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Abstract

Bacterial populations that colonize a host can play important roles in host health, including

serving as a reservoir that transmits to other hosts and from which invasive strains

emerge, thus emphasizing the importance of understanding rates of acquisition and clear-

ance of colonizing populations. Studies of colonization dynamics have been based on

assessment of whether serial samples represent a single population or distinct coloniza-

tion events. With the use of whole genome sequencing to determine genetic distance

between isolates, a common solution to estimate acquisition and clearance rates has

been to assume a fixed genetic distance threshold below which isolates are considered to

represent the same strain. However, this approach is often inadequate to account for the

diversity of the underlying within-host evolving population, the time intervals between con-

secutive measurements, and the uncertainty in the estimated acquisition and clearance

rates. Here, we present a fully Bayesian model that provides probabilities of whether two

strains should be considered the same, allowing us to determine bacterial clearance and

acquisition from genomes sampled over time. Our method explicitly models the within-

host variation using population genetic simulation, and the inference is done using a com-

bination of Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo

(MCMC). We validate the method with multiple carefully conducted simulations and dem-

onstrate its use in practice by analyzing a collection of methicillin resistant Staphylococcus

aureus (MRSA) isolates from a large recently completed longitudinal clinical study. An R-

code implementation of the method is freely available at: https://github.com/mjarvenpaa/

bacterial-colonization-model.
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Author summary

As colonizing bacterial populations are the source for much transmission and a reservoir

for infection, they are a major focus of interest clinically and epidemiologically. Under-

standing the dynamics of colonization depends on being able to confidently identify

acquisition and clearance events given intermittent sampling of hosts. To do so, we need a

model of within-host bacterial population evolution from acquisition through the time of

sampling that enables estimation of whether two samples are derived from the same popu-

lation. Past efforts have frequently relied on empirical genetic distance thresholds that

forgo an underlying model or employ a simple molecular clock model. Here, we present

an inferential method that accounts for the timing of sample collection and population

diversification, to provide a probabilistic estimate for whether two isolates represent the

same colonizing strain. This method has implications for understanding the dynamics of

acquisition and clearance of colonizing bacteria, and the impact on these rates by factors

such as sensitivity of the sampling method, pathogen genotype, competition with other

carriage bacteria, host immune response, and antibiotic exposure.

Introduction

Colonizing bacterial populations are often the source of infecting strains and transmission to

new hosts [1–5], making it important to understand the dynamics of these populations and

the factors that contribute to persistent colonization and to the success or failure of clinical

decolonization protocols. The study of colonization dynamics is based on inferring whether

bacteria from samples collected over time represent the same population or distinct coloniza-

tion events, thereby permitting calculation of rates of acquisition and clearance [6, 7]. Whole

genome sequencing has provided a detailed measure of genetic distance between isolates,

which can then be used to infer the relationship between them [8–11]. Successes in identifying

transmission and outbreaks have led to proposals for routine genome sequencing of clinical

and surveillance isolates for infection control [5, 12]. While to date most studies have used

genetic distance thresholds as the basis for determining the relationship between isolates [8,

10], here we improve on these heuristic strategies and present a robust and accurate fully

Bayesian model that provides probabilities of whether two strains should be considered the

same, allowing us to determine bacterial clearance and acquisition from genomes sampled

over time. Note that here we define ‘strain’ as a population of closely related isolates.

An example of a typical individual-level longitudinally sampled data set from a study

population is shown in Fig 1: each ‘row’ represents a patient, x-axis is time, and dots are the

genomes sampled at multiple time points. Dot color refers to different, easily distinguishable,

sequence types (ST). The coloured number between two consecutive samples reflects the dis-

tance between the genomes, and we see that even within the same ST the distances may vary

considerably, and, therefore, determining whether the changes can be explained by within-

host evolution only, is challenging. Intuitively, if two genomes are very similar, we interpret

this as a single strain colonizing the host, as these isolates are drawn from a closely related

population resident in the niche from which sampling has taken place. On the other hand,

two very different genomes, even if the same ST but with enough diversity that the most

recent common ancestor resided outside the host, are interpreted as two different strains,

obtained either jointly or separately as two acquisitions. With these data, we would like to

address questions including: to what extent are people persistently colonized, cleared, and

recolonized? If recolonized, what is the likelihood that it is the same or a distinct strain? To
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address these questions, prior work has relied on using a threshold number of single nucleo-

tide polymorphisms (SNPs) to define a strain. Optimally, however, the SNP distance between

the genomes observed and the interval between the sampling time defines a probability that

the two genomes represent the same strain. Such data are critical for understanding within-

host dynamics, response to interventions, and transmission.

Previously, transitions between different colonizing bacteria have been modeled using hid-

den Markov models [13] with states corresponding to different colonizing STs. However, this

approach is not suitable for modeling within a single ST, where acquisition and clearance must

be determined based on a small number of mutations. Crucial for interpreting such small

differences is a model for within-host variation [8, 14], specifying the number of mutations

expected by evolution within the host. Population genetic models can be used for understand-

ing the variation in an evolving population [15]. A major difficulty in fitting such models to

data like those shown in Fig 1 is that the information contained by the data is extremely limited

regarding the variation within the host: a single time point is summarized with just a single (or

a few) genomes, and must serve to represent the whole within-host population. While some

studies use genome sequence from multiple isolates to achieve a more complete characteriza-

tion of within-host diversity [3, 10], these tend to be limited in terms of the number of time

points and/or patients.

The Bayesian statistical framework can be used to combine information from multiple data

sources. In the Bayesian approach, a prior distribution is updated using the laws of probability

into a posterior distribution in the light of the observations, and this can be repeated multiple

times with different data sets [16, 17]. Approximate Bayesian computation (ABC) is particu-

larly useful with population genetic models, where the likelihood function may be difficult to

specify explicitly, but simulating the model is straightforward [18, 19]. ABC has recently been

introduced in bacterial population genetics [20–23]. Here, we present a Bayesian model for

determining whether two genomes should be considered the same strain, enabling a strategy

grounded in population genetics to make inferences about acquisition and clearance from data

of closely related genomes. Benefits of the fully Bayesian analysis include: rigorous quantifica-

tion of uncertainty, explicit statement of modeling assumptions (open for criticism and further

development when needed), and straightforward utilization of multiple data sources. We

Fig 1. Illustration of a subset of the data used in the study. Each row in panel A corresponds to one patient. Only the first 20

patients are shown. R0 is the initial hospital visit and V1, V2, etc. are the subsequent visits. Red colour refers to ST5 and blue to ST8.

The numbers show the number of mutations di between consecutive isolates. The samples were obtained from nares swabs and

represent single colonies. Dashed black colour highlights cases where the ST changed from ST 5 to ST 8. Panel B shows the

frequencies of observed distances di between consecutive samples. These distances were used for model fitting.

https://doi.org/10.1371/journal.pcbi.1006534.g001
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demonstrate these benefits by analyzing a large collection longitudinally collected methicillin

resistant Staphylococcus aureus (MRSA) genomes, obtained through a clinical trial (Project

CLEAR) to evaluate the effectiveness of an MRSA decolonization protocol [24]. This method

for identifying strains with explicit assessment of uncertainty will enable studies of the charac-

teristics–both host and pathogen–that impact colonization in the presence and absence of

interventions.

Methods

Isolate collection and whole genome sequencing

MRSA isolates were collected as part of the Project CLEAR (Changing Lives by Eradicating

Antibiotic Resistance) clinical trial (ClinicalTrials.gov identifier: NCT01209234), designed to

compare the impact on MRSA carriage of a long-term decolonization protocol with patient

education on general hygiene and self care [24]. Study subjects in the trial were recruited from

hospitalized patients based on a MRSA positive culture or surveillance swab. After recruit-

ment, nasal swabs were obtained from subjects around the time of hospital discharge (R0) and

at 1,3,6, and 9 months (V1-V4, respectively) following the initial specimen. Only these samples

obtained as part of the clinical trial were included. Note that some enrolled study subjects,

despite a history of MRSA colonization or infection, did not have swabs positive for MRSA at

the first time point (R0).

Swabs were cultured on chromogenic agar, and single colonies were picked from the result-

ing growth. Paired end DNA libraries were constructed via Illumina Nextera according to the

manufacturer guidelines. Libraries were sequenced on the Illumina Hiseq platform. Sequenc-

ing reads were assembled de novo using SPAdes-3.10.1 [25] and the corresponding sequence

type (ST) and clonal complex (CC) was determined by matching to PubMLST database

(https://pubmlst.org/saureus/) and eBURST (http://saureus.mlst.net/eburst/). Sequencing

reads were mapped using BWA mem v0.7.12 [26]. For CC8 and CC5 isolates, reads were

mapped to TCH1516 (GenBank ID CP000730.1) and JH1 (CP000736.1), respectively. Dupli-

cate reads were marked by Picard tools V2.8.0 (http://broadinstitute.github.io/picard/) and

ignored. SNP calling was performed using default parameters Pilon [27]. Regions with low

coverage (<10 reads) or ambiguous variants from ambiguous mapping were discarded.

Regions with elevated SNP density, representing putative recombination events or phage, as

determined by Gubbins v2.3.3 [28], were also discarded. Sequencing reads can be found at

NCBI SRA accession PRJNA224550.

Overview of the model

One input data item for our model consists of a pair of genomes that are of the same ST, sam-

pled from the same individual at two consecutive time points (or possibly with an intervening

time point with no samples or a sample of a different ST). Each of these data items (i.e. pairs

of consecutive genomes) is summarized in terms of two quantities: the distance between the

genomes and the difference between their sampling times (see Fig 1). Hence, the observed data

D can be written as consisting of pairs (di, ti), i = 1, . . ., N, where ti> 0 is the time between the

sampling of the genomes, di 2 {0, 1, 2, . . .} is the observed distance, and N the total number of

genome pairs that satisfy the criteria (i.e. same patient, same ST, consecutive time points or

possibly with an intervening time point with no samples or a sample of a different ST). The

restriction to genome pairs of the same ST stems from the fact that different STs will always be

considered different strains anyway. It is possible to include multiple genomes sampled at the

same time point by assuming some ordering (e.g. random) and setting ti to zero, but a model

A Bayesian model of acquisition and clearance of bacterial colonization
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specifically designed to handle this is described in Section ABC inference to update the prior

using external data.

There are two possible explanations for the observed distances. If the genomes are from the

same strain, we expect their distance to be relatively small. If the genomes are from different

strains, we expect a greater distance. Below we define two probabilistic models that represent

these two alternative explanations. These models are then combined into one overall mixture

model, which assumes that the distance between a certain pair of genomes is generated either

from the ‘same strain’ model or the ‘different strain’ model, and enables calculation of the

probabilities of these two alternatives for each genome pair, rather than relying on a fixed

threshold to distinguish between them.

An essential part of our approach is a population genetic simulation which allows us to

model the within-host variation, and hence make probabilistic statements of the plausibilities

of the ‘same strain’ vs. ‘different strain’ models. For this purpose, we adopt the common

Wright-Fisher (W-F) simulation model, see e.g. [29], with a constant mutation rate and popu-

lation size, which are estimated from the data. The simulation is started with all genomes

being the same, which corresponds to a biological scenario according to which a colonization

begins with a single isolate multiplying rapidly until reaching the maximum ‘capacity’, fol-

lowed by slow diversification of the population. This assumption is supported by the fact that

in the distance distribution, in cases where the acquisition time was known and had happened

recently, very little variation was observed in the population. See the Discussion section for

more details on the modeling assumptions. Overview of the approach, including data sets,

models, and methods for inference, is outlined in Fig 2 and discussed below in detail.

Model pS: Same strain. Let (si1, si2) denote a pair of genomes with distance di, sampled

from a patient at two consecutive time points (see the previous section) with time ti between

taking the samples. Here we present a model, i.e., a probability distribution pS(di|ti, neff, μ),

which tells what distances we should expect if the genomes are from the same strain, i.e. repre-

sent a closely related population that has evolved from a single colonization event. The param-

eter neff is the effective population size and μ is the mutation rate. We model di as

di ¼ di1 þ di2 ð1Þ

where we have defined

di1 ¼ distðsi1; si�Þ and di2 ¼ distðsi�; si2Þ; ð2Þ

where dist(�, �) is a distance function that tells the number of mutations between its arguments,

and si� is the unique ancestor of si2 that was present in the host when si1 was sampled, and

which has descended within the host from the same genome as si1 (see Fig 3A). The Eq 1 is

valid when mutations between si1 and si�, and si� and si2 have occurred in different sites, which

is true with a high probability when the genomes are long (millions of bps) compared to the

number of mutations (dozens or a few hundred at most). The probability distribution of di1
which we will denote by psim(di1|neff, μ), and which is not available analytically and does not

depend on ti, represents the within-host variation at a single time point. We approximate it as

psimðdi1 j m; neffÞ ¼WF-simulatorðdi1 j m; neffÞ: ð3Þ

The distribution of di2 is assumed to be

di2 j m; ti � PoissonðmtiÞ; ð4Þ

A Bayesian model of acquisition and clearance of bacterial colonization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006534 April 22, 2019 5 / 25

https://doi.org/10.1371/journal.pcbi.1006534


that is, mutations are assumed to occur according to a Poisson process with the rate parameter

μ, which follows from the constant mutation rate assumption in the Wright-Fisher model.

Model pD: Different strains. Model pD represents the case that the genomes si1 and si2
are from different strains, which we define to mean that their most recent common ancestor

(MRCA), denoted by siA, resided outside the host. The time between siA and si1 is denoted by

Fig 2. Overview of the modeling and data fitting steps. In Phase 1 we update our prior information on parameters

(neff, μ) based on external data D0. In phase 2 we estimate all the parameters of the (mixture) model using MCMC,

precomputed distance distributions pS and the information obtained in Phase 1. The fitted model can be used to e.g.

obtain the same strain probability for a new (future) measurement.

https://doi.org/10.1371/journal.pcbi.1006534.g002

Fig 3. Outline of the ‘same strain’ and ‘different strain’ models. Model pD on the left (panel A) represents the situation where the

genomes denoted by si1 and si2 are of the same strain. Model pS on the right (panel B) shows the case where these genomes are of

different strains. Time flows from left to right in the figures, the dots represent individual genomes, and the edges parent-offspring

relationships.

https://doi.org/10.1371/journal.pcbi.1006534.g003
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t0i (see Fig 3B). Under model pD, we assume that the distribution of the distance di is

pDðdi j m; ti; t0iÞ ¼ Poissonðdi j mð2t0i þ tiÞÞ; ð5Þ

where the values of t0i are unknown and will be estimated, but let us assume for now that they

are known. One difference between the same strain model pS (defined by Eqs 1, 3 and 4) and

the different strain model pD (Eq 5) is that the former uses Wright-Fisher simulation, whereas

the latter does not. The reason is that the within-host variation is bounded, occasionally

increasing and decreasing, which is reflected by the constant population size of the Wright-

Fisher simulation in the same strain model. In the different strain model, the distance between

si1 and si2 can in principle increase without bound, given enough time since their common

ancestor, because they diverged and evolved outside the host.

Mixture model. With the two alternative models for the distance, we can write the full

model, which assumes that each distance observation is distributed according to

pðdi j ti; θÞ ¼ oSpSðdi j ti; neff ; mÞ þ oDpDðdi j ti; t0i; mÞ; i ¼ 1; . . . ;N; ð6Þ

where θ denotes jointly all the parameters of the models, i.e., θ = (neff, μ, ωS, ωD, t01, . . ., t0N).

The parameter ωS represents the proportion of pairs from the same strain and ωD is the pro-

portion of pairs from different strains, such that ωS + ωD = 1. To learn the unknown parame-

ters θ, we need to fit the model to data, but before going into details, we discuss how to use an

external data set to update the prior distribution about the mutation rate μ and the effective

sample size neff. This updated distribution will itself be used as the prior in the mixture model.

ABC inference to update the prior using external data

Simulations with the W-F model are used in our approach for two purposes: 1) to incorporate

information from an external data set to update the prior on the mutation rate μ and the effec-

tive sample size neff, and 2) to define empirically the distribution pS(di|ti, neff, μ) required in the

mixture model. Here we discuss the first task.

As external data we use measurements from eight patients colonised with MSSA [3], com-

prising nasal swabs from two time points for each patient, such that the acquisition is known

to have happened approximately just before the first swab. Multiple genomes were sequenced

from each sample, and the distributions of pairwise distances between the genomes provide

snapshots to the within-host variability at the two time points for each individual, and these

distance distributions are used as data. That is, in contrast with data D (which represents SNP

distances between single isolates collected at different time points) used to fit the mixture

model, we here use the distribution of SNP distances within each time point. We exclude one

patient (number 1219) because according to [3] this patient was likely infected already long

before the first sample. The data set also contains observations from an additional 13 patients

from [14], denoted by letters from A to M in [3]. For these patients, distance distributions

from only one time point are available, and the acquisition times are unknown. The data com-

prising the distance distributions from the 7 patients (two time points) and the additional 13

patients (a single time point) are jointly denoted by D0.

To learn about the unknown parameters neff and μ, we first note that their values affect the

distance distribution of a population resulting from a W-F simulation with the specified values

(Fig 4). To estimate these parameters, we try to find such values for them which make the out-

put of the W-F similar to the observed distance distributions D0. Since the corresponding like-

lihood function is unavailable, standard statistical techniques for model fitting do not apply.

Therefore, we use Approximate Bayesian Computation (ABC), a class of methods for Bayesian

inference when the likelihood is either unavailable or too expensive to evaluate but simulating

A Bayesian model of acquisition and clearance of bacterial colonization
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the model is feasible, see [18, 19, 30, 31] for an overview on ABC. The basic ABC rejection

sampler algorithm for the model fitting consists of the following steps:

1. Simulate a parameter vector (neff, μ) from the prior distribution p(neff, μ).

2. Generate a pseudo-data similar to the observed data D0 by running the W-F model sepa-

rately for each patient using the parameter (neff, μ).

3. Accept the parameter (neff, μ) as a sample from the (approximate) posterior distribution if

the discrepancy between the observed and simulated data is smaller than a specified thresh-

old ε.

The quality of the resulting ABC approximation depends on the selection of the discrepancy

function, the threshold ε and the number of accepted samples. Broadly speaking, if the dis-

crepancy summarizes the information in the data completely (e.g. it is a function of the suffi-

cient statistics) and ε is arbitrarily small, the approximation error becomes negligible and the

samples are generated from the exact posterior. In practice, choosing ε very small makes the

algorithm inefficient since many simulations are needed to obtain an accepted sample even

with the optimal value of the parameter. Also, finding a good discrepancy function may be dif-

ficult because sufficient statistics are typically unavailable. Many sophisticated ABC variants

exist, see e.g. [19, 31] and the references therein, but as we need to estimate only two parame-

ters (one of which is discrete) and because running the simulations in parallel is straightfor-

ward with the basic algorithm, we use a the ABC rejection sampler outlined above, with details

discussed below.

In [14], MRSA evolution was simulated using parameters derived from the following esti-

mates: 8 mutations per genome per year and generation length of 90 minutes (the whole year

is thus 5840 generations). This gives mutation rate of 0.0019 per genome per generation,

approximately 6.3 × 10−10 mutations per site per generation assuming the genome length of 3

Mbp. We also use the generation time of 90 minutes, originally derived by [14] from the esti-

mated doubling time of Staphylococcus aureus [32]. We use independent uniform priors for

Fig 4. Distributions of pairwise distances for populations simulated with different parameters. The histograms

show the estimated probability mass functions p̂ simðdi1 j neff ; mÞ with selected parameter vectors (neff, μ). Increasing μ
and/or neff tends to increase the distances. Each histogram represent variability in a simulated population at a single

time point 6,000 generations after the beginning of the simulation.

https://doi.org/10.1371/journal.pcbi.1006534.g004
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the parameters of the W-F model, so that

neff � Uðf20; 21; . . . ; 10000gÞ; m � Uð½am; bm�Þ ð7Þ

with aμ = 0.00005 and bμ = 0.005 mutations per genome per generation.

We argue that reasonable parameters should produce populations with similar histograms

of the pairwise distances compared to the observations at the corresponding times. Conse-

quently, we use the discrepancy Δ defined as

D ¼
X7

i¼1

X2

t¼1

l1ðp̂ijðneff ; mÞ; p̂
obs
it Þ þ

X

i2fA;B;...;Mg

min
t
fl1ðp̂itðneff ; mÞ; p̂

obs
i1 Þg; ð8Þ

where p̂itðneff ; mÞ and p̂obsit are the simulated and observed empirical distributions of pairwise

distances for patient i with time point t, respectively, and l1(�, �) denotes the L1 distance

between the distributions (alternative distance measures are discussed in the Supplementary

material). Note that in the second term in Eq 8 we use the minimum instead of summation.

The reason is that the acquisition times for the 13 patients (A-M) are unknown, and estimating

them exactly would be infeasible. Instead, we use these data such that we replace the unknown

times with values that produce the minimum discrepancy. This way, parameters that never

produce enough variability to match the observations will increase the discrepancy, allowing

us to gain evidence against such unreasonable values, even if the exact times are unknown and

too computationally costly to infer.

Instead of simulating (neff, μ) samples from the prior we perform equivalent grid-based

computations. That is, we consider an equidistant 50 × 50 grid of (neff, μ) values and simulate

the model 1, 000 times at each grid point. However, in preliminary experiments we noticed

that if neff and μ are simultaneously large, the amount of mutations produced by the model

increases rapidly and it is clear that the simulated pairwise distances are always greater than

in the observed data, and also the computation time and memory usage become prohibitive.

Thus, we do not run the full set of 1000 simulations in this parameter region because it is clear

that the posterior density would be negligible. Finally, the threshold ε is chosen such that 5,

000 out of the total of almost 1 million simulations are below the threshold, corresponding to

the acceptance probability of 0.0057.

Details of the mixture model

We now discuss the mixture model in detail and then derive an efficient algorithm to estimate

its parameters. Because the values of t0i in Eq 5, denoting the times to the MRCAs in case the

sequences are different strains, are unknown, we model them as random variables and give

each of them a prior distribution

t0i j k; l � Gamma ðk; lÞ; i ¼ 1; . . . ;N: ð9Þ

We further specify a weakly informative prior for λ such that

l � Gamma ða; bÞ: ð10Þ

The parameter λ is thus shared between different t0i which allows us to learn about its

distribution.

If k = 1, then the Gamma distribution in Eq 9 reduces to the Exponential, which, however,

does not reflect our prior understanding of reasonable value of t0i because the mode of the

resulting distribution is at zero, corresponding to a very recent common ancestor for genomes

considered to be from different strains. Instead, we set k = 5, α = 2.5, and β = 1600, which
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approximately correspond to the mean and standard deviation of 5800 and 8400 generations,

respectively. This weakly informative prior reflects the notion that different strains diverged

on average approximately a year ago, but with a large variance. Furthermore, if the time

between samples, ti, is three months, the prior translates to an expectation that, if the sampled

genomes are from different strains, they are on average 30 mutations apart, with a large stan-

dard deviation of 50 mutations. Moreover, the density has a heavy tail to account for some pos-

sibly much greater distances. The formulas used to compute these values and other useful facts

about the prior are provided in the supplementary material.

An equivalent way of writing the mixture model in Eq 6, which also simplifies the computa-

tions, is to introduce hidden labels which specify the component which generated each obser-

vation di, see [33]. We thus define latent variables

zi ¼ ðzi1; zi2Þ
T
¼

(
ð1; 0Þ

T
; if di has distribution pS

ð0; 1Þ
T
; if di has distribution pD:

ð11Þ

The prior density for the latent variables z is

pðz jωÞ ¼
YN

i¼1

pðzi jωÞ ¼
YN

i¼1

o
zi1
S o

zi2
D ; ð12Þ

where we have used vector notation t = (t1, . . ., tN)T, d = (d1, . . ., dN)T, z = (z1, . . ., zN)T, t0 =

(t01, . . ., t0N)T and ω = (ωS, ωD)T. We augment the parameter θ to represent jointly all model

parameters in Eq 6 and the prior densities specified in Eqs 9 and 10, i.e., θ = (neff, μ, ω, z, t0,

λ)T. To complete the model specification, we must specify the prior for ω, neff and μ. We use

ω � Dir ðγÞ; ð13Þ

that is, a Dirichlet distribution with parameter γ = (1, 1)T. We use the posterior p(neff, μ|D0),

obtained by ABC using the external data D0 as discussed in the previous section, as the (joint)

prior for (neff, μ).

Bayesian inference for the mixture model

We now show how the mixture model can be fit efficiently to data. The joint probability distri-

bution for the data d and the parameters θ can be now written as

pðd; θ j t;D0Þ ¼ pðd; neff ; m;ω; z; t0; l j t;D0Þ

¼ pðd; z j neff ; m;ω; t0; l; tÞ pðneff ; m;ω; t0; l jD0Þ
ð14Þ

¼
YN

i¼1

pðdi j zi; neff ; m; t0i; l; tiÞ pðzi jωÞ pðneff ; m jD0Þ pðωÞ
YN

i¼1

pðt0i j lÞ pðlÞ ð15Þ

We use Gibbs sampling, which is an MCMC algorithm, to sample from the posterior den-

sity. The algorithm exploits the hierarchical structure of the model and it proceeds by itera-

tively sampling from the conditional density of each variable (or a block of variables) at a time

[34]. In the following we derive the conditional densities for the Gibbs sampling algorithm.

We observed that some of the parameters θ are highly correlated which causes slow mixing of

the resulting Markov chain and thus inefficient exploration of the parameter space. To make

the algorithm more efficient, we reparametrise the model by defining new parameters θ0 =
(neff, μ, ω, z, η, λ) via the transformation η = μ t0 and we use the Gibbs sampler for the

transformed parameters θ0. This common strategy [34] resolves the problem arising from
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correlations between t0i and μ, because the magnitudes of all ηi can now be changed simulta-

neously by a single μ update. The original variables t0i can be obtained from the generated sam-

ples as t0i = ηi/μ.

The joint probability in Eq 15 for the transformed parameters then becomes

pðd; neff ; m;ω; z; η; l j t;D0Þ

¼
YN

i¼1

pðdi j zi; neff ; m;m
� 1η; l; tiÞ pðzi jωÞ pðneff ; m jD0Þ pðωÞ

YN

i¼1

pðm� 1η j lÞ pðlÞm� N

¼
YN

i¼1

½o
zi1
S pSðdi j ti; neff ; mÞ

zi1o
zi2
D pDðdi j ti; Zi=m; mÞ

zi2 Gamma ðZi=m j k; lÞ�

� Gamma ðl j a;bÞDir ðω j γÞpðneff ; m jD0Þm
� N ;

ð16Þ

where μ−N is the determinant of the Jacobian of the inverse transformation. Computing the

conditional density of parameter ω is straightforward. We neglect those terms in Eq 16 that do

not depend on ω and recognise the resulting formula as an unnormalised Dirichlet distribu-

tion. We then obtain

pðω j z;DÞ ¼ Dir ðω jnþ γÞ; ð17Þ

with n = (n1, n2)T, where n1 ¼
PN

i¼1
zi1 and n2 ¼

PN
i¼1
zi2. Next we consider the latent variables

zi. We see that the conditional distribution of zi for any i = 1, . . ., N does not depend on other

latent variables zj, j 6¼ i. Specifically, we obtain

Pðzi1 ¼ 1 j neff ; m;ω; η;DÞ / oSpSðdi j ti; neff ; mÞ; ð18Þ

Pðzi2 ¼ 1 j neff ; m;ω; η;DÞ / oD
ð2Zi þ mtiÞ

di e� ð2ZiþmtiÞ

di!
: ð19Þ

We expect the effective sample size neff and the mutation parameter μ to be correlated a pos-

teriori so we include them to the same block and update them together. We also include λ to

this block as it also tends to be correlated with neff and μ. It is convenient to replace the sam-

pling step from p(neff, μ, λ|ω, z, η, D,D0) with the following two consecutive sampling steps:

first sample from p(neff, μ | ω, z, η, D, D0) =
R
p(neff, μ, λ | ω, z, η, D, D0) dλ and then sample

from p(λ|neff, μ, ω, z, η, D, D0). From Eq 16 we observe that

pðneff ; m; l j z; η;D;D0Þ /
YN

i¼1

pSðdi j ti; neff ; mÞ
zi1ð2Zi þ mtiÞ

zi2di
h i e� m

PN

i¼1
zi2ti

mNk

�pðneff ; m jD0Þl
Nkþa� 1e� lðm

� 1
PN

i¼1
ZiþbÞ:

ð20Þ

The above formula is recognised to be proportional to a Gamma density as a function of λ.

We can thus marginalise λ easily to obtain the following density for the first step

pðneff ; m j z; η;D;D0Þ

/
YN

i¼1

pSðdi j ti; neff ; mÞ
zi1ð2Zi þ mtiÞ

zi2di
h i e� m

PN

i¼1
zi2tipðneff ; m jD0Þ

mNkðm� 1
PN

i¼1
Zi þ bÞ

Nkþa :
ð21Þ
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In the second step, we sample λ from the probability density

pðl j m; η;DÞ ¼ Gamma l

�
�
�
�
�
Nkþ a;bþ

1

m

XN

i¼1

Zi

 !

: ð22Þ

This formula follows directly from Eq 20.

Sampling from Eq 21 and sampling z using Eq 18 are challenging because pS is defined

implicitly via the W-F simulation model. Consequently, we will consider an approximation

that allows to compute pS(di|ti, neff, μ) for any proposed point (neff, μ) and all values of di and ti
in the data. Since di = di1 + di2, we can use the convolution formula for a sum of discrete ran-

dom variables to see that

pSðdi j ti; neff ; mÞ ¼
Xdi

j¼maxf0;di � dmg

Poisson ðj j mtiÞpsimðdi � j j neff ; mÞ; ð23Þ

where psim specifies the distribution for a distance between two genomes as in Eq 3 and dm is

the maximum distance that can be obtained from psim.

Since psim(di1|neff, μ) is not available analytically, we estimate this probability mass function

by simulation. A special case is if we know that there is no variation in the population at the

time of taking the first sample si1, which can happen if we know that the acquisition happened

just before the first sample. In this case, di1 = 0, and we do not need the simulation. Since this

is usually not the case, we use a general solution as follows: for each (neff, μ) value, we sample

independently dðjÞi1 � psimð� j neff ; mÞ by simulating the W-F model, sample a pair of genomes at

a fixed time t from the simulated population, and compute their distance dðjÞi1 . This is repeated

for j = 1, . . ., s. Since di1 is discrete, we approximate

psimðdi1 j neff ; mÞ � p̂simðdi1 j neff ; mÞ ¼
1

s

Xs

j¼1

1dðjÞi1 ¼di1
; ð24Þ

for all i. Since in data D we do not know the acquisition times, we set t = 6000 generations and

use this same value for all i. This large value represents a steady state of the simulation, where

the variation in the population occasionally increases and decreases as new lineages emerge

and old ones die out, which can be seen as corresponding to a reasonable default expectation

about population variability when the true acquisition time is unknown. While this assump-

tion was introduced for computational necessity, it can be justified by considering its impact

on the inferences: the simplification may cause slightly overestimated distances di1 if many

acquisitions in reality happened very recently. The consequence is that the criterion for

reporting new acquisitions becomes more conservative, because now the ‘same strain’ model

will place some probability mass on occasional greater distances, and hence better accommo-

date also distant genomes which might otherwise have been considered as different strains.

Some of the resulting probability mass functions p̂simðdi1 j neff ; mÞ were already shown

in Fig 4. In practice, the computations above are done using logarithms and the fact

log
P

ie
ai ¼ maxifaig þ log

P
ie
ai � maxifaig, to avoid numerical underflow, which can occur

whenever ai� 0. The finite sample size s causes some numerical error, but, because the dis-

tances are usually small enough that the number of values we need to consider is limited, s
can be made large enough without too extensive computation, making this error small in

general. The above procedure allows computation of the conditional density in Eq 21 for

any (neff, μ), and we can use a Metropolis update for (neff, μ). We marginalised λ in Eq 21 to

improve the mixing of the chain and to be able to use the analytical formula in Eq 22, and in
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the supplementary material we justify that this algorithm is valid under the assumption that

a new λ parameter is sampled only if the corresponding proposed value (neff, μ) has been

accepted.

Whenever a new (neff, μ)-parameter is proposed, we need to compute psim at this point to

check the acceptance condition. This value is also needed when sampling z. However, comput-

ing psim on each MCMC iteration as described earlier makes the algorithm slow. Conse-

quently, we instead precompute the values of psim in a dense grid of (neff, μ)-points which can

be done in a parallel manner on a computer cluster. Given the grid values, we use bilinear

interpolation to approximate psim at each proposed point ðn�eff ; m
�Þ. We proceed similarly also

with the prior density p(neff, μ|D0). This approach also allows one to fit the mixture model

using different modelling assumptions or different data sets without need to repeat the costly

W-F simulations.

Finally, we see that the probability density of ηi conditioned on the other variables does not

depend on ηj, j 6¼ i. Specifically, we obtain

pðZi j m; zi; l;DÞ ¼

( Gamma ðZi j k; l=mÞ; if zi2 ¼ 0

Pdi
j¼0
wjGamma ðZi j kþ j; 2þ l=mÞ; if zi2 ¼ 1

ð25Þ

for i = 1, . . ., N. Derivation of this result, the formula for the mixture weights wj and a special

algorithm (Algorithm 2) to generate random values from this density are shown in the supple-

mentary material.

The resulting Gibbs sampler is presented as Algorithm 1. It could be alternatively called a

Metropolis-within-Gibbs sampler since some of the parameters (neff and μ) are sampled using

a Metropolis-Hastings step using a proposal density that is denoted as q. Because neff is a dis-

crete random variable, (neff, μ) is a mixed random vector and we cannot use the standard

Gaussian proposal. Instead, we consider the distribution

qððn�eff ; m
�Þ j ðneff ; mÞÞ /

X

n2Z

exp �
ðm� � mÞ

2

2s2
q;m

�
ðn�eff � neffÞ

2

2s2
q;neff

 !

dðn � n�effÞ; ð26Þ

where s2
q;m and s2

q;neff
are chosen to produce acceptance probability of the Metropolis step close

to 0.25 and δ(�) is the Dirac delta function. The first element of a random sample from q in Eq

26 is an integer, and this proposal is also symmetric. We truncate the tails of q with respect to

neff to be able to sample the discrete element from q efficiently. In practice we then use a pro-

posal q that is a mixture density where the components are as in Eq 26 but with different vari-

ance parameters s2
q;m and s2

q;neff
to occasionally propose large steps to increase the exploration

of the parameter space.

Algorithm 1 MH-within-Gibbs sampling algorithm for the mixture model
select an initial parameter θ0(0) (e.g. by sampling from the prior p
(θ0)), proposal q and the number of samples s
for i = 1, . . ., s do
sample ðn�eff ;m

�Þ � qð� j ðnði� 1Þ

eff ; mði� 1ÞÞÞ and u � Uð½0; 1�Þ

compute r ¼ min 1;
pðn�eff ;m

� j zði� 1Þ ;ηði� 1Þ ;D;D0Þqððn
ði� 1Þ

eff ;mði� 1ÞÞ j ðn�eff ;m
�ÞÞ

pðnði� 1Þ

eff ;mði� 1Þ j zði� 1Þ ;ηði� 1Þ ;D;D0Þqððn�eff ;m
�Þ j ðnði� 1Þ

eff ;mði� 1ÞÞÞ

� �

using Eq 21

if ρ < u then
set ðnðiÞeff ;mðiÞÞ  ðn�eff ; m

�Þ

sample λ(i) � p(�|μ(i), η(i−1), D) using Eq 22
else
set ðnðiÞeff ;mðiÞ; l

ðiÞ
Þ  ðnði� 1Þ

eff ;mði� 1Þ;l
ði� 1Þ
Þ

end if

A Bayesian model of acquisition and clearance of bacterial colonization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006534 April 22, 2019 13 / 25

https://doi.org/10.1371/journal.pcbi.1006534


for j = 1, . . ., N do
sample Z

ðiÞ
j using the Algorithm 2 with μ = μ(i), z = z(i−1), λ = λ(i)

end for
for j = 1, . . ., N do
sample zðiÞj � pð� j n

ðiÞ
eff ;m

ðiÞ;ωði� 1Þ;ηðiÞ;DÞ using Eq 18
end for
sample ω(i) � p(�|z(i), D) using Eq 17

end for
return samples fðnðiÞeff ;mðiÞ;ωðiÞ; zðiÞ;ηðiÞ; l

ðiÞ
Þg

s

i¼1

Posterior distribution for future data

Given a new (future) data point (d�, t�) from a new patient, we would like to compute the

probability of whether this case is of the same strain. This can be computed from the posterior

of the model fitted to data D, D0 as follows. We denote the original parameter vector with θ as

before and additional parameters related to the new data point D� = {(d�, t�)} as z� 2 {(1, 0),

(0, 1)} and t�
0
> 0. The updated posterior after considering the new data point D� is then

pðz�; t�
0
; θ jD�;D;D0Þ / pðz�; t�0; θÞpðD

�;D;D0 j θ; z�; t�0Þ ð27Þ

¼ pðθÞpðz�; t�
0
; j θÞpðD;D0 j θÞpðd� j t�; z�; t�0; θÞ ð28Þ

/ pðd� j t�; z�; t�
0
; θÞpðz�; t�

0
j θÞpðθ jD;D0Þ; ð29Þ

where p(θ|D, D0) is the posterior based on our original data D, D0. We marginalise the set of

parameters least contributory to the aim to obtain

pðz� jD�;D;D0Þ /

Z

θ

Z

t�
0

pðd� j t�; z�; t�
0
; θÞpðt�

0
j lÞpðz� jωÞpðθ jD;D0Þdt�0dθ ð30Þ

�
1

s

Xs

i¼1

�
o
ðiÞ
S pSðd

�jnðiÞeff ; m
ðiÞ; t�Þ

�z�
1
�
o
ðiÞ
D pDðd

�jmðiÞ; t�ðiÞ
0
; t�Þ
�z�

2

; ð31Þ

where ðt�ðiÞ
0
; θðiÞÞ � pðt�

0
j lÞpðθ jD;D0Þ for i = 1, . . ., s. The probability of the new measure-

ment point (d�, t�) being of the same strain, based on the previously observed data D,D0 is

obtained from Eq 31.

Results

In this section we fit the W-F model to the external data D0 as discussed in Section ABC infer-

ence to update the prior using external data. We then verify that the proposed Gibbs sampling

algorithm for fitting the mixture model from Section Bayesian inference for the mixture

model is consistent based on experiments with simulated data. Subsequently, we fit the mix-

ture model to the MRSA data and discuss the results. Finally, we assess the quality of the

model fit.

Updating the prior using ABC inference

The ABC posterior based on the external data D0 and the discrepancy in Eq 8, is shown in Fig

5A. We also repeated the computations so that we omitted a subset, patients A-M, from the

analysis i.e. the second summation term in Eq 8 was set to zero. This was done to assess the

effect of patients A-M, which have measurements from one time point only, and an unknown
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time since acquisition. This extra analysis resulted in an ABC posterior approximation shown

in Fig 5B. We see that in both cases large parts of the parameter space have been ruled out as

having negligible posterior probability. As expected, the posterior distribution based on the

subset (Fig 5B) is slightly more dispersed than with the full data D0 (Fig 5A). Using the full

data causes the estimated mutation rate to be slightly greater than with the subset, likely

because the model needs to accommodate the higher variability in the patients A-M. In addi-

tion, small effective sample sizes (neff < 2000) are less probable based on the full data D0.

Overall, we see that the effective sample size neff cannot be well identified based on the

external data D0 alone. We also see that if the upper bound of the prior density of neff was

increased from 10, 000, higher values would likely have non-negligible posterior probability

also; however, this constraint will have a negligible impact on the resulting posterior from the

mixture model as is seen later. The mutation rate μ, on the other hand, is smaller than 0.001

mutations per genome per generation with high probability and cannot be arbitrarily small.

Validation of the mixture model using simulated data

To empirically investigate the identifiability of the mixture model parameters and the correct-

ness and consistency of our MCMC algorithm under the assumption that the model is speci-

fied correctly, we first fit the mixture model to simulated data. We generate artificial data from

the mixture model with parameter values similar to the estimates for the observed data D from

the next section. Specifically, we choose neff = 2, 137, μ = 0.0011, ωS = 0.8, λ = 0.0001 and we

repeat the analysis with various data sizes N. We use otherwise similar priors as for the real

data in the next section except that, for simplicity, instead of using the prior obtained from the

ABC inference, we use a uniform prior in Eq 7. We then fit the mixture model to the simulated

data sets to investigate if the true parameters can be recovered (identifiability) and whether the

posterior becomes concentrated around their true values when the amount of data increases

(consistency).

Fig 5. ABC posterior distribution for (neff, μ). The ABC posterior distribution i.e. the updated prior for parameters (neff, μ), the

effective population size and mutation rate, given data D0. Panel A shows the result with the full data and panel B the corresponding

result with only a subset of the data (see text for details).

https://doi.org/10.1371/journal.pcbi.1006534.g005
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Results are illustrated in Fig 6. We see that the (marginal) posterior of (neff, μ) is concen-

trated around the true parameter value that was used to generate the data (green diamond in

the figure). Also, despite the fact that the number of parameters increases as a function of data

size N (because each data point (di, ti) has its own class indicator zi and time to the most recent

common ancestor t0i parameter), the marginal posterior distribution of (neff, μ) can be identi-

fied and appears to converge to the true value as N increases. We cannot learn each t0i accu-

rately since essentially only the data point to which the parameter corresponds provides

information about its value. However, precise estimates of these nuisance parameters are not

needed for using the model or obtaining useful estimates of the other unknown parameters as

demonstrated in Fig 6.

Fig 6. Accuracy and consistency with synthetic data. The first three panels show the estimated posterior distributions for

parameters (neff, μ) of the mixture model using simulated data of different sizes N. The green diamond shows the true value used to

generate the simulated data and the light grey dots denote the grid point locations needed for numerical computations. The bottom

right panel shows the estimated vs. the true ωS parameter in a set of additional simulation experiments.

https://doi.org/10.1371/journal.pcbi.1006534.g006
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The panel in the lower right corner of Fig 6 shows results from an additional simulation

experiment where the mixture model is fitted to data generated with different values for the ωS
parameter, which represents the proportion of pairs that are from the same strain. Other than

that and the fact that we fixed N = 150, the experimental design is the same as above. The

results show that the estimated ωS values generally agree well with the true values. Interest-

ingly, ωS is slightly overestimated when its true value is close to 0, and slightly underestimated

when the true value is close to 1, which may reflect the regularizing effect of the prior, drawing

the estimates away from the extreme values. Furthermore, when the true value of ωS is around

0.5, the variance of the estimate tends to be higher than with ωS values close to 0 or 1. This

observation may be explained by the fact that there are more data points that overlap both mix-

ture model components when ωS is around 0.5 which makes the inference task more challeng-

ing and causes higher posterior variance.

Analysis of the Project CLEAR MRSA data

The following settings are used to analyse longitudinally-sampled S. aureus nares isolates from

the control arm of Project CLEAR [24]. We generate 4 MCMC chains, each of length 25, 000,

initialized randomly from the prior density, whose first halves are discarded as “burn-in”. We

use the Gelman and Rubin’s convergence diagnostic in R-package coda and visual checks to

assess the convergence of the MCMC algorithm. We use 100 × 100 equidistant grid for numer-

ical computation with the (neff, μ) values and s = 10, 000 in Eq 24. The ABC posterior obtained

in Section Updating the prior using ABC inference. and visualised in Fig 5A is used as the

prior for (neff, μ).

The parameter vector θ consists of the ‘global’ parameters neff, μ, ω, λ, as well as a large

number of nuisance parameters (z and t0) related to each data point. The estimated global

parameters are presented in Table 1. We also repeated the analysis using a uniform prior on

(neff, μ). While the uniform prior is non-informative about the parameters (neff, μ), the results

are nevertheless surprisingly similar (Table 1). In other words, the additional data D0 used to

update the prior has only a small effect on the estimated parameters of the mixture model.

This was unexpected because the data set D used to train the mixture model has only one

genome per sampled time point, and yet, impressively, the model is able to learn about the

parameters (neff, μ) which effectively define the variability in the whole population. This fur-

ther demonstrates the robustness of the mixture model to the prior used. We observe, how-

ever, that incorporating the prior from the ABC slightly shifts the probability distribution for

neff towards larger values, although the difference is small. For example, as seen in Table 1, the

95% credible interval (CI) for neff, [1100, 1900], gets updated to [1100, 2000] when the extra

prior information is included.

Fig 7 shows the posterior predictive distribution for the probability of the same strain case

for a (hypothetical future) observation with distance d� and time difference t�. Blue colour in

the figure denotes high probability of the same strain. The corresponding 50% classification

curve is (almost) a straight line with a steep positive slope. This is as expected since the same

strain model can explain a greater number of mutations when more time has passed. Approxi-

mately 20 mutations draws the line between the same strain and different strains cases within

the time difference up to 6000 generations. The uncertainty in the classification occurs because

there is overlap in the two explanations (around d� � 20) and because of the posterior uncer-

tainty in the model parameters θ.

We also analysed explicitly all observed patterns where: 1) two genomes of the same ST

from the same patient are interleaved with a missing observation, i.e. the colonization appears

to disappear and then re-emerge, and 2) two genomes of the same ST from the same patient

A Bayesian model of acquisition and clearance of bacterial colonization
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are interleaved with an observation of a different ST. The numbers for the two genomes being

from the same or different strain in these patterns are shown in Table 2. The credible intervals

for the ‘same strain’ proportion combine uncertainty from the limited number of samples with

the posterior uncertainty of whether a sample is from the same strain or not (see the Supple-

mentary material for further details). From Table 2 we see that approximately 69% of genome

pairs in pattern 1) are from the same strain. This is only a little smaller than the same strain

Table 1. Posterior mean and 95% credible interval (CI) for the ‘global’ parameters of the mixture model.

Informative prior (ABC, data D0) Uniform prior

parameter mean 95% CI mean 95% CI

neff 1400 [1100, 2000] 1400 [1100, 1900]

μ 0.00071 [0.00058, 0.00082] 0.00073 [0.00060, 0.00084]

ωS 0.85 [0.81, 0.89] 0.85 [0.81, 0.89]

ωD 0.15 [0.11, 0.19] 0.15 [0.11, 0.19]

λ (× 105) 3.7 [2.9, 4.4] 3.8 [3.0, 4.5]

https://doi.org/10.1371/journal.pcbi.1006534.t001

Fig 7. Results for the Project CLEAR MRSA data. Contour plot for same strain probability of a distance d� and time

interval t� based on the fitted model. The coloured points denote the observations that were used to fit the model. Blue

colour indicates large same strain probability. Distances greater than 50 are not shown and are classified as different

strains with probability one. 6, 000 generations on the y-axis correspond to approximately one year.

https://doi.org/10.1371/journal.pcbi.1006534.g007
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proportion when there are no missing observations in between (89%). Therefore, a plausible

explanation for most of the missing in-between observations is that in reality the same strain

has been colonizing the patient throughout, and the missing observation reflects the limited

sensitivity of the sampling, rather than a clearance followed by a novel acquisition. Similarly,

even if interleaved with a different ST (pattern 2), the surrounding genomes often, in 65% of

cases, appear to be from the same strain. This suggests that in these cases the patient has been

colonized by the surrounding strain throughout, and co-colonized by two different STs at the

time of observing the divergent ST in the middle.

Finally, we compute acquisition and clearance rates using our model, and compare those to

the ones obtained with the common strategy of using a fixed distance threshold. For the pur-

poses of this exposition, we define the acquisition racq and clearance rates rclear informally as

racq ¼
Bþ C þ E

G
; rclear ¼

D
Aþ Bþ C þ D

; ð32Þ

where the quantities A, B, C, D and E denote the numbers of possible events in consecutive

samples (e.g. acquisition, replacement, clearance, or no change) defined in detail in Table 3.

Also, G is the total number of possible events over the whole data. The quantities A, B, D and E
are random variables that depend on the same/different strain posterior probabilities and, con-

sequently, we also compute the uncertainty estimates for these quantities in Eq 32. Number C

is a constant because an observed change of ST always indicates an actual change of ST as well.

Table 2. The estimated numbers (mean, 95% CI in parenthesis) of cases with genomes in the beginning and in the

end of the pattern being from the same or different strain, for three different patterns in the Project CLEAR

MRSA data, and the estimated proportion of the same strain cases.

same strain/n diff. strain/n same strain prop.

STA! STA 199(199, 200)/224 24(24, 25)/224 0.89(0.84, 0.92)

STA! ;! . . .! STA 20(20, 21)/29 9(8, 9)/29 0.69(0.49, 0.84)

STA! STB! . . .! STA 12(12, 12)/18 6(6, 6)/18 0.65(0.41, 0.83)

“STA! STA” denotes the case where the ST does not change between two genomes at consecutive samples, “STA!

;! . . .! STA” is the pattern 1) where one or more negative samples are seen between the same ST and “STA!

STB! . . .! STA” is the pattern 2) where a sample with different ST is observed between two samples of the same

ST. n denotes the number of data points in each alternative.

https://doi.org/10.1371/journal.pcbi.1006534.t002

Table 3. Estimated numbers (posterior means) of different patterns A-E of consecutive samples and the estimated

acquisition and clearance rates (mean, 95% CI in parenthesis).

event expected number

A: STA, strX! STA, strX 250

B: STA, strX! STA, strY 24

C: STA! STB 45

D: STA, strX! ; 100

E: ; ! STA, strX 17

rate parameter post. estimate threshold-based estimate

acquisition rate racq 0.16(0.15, 0.16) 0.15

clearance rate rclear 0.24(0.24, 0.24) 0.23

Above, ST denotes sequence type as before, str denotes the strain and symbol ; denotes a negative sample i.e. no

bacteria detected.

https://doi.org/10.1371/journal.pcbi.1006534.t003
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For cases with one or more negative samples (denoted by ;) between two positive samples, we

do not know when the clearance and acquisition events took place and whether the negative

samples are “false negatives”. To handle these cases, we parsimoniously assume that a missing

observation between two positive samples that are inferred to come from the same strain is

a false negative (i.e. that the same strain was present also in the middle, even if it was not

detected), and record these events in the groups A-E accordingly. Details on how we unambig-

uously determine the group for all special cases is provided in the Supplementary material.

The estimated acquisition and clearance rates with 95% credible intervals are shown on

the last two lines of Table 3. For comparison, we also computed these rates otherwise similarly

but using a fixed distance threshold of 40 mutations, a value used in [10], to determine if two

genomes are from the same strain or not. We see that the threshold-based estimates are rela-

tively similar to, and only slightly smaller than the estimates from our model. The explanation

for the similarity of summaries such as the acquisition and deletion rates is that, when estimat-

ing these quantities across the whole data set, the uncertainty gets averaged out, even if some

individual data points exhibit a lot of uncertainty regarding whether they are the same strain

or not (see Fig 7). Importantly, while being consistent with the previous results, our model

bypasses the task of heuristically choosing a single threshold and adds uncertainty estimates

around the point estimates, crucial for drawing rigorous conclusions.

Assessing the goodness-of-fit of the model for the Project CLEAR MRSA

data

As the last part of our analysis, we use posterior predictive checks to assess the quality of the

model, see e.g. [16] for further details. Briefly, this consists of simulating replicated data sets

Drep,(j) from the fitted mixture model and comparing these to the observed data D for any

systematic deviations. Any discrepancies between the observed and simulated data can be

used to criticise the model and understand how the model could be improved. In practice,

simulating replicate data is done by simulating a parameter vector θ(j) from the posterior (by

using the existing MCMC chain) and simulating a new set of distance-time difference pairs

ð~dðjÞi ;~t
ðjÞ
i Þ; i ¼ 1; . . . ;N in Drep,(j) from the model using θ(j). To obtainM replicates this proce-

dure is repeated for j = 1, . . .,M.

Example replicate data sets are shown in Fig 8. Overall, the simulated distances are similar

to the corresponding observations. Small distances are most frequent, and the frequency

decreases with increasing distance. Occasional large distances (di> 20) occur only rarely, in

keeping with the observed data. A minor discrepancy is that the fitted model tends to underes-

timate the frequency of distance zero while small positive distances tend to occur more fre-

quently than observed. This could happen because we estimated the empirical densities

psim(di1|neff, μ) using a constant time of 6, 000 (i.e. 1 year) since the acquisition (as discussed in

Section Bayesian inference for the mixture model), which may lead to a slight overestimation

of the distances. To explore the impact of this assumption further, we repeated the analysis so

that we computed the densities psim(di1|neff, μ) at a constant time of 1, 000 generations. How-

ever, the mismatch did not disappear completely and the estimated mutation rate increased

as a result to compensate for the occurrence of greater distances, in disagreement with the

prior density from the ABC analysis and data D0. We thus believe that the current model is

adequate.

Discussion

We presented a new model for the analysis of clearance and acquisition of bacterial coloniza-

tion, which, unlike previous approaches, does not rely on a heuristic fixed distance threshold

A Bayesian model of acquisition and clearance of bacterial colonization
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to determine whether genomes observed at different times points are from the same or dif-

ferent acquisition. Fully probabilistic, the model automatically provides uncertainty esti-

mates for all relevant quantities. Furthermore, it takes into account the variation in the time

intervals between pairs of consecutive samples. Another benefit is that the model can easily

incorporate additional external data to inform about the values of the parameters. To fit the

model, we developed an innovative combination of ABC and MCMC, based on an underly-

ing mixture model where one of the component distributions was formulated empirically by

simulation.

We demonstrated the model using data on S. aureus genomes sampled longitudinally

from multiple patients. Our analysis provided evidence for occasional co-colonization and

Fig 8. Model validation using posterior predictive checking. The histogram in the upper left corner shows the observed distance

distribution in the Project CLEAR MRSA data, the other figures in the top two rows show the corresponding distances in replicate

data sets simulated from the fitted model. The bottom two rows show the same histograms zoomed to range [0, 50]. The replicate

data sets look overall similar to the observed data, demonstrating the adequacy of the model. However, the amount of zero distances

is underestimated and the frequencies of small positive distances tend to be slightly overestimated.

https://doi.org/10.1371/journal.pcbi.1006534.g008
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identified likely false negative samples. The output of the model consists of the same vs. dif-

ferent strain probability for any pair of genomes, and, by using this information to decide

(probabilistically) when and where the colonizing strain had changed, the acquisition and

clearance rates were easy to calculate. Estimates of these parameters were found to be in

agreement with previous estimates derived using a fixed threshold, but now we were able to

provide confidence intervals, essential for drawing rigorously supported conclusions. We

believe such analyses are common enough that our method should be useful for many, and,

consequently, we provide it as an easy-to-use R-code. The code includes tools for both the

ABC-inference to incorporate external data of distance distributions between multiple sam-

ples at a given time point (or two time points), and the MCMC-algorithm. We note that our

method does not assume recombination. Therefore, we recommend removing recombina-

tions by preprocessing the genomes with one of the standard methods [35–37], as we did in

our analysis. While our analysis demonstrated that the external data may reduce uncertainty

in the resulting posterior, we also saw that the method may work without such data. In the

latter case the input is simply a list of distance-time difference pairs for genomes sampled

from the same patient at consecutive time points, and it is sufficient to run the MCMC,

which is efficient and fast in typical cases.

A central component of our approach is a model for within-host variation, required to

determine how much variation can be expected if the genomes at different time points have

evolved from the same strain obtained in a single acquisition. We selected for this purpose

the basic Wright-Fisher model assuming constant population size and mutation rate with the

understanding that these assumptions are expected to be violated to some extent in any realis-

tic data set, but the benefits of simplicity include robustness of the conclusions to prior distri-

butions and identifiability of the parameters from the available data. More complex models

have been fitted to the distance distributions (our external data D0), assuming the population

size first increases and then decreases [14]. However, our model can fit the same data with

fewer parameters, which justifies the simpler alternative. Furthermore, the constant population

size may also be seen as a sensible model for persistent colonization. An interesting future

research question is what additional data should be collected in order to be able to fit one of

the possible extensions of the basic model.

Other methods have been recently designed for the purpose of inferring transmission

events between related patients [38]. However, the goal of our method is different: to study

the dynamics of acquisition and clearance of colonization using data from independent

patients. Nevertheless, a potential extension of our model that could allow studying transmis-

sion between closely related individuals, e.g., within a household, would include multiple inter-

connected populations, one for each possible host, similar to what is considered here for a

single host. Yet another direction that we are currently pursuing is to extend the model to

cover genomes sampled from multiple body sites.

Supporting information

S1 File. Derivations and further details of the model. We provide some further derivations

and details related to our MCMC algorithm. To guide the selection of prior hyperparameters,

we also derive the explicit prior distribution and some of its summaries for the parameter t0

and the mean and variance for the prior predictive distribution for the distance. We show

some further ABC inference results and also describe further details on computing the acquisi-

tion and clearance rates.

(PDF)
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