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ABSTRACT OF THE DISSERTATION

Statistical Rate Event Analysis with Elite Sample Selection Scheme

by

Yue Zhao

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, December 2019

Dr. Sheldon X.-D. Tan, Chairperson

Accurately estimating the failure region of rare events for memory-cell and analog

circuit blocks under process variations is a challenging task. As the first part of the thesis,

author propose a new statistical method, called EliteScope to estimate the circuit failure

rates in rare event regions and to provide conditions of parameters to achieve targeted per-

formance. The new method is based on the iterative blockade framework to reduce the

number of samples. But it consists of two new techniques to improve existing methods.

First, the new approach employs an elite learning sample selection scheme, which can con-

sider the effectiveness of samples and well-coverage for the parameter space. As a result,

it can reduce additional simulation costs by pruning less effective samples while keeping

the accuracy of failure estimation. Second, the EliteScope identifies the failure regions in

terms of parameter spaces to provide a good design guidance to accomplish the performance

target. It applies variance based feature selection to find the dominant parameters and then

determine the in-spec boundaries of those parameters. We demonstrate the advantage of

our proposed method using several memory and analog circuits with different number of
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process parameters. Experiments on four circuit examples show that EliteScope achieves a

significant improvement on failure region estimation in terms of accuracy and simulation

cost over traditional approaches. The 16-bit 6T-SRAM column example also demonstrate

that the new method is scalable for handling large problems with large number of process

variables.
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Chapter 1

Introduction

1.1 Introduction of Statistical Rare Event Analysis

As VLSI technology scales into the nanometer regime, chip design engineering face

several challenges in maintaining historical rates of performance improvement and capacity

increase with CMOS technologies. One profound change in the chip design business is that

engineers can’t put the design precisely into the silicon chips. Chip performance, manu-

facture yield and lifetime become unpredictable at the design stage. Chip performance,

manufacture yield and lifetime can’t be determined accurately at the design stage. The

main culprit is that many chip parameters – such as oxide thickness due to chemical and

mechanical polish (CMP) and impurity density from doping fluctuations – can’t be deter-

mined precisely, and thus are unpredictable. The so-called manufacture process variations

start to play a big role and their influence on the chip’s performance, yield and reliability

becomes significant.
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As a result, how to efficiently and accurately assess the impacts of the process

variations of interconnects in the various physical design steps are critical for fast design

closure, yield improvement, cost reduction of VLSI design and fabrication processes. The

design methodologies and design tools from system level down to the physical levels have to

embrace variability impacts on the VLSI chips, which calls for statistical/stochastic based

approaches for designing next generation VLSI systems.

Moreover, the performance uncertainties related to the process variation have be-

come a major concern for IC development [2]. Many IC components such as SRAM bit-cells

need to be tremendously robust as they are duplicated in the millions [8]. Such modules

require accurate statistical failure analysis in rare event region. However, the traditional

Monte Carlo (MC) based statistical analysis method faces a challenge as it may require

millions of simulations [14].

In this regard, it is imperative to develop new design methodologies to consider

the impacts of various process and environmental uncertainties and elevated temperature on

chip performance. Variation impacts and thermal constraints have to be incorporated into

every steps of design process to ensure the reliable chips and profitable manufacture yields.

The design methodologies and design tools from system level down to the physical levels

have to consider variability and thermal impacts on the chip performance, which calls for

new statistical and thermal-aware optimization approaches for designing manometer VLSI

systems.
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1.2 Motivation

To mitigate this problem, a number of statistical analysis algorithms have been

developed in the literature [4, 15, 19, 20, 14, 9, 1, 11, 12]. One way is by means of

importance sampling (IS) [4], which consist of two steps. First, it shifts the mean value of

the initial performance distribution and places it on interested failure region. The standard

deviation based on the shifted mean is recalculated by considering samples only placed

on the failure region. The new probability density function (PDF) is generated based on

updated mean and standard deviation so that more samples in the failure region can be

drawn. Work in [12] applied the mixture of IS for cross-validation of multiple failure regions

due to disjointed process parameters.

However, these approaches can only estimate single performance metric. Multiple

important samplings are required to estimate more metrics. Also, it is difficult to calculate

the failure probability for a generated distribution by IS.

The statistical blockade (SB) is another effective approach for improving the per-

formance of MC method [14]. The idea of this approach is using a threshold bound to

separate an interested failure region from the whole distribution so that it can block some

unnecessary sampling and simulation for efficiency improvement. This method builds a

supervised learning model with the threshold bound and initial simulation data, which is

known as “classifier”, to recognize failure samples. Later samples that tend to be placed in

the failure region can be captured without simulation.

This approach was improved by using the recursive statistical blockade (RSB)

scheme to locate the rare event failure region in an iterative way [15]. This iterative method
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can improve the accuracy of the classifier by increasing the number of samples in the failure

region of interest. However, this method can incur the significant extra cost as it needs

more samples for the simulation. Wu et al. [20] applied a nonlinear SVM (Support Vector

Machine) classifier to model nonlinear and multiple disjoint failure regions of circuits. This

method applies the generalized Pareto distribution (GPD) fitting for tail distribution to

model failure probability in each iteration. However, this method cannot further investi-

gate failure region without rerunning the whole algorithm. The reason is that the pruned

parameters depending on the initial samples cannot be remained as important ones in the

failure region, which keeps changing. Also, the previous approaches cannot provide the

design guideline in terms of the design parameters to explicitly avoid performance failure,

which are important for improving the yield of circuit.

Recently, Sun et al. proposed scaled-sigma sampling (SSS) [16] and subset sim-

ulation technique (SUS) [17] as better solutions to estimate rare failure rates with high-

dimensional variation space. Unlike traditional importance sampling (IS), SSS applied soft

maximum theorem to construct an analytical model, which is insensitive to dimensionality,

for rare failure rate estimation. Subset simulation (SUS), on the other hand, tends to ex-

press rare failure probability as a product of conditional probability of intermediate failure

events, which is similar to the recursive statistical blockade concept. These intermediate

terms are then accurately estimated using MCMC (Markov Chain Monte Carlo) algorithm.
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1.3 Contributions and Outline of the Thesis

In this thesis, the author proposes a new statistical failure region diagnosis method.

The new method, called EliteScope, is based on recursive statistical blockade method to

reduce the sample counts while still maintaining estimation accuracy. But, it consists of

two new techniques to improve existing methods. The main contribution of this paper

article are as follows:

Firstly, in the recursive statistical blockade method, more samples will be gener-

ated when the failure region is redefined gradually. To mitigate these problems, the new

approach applies an elite sampling scheme, which considers both effectiveness of samples

and well-coverage for process parameter search space, to reduce the number of generated

samples after the failure regions are relocated.

Secondly, our approach provides safe boundaries or in-spec boundaries of process

parameters to satisfy the design specification and manage yield variability of circuit. The

new method first applies variance based feature selection to find the dominant parameters.

A quasi-random sampling with dominant parameters is then used to quickly determine

proper boundaries of those parameters.

The presented method has been tested on several types of digital and analog/mixed-

signal circuits: 4-gate logic circuit with 48 process parameters; a charge pump operation

failure diagnosis in a PLL circuit with 81 process parameters; 6T-SRAM reading failure

diagnosis with 27 process parameters; 16-bit 6T-SRAM column reading failure diagnosis

with 432 process parameters. Experimental results show that given the same computing

costs, the proposed method in general can be more accurate than all the existing methods.
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For instance, for the 16-bit 6T-SRAM column, with the similar number of samples used,

EliteScope can deliver about 3-10X accuracy improvement over existing method. Further-

more, the 16-bit 6T-SRAM column example also shows that the new method can easily

handle the statistical analysis problems with large number of process variables.

The rest of this paper is organized as follows. Chapter 2 discusses essential back-

ground for sample-based failure analysis and revisits some important techniques for im-

proving MC performance. In Chapter 3, we first introduce an overall flow of the proposed

method and review of the mathematical framework for recursive statistical blockade based

method. We then present the proposed elite sampling method to reduce the number sam-

ples for efficiency improvement. We then introduce new guidance technique of parameters

to meet target performance. Chapter 4 shows the experimental result for verifying the ac-

curacy and efficiency of the proposed method. Computation complexity and convergence

performance analysis of EliteScope is also discussed. Chapter Conclusion will highlight the

author‘s contribution wrap-up this thesis.
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Chapter 2

Background Knowledge of

Statistical Rare Event Analysis

2.1 Existing Sampling Approaches

2.1.1 Importance Sampling

In sample-based statistical analysis, importance sampling (IS) is a general tech-

nique to estimate properties of rare event region using the samples generated from the

initial distribution. Fig. 2.1 shows the generated distribution g(x) by IS with two param-

eters. As we can see in the figure, the property of the failure region can be captured as

more samples are obtained in the failure region. Therefore, the proper sampling scheme is

needed to build the right distribution representing the rare event region. One of IS-based

approaches is focusing on quasi-random sampling to explore the parameters space more

uniformly. The samples can be selected by the initial MC sampling, so that more regular
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Figure 2.1: Generated PDF by importance sampling in 2-D random variables

space filling makes the initial samples to cover large variety combinations of parameters

[3]. Another well-known approach is the mean shifting and variance reconstructing, which

the initial distribution is centered around the failure region [12, 11]. However, all these

approaches assume a linear relation between the reconstructed and the initial distributions,

so the generated samples cannot reflect the nonlinear rare event region correctly.

2.2 Statistical Blockade

We first briefly review the concept of the statistical blockade (SB) approach for fast

estimation of properties of rare event region. A general framework of SB is shown in Fig. 2.2.

This method starts with drawing initial samples with uniform or normal distribution to

capture a crude shape of performance distribution by circuit simulation. The classifier can

be built by training with initial simulation data. Once we obtain the classifier, samples

that tend to fall into the failure criteria can be identified without actual simulation. With

these filtered samples, SB calculates the probability of failure region by fitting samples in
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Figure 2.2: General flow of statistical blockade approach

proper distribution model. Thus, “classification” and “failure probability calculation” are

both key steps in the SB method. The rest of this section describes these two steps.

2.2.1 Classification

The classification is a step that the samples can be classified into likely-to-fail sam-

ples for circuit simulation. Building a classifier needs a training step with initial samples

to render real shapes of the failure region. The classifier can shrink the number of samples,

thus the simulation cost is reduced. However, it is not capable of fully replacing the simu-

lator due to its accuracy. So, a marginal filtering approach is used to improve the accuracy

of classification [15, 19, 20, 14]. This method uses relaxed threshold bounds instead of a

real failure criterion to capture more samples to minimize classification error. Meanwhile,

it is not sufficient to use a simple and linear classifier due to the nonlinearity of the failure

region [15, 19, 14]. So, Gaussian radial basis function kernel (GRBF) and neural network

methods are available for nonlinear classifiers [20, 18]. Fig. 2.3 shows the accuracy of classi-

fication in a 2-dimensional search space example. Even the solution space is separated with
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(a) Reference (b) GRBF (c) LSVM

Figure 2.3: The classification accuracy of two different methods

nonlinear relation, GRBF can recognize patterns properly while the LSVM draws a wrong

boundary between two categories.

2.2.2 Failure probability calculation

The failure samples should be fitted to a particular distribution form in order

to calculate the probability of the failure region. Suppose that simulation results for the

certain performance metric Y can be fitted to the Gaussian distribution. The PDF of the

result distribution can be represented as

f(y, µ, σ) =
1

σ
√
2π

e−
(y−µ)2

2σ2 (2.1)

where parameters µ and σ are the mean and standard deviation in this distribution. We

define FY (y) as the cumulative density function (CDF) of the performance metric Y . If we

know the threshold value t which separates a tail region from the whole distribution f(y),

the conditional CDF of this region can be written as follows:

Ft(y) = P (Y ≥ y | Y ≥ t) =
FY (y)− FY (t)

1− FY (t)
(2.2)
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where Ft(y) means the failure probability decided by y. Once we have a suitable fitting

model for CDF of the failure region with a failure bound y, the failure probability with

given values can be calculated as:

P (Y ≥ y) = [1− FY (t)] · [1− Ft(y)] (2.3)

In the several generalized extreme value distributions, GPD is one of the most accurate

model to describe tail distribution corresponding to failure region [7]. With the location

parameter µ, the scale parameter σ and the shape parameter ξ, CDF of the failure region

can be formulated by GPD fitting.

Ft(y) = G(ξ,µ,σ)(y)

=



















1−
(

1 +
ξ(y − µ)

σ

)

−1/ξ

for ξ 6= 0

1− e
−(y−µ)

σ for ξ = 0

(2.4)

The location parameter µmeans a starting point of GPD and it corresponds to the threshold

t of the tail distribution. Consequently, the failure probability with given threshold t and

failure bound y can be computed as follows.

P (Y ≥ y) = [1− FY (t)] · [1−G(ξ,t,σ)(y)] (2.5)

To approximate the rest of parameters for GPD fitting, we use the maximum likelihood

estimation [6].
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2.3 Recursive Statistical Blockade

It is a typically difficult task to choose the right threshold bound in the failure

analysis for an extreme rare event region. For instance, the failure region is decided by the

failure criterion tc and the probability of this region is around 99.9999%. Suppose that we

use single threshold method, then we can choose a very loose threshold t as P (Y > t) around

99% to safely cover whole failure region even though the threshold can be quite far away tc.

Moreover, the number of MC samples for filtering will be determined at once. If the number

of MC samples is relatively enormous, a classifier will select too many likely-to-fail samples,

which will significantly increases simulation cost. Meanwhile, if the selected likely-to-fail

samples is every small, this will cause inaccurate estimation of the failure region and thus

the failure probability.

To mitigate this problem, one idea is to gradually locate the failure region in an

iterative way based on RSB scheme [15]. Unlike the single threshold method that calculates

a failure probability at once, our approach updates a failure region Y1(> 99%) and the

probability by GPD fitting after the first iteration. With this updated failure region, the

threshold bound is re-computed for a newly updated region Y2(> 99.99%). The GRBF

classifier is trained by failure samples in the first iteration so that it can capture likely-

to-fail samples more precisely in the updated failure region. In the second iteration, the

number of MC samples increases from 10n to 102n as the increasing ratio is 10, so the new

classifier will capture more likely-to-fails samples thus better estimating the updated failure

region.

12
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Figure 2.4: Iterative locating of failure region by changing thresholds

As the algorithm iterates, the failure region is scoped continuously close to the

given failure criterion tc based on the re-computed ti and likely-to-fail samples are converged

on the updated failure region. Therefore, the proposed method can achieve accurate failure

analysis than a single threshold method with relatively less total simulation cost. Fig. 2.4

shows an iterative locating procedure for finding the failure region.

Mathematically, as discussed in Section 2.1, the CDF with given a threshold t and

a failure criterion tc can be calculated as

PIS(Y ≥ tc) = PMC(Y ≥ t) · P (Y ≥ tc|Y ≥ t)

P (Y ≥ tc|t ≥ t) =
P (Y ≥ tc, Y ≥ t)

P (Y ≥ t)

(2.6)

The conditional probability part in (2.6) can be estimated by GPD fitting using simulated

failure samples. Therefore, (2.6) can be rewritten as

PIS(Y > tc) = PMC(Y ≥ t) · PMIS(Y ≥ tc|Y ≥ t) (2.7)

where PMIS represents the conditional probability in updated distribution by GPD fitting.

If the proposed method iterates twice with t1 and t2 as threshold bounds, the second failure

probability can be calculated based on the first failure region. So, the failure probability in

13



each step can be calculated as

PIS(Y ≥ tc) = PIS(2)(Y ≥ tc)

PIS(1)(Y ≥ t2) = PMC(Y ≥ t1)

· PMIS(1)(Y ≥ t2|Y ≥ t1)

PIS(2)(Y ≥ tc) = PMC(Y ≥ t1) · PMIS(1)(Y ≥ t2)

· PMIS(2)(Y ≥ tc|Y ≥ t2)

PMIS(i)(Y ≥ tc|Y ≥ ti) =
PMIS(i)(Y ≥ tc)

PMIS(i)(Y ≥ ti)

(2.8)

Without the loss of generality, we can formulate the iterative failure probability calculation

as

PIS(i)(Y ≥ tc)

=







































PMC(Y ≥ ti) · PMIS(i)(Y ≥ tc|Y ≥ ti) for i = 1

PMC(Y ≥ ti) ·
k−1
∏

i=1

(PMIS(i)(Y ≥ ti+1)

· PMIS(k)(Y ≥ tc|Y ≥ tk)) for i > 1

(2.9)

where k is the number of iterations. Finally, the failure probability can be obtained by

combining all calculated probabilities in each iteration.
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Chapter 3

Proposed Elite Sample Selection

Scheme Method

3.1 The Overall Analysis Flow of EliteScope

In this subsection, we first present the overall analysis flow of the proposed EliteScope

method, which is illustrated in Fig. 3.1. Then we present the mathematical framework for

the iterative computing of failure probability. Then we explain our three major contri-

butions of the proposed method: (1) Iterative computing of failure probability (2) Elite

learning sample selection (3) Parameters guidance for performance targeting.

Our algorithm starts with given data, such as process variations and some param-

eters for failure region determination. The failure criteria tc denotes the reference value of

failure and the percentile bound p to calculate the threshold in each ith iteration. The first

step is to perform initial MC sampling and simulation to capture overall circuit performance
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Figure 3.1: The proposed iterative failure region diagnosis flow

metrics. After this, the relaxed threshold ti can be obtained to separate a failure region from

main PDF and the probability of this region is P (Y > ti) = p. The classifier can then be

modeled with n simulation result of the initial samples. In the classification step, the GRBF

nonlinear classifier is used for accurate sample filtering. With the simulation result and the

classifier, the new method can calculate the in-spec conditions of process parameters to

achieve targeted yield in ith iteration. At the same time, the algorithm generates n ∗mi (m

is a constant number) MC samples, which will be filtered by the classifier Ci to likely-to-fail

samples based on ti. Then, the elite sample selection can be employed to further reduce
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the number of samples for actual simulation. After the simulation, the failure probabilities

P (Y > ti) are updated by GPD fitting. Our approach iterates the above whole procedure

with the updated threshold bound ti by percentile bound p, and the increased number of

MC samples to calculate the failure probability P (Y > ti). Finally, it finishes when the

threshold bound meets the given failure criterion tc.

3.1.1 Elite Learning Sample Selection

The simulation cost is a major bottleneck in the statistical analysis of the circuit.

The proposed iterative failure diagnosis method can lead to an extra simulation cost in each

iteration. To mitigate this problem, we propose the elite learning sample selection scheme,

which significantly reduces the number of samples required. The elite sample selection

process is represented in the box named “Smart sample selection” in Fig. 3.1. Effectiveness

of the sample group is the first factor. Each sample consists of the combination of process

parameters, which affect differently on simulation results. Therefore, the sensitivity of each

parameter should be considered for the sample selection.

Suppose we have a set of n samples, which are represented by the parameter vectors

xi, i = 1, ..., n. Each sample has m process variables (m dimensions). Together they form

a process parameter matrix X = [x1 x2 ... xn] such that each column indicates a xi.

It is not difficult to see that each row of X is the n samples of a single parameter. Denote

Xj as the vector formed from the jth row of X (jth process variable). A scalar vector

y = [y1, y2, ..., yn]
T contains all the corresponding n simulation results. σXj and σY are

variances of Xj and y, respectively. The proposed selection method calculates correlation

coefficients between parameters and simulation results for the sensitivity analysis as follows:

17



Xj , y ∈ Rn

ρXj ,y =
cov(Xj , y)

σXjσy
j = 1, 2, ...,m

ρX,y = [ρX1,y ρX2,y ... ρXm,y]
T ∈ Rm

(3.1)

Where ρX,y means the co-variance coefficient of simulation results and m process parame-

ters.

The second factor is the coverage ratio of parameters search space by selected

samples. The diversity of samples can be calculated by Euclidean distances with the ref-

erence sample, which is the median from simulation results. Samples around the median

can be chosen as the median is located on the highest probability region in the distribution

of simulation results. Simultaneously, samples found in the boundary region of the search

space can be selected as these samples represent the maximum and minimum conditions of

parameters. Thus, the proposed sampling method can calculate two distance factors of a

given sample that covers both central and boundary regions of the search space as follows:

ỹ = median(y)

xref = {x|ỹ = f(x), x ∈ Rm}

Dcentral(x) =
1

∣

∣

∣

x−xref

Range(X)

∣

∣

∣

∈ Rm

Dboundary(x) =

∣

∣

∣

∣

x− xref

Range(X)

∣

∣

∣

∣

∈ Rm

(3.2)

where Range(X) is a normalization term such that the jth element of vector x − xref is

normalized by |max(Xj) −min(Xj)|, the value range of jth row in X . In (3.2), Dcentral

increases when the sample is closer to the reference sample. On the other hand, Dboundary

increases. Since D(x) and ρX,y means the distance and correlation coefficient in same

dimensions, we can obtain the sample’s weight by the inner product of ρX,y and D(x) of
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Figure 3.2: Sample candidates weight Distribution of a single-bit SRAM test

each sample.

Wcentral(x) = ρX,y
T ·Dcentral(x)

Wboundary(x) = ρX,y
T ·Dboundary(x)

(3.3)

According to the selection ratio r, which determines the number of selected samples, The

final set of samples can be chosen in the following way.

E(n, r) = S(
nr

2
,Wcentral(xn)) ∪ S(

nr

2
,Wboundary(xn)) (3.4)

where S(n,W (xn)) is the set of n samples sorted by W (xn).

An example of normalized sample candidates weight distribution is shown in

Fig. 3.2. Nearly 1200 sample candidates are filtered out by the non-linear SVM classi-

fier. By employing Elite Learning Sample Selection scheme, the weight concerning both
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central and boundary distance are calculated sorted in descending order. All weights in the

same set are then normalized by sets maximum. For the normalized weight distribution in

the set Wboundary, only first 50 samples are listed since rest samples‘ weight are very close

to zero and thus negligible. It is very clear to see that weight values decease dramatically.

According to previous discussion, sample with larger weight leads to more significant con-

tribution in constructing the failure region. Unlikely to traditional RSB [15] method which

directly simulates all sample candidates, we only need to utilize samples with larger weight

to perform actual simulation to estimate failure region with great efficiency.

3.1.2 Parameters Guidance for Performance Targeting

In order to improve yield of a circuit, designers need to know good ranges of process

parameters with regards to the circuit performance specification. However, applying all

possible combinations of parameters is impossible due to exponential possibilities with a

large number of parameters.

The proposed method ranks priorities of process parameters based on its variances.

The parameter guidance operation is represented by the two left boxes in Fig. 3.1. Since

the parameters with huge variance mainly lead to spread samples in search spaces, these

parameters must be handled to avoid certain failure regions. In Fig. 3.1, the variances

of parameters can be calculated from simulation data of updated failure region in our

iterative framework. Given n samples with m process parameters as denoted by X =

[x1 x2 ... xn], the variance of samples can be written mathematically as follows:

V ar(X) =
1

n

n
∑

i=1

(xi − µ)2 (3.5)
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where xi is a ith X and µ is the mean vector of n samples of X. Next, our method redraws

samples with only considering the distributions of high ranked parameters. Nominal values

are assigned for not chosen parameters. We use SOBOL sequence [5] to redraw these

samples. It uses a quasi-random low-discrepancy sequence, so these samples can cover

the search spaces of parameters more uniformly than the previous samples for simulation.

Suppose that l is the number of redrawn samples and first k high ranked parameters are

chosen. Redrawn samples can be formed as

xi = [xi,1, xi,2, ..., xi,k, xi,(k+1), ...xi,m]T ∈ Rm

[xi,1, xi,2, ..., xi,k] = SOBOL[x1,...l,MIN(x1,...,l),MAX(x1,...,l)]

[xi,(k+1), xi,(k+2), ...xi,m] = NOMINAL(x1,...l)

(3.6)

where i = 1, 2, ..., l, xi,k denotes the kth element of xi, terms MIN(x1,...,l) and MAX(x1,...,l)

mean the minimum and the maximum values of l vectors in X, respectively. We assign

nominal values for rest m− k parameters of redrawn samples. As a result, we can generate

samples with not only reduced dimensions but also well-coverage of the failure region. The

classifier with the updated threshold can filter out these samples to determine pass or fail

condition of process parameters. With the classification result of samples, the proposed

method induces if-then rules from the highest-ranked parameters so that all failure condi-

tions of parameters can be filtered. The overall steps of the new in-spec guidance method

are explained in Fig. 3.3.
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Chapter 4

Numerical Experimental Results

4.1 Experiment Configuration

The proposed method (EliteScope) has been implemented in Python 2 and tested

on a Linux workstation with 32 CPUs (2.6GHz Xeon processors) and 64GB RAM.

The performance and accuracy of proposed method have been evaluated on a

number of circuits: (1) The critical path delay of the 4-gate logic circuit, (2) Failure rate of

6T-SRAM single-bit cell, (3) Failure rate of 6T-SRAM 16-bit column and (4) Charge pump

circuit in PLL, which are highly replicated instances for system-on-chip (SOC) designs. All

circuits were designed with the BSIM4 transistor model and simulated in NGSPICE [10].

Table. 4.1 shows 9 major process parameters of MOSFETs. To demonstrate the advan-

tage of the proposed method, we compare the proposed EliteScope against three other

methods, Monte Carlo (MC), REscope [20], and the Recursive statistical blockade (RSB)

method [15] in terms of their accuracies and performances. The three other methods are

also implemented in Python 2 and tested on the same workstation. As the last part of the
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Table 4.1: Process parameters of MOSFET

Variable name Std(σ) Unit

Flat-band voltage (Vfb) 0.1 V

Gate oxide thickness(tox) 0.05 m

Mobility (µ0) 0.1 m2/V s

Doping concentration at depletion Ndep) 0.1 cm−3

Channel-length offset (∆L) 0.05 m

Channel-width offset (∆Q) 0.05 m

Source/drain sheet resistance(Rsh) 0.1 Ohm/mm2

Source-gate overlap unit capacitance(Cgso) 0.1 F/m

Drain-gate overlap unit capacitance(Cgdo) 0.1 F/m

a 

b 

c 

d 

X 

Y 

Z 
‘L’ 

A 

B 

Figure 4.1: The schematic of the 4-gates logic circuit

section, we will discuss algorithm and classifier complexity as well as the issue concerning

the convergence performance of EliteScope.

4.1.1 The Critical Path Delay of the Simple Logic Circuit

The test logic circuit consists of four gates (2 INVs, 1 NOR, and 1 NAND) as

shown in Fig 4.1. The critical path delay in the circuit is max(fall A, fall B) (X,Y is

rising and Z is 0). Two critical paths can be found, and the total number of process

parameters is 48. The failure criterion is set to be P(Y> tc)=0.000125, which indicates the

4-sigma range in the distribution of the critical path delay. Two iteration threshold bounds
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Table 4.2: Comparison of the accuracy and efficiency on the 4-gates circuit

Failure
probability

# Sim.
runs

Speed
-up(x)

Error (%)

Monte Carlo 1.25E-04 600K - -

Rare Event Microscope
(REscope)

6.00E-04 4531 132.4 380.16

Recursive Statistical
Blockade (RSB)

1.49E-04 12369 48.5 19.2

Proposed method (EliteScope) 1.51E-04 5620 106.8 20.8

are P(Y> t1)=0.07 and P(Y> t2)=0.0049, respectively. As we can see from Table 4.2, both

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
0.9990

0.9992

0.9994

0.9996

0.9998

1.0000
LOGIC DELAY GPD (2nd)

MC

REscope

RSB

EliteScope

Figure 4.2: The failure distribution P(Y< tc)=0.999875 of the critical path delay of the
simple circuit

EliteScope and RSB have similar accuracies for failure region estimation. But RSB takes

2.20X more simulation time. By applying the elite learning sample selection, EliteScope

only use a small amount of samples, which are filtered by classifier, for simulation and

further tail distribution fitting while RSB just directly simulates all of them.
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Figure 4.3: The schematic of the 6T-SRAM single-bit cell

In this case, REscope does not deliver very accurate estimation. There is about

19X accuracy difference between REscope and EliteScope even though their simulation cost

difference is only about 20% 1.

4.1.2 Failure Rate Diagnosis of Single-bit 6T-SRAM Cell

The second example is a single-bit 6T-SRAM circuit. The schematic design of the

single-bit 6T-SRAM cell using BSIM4v4.7 MOSFET Model is shown in Fig. 4.3. 6T-SRAM

fails when the voltage gap between BL and BL is not large enough to be determined by

sense amplifiers in certain period. We measure the delay of discharging BL as the failure

criterion. The experimental setup for the initial conditions are: Q̄ = 1, Q = 0, BL and

BL = 0. When WL turns on, BL is discharged by MN2 and MN1 and BL charged by MP2.

1We note that it is difficult to make the simulation samples exact same for both methods as we do not
control them directly.
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For process variables, we use the 9 model parameters in Table 4.1. To guarantee unbiased

behavior, transistors on left hand side should be totally identical to their corresponding

transistors on the right (e.g. Mp1 and Mp2 share identical process parameters). So, the

number of the process parameters is 27(3 ∗ 9) in this reading operation. The initial number

of samples for capturing the circuit behavior is 2,000.

Table 4.3: Comparison of the accuracy and efficiency on the 6T-SRAM circuit

Failure
probability

# Sim.
runs

Speed
-up(x)

Error (%)

Monte Carlo (MC) 2.300E-04 1 million - -

Rare Event Microscope
(REscope)

3.79E-04 5009 199.6 64.78

Recursive Statistical
Blockade (RSB)

2.78E-04 29260 34.2 20.86

Proposed method (EliteScope) 2.85E-04 15730 63.6 24.00

Figure 4.4: Estimating the CDF of the 6T-SRAM read time around 3-sigma region
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Table 4.4: Estimated in-spec guidance of parameters on the 6T-SRAM circuit

Rank
Parameter
@MOSFET

Initial condition
(µ, σ)

In-spec Guidance
[MIN,MAX]

1 vfb@MN1 (-5.5E-01,0.1) [-7.31E-01,-3.78E-01]

2 vfb@MP2 (5.5E-01,0.1) [3.54E-01,7.15E-01]

3 ndep@MN1 (2.8E+18,0.1) [1.84E+18,3.76E+18]

4 ndep@MN2 (2.8E+18,0.1) [1.70E+18,3.84E+18]

5 ndep@MP2 (2.8E+18,0.1) [1.89E+18,3.78e+18]

Failure
probability

0.0009(= t2)
Estimation
Error (%)

1.21

We set the failure criterion tc as P(Y≥ tc)=0.00023, which means 3-sigma in terms

of the yield level. The proposed method iterates twice with 97% percentile bound for each

iteration to separate the failure region from initial distribution. Hence, threshold bounds

t1 and t2 are calculated as P(Y≥ t1)=0.03 and P(Y≥ t2)=0.0009 (0.03× 3%), respectively.

Table 4.3 shows the accuracy and performance of failure analysis performed by different

approaches.

As we can see, compared to REscope, EliteScope obtains better accuracy with

the similar computing costs. Compared to the RSB method, which gives better accuracy,

but taking almost 2X computing time. Fig. 4.4 shows that our proposed method is more

accurate than previous methods since the tail of CDF depicting the 3-sigma failure region

is more correlated to the golden reference (MC).For the estimated specification guidance

for parameters, we find that only 1.2% of samples, which meet the in-spec guidance, are

determined as the misclassification samples by the classifier in Table 4.4.

28



Phase/

Frequency

Detector

Charge

Pump

Loop

Filter
VCO

Feedback
Divider

CLKref

UP

Down

Iout Vout CLKout

CLKfb

Figure 4.5: A functional diagram of the PLL circuit

4.1.3 Charge Pump Failure Rate Diagnosis

The third example is a charge pump circuit. In a large logic circuit, a clock is

frequently distributed to several sub-clocks, so frequencies of sub-clocks are prone to be

inaccurate due to propagation delays. A PLL is frequently used to adjust the phase of

clock. The functional block diagram of PLL is shown in Fig.4.5. After comparing the

output clock (CLKout) with the reference clock (CLKref ) by phase detector, a charge

pump circuit adjusts the frequency of clock signal by charging and discharging capacitors

controlled by input signals (UP and DN). The mismatch of MOSFETs in a charge pump

can cause the unbalanced timing and phase jitters between two different operation modes.

Hence, we measure the timing ratio of charging and discharging operations, which can be

formulated mathematically as rmin ≤ tdischarge
tcharge

≤ rmax (rmin,max represents the minimum

and maximum ratio to determine failures). A charge pump circuit consists of 9 MOSFETs

as shown in Fig. 4.6. The total number of process parameters is 81(9 ∗ 9), so the dimension

of parameters is much higher than 6T-SRAM case. We initially perform 3,000 sampling
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Figure 4.6: Schematic representations of the charge pump and filter

and simulation to model the initial performance distribution accurately. Similar to the 6T-

SRAM case, we perform our algorithm twice with 97% percentile bound (P(Y≥ t1)=0.03,

P(Y≥ t2)=0.0009).

The result is summarized in Table 4.5.EliteScope approach requires only 6263 Spice

simulation runs for estimating the failure probability of 3-sigma region with 10.78% relative

error compared to traditional Monte Carlo method. Even though RSB achieves better

accuracy with only 2.39% error, it runs nearly 4000 more simulations than EliteScope.

REscope requires 4875 simulation runs, but it gives significant large errors compared to the

Monte Carlo method.
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Figure 4.7: Estimating the CDF of charge pump mismatch around 3-sigma region

Table 4.6 shows that the proposed method makes the decision for in-spec condi-

tions of process parameters with 98% confidence level by managing only the first 5 ranked

parameters of 81. The tail distribution of EliteScope in 3-sigma failure region is much closer

to MC than REscope as we can see in Fig. 4.7.

Table 4.5: Comparison of the accuracy and efficiency for the charge pump circuit

Failure
probability

# Sim.
runs

Speed
-up(x)

Error (%)

Monte Carlo(MC) 2.300E-04 1 million - -

Rare Event Microscope
(REscope)

3.337E-04 4875 205.1 45.09

Recursive Statistical
Blockade (RSB)

2.245-04 10432 95.9 2.39

Proposed method (EliteScope) 2.052-04 6263 159.7 10.78
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Table 4.6: Estimated in-spec guidance of parameters for the charge pump circuit

Rank
Parameter
@MOSFET

Initial condition
(µ, σ)

In-spec Guidance
[MIN,MAX]

1 ndep@MN1 (2.8E+18,0.1) [1.74E+18,3.78E+18]

2 ndep@MP2 (2.8E+18,0.1) [1.68E+18,3.73E+18]

3 ndep@MP4 (2.8E+18,0.1) [1.78E+18,3.81E+18]

4 ndep@MN5 (2.8E+18,0.1) [1.78E+18,3.77E+18]

5 ndep@MP3 (2.8E+18,0.1) [1.88E+18,3.80E+18]

Failure
probability

0.0009(= t2)
Estimation
Error (%)

2.00

4.1.4 16-bit 6T-SRAM Column Failure Rate Diagnosis
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BL

QMp1 Mp2

Q
Mn1 Mn3
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VDD
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CELL<1>
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BLBL-
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BL-

1 0

0 1

0 1

Figure 4.8: The schematic of a 16-bit 6T-SRAM column

To illustrate the scalability of the proposed method on large analog circuits, we

perform comparison on one large 16-bit 6T-SRAM column circuit (one-bit line) as shown in

Fig. 4.8. In this example, we treat the delay of discharging BL as the failure criterion. To

mimic the worst-case scenario, in which the impact of leakage current can be maximized,
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logic 0 is stored in cell < 0 > and the rest of the cells stores logic 1. In the reading

operation, only cell < 0 >’s word-line is turned on while all other word-lines are turned off.

We choose the same process parameters used in one SRAM cell experiment. The model

parameters are independent in different cells. As a result, we have 432 random variables

(16 cells * 27 random variables) that make this case a good example for scalability study.

We run 6,000 samples to capture the circuit behavior. The same failure criterion is set as

P(Y≥ tc)=0.00023, which is about the 3-sigma in terms of the circuit yield. The proposed

method iterates twice with 97% percentile bound as a slope guard to separate the failure

region from the initial distribution. Hence, threshold bounds t1 and t2 are calculated as

P(Y≥ t1)=0.03 and P(Y≥ t2)=0.0009, respectively.

We set the same number of tail fitting samples for REscope, RSB, and EliteScope

(the actual samples used to fit the tail distribution) so that we can fairly compare their ac-

curacy. The estimated failure probability and their errors obtained from the three methods

are shown in Table 4.7. All results are compared against the results from the Monte Carlo

method with one million runs, which give the failure probability as 2.3× 10−4, the golden

reference for all the other methods.

In Table 4.7, the first row indicates the number of tail fitting samples each approach

uses. For each column, two terms are given for each method, the first term is the absolute

failure probability (FP) obtained by the different methods, the second term is the relative

failure probability error rate against the Monte Carlo method.

When a small number of tail fitting samples are used (only a few hundred), all

methods result in large errors since the small number of samples cannot build a reliable
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Table 4.7: The accuracy comparisons for 16-bit 6T-SRAM column case

# of Tail Fitting Samples 248 1392 6346

Monte Carlo Reference(MC)
FP 2.3E-04 2.3E-04 2.3E-04
Error(%) 0 0 0

Rare Event Microscope (REscope)
FP 11.4E-04 6.29E-04 2.61E-04
Error(%) 395.65 173.48 13.48

Recursive Statistical Blockade (RSB)
FP 7.705E-04 5.569E-04 2.39E-04
Error(%) 235.00 142.13 3.91

Proposed Method (EliteScope)
FP 6.47E-04 3.385E-04 2.33E-04
Error(%) 181.30 47.17 1.30

model for the tail distribution. By using more tail fitting samples, overall performance will

be naturally improved. But still, the proposed method presents good performance with the

lowest estimation relative error among all approaches.

We note that by applying the elite learning sampling selection, we select 1392

samples with higher effectiveness out of 6961 samples generated for tail distribution fitting.

Furthermore, the selected elite samples is quite effective for capturing tail distribution

quite precisely. Compared to the REscope method, the proposed method achieves 3.67X

improvement in accuracy using the same simulation costs.

When 6364 tail fitting samples are generated to fit the tail distribution, all the

methods obtain a better approximation to golden reference (very close to tc) while EliteScope

achieves the lowest error – 1% error compared to the standard MC simulation. Note that

all results are obtained based on GPD fitting in this case. In this case EliteScope is about

10X more accurate than the REscope.
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4.1.5 Classifier Computation Complexity and Performance Convergence

Analysis

In our implementation part,we use the Nu-Support Vector Classification (NuSV C)

as our classifier. It is a built-in classifier function in the scikit − learn Python machine

learning package. It is a non-linear C-support vector machine classifier. The computation

complexity of the SVM is typically more than quadratic (O(n2)), where n is the number of

training samples. Depending on the testcase and parameter selection, the computation time

spent on classifier training varies. The total computation time of EliteScope is mainly spent

of two parts: 1) classifier training and 2) NGSPICE circuit simulation. In low dimensional

test cases, NGSPICE simulation is fast due to the simple circuit netlist. Thus, classifier

training dominate the time cost since EliteScope would run fewer NGSPICE simulation

(usually 15% to 30% of sample candidates) by applying Elite Learning Sample Selection

scheme. But for 16-bit SRAM circuit, which is a high-dimensional variable case, both

classifier training cost and NGSPICE simulation costs drastically increase. One reason is

the non-linear computational complexity of NuSV C. As we use more training samples

to better capture the circuit behavior in high-dimensional space, more classifier training

time is consumed . On the other hand, performing one single NGSPICE simulation costs

4 second due to the large circuit size. The total NGSPICE simulation consumption time

required by RSB is 3X than classifier training time, whileEliteScope further sort out those

samples, which are more worthy to simulate. The proposed method can save over 50% of

total computation time which makes it even more time efficient in high-dimensional case

while keeping a acceptable accuracy level.

35



0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Relative Failure Threshold Eorror of RSB and EliteScope

RSB EliteScope

Figure 4.9: Estimated Failure Threshold Error of RSB and EliteScope

To further prove the feasibility of EliteScope, we repeatedly perform single-bit

SRAM tests by using different values of selection ratio r. Failure region threshold estimated

by RSB and EliteScope are compared. We perform two separate tests for a given selection

ratio and take the average of failure threshold estimation value as the data in the figure.

Fig. 4.9 shows the absolute estimation error of failure threshold of RSB and

EliteScope. Even though EliteScope encounters over 200% error when selection ratio equals

to 0.05, it is acceptable since sample are still out of number andsome highly-weighted sam-

ples are not considered. After 10% samples are used, the estimation error of EliteScope

quickly converge to RSB but still exists due to its nature limitation. Fig. 4.10 illustrates

the relative error of EliteScope compared to RSB method with the selection range between

0.1 to 0.8. One observation is that the relative error EliteScope do decrease as more and

more sample are used, but only a maximum of 50% decrease of relative error, at a cost
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Figure 4.10: Relative Failure Threshold Error of RSB and EliteScope

of 5X simulation consumption, is received. Those low-weight samples provide very limited

contribution of estimating failure threshold. The result further support that Elite Learning

Sample Selection do play a smart role in selecting samples with great efficiency in failure

region estimation.
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Chapter 5

Conclusions and Future Research

In this thesis, the author present a novel statistical diagnosis method for rare

failure events. The proposed method introduced two new techniques to speed up the failure

analysis while providing the in-spec guidance of process parameters. First, the proposed

method applies the smart sample selection method to reduce the additional simulation cost

during iterative failure region locating process. Second, the new approach can provide safe

design space of parameters, which can help design to improve the yield and meet the target

performance of design. Experiments on four circuit cases show that EliteScope achieves a

significant improvement on failure region estimation in terms of accuracy and simulation

cost over traditional approaches. The 16-bit 6T-SRAM column example also shows that the

new method is salable for handling large problems with large number of process variables.

One conference paper[21] and one journal paper [22] are published based on the

thesis‘s work. As a co-author, another conference paper[13] is published when participated

the full-chip thermal estimation project.
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Future research direction for this topic can be derived into two aspects. Sophisti-

cated machine learning theory and implementation will play a better role on rare event tail

distribution estimation for large-size logical circuit with high dimension. Secondly, process

parameters of VLSI circuits are also affected by circuits‘ own reliability (e.g. Electromi-

gration, thermal circle, TDDB) during time being used. So a more comprehensive charac-

terization and simulation considering life- time reliability criteria using different reliability

model is also a promising topic.
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