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The highly skewed distribution of species among genera, although
challenging to macroevolutionists, provides an opportunity to un-
derstand the dynamics of diversification, including species forma-
tion, extinction, and morphological evolution. Early models were
based on either the work by Yule [Yule GU (1925) Philos Trans R Soc
Lond B Biol Sci 213:21–87], which neglects extinction, or a simple
birth–death (speciation–extinction) process. Here, we extend the
more recent development of a generic, neutral speciation–extinc-
tion (of species)–origination (of genera; SEO) model for macroevo-
lutionary dynamics of taxon diversification. Simulations show that
deviations from the homogeneity assumptions in the model can be
detected in species-per-genus distributions. The SEO model fits ob-
served species-per-genus distributions well for class-to-kingdom–

sized taxonomic groups. Themodel’s predictions for the appearance
times (the time of the first existing species) of the taxonomic groups
also approximately match estimates based on molecular inference
and fossil records. Unlike estimates based on analyses of phyloge-
netic reconstruction, fitted extinction rates for large clades are close
to speciation rates, consistent with high rates of species turnover
and the relatively slow change in diversity observed in the fossil
record. Finally, the SEO model generally supports the consistency
of generic boundaries based onmorphological differences between
species and provides a comparator for rates of lineage splitting and
morphological evolution.

diversification rate | genera origination | species-within-genus statistics |
Linnean taxonomy

What we know about the diversification of life on earth comes
primarily from two types of evidence: the fossil record and

evolutionary relationships among contemporary taxa. Each of
these sources is limited: the paleontological record is incomplete
and often difficult to interpret, whereas inference about the past
dynamics of a system from its current state depends on having
suitable models. Given these limitations, it is not surprising that
macroevolution still lacks a unifying paradigmatic framework. Of
particular importance is the continuing debate about the relative
importance of intrinsic biotic effects vs. extrinsic physical/geo-
chemical factors (1).
Because of the bewildering complexity of biological systems,

stochastic minimal models have become very important. A defi-
nition of minimal in this context would disregard both endogenous
and exogenous effects; these models are neutral, providing no role
for fitness or selection, and they are homogeneous with respect
to speciation and extinction rates across species and over time.
Predictions of such models can be compared with the gross fea-
tures of a time series extracted from fossil data (2) or contempo-
rary patterns of taxonomic richness (3).
Although the assumptions of neutrality and homogeneity are

unrealistically strong, two considerations support the use of these
minimal stochastic models. First, such models fill the classical
negative role of the null hypothesis, namely to assess the need for
an alternative explanation. Thus, the abundance of a particular
species does not indicate its relative evolutionary success unless
the species abundance distribution differs significantly from the
outcome of a random birth–death process (4, 5). An interesting
example is the great variation in abundance observed among sur-
names in human populations, which presumably has nothing to do

with selective pressure against or for a certain last name but is the
outcome of a simple stochastic process (6, 7).
Second, some elements of a null model may be more realistic

than they seem at first glance. For example, although a species may
be driven to extinction by a superior competitor possessing a fa-
vorable genetic mutation, a deterministic description of this pro-
cess that assumes a fixed fitness for each species may be naïve.
Many events, including climate change, invasion of other species,
emergence of new pathogens, and favorable mutations, may
change the rules of the game and even reverse relative evolu-
tionary success. Deterministic processes, such as natural selection,
are thus immersed in noisy environments dominated by random
events. A fully stochastic model that neglects effects of selection
indeed provides a plausible description of reality, at least in its
broad outlines. Our aim here is to explore the implications of a
minimal model for macroevolution based on a stochastic speciation–
extinction–origination (SEO) process. The model’s predictions fit
many distributions of the number of species within genera as well
as other features associated with past dynamics of species evolu-
tion. Because the SEOmodel describes these data well, we suggest
that it might serve as a standard null model of diversification in the
first (negative) sense explained above.
Similar models have been developed in the past (8, 9) and ap-

plied recently to analyze taxonomically organized patterns of di-
versity (10). We compare these models and applications with our
model below. In addition, whereas previous species-within-genus
distributions (SGDs) were based on partial datasets, we have also
reconstructed SGDs from the largest datasets currently available
(http://www.sp2000.org/) (11), containing more than 1 million
species (details in SI Appendix).
Based on these datasets, we consider whether the neutral ho-

mogenous SEO model is a plausible or semiplausible description
of the evolutionary process. To this end, we use the correspon-
dence between the SGD and the SEO process as an inference
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technique, showing, for example, that the origination times
inferred for higher taxonomic groups match estimates based on
molecular inference and fossil data.
The fact that the SEO model not only closely fits SGDs but

also successfully infers diversification rates and origination times
reinforces the validity of the genus as a morphologically rec-
ognized level in the taxonomic hierarchy. Such is the case, even
though genera and species are subjective constructs of the tax-
onomists who describe species and infer their relationships. Thus,
the borders defining genera are unlikely to be consistent among
taxonomists or among taxonomic groups. However, unless taxo-
nomic distinctions differ substantially for larger vs. smaller genera
(e.g., a strong bias among taxonomists to making large genera
smaller and small genera larger), such inconsistencies between
taxonomists would only add to the underlying stochasticity of
SGDs. SI Appendix shows a simulated demonstration of this point.
A recent study showed a basic similarity between morphologically
defined and DNA sequence-defined genera (12). Moreover, be-
cause new genera may arise within existing genera, some level of
paraphyly is to be expected before lineages become sorted into
reciprocally monophyletic relationships.
Of course, too much noise would make it impossible to model

the system. However, there is no reason to assume that incon-
sistencies between taxonomists would have reached that threshold,
especially when dealing with classifications within large taxa (e.g.,
kingdoms and classes), which are the creations of many individuals
following diverse taxonomic muses over long periods. Individual
biases in such a large system will tend to cancel each other. Fur-
thermore, the fact that we are able to build a realistic model that
fits the data well, as we will show, lends support to the use of the
taxonomic system as a description of evolutionary diversification.
If the actual diversification process differed strongly from the
pattern suggested below, it is unlikely that the bias and the noise
associated with classification practices would lead to such nice
agreement between the theory and the data.
Even with the rise of modern phylogenetic analysis, the tradi-

tional taxonomic system is, in fact, still widely used. Thus, phylo-
genetic comparative studies regularly calculate features such as
species richness, morphological diversity, and functional diversity
for major lineages, which correspond to established taxonomic
groups (13–16). Our model can shed light on the underlying evolu-
tionary dynamics of this pervasive but poorly understood system.
Indeed, a taxonomy-based approach has certain advantages

compared with phylogenetic approaches. New genera reflect a
certain level of divergence from the traits of contemporary rela-
tives; the origin or multiple origins of new genera within a clade
can lead to paraphyly, multiple paraphyly, or even polyphyly of
a morphologically circumscribed genus. This fact is part of the
reality of evolution. Current molecular phylogenetic practices in-
sist onmonophyly of taxonomic entities, thereby artificially erasing
a part of the evolutionary history of a clade. The SEO model is
blind to monophyly and therefore, more faithful, in some respects,
to the processes of evolutionary diversification. Taxonomies in-
corporate phenotypic information in a sense that molecular phy-
logenetics does not.
In addition, attempts to interpret diversification frommolecular

phylogenies have been unsuccessful, particularly in the sense that
estimated rates of extinction are always minor compared with
speciation, which is in stark contrast to the fossil record (17).
Our SEO model is more consistent with the fossil record in es-
timating rates of extinction that approach rates of speciation.
Finally, although the taxonomic system may be flawed, modern
phylogenetics are also imperfect reflections of evolutionary his-
tory, particularly at the genus and species taxonomic levels, where
many nodes are poorly supported. Hence, a phenotypic-based
approach can contribute to our understanding of the dynamics
of evolution leading to the current biodiversity.

Previous models
One of the oldest questions of macroevolution concerns the long-
tailed distribution of the number of species within a genus. Many
genera are monotypic; few have large numbers of species. In
modern phylogenetic analysis, the same phenomenon manifests
itself as marked differences in the sizes of sister lineages in a
phylogenetic tree (18, 19). The question’s history starts with the
pioneering work of Yule (3).
Some explanations for the SGDs have followed pattern-ori-

ented approaches, such as in assuming that the SGD follows
a Poisson or geometric distribution (20). A more sophisticated,
process-oriented explanation was offered in the work by Nee et al.
(21), which suggested that various-sized clades could represent
random samples from a phylogenetic tree. The simultaneous
broken stick distribution (22) produced by random diversification
also has been applied to the SGD. Some of these models and
others (23–26) will be discussed below.
Most attempts to explain the SGD have been based on the

assumption that the observed distribution reflects an underlying
stochastic process. The original neutral model by Yule (3), for
example, includes a fixed rate of speciation λ (splitting) for all
evolutionary lineages. Moreover, a new species forms a new genus
with probability ν, which is also fixed, ensuring perfect neutrality
of both lineage and morphological diversification (which provide
the basis for defining new species and genera, respectively). For
any random process of this kind, one has to define the unit of
time, which in the case of the work by Yule (3), must be 1/λ (i.e.,
the typical speciation time). One cannot retrieve a numerical
value for this time from the SGD itself; λ simply sets the gener-
ation time of the process. For that reason, λ does not appear in the
SGD, and the Yule distribution is characterized by only one pa-
rameter, ν (3). This simple process generates a steady state dis-
tribution for nm (the number of genera with m species),

nm ¼ C  Bðm; 2þ νÞ; [1]

where Bðm; 2þ νÞ is the beta function (27) and C is a normali-
zation factor, such that the sum ∑m mnm gives the total number
of species. The tail of this distribution is described by the large m
asymptotics of the beta function, which is a simple power function
(the convergence to this asymptotic expression is very fast in the
relevant parameter regime) (SI Appendix):

nm ∼  m−ð2þνÞ  m> 1: [2]

Some features of the process by Yule (3) and its corresponding
SGD are noteworthy. First, as mentioned above, the Yule process
is neutral (3), in the sense that the speciation rate is the same for
all species and all times. Similarly, the chance of a new species to
be the first member of a new genus is constant for any speciation
event. Second, the distributions (Eq. 1 and expression 2) are not
equilibrium distributions: as the number of species grows expo-
nentially with time, so does, say, the number of genera with m
species. However, if λ is the speciation rate, the actual number of
species within a genus after a long time follows a deterministic
behavior [i.e.,mðtÞ ¼ mðt ¼ t0Þ · exp

�½λ− ν�ðt− t0Þ
�
]. Therefore, nm

normalized by the total number of genera (which is the probability
of having a genus of a specific size) is an equilibrium distribution.
The distribution suggested by Yule (3) [and other works that

assumed strict power law statistics (25, 26)] generally fits ob-
served data poorly, deviating meaningfully from the data (see
below and SI Appendix for additional analyses), which can be
seen in Fig. 1 for the SGD for the kingdom Animalia (11),
and the best fit of the Yule function obtained by the least
squares method.
In Fig. 1, Inset, we present the ratio between the data and the

fit of each point. Such a plot is needed to understand whether the
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deviations of the data from the model are caused by random
noise (in which case the ratio should be distributed homoge-
nously around one) or a systematic deviation between the model
and the data (in which case there would be a trend of the ratio).
The latter scenario, which is the case for the model by Yule (3),
implies that the model describes the data poorly.
The problematic fit reflects the property of Yule’s expression

(Eq. 1) that, for m > 2, the distribution quickly converges to the
asymptotic power law (expression 2 and SI Appendix) (3). Thus,
when plotted on a log–log scale, the SGD should decrease linearly
as m increases. Accordingly, the black line in Fig. 1 (which cor-
responds to Yule’s prediction) is quite straight on a log–log scale,
as expected, and the bending at values of m ≤ 20 is almost in-
visible. In contrast, the actual data (blue circles), although linear for
largem, exhibit a pronounced shoulder for small values ofm, which
is below the extrapolation of the large m straight line behavior.
Many empirical SGDs for different-sized taxa show the same

type of bending at intermediate values of m (see below), which
implies that Yule’s theory is incomplete. Some modern versions of
Yule’s theory [like the version in the work by Scotland and
Sanderson (28)] gave up the homogeneity assumption, but the
resulting fits to empirical data suffer from similar problems.
Our aim here is to extend Yule’s model (3), while keeping its

two main features: neutrality (all species have the same speciation
rate and the same chance of forming a new genus on speciation)
and homogeneity (rates are fixed in time). We suggest, in accord
with the work by Patzkowsky (8), that Yule’s approach falls

short, not because of its neutrality or homogeneity assumptions
but rather, because it neglects extinction. In Yule’s model, the
number of species is always growing, and existing species never go
extinct. We will explain how extinction affects the qualitative
features of the SGD statistics.

SEO Model
Although all species eventually go extinct, one might suppose that
a speciation-only theory should work. Let us again assume speci-
ation at rate λ and extinction at rate μ. As long as λ > μ (as sug-
gested by the long-term average of branching rates estimated from
available data) (29), the net diversification rate γ = λ − μ is pos-
itive. Given that γ determines the rate of increase in the number
of species within a genus, the size of an extant genus has been
growing on average. One can imagine that a speciation-only model
with γ as the speciation ratemight yield the same results as amodel
with both extinction and speciation but having the same net di-
versification rate γ. If, within 1My, we have three speciation events
and two extinctions on average, why can we not use a theory with
one speciation per 1 My instead?
The answer has to do with the importance of fluctuations in this

type of stochastic process, particularly in the presence of an ab-
sorbing state. Although the size of a genus increases on average,
a given genus may also disappear because of random extinction
events. After extinction, a genus cannot recover. Accordingly, the
ratio between the numbers of genera in the larger genus size
classes will satisfy the prediction of Yule’s theory (3), because with
a positive diversification rate, they rarely go extinct; thus, the net
growth rate approach works. For small genera, however, fluctua-
tion-induced extinctions of a genus are relatively frequent, and one
can notice a substantial underrepresentation of small genera with
respect to the ratio suggested in Eq. 1. As can be seen in Fig. 1, the
right tail of the distribution indeed follows a power law, but with
respect to this power law, there is a pronounced underrepresen-
tation of small genera that characterizes most SGDs.
The importance of extinction events and their role in shaping

macroevolutionary patterns were already pointed out in the works
by Aldous et al. (30, 31), which considered many features of the
tree of life using a model that includes, as our model does, spe-
ciation, extinction, and origination of new genera. Aldous et al.
(30, 31) assumed, however, that the overall diversification rate is
zero, and therefore, on average, the number of lineages is kept
fixed along the tree of life. The increase in the number of species
with time appears only through the boundary conditions [i.e.,
Aldous et al. (30, 31) considered the set of γ = 0 processes con-
ditioned on the number of species at present].
We suggest that the increase in the number of taxa through time

is not a coincidence but that it reflects the fact that the di-
versification rate of extant clades has been positive. We also have
to condition our process on the number of species at present, but
the underlying dynamics are different; accordingly, the SGD has
a totally different form. In particular, the real SGD statistics
may admit a power law tail, and therefore, the chance of finding
a huge genus is small but not negligibly small. As we shall show
below, this result emerges naturally for γ > 0 processes, as is the
case for most of the groups that we analyzed. In the model by
Aldous et al. (30, 31) [also in a similar case considered recently
by Foote (10)], the number of species within a genus is decreasing
on average, because some of the speciation events lead to the
origination of a new genus and do not contribute to the growth
of the genus from which they emerged. For these models, there
is a natural cutoff for the size of a genus, which is in contrast with
most of the empirical datasets analyzed.
We assume that the current distribution of genus sizes within

a clade (i.e., the existing species descending from a common an-
cestor) results from a neutral and homogenous stochastic process
that includes speciation, extinction, and origination of new genera.
In the SEO process, any species may produce an offspring lineage
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Fig. 1. The SGD statistics for the kingdom Animalia. The graph shows the
number (n) of genera with m species on a double logarithmic scale (Pareto
plot) with logarithmic binning (SI Appendix). The solid black line is the best
fit of Yule’s model (Eq. 1) to the data, for which ν = 0.2 (3). This value was
obtained by a least squares fit (distance has been measured in logarithmic
units), where ν is a free parameter. The solid red line is the best fit of the SEO
model (Eq. 4), with a diversification (speciation minus extinction) rate of γ =
0.063 ± 0.0032 and the probability of origination of a new genus (on spe-
ciation) of ν = 0.026 ± 0.001. The confidence intervals were obtained from
a parametric bootstrap (more details in SI Appendix). A nonparametric
bootstrap leads to confidence intervals about one-half the size. The slight
deviations for m = 1 reflect the inadequacy of the continuous theory in this
regime as explained in the text. Using Monte Carlo simulations, we can get
estimates for the case m = 1 (Table 2). In the inset, we present the ratio
between the observed statistics and the models’ predictions as a way to
assess the models’ validity. A valid model should present a random distri-
bution of the ratios around one, whereas an invalid model will present
a trend. Yule (3) was aware of this problem and added two more parameters
that improved the fit to the data, but these parameters obscured the un-
derlying process. A discussion of this topic is in SI Appendix.

E2462 | www.pnas.org/cgi/doi/10.1073/pnas.1220014110 Maruvka et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220014110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220014110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220014110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220014110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1220014110


at rate λ or go extinct at rate μ, resulting in a diversification rate
γ = λ − μ. In principle, the diversification rate may be either
positive or negative, but clades with negative γ must disappear
eventually. The rate may be defined with any unit of time, but
the most natural unit is the average species lifetime. Accord-
ingly, the extinction rate μ is fixed at one, and the speciation
rate and genus origination rate are quantified as multiples of the
extinction rate. Thus, although the SEO model is composed of
three events, as a mathematical model of the SGD, it has only
two free parameters—the diversification and origination rates.
On speciation, the newly emerging species may either be similar

to its parent, in which case it will belong to the same genus, or
differ substantially, thus becoming the first member of a new ge-
nus, with probability ν (0 < ν ≤ 1). Note that each of the new
species can become a new genus, and thus, ν is a fraction of λ—the
total rate of appearance of new species—and not γ, the net in-
crease in number of species. Note that our model does not require
that genera and other clades be monophyletic, because new genera
can emerge from a branch of an existing genus, and it is likely
that only young genera will be monophyletic. In one example that
we analyzed below (32), we have observed this phenomenon.
The continuum approximation of the SEO process is given by

the following equation (6, 7, 33) (SI Appendix has a description
of the derivation):

∂nðmÞ
∂t

¼ ðγ − νÞ ∂
∂m

½m ·nðmÞ� þ ∂2

∂m2 ½m ·nðmÞ�; [3]

where n(m) is the number of genera of size m. Here, m (the
number of species) and n(m) are regarded as continuous varia-
bles and not as integers, because the derivation of Eq. 3 neglects
the discrete character of m, following a standard procedure to
describe a stochastic process by means of a Fokker–Plank equa-
tion (34). This approximation fails only for very small m values,
typically for m = 1 and m = 2 (35, 36). Accordingly, to compare
the number of monotypes (m = 1) with the empirical data, we
use numerical techniques as explained below.
The steady state solution of Eq. 3 takes two forms: one for γ > ν

and one for γ < ν [both given in terms of the Kummer function
Uða; b; cÞ] (27). The qualitative difference between the two re-
gimes is that, when species split more frequently than new genera
originate, the number of species per genus increases on average.
When the diversification rate is smaller than the genus origination
rate, the size of a genus shrinks on average, and thus, one does not
expect to find extremely large genera. When the system reaches
a steady state, if γ > ν, the large m asymptotic is a power law:

nðmÞ ¼ ρRcΓð2þ ρÞ
m

U
�
1þ ρ; 0;

Rcm
N

�
; ∼m>> 1m−

�
1þ γ

γ−ν

�
; [4]

where ρ≡ ν=ðγ − νÞ, Rc ≡ Nðγ − νÞ, and N is the current popula-
tion size (number of species observed today). For γ < ν, the SEO
dynamics support a truncated power law distribution (i.e., the
probability of very large genera is exponentially small; here,
ρ≡ γ=ν− γ):

nðmÞ ¼ RcΓð1þ ρÞ
m

U
�
1þ ρ; 0;

Rcm
N

�
e−Rcm=N; ∼m>> 1m−ð1þρÞe−mðν−γÞ:

[5]

In the following section, we will see that, for most of the em-
pirically observed SGDs, it seems that the average growth rate of
a genus is slightly larger than zero (i.e., that γ > ν). This finding is in
contrast with the model suggested in the works by Chu and Adami
(23) and Adami and Chu (24), where all taxa are extinction prone
(i.e., the average number of daughter species that belong to the
same genus is smaller than one). If this result were the case, one

would expect an exponential cutoff of n(m) for large m, which is
not the case for most of the taxonomic levels analyzed below.
Our model was previously introduced by Patzkowsky (8).

However, he did not present an analytic solution, which we have
just done, but limited model development to a recursion expres-
sion for the SGD that can be used to obtain a numerical solution.
The advantage of analytic solutions is that they enable a general
understanding of the shape of the SGD distribution for all cases
and not just for those cases that were solved numerically. For
example, only with the analytical solution can one observe that the
two regimes present a qualitatively different behavior of the large
genera (Eqs. 4 and 5).
Moreover, Patzkowsky (8) did not compare his model with SGD

data, which we do below, but rather, he compared the average
genus size as a function of time with paleontological data. Prze-
worski and Wall (9) applied the model by Patzkowsky to the SGD
of real datasets but only used the size of the largest genus and the
number of monotypes (i.e., genera of size one) rather than the
whole distribution. This choice is problematic, because these two
quantities are the noisiest parts of the SGD distribution and thus,
do not permit a fine-tuned comparison of the model with the data.
Therefore, Przeworski and Wall incorrectly claimed that the
model cannot differentiate between dissimilar sets of parameters,
believing that all sets of parameters will produce the same results.
We show that the model can, indeed, differentiate between dis-
similar sets of parameters, and thus, the speciation and origination
rates can be inferred from the data. Because of what they per-
ceived to be a limitation, Przeworski and Wall used a specific set
of parameters to test different growth models (e.g., exponential
growth vs. logistic growth) and concluded that exponential growth
better described the observed monotypic and largest genus dis-
tributions, although arriving at this conclusion on the basis of a
single set of parameters is questionable (9).
Reed and Hughes (37) suggested a similar model but assumed

that the origination rate is homogeneous across genera, regard-
less of the number of species. This assumption seems doubtful,
because new genera can originate from each of the species. Fi-
nally, Foote (10) recently used the model by Patzkowsky (8) to
test whether two groups of mollusks had different rates of genus
origination and showed that estimates of parameters for the two
groups based on the SGD did, indeed, match rate estimates
derived from paleontological data.

SEO Predictions. The SGD statistics of the kingdom Animalia (11)
are fit very well by Eq. 4 (Fig. 1, red solid line). The fitting was done
by the least squares method, where we ascribe equal weight to
small and large genera. The fit can be improved by taking into
account the difference in the variance between small, medium,
and large genera (the medium size has the smallest variance);
however, we do not have a formula for the second moment, and
thus, we assumed equal weights. The superiority of the SEOmodel
over the Yule model (3) can be quantified in a few ways (more
details in SI Appendix). First, the R2 of the SEO model is 0.997,
whereas it is 0.93 for Yule’s model. The relatively high R2 of the
Yule model should not be misleading, because such a smooth
curve of the data is expected to have a high R2. The F statistic test
can measure the improvement in the SEO model over the Yule
model, taking into account the fact that the SEO model has one
additional free parameter. The P value of the difference between
the two datasets is 1.5e-11, which is very low, showing that the
improvement is real and not random.
Another measure of superiority of the SEO model over the

Yule model is the (unsigned) area between the curve of the data
and the curve of the fit (the lower the better). In the Yule model,
it is 3.89, and in the SEO model, it is 0.024. A third measure is
the ratio between the data and the fit for each of the two models
(shown in Fig. 1, Inset). Whereas for the SEO model, the devi-
ations are uniformly distributed around one, the Yule model
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exhibits a systematic deviation of the ratio (38). Such a trend shows
that, even if the R2 of the fit is close to unity, the model does not
capture the true behavior of the data. In addition, the largest
magnitude of the deviations for the Yule model is about 250%,
whereas it is only 40% for the SEO model.
Fig. 2 presents a similar graph for the kingdom Plantae and

the class Aves (binned with a fixed number of genera per bin) (SI
Appendix). Again, the SEO model captures the entire dataset,
including the small to intermediate m behavior.
The SGD is one prediction of the SEO model, with the ad-

vantage that a large amount of data of this type can be collected
relatively easily, but other predictions of the SEO model that re-
late to the phylogenetic tree of species can be tested as well. For
example, an assumption of the SEO model is that, on average, the
size of a genus grows exponentially with its age, and thus, there
should be a positive correlation between genus age and size. An-
other prediction is that the distribution of genus origination times
(measured backward) should be left-skewed because of the fact
that the number of new genera originating every generation is
proportional to the number of species, which grows with time. It is
difficult to collect data for these quantities, which would enable
a precise fitting of the model to the data. However, it is still
possible to test the general behavior of the limited available data
for a basic qualitative agreement between the model’s predictions
and the data.
The sizes of taxonomic groups and their ages have been shown

to be positively correlated in some analyses (39, 40) and unrelated
in others (41). However, for our purposes, it is important to test
the relationship between age and diversity at the low level of
genera. As far as we know, no wide-scale analysis of such a re-
lationship has been undertaken, and conducting such an analysis is
outside the scope of this article. However, we analyzed the genera
of one family to test the age skewedness, and in that context, we
also analyzed the age–diversity correlation.
To this end, we used the phylogenetic tree of the Furnariidae

family of suboscine passerine birds constructed byDerryberry et al.
(32). We chose this family, because it is a relatively large group
with an existing phylogenetic tree of virtually all species. Using this
tree, we obtained the crown age of each genus (the age of the most
recent common ancestor of all of the species; see below) and its
size. Fig. 3 presents the size of each genus vs. its age (not including
monotypes because of the inability to determine their age). Al-
though the process is noisy, the growth of the genus size with age is

still clearly seen (the data for Fig. 3 are given in SI Appendix, Table
S2), and the slope of size vs. age is 0.099 (0–0.2) per species gen-
eration, which is similar to the exponential growth rate of the
number of species of passerine birds.
Furthermore, as expected from the SEOmodel, the skew of the

ages of the 38 genera in the Furnariidae family is indeed positive:
1.95 (which is about five times larger than the SE of the skew at 0.4;
i.e., P < 10e-6). This strong bias can also be seen in Fig. 3. To test
whether this strength of skew is expected under the SEO model,
we simulated 1,000 realizations with the parameters of the Fur-
nariidae family: n = 247, λ = 0.10, and ν = 0.12. The age skew of
genera within the Furnariidae was inside the 95% confidence in-
terval of the simulations. Finer measures, like the mode, are
harder to estimate given the small number of genera.

Inference from the SEO Model. The fit of the SEO model to an
observed SGD generates estimates of past demographic parame-
ters. These parameters may be compared with estimates from
other methods to assess the realism of the SEO model. For ex-
ample, in Fig. 2, we consider genera within the class Aves. The
fitted value for the average rate of diversification can be used to
estimate the time of origin of birds, which is consistent with esti-
mates based on paleontological and molecular data.
It should be noted that, in the framework of the SEOmodel, the

time of origin of a taxonomic group is the time when the first
species of this group appeared. This time may be older than both
the crown age (the age of the most recent common ancestor of all
existing species) and the age of the oldest fossil. Nevertheless,
estimates of the origination times of major taxa have sufficient
uncertainty that we would not expect more than a general corre-
spondence to estimates derived from the SEO model.
With a fixed exponential growth rate, we can estimate the time

of the most recent common ancestor of modern birds from the
total number of bird species (N) and the diversification rate, which
would be T = ln(N)/γ = 114 (97–138) generations ago. Assuming
that a generation (a species duration) is between 1.4 and 2.8 My
(42), we derive T = 239 My (95% confidence interval = 386–135;
we multiply the expectation by 2.1 My, the lower boundary by 1.4
My, and the upper boundary by 2.8 My), which brackets the ear-
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Fig. 2. SGD statistics for the kingdom Plantae (blue dots) and Aves class
(open squares) compared with the fitted SEO model for (Upper Right Inset)
the Plantae (diversification rate of γ = 0.055 ± 0.005 and origination prob-
ability of ν = 0.017 ± 0.0012) and (Lower Left Inset) the Aves (diversification
rate of γ = 0.08 ± 0.021 and origination probability of ν = 0.089 ± 0.010).
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Fig. 3. The correlation between the age of a genus and its size is presented.
The x axis is the crown age of a genus as estimated in the work by Derryberry
et al. (32). The y axis is the log (base e) of the size of the genus. The red line is
the linear fit of the data that corresponds to exponential growth. The result
is consistent with the SEO model that predicts an exponential growth. The
slope of the linear fit is 0.047 (0–0.095) per million years. Assuming a species
generation time of 2.1 My, the slope is 0.099 (0–0.2), which is similar to the
result that we get below for the passerine birds.
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liest appearance of avian ancestors in the fossil record (43). When
species can become extinct, an unbiased estimate of T can be ob-
tained by accounting explicitly for the rates of speciation (λ = γ +
1) and extinction (μ = 1 in this analysis). The equation describing
this process (42) is n = (λ·exp[γt] − 1)/γ, which can be rewritten
as T = ln([γN + 1]/λ)/γ . In this case, λ = 1.08, μ= 1, n = 9,913,
and t = 82.5 species lifespans, which translates into 172 My
assuming a generation time of 2.1 My.
Estimates of the times of origin based on the SEOmodel fits for

other classes of plants and animals based on ref. 42 show a similar
reasonable correspondence (Table 1). It is important to emphasize
that our model’s time unit is the abstract quantity of generation
time (i.e., the typical time until the extinction of a species for each
group). This quantity may vary substantially between taxonomic
groups. For example, the life expectancy of individuals will affect
the extinction rate of the species. Thus, we could not easily convert
generation units to millions of years, which needs to be done to
allow a comparison with estimates from other sources. Because
the generation time of passerine birds has been estimated, we
simply took this number and applied it to all of the taxonomic
groups to allow a conversion to millions of years, although this
translation is, of course, imprecise. Accordingly, we only expect
a general correspondence comparing our method’s results with
estimates from other sources.
In some of the cases, there is a surprisingly good match between

our estimates and molecular or fossil estimates for the origination
time. Other than the estimate for Diplopoda, which is substantially
off, all of the others differ at most by a factor of two from mo-
lecular and fossil estimates, which is notable given the imprecise
conversion method described above, and it further supports the
model’s plausibility.
An interesting point emerging from Table 1 is that the di-

versification rates are low relative to the rate of extinction. The

diversification rate γ is based on a generation timescale (i.e.,
μ = 1). Thus, λ (the speciation rate) is simply 1 + γ on the same
timescale, and the ratio of extinction to speciation is 1/(1 + γ).
Because γ tends to be relatively low (Table 1, 0.04–0.23), the
ratio of extinction to speciation is high (ca. 80–95%), which is
what one would expect if the number of species in some of these
taxa has been more or less steady over long periods.
Other predictions of the SEO model can be compared with the

observed data, particularly the number of monotypic genera and
the relative size of the largest genus, which was attempted in refs. 9
and 28. These values are estimated from the fitted values of γ and
ν for several large classes of animals and plants and compared
with observed data in Table 2. Because the SEO continuum limit
does not hold for genera of size one, we obtained predicted numbers
of monotypic genera using simulations of 1,000 replicates of the
SEO process with the estimated parameters and observed number
of species (a detailed description of the simulation procedure as
well as an explanation of the special treatment of the largest genus
is in SI Appendix). The confidence intervals were obtained from
the SD of these simulations. One can see that, in general, the
expectations of the model for both the number of monotypes and
the size of the dominant genus are of the order of the real data.
We additionally compared the growth rate of the Aves class

predicted by our model with the rate deduced from the phyloge-
netic tree of the suboscine passerine birds in South America (44):
γ=0.07–0.14 perMy. Translating our prediction from generations
to millions of years, we get γ = 0.0571 [0.0964–0.0375; assuming
a mean generation of 2.1 My (1.4 My for the high diversification
rate and 2.8 My for the low diversification rate)]. Thus, the esti-
mates are similar. We furthermore compared the origination rate
of genera of the class Aves (given in Table 1) with the origination
rate that we derived from the phylogenetic tree of the Furnariidae
family of the Aves class (38) (details for this derivation are in

Table 1. Diversification rate and the appearance time for different classes

Name
Size (no. of
species)

Diversification rate γ (± SD) and
origination rate ν (± SD)

Generations since
origination

Estimated time to
origination T (My)

Independent estimate
of T (My)

Arachnida 55,147 γ = 0.055 ± 0.0064 144 (131–161) 302 (183–450) 420
ν = 0.0359 ± 0.0023

Magnoliopsida
(Angiospermopsida)

87,281 γ = 0.051 ± 0.0058 163 (148–182) 342 (207–509) 228
ν = 0.015 ± 0.0012

Insecta 661,370 γ = 0.037 ± 0.0019 272 (260–285) 571 (364–798) 420
ν = 0.0185 ± 0.0006

Diplopoda 9,907 γ = 0.23 ± 0.0348 32 (28–37) 67 (39–103) 420
ν = 0.10 ± 0.012

Aves 9,913 γ = 0.08 ± 0.021 82 (67–107) 172 (93–299) 130
ν = 0.089 ± 0.010

Passerine birds (order) 6,198 γ = 0.12 ± 0.015 54 (48–60) 113 (67–168) 82
ν = 0.14 ± 0.013

Malacostraca 18,419 γ = 0.086 ± 0.0115 84 (76–95) 176 (106–266) 510
ν = 0.068 ± 0.0054

Maxillopoda 4,963 γ = 0.06 ± 0.0096 94 (83–108) 197 (116–302) 500
ν = 0.074 ± 0.0146

Amphibia 5,753 γ = 0.051 ± 0.0118 110 (93–137) 231 (130–383) 315
ν = 0.032 ± 0.0042

Mammalia 4,832 γ = 0.15 ± 0.0176 42 (39–47) 88 (54–131) 120
ν = 0.118 ± 0.019

The SGD of each class has been fitted (Fig. 2 shows an example) using the SEO model to yield the diversification rate γ (column 3). From the total number of
species in the class (column 2) and the diversification rate, one may extract the number of generations since the first appearance of this class (column 4). To
translate generations to time, we took a single generation (typical time to extinction) as 2.1 (1.4–2.8) My as presented in column 5. This result of the SEO
model should be compared with other independent estimates based on either fossil data or genetic analysis (column 6). In most cases, the SEO-based
estimates are close to the results from independent sources. Note that the definition of generation time is quite arbitrary and may vary among classes,
which may explain some mismatch with the fossil data. The factor-of-two differences for Malacostraca and Maxillopoda may be related to incomplete data
about the number of species. For Diplopoda, the estimates are inconsistent; they may reflect an inadequacy of our demographic model in this case or an
underestimation for the generation time of diplopod species. The Mammal class is dominated by the placentals (4,600 of 4,832 species), and therefore, the
appropriate time is given for the placentals. The references to independent estimates of T are given in SI Appendix, Table S3.
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SI Appendix). The estimated ν-value for the Furnariidae family
is 0.096 (0.038–0.3) per speciation event [assuming a generation
time of 2.1 My for the mean (1.4 My for the lower bound and
2.8 My for the upper bound)], which is similar to the value of
the Aves class generally from the SEO model (0.08 ± 0.021).

Model Differentiation. Both the Yule (3) and SEO models assume
that the overall number of species grows exponentially and that the
diversification rate is homogenous in time. This assumption con-
tradicts a common understanding in the field, namely that the
number of species within a taxon initially grows exponentially (the
adaptive radiation phase) and then levels off when ecological
space has been filled (21, 45–51). In the latter saturation phase,
turnover of species may occur, but on average, the number of
extinctions balances the number of species origination events.
When one assumes a model and infers parameters by fitting the

model to data, one will always produce estimates for the model,
regardless of whether themodel fits the data well. Accordingly, it is
important to test the performance of a model against data that
result from processes that violate the assumptions of the model.
Therefore, we estimated SEO models for SGDs produced by nu-
merical simulations from alternative processes, particularly the
imposition of an upper limit to clade size after a period of expo-
nential growth.
Fig. 4 sets the framework for the discussion below. It shows the

log of the number of species vs. time in two different scenarios:
(i) initial, almost exponential growth (more precisely, it has not
been bounded yet) and (ii) constrained growth (in this case,
modeled as a logistic equation):

_NðtÞ ¼ γ  NðtÞ
�
1−

NðtÞ
K

�
;

where NðtÞ is the number of species, γ is the initial diversification
rate, and K is the maximal number of species in the taxonomic
group, which reflects, roughly, the number of different ecological
niches. Early in the diversification of a clade (stage 1), exponential
and logistic processes are almost identical, because the finite car-
rying capacity of the logistic model has little effect at low densities.
In stage 2, the growth rate of the number of species in the logistic
system starts declining, and in stage 3, it approaches zero. Note
that stage 3 is a special case of an unbounded exponential growth
with γ ¼ 0.
The difference between the two growth patterns should mani-

fest itself in the intermediate stage (2), where NðtÞ approaches
K and the growth rate is slowing rapidly. Under this circumstance,
the SEO assumption of a fixed diversification rate is not valid, and
Eq. 4 should not be an accurate description of the system in
that stage.

Examples for the SGDs of each of the stages are presented in
Figs. 5, 6, and 7. Here, the results of simulations of a logistic
growth process (γ ¼ 0:1; K ¼ 106; and ν ¼ 0:3) are compared
with the best fit to the unbounded growth formula in Eqs. 4 and 5
(if γ ¼ 0, clearly ν> γ). During the first and third stages, the in-
ference works well; the SGDs are fitted closely, and the underlying
parameters of the model are recovered. In contrast, for the sta-
tistics collected during the second stage, the deviations are large
(up to 100%) (Fig. 7, Inset) and exhibit a systematic trend. Thus, it
is clear that, during this stage, the SEO process fails to fit the data.
Because the distribution evolves with time according to Eq. 3, it
takes some time for the SGD to reflect the reduced growth rate as
the number of genera approaches the asymptote. For this reason,
the SGD that corresponds to a particular stage appears after some
time lag after the onset of that stage. For example, the second
stage distribution shown in Fig. 6 was measured 30 generations
after saturation [saturation is defined, quite arbitrarily, at N(t) =
0.95K]; that amount of time was insufficient to attain a zero growth
SGD, which became established more than 100 generations after
saturation (Fig. 6). In contrast to this behavior, the convergence to
the steady state of exponential diversifications when starting from
a single species is relatively short—only a few generations.

Table 2. The observed number of monotypic genera and the number of species in the largest
genus for different classes of animals and plants

Class

Monotypes Dominant

Data Model Data Model

Arachnida 1,752 2,060 ± 50 638 880 ± 370
Magnoliopsida (Angiospermopsida) 1,630 1,350 ± 38 6,606 9,885 ± 3,900
Insecta 19,477 13,580 ± 150 3,549 8,749 ± 3,900
Diplopoda 1,222 1,070 ± 53 325 515 ± 240
Aves 887 930 ± 35 80 120 ± 35
Malacostraca 1,326 1,320 ± 43 291 300 ± 115
Maxillopoda 396 360 ± 20 67 120 ± 37
Amphibia 129 170 ± 15 704 390 ± 170
Mammalia 525 705 ± 30 172 85 ± 30

These numbers are compared with the predictions of the SEO theory given the parameters γ and ν retrieved
from the best fits of the SGD curve. The errors given reflect 1 SD about the mean of the simulated values.
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The goodness of fit that we illustrated schematically before can
be quantified by using the sum of squared deviations (SS) between
the data and the theory. For each of the three stages that we fitted,
we simulated 1,000 replicates under the assumption of pure ex-
ponential growth with the parameters of the best fit.We fitted these
new replicates to the SEOmodel and determined the SS of each of
the 1,000 replicates. This procedure gives us the distribution of the
SS for each of the stages. By comparing the SS obtained for the
logistic growth with the distribution of the SS, we can estimate how
likely it is to obtain such deviations. As expected for stages 1 and 3,
the SS was smaller than 95% of the replicates, whereas for stage 2,
the SS was larger than 95% of them. Thus, our model cannot ac-
curately describe the logistic growth in the transition phase.
A similar test was done for a model where, instead of a logistic

growth, the growth rate declines like a power law g= g0/t
α as in ref.

21. In this model, the SS in all of the cases was similar to the SS
obtained from a pure exponential growth. This result implies that
our model is sensitive only to large deviations from the models’
assumption, whereas more subtle deviations cannot be detected.
We tested the SEO model for all taxonomic groups of the rank

of order and higher that have at least 500 species and 100 genera.
From 151 such groups, the SEOmodel was not rejected for 130 of
them, which is more than expected at random. These data are
presented in SI Appendix. It is important to emphasize that the fact
that the sum of squared deviations is smaller than 95% of the SEO
cases does not tell us what is the true model describing the data,
because it could be exponential growth but also another similar
growth model.
Thus far in this section, we analyzed the sensitivity of our model

to changes in its assumption of time homogeneity. Another aspect
of applying a model to a system is to test its robustness to changes
in its assumptions. Both aspects are important, because although
we want our model to be sensitive to meaningful deviations from
its assumptions, we do not want it to be sensitive to minor devia-
tions. Finally, we test the robustness of our model to such minor
deviations by using data produced from a population with a non-
homogeneous diversification rate and testing whether we can de-
termine its parameter averages by fitting the SEO model.

Sensitivity of the SEO Model. It is highly improbable that the rates
of diversification and origination should be homogeneous over
time, and therefore, the SEO model is plausible only if its results
are robust against weak perturbations. Accordingly, we repeated
the simulation of the evolutionary process three times with the
following different types of randomness in the parameters: (i)
the diversification rate jumps, at random times, between low
and high values (dichotomous noise); (ii) at each time step, the
rates γ and ν are picked at random from a normal distribution
(Gaussian noise); and (iii) at each time step, the rates are picked
at random from an exponential distribution (exponential noise).
As expected, the emergent SGD distributions are noisier, but
the inferred parameters are, in all three cases, more or less the
time averages of the diversification and the origination rates.
The exact procedure used to obtain these results is given in
SI Appendix.
Noise in the origination rate can also be caused by the alternate

classifications of different taxonomists. The fact that noise in the
origination rate does not eliminate the ability to infer on average,
the growth rate and the diversification rate but rather, enlarges
the error range, shows that our model is robust to the subjectivity
of the classification process.

Discussion
The SEO model presented here can describe observed SGD dis-
tributions of higher taxonomic groups, and it thereby constitutes
an interesting null alternative in the negative sense, which we
explained in the Introduction.We have also attempted to establish
the SEO model as a plausible description of the real macroevo-
lutionary process. If it is, the fit of the model parameters to the
observed SGD would allow one to infer both the diversification
rate γ and the probability of origination of a new genus per spe-
ciation event ν. The origination parameter ν, thus, represents the
probability that a new species (i.e., producing the contemporary
descendants of a new evolutionary lineage) is phenotypically suf-
ficiently distinct to be given a new generic epithet.
As mentioned, although the model had been previously de-

scribed and applied in a limited fashion, we have undertaken a
wide-scale analysis of SGDs across many taxonomic groups.
Furthermore, we compared multiple predictions of the model
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Fig. 5. The SGD of a logistic growth process during its first (exponential)
stage. The SGD statistics were collected from the simulation when the
number of species had reached 105 (i.e., one-tenth of the carrying capacity
K). The red line corresponds to Eq. 4 with the best fit parameters γ ¼ 0:097
and ν ¼ 0:034, which closely approximate the underlying values of the sim-
ulated process. In the inset, we present the ratio between the observed
statistics and the model’s predictions, as was done in the inset of Fig. 1.
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Fig. 6. Same as Fig. 5 for stage 3. Here, the system was sampled 100 gen-
erations after saturation had been reached. The inferred parameters are γ =
0.001 (very close to zero) and ν = 0.039. Note that ν > γ, and therefore, Eq. 5was
used to fit the simulated data. In the inset, we present the ratio between the
observed statistics and themodel’s predictions, aswas done in the inset of Fig. 1.
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with estimates based on other sources to establish the model’s
realism. We further tested the robustness of the model to iden-
tify which taxonomic groups it can describe. An interesting con-
clusion that we deduced is the low diversification rate of almost
all of the taxonomic groups tested, consistent with a high turn-
over rate of species, which was not evident in previous works (17,
52, 53).
Our model assumes both an exponential growth and an origi-

nation rate that are constant in time and also uniform among
different genera. These homogenous assumptions have been
shown to be invalid for most groups tested (54). In addition, we
assumed that there is no limit to the exponential growth, which
obviously cannot be sustained forever.
Regarding the lack of a limit, a more reasonable model is one of

adaptive radiation, where after a growth period, the number of
species plateaus. Such a limit to species richness is probably the
case for lower taxonomic levels, where the SGD distributions do
not always follow our SEO model (e.g., the SGD of the Nym-
phalidae family in SI Appendix, Fig. S8), which probably reflects
the decrease in the diversification rate as the number of species
approaches saturation. In addition, in some cases, the estimated
growth rates are extremely small, reflecting that the system is al-
ready in the saturation region (more details in SI Appendix).
However, at higher taxonomic levels, exponential growth might
continue, because even if one family saturates, others may con-
tinue growing; therefore, new families may emerge, creating
growth of the clade as a whole. Thus, our model, which assumes
exponential growth, can describe the behavior of the species dy-
namic of high taxonomic groups that are not yet in a saturation

regime. Regarding constant growth rates, although, for example,
a constant diversification rate through time is clearly unrealistic,
the SEO model can still be plausible as an estimation of the av-
erage diversification at the broad class level. Furthermore, as we
showed, our model can discriminate only between models that are
substantially different from the pure exponential growth, such as
a logistic model that is in the transition between the exponential
growth and saturation phases. Models that do not differ signifi-
cantly, such as a gradual decline in the diversification rate or ran-
domness in the diversification rate, cannot be ruled out by the SGD
data. Thus, the SEO model at a minimum has value in its ability to
discriminate between substantially different models of growth.
An interesting direction to extend the SEO model would be to

develop a multihierarchy model that combines the origination,
speciation, and extinction of higher taxonomic levels. For exam-
ple, it may include species, genera, and families simultaneously. A
more limited extended model would describe the dynamics of
species within families or genera within families, etc. Although
such an extension is worth pursuing, its success cannot be taken for
granted based on the success of the SEO model for the SGD.
Phyla, for example, clearly do not follow such amodel, because the
time of the appearance of almost all of them is similar. Such an
extension deserves its own treatment in another work.
Rather than deal with the mean number of genera of a given

size, another interesting direction to extend the model would be
to obtain a full probability function for the species distribution
(i.e., what is the probability of having a specific combination of
genus sizes; e.g., n1 = 103, n2 = 91, n3 = 74, etc.). Such a formula
was obtained by Ewens (55) for the special case of a fixed pop-
ulation. Such a function can be used to obtain estimates by the
maximum likelihood approach instead of a simple fitting. The
maximum likelihood approach can take into account more in-
formation than the continuum approximation of the mean that
we used here. Also, it may enable us to obtain estimates when
using smaller numbers of species. However, obtaining the full
probability function is not simple, and even calculating it nu-
merically or estimating it by simulations requires careful work
that is beyond the scope of the present analysis.
In closing, we have shown that a simplified model of species

evolution can explain the global features of the SGD within
large taxonomic groups relatively accurately as well as some
other features. This result suggests that complicated processes
related to interactions between species, including niche satura-
tion, and environmental effects average out when dealing with
phylum- and class-level taxa; therefore, they can be neglected for
a first approximation. Moreover, the fact that model parameters
describing SGDs of several classes correspond well to the ap-
pearance times of the classes suggests that, although the clas-
sification of species and even more so, genera are manmade
constructs, the SEO model fairly accurately reflects the real
evolutionary process.
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