional changes in U, G, and ex over one wave-

length are small. The parameters of this wave train are shown in 

Figure 2a. Specifically, we require that 

~(S, n, t)lll"~" A(s) cos rf k(s )ds - mt ] 

We must now determine the n-dependence of this function near n = 0 

which satisfies Laplace's equation and use it to evaluate d¢/dn in 

the wave equation. This can be accomplished with the aid of the 

J - i.E coordinate system described earlier, in which the Laplacian 

operator has the form (d
2
/dj) + (d

2
/ dj2). We note that. ¢ is the 

real part of a complex perturbation velocity potential 

w(Z,t) = w(} + itt) = ¢(j, j,t) + i'Jf(j, j",t). 
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Choosing w to be an analytic function of Z of the form 

exp(-i[F(Z) - fit]}, with F an analytic function having real and 

imaginary parts R(j,"if) and I (j, ~), we have 

¢ = eI cos X, <!r = _eI sin X, 

where X = R - fit. It is a general property of analytic functions that 

The Cauchy-Riemann relation is 

Because dJ/d~ = dO/d~ = dS/dn near n = 0, 

~I = n=O 
d<!rl' I [dI . X dR X] : - d; = e - s~n + - cos· / 
s n=O ds ds n=O 

henceforth I. and R are regarded as functions of p only. To 

complete the identification we set I~) 

. R(j) == JS k(s' )ds' • With dj = U ds 

and dI/dJ = (AU)-l dA/ds. 

== !n A(s) 

on n = 0, 

and 

dR/al = k/U 

Applying the operators 
d d 2 ( ¥ 0t + do) and d/ dT) to ¢, 

inserting in the wave eqUation, and dividing by A, we obtain 

-!} ! dA 1 sin X 
2 A dO

J 
0. 



-20-

* Both square brackets must vanish, since the equation must hold for 

all t. The second is a perfect differential which, when integrated, 

yields the relation between A(s) and k(s): 
,_._-....-............ __ .. ,."- .-, .. ~ .. ,,- ......... . 

! 

i 
L 

-1 
C I ~ + (U/G)(w - Uk) I 

2 

-.' ~ , 
! 

Here, C is a constant of integration whose value is expected to be 

unspecified in the solution of a set of linear homogeneous equations. 

Its value is irrelevant and we set it equal to unity. [This form of 

analysis becomes inapplicable near the singularity at (U/G) (Uk - w) 

corresponding to vanishing group velocity in our coordinates; This 

anomalous wave is outside the spectrum of interest to us, but we 

discus,s it briefly in a later section. J 

We use this relation between A and k to eliminate k(s) 

from the first square bracket, which then determines the dependence of 

1 
2' 

A on o. Inserting rl-k/G = (Uw/G) + ~ ± A-
2 

2 
and combining terms, we 

obtain 
,. '."".'-"'. 

, d2A/di + [ t + (Uw/G) JA -3 A 

., 
i 
1 

O. 

This apparently unpleasant nonlinear differential equation arises in 

the development of the phase-amplitude form of solution of equations 

of the Mathieu-Hill type (Courant and Snyder (1958), pp. 9-11) and more 

generally of the type to which the WKB approximation is commonly 

applied. If the solution of the differential equation 

* This does not apply to the static case w = 0, in which the ar-

guments of the trigonometric functions do not depend on time. The 

two conditions then reduce to a single one, preventing the separate 

determination of A and k, but one may take the limit as w ~ O. 
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is expressed as the real part of A(a) exp[ir(a)], with A and r 

real, the differential equation is equivalent to 

and 0, 

with C a constant. [The form of this pair of equations depends only 

on A2/C, verifying that C is arbitrary.]' In this way we see that 

the dependence of A (and thence of k) on a (and thence on s) is 

related to the linear ordinary differential equation 

+ [ ~ + (Ucc/G)]F = 0; 

A(a) is the amplitude of the envelope surrounding the quasi-sinusoidal 

oscillations of its solutions. 

Application of the conventional WKB approximation to this 

equation yields the approximate solution 

F( a) '" [~+ (Uo/G) 1 -;'; exp {t i r [ ~ + 

r--"w".,~'--' -" .. -... ~ .. -... -~. "'''-''-'''-'--'1' .---- , 
i -4 i A cc [t + ( Um/ G ) ] , 
t '. __ .~ ", __ . ._ ..... '" ...... -

(Um/G) ] 

1 
'2 

corresponding exactly to neglect of d2A/do2 in the nonlinear equation 

for A. [This form becomes inapplicable in the limit Um/G ~ - ~ , 

the anomalous wave mentioned above.] Subject only to the validity of 

this approximation, we have thus obtained a complete solution in closed 

form for the velocity potential of the linearized waves propagating on 

an arbitrary steady flow defined by the functions U(s) and G(s). 

n • • (1 /'{ 0 0 ·.l< r' r-~ f i' 
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The displacement £(s,t), shown in Figure 2a, is given by 

:::: :::: ~ [(Uk - CD)sin X _ ~ dA cos X I GAds . 

this may be written as 

~ a (s) sin [{ k ds - at - 5( s) ] , . 

which defines the small-wave amplitude a(s) and phase o(s). 

VII. THE RIGOROUS DISPERSION RELATION: AMPLITUDE, WAVE-NUMBER, WAVE-

ENERGY, AND ENERGY FLUX 

The dispersion relation in familiar terms may be obtained from 

the first of the vanishing square brackets in the preceding section: 

i 22 / -1 2 / 2 i (Uk - CD) :::: Gk(l + (U-kA G) d A do ] 

in which the smallness of € thus defined is associated with the 

smallness of d
2
A/d0

2 
and therefore with the degree of validity of the 

WKB t f A() S . 11 d2A/d02 b 1 t d approxima ion or o. pecif1ca y, may e neg ec e 

if it is small with respect to either of the two remaining terms in the 

nonlinear differential equation for A; this is equivalent to the 

condition IA3'd
2
A/d0

2 
I « 1 with our normalization of A. We will 

relate € to this quantity below. For small E the familiar 

dispersion relation (Uk - CD)2 :::: Gk is then valid locally, using 

local values of U and G. 
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It is convenient to introduce dimensionless fre~uency and wave-

number variables appropriate to the local units of time and length 

described in an earlier section: 

~ -

* withG G(l + E) so that when the WKB approximation is 

justified. The rigorous dispersion relation is 

2 
(~ - p) = q, or p 

The two branches are shown in Figure 3. It is simplest to describe 

them with reference to a given flow with nearly constant G and U, 

a condition corresponding to a long~wave train of very small amplitude. 

The phase velocity v = ex/k, 
P 

measured in units of U, is the slope 

of a line from the origin a to any point E in ~uestion; the,group 

velocity in the same units, is the slope of the tangent 

at E.· On the upper branch OA both are positive and both exceed U. 

In bottom-fixed coordinates these waves propagate backward with respect 

to the given wave train; we shall not emphasize them in our treatment 

here, although we justify the WKB approximation on a large part of this 

branch. On that part CD of the lower branch for which w > a both 

v and v are positive but less than Uj these waves are of greatest 
p g 

interest to us. On BC v is negative and v positive, both being p g 

less than U in magnitudej in bottom-fixed coordinates these waves 

. move in the same direction a.s the given wave but with greater phase 

velocity and lesser group velocity than U. Finally, on OB both v p 

and v are negative and greater than U in magnitude. These waves 
g 

move in the same direction as the given wave in bottom-fixed coordinaUffi 

o 6 o 
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with a phase velocity more than twice as great as U. To keep signs 

straight we assume that U and k are always positive. We refer 

repeatedly to these branches in several sections below. [The cor-

responding relationships in bottom-fixed coordinates, in which 
2 

P = q, 

are obtained by rotating the p3.rabola clockwise by 450
• The given wave 

is then represented by the point q = -p = I if its amplitude is 

small. ] 

For long-wave trains of finite amplit~de and other steady non-

uniform flows U and G vary, causing the representative point to 

move along the curve. In our coordinates a steady progression of small 

waves moves along a flow of fixed profile; the same number of crests 

must pass each point per unit time, so (l) is a constant. Its sign 

determines the direction of the phase velocity, which is positive for 

.the waves we emphasize here. Its magnitude defines the short-wave 

train of interest by selecting the short-wave number k = k(s ) o 0 
at a 

reference point So (for example, in a long-wave trough) and solving 

the dispersion relation for (l) using U(s ) and G(s ) for the 
o o 

steady flow under study. 

and 

The local phase and group velocities are given by 

* ~. I 
v U + (G /k)2 = U + c = U[l - (q - p)- ] 

p 

I * 1 
V g = U .; 2" (G /k) '2 = U + c , 

g 

with c and c denoting the local co-mOVing small-wave phase and 
g 

group velocities, respectively; as expected. The upper 

signs apply to branch OBeD and the lower to OA. The quantity 
1 

(G* /k)2- is the magnitude of c, and (U/G*) (m - UK) -= p - q is the 
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ratio u/c; c > 0 on OA and c < 0 on OBCD. The quantity 

I ~ + (u/G)(m - Uk) I = I ~ + (1 + €)(p - q) I = A -2 may be 

identified, for small lEI, with Iv/cl = i(U+ c )/cl; vic is g g g 

positive on AOB and negative on BCD. Although the only effect on 

the dispersion relation of a failure of IE I to be negligible is to 

* provide a varying correction to G, the interpretation of A given 

above will also be altered. 

We introduce the symbol 6 for the ratio u/c; 

6 - U/e (u/G)(m - Uk) - p - q. 

The solution of the rigorous dispersion relation is given by any of the 

following: 

1 

P = q + q2; 

1 1.. 1 6 = + (4 + p)2 - 2"; b.-I 1 1 1 1.. 
- [ - ( )2] P 2"+ '4+ p • 

In the first equation the upper sign applies to segments OBCD and 

the lower to OA; in the others, the upper sign applies to BCD and 

the lower to AOB. On the segment CD' of special interest to us, 

and 6< -1. In this notation ~ + (p - q) p > 0, q > 1, 

1 1.. 
= ;. ('4+ p )2, the upper sign applying to BCD and the lower to AOB. 

-2 
Thus A is equal to (~+ p)i = ~ for small lEI; then 

a re IALYU I sec 5, 

tan 5 = _6-1 dUn A)I do • 

The quantity € is e~ual to (qA)-l d2A/d0
2

; if we use the 

WKB value for A, we have 
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E 
1 I 3 2 2 r (4' + p) q]A d AI do • 

Thus the smallness of E is connected to the validity of the WKB 

approximation for A. The square bracket is less than unity everywhere 

on segments BCD, so that the smallness of E follows directly fro~ 

WKB validity for the small waves of special interest here. Additional 

examination is required for the other branches. This will be deferred 

to the section on WKB validity; henceforth we neglect E. 

It is well known that the potential and kinetic energies per 

unit surface area associated with a train of small-amplitude gravity 

waves, when averaged over a wavelength, are each equal to 
1 2 
"4 P ga , 

so the total energy E per unit surface area is 
1 2 2' P ga .. However, 

our waves are propagating on a surface with local effective gravity G, 

so we have 

E 
1 2 2" p Ga oc 

1 

from this we have E oc k(~ + p)-2, or as a function of p and U 

From a physical point of view it is more illuminating to write this in 

the equivalent form 

E oc G/lc(u+ c)1 = G/lcvloc Ic/(vv)I,! ~
-.-----.. - ... --.. -.-•• - .• , ..... -,. ....... .-. ,......... ._ ..... --_ .. _ .. --_ ..... _- 'I 

. - ...... '--'- .. ' . .. . -- .~.. . ._ ... -g--..... .- p g .... ,,~j 
obtained by use of the relations above; In the same notation 

and 

r"·.-".... . . ....... _ .................... [ 

1 
k = Iml (u + c) I ! 

....... , ., ....... -............................... -1 
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-_ .. _----,._---- ._---_._-, 
.1. .1., 

I C(U + C )1- 2 ICV
g

l-
2 I 

g I 
a cc 

-. - .......... ~---.-__ .. .., .. ~ ..... " .... ~. __ .... _!;O._ . ......_---------" 

Because the energy of linearized waves is propagated with 

velocity c 
g 

in fluid at rest, and with velocity v = U + C in 
g g 

general, the flux of wave energy J (in units of energy crossing a 

unit length parallel to the ~d.ve front per unit time) is given in 

magnitude by 
r-·----·-··· .. ,- ... --., ... -..... , ..... 
i 
i IJ I 
! 

Elv I g 
oc d/ Ic I cc Ic/v I p 

However, the signs of v and 
g 

c are the same on AOB and opposite 

on BCD, while v is negative on OB and positive elsewhere, 
g 

giving rise to the following scheme: 

Region Wave Energy Flux J oc: Jam Vg w,p, and v c and 
p 

OA 
1 .1. 1 

+(G/U) [("4 + p)2 - 2' J >0 > 0 > 0 

. 1 

OB -(G/U)[(~ + p)2 + ~ J < 0 < 0 < 0 

BC 
1 .1. 1 

+(G/U) [(4 + p)2 + 2' ] > 0 <0 < 0 

CD 
1 .1. 1 

+(G/U) [("4 + p)2 + 2' J > 0 > 0 < 0 

C g 

If J is not conserved in passing along the profile of the given flow, 

energy is being exchanged between the small-wave train and the steady 

flow.\ Our interpretation of these expressions for wave energy and 

energy flUx is given in a later section. 

It is implicit in our linearized treatment that small-wave 

energy and energy fluX are small of second order and that changes of 
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wave-energy flux produce negligible perturbations on the given steady 

flow. The back-effect of these perturbations on the small waves is 

neglected in this paper but we note the resulting lack of overall self-

consistency and the related lack of accuracy for small waves of finite 

amplitude where the given flow is very slow. 

VIII. APffiOXJMATE EVALUATIONS FOR LARGE AND SMALL p 

On the branch CD of greatest interest to us the dispersion 

relation displays two distinct and basically different limiting regimes 

of behavior, characterized by Un/G » 1 and Un/G « 1, and 

separated by an intermediate transition range. For p» 1, cor-

responding to very short small waves, we expand in powers of 

obtaining 

Itan 

q - p :t p~ - ••• 

L = ~ 1 + p- 2" + ••. 

-1 
L 

1 

= + P -"2 + (2p (1 _ 

A = 

a oe 

51 = 

E ex! 

-1/ p 16 + ... ] 

u-l 1 1 

Ipl!; [1 ± ~ p-"2 -
1 

Ip-"2 d(d;n A)/da I « 1 

1 1 
u-l p-"2(l:t p-"2 + .•• ) 

+ 1 -1 -p + 
2 

, 

... ] 

-1 p , 

with upper signs for CD and lower for OA. This is the regime 

appropriate to the description of short waves riding on long waves of 

small or moderate amplitude, and also on long waves of maximum or 

nearly-maximum height but suffiCiently far away from their crests. In 
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both cases·j.6j» 1; the local given flow velocity U is large with 

respect to the small-wave co-moving phase velocity c, so p is 

large of order ~/~ with ~ the local short-wave length. In such 

regions we have 

r-··· -. -'-'-'-"-'~'-'--" .... --.--.. -...... ~- .. --. -.... -~ .... ----...... -- -_ ...... -" '" . 
Uk ~ constant, A

4
U/G ~ constant, ~4U3G ~ constant, 

L· EFu3/G ~ constant, and ~U/G ~ constant • 
...................... _a_ .... __ ......... """':' ________ . ___ ...... _ .. a ___ ... ______ ... ~ ........ ., _____ ........ '~_-.~~."".-"'''' .. ~ _.,. -... " ...... ~ ..... _ ... _-, 

In order to compare these results with those of 18 I it is 

necessary to pass to the limit of small amplitude for the long waves. 

To first order in aL~' 

x -+ S 

1 

U .... (g/~)2 (1 '- aL~ sin kLX), 

G .... g(l - aL~ sin ~x), G ~ U, A .... constant. 

Thus in this limit kr/k .... _Ur/U, aria -+ _ur/u, so that 

a/ao = k/ko = Uo/U = 1 + aL~ sin ~x = 1 + ~Yf' in agreement with 

their results. However, we will show later a departure, in terms of 

higher order in aL~' from exact proportionality between U and G. 

The numerical effects of this departure on small-wave amplitude and 

wave-number are small for small values of a1~ but will prove to be 

significant if the long waves are of nearly-maximum height. 

These results for large p describe the variations of short 

small waves as they pass along the profile of any long wave of 

0 t",,: ; 0 f"~ r;~' o 
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appreciably less than maximum height. The variations may be of interest 

for other purposes, but it would not be expected that small-amplitude 

short waves would influence the breaking of a long wave whose height is 

well below its own instability limit. Therefore we do not present 

numerical evaluations for intermediate-height long waves, but focus 

our attention in later sections on long waves of maximum or nearly-

maximum height. Again we defer discussion of E and J to a later 

section. 

In the opposite limiting case of small p we discard the 

branches near point 0 which correspond to small waves of very great 

length, and work near point C, expanding in powers of p .. We first 

remark that for long waves of small amplitude this situation implies a 

denial of the roles we have consistently ascribed to the long and short 

wave trains •. For small-amplitude long waves uf/G ~ ~-l, so that 
1 1 

ca. ~ k/~ = "L/A.. Thus P ~ ("L/A.f2[ ("-L/A.f2 - 1] and can only be 

small relative to unity if A. is very close to "-L. 

The expansions in powers of p, for either sign of p, are: 

2 
ca. = 1 + 2p - P + ••• 

6 = 

A 

a <l! 

2 
-1 - P + P 

-1 + P -

-l( 1 2 ) U 1 + - p + ••• 
2 

/tan 5/ = /dcJn A)/do I « 1 

E <l! /p/-l U-l [1 + d(i)J 

J (£ P -1 (1 + P + •.. ). 

if WKB is valid 
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In this less familiar domain we have 

ifk/G ~ constant, A ~ constant, aU ~ constant, 

~/G ~ constant, and JU/G ~ constant. 

Unless p is already small in the long-wave trough (in which 

case the "short" waves are not short) this regime can only be entered 

by moving up away from the trough far enough so that U has decreased 

enough to approach c. However, this phase velocity also decreases 

with decreasing U, but less rapidly than as -1 U . Therefore for all 

but rather long short waves the required decrease in U will only be 

available near the crests of long waves of nearly-maximum height. In 

order-of-magnitude terms, CD '" ("A-h. ) (u /G ), 
'L 0 0 0 

where 0 denotes a 

value in a trough. If p« 1 at s, we must have U /G « 
s s 

(U/G )(A /A-). We shall show later that o 0 OL . 1/2 $ G/g ~ 4/3 at any 

point on any long-wave train. Therefore the condition, in order of 

From a mathematical point .of view we can always find, for any 

trough-value of p, a long-wave train for which this will occur, since 

the crest-value of U approaches arbitrarily close to zero as the 

long-wave height approaches its maximum. Physically, we must remember 

that for any value of p the short-wave amplitude and wave-number 

continually increase on their way up the long waves. Therefore unless 

the trough-value a o 
is very small this growth may at some point 

invalidate our linearized analysis, and a little farther up may bring 

the short waves to their own maximum height. Depending on a 
o 

and 

k, this may occur before entering the regime p« 1 if the long o 

o l ' , •. / o a 



-32-

wave is high enough to inClude it, or before reaching the long-wave 

crest if it is not. Alternatively, the small waves may pass over the 

crest a~d descend without attaining their maximum height. 

Thus we see that for short small waves the interesting behavior 

( specifically, -3 u-2 ) ak <X! U rather than associated with this 

regime is confined to small regions almost at the crests of long waves 

of almost-maximum height. Therefore it may be difficult to observe in 

-
laboratory wave-tanks; the difficulty will be least for the longest 

"short waves" that can be considered. 

IX. MODElS OF MAXIMUM AND NEAR-MAXIMUM WAVE TRAINS 

To proceed further, and in p3.rticular to examine the validity 

of the WKB approximation used in the preceding section, we must have 

values of U(s) and G(s) for long-wave-trains of interest. In a 

companion paper I have developed a model of the profile of the maximum 

Stokes wave, tested it by several criteria, and compared it with a good 

numerical solution as well as with the model discovered by Longuet-

Higgins (1973) after my tests had been made. My model is simpler than 

his and represents most properties slightly better, except that in the 

trough it yields a small underestimate of my wave-interaction function 

Q to be introduced below. It will be used in what follows, with the 

effects of this discrepancy being noted where appropriate. 

The wave-train of maximum height is a mathematical abstraction 

or limiting case. It is therefore important to comp3.re the results 

obtained for it with those for more realistic waves which fall barely 

short of attaining this configuration. To estimate U(s) and G(s) 

in the neighborhood of the crests of suchw.aves I have developed a model 

based on the method of Havelock (1919), by eXp3.nding in powers of a 
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parameter of smallness 6 which goes to zero for the maximum wave. 

This model is also described in the comp3.nion p3.per. After this work 

was completed the p3.pers of Grant (1973) and Schwartz (1974) appeared, 

in which the complicated nature of the analytic behavior of the complex 

potential near the crests of maximum and nearly-maximum waves is 

discussed. Although their work implies that Havelock I s computational 

scheme lacks mathematical rigor, it seems probable that these 

complexities do not vitiate the qualitative validity of the behavior 

exhibited by the model, whose predictions seem too reasonable to be 

wrong in their general implications. 

1. The Maximum-Wave Model 

My maximum-wave model profile is a simple parabola adjusted 

o to have a 30 slope angle at the crestj it is given, with origin at 

the surface in a trough, by 

with Ix I ..::;' ~ A.L and ~ the wavelength. The surface flow speed is 

postulated to be given by 

uF 2g(y - y) max 

although this would require a surface pressure distribution varying 

from a constant one by perhaps ± 1% of the hydrostatic difference 

pgYmax (because the model is not an exact solution) rather than the 

constant pressure normally assumed. We define ~ 5 2x/~ 
, 

o ~ I~ I ~ 1 between adjacent crests. Then we find 

o t"" .. ~:.~. 
J"", 
t,} n ~ ... 
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In this notation 

p (Uo/G) == 

in a later section we will need 

1 

4-1 32 (1 + (~2/3)](1 _ ~2)(dP/~). 

The dimens-ionlessp3.rameter 
2 .1-

(ill "L / 32 2g) is determined by specifying 

the wave number k, or wavelength A., of the short waves of 
o 0 

interest at the trough of the long wave of length ~. Thi s p3.ramet er 
1 

and on branch CD p - q q 2 
0- 0- 0 ' with 

Since the smallest value of 
1 

on this branch is unity (ill -+ 0) we see that A.o/~ < 32 rr./4 -::.. 1.36- -. 

for ill > O. This trough value is greater than unity because the 

"local" wave number, differentially defined, increases away from the 

trough; the total distance between short-wave crests becomes comp3.rable 

to the long-wave length as ill -+ O. This limiting behavior is 

discussed in a later section. 

We employ the model to obtain expressions on branch CD for 

the amplification factors a/a and k/k (where a and k are 
o· 0 0 0 

trough values) as functions of ~. These factors depend on the choice 

of ill, or equivalently of A.o/~ or of p. o They are most comp3.ctly 

written in terms of H = 4p and Hy(~) = 4p(~) o 

== H(l _ ~2)~ (1 + ~2/3)3/2: 



a/a o 

k/k o 
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[(1 + H)/ (1 + Hy)]t- 1 + (1 + Hy l~ (1 

1 + (1 + H)2 

1 

~ H + [1 + (1 + Hy)2]y-l 1 

~------'-I -- (1 _ f32)-2 
~ H + 1 + (1 + H)2 

.--.~-.~ .. ~.-- .. --.-~ .. ---------.~ ... --............ - ....... ,-.-._ ... _------_._.--_._----_._-_._---_ ... __ . 

These expressions are complicated, and depend on the parameter H 

which is not simply related, to ~6/~' However, they contain some of 

the principal results of this study and provide a theoretical framework 

against which to compare the results of experiments. It has not been 

easy to guess the most useful graphical forms in which to present 

numerical evaluations. For large values of H the behavior is simple 
1 

(as predicted for p» 1) for values of f3 
-2 

such that (1 - f32) is 

considerably smaller than H, . but the transition zone then occurs 

very near to f3 = 1. For small values of H the transition occurs 

at smaller values of. f3 which approach zero as H -+ 0 and ~j~ 

approaches the upper limit derived above. 

From the forms of these expressions one can see that 
1 

will always be slightly less than (1 - f32)-2; also, k/k o 

a/a o 

will 

always be greater than this quantity, the difference increasing rapidly 

well past the transition. In Figure 4 we present 
1 

the relation between 

H and ~o/~' Figure 5 shows (1 _ f32)2 (a/a ) and 
o 

1 

(1 - f32)2 (k/k
o

) 
1 

vs. (1 - f32 f2 for selected values of 

addition, in Figure 6 we have plotted as functions of ~o/~ the 

values of f3 at which selected values of ak/a k , o 0 

these amplification factors, are attained. 

L 0 

the product of 

o 0 

ln 



Of particular interest is the behavior of the product ak, 

which must be small to justify linearization and whose growth measures 

the approach to maximum height. In a later section we make some 

comparisons relating to the,belief that our linearized analysis retains 

qualitative validity up to this maximum height, corresponding to 

ak ~ 0.44 if we identify 2a with the trough-to-crest height of 

finite-amplitude waves. We have already shown that ak is propor-

tiorial to U~2 for large p and to -3 u for sma.ll p; the 

transition behavior on a maximum wave is given by the formulas above. 

Lest it be thought that the ratio ak/a k o 0 
becomes appreciable only 

at infinitesimally small distances from the crest, we point out that 

it attains the value seven between ~ = 0.885 and ~ 0.94 for all 

values of Ain the relevant range, smaller values of ~ o 

corresponding to larger values of A o Amplification of ak by a 

factor of seven is sufficient to bring a small wave .whose trough 

amplitude is only 1% of its wavelength up to the value 0.44 (an 

estimate of its instability limit) at the appropriate value of ~ in 

this range. 

2. The Nearly-Maximum Wave Model 

The profile of a nearly-maximum wave train is characterized by 

very small sharply curved caps; long slowly changing regions between. 

crests, essentially the same as for a maximum wave; and small 

transition regions connecting these, containing points of inflection 

of the profile. We have replaced Havelock's parameter a char-

acterizing wave amplitude by £; to emphasize its role as a parameter 

of smallness here; E 0 gives the maximum wave and & -+ 00 

-2E.. infinitesimal waves, the amplitude being related to e . His 
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dimensionless units are denoted here by a tilde. The parameter 

replacing s along the surface is his dimensionless velocity potential 

~ (not to be confused with our perturbation potential¢ for small 

waves); it is zero at the origin and is equal to . ± ll:n: (n integral) 

at the other crests. In the cap region we show that another parameter 

e is more appropriate;_it is defined by tan e = tan ~/tanh ~ , but 

we approximate it here by tan e ::. ~/ 0 since i¢ i is of order 
1 

E:2 or less within the cap region near the origin. This cap region 

is defined by 0 ~ I e 1:( ~ rr - (D eJ-t, and the main plrt of the wave 

1.. '" 1 
from the inflection point down to the first trough by rEID)2:( ~ ~ 2" orr, 

with D ~ 3/2 • 

In the cap (but excluding the transition) the surface slope 

angle a(e) and the functions u(e) and G(e) are shown in the 

companion paper to be given to the lowest relevant order in E., by 

a :: 9/3, G ~ gQ(e) , 

with a positive downward for positive 9; here 

p(e) 

= 3 sec e cos (2e/3) - .. (3/2) - C ln [~-1 + C 

with C cos (rc/6) and 

Q(e) = cos(e/3) 

The function p(e) diverges as e ~ ~ rc but this value is not 

attained before enter-ing the trans:i.tion region; 

9 0 o 



In Figure 7 we display P cos 8, U, G, and U/G in suitable units 

as functions of 8. We see that in passing up the wave from transi-

tion to crest G. decreases from almost g cos(rt/6) = 0.866 g to 

almost 1 2 g; this large change takes place over a very small distance 

,c 2
/ 3 The velocity .... -of order U also decreases rapidly from a 

value of order to a value of order We may expect, 

and will show later, that these rapid changes impair the validity of 

the WKB approximation for a portion of the small-wave spectrum in the 

cap regions of nearly-maximum waves. It is noteworthy that although 

both U and G decr'ease on approaching the crest the ratio U/G 

. increases for e less than about 550
• This fact becomes significant 

in connection with our discussion of energy exchange to follow. 

The determinatiori of the wave profile in the cap region is 

described in the companion paper; it is plotted in appropriate units 

in Figure 8, in which are also shown values of e 

These expressions are· all valid for 0 < e « 1 and for 

'" e in the indicated range within the cap. The second term in G is 

~ da/ds, with sign (a is positive downward here) corresponding to a 

reduction in G arising from centrif'ugal acceleration, since the 

surface is convex upward in the cap. We restore physical dimensions 

to G by replacing g 0.833'" by g j velocities are obtained from 

if:= ~ ~g/(21/3 rt g) and'lengths from x = x t..J(21/ 3 rt), etc., 

with ~ the physical distance between crests. 

In Havelock's units p := Uo/G := C. 1/3 ill g-2/3 ~/3 Q -1; 

in ordinary physical units 

:= (;~g .)1/2(EgP)1/3 
p 1/3 '" ill 

2 rtg gQ • 
Q 
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1. 1/6 
The numerical factor [(3 2 12 )/(n.3 g)l is eq,ual to 0.964···; we 

approximate it by unity. The dimensionless parameter 
1 . 1. 2 - 2 

(w ~/32 2g) = 4p~3 is the same one introduced earlier in this 

section to characterize a small wave-train riding on ~ur model maximum 

wave and evaluated there in terms of the ratio of ~ to the small­

wave length ~ in a trough. In a later section we will need for a o 

nearly-maximum wave the q,uantity 

The dimensionless operator (U3/G)(d/oj) is eq,ual to (ZJ3/G)(d/dP), 

and d/d¢ ::. £,-1 col e(d/ d9) , so that 

No special interest attaches to the transition region; all 

q,uantities merely connect smoothly across it. 

We are now in a position to evaluate the components of accel-

eration of surface particles of ·fluid in the crest region ofa nearly-

-+ '" maximum wave. The tangential component a = a . e 
s s 

is given by 

g sin a if s .increases away from the crest; the normal component 

~ '" an = a . en is inwardly directed here, the surface being convex 

upward, and is given in magnitude by lfa' = U3 da/d¢ (gP cos
2
e)/3. 

At the crest a = 0 and a ~ - ~ g , while at the point of 
s n c 

1 la-+ I inflection as ::. 2 g and an = O. The magnitude is nearly 

constant in crossing the cap while its direction rotates steadily 

o through a total range of almost 120 , being tangential to the surface 

at the inflection points and downward at the crest. These predictions 

of the model agree with known resul.ts (Longuet-Higgins, 1963, 1965h). 

606 o ~ i7 0 P 0 0 
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Finally the results of this section enable us, in principle, 

to place bounds on the growth factors a/a and k/k on branch CD o 0 

as functions of £, replacing the results of the preceding sub-

section in which they were unbounded on a maximum wave as ~ -.. 1. As 

mentioned above, we have obtained the properties of nearly-maximum 

waves only in the limit ~ -.. O. At the crest, 4p approaches a 

Value close to J2PoCl/3 3Hc}/3 and uo/u approaches 

~ 0.9 c: -1/3. Therefore the crest values of the growth factors are 

obtained by replacing )'(~) by 3~1/3 and (1 _ ~2)-! by 0.9b-1/ 3 

in the earlier formulas. The forms taken by these bounds depend on 

whether 3H£.1/3 is very large, very small, or of order unity, as 

well as on the value of H itself. In the first case 

a/a -.. 1.2 0 -1/4, 
o 

. k/k -. 0.96 -1/3, 
o 

for 3H c}/3 »1. 

ak/a k -. 1.1 c-7/ J2 
00 U 

In the s.ec ond 

k/kO - 0.6 [1 + ~ H + (1 + H)t]-l CO-2/3 

for « 1. 

We shall see in the next section that for 3H £1/3 neither large nor 

small the WKB approximation becomes invalid very near the crests of 

nearly-maximum waves. 

As a-numerical example consider the nearly-maximum wave for 

which c -3 
C/ = 10 • The cap region includes 0 ~ /e / <: 880

• At 

X
f 

~ 0.114, and 
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0.055; '" at the crest U '" 0.108. Converting to 

physical units, the cap includes /xf / < 0.029~, 
/y Y / "'< 0.014 A- ; crest - f . L the latter is to be compared with the 

total wave height h '" 0.14 ~. Within the cap if / (2"-Lg ) increases 

from 0.0018 at the crest to 0.015 at its edge, to be compared with its 

value of '" 0.14 in the trough. Now take a small wave whose trough 

value of ~o is "-L/20 ; for this wave qo = 27.2, 
1/3 and 3H t = 26.4. Using the approximate forms for 

p = 22, H = 88, o 

3H;Sl/3» 1, 

we find a/a "" 6.8, k/k - 9, and ak/a k -61 at the crest; the _ . o 0 0 0 

complete forms give 7.3, 10.8, and 78, respectively. This small 

wave will attain its maximum height before reaching the crest unless 

a k ~ 6 X 10-3 
o 0 

The value of ~ on entering the cap is 

1 - (2 X 0.029) from the maximum-wave model a/a = 2.6, 
o 

k/k = 3.2, and ak/a k = 6.7 at that point. 
000 

X. VALIDITY OF THE WKB APffiOX:rnATION 

The validity of the WKB approximation for A depends on the 

smallness of the neglected term in the nonlinear differential equation 

for A with respect to either of the other two; if the product 

/A3 d
2
A/da

2 
/ is small with respect to unity this approximation is 

valid. The smallness of the dispersion relation correction 

(qA)-l d2A/da, the wave phase-shift 

5 tan-l [(q _ p)-l dCln A)/daJ, and the correction of order 

to the simple expression for wave amplitude a, are also related to 

its validity. In this section we examine these questions on branches 

CD and OA (the regions with ill > 0 ) for the wave train of maximum 

height, and on branch CD in the cap region of a nearly-maximum wave 

train, using the models described in the preceding section. 

(1 o a 
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Because one can show that 

- W(p,o) ~ 4p r 4p " -J 
(1 +4p)2 _ II + 4p a l - a2 

and M == d (jn p) / do. The 

quantitites M, aI' and a2 thus defined are independent of p and 

depend only on a or s through the functions U(s) and G(s) which , 

are assumed known and are given approximately by the models. The 

quantity p == Ua/G depends on s through these functions, and also 

on the parameter (1) which d,etermines the trough-value of the short-

wave length of interest. In this notation, _ 

E 1 [1 (.4 + p) 2" + p :t , J- l 
(~ + p) W , 

'" 1 1 -1 [ 1 1 , 1 tan 5 '" 4 (4 + p)2" + (4 + p) M , 

with-the upper sign on BCD and lower on AOB. 

1. The Maximum Wave 

Using U, G, and dp/da of the maximum-wave model, we find 

M 

The ranges of interest in p and ~ on branches CD and OA are 
1 

o < P < 00 and 0 ~ I~ I ~ 1, but p contains the factor (1 _ ~2)2 

so that P -+ 0 as ~ -+ 1 for any value of (1). We may therefore 

determine an upper bound on Iwi by examining this entire p - ~ 

domain. 

It is obvious that Iwi oc p as p -+ 0 and 

p -+ 00. For fixed ~, W has extrema at 

as 
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it has 

have 

only a single simultaneous solution for p > 0, o < ~. < 1, . at 

~2 ~ 0.489, p ~ 0.2880, at which the value of W is ~ 0.051. If 

p were independent of ~ there would also be a negative extremum at 

the boundary ~ = 1, whose magnitude is greatest at p ~ 0.104; here 

W ~ -0.044. Therefore we have shown that Iw I ~ 0.05 for all; wand 

~ in this domain and that the WKB approximation for A is valid 

everywhere for small waves on branches CD and OA traveling on a long 

wave of maximum height. These conclusions do not apply to waves with 

reverse propagation (w < 0) which we do not analyze here. They 

. 1 
obviously fail to apply near point B where p = -. '4' the anomalous 

wave mentioned earlie~ and at singular points at wave crests. 

We have already shown that the smallness of IE I can be 

inferred directly from the smallness of Iwi on branch CD; 

lEI = (t + p)q-llwl < Iwl there. However, on OA the conclusion is 

the same for large p but E diverges for a2 ~ 0 as p ~ 0, showing 

that neglect of E is invalid for very long small waves on this brarrn. 

Quantitatively, the largest value attained by IE I in 0 ~ I~ I .!S 1 

for p = 2, q = ~ is 0.04, and even as near to point 0 as p = 3/4, 

q = 1/4 this largest value is -0.16. The "local wavelength" 2rr/k 

of this wave is more than five times ~ in the trough, and even as 

near the crest as ~ ~ 0.85 it is twice ~..Thus we may neglect E 

everywhere on OA except for very long small waves. 

We find from the model that 

/tan 81 = (3-! ~3/4 [(t + p)~ - ~]/(~ + p) on branch CD. Examining 

o 0 
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this function as though p and ~ were independent, we see that 

Itan 51 -+ 0 as p -+ 0, as p -+ 00, and as ~ -+ O. For fixed ~ it 
1 

has a single maximum at p == 3/4, where its value is 3-2" ~3 /8. We 

cannot realize its largest value by letting ~ -+ 1 since p == 0 for 

all (j) there, but we obtain an upper bound; Itan 51 < 0.072. Thus 

the phase shift is always less than about 40
; since'the correction to 

the amplitude' a(s) is o~ order both maybe neglected. Using 

the lower sign on branch OA, Itan 51 increases'as p decreases, 
1 

approaching a maximum value of 3 -2" ~3 

everywhere on OA; if we stay above p 
1 

I tan 5 I < fi ~ 3 / 8 and 15 I < 12 
0 

• 

as p ~O. Thus 

3/4, '1. == 1/4, 

In this way we have justified use of the WKB approximation 

for A, and neglect of E, 5, and the correction of order 52 to 

a, for all small waves on CD and for 1 
'1 > 4 on OA, when riding on 

our model of a wave of maximum height. In the companion paper we note 

that the model slightly underestimates our wave-interaction function 

in the trough of the maximum wave. Through a numerical study not 

detailed here, using the best available digital representation of the 

maximum wave, we have found that correcting for this discrepancy has 

no effect on the validity of these conclusions. The reason is that 

it exists only in the trough where U' and G are varying most slowly; 

a l is unaltered, and the shape and magnitude of a2 are changed but 

little by the correction. In Figure 9 we show M, . ai' and as 

functions of ~. 

For given'long waves of height substantially less than maximum 

the variations of U and G are much less than in this limiting case. 

It is not difficult to show that for a Stokes wave represented by a 

. - . 
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power series expansion in aL~ the first nonvanishing term in W is 

-8F(1 + 4p)-2(aL~)3 cos ~x with x = 0 in the trough; its magnitude 

is greatest for p = ~ and is less than 0.05 there even if the value 

aL~ = 0.44 associated with a wave of maximum height is inserted. 

Therefore our approximations are valid, for all the small waves 

mentioned just above, everywhere on every long-wave train except near 

the sharply curved crests of waves of nearly-maximum height. It is 

not clear that this rather remarkable property could have been 

anticipated by physical intuition. 

2. The Nearly"'Maximum Wave 

Here we examine the validity of the WKB approximation near the 

crests of nearly-maximum waves, confining our attention to branch CD. 

Using U, G, and dp/dcr for our model of the cap region excluding 

the transition, we have as € - 0 

M d(Pn p)/dcr = (p/Q)cos29 deAn p)/de 

= (p/Q)cos2e [(3P)-ldP/d9 - Q-l dQ/d9l ; 

dP/d9 = 3 sin(e/3 )sec29 , 

As before, 

In Figure 10 we plot M, 

dQ/d9 = -[4 sin(9/3) - P sin 281/3 

and· a2 = ~ + dM/dcr = ~ + (p/Q)cos
2

e dM/de. 

1 aI' and "4 a2 as functions of 8. For 

each value of e o from zero at the crest to nearly 90 in the 

transition region we may find the value of p at which Iwi attains 

a maximum, and the value of this maximum. As expected, the results_ at 

8"= 900 agree with and join those for the maximum wave as (3 -. 1; 

that is, 'iN has a negative extrem,lID. of :: -0 .. 04 at p ~ 0.1. As we 

t'i 0 \.J 

, 
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move toward the crest the magnitude of this extremum increases, 

reaching -0.1 for p ,.;; 0.2 at 8 75
0 and -0.3 for 1 

P"'4" 

at 8 = 600
• The variation of Wext with e is also shown in 

Figure 10; W is always close to 1 The value of at ext - 4" a2 · p 

which it is attained remains to 1 for o < 8 <600
, except for near 4" 

a very small region centered at 8- 23.60 
of extent '" 1.5

0 
in 

which the eCluation for the extremum yields two positive solutions for 

p; this feature may be an artifact of the- model. 

As indicated in the preceding section, at the 

crests, where a -+ 0 and - a -+ -8. 
1 2 Therefore at this point W will 

have the value 24Hf.,1/3/(1 + 3Hc,1/3)2. This is only small (say 

<! as 'an extreme) for 3H£1/3 > 14 
2 

or W attains the 

maximum value 2 at 3Fff...l / 3 = 1. Because we have not established the 

largest value of the infinitesimal Cluantity E for which our limiting 

forms for £-+ 0 retain Clualitative validity, we cannot be Cluan-

titative about this very local and not unexpected failure of the WKB 

approximation. It is clear that for any given £ within the 

acceptable range there will be some portion of the small-wave spectrum 

for which the approximation loses validity. , 

As one might expect, it can be shown that these "critical 

waves" are ones whose wavelength has shrunk in traveling up from the 

trough so as to be comparable to the physical extent s of the cap, 
c 

which is small of order ~2/3, when they arrive. Using 

2n from Figure 8 as an estimate of the cap's extent, 

and 0.4 < A tis < 2.5 for the critical cres c 

domain as defined above. The shortest critical waves are those whose 

wavelengths in the trough are small of order ~1/3. For the numerical 
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c -3 example of the preceding section with ~ = 10 , we find 

0.09 < AO/~ < 1.2 in the critical region. The WKB approximation 

retains its validity throughout the crest region for waves either 

longer or shorter than these critical waves. 

Except for these critical waves the parameter E which 

modifies G, the phase shift 0, and corrections of order 02 to 

the wave amplitude a are also negligible on branch CD throughout 

the cap regions of nearly-maximum waves. 

The failure of the WKB parameter W to remain small with 

respect to unity does not necessarily have drastic conse~uences for 

these critical waves. Rather, it means that their wavelengths, 

amplitudes, and phases will undergo variations somewhat different 

from those predicted by the approximation. For most of the critical 

waves these differences will be only ~uantitative and not ~ualitative, 

since Iwi < 1 for all but 60% of the domain in p within crest crest 
I which it is < 2". This critical part is in turn only a part of the 

total spectrum of the small waves of interest. Although one .could 

study the departures from adiabaticity'in detail, or examine branch 

OA, we will content ourselves in what follows with use of the WKB 

result s throughout. 

XI . WA VES OF NEARLY EQUAL LENGTH; THE ANOMALOUS WAVE 

We have taken the spectrum of small waves of special interest 

to be those on branch CD of Figure 3, whose crests move up the down-

wind sides of the long waves toward their crests, and have pointed out 

that the lower end of this branch near C, where CJ.) -~ 0, corresponds 

to small waves whose trough-values of wavelength are not short 

6 o 0 
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compared to the given long-wave length. In fact, for long waves of 

less than maximum height the wave at C with ill = 0 merely represents 

a very small addition to the given wave, since the total wave profile 

remains static. Points near C with very small positive or negative 

ill represent small-amplitude waves moving backward or forward, 

respectively, very slowly with respect to the given waves. Our analy~ 

remains valid for them, but they have the property of being in the 

domain p« 1 everywhere since they already have this property in the 

long-wave troughs. As we remarked earlier for the shorter small waves, 

our results for their changes in amplitude and wave number in p3.ssing 

along a given wave-train of small or moderate amplitude may be of 

interest for other purposes, but our attention here is focused on their 

influence on long waves of maximum or near-maximum height. 

As ill ~ 0 near point C our results approach a particularly 

simple form; A ~ constant, rf-k/G ~ 1, J kds ~ J (G/rl- )ds = a - 0
0

" 

¢ ~ const. cos(a - a), and ; ~ const. U-l sin(o - a). Using our 
o 0 

model for the wave of maximum height 

a::: JkdS ~ 3-t4.j [(1 + 132/3)(1 - i3
2)r1

di3 = tan- l (3-t i3) 
-1 

+ 3 tanh f3. 

Thus we see directly the previously discussed rapid growth in amplitude 

and wave-number. Plots of ; vs. f3 in this limit are shown in 

Figure 11 for a = 0 and n/2. o 

Our analysis degenerates at point B, a small wave with reversed 

phase velocity for which 1 
P = - 4' At this point the group velocity 

in our coordinates vanishes; in bottom-fixed coordinates the small 

wave crests move down-wind with speed 2U while their group velocity 

is U. This phenomenon has been noted by other workers, some of whom 

have characterized it as a barrier. If the given steady flow is that 
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of a wave of small amplitude, this anomalous wave is one with wave 

length four times as great. Different methods are needed to analyze 

the behavior of a and k on passing along branch OB or CB toward B. 

Our rigorous equation for A is iA/di + rl ] -3 It + p(a). A - A = 0; if 

we replace G* by G in our definitions of p and q, q = 1 + -2 p + - A 2 -

exactly, with upper sign on BC and lower on OB. This relation is 

equivalent to 2 -1 2 . 2 
(p - q) = q + A d A/da . We may now assign a suit-

able form to p(a) and integrate the nonlinear equation for A(a) 

(numerically, if necessary), working back from a region of WKB validity, 

(with q and a may then be found. For example, if p(a) = - ~ + ~a 

K a constant) the equation for F becomes d2F/da2 + ~aF = 0, 

solution for a> 0 is F = v
l

/ 3 '[aJl /
3

(v) + bJ_
l

/
3

(v)] , with 

whose 

v e 2K~/2/3; A is the envelope surrounding this oscillation, nearly 

(~a)-k for large a. We shall not pursue this problem further here. 

XII. WAVE ENERGY, ENERGY FLUX, AND ITS SPATIAL CHANGE; THE RELATION 

BETWEEN G AND U, AND THE WAVE-INTERACTION FUNCTION Q 

We introduce our discussion of -energy by making a detailed 

comparison of our results for wave-number k, amplitude a, wave 

energy E, its flux J, and its spatial rate of change with those of 

LS II for the two-dimensional steady flow characterized there as 

upwelling. These authors found the relations 

1 dk 2 dU 
k dx = - c + 2U d.x and lda 

- - = -adx 
2c + 3U dU 

(c + 2U)2 d.x 
(LS II) 

by solving a specific flow problem in which the interaction term was 

linearized. They integrated these differential relations by using 

c
2 = g/k with g constant, finding k(U + c) = ill = constant and 

i~ n j. 

t~1 0 0 l .. f7 0 ,~J , .... h <".," 
., 



-50-

2 
a c:c Idc + 2U) 1-1 • The first result agrees with the physical 

postulate that the distance between crests varies only through surface 

stretching, which leads directly to (fre~uency) x (wavelength) = wave-

velocity, or k(U + c) = ro. Their application of the second result 

is not so simple. They considered the transport of wave energy and 

examined several alternative expressions for energy conservation. A 

selection among these options was made by re~uiring its differential 

form to be consistent with their result above for amplitude change. 

The one thus selected, under the assumption that with g 

constant, was 

(d/dx) [E(U + c )] + S dU/dx = 0 , 
g x (LS II) 

with S , the only component of their radiation stress tensor relevant x 

in a two-dimensional problem, e~ual to ~E 
2 

in deep water. They were 

gratified to find this in complete agreement with their result from 

LS I for small short waves moving on small long ones; the general 

validity of this relation seemed to have been established. 

Our more general expressions for wave-number and amplitude are 

already in integrated form but must be manipulated to put them in this 

notation. We find 

2 
a 

oc 

(ru/U)(U/v ) = ru/ (u + c) , p 

1 

= [(U/c)/(v /c)2U]2 
g . 

Idc + 2U) 1-1 , 

displaying agreement with theirs. However, our differential forms will 

not agree in general; 
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dk/k = - dU/U + dqj q = dU/U + [(p/q)(dqjdp) - IJdp/p 

= - dU/U + [(v /v) -lJdp/p = - dU/U + [c/(c + 2U)Jdp/p p g 

= dU/U + [c/(c + 2U)](dU/U - dG/G) 

2U dU c dG 
c + 2U U - c + 2U G ' 

and by a similar but more lengthy manipulation 

da/a = - dU/U + 
2 

(v/2v )2dP/ P = _ 2c + 3U dU _ (c + U) dG 
P g . (c + 2U)2 (c + 2U)2 G • 

There is complete agreement for the flow selected in LS II, in 

which the free surface is a straight line whose slope is small of first 

order so that centripetal acceleration is absent and G ~ g = constant. 

However, in addition to our added terms in the differentials of k 

and a, important differences involving the energy and its transport 

and exchange with the given flow will exist for any steady flow having 

varying G. It is significant that our expression for the energy, 

1 2 
E = 2" p Ga, differs from theirs in 'that g is replaced by G. 

Their energy is proportional to /c(c + 2U) ,-1, while ours, in this 

notation, is 

1 

E ex:! (p _ q)2 (~ + p f 2 (G/u)u-l ex:! 

1 

/ (p _ q)(~ + P f2[1 _ (q/p) Ju-l / 

= / [1 - (U/v ) J/v I 
p g 

/c/[(c+U)(c+2u)JI. 

Their energy flux J = Ev is proportional to 
g 

varies as /c/(c + U)/. 

/ 1-1 c, , while ours 

The importance of these differences is particularly great on 

the given small-amplitude long-wave flow studied in LS I which 

S 6 i n ~ ~ 0 PO 0 
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originally led to their concept of radiation stress. We have shown 

that on this flow G is closely proportional to U. If we adopt the 

assumption that G/U is a constant, then p = UD/G . is constant, so 

that kU, aU, ED, and all velocity ratios are constants, and 

E = 5 = 0, for all values of p. Finally, and of greatest 

significance, J is constant, so that 

dJ/dx = (d/dx) [E(U + c)] = ° , 
g 

(for G/U constant) 

completely removing the necessity and the justification for the 

radiation stress! 

We defer to the next section an examination of the difficulties 

associated with their radiation stress tensor, turning instead to 

evaluation of the spatial rate of change of the small-wave energy flux 

in the general case. One must be careful with signs. Since E is 

proportional to G/lcv I, we set the conserved quantity Elcv I/G g g 

equal to a positive constant K. Then 

J = Ev = X(sgn v )G/lc'/, g g and G/ Ie I = wU/p Ic I = w[l - (q/p) ](sgn c). 

dJ/ds 

Thus J = Kill sgn(ev ) [1 -
g 

= - Ecv wG- l d(q/p)/ds = 
g 

(q/p)] and 

Ecv (p/U)d(q/p)/ds 
g 

Now 

= (~ _ 9.\ ! ~ _ (!..... !.... \ ~ dp __ c_ ~ ~ 
dp pJ P ds - v - v) p ds - 2v v P ds ' 

g P g P 

~.~ ~ (&v:X¥~), 
and (pc2/Uv) = p(e/U)2(U/v ) = p(p _ q)-2(q/p) = 1 from the 

g p 

dispersion relation. We express (U/p) (dp/ds) as 

U[U-l(dU/ds) - G-l(dG/ds)] = [1 - (U/G )(dG/dU) J(dU/ds), which 

;.. -.' 
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motivates the definition of our last important parameter, the wave-

interaction function Q: 

r J' I Q=l_~dG. 
_ G dU 
i _____ .. ______ . __ .. _ .......... _ . 

The exchange of energy between the small wave and the given flow is 

thus governed by 

r------·----,····--··· .. ··-·-l 
l dJ/ds= - ~ E Q(du/ds) ; J 
'-.~ -----....................... ""' ... . 

we see that the "radiation stress" must be multiplied by' r. , whose 

value is unity for the flow of LS II and nearly zero for that of LS I. , 

We next analyze the relation between G and U, and the 

behavior of Q, for four flows: our maximum-wave model, our model of. 

the cap region of a nearly-maximum wave, a local region of an 

arbitrary flow, and a moderate-amplitude wave train represented by the 

classical Stokes expansion. For any steady flow with constant g, 

G( s ) is determined by the shape of the wave profile and the surface 

flow speed U(s), which in turn is also determined by the profile 

(from the Bernoulli surface condition) and an integration constant 

specifying its value at one point. Therefore Q is a purely 

geometrical property of the profile and that constant. From our 

parabolic maximum-wave model 

u/G cc (1 _ ~2 )!Cl + ~2 /3 )3/2 ; 

u/G is constant to within about 10% over the lower 70% of the surface. 

For this simple model 

o 
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which rises quasi-parabolically from zero in the trough and approaches 

unity at the crest. Correcting for the model's under-estimate of ~ 

in the trough leads to the plausible fit 

as shown in the companion paper. 

From our model of the cap region of a nearly-maximum wave, 

n = I - (3P/Q)(dQ/de)/(dP/de) , 

which can readily be evaluated from equations given in an earlier 

section. This function is plotted in Figure 12. At the inflection 

. t e _- 900 
po~n near it approaches unity, joining smoothly the maximum-

wave value just obtained. As e~ 0, n ~ -4; it crosses zero near 

e = 560
• For the entire profile of a nearly-maximum wave we then have 

a nearly-parabolic rise from a value near 0.2 in the trough to nearly 

unity at the inflection pOint, followed by a rapid decline to zero 

well up on the cap and a precipitous drop to -4 at the crest. 

Expressions for n on a general steady-flow profile y(x) on 

whiclJ. if = U 2 _ 2g(y _ Y ) 
o 0 

may be written in several forms. Using 

primes to denote derivatives with respect to x, we have y' = tan a 

and y" cos3a = drX/ds = R-l, the .curvature. Then 

d(G/g)/ruc = 

d(in U)/ruc 

= 

= 

- 3y" sin a cos a 

+ [(if/g)y'" cos2a]/[1 + (if/g)y" cola] , 

_(uf/g)-l tan a , 

. '. 
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so that 

with 

F ;;; (ify " cos
2
a)/g. [An alternative form, independent of explicit 

reference to coordinates, is 

~ = /[1 - 2NC + ~(dC/ds)/tan a]/(l + NC) 

_2/ ) -1,] with N = U- (g cos a and C = R = curvature. From this we first 

see that n ~ 1 at the crest of a maximum wave because U - 0 there. 

At the inflection point near the cap of a nearly-maximum wave y" = 0, 

and Because is of order 

c 4/,3 th c- ere, n :!:. 1 as we have found. At the bottom of a symmetrical 

trough we must be more careful; both y'" and y' vanish there, but 

their ratio approaches that of y"" to y". For our raraboljc model 

y'''' = 0, and the value of 3(if/g )y" cos2a (the second term in ~) 

at the trough is exactly unity, confirming that n = 0 there. 

However, for a maximum-wave profile of slightly lesser wave height or 

trough curvature the second term will be slightly less than unity, and 

n will be small and positive in the trough if y'''' '" 0 there; this 
\ 

seems to be the case for the correct profile. At the bottom of an 

unsymmetrical trough with y"' ~ 0, a symmetrical quartic trough with 

y" = y' II = 0 but y'''' 1= 0, . and in general at any point where U' = 0 

but G' 1= 0 we find Inl ~ 00, but in the equation for dJ/ds it is 

multiplied by 'dU/ds,'which vanishes there, so that no physical 

divergence occurs; this situation is discussed in the following 

section. 

We now verify our earlier result that in'linear approximation 

G/U is constant and n = 0 on a small-amplitude wave train. To first 

I. o • "",'y' ~,~ I,J o 
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order in ak (we drop subscripts L here), y = a cos kx, 

2/ -l U g = k , o a = - ak sin kx, ak cos kx, and 

y "'= ak3 sin kx, so the second term in n is small of first order 

and the third is -l, giving n = 0, plus small corrections of 

order ak, for all x. 

It is not difficult, by use of Stokes-type expansions, to show 

that these first-order corrections cancel~ We have investigated the 

second-order corrections to n, which depend on expansions of G 

and U to third order in aL~. High-order expansions for the wave 

velocity and profile were carried out a long time ago by Rayleigh and 

many others, but expansions of G and U were not previously of 

interest; therefore some details of our third-order calculations are 

included in the Appendix, where a subtle point that could lead to an 

error is noted. 

The result is that n contains a constant term of second order 

equal to 2(aL~)2 but no oscillating terms to this order, although 

the expansions for U and G contain terms differing in both second 

and third orders. From the structure of the calculation one can see 

that to the next order 

where dl and d
3 

are dimensionless constants of order unity not 

evaluated here. This result is consistent with the fact that 

Phillips (l96o) and Hasselmann (l962, 1963), who have examined wave-

wave interactions by successive approximation or perturbation methods, 

found no interactions to second order, the first nonvanishing con-

tributions being for specific wave-number combinations of third order. 

... 
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As we will see shortly, .the constant term in .Q yields an oscillatory 

interchange of energy between the two wave trains which is not related 

to specific wave-number combinations but is proportional to the product 

.. -
2 2 * ~ ~ = const. a aL . In of the squares of both wave amplitudesj 

addition the unevaluated oscillatory terms in .Q will produce energy 

exchanges involving specific harmonics of the given wave and additional 

powers of its amplitude. Although the connection between our result 

and their work requires further study, it· seems likely that our general 

expression for the exchB.nge of energy between a small wave and one of 

arbitrary height should be useful to workers trying to extend or 

interpret analyses of this kind. 

By an argument invoking continuity between waves of small and 

large amplitude we may expect for intermediate amplitudes a positive 

average for .Q, with a decrease atl crests and an increase where the 

wave is steepest. As the amplitude increases we may expect a moderate 

decrease below the average to develop in the troughs. The minimum 

value of .Q will occur at the crests, and will become negative for 

waves above a certain height. As the height increases further the 

region of negative .Q will become more negative, and will be 

increasingly confined near the crest, approaching the very narrow zone 

with width of order and depth ",-4 that we have found for 

nearly-maximum waves. 

* We take this symmetry as a confirmation of the validity of our 

resultsj if both wave trains are treated as small of the same 

order, an interchange of their roles in the analysis should not 

affect the amplitude-dependence of this interaction. 

o 



For waves on branch CD, v and J are positive. The energy 
g 

E is intrinsically positive, so the "effect of a small positive 

constant ~ is to produce an increase in the energy flux of a small 

short wave as it travels from trough to crest up the down-wind side 

of a long wave, where dU/ds is negative, and a symmetrical decrease 

on descending. This oscillating energy interchange between long and 

short waves is very feeble for long waves of rather small amplitude, 

in marked contrast with the result of the radiation-stress theory. 

For long waves of large height the transfer of energy from long to 

short waves becomes significant as the small waves climb up near to 

the inflection point. It seems unlikely that rapid reversal within 

the narrow cap region of this energy transfer can be complete with 

those small waves which have not broken over themselves but for which 

the WKBapproximation is failing there. 

XIII. DISCUSSION OF THE SURFACE STRESS TENSOR CONCEPI' 

Following publication of the papers referred to as LS I and II 

and a third paper on shallow-water phenomena, Longuet-Higgins and 

* Stewart (1964) presented a review paper called LS IV here devoted 

entirely to their radiation stress ten~or. In it they reviewed their 

physical reasoning, recounted previous applications, and described 

some new ones. Because our work has led to different conclusions it 

is a part of our task to discuss in some detail the basis of the 

differences. We confine our attention to two-dimensional deep-water 

flows of ideal fluids, related to pp. 530-535, 551-553, and 556-558 of 

LS IV. 

* This notation'is chosen because in LS IV they designated their 

third paper as III. 
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The sep3.ration of power per unit volume into two portions, one 

due to stress-strain rate of work and .the other to the divergence of 

energy flux, is somewhat artificialj the terms which are isolated, 

integrated vertically, and discussed on pp. 530-535 of LS IV may be 

viewed as coming partly from each portion. For irrotational inc om-

pressible flow (using Cartesian tensors) the first portion depends only 

on the terms pviv
j 

and is given by E:{ 

in the stress tensor 

= ~ • [(~ pv 
2 
); J ' 

II 
ij 

with 

= (p + pgy)5 .. 
~J 

€ .. == dV./W.. 
~J 1 J 

+ pv.v. 
1 J 

the 

traceless symmetric rate':of-strain tensor. The second portion comes 

-.. ... 
from \7' j , with the energy flux 

-+ 2 -+ 
j = (p + Pgy + pv)v given by 

ji = IIij v
j

• The time rate of energy loss per unit volume is 

displaying the mixed origins of contributions from p5 .. + pv.v .. 
~J ~ J 

For flows with G P g the use of Cartesian coordinates tends 

to obscure useful physical properties. For example, in the (P, ~) 

Ei-l Vi-l VV 
( dV/dS ViR \ 

\ coordinates of Figure lb we find = v ,v , i-l \ ViR 
I 

-dV/dS I 

for the steady flow; each term arises from Christoffel symbols needed 

-to "MJ.. for covariant differentiation, and V = v p is the flow speed at any 

polnt • Further, 

_p -1 dp/dS = g 

IIi-l o 
v, i-l 

sin ex + V dV/dS, 

for this flow, yielding 

_p-l op/dn = g cos ex + y2/R = G 

by obvious extensions of our definitions of G, ex, s, n, and R at the 

surface. The natural way in which G replaces g is noteworthy. 

In applications a knowledge of their radiation stress tensor is 

of little interest in itself; its utility arises from its contribution .• 

together with the corresponding rate-of-strain tensor! to the sp3.tial 

rate of change dJ / ds of wave energy flu.x. One cannot deduce the form 

6 o t7 r 0 n 0 
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of dJ/ds on any surface from general tensor arguments without resort 

to detailed calculations. A four-element Cartesian surface tensor 

obtained by vertical integration of four of the nine elements of a 

stress tensor cannot represent the integrated vertical component of 

force, or any component exerted across a horizontal surface; but the 

essence of gravity-wave motion is variation in space and time of 

vertical components of force, acceleration, and velocity, producing 

surface slope and curvature. These quantities enter the surface tensor 

only through its dependence on parameters of the' surface waveform 

through the detailed calculations just mentioned. Therefore the value 

of separating certa~n terms from the total stress, integrating them, 

and identifying the resulting array as a radiation stress tensor will 

differ for various flows on which the detailed calculations give 

differing results. 

We do not find their radiation stress tensor useful in this 

sense except on flows for which G ~ constant = g, the only ones for 

which their results and ours agree. This special property of the two-

dimensional "upwelling" flow selected in LS II, and reviewed on pp. 

551-553 of LS IV, renders their result for dJ/dx inapplicable on 

flows with tilted or curved profiles in general and on wave-like flows 

in particular. However, they have taken it to be a general one; for 

the long-wave flow o~ LS I, reviewed on pp. 556-558 of LS IV, this 

error is exactly compensated by another one in their detailed calcula­

tion of dJ/dx for this flow, as will next be shown. 

Consider the equation (with 1 
S = - E) x 2 

+ Q,S dU/dx 
x 

o , 

.' 
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r 

the form of their general.relation in our moving cordinates if Q = 1. 

Here U contains not only the horizontal part of the long-wave orbital 

velocity but also the large constant term (equal to -c2 for their 

long-wave propagation to the right) needed to transform to our 

coordinates. They have adopted for wave energy the expression 

1 
P = - and 

2 
6g = g' - g ~ G - g, but 

we regard P and Q as constants to be determined. Our results and 

theirs agree that on this flow da/a = - t dU/U -

in deep water. In lowest approximation [neglecting 

(dc /dx)/(dU/dx), which are both small of order 
g 

equation yields 

(p - 1 + ~ Q)E dU/dx = O. , 

~ dG/G du/u 

the 

Because they are committed to . Q = 1 they must find P = ! ; this 
2 

corresponds to their replacement of g by G only in the kinetic but 

not the potential contribution to wave energy. Correcting this error 

gives P = 1 so that Q must be zero, our rigorous result for 

G oc U. 

With hindsight we can identify the source of this error. It is 

connected with their choice of coordinates, in which their U is small 

of first order in long-wave-amplitude, being only the orbital part. 

Therefore contributions to E(U + c ) and S U arising from 
g x 

dW/dt ~ G - g are small of second order in each amplitude, or fourth 

order overall. Had they worked in our coordinates, terms in tJ dG/dx 

and G dU/dx would ~ve been of the same order because of the large 

constant term in U. Furthermore, in our coordinates the long-wave 

flow is steady and dW/dt = 0; its role is replaced by our time-

independent centrifugal term in G, whose equal contributions to 

o 6 -0 n , 
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kinetic and potential energies are more evident. The local relation-

ships among amplitude, wave-number, phase and group velocities, and 

kinetic and potential energies are those of a wave moving on a space-

fixed surface with locally constant parameters. We have derived 

equations showing that the surface properties are determined by U 

and G. Because of U we must replace the dispersion relation 

22· 
w = gk by (w - Uk) = gk. We must replace g by G not only in 

the expression for potential energy but also in the dispersion relation 

and, through its use, in the kinetic energy as well. These replace-

ments are required by the principle of equivalence; the only effect of 

the acceleration of a system is equivalent to that ofa gravitational 

field. 

The following physical argument displays the inadequancy of the 

expression dJ/dx = - ~ E dU/~ and the need in general to include 

variations of G even for a flow without surface slope or curvature. 

Consider the following hypothetical but theoretically achievable 

situation. A body of ' fluid, deep with respect to the wavelengths ~ 

to be considered, moves with uniform constant horizontal velocity 

in the x direction on the surface of a planet having an anomalous 

-. A 

U 
o 

mass distribution producing a gravitational field g = -G(X) e 
y 

at the 

horizontal free surface y = 0 of the fluid. Of course g cannot 

have the same direction everywhere, but if I (A/G) dG/dx I « 1 we 

may ignore gx down to depths of order ~ Here there is no 

acceleration of coordinates tied to surface particles of the 

unperturbed flow, and it is clear that the local value of G must be 

. '. 



used to calculate potential energy. Because dU/dx = 0 the LS 

e~uation gives dJ/dx = 0, but there is no reason to assume a priori 

that waves on this flow may not exchange energy with it. Our e~uation, 

which may be written dJ Ids == - ~ ED d(U/G )/ds, applies here; for 

U = U
o 

itbecomes d3/dx == + ~ (EUo/G) dG/dx, which vanishes only 

for U== O. o 

It is indeed remarkable that the rather subtle effects 

uncovered by our approach should have,conspired to lead to the 

conclusions reviewed in LS IV from their several correct and detailed 

calculations on specific flows. Very few workers appear to have 

~uestioned their concept of the radiation stress tensor. The 

mllgivings of Whitham have already been mentioned. The only other work 

I have found in which doubt ,has been expressed is that of Hasselmann 

(1971), who identified a "previously overlooked mechanism" he describes 

as a "loss of potential energy arising from mass transfer" whose effect 

is stated to be a nearly-total cancellation of work done by his 

interaction stress which is rele.ted to their radiation stress. 

His more elaborate deri'\ations connected with this matter are 

also conducted by means of Cartesian expansions and integrations with 

respect to the vertical coordinate over the entire fluid depth, which 

makes direct comparisons with our results of simpler origin, structure, 

and interpretation nearly impossible. We have given a ~uantitative 

evaluation of his nearly-total cancellation in terms of the smal~ness 

of our wave-interaction function ~l; it seems probable that he has 

found an arcane version of this effect. Our comments on the limitatias 

() o 
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of a vertically-averaged Cartesian surface stress tensor do not, of 

course, imply that vertical integrations and Cartesian expansions of 

other quantities, such as those of Whitham and Hasselmann, contain 

flaws. Nevertheless, we have become convinced that these techniques 

are at least inelegant, and at worst may be misleading, in studying 

some'aspects of these processes. 

XIV. PARTICLE ACCELERATION AT A CONFLUENCE OF CRESTS; DISCUSSION OF 

WHITECAPPING 

Several results of linearized gravity-wave analyses retain 

qualitative validity in the nonlinear finite-amplitude region all the 

way up to waves of maximum height. In making numerical comparisons 

one is allowed a single free choice; he may fix the numerical value 

of the dimensionless parameter ak of the linear wave to agree with 

one property of the maximum wave. Then all other properties may be 

compared with linear predictions, with the exception of wave velocity 
1 

which exceeds the linear value (g/k)2 by 9.5%. Longuet-Higgins 

chose ak 1 = 2 to agree with the downward acceleration of a 

surface particle at the crest of a maximum wave, and then showed 

agreement of order 10% for the linearized predictions of wave height 

and maximum slope. Elsewhere in this paper we have identified 2a 

with the maximum-wave height, corresponding to ak = 0.44. One can 

give an argument that even this value is too high for the fairest 

overall comparison; the first nonvanishing correction term in the 

Stokes-Rayleigh expansion for wave height is positive and gives a good 

fit, when included, to the maximum wave for ak ~ 0.4, at which value 

the kinetic and potential energies per unit area (which are quadratic 

in ak from the linearized theory), and the maximum slope and crest-



acceleration with first nonvanishing ,corrections, all agree with their 

maximum-wave values to within ± 15%. Without any use of nonlinear 

corrections the largest discrepancy among all these properties is +40% 

for the potential energy with ak = 0.44, and -30% for the maximum 

slope with ak = 0.4. 

From all this we are encouraged to believe that our results 

obtained by linearization also retain semi-quantitative validity beyond 

the domain of linearity up to the instability limit of the small 

* waves. We are therefore emboldened to apply them to the study of 

particle acceleration at a confluence of crests on the verge of 

instability, and the growth toward instability of small waves riding 

up large ones as a mechanism causing whitecapping. 

The value 1 -g 
2 

for the downward acceleration of a surface 

p:l.rticle has been taken by Longuet-Higgins (196980) as an empirical 

criterion for the onset of whitecapping in a statistically random wave 

field (although he has pointed out (1963) that vertical acceleration 

is not a sufficient condition for it). As we have just seen, this 

value, which is exact for a single traveling wave-train of maximum 

height, is reasonably well reproduced by a linear analysis with 

ak ~ 0.45 which also reproduces other properties qualitatively. If 

two wave-trains are superposed and treated in linear approximation 

each behaves as if the other were absent, and the downward particle 
., , 

acceleration at a confluence of crests is estimated as (alkl + a2k2 )g. 

* Some effects of nonlinearity have been indicated by Crapper (1972). 

It is not clear whether his results for energy, which contain a 

radiation stress tensor, depend on properties of the tensor we have 

questioned here. 

o 0 
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To assess the limit of validity of this approximation, and to evaluate 

the limit of instability as a function of the two parameters alkl 

and a2k2, would seem to require complicated digital computer 

calculations of many nonlinear time-dependent ·flows. However, there 

is one situation in which the answer is known. Penney and Price (1952) 

and Taylor (1953) have studied standing waves of maximum height 

theoretically and experimentally, respectively. They found the 

downward opening angle of the sharp-crested peaks created at the 

instants of maximum displacement to be 900
, and the acceleration of 

1 
2" g. fluid particles at the peaks to be g, not Here we may picture 

two identical wave-trains of finite amplitude moving in opposite 

directions. The curious superficial validity of "superposition" of 

particle accelerations at crests in this very nonlinear situation is 

an accident, since neither of the two constituent traveling waves 

would be a maximum one in the absence of its oppositely traveling 

partner. Of course g is an obvious maximum; Taylor observed actual 

detachment of fluid droplets at the crests of ~lightly higher standing 

waves. 

We put forward here our conclusion that between the limiting 

cases of a single traveling wave and two equal and opposite waves 

there exists a continuum of cases with two wave-trains of different 

amplitudes and wave-numbers which combine to produce limiting flows 

on the border of instability, and that surface particles at a 

confluence of crests experience accelerations in the range between 

1 
- g and g. The results of this paper allow us to exhibit the lower 
2 

half of this range explicitly. If the given flow is that of a long 

wave of small a.mplitude and the added "small wave" is really small, 

....... 
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the particle acceleration a at a confluence of crests is given by 
c 

akG + aL~g, and G ~ g. We may consider larger and larger small 

1 waves up to the value. ak ~ 2; this wave will break, with 

1 1 a c ~ 2 G ~ 2 g, the known result. If the given wave is larger we 

may expand its properties in powers of aL~; at its crests 

G = g(l - aL~) and uf/R (particle acceleration at its crests) 

aL~g, plus terms of third and higher orders. Therefore 

1 
In the limit ak « 1 and -+ - we 

2 

find again a~ the stability limit, but we may impose on the 

small wave the role of instability 1 
(ak ~ 2" ) on any given wave, 

obtaining 

maximum, 

As the given wave approaches its 

a ~ 3g/4. The physical picture and the mathematical 
c 

justification of these results in the range ! g < a < 3g/4 are 2 c 

particularly convincing in the domain ~/~L «1. To explore the 

range 3g/4 < a < g would require treating the two flows on an equal 
c 

footing (and with ~ ~ ~), which is precluded by the unsymmetrical 

roles assigned them in our analysis. 

Finally, we discuss the application of our results to the 

triggering of whitecapping. The fate of a small-amplitude short-wave 

train moving 'from the trough of a long wave up its downwind side 

depends on three dimensionless parameters. These are (1) the wave-

length ratio in the trough, which determines 

and thence the functional dependence of the growth factors 

and H, 

a/a 
o 

and 

k/k on properties of the long-wave flow; (2) the long-wave height­o 

to-length ratio, which defines the given flow and allows evaluation 

of the growth factors as functions of position along it, including 

their crest-values; and (3) the short-wave height-to-length ratio 

.,.. 
{. n o 
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~ a k in the trough, which then fixes the positi~n at which they o 0 

break, or how close they are to breaking at the long-wave crest. We 

have obtained approximate analytical expressions for these relations. 

If the critical value of ak i,s reached before attaining the 

crest the small-wave train will become unstable and dump some amount 

of turbulent fluid onto the downwind side of the long wave. Its 

effect on the long wave will be greater the lower down on its surface 

the breakup occurs, since the effect tends toward zero in the oppo~ite 

limit. This turbulent water mass will be dragged up the long-wave 

slope by the flow toward its crest. Its dead weight will create a 

pressure asymmetry about the crest and the flow speed will be reduced, 

tending to make the long-wave crest "stub its toe" on the obstacle and 

fall over. The effect is obviously greatest for the most nearly 

maximum long waves. 

Even if the critical ,value of ak is not attained, the small 

waves take energy away from the downwind sides of nearly-maximum long 

ones at a rapidly increasing rate near their crests, for which we have 

also given an approximate analytic expression. Loss of potential 

energy from the main flow corresponds to a lowering of the free 

surface above the region of loss and a rise below. Loss of kinetic 

energy reduces the main flow's speed, and the ensuing surface dis-

placement is of the same form. Any attempt to sketch the influence 

of these losses on the long-wave profile just downwind of the crest 

yields a shape strongly suggestive of breaking over. 

In a real wind-generated wave field conditions are very 

different from the idealized ones hypothesized in this study. In the 

presence of a continuous random wave spectrum short sequences of waves 
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of varying lengths and-amplitudes will continually be generated and 

dissipated by constructive and destructive interference. These 

processes occur fairly rapidly and over small numbers of wavelengths 

.I .. _ because of the strongly dispersive nature of gravity waves. The 

crests.of the longer waves in the spectrum, whose mechanism of 

breaking. over is being considered here, will also have ephemeral 

existence and varying properties. All of the waves have' finite extent 

in the third space dimension neglected here, and their properties will 

vary in this direction. The whitecapping mechanism described will 

operate in spite of these complications, and is in accord with visual 

impressions of the phenomenon under suitable conditions. The 

concentration of its effect in a very small region near the crest is 

an important prediction, in Cluantitative detail, of our analysis. It 

results from existence of the special regime very near the crests of 

nearly-maximum waves in which ak ex: U-3 rather than and from 

growth of the wave-interaction function ~ from a small value in the 

trough to nearly unity at the inflection point near the crest. 

Because of this concentration the mechanism will be difficult to 

observe and study in wave-tank experiments. 

It is not claimed that this Clualitative picture is complete. 

A single wave-train. will become unstable'on its own if energy is added 

steadily to it without creating other waves as in a slowly converging 

channel, by the wind, or by variations of the flow on which it rides 

which we have studied in this paper. Other authors have described 

interchanges of momentum and energy in crest regions and a variety of 

other effects. Surface tension may become important for .the shrinking 

small waves near long-wave crests, as may capillary waves on the 

o 
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upwind side. In a whole gale the general presence of foam and the 

bodily detachment of water from nearly-discontinuous wave crests by 

local wind stress may dominate the picture. 

remain to be answered. 
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APPENDIX: Stokes-Rayleigh Exp3.nsions of U, G, and £"2. 

Rayleigh (see Lamb (1932), p. 417) has shown that to third 

order in ak = E the velocity potential of a traveling wave train of 

. ky 
finite amplitude is given by ¢ = c (x - a e sin kx) and the stream 

function by ~r = c(y - a eky cos kx) in co-moving coordinates; we 

--+ ~¢ have changed signs to use v = + v • To this order the. phase 

veloc i ty c is given by 

2 
c = 

and the free surface. y = Yf(x) at the streamline * = 0 by 

with X = kx. The surface flow speed U(x) on * = 0 is given to 

the same order by 

In making our eXp3.nsions through third order it is convenient to 

use powers rather than multiple angles. We find 

The tangent of the surface slope angle a, given by 'dYf/dx, is 

(} b 
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we also need cos a = 1 - ~ tan
2 a and cos3 a = 1 - (3/2)tan

2
a 

to this order; 

The radius of curvature R of the surface is given by 

-1 2 / 2 3 R = (d Yf'dx )cos a; 

-1 [ 2 2 3 R = - kE cos X + 2E(2 cos X-I) - (3E /2)(7 cos X - 10 cos x)L 

2 
To find the term U /R in G we must multiply through the factor 

(1 + E2) in c2, obtaining 

2/ [ 2 1 2 ( 3 )­lJ R = -gE cos X + 2E(COS X-I) - 2" E 9 cos X - 10 cos X J 

2 
then G(x) = g cos a + U /R is found to be 

To find Q = 1 - (U/G)(dG/dU) to second order we need 

dG/dx (gk€ sin X) [1 1 i(5 
\ 2 

= + 3€ cos X 18 cos x)J, 
2 

dU/dx = (ek€ sin X) [1 1 2 2 
+ 3€ cos X - - E (3 - 18 cos X) J; 2 

I 1 2( 3C
2 

) 
12 18c2 ) 1 €C + 2" E 1 1 + 3€C - ~ E (5 

Q 1 - 2 
1 2 - 3if) 1 2 ( _ 18c2 ) 

, 
1 - €C + 2" € (3 1 + 3 EC - - € 3 2 

with C = cos X. The ~erms of first order cancel, as do those of 

second order which are proportional to C
2

, giving 

2 
Q = 2(ak) 



.. 
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plus unevaluated terms of third order in C and C3, and higher order, 

depending on fourth and higher order terms in U and G. 

A number of authors (e.g. Wehausen (1960), p.658, Eqs. 27.25-

27.2;-r) give the same equations with which we have commenced except 

that the origin of y has been shifted to the mean ·surface level; 

kYf = €[cos X + ! € , 2 cos 

Although this equation is also accurate to third order , its use in the 

2 2 2 
Rayleigh equation U- 7 c [1 - 2kYf + € (1 + 2kyf)] is incorrect. 

The curious result of using it is that Q is wrongly found to vanish 

identically through second order! 

o f~' 0 o 
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FIGURE CAPl'IONS 

Figure 1. Curvilinear coordinate systems. (a) s-n coordinates; 

(b) J-'i coordinates. 

Figure 2. (2) furameters of the short-wave train. (b) Relations 

between curvilinear and Cartesian descriptions of small-

wa ve parameters. 

Figure 3. The dispersion relation for m vs. k relative to flow 

of speed U with equivalent gravitational acceleration Gj 

UD/G = P is plotted vs. ~k/G = q. In units of U, 

phase and group velocities at any point E are the slopes 

of the chord from the origin and the tangent to the curve 

at E, respectively. 

Figure 4. The relation between H and AO/~ (logarithmic scales). 

Figure 5. 

Figure 6. 

Figure 7. 

Growth factors k/k (solid) and 
o a/a (dashed), each o 

multiplied by 
1 ' 

(1 _ (32)2 , ~ 
1 

(1 (32)-2, for selected 

values OfAo/~ as indicated, on a wave of maximum height. 

A scale of (3 is also shown. 

Values of (3 at which selected values of ak/a k are 
o 0 

attained vs. AO/~ on a maximum wave. 

"- U/G, Values of the functions P cos 6, U, G, and in 

suitable units as indicated, vs. e in the cap region of 

a nearly-maximum wave. 

diverges as sec e near 

P is not plotted because it 

o e = 90 . 
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Figure 8. The surface profile /yl vs. lxi, with origin at crest, 

in the cap region of a nearly-maximum wave. The units of 

·length are (
_1 c 2/"'g )1/3 .". -1, ( ) 2 ~ JL " see text ; values of the 

parameter e are also shown. 

Figure 9. The parameters M, and a2 
VS. f3 on a maximum wave. 

Dashed curves for M and are from the parabolic modelj 

solid curves are best estimates. 

Figure 10: The parameters M, and vs. e in the cap 

region of a nearly-maximum wave. The negative of the 

extremum of the WKB test function W is also shown, as a 

d h d W 
_ _ 1 

as e curve; ext - '4 a2 • 

Figure 11. Small-wave displacement ~ vs. f3 - 2X/~ in the limit 

p -+ 0 on a maximum wave for a 
o 

o and 1 2:rr • 

Figure 12. The wave-interaction function Q = 1 - (U/G) (dG/dU) vs. e 

in the cap region of a nearly-maximum wave. 

o i""1 
>.1 o 
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This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
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