UCLA
UCLA Previously Published Works

Title
Unsupervised record matching with noisy and incomplete data

Permalink
https://escholarship.org/uc/item/9nv6tlpl|

Journal
International Journal of Data Science and Analytics, 6(2)

ISSN
2364-415X

Authors

van Gennip, Yves
Hunter, Blake
Ma, Anna

Publication Date
2018-09-01

DOI
10.1007/s41060-018-0129-7

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9nv6t1p1
https://escholarship.org/uc/item/9nv6t1p1#author
https://escholarship.org
http://www.cdlib.org/

1704.02955v1 [cs.DB] 10 Apr 2017

arxXiv

Noname manuscript No.
(will be inserted by the editor)

Unsupervised record matching with noisy and incomplete

data

Yves van Gennip - Blake Hunter -
Ryan de Vera : Andrea L. Bertozzi

Abstract We consider the problem of duplicate de-
tection: given a large data set in which each entry
has multiple attributes, detect which distinct en-
tries refer to the same real world entity. Our method
consists of three main steps: creating a similarity
score between entries, grouping entries together into
‘unique entities’, and refining the groups. We com-
pare various methods for creating similarity scores,
considering different combinations of string match-
ing, term frequency-inverse document frequency meth-
ods, and n-gram techniques. In particular, we intro-
duce a vectorized soft term frequency-inverse docu-
ment frequency method, with an optional refinement
step.

We test our method on the Los Angeles Police
Department Field Interview Card data set, the Cora
Citation Matching data set, and two sets of restau-
rant review data. The results show that in certain

Y. van Gennip
University of Nottingham
E-mail: Y.VanGennip@nottingham.ac.uk

B. Hunter
Claremont McKenna College
E-mail: bhunter@cmec.edu

A. Ma
Claremont Graduate University
E-mail: anna.ma@cgu.edu

D. Moyer
University of Southern California
E-mail: moyerd@usc.edu

R. de Vera
formerly California State University, Long Beach
E-mail: ryan.devera.03@gmail.com

A. L. Bertozzi
University of California, Los Angeles
E-mail: bertozzi@math.ucla.edu

Anna Ma -

Daniel Moyer -

parameter ranges soft term frequency-inverse doc-
ument frequency methods can outperform the stan-

dard term frequency-inverse document frequency method;

they also confirm that our method for automatically
determining the number of groups typically works
well in many cases and allows for accurate results in
the absence of a priori knowledge of the number of
unique entities in the data set.

Keywords duplicate detection - data cleaning -
data integration - record linkage - entity matching -
identity uncertainty - transcription error

1 Introduction

Fast methods for matching records in databases that
are similar or identical have growing importance as
database sizes increase [37,3911L211[1]. Slight errors
in observation, processing, or entering data may cause
multiple unlinked nearly duplicated records to be
created for a single real world entity. Furthermore,
records are often made up of multiple attributes, or
fields; a small error or missing entry for any one of
these fields could cause duplication.

For example, one of the data sets we consider
in this paper is a database of personal information
generated by the Los Angeles Police Department
(LAPD). Each record contains information such as
first name, last name, and address. Misspellings, dif-
ferent ways of writing names, and even address changes
over time, can all lead to duplicate entries in the
database for the same person.

Duplicate detection problems do not scale well.
The number of comparisons which are required grows
quadratically with the number of records, and the

Yves van Gennip et al.

number of possible subsets grows exponentially. Un-
linked duplicate records bloat the storage size of the
database and make compression into other formats
difficult. Duplicates also make analyses of the data
much more complicated, much less accurate, and
may render many forms of analyses impossible, as
the data is no longer a true representation of the
real world. After a detailed description of the prob-
lem in Section [2] and a review of previous methods
in Section [3] we present in Section [] a vectorized
soft term frequency-inverse document frequency (soft
TF-IDF) solution for string and record comparison.
In addition to creating a vectorized version of the
soft TF-IDF scheme we also present an automated
thresholding and refinement method, which uses the
computed soft TF-IDF similarity scores to cluster to-
gether likely duplicate. In Section [5] we explore the
performances of different variations of our method
on four duplicates containing text databases.

2 Terminology and problem statement

We define a data set D to be an n X a array where
each element of the array contains a string (possibly
the empty string). We refer to a column as a field,
and denote the k** field c*. A row is referred to as
a record, with r; denoting the i" record of the data
set. An element of the array is referred to as an en-
try, denoted e; ; (referring to the i'" entry in the
jth field). Each entry can contain multiple features
where a feature is a string of characters. There is sig-
nificant freedom in choosing how to divide the string
in entry e;; into multiple features. In this paper in
our implementations of soft TF-IDF (Section [3.3)),
we compare two different methods: (1) cutting the
string at white spaces and (2) dividing the string
into N-grams. For example, consider an entry e;;
containing the string “Albert Einstein”. Following
method (1) this entry has two features: “Albert”
and “Einstein”. Method (2), the N-gram represen-
tation, creates features fF,..., f¥, corresponding to
all possible substrings of e; ; containing N consec-
utive characters (if an entry contains N characters
or fewer, the full entry is considered to be a single
token). Hence L is equal to the length of the string
minus (N —1). In our example, if we use N = 3, ¢, ;
has 13 features. Ordered alphabetically (with white

W

space preceding “A”), the features are

f{c — « Ei”7 f2k _ “Alb”, féc — LLEHnw7 fic — “ber”,

féc _ “ein”, féc _ “ert”, f’? _ “ins”, fsk _ “1be”,
kE _ « i kE _ o« 9 kE _ « 3 kE _ « i

Jo = “nst”, fio= "t 7, fi5 = “ste”, fiy ="t E7,

ff3 - “tei”.

In our applications we remove any N-grams that
consist purely of white space.

When discussing our results in Figure [3|and Sec-
tions [f] and [6] we will specify where we have used
method (1) and where we have used method (2), by
indicating if we have used word features or N-gram
features respectively.

For each field we create a dictionary of all fea-
tures in that field and then remove stop words or
words that are irrelevant, such as “and”, “the”, “or”,
“None”, “NA” or “” (the empty string). We refer
to such words collectively as “stop words” and to
this reduced dictionary as the “set of features”, f*,
where:

fk = (ff7f2kv . '7f7]:7,717f’r’:7,)7
for m features. The dictionary represents an ordered
set of unique features found in field c*.

Note that m, the number of features in the dic-
tionary, depends on k, since a separate dictionary
is constructed for each field. To keep the notation
as simple as possible, we will not make this depen-
dence explicit in our notation. Since, in this paper,
m is always used in the context of a given, fixed k,
this should not lead to confusion.

We will write ff € e;), if the entry e; j, contains
the feature f]k . Multiple copies of the same feature
can be contained in any given entry. This will be
explored further in Section Note that an entry
can be “empty” if it only contains stop words, since
no features in the dictionary can represent it.

We refer to a subset of records as a cluster and
denoteit R = {ry,,...,r, } whereeacht; € {1,2,...n}
is the index of a record in the data set.

The duplicate detection problem can then be stated

as follows: given a data set containing duplicate records,

find clusters of records that represent a single entity,
i.e., the sets of records that are duplicates of each
other. Duplicate records, in this sense, are not iden-
tical records but ‘near identical’ records. They are
allowed to vary due to spelling errors or missing en-
tries.

Unsupervised record matching with noisy and incomplete data 3

3 Existing methods

Numerous algorithms for duplicate detection already
exist, including various probabilistic methods [I8],
string comparison metrics [17,36], feature frequency
methods [29], and hybrid methods [9]. Here we present
a brief overview of those methods which are related
to the new method we introduce in Section dl We re-
view both the Jaro and Jaro- Winkler string metrics,
the feature frequency based term frequency-inverse
document frequency (TF-IDF) method, and the hy-
brid soft TF-IDF method.

3.1 Character-based similarity: Jaro and
Jaro-Winkler

Typographical variations are a common cause of du-
plication among string data, and the prevalence of
this type of error motivates string comparison as a
method for duplicate detection. The Jaro distance
[I7] was originally devised for duplicate detection
in government census data and modified by Win-
kler [36] to give more favorable similarities to strings
with matching prefixes. This latter variant is now
known as the Jaro-Winkler string metric and has
been found to be comparable empirically with much
more complex measures [9]. Despite their names, nei-
ther the Jaro distance, nor the Jaro-Winkler metric,
are in fact distances or metrics in the mathemati-
cal sense, since they do not satisfy the triangle in-
equality, and exact matches have a score of 1, not 0.
Rather, they are similarity scores.

To define the Jaro-Winkler metric, we must first
define the Jaro distance. For two features f}" and fJ,
we define the character window size

iy [ELUED

where |f¥| is the length of the string fF¥, i.e., the
number of characters in fF counted according to
multiplicity. The I*" character of the string fF is said
to match the """ character of fj’-“, if both characters
are identical and | — W, ; < I' < 1+ W, ;. Let M
be the number of characters in string f¥ that match
with characters in string fj’C (or, equivalently, the
number of characters in f]’C that match with charac-
ters in fF), let (aq,...,anr) be the matched charac-
ters from fF in the order they appear in the string

% and let (by,...,by) be the matched characters
from f§ in order. Then ¢ is defined to be half the
number of transpositions between fF and f]’-“, ie.,

half the number of indices I € {1,..., M} such that
a; # b;. For this reason, each such pair (a;,b;) can
be called a transposition pair. Now the Jaro distance
7] J(fF, £F) is defined as

J(zk’fyk) =
1/ M M M—t)
==+ +——), fM#0,
3Qﬁ||ﬁ| M
0, if M =0.

Figure [I] shows an example of transpositions and
matching character pairs.

NI THOWLG
\'\
N1 GHTOWL

Fig. 1: Example of a comparison of two features in
the computation of the Jaro distance, with character
window size W = 4. The example has 7 matching
character pairs, 2 of which are transposition pairs,
represented by the red lines. The green lines indicate
matching pairs that are not transpositions. Notice
that “G” is not considered a matching character as
“G” in “NITHOWLG” is the 8th character while
“G” in “NIGHTOWL” is the 3rd character, which
is out of the W = 4 window for this example. Here,
J=3E+I+5) =0869.

The Jaro-Winkler metric, JW (fF, fjk), modifies
the original Jaro distance by giving extra weight to
matching prefixes. It uses a fixed prefix factor p to
give a higher similarity score to features that match
from the beginning for a prefix length ¢; ;. Given two
features f¥ and f¥, the Jaro-Winkler metric is

JUEF), (1)

where J(fF, ff) is the Jaro distance between two
features fF and f]’-“, p is a given prefix factor, and ¢; ;
is the number of prefix characters in f¥ that match
prefix characters in fjk When we want to stress that,
for fixed k, JW (f,fj’?) is an element of a matrix,
we write Jij = JW(fF fjk), such that JWk €

7
Rmxm

JW(zk7f]k) = J(Zk7fjk)+p£i7j (1 -

In Winkler’s original work he set p = 0.1 and re-
stricted ¢; ; < 4 (even when prefixes of five or more
characters matched) [36]. We follow the same pa-
rameter choice and restriction in our applications in
this paper. So long as p¢; ; <1 for all 7, j, the Jaro-
Winkler metric ranges from 0 to 1, where 1 indicates

Yves van Gennip et al.

exact similarity between two features and 0 indicates
no similarity between two features.

In Figure [I] we have ¢ = 2, as both features
have identical first and second characters, but not
a matching third character. This leads to JW =
0.869+0.1-2- (1 —0.869) = 0.895.

Because we remove stop words and irrelevant words
from our set of features, it is possible for an entry
to contain a feature that does not appear in the re-
duced set of features f*. If a feature f € e;,;, does not
appear in the dictionary f*, we set, for all f(f c fk,
JW (fk f) := 0. We call such features f null fea-

q)
tures.

Algorithm 1: Jaro-Winkler Algorithm
Data: c*, an n x 1 array of text
Result: Wk ¢ RmXxm™m
Create the set of features f* = (fF,..., fk)
for each pair of features (fF, fjk) do

Compute Jaro distance J; ; = J(fF, f]k)
Compute Jaro- Winkler similarity JWfJ =

Jij +pli;(1—J;5), if neither feature
fE or fjk is a
null feature,

0, else

end

3.2 Feature-based similarity: TF-IDF

Another approach to duplicate detection, generally
used in big data record matching, looks at similar
distributions of features across records. This feature
based method considers entries to be similar if they
share many of the same features, regardless of order;
this compensates for errors such as changes in article
usage and varying word order (e.g. “The Bistro”,
“Bistro, The”, or “Bistro”), as well as the addition
of information (e.g. “The Bistro” and “The Bistro
Restaurant”).

This form of duplicate detection is closely related
to vector space models of text corpora [30], where a
body of text is represented as a vector in some word
vector space. The dimension of the space is the num-
ber of relevant words (other words are assumed to
be meaningless), and, for a given record, each ele-
ment of the vector representation is the frequency
with which a word appears in the entry. (It should

be noted that these models also disregard word or-
der.) A more powerful extension of these models
is the term frequency-inverse document frequency
(TF-IDF) scheme [29]. This scheme reweighs differ-
ent features based on their frequency in a single field
as well as in an entry.

Using the reduced set of features, f*, we create
the term frequency and inverse document frequency
matrices. We define the term frequency matriz for
the kt* field, TF* € R™ ™ such that TFé“’j is the
number of times the feature fjk appears in the en-
try e; 1 (possibly zero). A row of TF* represents the
frequency of every feature in an entry.

Next we define the diagonal inverse document
frequency matriz IDF* € R™*™ with diagonal el-
ement
n

{eeck: fFee}|

where |{e € ¢* : fF € e}| is the number of entriesﬂ
in field ¢ containing feature f¥, and where n is the
number of records in the data set. The matrix IDF*
uses the number of entries in the field containing a
feature to give features a more informative weight.
The issue when using term frequency only, is that it
gives features that appear frequently a higher weight
than rare features, which often are empirically more
informative than common features. The basic intu-
ition is that a feature that occurs frequently in many
entries is not a good discriminator.

The resulting weight matrix for field k is then
defined with a logarithmic scaling for the term fre-
quency a

IDF7; :=log

TFIDF* := log(TF* + 1)IDF*, (2)

where 1 is an n X m matrix of ones and the log oper-
ation acts on each element of TF'* + 1 individually.
The resulting matrix has dimension n x m. Finally
we normalize each row of TFIDF* by its ¢! nornﬁ

1 We use log to denote the natural logarithm in this
paper.

2 By the construction of our set of features in Section
this number of entries is always positive.

3 Note that, following [9], we use a slightly differ-
ent logarithmic scaling, than the more commonly used
TFIDFﬁj = (log(TFﬁj) + 1)IDFf’i, if TFi.“,j # 0, and
TF]DFﬁj =0, if TF'f‘j = 0. This avoids having to deal
with the case TFf’j = 0 separately. The difference be-
tween log(TF§7j) + 1 and log(TFﬁj + 1) is bounded by 1
for TF f’ j > 1.

4 Here we deviate from [9], in which the authors normal-
ize by the £2 norm. We do this so that later in equation ,
we can guarantee that the soft TF-IDF values are upper
bounded by 1.

Unsupervised record matching with noisy and incomplete data 5

Each entry TFIDF f ; represents the weight assigned
to feature j in field £ for record i. Note that each
entry is nonnegative.

Algorithm 2: TF-IDF Algorithm

Data: ¢*, an n x 1 array of text
Result: TFIDF* ¢ RrX™

Create the set of features f* = (fF, ...
for each pair of features (fF, fjk) do

‘ Compute term frequency TFf’j

f)

end
for each feature fF do

‘ Compute inverse document frequency [DF?@
end
Initialize TFIDF* = log(TF* + 1)IDF*
Normalize rows of TFIDF*

3.3 Hybrid similarity: soft TF-IDF

The previous two methods concentrate on two dif-
ferent causes of record duplication, namely typo-
graphical error and varying word order. It is easy
to imagine, however, a case in which both types of
error occur; this leads us to a third class of meth-
ods which combine the previous two. These hybrid
methods measure the similarity between entries us-
ing character similarity between their features as
well as weights of their features based on importance.
Examples of these hybrid measures include the ex-
tended Jacard similarity and the Monge-Elkan mea-
sure [25]. In this section we will discuss another such
method, soft TF-IDF [9], which combines TF-IDF
with a character similarity measure. In our method,
we use the Jaro-Winkler metric, discussed above in
Section [3.1] as the character similarity measure in
soft TF-IDF.

For 6 € [0,1), let S(0, €; 1, €;,1) be the set of fea-
ture pairs (Z’f, f(f) such that fllf € ek, f(f € ejk, and
JW (fF, fF) > 6, where JW is the Jaro-Winkler sim-
ilarity metric from . The soft TF-IDF similarity
between two entries e; , and e; i, in field c* is defined
as

k. k k k rk
STFIDFY ; := " TFIDF¥ ;TFIDF% .JW (£}, f¥). (3)
,q such that
(f,’f,f%())es(e,ei‘k,ejyk)

The parameter 6 allows for stronger control over the
similarity of features, removing entirely pairs that
do not have Jaro-Winkler similarity above a certain

threshold. For the results presented in this paper, we
set 6 = 0.90.

Note from that for all 4, j, and k, we have
SIFIDF fj € [0,1]. However, we do not necessarily
have that SIFIDF¥, = 1, even though this might
be expected to hold for a similarity measure. Luck-
ily, these diagonal elements of SIFIDF* will not be
relevant in our method. For definiteness and com-
putational eaS(ﬂ, we redefine, for all £ and all 1,
STFIDFY, := 1.

In practice, this method’s computational cost is
greatly reduced by vectorization. Let M*¢ ¢ R™x™
be the Jaro-Winkler similarity matrix defined by

k0 . JW(fE IR, it W (fE fh) >0,
P.q 0, if JW(;f,fg) < 0.

The soft TF-IDF similarity for each (7, j) pairing
can then be computed as

STFIDFY; = S |(TPIDFE TRIDFY) « M%)
pg=1 b

where TFIDF? denotes the i" row of the TF-IDF
matrix of field ¢¥ and * denotes the Hadamard prod-
uct, or element-wise product. We can further sim-

—k,0
plify this using tensor products. Let M denote
the vertical concatenation of the rows of M*?.

koT
My

kol
— k.0 M,

M =
MEOT

where Mik’e is the " row of M*?. We then have:

STFIDF¥ ; = (TFIDF¥ @ TFIDFY) « 31"

where ® is the Kronecker product.
Finally we set (redefine) the diagonal elements
SIFIDFY, = 1.

The similarity matrices produced by the TF-IDF
and Jaro-Winkler are typically sparse. This sparsity
can be leveraged to reduce the computational cost
of the soft TF-IDF method as well.

5 The values of the diagonal elements are not relevant
theoretically, because any record is always a ‘duplicate’
of itself and trivially will be classified as such, i.e. each
record will be clustered in the same cluster as itself. How-
ever, if the diagonal elements do not have value 1, care
must be taken that this does not influence the numerical
implementation.

Yves van Gennip et al.

Algorithm 3: soft TF-IDF Algorithm

Data: JWF ¢ R™X™ TFIDFF ¢ R»X™ 9
Result: SFIDFF € R"*"

Create the set of features f* = (fF,..., fk)

for each pair of features (fF, fjk) do

Con]ngite the thresholded Jaro-Winkler matriz

@]
end
Vertically concatenate rows of M*:?:
R0 = [Mf’eT; Mzk’gT; R M.,I,Z’GT]
for each pair of entries (e; k,ej,k) in field c* do
Compute soft TF-IDF':
$IFIDF f ; = (TFIDF F ® TFIDF j’“) « M0

end
Set the diagonal elements éTFIDFf’i =1

The soft TF-IDF scores above are defined be-
tween entries for a single field. For each pair of records
we produce a composite similarity score SI'; ; by
adding their soft TF-IDF scores over all fields:

SI' =" STFIDF*. (4)
k=1

Hence, ST € R**" with SI'; ; the score between the
it" and j*" records. Remember that a is the number
of fields in the data set. Each composite similarity
score SI'; ; is a number between 0 and a.

For some applications it may be desirable to let
some fields have a greater influence on the composite
similarity score than others. In the above formula-
tion this can easily be achieved by replacing the sum
in by a weighted sum:

STy = wy STFIDF*,
k=1

for positive weights wy, € R, k € {1,...,a}. If the
weights are chosen such that ZZ:1 wy < a, then the
weighted composite similarity score ST, takes values
in [0, a], like ST'. In this paper we use the unweighted
composite similarity score ST'.

3.4 Using TF-IDF instead of soft TF-IDF

In our experiments in Section [5| we will also show
results in which we use TF-IDF, not soft TF-IDF,
to compute similarity scores. This can be achieved
in a completely analogous way to the one described

in Section if we replace by

STFIDF* := TFIDF* (TFIDF*)" € R ™,

where TFIDF* is the TF-IDF matrix from and
the superscript 7' denotes the matrix transpose. Note
that this is equivalent to setting

JW(y fk):‘spyq

prJq

in , with

1, ifp=gq,
Op,q = {07

otherwise,

the Kronecker delta.

All the other computations from Section [5] in
particular the computation of the composite simi-
larity score in (4, then continue as before.

4 New method

We extend the soft TF-IDF method to address two
common situations in duplicate detection: missing
entries and large numbers of duplicates. For data
sets with only one field, handling a missing field is
a non-issue; a missing field is irreconcilable, as no
other information is gathered. In a multi-field set-
ting, however, we are faced with the problem of com-
paring partially complete records. Another issue is
that a record may have more than one duplicate. If
all entries are pairwise similar we can easily justify
linking them all, but in cases where one record is
similar to two different records which are dissimilar
to each other the solution is not so clear cut.
Figure[2]shows an outline of our method. First we
use TF-IDF to assign weights to features that indi-
cate the importance of that feature in an entry. Next,
we use soft TF-IDF with the Jaro-Winkler metric
to address spelling inconsistencies in our data sets.
After this, we adjust for sparsity by taking into con-
sideration whether or not a record has missing en-
tries. Using the similarity matrix produced from the
previous steps, we threshold and group records into
clusters. Lastly, we refine these groups by evaluating
how clusters break up under different conditions.

4.1 Adjusting for sparsity

A missing entry is an entry that is either entirely
empty or one that contains only null features. Here,
we assume that missing entries do not provide any
information about the record and therefore cannot
aid us in determining whether two records should

Unsupervised record matching with noisy and incomplete data 7

f Raw data ﬁ
Create TF-IDF matrix ﬁ f Jaro-Winkler
Soft TF-IDF

=

Adjust for data sparsity

Threshold and group

g

Refinement

—

—

Unique Identifications

Fig. 2: An outline of our method for duplicate de-
tection

be clustered together (i.e. labeled as probable dupli-
cates). In [35], [36], and [2], records with missing en-
tries are discarded, filled in by human fieldwork, and
filled in by an expectation-maximization (EM) im-
putation algorithm, respectively. For cases in which
a large number of entries are missing, or in data
sets with a large number of fields such that records
have a high probability of missing at least one en-
try, these first two methods are impractical. Fur-
thermore, the estimation of missing fields is equiv-
alent to unordered categorical estimation. In fields
where a large number of features are present (i.e.
the set of features is large), the type of estimation
by EM scheme becomes computationally intractable
[26] [38] [16]. Thus, a better method is required.

Leaving the records with missing entries in our
data set, both TF-IDF and Jaro-Winkler remain well
defined, allowing soft TF-IDF schemes to proceed.
However, because the Jaro-Winkler metric for a null
feature and any other feature is 0, the soft TF-IDF
score between a missing entry and any other entry
is 0. This punishes sparse records in the composite
soft TF-IDF matrix SI'. Even if two records have
the exact same entries in fields where both records do
not have missing entries, their missing entries deflate
their composite soft TF-IDF similarity. Consider the
following example using two records and three fields:
[“Joe Bruin”, “”, “male”] and [“Joe Bruin’, “CA”,
“”]. The two records are likely to represent a unique
entity “Joe Bruin”, but the composite soft TF-IDF

score between the two records is on the lower end of
the similarity score range (0.33) due to the missing
entry in the second field for the first record and the
missing entry in the third field for the second record.
To correct for this, we take into consideration the
number of mutually present (not missing) entries in
the same field for two records.

This can be done in a vectorized manner to accel-
erate computation. Let B be an n X a binary matrix,
where a is the number of fields in the data set, such
that

0
Big =1
* {L

This is a binary mask of the data set, where 1
denotes a non-missing entry (with or without error),
and 0 denotes a missing entry. In the product BBT €
R™*" each (BBT);, ; is the number of “shared fields”
between records r; and 7, i.e. the number of fields c*
such that both e; and e; ; are non-missing entries.
Our “sparsity adjusted soft TF-IDF similarity” is
given by

adjST := [ST| @ (BBT), (5)

if e; ,, is a missing entry,

otherwise.

where @ denotes element-wise division.

Remembering that JW (zlf’ ff) =0if f}’f or f(;“ is
a null feature, we see that, if e; 5, or e; is a miss-
ing entry, then the set S(0,e;x,ejx) used in is
empty (independent of the choice of #) and thus
sTFIDFf,j = 0. Hence, we have that, for all 4,5 (i #
3), (ST)i; € [0,(BBT); ;] (which refines our earlier
result that (ST');; € [0,a]) and thus (adiST),; €
0,1

In particular, in the event that there are records
r; and r; such that (BBT)Z-,]- =0, we have SI'; ; = 0.
Hence, if (BB™);; = 0 and thus the expression in
is not defined for adjSI'; ;, we set adjSI'; ; = 0
instead. In the data sets we will discuss in Section 4,
no pair of records was without shared fields, and so
() suffices for our purposes in this paper.

4.2 Thresholding and grouping

The similarity score adjSI'; ; gives us an indication
of how similar the records r; and r; are. If adjSI'; ; is

6 Note that, since we artificially redefined the incon-
sequential diagonal entries to be éTFIDFf’i =1 in Sec-
tion it could be that (SI');,; > (BBT);,; for some i,
in which case we just redefine (adjSI");,; := 1 for consis-
tency with the other values. Remember that the diagonal
values will play no role in the eventual clustering.

Yves van Gennip et al.

Algorithm 4: Adjusting for Sparsity

Data: IFIDF* ¢ R*X" for k € {1,...,a}, D an
n X a array of text
Result: afiST € R™*™
for each entry e; i, in each field c* of D do
| Compute B; i
end
Initialize ST =Y, SIFIDF'*
Adjust ST for sparsity: adiST = ST @ BBT

close to 1, then the records are more likely to repre-
sent the same entity. Now, we present our method of
determining whether a set of records are duplicates
of each other based on adjST". There exist many clus-
tering methods that could be used to accomplish this
goal. For example, [24] considers this question in the
context of duplicate detection. For simplicity, in this
paper we restrict ourselves to a relatively straight-
forward thresholding procedure, but other methods
could be substituted in future implementations. We
call this the thresholding and grouping step (TGS).

The method we will present below is also appli-
cable to clustering based on other similarity scores.
Therefore it is useful to present it in a more general
format. Let SIM € R™ ™ be a matrix of similarity
scores, i.e., for all ¢, j, the entry SIM; ; is a similar-
ity score between the records r; and r;. We assume
that, for all ¢ # j, SIM; ; = SIM ;; € [O,a]ﬂ If we
use our adjusted soft TF-IDF method, SIM is given
by adiST from (). In Section [4.1] we saw that in that
case we even have SIM; ; € [0,1].

Let 7 € [0,a] be a threshold and let S be the
thresholded similarity score matrixz defined for i # j
as

1,
Sij = {0’

The outcome of our method does not depend on the
diagonal values, but for definiteness (and to simplify
some computations) we set S; ; := 1, for all 4. If we
want to avoid trivial clusterings (i.e. with all records
in one cluster, or with each cluster containing only
one record) the threshold value 7 must be chosen in
the half-open interval

if SIMZ'J' > T,
if SIMZ‘J‘ <T.

in SIM ; ; IM ;5|
(i, STV g, SIM

7 We will not be concerned with the diagonal values of
SIM , because trivially any record is a ‘duplicate’ of itself,
but for definiteness we may assume that, for all 4, SIM ; ; =
a.

Records r; and r; (i # j) are clustered together
(as probable duplicates) if at least one of the follow-
ing two conditions is satisfied:

1. S, =1,
2. there exists a record 7 (i # k # j) such that
Si,k =1 and Sj’k =1.

Note that (if we have set S;; = 1 as above) we can
combine both conditions into one condition: (S2); ; >
1. The output of the TGS is a clustering of all the
records in the data set, i.e. a collection of clusters,
each containing one or more records, such that each
record belongs to exactly one cluster.

The choice of 7 is crucial in the formation of clus-
ters. Choosing a threshold that is too low leads to
large clusters of records that represent more than
one unique entity. Choosing a threshold that is too
high breaks the data set into a large number of clus-
ters, where a single entity may be represented by
more than one cluster. Here, we propose a method
of choosing 7.

Let H € R™ be the n x 1 vector defined by

Hi ‘= max SIMZ"]y

JigF
where the maximum is taken over j = 1,...,n. In
other words, each element of H is the maximum sim-
ilarity score SIM ; ; between a fixed record and every
other record. Now define

u(H), clse,

o {M(H) + o(H),if p(H) + o(H) < max; H;,
H =

where p(H) is the mean value of H and o(H) is its
standard deviation.

In many of our runs (Figure|3alis a representative
example), there is a large peak of H values around
the mean value p(H). Choosing 7y = p(H) + o(H)
will typically place the threshold far enough to the
right of this peak so that the records correspond-
ing to this peak do not get clustered together, yet
also far enough removed from the maximum value
so that more than only the top matches get identi-
fied as duplicates. In some cases however, where the
distribution of H values has a peak near the maxi-
mum value (as, for example, in Figure, the value
w(H) + o(H) will be larger than the maximum and
we chose 7y = pu(H) instead.

It may not always be possible to choose a thresh-
old in such a way that all the clusters generated by
our TGS correspond well to sets of duplicates, as the
following example, illustrated in Figure[4] shows. We

Unsupervised record matching with noisy and incomplete data 9

FI_TFIDF
4500 T T

T T T
4000
3800
3000
2800
20001

1500

Mumber of occurrences in H

1000

500 | | I |
0 L

0 0.2 0.4 0B 08 1 1.2 1.4
“alues in H

(a) H corresponding to the TF-IDF method (with
word feature, without refinement step, see Section
applied to the FI data set. The red line is the chosen
value 7 = p(H)+o(H); the blue line indicates p(H).

RST_sTFIDFrefdy
=01} T T

S0

-
=]

In
=]

IS}
=]

Murmnber of occurrences in H

|l

L
015 02 0.25 03 0.358
“alues in H

(b) H corresponding to the soft TF-IDF method (with
3-gram features, with refinement, see Section ap-
plied to the RST data set. The blue line indicates
the chosen value 7y = p(H); the red line indicates
w(H) + o(H).

Fig. 3: Histograms of H for different methods applied
to the FI and RST data sets (see Section

consider an artificial toy data set for which we com-
puted the adjusted soft TF-IDF similarity, based on
seven fields. We represent the result of the TGS as
a graph in which each node represents a record in
the data set. We connect nodes i and j (i # j) by
an edge if and only if their similarity score SIM; ;
equals or exceeds the chosen threshold value 7. The
connected components of the resulting graph then
correspond to the clusters the TGS outputs.

For simplicity, the Figure [4] only shows the fea-
tures of each entry from the first two fields (first
name and last name). Based on manual inspection,
we declare the ground truth for this example to con-
tain two unique entities: “Joey Bruin” and “Joan

Lurin”. The goal of our TGS is to detect two clus-
ters, one for each unique entity. Using 7 = 5.5, we
find one cluster (Figure[4a)). Using 7 = 5.6, we do ob-
tain two clusters (Figure , but it is not true that
one cluster represents “Joe Bruin” and the other
“Joan Lurin”, as desired. Instead, one clusters con-
sists of only the “Joey B” record, while the other
cluster contains all other records. Increasing 7 fur-
ther until the clusters change, would only result in
more clusters, therefore we cannot obtain the desired
result this way. This happens because the adjusted
soft TF-IDF similarity between “Joey B” and “Joey
Bruin” (respectively “Joe Bruin”) is less than the ad-
justed soft TF-IDF similarity between “Joey Bruin”
(respectively “Joe Bruin”) and “Joan Lurin”. To ad-
dress this issue, we apply a refinement to each set of
clustered records created by the TGS, as explained
in the next section.

The graph representation of the TGS output turns
out to be a very useful tool and we will use its lan-
guage in what follows interchangeably with the ‘clus-
ter’ language.

Algorithm 5: Thresholding and grouping

Data: SIM = ST € R®"*" threshold value 7
(manual choice or automatic 7 = 7g)
Result: a collection of ¢ clusters C = {R1 ... R.}
for each i do
| Initialize S; ;s =1
end
for each pair of distinct records r; and r; do
| Compute S;,;
end
for each pair of distinct records r; and r; do
If (S2), ; =1, assign r; and r; to the same
cluster
end

4.3 Refinement

As the example in Figure [4 has shown, the clus-
ters created by the TGS are not necessarily com-
plete subgraphs: it is possible for a cluster to contain
records 7y, r; for which S; ; = 0, while also contain-
ing a record 73, such that S;;, = 1 and S;, = 1
(i £ j # k #14). In such cases it is a priori unclear if
the best clustering is indeed achieved by grouping r;
and r; together or not. We introduce a way to refine
clusters created in the TGS, to deal with situations

10

Yves van Gennip et al.

THRESHOLD =5.5

Joey Bruin

Joan L

Joey Bruin

Joan Lurin

Joe Bruin

Joan L

Joey B

(a) Result of the TGS with 7 = 5.5

THRESHOLD = 5.6

Joey Bruin

Joan L

Joey Bruin

Joan Lurin

Joe Bruin

Joan L
Joey B

(b) Result of the TGS with 7 = 5.6

Fig. 4: Two examples of clusters created by the TGS
applied to an artificial data set, with different thresh-
old values 7

like these. We take the following steps to refine a
cluster R:

1. determine whether R needs to be refined by de-
termining the cluster stability with respect to sin-
gle record removal;

2. if R needs be to refined, remove one record at a
time from R to determine the “optimal record”
r* to remove;

3. if r* is removed from R, find the subcluster that
r* does belong to.

Before we describe these steps in more detail, we
introduce more notation. Given a cluster (as deter-
mined by the TGS) R = {r;,...,7,} containing
p records, the thresholded similarity score matrix
of the cluster R is given by the restricted matrix
S|r € RP*P with elements (S|r)i; := St Re-
member we represent R by a graph, where each node
corresponds to a record 7, and two distinct nodes

are connected by an edge if and only if their corre-
sponding thresholded similarity score (S|g);,; is 1. If
a record r¢,; is removed from R, the remaining set of
records is

R(ry,) :== {re,, .. ii1s- Tt t- We define the
subclusters Ry, ... Rq of R(r,) as the subsets of nodes
corresponding to the connected components of the
subgraph induced by R(r(t;)).

Tt Tt

Step 1. Starting with a cluster R from the TGS, we
first determine if R needs to be refined, by investi-
gating, for each ry, € R, the subclusters of R(r,).
If, for every r;, € R, R(r:,) has a single subcluster,
then R need not be refined. An example of this is
shown in Figure [If there is an r;, € R, such that
R(r;) has two or more subclusters, then we refine
R.

Step 2. For any set R consisting of p records, we
define its strength as the average similarity between
the records in R:

if p > 2, (6)

Note that s(R) = 1 if S|z = 17*? }| In other words,
a cluster has a strength of 1 if every pair of records
in that cluster satisfy condition 1 of the TGS.

If in Step 1 we have determined that the cluster R
requires refinement, we find the optimal record r* =
7¢,. such that the average strength of subclusters of
R(r*) is maximized:

k* = arggnax e} Z s(R;).

Here the sum is over all j such that R; is a subcluster
of R(t;), and ¢(7) is the (i-dependent) number of
subclusters of R(¢;). In the unlikely event that the

maximizer is not unique, we arbitrarily choose one
of the maximizers as k*.

Step 3. After finding the optimal r* to remove, we
now must determine the subcluster to which to add
it. To do so, we evaluate the strength of the set R; U
{r*} C R, for each subcluster R; C R(r*). We then

add r* to subcluster R* = R+, where
* L . *
I":= argmax s(R; U{r*}).
ji Rj is a subcluster
of R(r*)

8 Tt suffices if the off-diagonal elements satisfy this
equality.

Unsupervised record matching with noisy and incomplete data 11

Fig. 5: An example of a cluster R that does not require refinement. Each node represents a record. In each
test we remove one and only one node from the cluster and apply TGS again. The red node represents the
removed record 71¢,, the remaining black nodes make up the set R(t;). Notice that every time we remove a
record, all other records are still connected to each other by solid lines, hence R does not need to be refined.

In the rare event that the maximizer is not unique,
we arbitrarily choose one of the maximizers as [*.

We always add r* to one of the other subclusters
and do not consider the possibility of letting {r*}
be its own cluster. Note that this is justified, since
from our definition of strength in (6), s({r*}) =0 <
s(Ry» N {r*}), because r* was connected to at least
two other records in the original cluster R.

Finally, the original cluster R is removed from
the output clustering, and the new clusters
Ry,... Ry« 1, R*, Rp= 41, . . ., Ry(3~) are added to the
clustering.

Figure[6]shows an example of how the refinement
helps us find desired clusters.

In our implementation, we computed the optimal
values k* and [* are via an exhaustive search over all
parameters. This can be computationally expensive
when the initial threshold 7 is small, leading to large
initial clusters.

5 Applications
5.1 The data sets

The results presented in this section are based on
four data sets: the Field Interview Card data set
(FI), the Restaurant data set (RST), the Restau-
rant data set with entries removed to induce spar-
sity (RST30), and the Cora Citation Matching data
set (Cora). FI is not publicly available at the mo-

Algorithm 6: Refinement
Data: R = {r,,..
the TGS
Result: R set of refined clusters
if there ewxists ry, such that R(r:,) has more than 1
subcluster then
for each ry, € R do
Find the subclusters Ry, ..
Compute % G—18(Ry)

.,T¢, } a cluster resulting from

.Rq of R(ry,)

end

Assign r* =14, where
k* = argmax, % Z?:l s(Ry)

for each subcluster R; C R(r*) do
| Compute s(R; U {r*})

end

Assign R* = (Ry» U {r*}) where
I* = argmax; s(R; U{r*})

R={R1,...,Ri-—1,Ri~,Ri~41,..., R~}
end
else
| Do not refine R: R = {R}
end

ment. The other data sets currently can be found at
[27]. Cora can also be accessed at [4]. RST and Cora
are also used in [6] to compare several approaches to
evaluate duplicate detection.

FI This data set consists of digitized Field Inter-
view cards from the LAPD. Such cards are created
at the officer’s discretion whenever an interaction oc-
curs with a civilian. They are not restricted to crim-
inal events. Each card contains 61 fields, including

12

Yves van Gennip et al.

THRESHOLD = 5.5

Joey Bruin

Joan L

Joey Bruin

Joan Lurin

Joe Bruin

Joey B

Joey Bruin THRESHOLD = 5.5

Joan L

Joey Bruin

Joan Lurin

Joe Bruin

Joey B

Fig. 6: An example of how refinement is used to im-
prove our clusters. The left figure shows that by re-
moving the record “Joan Lurin”, we obtain the two
desired subsets. The right figure shows that “Joan
Lurin” is inserted back into the appropriate cluster.
Note that we have not changed the threshold value
7 during this process.

first name, last name, suffix, date of event, location
of event, social security number, residential address,
gang affiliation, and gang moniker. The latter two
are based on expert knowledge. A subset of this data
set is used and described in more detail in [I3]. The
FI data set has 8,834 records, collected during the
years 2001-2011. A ground truth of unique individ-
uals is available, based on expert opinion. There are
2,920 unique people represented in the FI Card data
set. The FI card data set has many misspellings as
well as different names that correspond to the same
individual. Another issue is variation over time: a
given person is not guaranteed to have the same real
world home address in two separate observations,
and thus we would not necessarily expect to have
matching address fields in our data, regardless of

human error. Approximately 30% of the entries are
missing, but the “last name” field is without missing
entries.

RST This data set is a collection of restaurant infor-
mation based on reviews from Fodor and Zagat, col-
lected by Dr. Sheila Tejada [32], who also manually
generated the ground truth. It contains five fields:
restaurant name, address, location, phone number,
and type of food. There are 864 records containing
752 unique entities/restaurants. There are no miss-
ing entries in this data set. The types of errors that
are present include word and letter transpositions,
varying standards for word abbreviation (e.g. “deli”
and “delicatessen”), typographical errors, and con-
flicting information (such as different phone numbers
for the same restaurant).

RSTS30 To be able to study the influence of sparsity
of the data set on our results, we remove approx-
imately 30% of the entries from the address, city,
phone number and type of cuisine fields. The result-
ing data set we call RST30. We choose the percent-
age of removed entries to correspond to the percent-
age of missing entries in the FI data set. Because the
FI data set has a field that has no missing entries,
we do not remove entries from the “name” field.

Cora The records in the Cora Citation Matching
data selﬂ are citations to research papers [22]. Each
of Cora’s 1,295 records is a distinct citation to any
one of the 122 unique papers to which the data set
contains references. We use three fields: author(s),
name of publication, and venue (name of the journal
of publication). This data set contains misspellings
and a small amount of missing entries (approximately

3%).

5.2 Evaluation metrics

We compare the performances of the methods sum-
marized in Table[I] Each of these method outputs a
similarity matrix, which we then use in the TGS to
create clusters.

To evaluate the methods, we use purity [I5], in-
verse purity, their harmonic mean [14], the relative
error in the number of clusters, precision, recall [10,

9 The Cora data set should not be confused with the
Coriolis Ocean database ReAnalysis (CORA) data set.

Unsupervised record matching with noisy and incomplete data 13

Name Similarity Features | Ref.
matrix
TFIDF Section [3.4 words no
TFIDF 3g Section [3.4 3-grams no
sTFIDF ST from (4 words no
sTFIDF 3g ST from (4 3-grams no
sTFIDF ref ST from (4 words yes
sTFIDF 3g ref | SI' from (4 3-grams | yes

Table 1: Summary of methods used. The second,
third, and fourth columns list for each method which
similarity score matrix is used in the TGS, if words
or 3-grams are used as features, and if the refinement
step is applied after TGS or not, respectively. The
similarity score matrix refers to either the matrix
from equation or the alternative as explained in

Section

7], the F-measure (or Fy score) [28/5], z-Rand score
[23.33], and normalized mutual information (NMI)
[31], which are all metrics that compare the output
clusterings of the methods with the ground truth.

Purity and inverse purity compare the clusters of
records which the algorithm at hand gives with the
ground truth clusters. Let C := {Ry, ..., R.} be the
collection of ¢ clusters obtained from a clustering al-
gorithm and let C' := { R}, ..., R. } be the collection
of ¢’ clusters in the ground truth. Remember that n
is the number of records in the data set. Then we
define purity as

c

1
Pur(C,C) = —) max |R; N R,
—y <jsce!

where we use the notation |A| to denote the cardi-
nality of a set A. In other words, we identify each
cluster R; with (one of the) ground truth cluster(s)
R;- which shares the most records with it, and com-
pute purity as the total fraction of records that is
correctly classified in this way. Note that this mea-
sure is biased to favour many small clusters over a
few large ones. In particular, if each record forms its
own cluster, Pur = 1. To counteract this bias, we
also consider inverse purity,

’
(&

1
Inw(C,C") := Pur(C',C) = = max |R; N R;|.

n 4~ 1<j<e
=1

Note that inverse purity has a bias that is opposite
to purity’s bias: if the algorithm outputs only one
cluster containing all the records, then Iw = 1.

We combine purity and inverse purity in their
harmonic mea

2Pur x Inw
HM(C,CI) = m

The relative error in the number of clusters in C
is defined as
lle] =il _ Je=¢/|

IC’| d

We define precision, recall, and the F-measure
(or F; score) by considering pairs of clusters that
have correctly been identified as duplicates. This dif-
fers from purity and inverse purity as defined above,
which consider individual records. To define these
metrics the following notation is useful. Let G be
the set of (unordered) pairs of records that are dupli-
cates, according to the ground truth of the particular
data set under consideration,

G:={{r,s}:r#sand 3R €' s. t. r,s € R'},

and let C be the set of (unordered) record pairs that
have been clustered together by the duplicate detec-
tion method of choice,

C:={{r,s}:r#sand JR€Cs. t. 1,5 € R}.

Precision is the fraction of the record pairs that
have been clustered together that are indeed dupli-
cates in the ground truth,

CNG|
Pre(C,C) = |7,
C|
and recall is the fraction of record pairs that are du-
plicates in the ground truth that have been correctly
identified as such by the method

_|cng|

Rec(C,C') : Il

The F-measure or Fy score is the harmonic mean of
precision and recall,

Pre(C,C") x Rec(C,C") |C NG|
F(,C'):=2 : : =2 .
(€.C) Pre(C,C") + R(C,C") |G|+ |C|
Note that in the extreme case in which |C| = n,

i.e. the case in which each cluster contains only one
record, precision, and thus also the F-measure, are
undefined.

10 The harmonic mean of purity and inverse purity is
sometimes also called the F-score or Fj-score, but we will
refrain from this terminology to not create confusion with
the harmonic mean of precision and recall.

14

Yves van Gennip et al.

Another evaluation metric based on pair count-
ing, is the z-Rand score. The z-Rand score zg is the
number of standard deviations by which |C' N G| is
removed from its mean value under a hypergeomet-
ric distribution of equally likely assignments with the
same number and sizes of clusters. For further details
about the z-Rand score, see [23/383L[13]. The relative
z-Rand score of C is the z-Rand score of that clus-
tering divided by the z-Rand score of C’, so that the
ground truth C’ has a relative z-Rand score of 1T7]

A final evaluation metric we consider, is normal-
ized mutual information (NMI). To define this, we
first need to introduce mutual information and en-
tropy. We define the entropy of the collection of clus-

ters C as
Z\RI (|R|>

and similarly for Ent(C’). The joined entropy of C
and C’ is

)3

|R NR}| (|RmR;.|>
i=1 j=1 n

The mutual information of C and C’ is then defined
as

I1(C,C") == BEx(C) + Ent(C)

—ZZ|R N R <n|RmR;.|)

22 [RI[R;]

— Bt (C,C")

where the right hand side follow/s from the equalities
Sy R 0 RG] = Ry and S5 Re 0 Ry| = |Rl
There are various ways in which mutual information
can be normalized. We choose to normalize by the
geometric mean of Ent(C) and Ent(C') to give the
normalized mutual information

I(c,C)

NMI(C,C) := TROET

Note that the entropy of C is zero, and hence the
normalized mutual information is undefined, when
IC| =1, i.e. when one cluster contains all the records.
In the practice this is avoided by adding a small
number (e.g. the floating-point relative accuracy eps
in MATLAB).

For more information on many of these evalua-
tion metrics, see also [3].

11 We conjecture that the relative z-Rand score is
bounded from above by 1, but to the best of our knowledge
this remains unproven at the moment.

5.3 Results

In this section we consider six methods: TF-IDF,
soft TF-IDF without the refinement step, and soft
TF-IDF with the refinement step, with each of these
three methods applied to both word features and 3-
gram features. We also consider five evaluation met-
rics: the harmonic mean of purity and inverse purity,
the relative error in the number of clusters, the F}
score, the relative z-Rand score, and the NMI. We
investigate the results in two different ways: (a) by
plotting the scores for a particular evaluation met-
ric versus the threshold values, for the six different
methods in one plot and (b) by plotting the evalua-
tion scores obtained with a particular method versus
the threshold values, for all five evaluation metrics
in one plot.

5.8.1 The methods

When we compare the different methods by plotting
the scores for a particular evaluation metric versus
the threshold value 7y for all the methods in one
plot (as can be seen for example in Figure , one
notable attribute is that the methods that use word
features typically all show similar behavior and so do
the methods using 3-gram features. There are some
useful distinctions to make, however, between the
methods that do and do not include the refinement
step. A further discussion of this will follow in Sec-
tion [6] This difference though is smaller than the
difference between the word feature and 3-gram fea-
ture based methods. Unsurprisingly, between those
two groups the behavior of the evaluation metrics is
quite distinct, since the similarity scores produced by
those methods, and hence their response to different
threshold values, are significantly different.

It is also interesting to note which methods give
better evaluation metric outcomes on which data
sets. On the FI data set the word feature based meth-
ods outperform the 3-gram based methods (judged
on the basis of best case performance, i.e. the opti-
mal score attained over the full threshold range) for
every evaluation metric, except the NMI for which
they perform similarly.

On both the RST and RST30 data sets, the word
feature based methods outperform the 3-gram fea-
ture based methods on the Fj score and relative z-
Rand score (Figure7 but both groups of methods
perform equally well for the other metrics. It is note-
worthy that all methods also do significantly worse
on RST30 than on RST, when measured according

Unsupervised record matching with noisy and incomplete data 15

TFIDF
—3 — TFIDF 3y
- sTFIDF
— % -- sTFIDF 3y
—=— sTFIDF ref
sTFIDF ref 3g

F1 score for the CORA data set

£ G
i L &3 X

1} 0.1 02 03 0.4 (1R G 07

Threshold value

(a) The F1 score for the Cora data set

TFIDF

—3 — TFIDF 3y

-4 sTFIDF

— % -- sTFIDF 3y

—#— sTFIDF rsf
sTFIDF ref 3g

Relative z-Rand scare for the RET data set

08r

Relative z-Rand score

02 L L I ! I L
o 0.1 0.2 03 0.4 05 06 07 na 08

Threshold value

(b) The relative z-Rand score for the RST data set

Fig. 7: Two evaluation metrics as a function of the
threshold value 7, computed on two different data
sets. Each of the six graphs in a plot correspond
to one of the six methods used. The filled markers
indicate the metric’s value at the automatically cho-
sen threshold value for each method. In the legend,
“(s)TF-IDFE” stands for (soft) TF-IDF, “3g” indi-
cates the use of 3-gram based features instead of
word based ones, and “ref” indicates the presence
of the refinement step.

to the F; and relative z-Rand scores, while there is
no great difference, if any, measured according to the
other metrics.

On the Cora data set all the methods perform
equally well according to all evaluation metrics we
considered. An interesting characteristic of the re-
sults on this data set, that is not observably present
in the results for the other data sets, is that the
methods that include the refinement step clearly out-
perform the ones that do not, according the har-
monic mean, Fj score, relative z-Rand score and

NMI. Only the relative error in the number of clus-
ters does not show a noticeable difference.

5.3.2 The metrics

When plotting the different evaluation metrics per
method, we notice that the Fj; score and relative
z-Rand score behave similarly, as do the harmonic
mean of purity and inverse purity and the NMI. The
relative error in the number of clusters is correlated
to those other metrics in an interesting way. For the
word feature based methods, the lowest relative error
in the number of clusters is typically attained at or
near the threshold values at which the F; and rela-
tive z-Rand scores are highest. Those are also usually
the lowest threshold values for which the harmonic
mean and NMI attain their high(est) values. The the
harmonic mean and NMI, however, usually remain
quite high when the threshold values are increased,
whereas the F and relative z-Rand scores typically
drop (sometimes rapidly) at increased threshold val-
ues, as the relative error in number of clusters rises.
Figure [8a] shows an example of this behavior.

The relationship between the harmonic mean of
purity and inverse purity and the NMI has some in-
teresting subtleties. As mentioned before they mostly
show similar behavior, but the picture is slightly
more subtly in certain situations. On the Cora data
set, the harmonic mean drops noticeably for higher
threshold values, before settling eventually at a near
constant value. This is a drop that is not present in
the NMI. This behavior is also present in the plots
for the 3-gram feature based methods on the FI data
set and very slightly in the word feature based meth-
ods on the RST data set (but not the RST30 data
set). For word feature based methods on the FI data
set the behavior is even more pronounced, with little
to no ‘settling down at a constant value’ happening
for high threshold values (e.g Figure [3H).

Interestingly, both the harmonic mean and NMI
show very slight (but consistent over both data sets)
improvements at the highest threshold values for the
3-gram based methods applied to the RST and RST30
data sets.

5.3.3 The choice of threshold

On the RST and RST30 data sets our automatically
chosen threshold performs well (e.g. see Figures
and [9a)). It usually is close to (or sometimes even
equal to) the threshold value at which some or all

16

Yves van Gennip et al.

Relative errar in number of clusters
—-+ —Harmanic mean of purity and inverse purity
-+ - Relative z-Rand score
— == Nl
—&—F1

RET30 data set with method sTFIDF

1 e S s

_;__H__HH—+++++++++
i

0sf -

o4t oF

02

RS N S N S
03 0 05 0B 07 08 0% 1
Threshold value

Oig

(a) Soft TF-IDF (on word based features) without the
refinement step applied to the RST30 data set

Relative errar in number of clusters
—-+ —Harmanic mean of purity and inverse purity
-+ - Relative z-Rand score
— == Nl
—8—F1

Fl data set with method sTFIDF ref

121
1 o 3= Bt H TR e e e e ey
0Bl /'Jr—»—*"'fH " ’ .
woe ™ p : *
0BfF ¢ ’I L 4
DA-J I****'* *
f4~+r"'
02f 7
1
o L i : L L L)
0z n3 0.4 05 [l n7 na 08 1

Threshold value

(b) Soft TF-IDF (on word based features) with the
refinement step applied to the FI data set

Fig. 8: Different evaluation metrics as a function of
the threshold value 7, computed on two different
data sets. Each of the six graphs in a plot correspond
to one of five evaluation metrics. The vertical dot-
ted line indicates the automatically chosen threshold
value for the method used.

evaluation metrics attain their optimal value (re-
member this threshold value is not the same for all
the metrics). The performance on RST is slightly
better then on RST30, as can be expected, but in
both cases the results are good.

On the FI and Cora data sets our automatically
chosen threshold is consistently larger than the op-
timal value, as can be seen in e.g. Figures
and[9D] This can be explained by the left-skewedness
of the H-value distribution, as illustrated in Fig-
ure[3al A good proxy for the volume of the tail is the
ratio of number of records referring to unique enti-
ties to total number of entries in the data set. For
RST and RST30 this ratio is a high 0.87, whereas

Relative error in number of clusters
—-+ —Harmonic mean of purity and inverse purity
-4 Relative z-Rand score
— - M
—&—F1

RST data set with method sTFIDF 3y

1 e 3 e 2 e 0

S

e e Fx?'“_xiiir:"*’*df
0&r

HEFEFH F 4 bbb

L L L L L |
0 0.05 o1 015 nz 0.2 03 035
Threshold value

(a) Soft TF-IDF (on 3-gram based features) without
the refinement step applied to the RST data set

Relative error in number of clusters
—-+ —Harmonic mean of purity and inverse purity
-4 Relative z-Rand score
— - M
—B—F1

Fl data set with method sTFIDF ref 3y
251

P it i WS X B KK e K 3 3 B 3 K

-+
S,
st ot e

f=r=]
I

. na
Threshold value

(b) Soft TF-IDF (on 3-gram based features) with the
refinement step applied to the FI data set

Fig. 9: Different evaluation metrics as a function of
the threshold value 7, computed on two different
data sets. Each of the six graphs in a plot correspond
to one of five evaluation metrics. The vertical dot-
ted line indicates the automatically chosen threshold
value for the method used.

for FI it is only 0.33 and for Cora only 0.09. This
means that the relative error in the number of clus-
ters grows rapidly with increasing threshold value
and the values of the other evaluation metrics will
deteriorate correspondingly.

6 Conclusions

In this paper we have investigated six methods which
are based on term frequency-inverse document fre-
quency counts for duplicate detection in a record
data set. We have tested them on four different data
sets and evaluated the outcomes using five different
metrics.

Unsupervised record matching with noisy and incomplete data 17

One clear conclusion from our tests is that there
is no benefit to constructing the features the meth-
ods work on using 3-grams as opposed to white space
separated ‘words’. The latter choice leads to meth-
ods that either outperform the former or perform
equally well at worst (in terms of the optimal values
they achieve for the evaluation metrics). Compare,
for example, Figures [8D] and [9b]

Somewhat surprisingly, our tests lead to a less
clear picture regarding the choice between TF-IDF
and soft TF-IDF (with word based features). For
low threshold values TF-IDF performs better, for
higher threshold values either soft TF-IDF performs
slightly better, or the difference between the two
methods is so small as to be negligible. Interesting
exceptions are the Fj score and relative z-Rand score
for the RST30 data set. Here TF-IDF outperforms
soft TF-IDF for almost every threshold value. At the
highest threshold values both methods perform the
same, as expected.

When it comes to the benefits of including the
refinement step, the situation is again somewhat dif-
ferent depending on the data set. For the RST and
RST30 data sets, for small threshold values includ-
ing the refinement step is beneficial, which is to be
expected, since the refinement will either increase
the number clusters formed or keep it the same, so
its effect is similar to (but not the same) raising
the threshold value. On these data sets, for large
threshold values there is little difference between in-
cluding and excluding the refinement step. For the
Cora data set an intermediate region is present be-
tween the lower and very high threshold values, in
which the algorithms perform somewhat better with-
out the refinement step (this is most noticeable in the
word feature based algorithms; in the 3-gram feature
based algorithms this effect is either absent or mi-
nor). This effect is least pronounced (to the point
of becoming unnoticeable or absent) for the NMI
evaluation metric. For the FI data set this ‘inter-
mediate’ region (at least for the word feature based
algorithms; the qualitative behavior for the 3-gram
feature based methods is similar here as in the Cora
case) and we are left with a low threshold region in
which the refinement step is an improvement and a
high threshold region in which excluding that step
gives better results. The effect is again least pro-
nounced for the NMI metric.

Our tests with our automatically chosen thresh-
old show that 77 = u(H) + o(H) is a good choice
on data sets which have H-distributions that are
approximately normal or right-skewed. If, however,

the H-distribution is left-skewed, this choice seems
to be consistently larger than the optimal thresh-
old. It should be noted though that for most of the
evaluation metrics and most of the data sets, the
behavior of the metrics with respect to variations
in the threshold value is not symmetric around the
optimal value. Typically the decline from optimal-
ity is less steep and/or smaller for higher thresh-
old values, than for lower ones. This effect is even
stronger if we consider methods without refinement
step. Combined with the fact that at low threshold
values the refinement step requires a lot more com-
putational time than at high threshold values, espe-
cially for larger data sets, we conclude that, in the
absence of a priori knowledge of the optimal thresh-
old value, it is better to overestimate than underes-
timate this value. Hence, our suggestion to choose
T = w(U) + o(H) is a good rule of thumb at worst
and a very good choice for certain data sets.

Acknowledgements We would very much like to thank
George E. Tita and Matthew A. Valasik for their in-
volvement in the collection of the FI data set and
the construction of a ground truth clustering. We
are grateful to them, as well as to P. Jeffrey Brant-
ingham, for many fruitful discussions. We would also
like to thank Brendan Schneiderman, Cristina Garcia-
Cardona, and Huiyi Hu for their participation in the
2012 summer Research Experience for Undergradu-
ates (REU) project from which this paper grew.

This research is made possible via ONR grant
N00014-16-1-2119, City of Los Angeles, Gang Re-
duction Youth Development (GRYD) Analysis Pro-
gram, AFOSR MURI grant FA9550-10-1-0569, and
NSF grants DMS-1045536 and DMS-1417674.

Additionally, the second author received research
grants from Claremont McKenna College, the Clare-
mont University Consortium, Alfred P. Sloan Foun-
dation and the NSF, which were not directly related
to this research.

We would like to acknowledge the following sources
which were incorporated into or adapted for use in
our code: [BT2TIZ0] and [33,34].

Yves van Gennip et al.

18
References
1. Ahmed, I., Aziz, A.: Dynamic approach for data

10.

11.

12.

13.

14.

15.

16.

. Bilenko,

scrubbing process. International Journal on Computer
Science and Engineering 2(02), 416-423 (2010)

. Allison, P.D.: Imputation of categorical variables with

PROC MI. In: SUGI 30 Proceedings. SAS Institute
Inc. (2005). Paper 113-30

. Amigé, E., Gonzalo, J., Artiles, J., Verdejo, F.: A

comparison of extrinsic clustering evaluation metrics
based on formal constraints. Inf Retrieval 12, 461-486
(2009)

. Cora citation matching data set. http://people.cs.

umass.edu/~mccallum/data.html. Last accessed: 24
March 2014

. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern in-

formation retrieval, vol. 463. ACM press New York
(1999)

. Bilenko, M., Mooney, R.J.: Adaptive duplicate detec-

tion using learnable string similarity measures. In:
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pp. 39-48. ACM (2003)

M., Mooney, R.J.: On evaluation and
training-set construction for duplicate detection. In:
Proceedings of the KDD-2003 Workshop on Data
Cleaning, Record Linkage, and Object Consolidation,
pp. 7-12 (2003)

. Chen, M.: Normalized mutual information. http://

www.mathworks.com/matlabcentral/fileexchange/
29047-normalized-mutual-information (2010).
Contact: mochen@ie.cuhk.edu.hk; Last accessed: 26
February 2015

. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E., et al.:

A comparison of string distance metrics for name-
matching tasks. In: IIWeb, vol. 2003, pp. 73-78 (2003)
Cohen, W.W., Richman, J.: Learning to match and
cluster large high-dimensional data sets for data inte-
gration. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 475-480. ACM (2002)

Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Du-
plicate record detection: A survey. Knowledge and
Data Engineering, IEEE Transactions on 19(1), 1-16
(2007)

Fiedler, S.: Cell array to CSV-file [cell2csv.m], up-
dated. http://uk.mathworks.com/matlabcentral/
fileexchange/4400-cell-array-to-csv-file--
cell2csv-m-| (2010). Modified by Rob Kohr; last
accessed: 4 September 2014

van Gennip, Y., Hunter, B., Ahn, R., Elliott, P., Luh,
K., Halvorson, M., Reid, S., Valasik, M., Wo, J., Tita,
G.E., Bertozzi, A.L., Brantingham, P.J.: Community
detection using spectral clustering on sparse geosocial
data. SIAM J. Appl. Math. 73(1), 67-83 (2013)
Gonzalez, E., Turmo, J.: Non-parametric document
clustering by ensemble methods. Procesamiento del
Lenguaje Natural 40, 91-98 (2008)

Harris, M., Aubert, X., Haeb-Umbach, R., Beyerlein,
P.: A study of broadcast news audio stream segmen-
tation and segment clustering. In: Proceedings of EU-
ROSPEECH99, pp. 1027-1030 (1999)

Horton, N.J., Kleinman, K.P.: Much ado about noth-
ing. The American Statistician 61(1) (2007)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Jaro, M.A.: Advances in record-linkage methodology
as applied to matching the 1985 census of tampa,
florida. Journal of the American Statistical Associ-
ation 84(406), 414-420 (1989)

Jaro, M.A.: Probabilistic linkage of large public health
data file. In: Statistics in Medicine, vol. 14, pp. 491—
498 (1995)

Koehler, M.: matrix2latex, updated. http://www.
mathworks.com/matlabcentral/fileexchange/4894-
matrix2latex (2004). Last accessed: 24 March 2014
Komarov, O.: Set functions with multiple inputs,
updated. http://uk.mathworks.com/matlabcentral/
fileexchange/28341-set-functions-with-
multiple-inputs/content/SetMI/unionm.m
Last accessed: 24 March 2014

Manning, C.D., Raghavan, P., Schiitze, H.: Introduc-
tion to information retrieval, vol. 1. Cambridge Uni-
versity Press Cambridge (2008)

McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.:
Automating the construction of internet portals with
machine learning. Journal of Information Retrieval
3(2) (2000)

Meild, M.: Comparing clusterings — an information
based distance. J. Multivariate Anal. 98, 873-895
(2007)

Monge, A.E., Elkan, C.P.: Efficient domain-
independent detection of approximately duplicate
database records. In: Proc. of the ACM-SIGMOD
Workshop on Research Issues in on Knowledge
Discovery and Data Mining (1997)

Naumann, F., Herschel, M.: An introduction to dupli-
cate detection. Synthesis Lectures on Data Manage-
ment 2(1), 1-87 (2010)

Pigott, T.D.: A review of methods for missing data.
Educational research and evaluation 7(4), 353-383
(2001)

Duplicate detection, record linkage, and identity
uncertainty: Datasets. http://www.cs.utexas.edu/
users/ml/riddle/data.html. Last accessed: 24
March 2014

van Rijsbergen, C.J.: Information Retrieval, 2nd edn.
Butterworth-Heinemann, Newton, MA, USA (1979)
Salton, G., Buckley, C.: Term-weighting approaches
in automatic text retrieval. Information processing &
management 24(5), 513-523 (1988)

Salton, G., Wong, A., Yang, C.S.: A vector space
model for automatic indexing. = Commun. ACM
18(11), 613-620 (1975)

Strehl, A., Ghosh, J.: Cluster ensembles — a knowl-
edge reuse framework for combining multiple parti-
tions. Journal of Machine Learning Research 3, 583—
617 (2002)

Tejada, S., Knoblock, C.A., Minton, S.: Learning ob-
ject identification rules for information integration.
Information Systems 26(8), 607-633 (2001)

Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.:
Comparing community structure to characteristics in
online collegiate social networks. SIAM review 53(3),
526-543 (2011)

Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.:
zrand. http://netwiki.amath.unc.edu/GenLouvain/
GenLouvain| (2011). Last accessed: 24 March 2014
Tromp, M., Reitsma, J., Ravelli, A., Méray, N., Bon-
sel, G.: Record linkage: making the most out of errors
in linking variables. In: AMIA Annual Symposium

(2010).

http://people.cs.umass.edu/~mccallum/data.html
http://people.cs.umass.edu/~mccallum/data.html
http://www.mathworks.com/matlabcentral/fileexchange/29047-normalized-mutual-information
http://www.mathworks.com/matlabcentral/fileexchange/29047-normalized-mutual-information
http://www.mathworks.com/matlabcentral/fileexchange/29047-normalized-mutual-information
http://uk.mathworks.com/matlabcentral/fileexchange/4400-cell-array-to-csv-file--cell2csv-m-
http://uk.mathworks.com/matlabcentral/fileexchange/4400-cell-array-to-csv-file--cell2csv-m-
http://uk.mathworks.com/matlabcentral/fileexchange/4400-cell-array-to-csv-file--cell2csv-m-
http://www.mathworks.com/matlabcentral/fileexchange/4894-matrix2latex
http://www.mathworks.com/matlabcentral/fileexchange/4894-matrix2latex
http://www.mathworks.com/matlabcentral/fileexchange/4894-matrix2latex
http://uk.mathworks.com/matlabcentral/fileexchange/28341-set-functions-with-multiple-inputs/content/SetMI/unionm.m
http://uk.mathworks.com/matlabcentral/fileexchange/28341-set-functions-with-multiple-inputs/content/SetMI/unionm.m
http://uk.mathworks.com/matlabcentral/fileexchange/28341-set-functions-with-multiple-inputs/content/SetMI/unionm.m
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain

Unsupervised record matching with noisy and incomplete data

Proceedings, vol. 2006, p. 779. American Medical In-
formatics Association (2006)

36. Winkler, W.: String comparator metrics and enhanced
decision rules in the fellegi-sunter model of record link-
age. In: Proceedings of the Section on Survey Research
Methods, pp. 354-359. (American Statistical Associ-
ation) (1990)

37. Winkler, W.E.: The state of record linkage and cur-
rent research problems. In: Statistical Research Divi-
sion, US Census Bureau (1999)

38. Winkler, W.E.: Methods for record linkage and
Bayesian networks. Tech. rep., Series RRS2002/05,
U.S. Bureau of the Census (2002)

39. Winkler, W.E.: Overview of record linkage and cur-
rent research directions. Tech. rep., Bureau of the
Census (2006)

	1 Introduction
	2 Terminology and problem statement
	3 Existing methods
	4 New method
	5 Applications
	6 Conclusions

