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ABSTRACT

A new theory of small;amplitude gravity waves on any given
steady two—dimensiénal déép flow is developed. Rigorous solutions of
linearized equations in curvilinear coordinates for gquasi-sinusoidal
traveling waves are indicated fér the dispersion relation, wa&e
amplitude, wave-number, phase and group velocities, wave energy, energy
flux, and its spatial change; all are functions of known surface flow
speed and equivalent "gravity" reduced from g by surface tilt and
modified by centrifugal acceleration. A WKB approximation is justified
and employed for all but special classes of small waves traveling on

all given Stokes wave-trains, including maximum and near-maximum trains

(except at their crests); for these flows analytical models are devel-

oped. Spatial change of small-wave energy flux differs greatly, for
all wave-like and most other steady flows, from that in the widely-used
"radiation stress tensor" theory of Longuet-Higgins and Stewart. It

is argued that the linearized results retain quasi-quantitative validity
for finite ampiitudes; they a;e used to analyze particle acceleration

at a confluence of crests, and to describe in detail a mechanism for

triggering whitecapping of large waves by.small shorter ones moving up

.their downwind sides.
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I. INTRODUCTION

The behavior of gravity waves on water has always fascinated
the eyes and challenged the reasoning powers of men., Scientific
observations and mathematical analyses of their properties_have
procéeded hahd in hénd with the general édvancé ofvexperimental'ahau
theoretical science from its beginnings to the present. An impfessive _
bod& of observational data and theoretical calculations has been |
accumulated on this aspect of what is now often termed'the'air-sea
interface, but it appears thﬁt we have only scrafched the surface of
many difficult problems which are of'practical importance to physical
oceanography,'meteorology, and othér areas of study and application.

An illustration of the incompleteness of our knowledge is '’
provided by the problem of the interaction of two trains’of waves
having different waveiengthsband amplitudes. This problem may be
considered an idealization of thevinﬁeraction problem in a real wind-
generated wave field characterized by a statistical distribution of
amplitﬁdes, wavelengths, phases, and directions of propagation. Many
authors'havevcarried out elaborate calCulaﬁions tovexplore these
‘interactions. These include.studies'linearized with respect to various
small quaptities; sophisticated higher-order perturbation analyses;
sometiﬁes based on techniques, and using'notations, borrowed from - -
duantum theory; and interesting new methods appropriate to the general -
study of nonlinear waves in dispersive media.. There is much héavy
weather to be encountered in trying to make a safe passage through
this sea of papers, yet ho one seems to have put forward in simple but
elegant form a fully adequate treatment, in linear approximation, of

the behavior of a wave train superposed on an arbitrary steady wave-
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like or other nonuniform flow in deep water. The methods developed
here lead to éuch a treatment and shed‘oew light on this behavior.

'The evaluation of energy associated with these wave frains, its
propagation, énd the exchange of energy between a wave train and a |
given sﬁeady flow (whether or not it represents another train of waves )
‘has occupied many investigators,'wiﬁh frequentvreferencé being made in
recent'years to the ooncept of a radiation_stress tensor introduced in
1960 by Longuet-Higgins apd Stewart. The methods we develop here for
two-dimensional flows leéd directlyb(for‘linearized waves) to
expressions for wave energy, energy flux,-and'energy intefchange. We
find that the L-H&S radiation stress must be multiplied by a correctim
factor which tends to zero for smail-amplitude wave-wave interactions.

Another example of our incomplete knowledge is provided by the
" phenomenon of whitecapfing or breaking over of waves in deep water.
This is obviously the mechanism preventing unlimited growth of wavé
energy from the wind, and is of fundamental importance in determining
the character of wind-generated wéve specﬁra, but its details still do
not appear to be completely understood. Dr. William van Dorn of the
Soripps'Institution of Oceanography told me that he attached impoftance
to the role of small waves of short wavelength traveling, relafive to
longer waves of near-maximum height, up their downwind sides, in

. x _ .
providing a mechanism for triggering the breaking of the large waves.

*

I later became aware of the papers of Phillips (1963), Longuet-
Higgins (1969t, and Hasselmann (1971) relating to this mechanism_of
whitecapping. The contribution of the present work to this problem
is prinoipally to provide‘and justify quantitative expressions for

the growth of small éhort waves near the crests of long high ones,

and for their exchange of energy.

et oprnnn0
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An experimental program to observe this type of interaction was
ﬁroceeding in his laboratory. There did not seem to be an apprqpriate
analytical treatmént with which to compare such observations, so the
vwork described herein was begun with the aim of filling this gap, but
has led beyond it to more gemeral results.

This work was originally designed to extend and generalize the
calculation by Longuet-Higgins and Stewart (1960), henceforth called
LS I, of variations of'ampiitude and wave-number of a train of short
waveé rassing throuéh a tfaiﬂ of lohger waves. They used expahsions
in Cartesian coordinates, neglecting ferms.of second and higher orders
in each amplitudé and keeping only,quadratié iﬁteractioﬁ terms of first
order in each. They also assumed that the ratiovof short to long
wavelengths was very small. In addition, the generally used assumptﬂxs
of constaﬁtvpressure at the interface and of incompressible, irrota-
tional, inviscid flow were made, surface tension was neglected, and the
problem solvéd‘wﬁs in two space dimensions. Tﬂeir results for.these
varistions invdeéﬁ water were obtained as a pfeiude to the case of
finite depth and the introduction of their radiation stress tensor.

- Our calculations retain their general assﬁmptions, aré confined
to the deep-water 1limit, and also treat flow iﬁ two space dimensions.
However, the restriction to terms of first order in the long-wave
ampiitude is fullyﬂfemoved; these waveé may be of any height up to the
ihstability limit. Only the train of short wavelength is treated in

linear approximation; In addition, the ratio of short to long wave-

lengths is arbitrary; some implications of near4equalitygare discussed.

We may choose the long-wave flow pattern to be a given steédy

train of "Stokes waves" of finite 'amplitude. However, the periodic

character of such a flow, which is stationary in our coordinates, is not
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of importance; our work constitutes a lineariéed treatment of a wave
train superposed on an arbitrary steady nonuniform flow. 'A special
case of this problem was treated by Longuet-Higgins and Stewart (1961), .
denoted by LS II below. Because our results include as special cases
some of the problems attacked in both LS I and LS II-we are able to
draw an important distinction betweeh wave-like steady flows and others
having negligible surface profile inclination and curvature. Within
the domain limited by our linearization of one wa\}e—train,. we find the
form of energy exchange to be significantly different from that pre-
dicted from the radiation stress theory of LS I and LS IT.

Treating the small wa.ves & lnear will limit the rigor of
applying'the results to the trigéering of whitecapping, but it seems
a8 necessary fi?st step and provides a framework for compariéon with
wave-tank experiments. One may remark that nature has freqﬁently been
kind enough to ailow a greater domain of usefulness to liﬁearized
analyses than the lineariiers have had any right to expect. This
appears to be the case with respect to many properties of gravity
waves of large amplitude, in spite of their strikingly nonlinear

features.

IT. SUMMARf OF RESULTS

| A.major part of the present work may be described as the
development of a small-éignal theory of the propagation of gravity
waves on a steady but otherwise arbitrary two-dimensional flow of an
ideal liquid. After defining the given steady flow we introduce
curvilinear coordinates appropriate to itsbfree surface, and derive
linear partial differential equations for the velocity potential and

surface displacement of a small disturbance on it. We obtain a general

et o000
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quasi-sinusoidal traveling-wave solution of these equations, and from
lit obtain the'dispersion relation and exbressions for wave-number,
amplitude, phase and group Qelocities, wave energy, energy flux, and
its spatial rate of change at any point on the given free surface. |
These expressions are rigorous solutions of the linearized problem.
Their interpretation is straightforward and exhibits the physical
cdncepms.clearly; it is espeCiallyvsimpie if a WKB approximation is
well justified. We discuss this approximation mainly in connection -
with wavé-like steady flows. We'pfOVe WKB validity for a large and
important portion of the entire small-wave spectrum on all steady long-
wave trains except those of néarly-maximum héight; for'these its
validity is proved for all but a well-defined fraction of this'portibn.
With thié'exception, the approximation is valid for all small wavés_
propagating in bottom-fixed coordinateé in thé same direction but with
lesser phase Veloc;ties; these are the waves traveling up the downwind
- sides of the longer'waQes. Some of theSé waves are not short with
respect to the waves of the given flow. The properties of all other
linearized waves are contained in our general'expressions and can be
worked out as desired. The WKB approximation becomes iﬁvalid on some
wave-like_fIOWS only for small waves of great length and for ”anomalous”
waves with group velocity nearly the same as the phase velocity -of the
given wave train; their existencé and properties have been noted by'
others. |

The results of LS I for amplitude and @ve-nmber changes emerge
as special cases of ours in the limit of small-amplitude iong waves of
great length as expected, but our more general results afe obtained By

a simpler calculation once our foundation has been laid. They depart
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significantly from those of ﬁS I for long w;ves of large height. In
rarticular, for.réther short small waves the wavé;number increases much
more rapidly in a small region near the crest of_a long wave of nearly-
maximumvheight. This region is larger for longer short waves and
includes fhé entire long-wave profile if the "short" and "long" wave-
lengths are compafable. Varlations of amplitude, wave-number, energy,
and energy flux in this region, and in the more familiar one, are
described by limiting forms of the more general resuits.

In brder to generate analytically tractablé expressions for
these results, and to test the wvalidity of the WKB approximation on
'which their simple form depends, we have developed an extremely simple
and fairly accurate mathematical model of the profile of a wave éf
maximum height. This model may have uses in other contexts. In
addition, we have made an approximate analysis of flow properties near
the crests of waves éf‘nearly maximum height, which enables us to
estimate tﬁe particular waves for which the WKB approximation becomes
invalid in this region, as well as to establish the forms of upper
limits on the growth of wave-number and amplitude. These mathematical
models are described in a companion paper, in which comparisons are
also made with the model profile of Longuet-Higgins (2973).

The comparison of our results for waves oh an arbitrary steady
nonuniform flow with those of LS II is of particular interest. Because
our results ére two-dimensional the comparison is with the flow they
describe as vertically upwelling. Their results for wave-number and
amplitude changes are obtainednin differential form from a linearized
calculation for a specific shape of flow; they are expressed in terms

of the co-moving phase velocity which itself depends on position'along

C 6B OF OO0
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the flow through the wave-number, In contrast,vour résults are obtained
directly in integrated form and depénd:only_bn‘knOWn propérties of the
arbitrarily given flow; they must be differentiated to make comparisons.
Their differential fdrms agree with our more genéral ones only for the
very special flow sﬁape they selected, and will'differ for ény flow
with appreciable surface tilt or curvature; however, theirvintégrated
vresults for wave-number and amplitude agree with ours.

They émploy'their amplitude Tesult as a Critérién for‘deciding
amongbseveral alternative general expressions for interchange of energy
between waves and a given flow. Howevér; their expressions for wéve
energy,.energy»flux, and its spétial rate of change are all in disagree-
ment with ours except ;n their particular flow shape. We show that the
general energy relation they select, which depends on.their radiation
stress, must be greatly modified* for small wéves riding on all wave-

“like steady flows. This result is important because their radiation
stresswhas been used by many workers in the‘study of wave-wave inter-
actions. We iﬁtfoduce a "wave-interaction function' which appears és
a factor multiplying their radiation stress, and show that it is very
small on wave-like steady flows unless they are of nearly-maximum
height, and even there is small excépt near their.crests.

The various differences mentioned above and described in detail

below are all related to a local parameter G of the given flow. This

¥* . .
Whitham (1962) expressed dissatisfaction with their radiation stress

and discussed energy transport for finite depth but his analysis
does not appear to be directly extendable to the deép water limit.
See also our comments in Section XIII on the "previously overlooked .

‘mechanism" described by Hasselmann (1971).
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itative picturé of the relation of our results to the triggering of
whitecapping.

This desCription indicates that our methods may be useful in
other hydrodynamical free-surface problems. Therefore we have tried

to describe them clearly and completely in the sections that follow.

 III. THE LONG-WAVE TRAIN OR OTHER STEADY FLOW

In'coordinafes fixed with reépect to deep water at rest, our
long-wave train moves to the left with phase vélocitfl Uo . The
shorter-wave trains to be emphasized below also move to the  left in
these coordinates with a smaller speed. We adopt a coqrdinate system
which moves With'the long-wave crests; their flow pattern is then
.steady and is assumed known in full detail. For wave-like flows such
knowledge could in principle be gained (1) by keepingbﬁany terms of the
Stokes expansion, (2) from more sophisticated techniques, such as those
reviewedAby Wehausen (1960), or (3) from the output of a digitél
calculation on'é large éomputgr. Alternatively, any suitable ﬁonﬁave—
like steady flow may be postulated. The velbcity potential of the
steady flow is }Rx,y); its velocity is i =‘§Jﬂ', and S?ﬁ(: 0.
With ¥y ‘increasihg upward and X ~to the right, we have 153* UOX for
-wave;like flows as y —* ;oo. Because of our choice of leftward |
propagation in b:ottbm-fixed 'coord'inétes, both'.' Uo and the velocity of
propagation of the shorter waves to be emphasized are»positive.in our
coordinate system.

The free surface is defined by vy - yf(x). On this surface
theré are two boﬁndary conditions: (Qﬁ/bX)(dy}/dX) = Qﬁ/ay ,

expressing the kinematic condition that flow at the surface is parallel
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. 1 = 2
to it, and -p/p = gyf(x) + 5 | Vj?' = constant, expreseing conserva-
tion of potential plus kinetic energy, through the Bernoulli relation,
for parﬁicles flowing along the surface streamline. The free surface
departs from the horizontal by an angle « ; its slope is given by
tan a = dyf/dx. We reserve the scalar symbol U for flow speed at
the surface; = (Q@/Bx)g + (Qﬁyay)e at y = yf(x). 'In what follows

we assume that yf(x) and U(x) are known; they contain all we need

to know about the steady flow.

IV. CURVILINEAR COORDINATE SYSTRMS

" We introduce curvilinear coordinates (s,n) in the neighborhoad
.of the unperturbed free surface,fwhose equation becomes n = 0. Dis-
tanee normal to this surface, measured positive away from the fluid,
ie n ; distance measured along the surface in the direction of
increasing x from soﬁe fixed reference point.is sv. A point in the
neighborhood of the surface has the value of s associated with the
base.of'the perpendicular of length n from the point to the surface.
These locally defined (s,n) cordinates, shown invFigure la, are useful
in the differential neighborhood of n = O because they have metrical
simplicity (they measure lehgths directly) and are orthogonal there
but are inappropr;ate for inveetigatiqns at finite values of n where
their metric properties are less simple; the system even becomes
singular rhere’the perpendiculars intersect.

An orthogonal set of curvilinear ceordinates shewn in Figure 1b

and having useful properties throughouﬁ the flow is provided by the
equipotentiais _¢'= constant and streamlines ¥ = constant of the

complex velocity potenmtial W(z) = W(x + iy) = f(x,y) + i¥(x,y) of the

‘given flow. This function may be extended as far as needed by analytic

ok
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continuation outside the unperturbed free surface with due regard, in
their differential neighborhoods, for branch poinﬁs which appear at the
crests of a wave of maximuﬁ height; it is therefore valid to extrapolate
properties of this unperturbed flow beyond its'boundary by-a Taylor
series in the displacement of a small added wave.

We will employ the (ji I) coordinates in Séction VI, because
of the useful property. that under a transformation of coordinates from
(x,7) :to (ﬁ,?) by a conformal mapping W(z) =’ﬁ + 1Y the Iaplacian
operator ‘52/5x2 + 8?/5y2 becomes proportional to Bg/aﬁe + 8?/5@2
(Morse and Feshbach (1953), sections 5.1 and 10.2). |

The surface boundary conditions at n = O for steady flow are
F/om = 0 vand gyf(s) + % Ug(s) - constant in these coordinates. The
tangential component as of acceleration a of a surface particle is
given* by duU/at = (dU/ds)(ds/dt) = UU' ; differentiating the Bernoulli

boundary condition with respect to s, and noting that dx/ds = cos a,

ng ~ ‘ ' .
as = a ° e, = UU' = -g sina,

the tangentiél component of E s &as on any inclinéd surface without
friction. - The norﬁal component a, of ; is centripetal and has
magnitude U2/R , with 'R the radius of curvature of the surface. We
take R positive where the surface is concave upward; in these

1 do/ds = d' , and

]

coordinates R~

a
n

é’-’én - 02/R - o' .

* A prime denotes a derivative with respéct to s of a quantity

. ~ ~ ) -
depending only on s ; ey and e, are unit vectors.
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For a wave of maximum height ' -0 and o~ +30° near the crests,
sothat 5 -0 and g5 - + 1 g .
n s 2 ,
The complete Bernoulli equation holds throughout the fluid in
- 2
the form (p/p) + % ,V 15’ + gy = constant for steady flow.

Taking the normal component of the gradient of this equation, evaluated

at the surface n =0, we have

n.

. 2
-0 Hp/d) = g(¥y/m) + 26 VIV

On the surface, Jy/dn = cos a ; the second term is

8, " (VP NF=7 -lud(WE)/3%s] =8 .[Uu'gs' + P8 /3] = P
where we have used aﬁs/as = a'@n . Therefore on n = Q
-p‘l(ép/an) = g cos a + Fa' .

The first term in the pressure gradient supports the fluid against the
normal component of gravity while the second provides the force to
produce centripetal acceleration. We shall need this quantity in the
following section.

The curvature of the surface streamline is given by
A - - .
e, - Vﬁln|vj5'3 and that of an equipotential, at the surface, by
~ - - -1
e, ” V7ﬁnf¥ﬁ§' . These curvatures are, respectively, R and U'/U
in magnitude. We have already defined the sign of R; the equi-
potentials are concave in the direction of increasing s if. U' is

positive.

V. DERIVATION OF THE WAVE EQUATI&N

We now add a sméll‘time-dependent perturbation f(s,n,t) to
the velocity potential;l The displaced surface wili be located at
n = £(s,t). The gravitational potential associated with £ is

946 gt ok 0D0O0
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gt cos « .(see Figure 2). The qpantitiés $, .t , and their‘deriwnives
are taken as small of first.order, and higher order terms are dropped.
To develop the kinematic boundary condition on the displaced free
surface we note that the component of flow velocity at n = i(s,t)
whichvis-normal to the direction of the unperturbed surface at the i o

same value of s 1is given by

AR =%n'%@+¢i\-@

n n=0

S,

'.‘

,+gn .[g%v@ﬂé) I _O+

+ second order.

<a¢/én> + (FF/x)

n=0

The second term may be evaluated by coﬁsidering s and n to form a
locally Cartesian system, whence gagﬁyane = —Eaéﬁyasg = -tU' on
n =0 since v?é = O.v.Alternatively, we may notice that the flow
velocity 5‘6' is rotated as we move oﬁtward along an equipotential,
so as to remain orthogonal to it; this develops an outward component; -
equal to its magnitude U times the rotation angle. TFor small &
this‘anglevhas magnitudé §U’/U (where U'/U is the equipotential's
curvature) and is.a rptation toward n = 0, generating an inward - -
.normal component, if U' is positive. Thus the seéonditerm is
-U(tU'/U) = -tU' ,  in agreement with the first evaluation.
The bouﬁdary itself m;ves normal to the unperturbed boundary
| with velocity Bg/at, sé'the net normal velocity is
(bﬁ/én), . - U't - Ot/dt. The tangential component of velocity,
n=

Qﬁ/as = U, 1is needed only to zero order. The ratio of these velocity
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components is the slope ©Ot/Js, to first order. Thus the linearized

kinematic boundary condition is

| <? + U g%i)& + U'te =v g§ ) .dn

Since aU/at =.O, we may write this as

ja}
i
(@

i

K

I

U.gg on 4#-=4O ; ?

| /3 AN
g(s% + Ugg) (U8)
The Bernoulli surface condition for time-dependent flow is

o
n=¢§

[% (§+ ¢) +% ,—V’(ﬁ + ¢),2 + g(yf + E, coSs a)}f

cancelling the terms pertaining to the steady flow at n = O , wWe have
to first order in & and ¢

8‘ + U 0 b+ 1 £ e -3w %Jﬁrz + g€ cos O '_ 0
‘SE Js 2 n g _ -. n=0 - ‘

The gradient term was evaluated in the preceding section; the
coefficient of & is g cos a + Fa , equal to -p-l(ap/an) on

n = 0, It represents the equivalent or effective'gravity—like_accel-
eration experienced by the small ﬁaves; it is reduced by tilt

(g *vg cos @) and altered by centrifugal acceleration »(Uga’ = U2/R).
We céll this important known quantity \ |

R T
[a(s) = gcosa + U2/R

e o AR S0t RO A ot TPt A s € 1 o g

Thus our Bernoulli condition is
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GE = - (g; +U ggi>¢ onv n=20,

which may be written as

. The linearized kinematic and Bérnoulii bbundary conditions
above are simplef, ahd”displa& the phyéical.éoﬁsidefafions mofe,élearly,
than thdsé resulting from their expression in Cartesian coordinates,
Jutilizing.a displaced free surface located at v = yf(x) + E(x,t)

(see FigUré 2b):

E3E ERe I Y ne A ol

y=yf(X)

and - : .
BIG  BEF\ oy BB P
e ssy "2 )f "R ExxtTyy
, T (%)
o o e
It wasa tedious and nontrivial exercise to demonstrate in detail the
equivalence of these pairs of equations in.the‘different coordinate
systems; this will not be done here. 1In addition to the inherent .
complexity of the.second pair, the two sets differ intrinsically due
to the angular displacement of the (s,n) sxes which varies as a ¢
function of s or x. The Cartesian set acquifes several additional
terms when altered (as in LS I) through Taylor expansions in Yo
(implying that the long-wave amplitude is also small of first order),

's0 as to be evaluated at y = 0. Comparison of the resulting equations

with ours then becomes even more tedious, although the Cartesian
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second-order partial diffenential equations for ¢ obtained before
and after this additional expansion (in the 1limit of small yf) can
be shown, again with difficulty, to be identical.

Inserting Ut from the second boundary condition into the
first and multiplying by U/G we obtain the linearized wave equation

for ¢:

va L RN £ 2
X t T o P + o Sg = 0 on n = 0.
From the form of this equation it is evident that the quantities | u/G
and UE/G are the appropriate local (space-vafying) units of time end
ilengfh, respectively; both are known functions of s. We may define a
dimensionless distance ¢ along the unperturbed surface by

do = (G/Ue)ds = (G/U5)d¢} o 1is a known function. of s. The cor-
reeponding dimensionless normal distance N wmay be defined near
"n=0 by dn = (G/Ue)dn = (G/U5)dﬁ, and a local time T by

at = (G/U)at; then

We emphasize that the linearized partial differential.equations
developed here constitnte one of our most important nesults. The use
we have made of them in.this paper suggests that their generalization
to other hydrodynamicai and oceanographic free-surface and other
interface problens can be expected to yield results of.greater physical
clarity in simpler form and with less effort than by Cartesian expan-

sions. We will not undertake here to extend them to the cases of finite

depth, three space dimensions, or internal waves at a curved interface,

although these extensions should be practical and equally effective.

g 68t oph a0
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VI. SIMULTANEOUS SOLUTION OF LAPLACIAN AND WAVE EQUATIONS
The simplest limiting situation is that in which the long-wave
train has zero amplitude and the fluid is at rest, with-a horizontal

surface, in bottom-fixed coordinates. Then U = Uo’ G=g, =0,

s =X, n=y, and J@
[(F/367) + (F/°) 1

[(d/at) + _UO(B/Bs)]2¢ + g(0f/on) = 0. The traveling wave solution is

kn
b = A e © -cos(kos - wt), the dispersion relation is

Uos. The Iaplacian beCOmes

0 and the wave equation becomes

]

|~

(Uok0 - w)g = gk,  the phase velocity ig vy, = w/ko = Uo * (g/ko) ;5
- we have the expected linearized gravity waves traveling in both
 directions with phase velocity (g/ko)% reiative to the uniformly
moving fluid. |
We therefore seek a solution réducing to this form in this
limit, which will be pérticularly appropriate for waves sufficiently
short that the fractiohal changes in U, .G, and @ over one wave-

length are small. The parameters of this wave train are shown in

Figure 2a. Specifically, we require that

n=0

f” ; , e _g
_L#?(S,n,t) = A(s) cos[J' k(s)ds - wt] .2
We must how-determine the n-dependence of this_function near n = 0
which satisfies Iaplace's equation and use it to evaluate Of/dn in
the wave equation. This can be accomplished with the aid of the

15 - ¥ coordinate system described earlier, in which the Laplacian

2
operator has the form (ag/af) + (ag/ay ). We note that . § is the

real part of a complex perturbation velocity potential

V(Z:#) = W@"‘i@t) = ﬁ@{?}t)"‘iu{@:i’:t)-
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Choosing w to be anbanalytic function of Z of the form
exp(-1[F(2) - wt]l}, with F an analytic function having real and

imaginary parts 'R(ﬁ;W)‘ and I(§,¥), we have
P = e’ cos %, ¥ = -e’ sin X,

where X =R - wt. It is a general property'of analytic functions that
V2¢ = V2W= 0.

The Cauchy-Riemann relation is

S

Because df/dl = do/dn = ds/dn near n = 0,

dal dR ]
- X + = X
[ds sin X + P cos

n=0

henceforth I. and R are regarded as functions of _é- only. To
complete the identification we set Igz) = 'In A(s) and
. S : . ] .
R(f) = f k(s')ds'. With df =Uds on n =0, ar/df = x/U
and d1/af = (aU)™t aa/ds.
A.l th tors (33 +a)2' d o/on to B
pplying he operators g3t 35 an it 5

inserting in the wave equation, and dividing by A, we obtain

U /. U2k 1 d°A
-<G (Uk-(l)).-i-'——— K -—0-2— _COSX
4 1 .1_9&} _
-5 (Uk - w)) +2 (Uk-a))-2 Adojsmx_o.

6681 oFbE0TOD
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v . _
Both square brackets must vanish, since the equation must hold for
all t. The second is a perfect differential which, when integrated,

" yields the relation between A(s) and k(s):

oty = sanes e o st e da s e

v
i
!

A2 = ez 0/e) - ) |

|
j
Here. C is a constant of integration whose value is expected to be
unspecified in the solution of a set of linear honmogeneous equations.
Its value is irrelevant and we set;it equal to unity. [This form of
analysis becomes inapplicable near the singularity at (u/G)(Uk -w) = %,
- corresponding to vanishing group velocity in our coordinates. This
anomalous wave is ouﬁside the spectrum of interest to us, but we
| discuss it briefly in a later section. ]

We use this relation between A and k to eliminate k(s)
from the first square bracket, which then determines the dependence of
A vbn 0. Inserting. U2k/G = (Un/G) + % tA° and combining terms, we

obtain

R S R A R

dCajadf + [%+ (Uo/c)Ia - AT - 0.

This apparently unpleasant nonlinear differential equation arises in
the developmént of the phase-amplitude form of solution of equations

of the Mathieu-Hill type (Courant and Snyder (1958), pp. 9-11) and more
generally of the typé to which'the WKB approximation is commonly

- applied. If the solution of the differential equation

M .
This does not apply to the static case w = 0, in which the ar-

guments of the trigonometric functions do not depend on time. The
two conditions then reduce to a single one, preventing the separate

determination of A and X, but one may take the limit as w — O.
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dQF/dGQ + P(o)F = 0

is expressed as the real part of A(o) explil'(c)], with A and T

real, the differential equation is equivalent to
A2 al/asc = ¢ and d2A/do2 + P(o)A - a2 - 0, .

with C a constant. DThe form of this pair of equations depends only
on AE/C, 'verifying that C 1is arbitfary.]‘ In this way we see that
the dependence of A (and thence of k) on o (and thence on s) is

related to the linear ordinary differential equation
deF/dce + [111+ (b/G)lF = o3

A(o) 1is the amplitude of the envelope surrounding the quasi-sinusoidal

oscillations of its solutions.

Application of the conventional WKB approximation to this

equation yields the approximate solution

L 1
-

. o) ‘ 1 .
F(o) o | %Jr (Uw/G)] exp(?* i] [Il;+ (Uw/G)]Z doy,

a3
A [%I+(Uw/G)] ,

b v p—

cdrresponding exactly to neglect of dgA/dc2 in the nonlinear equation
| for A. [This form becomes inapplicable in the limit Uw/G - - % 5

the anomalous wave mentioned above. ] Subject_only‘to the validity of
this approximation, we have thus obtained a complete solution in closed
form for the velocity potential of the linearized waves propagating on

an arbitrary steady flow defined by the functions U(s) and G(s).

w
h
i
s
e
™y
vy
-]

<y
-
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The displacement &(s,t), shown in Figure 2a, is given by

-1, 9 d A | U dA
= - = -_ ’ - i X L e e X
£ G~ ( S *U = ) ¢ o 5 [(Uk w)sin Kas o X
27% y 1) |
_ (Uk - w)A U 14A sin ‘['k~ds- wt - tan” '
= T P\ TOE 3@ J | (Uk- 0 |

this may be written as

+

£ = a(;) sin[f kds-wt-a(s)}::

which defines the small-wave amplitude a(s) and phase d(s) .

VII. THE RIGOROUS DISPERSION RELATION: AMPLITUDE, WAVE-NUMBER, WAVE-
ENERGY, AND ENERGY FLUX
The dispersion relation in familiar terms may be obtained from

the_first of the vanishing square brackets in the preceding section:

Gk(1 + €), |

]

! (Uk - aﬂe = ckl1 + (U2kA/G)-l dzA/dc2]

i

in which the smallness of € thus defined is associated with the
smallness of. d.EA/dc_J'2 and therefore with the degree of validity.of the
WKB approximation for A(c). Specifically, dEA/dc2 Vmay be neglected
if it is small with respect to either of the two remaining terms in the
nonlineér differential equation for. A; this is equivalent to the

2 ,
condition |A3-d A/d02l << 1 with our normalization of A. We will

£
¥

relate € +to this quantity below. For small € the familiar
dispersion relation (Uk - w)2>= Gk is then valid locally, using

local values of U and G.
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It is convenient to introduce dimensionless frequency and wave-
number variables appropriate'to the local units of time and length

described in an earlier section:

p = UG, q = ke,

1]

with G G(L + €) sothat G = G when the WKB approximation is

Justified. The rigorous'dispersion relation is

2 .
(¢ - ) = q or p = qfaq®.

The two branches are shown in Figure 3. It is simplest to describe
them with reference to a given flow with nearly constant G andr U,

a condition corresponding to a long-wave train of very sméll amplitude.
The phase velocity vb = w/k, measured in units of U,‘ is the slope
of a line from ﬁhe origin Ov to any point E .in guestion; the group
velocity vg = da/dk, in the same upits, is the slope of the tangent
at E. On the upper branch OA both are positive and both exceed U.
In bottom-Tixed coordinates these waves propagate backward with respect
to the given wave train; we shall not emphasize them in our treatment
hefe, although we Jjustify the WKB approximation on a large part of this
branch. On that part CD of the lower branch for which « > 0 both

/

vp and v _ are positive but less than U;‘theée'waves are of greatest
interest to us. On BC vp is negative and vg positive, both being
less than U in magnitude; in botpom-fixed coordinates these waves
"move in. the same direction as the given wave but With greater phase
velocity and lesser group velocity than U. Finally, on OB both _vb

and vg are negative and greater than U in magnitude. These waves

move in the same direction as the given wave in bottom-fixed coordinates

3

prs

o a0k B OO0
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with a phase velocity more than twice as great as - U. To keep signs
straight we assume that U and k are always positive. We refer
repeatedly'to these branches in several sections below. [The cor-
responding relationships in bottom-fixed coordinates, in which pg = g,
are obtained by rotating the parabola'clockwisé by'MBO. The given wave
is then represepted by the point é =’;p =1 if its amplitude is
small.] |

| .For long-waye trains of finite amplitude and other steady non-
uﬂiform flows U and G vary, causing the repreéentative point. to
move élohg the curve. In our coordinates a steady'progression'of small
waves moves along a flow of fixed profile; the same number of Crests’
must péss each point per unit time, so @ 1is a constant. TIts sign
determines the direction of the phase velocity, which is positive for
.the waves we emphaéize here. Its magnitude defines the short-wave
train of interest by selecting the short-wavé number k= k(so) at a
refetence point S, ‘(for example; in a long-wave trough)vand-solving |
the dispersioﬁ relation for ® using U(so) and G(so) for the
steady flow under study. | |

The local phase and. group velocities are given by

Uz (G*/k)% U + c~= uly - (q - p)'l]

i

<
N

and

N~

1l

(@ /x)

=

.V

U-
g +

=U+ ¢
,. g’

with ¢ and cg denoting the local co-moving small-wave phase and

]

group velocities, respectively; cg'z % c as expected. The upper

signs apply to branch OBCD and the lower to OA. The quantity

1 .
(G*/x)? 1is the magnitude of c, and (U/G")(v - UK) =p - q 1is the
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ratio U/c; ¢c>0 on OA and ¢ <O on OBCD. The quantity
|2+ (W) w-u) [ =12+ @+e)p-a)l = A% may ve
identified, for small le| , with lvg/cl = [(U + cg)/cl; vg/c is
positive on AOB and negative on BCD. Although the only effect on
‘the dispersion relation of a failure of ,el to be negligible is to
provide a varying correction to G*, the interpretation Sf A given
ébove will also.bé alteréd. | |

We introduce the symbol A for the ratio U/c;

A = Ule = (UG)o-uk) = p- q.

The solution of the rigorous dispersion relation is given by any of the

following:
1 1
5 1 1 .\
P = q%4q% e = 5+pt(F+p)%
z 1 | -1:1 - 1 3
A=+(I;+I>) - 53 A = D [§+(H+P)]‘

In the first equation the upper sign applies to segments OBCD and
the lower to OA; in the others, the upper sign applies to BCD and
the lower to AOB. On the segment CDf of special interest to us,

p >0, qg>1, and A< -1. In this notation % + (p - q)

1
= I (% + p)2, ' the upper sign applying to BCD and the lower to AOB.

Thus A2 is equal to (% + p)% = A&iB for small J|e|; then
I IAA/Ul sec B,

tan & = -& a(fn A)ao .
. . 122 .
The quantity € is equal to (gA)™ d"A/dc”; if we use the

WKB value for A, we have

o6t aop bt 00



26"

e = [(% + p)/q]A5 dgA/dce.

Thus the smallness of € 1is connected to the validity of the WKB
approximation for A. The square bracket is less than unity everywhere
on segments BCD, so that the smallness of € féllows directly from
WKB validity for the small waves of special interest here. Additional
 examination is required forlthe othef brancheé. This will.be deferred
to the section on WKB validity; henceforth we neglect «.

It is well known that the potential and kinetic energies per
unit surface area asséciated with a train of small-ampiitude éravity
waves, When averaged over a wavelength, are eagh eqﬁal to % P gag,
so the total energ& B pér unit surface area is % 0 gag._ waever,

our waves are propagating on a surface with local effective gravity G,

so we have

E = %p Ge® @ G(AA/U)? = (111 +'p)/ - (3 v 2) ca/ifs

. 1 .

from this we have E o k(% + p) 2, or as a function of p and U
1 31 + 1 3 [l Ul
E « (f+p)2|5+pt (f+0p)2|/lplul

From a physical point of view it is more illuminating to write this in

the equivalent form

E o 6fle(U+e)l = ¢/lev | lc/<vv)l J

obtained by use of the relations above. In the same notation

ey
l k = _fw/(U +c)l 5

and



a o« |c(U+ cg)l = Jev | . !

Because the energy qf linearized waves 1s propagated with
velocity cg in fluid at rest, and with velocity vg =U + cg in
general, the flux of wave energy J (in units of energy crossing a
unit length parallel to the wave front per unit time) is given in

magnitude by .
. IW._.,.__‘.N...,.‘_A e T T L TS . o, - e ..

g’m Blv,| o o/lel e« lo/v | .

N
However, the signs of vg and c¢ are the same on AOB and opposite

on BCD, while vg is negative on OB and positive elsewhere,

giving rise to the following scheme:

Region Wave Energy Flux J oc: J and v. w,p, and v? c and gg
L=} R .

0A f(G/U)[(%; +p)? - % ] >0 >0 >0
0B ~(¢/U)[(%+ p)%-i-%'- ] <o <0 <0
BC {(G/U)[(%; s )2 4 % ] >0 <0 <0
CD +(G/U)[(% +bp)% + % ] >0 > 0 <0

Ir J ié not conserved in passing aiong the profile of the given flow,
energy 1is being exchanged between the small-wave train and the steady
flow. Our interpretation of these expressions for wave energy and
energy flux is given in a later section.

It is implicit in our linearized treatment that small-wave

energy and energy flux are small of second order and that changes of

S0 6t 0ok RFODOO0



08

VWave-enefgy flux produce negligible perturbations on the given steady
-flow. The back-effect of these perturbations on the small waves is
neglected in this paper but we note the resulting lack of overall self-
consistency and the related lack of aecuracy for small waves of finite

amplitude where the given flow is very slow.

VIII. APPROXIMATE EVALUATIONS FOR LARGE AND SMALL D
On the branch CD of greatest interest to us the dispersion
relation displays two distinct and basicaliy different limiting regimes
of behavior, characterized by. UD/G > 1 ahd ﬁw/G << 1, and
separated by an intermediate transition range. For p >> 1, cor-

responding to very short small waves, we expand in powers of p—l,

obtaining
qg = p:‘p%- .o
1
—_ T _2- l .
A = ¥p ..-2 +
a1 S |
AT =31p 2+ (@p) - ..
. 1. 1
A = |p|™[1-p"/16+---]
' 1 1
a o UY lpl* [1 ¢ %-p'z - eee]
1 _
ltan 8] = [p2 da(lnA)ds] <1

1 1
E o U p21tp2+.--.)

with upper signs for CD and lower for OA. This is the regime
appropriate to the description of short waves riding on long waves of
small or moderate amplitude, and also on long waves of maximum or

nearly-maximum height but sufficiently far away from their crests. In
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both cases WAJ >> 1; the local given flow velocity U is large with
respect to the small-wave co-moving phase velocity c¢, so p; is
large of order XL/k‘ with A the local short-wave length. In such

regions we have

i oo gy < pn e e

— et ‘
~ b~ ' L3 .
Uk =~ constant, A U/G = constant, 2 UG = constant,

E2U5/G ~ constant, and JQU/G ~ constant.

In order to compare these results with those of LS I it is
necessary to pass to the 1limit of small amplitude for the long waves.
To first order in aLkL B

i ¥
2(x + are cos kp x), X *s ;

B~ (e/x)
yf(x) > oap sinvkLX,. a = dyf/dx - aLkL cos ki X ,
U - (8/g)? (- ek stnkx), ol - gyl sin kx

G - g(1- a;k sin ka), Go U, A - constant.

Thus in this limit k'/k - -U'/U, a'/a - -U'/U, so that
a/ao = k/kO = Uo/U =1 + aLkL sin ka =1 + kLyf’ in agreement with
fheir results.v However, we will show later a departure, in terms of
highér order in aLkL’ from exact proportionality between U and G.
The numerical effects of this departure 6n small-wave amplitude and
wave-number are small for small values of aLkL but will prove to be
significant if the long waves are of nearly-maximum height.

These results for large p describe the variations of short

small waves as they pass along the profile of any long wave of

PO 6L OFFODDO
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appreciably less than maximum height. The variations may be of interest
for other purposes, but it would not be expected that small-amplitude
short waves would influence the breaking of a long wave whose height is
well below its own instability limit. Therefore we do not present
numerical evaluations for intermediate-height long waves, but focus

our attention in later sections oﬁ long waves of maximum or nearly—
maximum heighﬁ. Again we defer diséussion of E .and J toa later
section. '

In the opposite limiting case of small p ‘weé discard the
branches near point O ‘WhiCh correspond'to small waves of very great
length, and work near point C, expanding in_powers of p. We first
remark that for iong waves of small amplitude this situation implies a
denial of fhe roles we have éohsistently ascribed to the long and short
wave trains. For small-amplitude long waves UE/G *'kL'l, so that
q ™ k/kL = XL/K. Thus p ~ (KL/X)%[(KL/K)% - 1] and can only be
small relgtive to unity if N 1s very close to XL'

The expansions in powersIOf p, for either sign of* p, are:

qQ = 1+ 2p - p2 + oo
FANE -l - P+p2_ e
A-l = -l + p - ten

1
A 22(l-p+5p2/2+~~-)

a @ U_l(l + % p2 4+ eee)

ltan 8] = |a(ln A)/dc] << 1 if WKB is valid
E @ lpl—l vt 1« é?%pg)j

T @ pr@aep+ o).
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In this less familiar domain we have

ng/G =~ constant, A = constant, . alU = constant,

EUQ/G ~ constant, and JU/G =~ constant.

Unless p is already small in the long-wave trough (in which
case the "short" waves are not short) this regime can only be entered
by moving up away from the trqugh_far enough so that U has decreased
‘enough to approach c. However, this phase velocity also decreases
with decréasing U, but less rapidly than as U-l. Therefore for all
but rather long short waves the required deérease iﬁ U will only be
available near the crests of long waves of nearly-maximum height. In
order-of-magnitude terms, o ~ (AL/XO)(UO/GO), where o denotes a
value in a trough. If p << 1l at s, we must have Us/Gs <<
(U.O/Go)(xo/'/\L). We shall show later that 1/2 S G/g S L4/3 at any
point on any iong-wave train. Therefore the condition, in order of
magnitude, is US/UO << xo/xL.

From a mathematical point .of view we can always find, for any
trough-value of p, a long-wave train fof which this will océur, since
the crest-value of U approaches arbitrarily close to zero as the
long-wave height approaches its maximum. Physically, we must remember
that for any value of p the short-wave amplitude and wave-number
continually increase bn their ﬁay ﬁp the long waves. Therefore unless
the trough-value a, is very small this growth may at some point
invalidate our linearized analysis, and a little farther up may bring
the short waves to their own maximum height. Depending on ag and

ko, this may occur before entering the regime p << 1 if the long
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wave is high enough to include it, or before reaching the long-wave
crest if it is not. Alternatively, the small waves may pass over the
crest and descend without attaining their maximum height.

Thus we see that for short small waves the interesting behavior

? rather than UT) associated with this

(specifically, ak oc U~
regime is confined to small regions -almost at the crests of long waves
of almost-maximum height. Therefore it may be difficult to observe in

laboratory wav%-tanks;_the difficulty will be least for the longest

"short waves' +that can be considered.

IX. MODELS OF MAXIMUM AND NEAR-MAXTMUM WAVE TRAINS

To proceed further, and in particular to examine the validiﬁy
of the WKB approximation used in the preceding section, we must have |
values of U(s) and G(s) for long-wave-trains of interest. In a
companibn paper I have developed a model of the profile of the maximum
Stokes wave, tested it by several criteria, and compared it with é good
numeriéal.solution as well as with the modél discovered by Longuet-
Higgins (1973) affer my tests had been made. My model is simpler than
his and represents most properties slightly better,'except that in the
trough it yields a small underestimate of my wave-interaction function
% to be introduced below. It will be used in what follows, with the
effects of this discrepancy being noted where appropriate.

The wave-train of maximum height is a mathematical abstraction
or limiting case. It is therefore important to compare thevresults
obtained for it with those for more realistic waves which fall barely‘
short of attaining this configuration. To estimate U(s) ahd G(s)

in the neighborhood of the crests of suchwaves I have developed a model

o

based on the method of Havelock (1919), by expanding in powers of a
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barameter of smallness £; which goes to zero for the maximum wave.

| This model ié also described in the companion paper. After this work
was completed the papers of Grant (1973) and Schwartz (1974) appeared,
in which the complicated nature of the analyﬁic behavior of the complex
. potential near the crests of maximum and nearly-maximum waves is
discusséd. Although their work impiies that Havelock's computational
scheme lacks ﬁatheﬁatical rigor, it seeﬁs probable that these
complexities do not vitiate the qualitative wvalidity of the ﬁehavior
exhibited by the model, whosé predictions seem too reasonable to be
wrong in their general implicationé. |

l. The Maximum-Wave Model

My maximum-wave model profile is a simple parabola adjusted
to have a 500 slope angle at the crest; it is given, with origin at

the surface in a trough, by

1]
\N.

y(x)

2
postulated to be given by

with x| < L A;, and A; ‘the wavelength. The surface flow speed is

- Qs(ym#x -y)

although this would requifé a surface pressure distribution varying

from a constant one by perhaps 1 1% of the hydrostatic difference

P8Y (because the mpdél is not an exact solution) rather than the
constant pressure normally assumed. We define g = 2X/NL 3

0 < [Bf < 1 between adjacent crests. Then we find

S0 4Lt ok PONOD
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1

[N ]

S
e
w
p—

I

27" 37

en (1 - 6°),

(]
—
w
~—

i

(he/3) [1 + (62/3)17/2 .
In this notation
RN TNy 2y2
p o= (/) = (/M) n/3%e)%[1 + (87/3)17/°(1 - 87)% ;
in a later section we will need

dp/do = »_(2U2/>\Lg)(dx/ds)(dp/ds) - v 5P (02/5)10 - 6°) (ap/an).

The dimensionless parameter (a?%IJ/B% 2g) 1is determined by specifying
the wave number ko, ‘or wavelength xo, of the short waves of
1nterest at the trough of the long wave of length AL ; Thié rarameter
- qoé-, with>

is equal to ApO/B, and on branch CD P, = 4

qo = erko/Go - (3%ﬁ/u)(xL/xo). Since the smallest value of q_
on this branch is unity (w = 0) we see that xo/xL < 3%ﬂ/u,: 1.36 -
for w > 0. Thié trough ﬁalue”is.greater than uﬁity_because the
"local" wave number, differentially defined, incréases away from the
trough; the total disténce between short-wave crests becomes comparable
to the long-wave lengfh as o= 0 . This liﬁiting behavior is
discussed in a later sectién.

- We employ the model to obtain expressions on branch CD for
the amplification factors .a/ao and k/ko' (wherev ao and ko are
trough values) as functions of B. Theée factors_depehd on the choice
of w, or equivalently of KO/KL or of P,- They are most compactly

written in terms of H = hpo and Hy(B) = Lp(p)
1
-0 - 82)% @+ g%/3)°



: 1 1+ (1 + Hy)% 2,2
afa = [(L +H)/Q + ®y)* +— (1 -87) ",
© 1+ (1 +H)? :
1 % 1 |
SH+ 1+ (1 +m)° A
Kk, = o —— (-89 .
°© 5 H+1+ (1 + H)? : :

These eXpressions are complicated, and depend on the parameter H
which is not simply relatgdrto XO/KL. However, they contain some of
the princibal results of this study'and provide a theoretical framework
against which to compare the resulté of experiments. It has not been
easy to guess the most useful graphical forms in which tQ present
numerical evéluations. For large values of H the behavior is s}mple
(as predicted for p >> 1) for values of B such that (1 - BE)-2 is
considerably smaller than H, but the transition zone then occurs
~ very near to B = 1. For small values of H +the transition occurs
aﬁ smaller ﬁalues of . B which apbroach zeroas H - 0 and xo/hL
approaches the upper 1limit derived above.

From the forms of these expressions one can see ﬁhat a/éo
will always be slightly less than (1 - 32)'% ; also, k/ko will
always be greater than this quantity, the difference increasing rapidly
well past the transition; In Figure 4 we present tLe relation 5etween
H and )\.O/XL . Figure 5 shows (1 - 52)%(3/3‘0) and
(l.- 62)%(k/k0) Higl (1 - 62)-% for selected values of KO/XL . In
addition, in Figure 6 we have pldtted as functiohs of xo/XL the
values of B at which selected values of ak/éoko, the,prodﬁct of

these amplification factors, are attained.

J o6t o000
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Of particular interest is the behavior of the product ak,
whiéh must be small to justify linearization and whose growth measures .
the approach to maximum height. In a later section we make éome
comparisons relating to the.belief that our linearized analysis retains
qualitative validity up to this maxiﬁum'height, corresponding to
ak 2 0.44 if we identify 2a with the ﬁrOugh-to-crest height of
finite-amplitude wavés. We have alréady shown that ak is propor-

5 for small p; the

tiomal to U™® for large p and to U~
transition behavior on a maximum wave is given by the formulas above.
Lest it be thought that the ratio ak/éoko beéomes appreciable only
at infinitesimally small distanées from the crest, we point out that
it attains the value seven between f = 0.885 and B = 0.94% for all
values of - KO in the felevant range, émaller values of B
corresponding to larger values of ho'. Amplification of ak bby a
factor of seven is sufficient to bring & small Vave.Whose trough
amplitude is only l%»of its wévelength up to the value 0.kl (an
estimate of its instability limit) at the abprqpriate vélue of B in
this range.

‘2. The Nearly-Maximum Wave Model

The profile of a nearly-maximum wave train is characteriied by
very small sharply curved caps; long slowly changing regions between .
crests, essentially the same as for a maximum wave; and sma;l
transition régions connecting these, contaihing points of inflection
ofvthe profile. We have replaced Haveiock’s parameter ‘a' char-
acterizing wave amplitude by é;- to emphasize its role as a parameter
of smallness here; g: =0 gives ﬁhe maximum wave and EE, -+ 00 fO;
. &

infinitesimal waves, the amplitude being related to e~ His
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dimensionless units are denoted here by a tilde. The parameter
replacihg s along the surface is his dimensionless velocity potential
5 (not to be confused with our perturbation potential 'ﬁ for small
waves); it is zero at the origin and is équal to .t nt (n integral)

at the other crests. In the cap region we show that another parameter

]

@ is more appropriate; it is defined by tan © tan ayfanh &; , but
we approximate if here by éan e = ﬁ@%; since _IBJ is of order
Ef% or less within the cap region near the origin. This cap region
is defined by 0 < sel > %‘-n - (Dg)*, and the main part of the wave
from the inflection point down to the first trough by ¢ /D)%'E IS %'n,
with D = 3/2 ., |

In the cap (but:egcludingvthe transition) the surface slope

angle «(6) and the functions U(®) and G(8) are shown in the

companion paper to be given to the lowest relevant order in éi. by
v ™ ~ l ~ ~ ~
a > 8/3, U ~ [Egpe)] /5, G = z(e),

with « positive downward for positive 6 ; here

P(e) = (3/2) + 3 sin(8/3) sec=® a0
0
= 3.sec O cos(?G/B) -“(3/2? -ch {i ; g 222%2;%3 ? g } ’
with C = cos(n/6) = 5%/2 , and

Q(8) = cos(8/3) - B-lP(e) c0526 .

The function P(8) diverges as © - % 7 but this value is not

attained before entering the transition region; L > (5/2)(Dﬁ3)'§ .
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In Figure 7 we display P cos 6, U, G, and 'U/C. in suitable units
as functions of © . We see that in passing up the wave from transi-
tion to crest G. decreases from almost g cos(n/6) = 0.866 g to

~almost g ; this large change takes place over a very small distance
of order 552/3 . The velocity U also decreagés rapidly from a
value of order fil/g to a vélue of ofderv é;l/z . We may expect,
and will_shOw later, that these rapid changes impair the validity of
the WKB approximation for é portion of the small-wave spectrum in the
cap regions 6f nearly-maximum waves. It is noteworthy that although
both U apd G decrease on approaching the crest the ratio U/C
'increaées»for "8 1less than about 550,'.This fact becomes significant
in connectién with our discussion of energy exchange to follov.
" The determination of the wave profile in the cap region is

described in the éompanion paper; it is plotted in appropriate units
in Figure‘8, in which afe also shown values of © .

These expressions are-all valid for O < é; << 1 and for
® in the indicated range within the cap. The second term in e ié
52 doyﬁs, -with.sign (¢ 1is positive downward here) corresponding to a
reduction in G arising from centrifugal acceleration, since the
surface is cénvex upward in the cap. We restore physical dimensions
to G by replacing ¥ = 0.8%33°-+ by g ; velocities are obtained from
* = e ng/(el/B 1 g) and'lengths from X = X >\.L/(21/3 n), ete.,
with KL the physical distance between crests. '

In Havelock's units = UG = éil/é ~'2/3 Pl/3 Q—l
in ordinary ﬁhysical units |

N ek 5% 12 W Ve
TR = O 322g o
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1 1/6
The numerical factor [(3% 12)/(rr5 )] / is equal to 0.96k--+; we

approximate iE by unity. The dimensionless parameter

(a? xL/j% 2g)§ = hpo/B ' 1s the same one introduced earlier in this
secti;n to characterize a small wave-train riding on our model maximum
wave and evaluated there in terms of the rgfio of ‘KL to the small-
wave length koﬂ in a trough. In a later sgction we will need for a

nearly-maximum wave the quantity

ap/do = (P/6)(ap/as) = (F/6)(af/as)(ap/af) = (/o) (an/af) .

The dimens;onlesé opefator“ (UB/G)(d/qﬁ) is equal to (53/5)(d/d%) ,

and d/ap = e'l cose o(a/ase) , so that

dp/do ~ (P/Q) c0s°0 dp/de .

No special interest attaches to the transition region; all
quantities merely connect smoothly across it.

We are now in a position to ewvaluate the components of accel-
eration of Surface:pa£ticlés of fluid in the crest region of a nearly-
maximum wave. The tangential component a_ = ; -'gs is given b&

g sin ¢ 1if ‘s .increases aﬁay from the crest; the normal component

a, = 3 : gn is inwardly directed here, the surface being convex
upward, and is given in magnitude by Fa' = dafap =~ (gP cosee)/j.
At the crest a_ = 0 and an AN % g , while at the point of

2

constant in crossing the cap while its direction rotates steadily

inflection ag = L g and a = 0. The magnitude lgl is nearly

through a total range of almost 1200, being tangential to the surface
at the inflection points and downward at the crest. These predictions

of the model agree with known results (Longuet-Higgins, 1963%, 196%.).

6061 0ER OO0
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Finally the results of this section enable us, in principle,

to place bounds on the growth factors a/ao and k/kO on branch CD
as functions of é;, replacing the fesults of the preceding sub-
section in which they were unbounded on a maximum wave as B > 1. As
mentioned above; we have obtained the properties of nearly-maximum
wa;es only in the limit é; -+ 0. At the»crestx 4p approaches a
value close to 12p05z;/3 = BHéil/B and Uo/U approacheé
~ 0.9 fi-l/B. ‘Therefore the crest values of the growth factors are
obtained by replacing 7(B) by 551/3 and (1 - 32)'% by 0.95:1‘,'1/5
in the earliér formulas. The forms taken by ﬁhese bounds depénd on
whether 5H£;l/5 is very large, very small, or of order unity, as
well as on the value of H itself. In the first case

a/ao - i.2 é;-l/h, _k/ko - 0.9‘f§-1/3,' _
 ror 31 20 > 1.

: . -7/12
ak/a k ~ 1.1 £
In the second

. -1
a/ao - 1.8(1 + H)%[l + (1 + H)%] é;—l/B .
| for 3H 5}/5 <« 1.

k/ko - 0.6 [l + 2l H+ (1+ H)é]-l 5-2/3

We shall see in the next section that for 3H é;l/B _neither large nor
small the WKB approximation becomes invalid very near the crests of
nearly-maximum waves.

As a-numerical example consider.the neérly-maximum wave for

which £, = 107, The cap region includes 0 < le] = 889 . At

=288 P ~ 39, T >~ 0.319, X, > 0.1k, and
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'yérest - Yf' ~ 0.055; at the crest U =~ 0.108. Converting to

physical units, the cap includes ]xfl 2 0.029 N

ly -'yf, T 0.01k XL 5 the latter is to be compared with the

crest
total wave height h ~ 0.14 A, - Within the cap Ue/(eng) increases
from 0.0018 at the crest to 0.015 at its edge, to be compared with its
‘value of ~ Q.lh in the trough. Now take a small wave whose trough
value of A is xL/go ; for this wave q =27.2, p =22, H= 88,
- o5 e using 4 - 1/3

and 3HE = 26.4.  Using the approximate forms for 3HE, >> 1,
we find a/ao ~ 6.8, k/ko ~ 9, and ak/aoko ~ 61 at the crest; the _
complete forms give 7.3, 10.8, and 78, respectively. This small
wave will attain its maximum height before reaching the crest unless

a k 2 6 X 10-5 . The value of B on entering the cap is

1 - (2 x 0.029) = O.9h2;_ from the maximum-wave model a/aO = 2.6,

k/ko = 3.2, and ak/aoko = 6.7 at that point.

X. VALIDITY OF THE WKB APPROXIMATION

The validity of the WKB approximation for A depends on the
smallness of the negledted term in the ﬁonlinear differential equation
for A with respect to either of the other two; if the product -
|A5 d2A/d02, is small with respect to unity this approximation is
valid. The smallness of the dispersion relation éorrection

€

(qA)’l d2A/do, the wave phase-shift

&5 = tan—l'[(q -vp)-l d(fn A)/dc], and the correction of order 5°

to the simple exbression for wave amplitudei a,' are'also related to
its validity. In this séétion we examine these questions on branches
CD and OA (the regions with w > 0) for the wave train of maximum

height, and on branch CD in the cap region of a nearly-maximum wave.

train, using the models described in the preceding section.

fnt et o000
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Because A X (E + p) ¥, one can show that

A% aPafaf = W(p, o) = ip ( bp - a -ae]

(1 +'l+p)2 L1+ hp‘

m
4]

with a, = 5M2/h, e, =M o+ dM/do, and M d(fn p)/do . The :

2
quantitites M, ays and a, thus defined are independent of p and
depend only on 0 or s through the functions: U(s) and ‘G(s) ﬁhich
are assumed known and are given'approximately.by the models. Thev
quantity p = Uu/G depends on s through these functions, and also

on the parameter  which determines the trough-value of the shqrt-

wave length of interest. In this notation,
' -1
. 1 1 + 1 %
€ = (H+p)[2+p z <H+P)J v,

| | ; %
tan 5 % %(%;arp)l[él-;(%;w) } M,

with the upper sign on BCD and lower on AOB.

1. The Maximum Wave

Using’ U,_‘G, and dp/dc of the maximum-wave model, we find
i » V L 2
M= o320, e =12, e, - (BP/2)(Bt - &° - o).

The ranges of interest in p and B on branches CD and OA are

[N

0<p<o and 0< || <1, but p contains the factor (1 - 5?)
so that p—+0 as B - 1 for any value of w.. We may_therefore
determine an upper bound on IW! by examining this entire p - B
domain.

It is obvious that W| oc p as p~0 and Wl e p-l as

p > 0. For fixed B, W has extrema at



-43.

nj=

Lp = él + [(al - a.2)2 + alae] /(a1 -va2) and for fixéd p it has
an extremum‘at hp = (Eh2/36)/[5(al - a2)/aB]. These equations have
only a single simultaneous solution-for ‘p > O, | 0<B <1, " at
8% =~ 0,489, p =~ 0.2880, at which the value of W is = 0.05l. If
p Were indépendent of B there would also be a negative extremun at
‘ ‘the boundary £ = 1, whose magnitude is greates£ at P~ 0.104; hefe
W -o.ohu; Therefore we have shown that |[W| S 0.05 for all ‘®w and
p in this domain and that the WKB apﬁroximationvfor A is valid
everywhefe‘f§r small waves on branches CD and OA traveling on a long
wave of maxiﬁum height. These conclusions do not apply to wayes with
reverse bfopégation (@ < 0) which we do not analyzé hefe. They
dbviously.fail to apply near point B wheré plé -‘% 5 the anomalous
wave mentioned earlier, and at singular points aﬁ.wave crests.
We‘have already shown that the smallneSS»of lel can be

inferred directly frpm the smallness of IWI on branch CD;

le| = (% +:p)q-l|w| < |w| there. However, on OA the conclusion is
the same for largé P but € diverges for a, # 0 as p - 0, showing
that negleét of € is ihvalid for very long small waves on this brénh.
Quantitatively, the largest value attained by Jei_.in o< Bl g1
for p = 2; Q=5 1is 0.0%, and.even as near to point O as p = 3/k,
q - 1/4 this largest value is ~0.16. The "Local wavelength" 2n/k
of this wave is mqre than five times KL in ﬁhé‘trough, and even as
near the crest as B x 0.85 it is twice - vThus we may neglect ¢
everywhere on OA except for very ;ong small'ﬁaves.

We find from the model that

1 ,
[tan 8] = (372 BB/M [(% + p)% - %]/(% + p) on branch CD. Examining

16t nk o000
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this funcﬁioﬁ as théﬁgh p and $ were indepeﬁdént, we see that
-Itan 6] - d_»as p—+0, as p—>o00, and as B %”O. For fixed B it
c 1
has a singlefmaximum at p = 3/4, where its value is 372 65/8. We
cannot realikze its largest value by letting B -1 since p =0 for
all w théfe, but we obtain an upper bound; ]taﬁ 5] < 0.072. Thus
the phase shift is always less than abéut hO; sinée'thé correction to
the amplifﬁdei‘a(s) is of order 62, both may be ﬁeglected. Using
the loWerléign on branch OA, Itan Sl'-increaseéfas P decreases,
approaChing:éiﬁaximum value of 3-% ﬁ3 as p *10;_hThus l&f < 500
everywhere Qﬁ 0A; if we stay above p = 3/4; q;;.l/h,
ltan 8] < 3%_55/8 and |8] < 12°. a
In this way we have justified use of the WKB‘apprbximation
for A, énd:neglect of €, b5, and the correction éf order 62 o
a, for allvséall wa&es‘on CD and for gq > % on_OA;then riding on
our model‘of:a wave of maximum height. In the coﬁpanion paper we note
' that the model slightly underestimates our wave;interaction function
in thé_trough of the maximum wave. Thrdugh a numerical study not
detailed ﬁeré, using the best available digital representation _éf thé
maximum wave, we have.found that correcting for thié discrepancy has
no effect on the validity of these conclusions. The reason is that
-it exists oniy in the trough where U: and G are varying most slowly;

a, is unaltered, and the shape and magnitude of: a are changed but

1 2
little by the correction. In Figure 9 we show M,'~al, and a, as
functions of PB. '

For given long waves of height substantially less than maximum

the variations of U and G are much less than in this limiting case.

It is not difficult to show that for a Stokes wave represented by a
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power series expansion in aLkL the first nonvanishing term in W is
-Sp(l + l;-p)-g(aLkL)5 cos ka with x =0 in the trough; its magnitude
is greatest for p = % and is less than 0.05 there even if the wvalue

a k= 0.4k associated with a wave of maximum height is inserted.
Therefore our approximations are valid, for all the'small waves
mentioned just above, everywhere on every long-wave train except near
the shérply curved crests of wavesvof nearly-maximum height. It is

not clear'that this rdthef remarkablé property cduld have been
anticipated by pﬁysical intuition.

2. The Nearly-Maximum Wave

Here we examine the validity of the WKB approximation near the
crests of nearly-maximum waves, confining our attention to branch CD.
"Using U, G, and dp/do for our model of the cap region excluding

the transition, we have as £-o0

(PVQ)coége a(ln p)/ae

M= d{n p)/do

(P/Q)cosee [(3P)'1dryaé - Q;ldQ/dGJ 3

dP/ae = 3 sin(8/3)sec e , dQ/ae = -[4 sin(e/3) - P sin 281/3 ;
M= Q™ % s1n(26/3) + P cos-0lsin(6/3) - 3™ P sin 26]
As before, a, = 5M2/h ‘and " a, = M+ M/do = M+ (PVQ)Cosge am/ae.

In Figure 10 we plot M, a and % a, as functions of 6. For

l)
each value of © from zero at the crest to nearly 9OO in the
transition region we may find the value of p at which- le attains

a maximum, and the value of this maximum. As expected, the results_at

6 = 90o agree with and join those for the maximum wave as P — 1;

that is, W has a negative extremum of = -0.0k at p =~ 0.1. As we

Bara

el 61 np bk 0000
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move toward the crest the magnitude of this extremum increases,
reaching -0.1 for p~ 0.2 at © = 75" and -0.3 for p~ %
at © = 60°. The variation of W, Wwith © is also shown in

. 1
Figure 10; wext is always close to - T 8- The value of p at

which it is attained remains near to % for 0 <6 < 60°, except for
évvery small region centered at o ~ 23.60 of éxtent ~ 1.50 in
which the e‘quation for the extremum yields two positive solutior_ls for
p; this feature may be an artifact of the model. |

As indicated in the preceding section, Up ~ 5HEl/3 at the

crests, where a, - 0 and a, -8. Therefore at this point W will

1 .
have the value 2AH£}/5/(1 +'3H£}/3)2. This is only small (say

< % as an extreme) for 3H€}/3 > 1k or < (1&)‘1; W attains the
maximum value 2 at BHE}/3 = 1. Because we have not established ﬁhe
-largest value of the infinitesimal quantiﬁy £ Tfor which our limiting
forms for ‘& - O retain qpalitafive validity, we cannot be quan-
titative about this very local and not unexpected failure of’thg WKB
approximétion.' It is clear that for any given £ within the
acce;mablé range there will be some portion of the small-wave spectrum
for which the.approximation loses.validity..

As one might expect, it can be shown that these "critical
waves' are ones whose wavelength has shrunk in traveling up from the
trough so as to be comparable to the physical extent 5. of the cap,
which is small of order E?/B, when they arrive. Using
(EE?)1/3 Ec ~ 21 from Figure 8 as an estimate of the cap's ektent,

we find s~ 1-7'EF/5 and 0.4 <A | /s < 2.5 for the critical
c KL’ crest :

C

domain as defined above. The shortest critical waves are those whose

wavelengths in the trough are small of order é;l/3. For the numerical
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example of the preceding section with £ = 10_3, we find
0.09 < A_/A, < 1.2 1in the critical region. The WKB approximation
retains its validity throughout the crest region for waves either
longer ér'shorter than these critical waves.

"Excépt for these critical waves>the rarameter ¢ which
modifies' G,  the phase shift 5, and corrections of order 62 to
the wave amplitude a are also negligible on branch CD throughout
the cap'fegions of nearly-maximum waves. |

vThe failure of the WKB parameter W‘ to remain small with
'fespect to unity does not‘necessarily.have drastic consequences for
these critical wavesQ Rather, it means that their wavelengths,
amplitudes, and phases will undergo variationé somewhat different
_ frbm those.predicted By the approximation. For most of the critical
waves these differences will be only gquantitative and.not qualitative,
since lwicrest <1 for all but 60% of the domain in p . _ . within
which it isv < %. This critical part is in turn only a part of the
total spectrum of the_small waves of interest. Although one .could
study the departures from adiabaticity’in detail, or examine branch

OA, we will content ourselves in what follows with use of the WKB

results throughout,

XI. WAVES OF NEARLY EQUAL LENGTH; THE AﬁCMAﬁOUS WAVE

We have taken the spectrum of smail»waves of special interest
to be those on branch CD of-Figure'E, whose crests move up the down-
wind sides df the long waves toward their crests,'énd'havé pointed out
that the lowérvend of this branch near .C, where o — O, corfesponds

to small waves whose trough-vélues of-wavelehgth_are not short

sltetnp 00l
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compared to the given long-wave length. 1In fact, for long waves of
less than maximum héight the wave at C ﬁith ® = O merely represents
a very small addition to the given wave, since the total wave profile
remains static. Points near C with very small positive or negati&e
o represent small-amplitude waves moving backward or forward,
respectively, very slowly with respect to the given wavés. Our analysis
remains valid for theh,.bu£ they have the propefty of being in the
domain .p < 1 everywhere since they already have this property in the
long-wave troughs. >As we remarked earliervfor'the_shortef small waves,
our results for theichhanges in amplitude and wave number in rassing
along a given wave-train of small or moderate amplitude may be of
ihterest for oﬁhér purposes, but our attention here is focused on their
influence on long waves of maximum or néar-maximum height.

As w - O near point C our results approach a particularly
simple form; A - constant, U2k/G -1, J[ kds - ~/’(G/Ug)ds =0 - o
$ - const. cos(o - co), and -é.* const. Ufl'sin(o - oo). Using our
model for the wave of maximum height |

1 -1 ‘ A i}
o~ J(kds - 3'2.u-j([(1 + 52/5)(1 -‘52)] ag = tanfl(s ) + 3 tanh 15.

Thus we see directly the pré&iously discussed rapid growth in amplitude
and wave—number. .Plots of € vs. B in this limit are shown in
Figure 11 for o = O and n/2. -

Qur analysis degenerates at point B, a small wave with reversed
phase velocity for which p = -'ﬁ. At this poiﬁt the group veLocity
in our coordinates vanishes; in bottom-fixed cbofdinates the small
wave cresﬁs move down-wind with sbeed 2U0 while their group velocity

'is U. This phenomenon has been noted by other workers, éome of whom

have characterized it as a barrier. If the given steady flow is that

¢
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of a wave of small amplitude, this anomalous wave is one with wave
length four times as great. Diffefent methods are needed to analyze

the behavior of a and kX on passing along branch OB or CB toward B.

. r -
Our rigorous equation for A 1is dgA/do2 + 1% + p(o)} A - A" 0; if

we replace G*¥ by G 1in our definitions of p and g, ¢ = p + % + A~2
exactly, with upper sign on BC and lower on OB. This relation is
equivalent to (p - q)? =q + A-l dgA/dog. We may now assign a suit-
able form to p(c) and integrate the nonlinear equation for A(o)

" (numerically, if necessary), working béck from a region of WKB validity
@ and a may then be found. For example, if p(o) = - % + Ko (with
K a constant) the equation for F Dbecomes dgF/dcg + KEGF = 0, whose
solution for o> 0 4is F = vl/i'{aJ' (v) + bJ (v)] with

1/3 -1/32771
v e 2K03/2/3; A 1is the envelope surrounding this oscillation, nearly

i .
(KEU) » for large o . We shall not pursue this problem further here.

XIT. WAVE ENERGY, ENERGY FLUX, AND ITS SPATIAL CHANGE; THE RELATION
BETWEEN G AND U, AND THE WAVE-INTERACTION FUNCIION Q
We introduce our discussion of .energy by making a detailed
comparison of our results for wave-number k, amplitude a, wave
energy E, 1its flux J, and its spatial rate of change with those of
LS IT for the two-dimensional steady flow characterized therelas

upwelling. These authors found the relations

1dk du lda __ 2c +3U dU
E - T i o M T e o 2 ouf & | (Ls 1I)

by solving a specific flow problém in which the interaction term was
linearized. They integrated these differential relations by using

& = g/k with g constant, finding k(U + c) = ® = constant and

Pl 6t aobrE00D0
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2 ' -1
a~ @ Je(c +2U)|7". The first result agrees with the physical

postulate that the distance between crests varies only throughnsurface
stretching, which leads directly to (frequency) X (wavelength) = wave-
velocity, or k(U + ¢) = w. Their application‘of the second result
is not so simple. They considered the transport of wave energy and
examined several alternativé expressions for energy conservation. A
selection ambng.theée options was made by requirihg its differential
form to be consistent with their result above for amplitude chénge.
The one thus selected, ﬁnder the assumption that E = % o] ga2 with g

constant, was

(a/ax) [E(U + e,)] + 8, av/ax = o, - (LS 1I)

with Sx » the only component of their radiation stréss tensor releﬁant
in a two-dimensional problem, equal to % E in deep water. They were
gratified to find this in complete agreement with their result from
LS I for small short wavés movihg on small long ones; the general
vélidiﬁy:of this relatioh éeemed to have been established.

| Our more general eéiressions for wave-number and amplitude are

already in integrated form but must be manipulated to put them in this

notation. We find

x = 6o/t = (e/U)(G/00) = (/U)(a/p)

i

(w/U)(U/vp) =af (U +¢),

a° @ (an/u )2

[(p - a)/(F + p)ul® l[(U/c)/(vg/c)%U]g

™ e Je(e +em)|h,

lcv
g

displaying agreement with theirs. However, our differential forms will

not agree in general;
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ax/k au/u + dofq = - au/u + [(p/q)(dq/dp) - 1ldap/p

]

= auv/u  + [(vp/vg) - 1ldp/p = - dU/iJ + [e/(c + 2U)lap/p

. /U + le/(c +2u)l(au/u - aa/a)

ey A _ _c @
c +2U0 U c +2U0 G’

and by a similar but more lengthy manipulation

dafa = -au/u + (v /2v )edp/p = - 23_1_22__ aU - _LS_i_glé a
roe (e +2v)f (c +2u)f ©
~ There is complete agreement for the flow selected in LS II, in
which the free surface is a straight line whose slope is small of first
order so that centripetal acceleratibn is absentvand G>g= constant;
However, in addition to our added terms in the differentials of k
and a, important differences involving the energy and its transport
and exchange with the given flow will exist for any steady flow having
varying G ; It is éignificant that our expression for the energy,
5 .

E = % p Ga~, differs from theirs in"that g 1is replaced by G.

Their energy is proportiomal to [c(c + 2U)f_l, while ours, in this
y .

notation, is

8o (p- e ot o - G+ )70 - (@)

= I[l - (U/vp)]/vgi = le/l{c + U)(c +2U)]] .

Their energy flux J = Evg is proportional to ,cf_l, while ours

varies as -[c/(c + U)l.

The importance of these differences is particularly great on

the given small-amplitude long-wave flow studied in LS I which

sl 6iropt0000
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originally led to their concept of radiation'stress. We have shown
that on thié flow G 1is closely proportional‘to U. If we adopt the
assumption that G/U is a constant, then p = UD/G 'is constant, so
- that kU, aU, EU, and all velocity ratios are constants, and

€ =0 =0, for all values of p. Finally, and of greatest

significance, J 1is constant, so that
a7/ax = (&/ax)[E(U + cg)] =0, (for G/U constant)

completely removing the hecessity and the justification for the

radiation stress!

We defer to the next section an examination of the difficulties
agsociated with their radiation stress tensor, turning instead to
evaluation of the spatial rate bf change of the small-wave energy flux
in the general case. One must be careful with signs. Since E is
proportional to G/Icvg,,_’we set the conserved quantity EIcvgl/G

equal to_a positive constant K. vThen
J = Evg = K(sgn vg)G/lc1, and G/le] = aU/ple| = wll - (o¢/p)](sgn c).

Thﬁs J = Ko sgn(cvg)[l - (¢/p)] and

aJ/ds = - Eev, ot a(e/p)/ds = - Ecvg(p/U)d(q/p)/ds . Now
4 =_(ga_g) 1 ap ._.(;L_‘_l_) Udp_ e Udp
s 'p P P/ pds vg vp p ds ngp p ds
2
a7 _ _E (p° 9_92)
ds . 2 Uvg pds/) ’

2 2 -2 '
and  (pe™/Uv,) = p(c/U)(U/v ) = »(p - a)™(a/p) = 1 from the
dispersion relation. We express (U/p)(dp/ds) as

ulut(av/as) - ¢"H(ac/as)] = 1 - (u/c)(ac/av)1(au/ds), which
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motivates the definition of our last important parameter, the wave-

interaction function Q:

!

The exchange of energy between the small wave and the given flow is

thus governed by

a7/as = - -21- E 2(aU/ds) J

we see that the "radiation stress” must be multiplied by & , whose
value is unity for Phe flow of LS II and nearly zero for that of IS I.
We next analyze the relation between G ‘and U, and the
behavior of 2, for four flows: our maximum-wave model, our modél of .
the éap region of a nearly-maximum wave, a local region of an
arbitrary flow, and a moderate-amplitude wave train represen%ed by the
classical Stokes expansion. For any steady flow with constant E 5
G(s) is determined by the shape of the wave profile and the surface
flow speed U(s), which in turn is also determined by the profile
(from the Bernoulli.surface condition) and an integration constant
specifying its value at one point. Therefore & is a purely

geometrical property of the profile and that constant. From our

parabolic maximum-wave model
‘ L
ue @ -8R0+ /3 ;

U/G is constant to within about 10% over the lower 70% of the surface.

For this simple model

2 = (8°/3)/( +6°/3) ,
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which rises quasi-parabolically from zero in the;trough and approaches
unity at the crest. Correcting for the model's under-estimate of Q

in the trough leads to the plausible fit

2z (1 +8%)/5,

as shown in the cbmpanion paper.

From our model of the cap region of & nearly-maximum wave,

‘9'=~1 - (3P/Q)(aq/dae)/(a¥/as) ,

which can readily be evaludted from equations given in an earlier

, section; This function is plotted in Figure 12. At the inflection

point near € = 90O it approaches unity, joining smoothly the maximum-

wave valué just obtained. As 6.+ 0, Q - -k; it crosses zero near

8 = 560. For the entire profile of a nearly-maximum wave we- then have

a nearly-parabolic rise from a value near‘O.E in the trough to nearly

unity at the inflection point, folloWed by a rapid decline to zero

well up on the cap and a precipitous drop to -ﬁ at the_crést.
Expreésions for Q on a'géneral steady-flow profile y(x) oﬁ

which - er - 2gly - yo) may be written in several forms. Using

primes to denotevderivatives with respect to x, .we have y' = tan
and .y” cbsza = do/ds = R-l, the curvature. Then
Glg = cos all + (Uz/g)y” cos Q] s
a(c/g)/ax = - 3(G/g)y" sin a coé @+ (F/g)y'™ cos’a,
d(ﬂn G)/dx = - 3y" sin O cos
+ [(U2/g)y'" cosga]/[l + (Ug/g)y” cos%dj s
alfa v)/ax = -(F/g)* tan o , . -
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so that
Q = 1-3F+ (1 + F)'l 7 secgoz(y')'l(y”)’2 y"'  with

_ U2 " 2 L .
F = (Uy" cosa)/g. [An alternative form, independent of explicit

reference to coordinates, is

Q = ,[1 -2NC + N2(dC/ds)/tap al/(1 +_ﬁc)

H

with N U2/(g cos @) and C = Rt - curvature.] From this we first

see that @ - 1 at the crest of a maximum'wave because U —= 0O theré.

‘At the inflection point near the cap of a nearly-maximum wave y' = 0,

ax~30° and 2=1+1.3(0"/g)° y'". Because U is of order

Zih/B there, S~ 1 as we have found. At the bottom of a symmetrical
trough we must be more careful; both y'" and y' vanish there, but
their fatio approaches that of y"”' to y". Fdr our parabolic model
y"" = 0, and the value of 3(U2/g)y" cos a (the éecond term in Q)
ét the trough‘iS'exactly unity, confirming that Q = 0 there.
HoweVer; for a maximum-wave profile of slightl& lesser wave height or
trough curvature the second term will Be‘slightly less than unity, and
Q -will be small and positive in thertrough ir y"" ~.O there; this
seems to be the case for the correct profile. At the bottom of an
unsymmetrical trough v‘rithv y" ;é 0, & symmetrical quartic trough with
y"' =y =0 bput y"" £ 0, and in general at any point where U' = 0
but G“f 0 we find JQ, -+ ©, but in the equation for dJ/ds it is
multiplied by dU/ds,’ which vanishes there, so that no physical
divergenée occurs; this situétion is discussedvin the folloﬁingv
séction.

We now verify our earlier result that in-linear approximatibn

G/U is constant and Q =0 onba small-ampiitude wave train. To first

L6t a0 000
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order in ak (we drop subséripts L here), y = a cos kx,

U02/g = k~l, a = - ak sin kx, (Uog/g)y” = - ak cos kx, and

y'"‘z ak’ sin kx, so the second term in 2 is small of first order
and the third is =~ -1, giving & =0, pius small corrections‘of
order ak, for all x.

It is nOt_difficult, by uée of Stokes-type expansibns, to show
thét theée first-order corrections cancel. We have'investigated the
second-order corrections to &, which.depend on expansions of G
and U to third order in’ aLkL. ‘High-order expansion; for the wave
velocity and profile werelcarried out a long time ago by Rayleigh and
_ many ofhers; but expansions of é and U were not previously of
intérest; therefore some details of our third-order calculations are
included in the Appendix, where a subtle point that could lead to an
error is noted. |

The result is that Q contains a constant. term of second order
equal to E(aLkL)2 but no oscillating terms to this order, although -
the expansions for U and G conﬁaiﬁ terms differing in both second

and third. orders.  From the structure of the calculation one can see

-that to the next order

Q = 2(aLkL)2 + (dl cos kLX + d5 cos jka)(aLk#)5 + {f(aLkL) s

where dl and d3 aré dimensionless constants of order unity not
evaluated here. This result is consistent with the fact that
Phillips (1960) and Hasselmann (l962,v1965), who have examined wave-
wa&e interactions by succeSsivevapproximation or perturbation methods,

found no interactions to second order, the first nonvanishing con-

tributions being for specific wave-number combinations of third order.
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As we will see shortly, the constant term in & yields an oscillatory
interchange of energy between the two wave trains which is not related
to specific wave-number combinations but is proportionmal to the product

*
of the squares of both wave amplitudes; - L EQ = const. a ar” . In

2

addition the unevaluated oscillatory terms in - will produce energy
exchanges involving specific harmonics of the given wave and additional
pOWers.of its éﬁrlitude. Although the connectidn between our result
and their work requires further study, it seems likely that our general
expression forbthe exchange of energy between a small wave and one of
arbitrary height should be useful to workers trying to extend or
~interpret analyses of this kind. |

By an argument invoking continuity between waves of small and
large amplitude we may eXpeét for intermediate amplitudes a positive -
average for. Q, with a/decrease at: crests and an increase where the
wave is steepest. As the amplitude increases we may expect a moderate
decrease bélow the average to develop in the troughs. The minimum
value of & wiil occur at the crests, and will become negative for
waves above a certain height. As the height increases furthef the
region of négative @ will become‘more negative, and will be
incréasingly confined near the crést, approaching the very narrow zone

with width of order £2/3 ana depth ~ -4 that we have found for

nearly-maximum waves.

We take this symmetry as a confirmation of the validity of our
results; if both wave trains are treated as small of the same
order, an interchange of their roles in the analysis should not

affect the amplitude-dependence of this interaétion.

A

b 00080
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- For waves on branch CD, vg and J are positive. The energy
E 1is intrinsically positive, so the effect of a small positive
constant Q@ 1is to produce an increase in the energy flux of a small
short wave as it travels from trough to crest up the down-wind side
of a lopg wave, where dU/dsr is negative, and a symmetrical decrease
on descending. This oscillating energy interchange between long and
short waves is very feeble for long waves of rather small amplitude,
in marked contrast with the result of the radiation-stress theory.
For long waves of large height the transfer>of energy from long to
short waves becomes significant as the small waves climb up near to
the inflection point. It seems unlikely that rapid reyersel within
the narrow cap region of this energy transfer can be complete with
those smell waves which have not broken over themselves but for which

the WKB'epproximation is failing there.

X111, 'DISQUSSION OF THE SURFACE STRESS TENSOR CONCEPT

Foilowing publication of the papersvfeferred toas LS I and II
and a third paper on shallow-water phenomena, Longuet-Higgins'and
Stewart (1964) presehted a review paper‘called LS IV here  devoted
entirelyitq their radiation stress tensor. In it they reviewed their
physical reasoning, recounted previous applications, and described
some new ones. Because our work has led to different conclusions it
is a part of our task to discuss in some detail the basis of the
differences. We confine our attention to two-dimensional deep-water
flows of ideal fluids, related to pp. 530-535, 551-553, and 556-558 of

IS IV.

This notation-is chosen because in LS IV they designated their

third paper as III.



~59-

The separation of power per unit volume into two portions, one
due to stress-strain rate of work and the other to the divergencé of
energy flux, is somewhat artificial; the terms which are isolated,
integrated vertically, and discussed on pp. 530-535 of LS IV may be
viewed as coming partly from each poftion. For.irfotational incom-
pressible flow (using Cartesian tensors) the first portion depends only
on the terms V3V in the stress tensér Hij = (p + pgy)éij + oV, v,
and is given by I:€ = v . [(% pvz);] , with eij = 5vi/axj the
traceless symmetric rate-of-strain temnsor. The second portion comes
from 3“3 ,k with the energy Flux 3= (p+ ogy + pve); given by
'ji = Hijvj' The time rate of energy loss per unit volume is

; > 2> 1 2\
Vey - L€ = V- [(P+ogy+W)V-(§ov v‘],

displaying the mixed origins of contributions from ’psij‘+ pViVj.

For flows with G ﬁ g the use of Cartesian coordinates tends
to obscure useful physical properties. For example, in the @ O
PV

. [3v/es  v/m \
coordinates of Figure 1b we find eﬁ =V v = A u = \ / / }
: : ’ ? v/R -0V/0s |

for the steady flow; each term arises from Christoffel symbbls neeaed
for covariant differentiation, and V = 3’¢ is the flow speed at any
point. Further, f = Ht"“ = 0 for this flow, yielding
-p_l dp/ds = g sin a + V dV/ds, -p'l dp/dn = g cos a + VE/R =G

by obvious extensions of our definitions of G, @, s, n, and R at the
surface. The naturai way in which G replaces g is'noteworthy.

In applications a knowledge of their radiation stresé tensbr is
of little interest in itself; its utility arises from its contribution,

together with the corresponding rate-of-strain tensor, to the spatial

rate of change dJ/ds of wave energy flux. One cannot deduce the form

616tk P 0000
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of dJ/ds on any surface from general tensor arguments without resort
to detailed calculations. A four-element Certesian surface tensor
obtained by vertical integration of four of the nine elements of a
stress tensor cannot represent the integrated vertical component of
force, or any component exerted across a horizontal surface; but the
essence of gravity-wave motien is variation in'épace and time of
vertical components'of foree, acceleration, and velocity, producing»
surface slope and curvature. These qpantities enﬁer the surface tensor
only through its dependence on parémeters of the surface waveform
through the detailed calculations Just mentioned. Therefore the wvalue
of-separating certain terms from the total stress, integrating them,
and identifying the resulting array as a radiation stress tensor will
differ for various flowé on which the detailed calculations give
differing results.

We do not find their radiatioh stress tensor useful in this
sense except on flows for which >G = constant ; g, the only ones for
which their results and ours agree. This special propert& of the two-
dimensional "upwelling" flow selected in LS II, and reviewed on pp.
551-553 of LS IV, renders their result for dJ/dx inapplicable on
flows with tilted or curved profiles in general and on wave-like flows
in particular. However, they have taken it to Be a general one; for
the long-wave flow dﬂ LS.I, reviewed on pp. 556-558 of LS IV, this

~error is exactly compensated by another oﬁe in their detailed calcule-
tion of dJ/dx for this flow, as will next be shown.

Consider the equation (with 5, = % E)

(a/ax) [E(U + cg)] + Qs au/ax = 0,
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the form of their general relation in our moving cordinates if Q = 1.
Here U contains not oﬁly the horiiontal part of the long-wave orbital
velocity but also the large constant term (equalvto -cé for their
long-wave propagation to the right) needed tq transform to our
coordinates. They have adopted for wave energy the'expression

1 2
E =735 rga (

1 + PAglg) with P='é1- and Ag=g' -g=G -g, but
we regard P and Q as constants to be determined. Our results and
theirs agree that on this flow da/a = - % dU/U - % dG/G = - dU/U
in deep water. In lowest approximation [qegleqting cg/U and
(dcg/dx)/(dU/dx), which are both small of order (kg/kl)% ] the
eQuatipn yields

(P-l+-21-Q)EdU/dx = 0.

Because they are committed to Q = 1 they must find P = = ; this

PO =

corresponds to their replacément of g by G only in the kinetic but
not the potential contribution to wave energy. Correcting this error
gives P =1 so that Q must be zero; our rigorous result forb

G o U.

With hindsight we can identify the source of this error. It is
connected with their choice of coordinates, in which their U is small
of first order in long-wave'amplitude, being only the orbital part.
Theréfore contributions to E(U + cg)‘ and SXU ari$ing from
dW/ot = G - g are small of second order in each amplitude, or fourth
order overall. Had they worked in our coordinates; terms in U dG/dx
and G dU/dk would have been of the same order because of the large
- constant term in U. Purthermore, in our coordinates the long;wave
flow is steady and JW/dt = 0; its role is replaced by our time-

independent centrifugal term in G, whose equal contributions to

Caeet o0 OD
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kinetic and potential energies are more evident; The local relation-
ships among amplitude, wave-number, phase and group velocities, and
kinetic and potential energies are those of a wave moving on a space-
fixed surfaée with locally constant parameters. We have derived
equations showing that the surface properties are determined by U
"and G. Because of U we must replace the dispersion relation

o = gk by (o - Uk)2 = gk; We must replace g by G not only in
the expression for pdtential energf but also in the dispersion relation
and, through its use, in the kinetic energy as well. These replace-
ments are required 5y the prinéiple of equivalence; the only effect of

the acceleration of a system is equivalent to that of a gravitational

field.
The following physical argument displays the inadequancy of the
expression dJ/dx = - % E dU/dx and the need in general to include

variations of G even for a flow Withoﬁt surfacé slope or curvature.
Consider the following hypbthetical but theoretically achievable
situation. A body of fluid, deep with respect to the wavelengths A
to be considered, moves with uniform constant horizontal yelocity UO
in the x direction on the surface of a planet having an anomalous
mass distribution producing a gravitational field g = -G(x) Ey at the
horizontal free surface y = O of the fluid. Of course g cannot
have the same direction everywhere, but if [(M/G) ag/ax] << 1 we
may ignpre g, down to depths of order A . Here fhere is no .
acceleration of coordinates tied to surface pafticléé of the

unperturbed flow, and it is clear that the local value of G must be



-63

used to calculate potential energy. Because dU/dx = 0 the LS
eqpétion gives dJ/dx = O, but there is no reason to assume a priori

that waves on this flow may not exchange energy with it. Our equation,

which may be written dJ/ds = - %-EG a(u/c)/as, applies here; for

U=1U, it becomes ay/ax = + % (EUO/G) dG/dx, which vanishes only
for UO-= 0.

. It is indeed remarkable that the raﬁher sﬁbtie effects
uncovered by our approaéh should'have,éonspired_fO'lead to the
conclusions reviewed in LS IV from their several correct and detailed
calculatiohs on specific flows. Very few workers appear to have
questioned their concept of the radiation stress tensor. Thg
misgivings of Whitham have already been mentioned. The oﬁly.otherlﬁork
T have found in which doubt has been expressed is that of Hasselmann
(1971), who identified a '"previously overlooked mechanism" he describes
as a "loss of potential energy arising from mass transfer' whose effect
is stated to be a nearly-total cancellation of work done by his
interaction stress which is releted to their radiation stress.

His more elaborate deriwtions connected with this matter are
also conducted by means of Cartesian expansions and integrations with
respect to the vertical coordinate over the entire fluid depfh, which
makes direct coﬁparisons With our results of simpler origin, strﬁcture,
and interpretation nearly impossible.  We have given a quantitative
evaluation of his nearly-total cancellation in terms of the smallness
of our wave-interaction function § ; it seems probable that he has

found an arcane version of this effect. Our comments on the limitatkns
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of a vertically-averaged Cartesian surface stress tensor do not, of
course, imply that vertical integrations and Cartesian expansions of
other quéntities, such as those of Whitham and Hhsselmann, contain
flaws. Nevertheless, we havg become convinced that these techniques S
are at least inelegant, and at worst may be misleading, in studying

some’ aspects of these processes. ' \

XIV. PARTICLE ACCELERATION AT A CONFLUENCE OF CRESTS; DISCUSSION OF
WHTTHCAPPING | |
Sevéral results of linearized gravity-wéve analyses. retain
qualitative validity'in the nonlinear finite-amplitude region all the
way up to waves of maximum height. In making nﬁmeri;al comparisons
one is allowed a single free choice; he may fix the numerical value
of the dimensionless parameter ak of the linear wave to agfee with
one property of‘the maximum wave. Then éll other proberties may be
compared with linear prediétions; with the exception of wave wvelocity
which exceeds the linear value (g/k)% by 9.5%. Longuet-Higgiﬁs
(1969a)vchose"ak =’% "to agree with the downward.acceleration of a
surface particle at the crest of a maximum wave, and then showed
agreement of order 10% for the linearized predictions of wave height
and maximuﬁ'slope. FElsewhere in this paper we have identified 2a
with the maximum-wave height, corresponding to ak = O.4k. One can T .
give an argument that even this value is too high for the fairest
overall compafison; the first nonvanishing correction term in. the
Stokes-Rayleigh e#;ansion for wave height'is positive and gives a good
fit, when includéd, to the maximum wave for ak ~ 0.4, at which walue

the kinetic and_potential energies per unit area (which are quadratic

in ak from the linearized theory), and the maximum slope and crest-
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acceleration with first nonvanishing‘porrections, all agree with their
maximum-wave Valqés to within % 15%. Without any use of nonlinear
corrections the largest discrepancy among all these properfies is +ho%b
for the potential energy with ak = 0.4k, and -30% for the maximum
slope with ak = O.k,

From all this we are encouraged to believe that our results
obtainedbby linearization also retain semi-quantitatiVe validity beyond
fhe domain of linearity up to the instability limit of the small
waves.* We'afe therefore emboldenedbto apply them to the study of
particle acceleration at a confluence of crests on the verge of
-instability, and the growth toward instability of small waves riding
- up large ones as a mechanism causing whitecapping.

The value % g for the downward acceleration of a surface

| particlevhas been taken by Longuet-Higgins (196%a) as an empirical
criterion for the onset of whitecapping in a statistically random wave
field (although he has pointed out (1963) that vertical acceleration
is not a sufficient condition for it). As we have just seen, this
value, which is‘éxact fof a single traveling wa&é-train of maximum
height, is reasonably well reproduced by a linear analysis with

ak ~ 0.45 which also reproduces other properties qualita£ively. If
two wave-trains are superposed and treated in linear approximation

each behaves as if the other were absent, and the downward particle

acceleration at a confluence of crests is estimated as (alkl + aekg)g.

*
Some effects of nonlinearity have been indicated by Crapper (1972).

It is not clear whether his results for energy, which contain a

radiation stress tensor, depend on properties of the tensor we have

questioned here.
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To assess the limit of wvalidity of this approximation, and to evaluate
the limit of instability as a function of the two parameters alkl

and aekg, would seem to require complicated digital computer
calculations of many nonlinear time-dependent flows. However, theré
is one situation in which the answer is known. .Penney and Price (1952)
and Taylor (1953) have studied standing waves of maximum height
theoretically and experimentélly, réspecfively. They found the
downward opening angle ofithe sharp—cfested peaks creatéd at the
instants of maximum displacement to be 900, and the acceleration of

' fluid particles at the peaks to be g, not % g. Here we may picture
two identical wave-trains of finite amplitude moving in dpposite
directions. The curious superficial validity of "superposition" of

_ particle acceierations at crests in this very nonlinear situation is
an accidenﬁ, since neither of the two constitqent traveling wéves
would be.a maximum one in the absence of its oppositely traveling
paftner. Of course g 1is an 6bvidus maximum;'Taylor observed actual
detachment of fluid droplets at the crests of slightly higher standing .
waves.

We put forward here our conclusion that between‘the limiting
cases of a single traveling wave and two equalband opposite waves
there exists a continuum of cases Qith.two wave-trains of different
" amplitudes and wave-numbers which combine to produée limiting flows
- on the border of instability, and that surface particlesat a
confluencé of crests eXperience accelerations in the range betﬁeen
% g and g. The results of this paper allow us to exhibit the lower:

half of this range explicitly. If the given flow is that of a long

wave of small amplitude and the added "small wave" is really small,

»
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the particle acceleration a, at a confluence of crests is given by
akG + aLkLgv, and G x~ g We may consider laréer and larger small
waves up to the value ak ~ % ;3 this wave will break, withu

ac z.% G >~ % g , the known result. If the given wave is larger we
may expand its properties in powers of aLkL ; at its crests

G =g(1 - aLkL) and U2/R (particle acceleration at its crests) =
aLkLg, plﬁs terms of third and higher ordersf Therefore v

a, z:[ak(i - aLkL) + aLkL]g. Inrthe limit ak << 1 and aLkL = % we
find agaiﬁ a, > % g at the\stability limit, but we may impoéefon the
‘small wave the role of instability (ék ~ % ) on any given vave,
obtaining- a, > % (1 + aLkL)g . As the given wave approaches its
'maximunb a, - Bg/h +» The physical picture and ﬁhe mathematical
Justification of these results in the range % g < a, < Bg/h are .
particularly convincing in the domain x/xL << 1l. To eXplore the
ranée Bg/h < a, { g' would require treating the two flows on anvéqual
footing (and with A ~ >\L); which is precluded by the unsymmetrical
roles assigned them in our analysis.

Finally, we discuss the application of our results to the
triggering of whitecapping. The faﬁe of a small-amplitude short-wave
train moving from the trough of a long wave up its downwind side
depends on three dimensionless.pafametérs. These are (l) the wave-
length ratio xo/xL 'in the trough, which_determines 18 and  H,
and thence the functional dependence of the growth factors a/ao and
k/kO on properties of the long-wave flow; (2) the long-wave heightf
to-length ratio, which defines the given flow and allows evaluation

of the growth factors as functions of position along it, including

_ their crest-values; and (3) ﬁhe short-wave height-to-length ratio

A A

M
~
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o] aoko in the trough, which then fixes the positiqﬁ at which they
break, or how élose they are to breaking at the long-wave crest. We
have obtained approximate analytical expressions for these relations.
If the critical value of ak 1is reached before attaining the

crest the small-wave train will become unstable and dump some amount
of turbuleﬁt fluid onto the downwind side of the long wave. Its
effect on the long wave will be'greatér the lower down on ifs surface
the breakup occurs, since the effect tends toward zero in the oppogite
limit. This turbulent water mass will be dragged up the long-wave
slope by the flow toward its crest. Its dead weight will create a
pressure'asymmetry about the crest and the flow speed will be reduced,
tending to make the long-wave crest "stub its toe" on the obstacle and
fall over. The effect is obviousiy greatest for the most nearly
maximum long waves. | |

| Even if the critical value of ak 1is not attained, the small
waves take energy away from the downwind sides of nearly-maximum long
ones at a rapidly incréasing rate near their crests, for which we have
also given ah approximate analytic expression. Loss of potential
energy from the main flowicorresponds té a lowering of the free
surface above the region of loés and a rise belbw. 'Loss of kinetic
energj‘reduces the main flow's speed, and the ensuing surface dis-
placement is of the same form. Any attemptﬁto sketch the influence
of these losses on the long-wave profile just downwind of the crest
yields a ﬂgqe strongly suggestiye of breaking over.

In a real wind-generated wave field conditions are very

different from the idealized ones hypothesized in this study. In the

presence of a continuous random wave spectrum short sequences of waves:
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of varyihg-lengths and-amp1itudes will-continuélly be_generated and
diséipatédfby constructive and destructive interfefence. ‘These
processes'éééur fairlj rapidly and over_small numbefs of wa&elengths
because of'fhe strongly dispersive néture'of gré?ity waves. The
crests,of fﬁe iongef waves in the spectfum, whosé méchanism of
breaking oVer is being coﬁsidered here, will aiso have ephemerai‘
existence and varying properties. All of.the Wavés have' finite extent
in thé third space dimeﬁsion neglected here; dhd their prépérties will
- vary in’ﬁhisidirection. The whitécapping mechénis@ descriﬁed will
operate}ih-ééite of these complications, aﬁd is in accord with visuél
impressioﬁsiéf the phenomenon under suitable éonditions. Thg
concentra%ibn of ité effect in a very small fegidn neaf the crest 1is
an iﬁportant prediction, in quantitative-detail,vof our analysis. It
resulté frdm!existence of the special regime very near‘the crests éf

5

nearly;maXimﬁm waves in which ak o U~ rather Ehan  U—E; and from
growth of'thé wave;interaction function & -frém é small value in the
trough to nearly unity at the ihflection point‘ngér the crest.
Becauséléf.this concentration the mecﬁaﬁism will be difficult fo
observe éﬁd.study in wave-tank experiments.

Itvié not claimed that this qualitativelﬁicture isvcomplete.
A single waye-train_will become unstable on its owﬁ if energy is added
steadily to'it without creating other waves as in a slowly converging
channel, by the'wind, or by variations of the flow én which it rides

which we have studied in this paper. Other authors have described

interchapges of momentum.and energy in crest regioﬁs and a variety of
other effécts. Surface tension may become importént for the shrinking
small waves ﬁear long-wave crests, as may capillary waves on the

<
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upwind side. 1In a whole gale the general preseﬁce of foam and the
bodily detachment of water from nearly-discontinuous wave crests by
local wind stress may dominate the picture. Many interesting questions

remain to be answered. ' ..
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APPENDIX: Stokes;Rayleigh Exransions of U, G, and Q.

| Rayleigh (see Lamb (19%2), p. 417) has shown that to third
order in ak = € the velocity potential of a traveling wave train of
finite amplitude ié given by b =c(x - é eky sinvkx) and the stream
function by V = c(y - a e cos kx) 1in co-moving goordinates; we
have changed signs to use ; =-+ 3’¢. To this order the phase

velocity c¢ 1is given by

F = (g/x)(X + €9)

and the free surface .y yf(x)_ at the streamline Vv = 0 by

ky, = elcos X + % €(1 + cos 2X) + (562/8)(3 cos X + cos 3X)]

with X = kx. The surface flow speed U(x) on V¥ =0 is given to
the same order. by

2 2f 2 ' 2 \

= |v @] = ¢“[1 - 2ky, + € (1 +2ky.)] .
: f f
=0

In making our expansions through third order it is convenient to
use powers rather than multiple angles. We find
3

' 2
kyp = clecox X + € cos® X + (3€ /2)cos X], .

qo

- |
¢ [1 -2 €cos X + 62(1 -2 cosex) + €3(2cosXﬁ-3cosaX)L

cell - € cos X + % 62(1 -3 cos2X)

G
1]

+ % 63(5 cos X - 6 cos” ).
The tangent of the surface slope angle @, given by ‘dyf/dx, is

tan @ = -(€ sin X)[1 + 2¢ cos X + (9€2/2)0032X];
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we also need cos @ = 1 - L tan2 o and cos3 a=1 - (B/E)tanga

2
to this order;
cos ¢ = 1 - % €2.sin2X -2 65 sin2X cos X ,
cos® @ = 1 - (3 €2/2)sin2X -6 & sin2X cos X .

The radius of curvature R of the surface is given by
- 2 .
R™T - (deyf/dx,)cos3 a;

R™Y = - kelcos X + 2e(2 cosex -1) - (562/2)(7 cos X - 10 cos”X)].

| - .
To find the term U /R in G we must multiply through the factor

(1 + 62) in ce, obtaining

UE/R -gelcos X + 2€(cos2X -1) - % € (9 cos X - 10 cos5X)] ;

2
then G(x) =g cos @ + U /R is found to be

G =gll-ecosX+ (3¢ /2)(1 - cong) ; 5(5 cos X - 6 cos3X)].

To find 2 = 1 - (U/G)(dG/dU) to second order we need

o~

aa/ax €2(5 - 18 éong)],

(gke sin X)[1 + 3€ cos X

NOj=~

du/ax = (cke sin x)[1 + 3¢ cos X 62(5 - 18 cong)];

1- eC + £ €2(1 - 3C ) 1+ 3eC - l €2(5 - 1802)

2

1-¢€ + = 62(5 - 302) 1 + 3eC - ; & (3 - 18C )

with C = cos X. The terms of first order cancel, as do ‘those of

second order which are proportional to Cg, giving

Q = e(ak)2
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plus unevaluated terms of third order in C and 05, and higher order,
‘depending on fourth and higher order terms in U ‘and G.

A number of aﬁthors (é.g. Wehausen (1960), p.658, Eqs. 27.25-
27.277) give the same equations with which we‘have commenced except

that the origin of ¥y has been shifted to the mean .surface level;

1

kyf = €lcos Xn+ 5

€ cos 2X + (3é2/8)(5 cos X + cos 3X)].

Although this equation is also accurate to third order, its use in the
Rayleigh equation o = el - 2kyf + 62(1 + Ekyf)] is incorrect.
The curious result of using it is that & 1s wrongly found to vanish

identically through second order.
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Figure 1.

Figure 2.

Figuré 3.

Figure k.

- Figure 5.

Figure 6.

Figure 7.
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FIGURE CAPTIONS

Curvilinear coordinate systems. (a) s-n coordinates;

(b) _ﬁLI coordinates.

(2) Parameters of the short-wave train. (b) Relations
between curvilinear and Cartesian descriptions of small-

wave parameters.

The dispersion relation for ~® .vs. k relative to flow
of speed U ﬁith equivalent gravitational acceleration G;
/G = p is plotted vs. Uk/G = q. - In wnits of U,
Phase and group velocities at ahy pbint E are the Slopes

of the chord from the origin and the tangent to the curve

at E, respectively.
The relation betweéen H and XO/XL (logarithmic scales).

Crowth factors k/kO (so1id) and a/ao (dashed ), each
: ‘ 1 L
multiplied by (1 - 62)2 , vs. (1 -.62) 2, for selected

values of ‘XO/XL as indicated, on a wave of maximum height.

A scale of B 1is also shown.

Values of p at which selected values of ak/aoko are

attained vs. KO/KL on a maximum wave.

Values of the functions P cos e, ﬁ, G, and G/E, in
suitable units as indicated, vs. © in the cap region of V
a nearly-maximum wave. P is not plotted because it

diverges as sec 6 near 6 = 900.



 Figure 8.

Figure 9.

Figure 10:

Figure 11.

Figure 12.
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The surface profile lyl VS.- ]Xl,' with origin at crest,

in the cap region of a nearly-maximum wave. The units of

2 o~ -
length are (% £ /g)l/5 I (see text); values of the

parameter € are also shown.

The parameters M, al, and a2 vs. P on a maximum wave.

‘Dashed curves for M and a, are from the pafabolic model;

solid curves are best estimates.

The parameters M, a,s and % a, ¥s. ® in the cap
region of a nearly-maximum wave. The negative of the
extremum of the WKB test function W is also shown, as a

. o _ L
Qashed curve; WeXt -7 ag.

Small-wave displacement £ vs. f = 2x/7\.L in the limit

p > O on a maximum wave for oo =0 and % T o.

1l

The wave-interaction function Q = 1 - (U/G)(dG/dU) vs. ©

in the cap region of a nearly-maximum wave.
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their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
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owned rights.
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