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Abstract 

We generalize lattice models of brittle fracture to arbitrary nonlinear force 

laws and study the existence of arrested semi-infinite cracks. Unlike what is 

seen in the discontinuous case studied to date, the range in driving displace

ment for which these arrested cracks exist is either very small or precisely 

zero. Also, our results indicate that small changes in the vicinity of the crack 

tip can have an extremely large effect on arrested cracks. Finally, we briefly 

discuss the possible relevance of our findings to recent experiments. 
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Recent years have seen a rebirth of interest by the physics community in the issue of 

dynamic fracture. This is due to a variety of new expe~imental results which are not explain

able within the confines of the traditional engineering approach to fracture [1]. These results 

include a dynamical instability to micro-branching [2,3], the formation of non-smooth frac

ture surfaces [4] and the rapid variation of the fracture energy (including dissipative losses 

incurred during cleavage) with crack velocity [5]. These issues are reviewed in a recent paper 

by Fineberg and Marder [6]. 

One approach for dealing with dynamic fracture involves restricting the atomic interac

tions to those occurring between neighboring sites of an originally unstrained lattice. These 

lattice models can never be as realistic as full molecular dynamics simulations, but compen

sate for this shortc?ming by being much more amenable to analysis, both numerical and 

(via the Wiener-Hopf technique) otherwise. This approach was pioneered by Slepyan and 

co-workers [7] and further developed by Marder and Gross [8] and most recently by our

selves [9]. Most of the results to date have been obtained using a simplified force law which 

is linear until some threshold displacement at which point it drops abruptly to zero. Below, 

we will study a generalization for which the force is a smooth function of the lattice strain. 

One of our goals is to learn which aspects of fracture are sensitive to microscopic details and 

which are universal. 

One interesting aspect of these lattice models concern the existence of a range of driving 

displacements ~ for which non-moving semi-infinite crack solutions can be found. For 

the aforementioned discontinuous force model, there exists a wide range of these arrested 

cracks. For example, ref. [9] found that ~ could range from 40% below to 40% above 

the Griffith displacement ~G, the driving at which it first becomes energetically favorable 

for the system to crack. This phenomena is connected to the existence of a velocity gap, 

i.e. a minimal velocity for stable crack propagation. Experimentally, no such gap has 

been reported, even for materials such ,as single-crystal silicon [11] which should be at least 

approximately describable by lattice models. It is therefore of some interest to study how 

the arrested crack range depends on the microscopic details of the assumed atomic force 
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law. Here we present the results of such as a study, including the finding that this range 

drops rapidly towards zero as the force law is made s,moother and hence more realistic. 

As in ref. [9], we work with a square lattice and with scalar displacements (mode III). 

We focus on arrested cracks and write the static equation as 

o = -I (Ui+1,j - Ui,j) + f (Ui,j - Ui-l,j) - f (Ui,j+1 - Ui,j) + f (Ui,j - Ui,j-l) (1) 

Here the indices {i, j} label the lattice site and U is the displacement. Sites on the last row 

of the the lattice, j = Ny, are coupled to a row with fixed displacement.6.. The first row, 

j = 1, is coupled to a j = 0 displacement field Ui,O which via symmetry equals -Ui,l' Finally, 

f is a nonlinear function of its argument, the lattice strain. We investigate two forms [12]: 

1 + tanh (a(l - u)) 
-u------~~--~~ 

1 + tanh a 
(2) 

(3) 

For both of these forms, increasing a reduces the length scale over which f falls to zero once 

outside the Hooke's law regime (u < 1). The exponential force Ie reduces to the familiar 

discontinuous force (linear until complete failure) as a ---t 00. 

Our procedure for finding solutions is in principle straightforward. At large positive i. 

in the uncracked material, we know that the system will adopt a uniformly strained state. 

Conversely, at large negative i the cracked state will have a large displacement Ui,l and 

( almost) zero strains for j > 1. Fixing the boundary condition .6. allows us to easily find 

these asymptotic states. Once found, these solutions are used as fixed displacements for the 

columns i = N x + 1 and i = -Nx - 1 respectively. The arrested crack then requires us to 

solve for (2Nx + 1 )Ny variables. We impose the equation at motion at all sites except for the 

crack "tip" , (i = 0, j = 1) where instead we specify the displacement; this approach perserves 

the banded structure of the system. Newton's algorithm then allows us to converge to a 

solution. Afterwards, the residual equation of motion becomes a solvability condition with 

which .6. can be determined. The range of allowed values of .6. for arrested cracks is found 

as one systematically sweeps through the value of the aforementioned fixed displacement. 
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In Fig. 1 we present our results for the exponential model. For illustration, we have 

chosen to show data for Ny = 10 as a function of a. ~or large a, the range of D,. is large and 

there is a marked asymmetry between the rising segment of D,. versus imposed displacement 

and the (much steeper) falling segment. As a -+ 00, the falling portion becomes vertical. 

These segments represent different crack solutions at fixed D,.j as D,. reaches the end of 

its allowed range, these solution hranches collide and disappear in a standard saddle-node 

bifurcation point. To verify t~is, we have performed [13] a linear stability calculation of 

these solutions, assuming purely inertial dynamics (i.e. setting the left hand side of Eq. 1 to 

Ui,j)' As expected, there is a single mode of the spectrum for the growth rate w for which w 2 

goes from negative to positive as we go up the rising segment, reach the maximal driving, 

and then go back down. 

OJ 
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............. 0\=5 

- - - - 0\=3 
-- - 0\=2 

Displacement 

FIG. 1. D. versus imposed UO,l displacement for different values of a in fe. All data has Ny = 10 

and N x = 100. 

Fig. 1 demonstrates that as the potential is made smoother, the range of arrested cracks 

shrinks dramatically. In Fig. 2, we show this range as a percentage of !1G. The best fit to 

our data suggests that the range vanishes as an essentially singular function of a, 
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~max-~min 
rv 

~a 

aO 
Aexp-

a 
(4) 

where for Ny = 10, ao ~ 6.6 and otherwise is a slowly varying function of Ny as long as the 

system is sufficiently large compared to the potential fall-off. 
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FIG. 2. Arrested crack range normalized by the Griffith displacement l:l.a versus a in Ie ; again 

all data is for Ny = 10, Nx = 100. 

Let us now turn to the power-law form. Based on our findings above, we would expect 

that this rather smooth force law would give rise to a range which is practically zero. We 

have verified this prediction in two ways. First, for the case a = 3 we performed our usual 

scan over imposed UO,l displacement and noted that the selected ~ varies by less than 10-6
• 

Second, we computed the stability spectrum and found a mode at w2 < 10-6
; this value is 

indicative of how close we are at a randomly chosen displacement to the extremal value of ~ 

at the saddle-node bifurcation. These numbers are consistent with our numerical accuracy 

and hence the true range is probably even smaller. Needless to say, ranges of this size would 

be unmeasurable. It is interesting to point out that the almost-zero mode is nothing other 

than a spatial translation of the crack. That is, translating the crack with respect to the 

-underlying fixed lattice is almost a symmetry of the solution. 
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So, by making the potential smoother one tends to eliminate arrested crack solutions. 

How does this change come about? To try to address this question, we plot in Fig. 3 

the lattice strain field Ui+1,1 - Ui,l for - Nx :::; i ~ Nx for the three potentials, exponential 

with a = 5 or 2 and power-law with a = 3. For this comparison, we have found (stable) 

solutions with UO,l = .. 75 for all three potentials, and then normalized the strains by dividing 

with the respective values of Ll. First, we note that beyond x ~ 5, the different cases 

are virtually indistinguishable and all lie on the expected X-
1

/
2 universal curve [1,9]. The 

interior "process-zone" region is affected by changing the potential, but rather minimally. 

For example, the two exponential cases differ in only one or two points, yet this is sufficient 

to shrink the arrested crack range by almost an order of magnitude. The power-law choice 

has a process-zone which is a bit wider and there is less maximal strain, but that is all. We 

thus conclude that the existence and size of the arrested crack range are extremely sensitive 

to microscopic details! We note in passing that the process-zone for any specific potential 

quickly reaches an asymptotic size once Ny is sufficiently large and in particular does not 

increase indefinitely in the macroscopic limit. Treatments [14,15] which include a mesoscopic 

size "cohesive-zone" are therefore not accurate representations of this class of lattice models. 

In a recent experiment [11] on fracture in silicon, no arrested cracks were observed. A 

molecular dynamics simulation using a mO,dified, Stillinger-Weber potential also exhibited 

no arrested cracks when studied at high enough temperature. However, the potentials used 

here were rather short-ranged, as compared with some estimates that arise from density-

functional theory [16]. Our results indicate that increasing the range and thereby using 

smoother potentials will eliminate (at least as far as experimentally attainable precision is 

occurred) arrested cracks and may offer a simpler explanation of the experimental finding 

than one which requires thermal creep. This could of course be tested in principle by re-doing 

the experiments at a reduced temperature. 
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FIG. 3. Strain Ui+1,l - Ui,l for three different potentials. Data is for Ny = 40, Nx = 200 and is 

normalized to the respective b. values. The power-law curve has been shifted two sites to the left 

so as to better match the field at large positive i. 
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