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Abstract 

This paper describes the development and implementation of an algorithm which uses sim­
ulated annealing to recognize knots by minimizing an energy function defined over all knots. 
A knot is represented by a piecewise linear curve and the vertices of this curve are perturbed 
using simulated annealing to minimize the energy. Moving one line segment through another 
line segment is prohibited. The resulting minimum energy configuration is defined to be the 
canonical form. The algorithm is then tested with two different types of energy over a collection 
of complex knots. 

1 Introduction 

1.1 Overview and Definitions 

We have developed and implemented an algorithm which uses simulated annealing to recognize 
knots by minimizing an energy function defined over all knots. To achieve this, knots are repre­
sented by a piecewise linear curve and the simulated annealing algorithm mjnjmjzes the energy 
by perturbing the vertices of this curve. Perturbations that would cause one line segment to pass 
through another line segment are prohibited. The canonical form of the the knot is defined to be 
the resulting minimum energy curve. Our tests with two different types of energy and a collec­
tion of complex knots show the algorithm is effective but computationally expensive. The ability 
to untangle and recognize knots and filaments has a wide variety of applications, for example, in 
polymers, vortex filaments and statistical mechanics, see [4], [5], and also [1]. Our eventual goal is 
to apply the work described below to such problems. 

In this paper, the term "geometric knot" refers to a non-intersecting curve in Euclidean 3-
space which is the image of the unit circle under a continuous mapping. Two knots are said to 
be equivalent if there exists a continuous, one-parameter family of knots transforming one knot 
into the other knot. Given two geometric knots, in g.eneral it is not always possible to find such 
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a one-parameter family, thus all knots are not equivalent. For example, the circle and the trefoil 
knot in Figure 1 are not equivalent. This can be shown using the algebraic techniques discussed in 
section 1.2. Equivalent geometric knots all represent the same topological knot. 

(a) Unknot (b) Trefoil Knot 

Figure 1: Knots that are not equivalent 

Recognizing a knot means transforming all the geometric knots which represent a given topo­
logical knot into a single, canonical form. The choice of a canonical form of a topological knot 
is somewhat arbitrary. While it is desirable to have a canonical form that is easy to recognize, 
it is difficult to make this idea precise. In this paper, the canonical form of a topological knot is 
defined to be a geometric knot from this equivalence class which minimizes an energy function. If 
the energy function is invariant under some set of transformations of the geometric knot (e.g. rigid 
motions) then the canonical form is defined modulo these transformations. 

1.2 Recognizing Knots 

The goal of this paper is to devise algorithms for recognizing knots, such as those in Figure 2. 
The geometric knots in Figure 2a and Figure 2b are in fact equivalent to the geometric knots in 
Figure 1a and Figure 1b, respectively (i.e. they represent the same topological knot). However, if 
any of the crossings in Figure 2a or Figure 2b are reversed, a far more complicated topological knot 
can result. 

(a) Tangled U nknot (b) Tangled Trefoil Knot 

Figure 2: Tangled Knots 

No theoretical technique is currently available to determine the topological knot represented 
by a given geometric knot. A long-standing geometric technique, formalized by Reidemeister [12], 
provides a set of moves that may be used to transform geometric knots; however, no algorithm 
currently exists for recognizing knots using these moves. 
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From a different perspective, algebraic approaches to finding the topological knot represented 
by a geometric knot include computing a polynomial of one or more variables from a drawing of 
the geometric knot which has under and over crossings. In this context, knots are usually thought 
of as a type of link; which is simply a collection of nonintersecting knots. Three such polynomials 
for a link, K, are the Alexander polynomial, AK(t) [2], the Jones polynomial, VK(t) [9], and 
the HOMFLY polynomial, HK(l, m) [6]. Much of the discussion here is taken from a paper by 
Lickorish and Millet [10]. The Alexander and Jones polyno~als can be thought of as reductions 
of the HOMFLY polynomial to one variable 

AK(t) = HK(i, i(t112 - C 112)) 

VK(t) = HK(iC1,i(r112-t112)) 

It should be noted that they did not arise in this way. In these formulas i =A, but all three 
polynomials have integer coefficients. All three polynomials are invariants of a link and thus are 
independent of how it is drawn. These polynomials can be computed from a drawing of the link 
such as the drawings in Figure 1 and Figure 2. First, the links need to be given an orientation 
(i.e. a direction along each knot needs to be chosen). Next, pick one crossing in the drawing of the 
link, e.g. K+ in Figure 3, and make two new links by reversing the crossing, K_, and removing the 
crossing, Ko. The polynomials for the three resulting links satisfy the formulas 

AK+(t) 
VK+(t) 

HKAl,m) 
t 

+ z-1 

AK_(t) + (t1/2_r1/2) 
VK_ (t) + (t-1/2 - t1f2) 

HK_(l,m) + m 

AK0 (t) - 0 
VK0 (t) - 0 

HK0 (l,m) = 0 

These formulas uniquely define the polynomials if one assumes that the polynomial of the unknot is 
1. To use these formulas it is necessary to compute the polynomial of the two new links that result. 
This can be done recursively until a link with a known polynomial is found (e.g. the unknot). Using 
the formulas for AK(t), the Alexander polynomial for the trefoil knot in Figure 1 is C 1 - 1 +tor 
-r1 + 1- t depending on the orientation chosen. Neither is the same as the Alexander polynomial 
of the unknot so the unknot and the trefoil knot are not equivalent. 

X X )( 
(b) K_ (c) Ko 

Figure 3: Modified intersections 

Unfortunately these polynomials do not completely differentiate knots by equivalence class. An 
example is shown in Figure 4 of two non-equivalent knots that have the same HOMFLY polynomial 
[10], H(l, m) = ( -z-4 -z-2 + 2 + 12) + (l-4 + 21-2 - 2 -l2)m2 + (1 - l2)m4 • They, of course, both 
have the same Alexander and Jones polynomial. The numbers associated with these knots indicate 
the number of crossings present in the knot with a subscript which makes the entire designation 
unique. In the case of the Alexander polynomial, there are knots with AK(t) = 1 that are not 
equivalent to the unknot, see Figure 5. It is not known if there exists such a knot in the case of 
the Jones polynomial. 
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(a) Knot 8s (b) Knot 136714 

Figure 4: Two different knots with the same HOMFLY polynomial 

Figure 5: A knot with Alexander polynomial! 

2 Energy Minimization 

In this paper, a numerical algorithm is described which categorizes knots by minimizing an 
energy function defined for all knots. An energy function is a real valued function over the space 
of all geometric knots. It is assumed that the chosen energy function has a unique global mini­
mum for each set of equivalent geometric knots. A given geometric knot is then transformed into 
the equivalent geometric knot with minimum energy by using movements that cannot change the 
topological knot it represents. 

2.1 Examples of Energy Functions 

Let 1(t) be a parametric representation of a geometric knot with parameter t. An example of 
a physical energy is 

Eq('Y) = j j h(u) ~ !(v)l dudv 

This energy represents the electrostatic energy of a knot which has a constant amount of charge 
distributed evenly along the entire knot. If the energy is changed to 

Eq(!) = j j l!(u) ~ !(v)II'Y(u)II'Y(v)l dudv 

then the energy represents the electrostatic energy of a knot with a constant charge density. In the 
case of Eq(l),the energy decreases as the knot grows larger and larger (i.e. the minimum is never 
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achieved), since the unchecked electrostatic repulsion causes the knot to expand while, in the case of 
ftq ( 1), the energy decreases as the knot grows smaller and smaller and again the minimum is never 
achieved. To create an attainable minimum an elastic energy can be added; thus, the expansion 
(or contraction) of the knot under electrostatic forces is balanced by the increase in elastic energy, 
yielding a minimal energy which can be achieved. Also, the electrostatic energy, as stated, "is not 
finite. This can be remedied by integrating over a tube containing the knot rather than the knot 
itself. As in the case of most physical energies this example is invariant under rigid motions. Note, 
Eq ( 1) + ftq ( 1) is also an energy with a minimum energy which can be achieved. 

Let D(1(u), 1(v)) be the minimum distance between 1(u) and 1(v) along the knot. An example 
of a geometric energy is 

E(!) =I I cl(u) ~ l(v)i2- D(!(u)~l(v))2) /i'(u)lli'(v)/ dudv 

This energy is the result of work by O'Hara [11] which was built on by Freedman [3] where the 
following results are shown. This energy is invariant under any inversion with respect to a sphere 
(i.e. a Mobius transformation) as long as no portion of the knot is mapped to infinity. This energy 
function also has a C 1 minimizer for each prime topological knot. 

2.2 Computational Considerations 

A class of equivalent geometric knots forms an infinite dimensional space. This makes mini­
mizing an energy function over this class computationally intractable. To discretize the problem, 
we choose a finite dimensional subspace consisting of the space of all piecewise linear closed curves 
with a fixed number of segments. H the knot has N segments, N points in Euclidean 3-space 
completely determine the knot by determining vertices where adjacent segments meet. The energy 
is minimized over this 3N dimensional space. 

A variety of methods exist for doing global function minimization over a space of rather large 
dimension, such as movement by forces, gradient descent techniques, and simulated annealing. Of 
interest are techniques that are fairly general and which are not tied to a particular minimization 
problem; at the same time it is important to avoid methods that require "tuning" via a large 
number of parameters. While movement by forces can obtain a local energy minimum, there is no 
guarantee that this local minimum is a global minimum, nor does this method stop a knot from 
crossing itself as it moves (and thus possibly changing into an unequivalent knot). The gradient 
descent technique is a more general method, however it too only finds a local energy minimum and 
permits a knot to pass through itself. 

Simulated annealing can be applied to a very general class of energy functions (even discon­
tinuous functions). Such techniques do not inherently preserve knot type, however avoiding self­
intersection may be easily enforced through an additional restriction described below. While this 
"fix" can be extended to movement by forces and gradient descent techniques, giobal minima are 
not necessarily found and the additional constraints degrade performance. In contrast, a reasonable 
implementation of simulated annealing asymptotically achieves a global minimum. 
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3 Simulated Annealing 

Simulated annealing is a Monte Carlo technique originally used in the context of physical prob­
lems which leads to a notion of a "time" { t) which is a linear scaling of the number of iterations ( n) 
and a "temperature" (T(t)) referring to a function of the time which in many cases is a monotone 
decreasing function. A general simulated annealing algorithm may be described as follows 

1. Choose an initial configuration and make it the current configuration. 

2. Choose the initial temperature, T(O) =To and a minimum temperature, Tmin· 

3. Calculate the energy of the current configuration, E1. 

4. Perturb the current configuration to produce a new configuration (which may depend on the 
temperature T ). 

5. Calculate the energy of the new configuration E2, and the energy change tJ.E = E1- E2. 

6. With a probability equal to a(T, tJ.E), the acceptance function, accept the new configuration 
and make it the current configuration. 

7. Increment the number of iterations n (this also i~crements the timet). 

8. Calculate the temperature T(t). 

g, If the temperature is above Tmin, return to step 3. ; 

Convergence of this algorithm to a global energy minimum depends on such factors as the ac­
ceptance function, the form of the energy, the minimum temperature, etc. The details of an 
implementation of this algorithm which minimizes an energy function over a class of equivalent 
geometric knots is described below. Sufficient conditions for asymptotic convergence are given in 
this context. 

3.1 Continuous States 

In this problem the set of configurations varies over a continuous space, i.e. Euclidean 3N space. 
In this case, asymptotic convergence of simulated annealing to a global minimum is guaranteed 
under the following conditions [7] 

o The time is linearly proportional to the number of iterations (i.e. t(n) = Ctn). 

o The current configuration is perturbed by a random amount chosen from a 3N dimensional 
normal distribution where the variance u 2 of the distribution is linearly proportional to the 
temperature (i.e. u 2 = cuT). 

o The acceptance function has the form: a(T, l:l.E) = l+elE/T. 

o If To is the initial temperature, the temperature has the form T(t) = log[~+t). 
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This is sometimes called Boltzmann simulated annealing [8]. Unfortunately, convergence requires 
T -+ 0 and this happens very slowly. For practical reasons discussed below, this function was 
amended in the actual computations; the amended function has an additional parameter. The 
computations clearly show that the amended function does not guarantee convergence to a global 
minimum for a given choice of this additional parameter. On the other hand, in most cases the 
computations came close to a global minimum for some choice of this additional parameter. In all 
cases, the algorithm converges to a local minimum . 

3.2 'Energy computation 

Central to the optimization problem is the computation of the energy of a knot. Given a descrip­
tion of the knot as a piecewise linear closed curve, this is relatively straightforward computation. 
The only significant issue is the efficient evaluation of the energy. In our computations, two types 
of energy were tried. The first energy is a discrete energy analogous to a combination of several 
physical energies. This is not an approximation of a finite energy integral over all geometric knots. 
The second energy is a discrete approximation of the geometric energy discussed in section 2.1. 

3.2.1 Physical Energy 

A discrete analogue of electrostatic energy can be obtained by placing point. charges at the 
vertices of a piecewise linear knot. The charge of the point charges is kept fixed during each 
computation. An elastic energy can be added by viewing each segment as a spring with a fixed 
rest length and Hooke constant. Finally, each pair of adjacent segments can.be modeled as having 
some energy due to "folding" that is elastic in nature and becomes infinite as the angle between 
the segments goes to zero. Let qi be the charge at vertex i, ri,j be the Euclidean distance between 
vertex i and j, li be the rest length of segment i, and ai be the angle between the two segments 
that meet at vertex i. The energies described above are then given by 

1. Electrostatic energy (between vertex i and j): 

E~. = qiqi 
'•J Ti,j 

2. Elastic energy (for the segment between vertex i and i + 1): 

E~ =! k (r· ·+1 -1·)2 
' 2 '•' ' 

3. Folding ene"i-gy (between segments meeting a vertex i): 

Thus, the total energy of a piecewise linear knot, "(, is given by 

E("f) = LLE~j + 2:Ef + L:E! 
i j::f.i i i 
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There are several things to note about this energy function. First, the energies are linear 
and once defined locally may be summed easily to get the total energy. Second, computing the 
electrostatic energy is O(N2 ) while computing the elastic energies is O(N). Third, if only one 
vertex is moved, recomputing the electrostatic energy is O(N) and recomputing the elastic energies 
is 0(1). 

For the initial knot, an O(N2 ) energy computation was used. As the knot was perturbed, only 
one vertex was moved at a time (see section 3.3). Thus, an incremental energy computation was 
used. For the electrostatic energy, the energy contributed by the point charge at its current position 
was subtracted from the total energy (requiring O(N) operations). Then the energy contributed 
by the point charge at its new position was added to the total energy (requiring O(N) operations). 
For the elastic energy only two terms needed to be corrected (the segments adjacent to the vertex) 
and for the folding energy only three terms needed to be corrected (since the two segments that 
move change three angles). As a result, the new energy computation was only O(N) per iteration, 
not O(N2 ). 

In many cases, this difference in computation time was substantial, and differentiated between 
computations that were reasonable to perform and computations that were prohibitively expensive. 
At the end of the computation, the total energy for the final knot was computed directly using 
an O(N2 ) energy computation to check the incremental energy computation. In all cases the 
energy computed incremently and directly agreed to four or five decimal places (i.e. no significant 
incremental error seemed to be introduced). 

3.2.2 Geometric Energy 

One way to discretize the geometric energy integral is to sample it pointwise at the midpoints 
of segments of the knot. This approximation converges to the integral as the number of segments 
used in the approximations is increased. The details of the computation of this approximate energy 
are not discussed here because this approximation resulted in spurious results. These are discussed 
in section 4.2. 

To overcome this problem, the integral can be approximated more accurately by dividing it 
into pieces. Assume the knot 1 is parameterized so that when i ~ u < i + 1 the point 1(u) lies on 
segment i and is u - i of the way from vertex i to vertex i + 1. Then the integral can be written 

l i+l ( [i+l ( 1 1 ) ) 
E(!) = ~ t ~ Ji il(u) -l(v)i2 - D(!(u),!(v))2 I'Y(u)II'Y(v)l du dv 

The double integral inside the summation represents the geometric energy contributed by a pair 
of segments. This is then summed over all possible pairs of segments. Note that the geometric 
energy of a segment with itself is zero so this need not be calculated. More importantly, the 
geometric energy of two adjacent segments which meet at an angle not equal to 1r is infinite. Thus, 
adjacent segments cannot be included in the summation. With these restrictions, the geometric 
energy can approximated but the evaluation of the energy requires O(N2 ) integrations. 

An alternative formulation results when the inner sum is rewritten as a single integral 
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Note that the inner integral avoids the adjacent segments so the energy will be finite. The 
evaluation of the energy in this form requires only O(N) integrations. This was the method used 
to approximate the geometric energy in our computations. 

3.3 Configuration Generation 

The initial knot used in the computations is user specified, and supports discrete geometric 
knots of any generality (any topological type and complexity). Given a geometric knot (i.e. the 
current configuration), the knot is perturbed by choosing a vertex at random based on a uniform 
probability distribution, and moving that vertex by a vector chosen at random based on a Gaussian 
probability distribution in three dimensions whose variance is proportional to the temperature. If 
this movement changes the topological type of the knot, the move is rejected and another vector is 
chosen. This continues until an acceptable movement is found. 

A simple technique is used to determine if moving a vertex to a new position changes the 
topological type of the knot. If, as the vertex moves from its initial position to its new position, 
the two segments connected to that vertex never cross the rest of the knot, then the knot cannot 
have changed topological type. In order to implement this, first consider each moved segment 
individually. As a segment moves from its initial position to its new position, it sweeps out a 
triangle in three dimensions. If no other nonadjacent segment of the knot intersects this triangle 
then the original segment does not cross the knot as it moves. If neither adjacent segment crosses 
the knot when moving the vertex the knot does not change its topological type. Thus, when a 
vertex is moved, N - 2 segments need to be checked to see if they intersect either one of two 
triangles swept out by the two segments adjacent to this vertex. 

To determine if a line segment intersects a triangle we exploit several techniques commonly 
used in computer graphics. The guiding principle is to perform a small amount of computation at 
the beginning to exclude most cases, since most line segments do not intersect most triangles in 
the computations. Given a non-degenerate triangle, first compute the plane of the triangle in the 
implicit form f(x, y, z) = ax+ by+ cz + d = 0. f(x, y, z) is then evaluated at the end points of 
the line segment. If f(x, y, z) is greater than zero or less than zero at both endpoints, then both 
endpoints are on the same side of the plane containing the triangle and the line segment cannot 
intersect the triangle. If each endpoint is on a different side of the plane, pick one of the endpoints 
and look at the triangular cone formed by this endpoint (as the vertex of the cone) and the corners 
of the triangle. If the other endpoint is contained inside this cone then the line segment intersects 
the triangle. If one endpoint lies in the plane of the triangle, pick the other endpoint as the vertex 
of the triangular cone. If both endpoints are in the plane of the triangle, check to see if the line 
segment intersects any of the sides or vertices of the triangle. If the triangle is degenerate (i.e. the 
vertices are_ collinear), then check to see if the line segment and the triangle are coplanar. If they 
aren't coplanar, then there is no intersection. If they are coplanar then the above non-degenerate 
coplanar check is used. 

3.4 Cooling 

As mentioned above, the temperature is determined by a technique that amends the formula 

T(t) = To 
log(e+t) 
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As it stands, this standard form produces a temperature which changes extremely slowly once 
the temperature has dropped a few orders of magnitude. Beyond that time, it will not drop much 
lower during our computations. To avoid this, the formula is modified as follows: Pick an initial 
temperature and a time tr. Set the temperature according to the above formula fort< tr. When 
t = tr chose a "new initial" temperature T1 to be 

(i.e. the temperature at time tr)· Now, for tr :::; t < 2tr set the temperature to 

T() T1 
t = log(e+(t-tr)) 

Thus, in general, if ktr :S t < ( k + 1 )tr, let 

T(t)- Tk 
- log(e + (t- ktr)) 

where 

In effect, the algorithm is being reinitialized after a given amount of time. This technique introduces 
a new parameter tn which is the amount of time to wait before reinitializing the algorithm. If this 
parameter is too small, the evolving configuration remains far from a global minimum because the 
system "cools" too fast. If this parameter is too large then the algorithm never "cools" enough and 
the final configuration is far from a global minimum. 

Finally, the algorithm is stopped when a given minimum temperature are reached. There 
are many other techniques for cooling and stopping a simulated annealing algorithm. The above 
techniques were found to be the best for these computations because they are straightforward to 
implement, have only a few parameters, and allow the algorithm to produce a result near a global 
mmnnum. 

4 Results 

4.1 Physical Energy 

Most of the computations we performed used the discrete physical energy described in sec­
tion 3.2.1. This energy is easy to compute and can be incrementally updated when one vertex is 
moved. Unfortunately, this energy does not converge as the number of segments in the knot is 
increased. Thus, in our computations the number of segments (and their rest length) was kept 
fixed so the final results would be comparable. We tested the algorithm on a variety of complex 
unknots, complex trefoil knots, and a few other simple toroidal knots. 
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(a) Square (b) 9 Turn Noose 

(c) 4x4 Grid (d) 6x6 Grid 

Figure 6: Initial Unknots 

All the knots had 160 segments, a charge of 0.625 per vertex, and each segment had a rest 
length of 0.625. The spring constant k was 1 and the folding energy constant f was 10. 

Three varieties of unknots were tried. The first unknot was simply a square divided into 160 
·segments. This is shown in Figure 6a. The second set of unknots were in the form of "nooses". A 
"9 turn" noose is shown in Figure 6b; there are two large loops and the rest of the knot is wrapped 
around the part of the curve connecting the two loops. In order to put this unknot in canonical 
form (i.e. a circle) one large loop needs to pass through the center section of the knot. Nooses with 
3, 5, and 7 turns were also tried. The final set of unknots were generated on a grid of over and 
under crossings and are shown in Figure 6c-d. 

(a) Toroidal (b) Helical 

Figure 7: Initial Simple Trefoil Knots 

Three types of trefoil knots were tried. The first type is shown in Figure 7a and it is simply 
the trefoil knot realized on a torus. The second type is shown in Figure 7b and constructed from a 
double helix in the center and two large loops. The final type is shown in Figure 8. The example 
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shown has each "lobe" of the trefoil knot tied in 4 "half knots". Examples were tried with 0 through 
4 "half knots" per lobe. · 

Figure 8: Initial Trefoil Knot With 4 "Half Knots" Per Lobe 

Finally, several types of torus knots were tried. They are shown in Figure 9 and include two 
instances of a 2,5 torus knot, two instances of a 2,7 torus knot, and one 3,5 torus knot. 

For the computations the restart time tr was chosen so the cooling restarted, as described in 
section 3.4, when the ratio of Tk to Tk+l was equal to .JiQ. This implies that tr = ev'lO - e ~ 
20.91. The constant Ct was chosen so 16 million iterations took place during this time. The 
initial temperature To was 100~0 and the minimum temperature Tmin was 0.001. Thus, 160 million 
iterations were performed in each case to compute the minimum energy configuration. The constant 
Cu was 0.5 in all cases. 

2,5 Torus Knots 2,7 Torus Knots 3,5 Torus Knot 

(a) Toroidal (b) Helical (c) Toroidal (d) Helical (e) Toroidal 

Figure 9: Miscellaneous Torus Knots 

Before looking at the results of the computations it is useful to look the evolving configurations 
generated by the algorithm with this energy. Figure 10 shows the 9 turn noose evolving. This figure 
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n=O n=1,000,000 n=2,000,000 n=3,000,000 n=4,000,000 

n=8,000,000 n=16,000,000 n=24,000,000 n=32,000,000 n=40,000,000 

n=48,000,000 n=56,000,000 n=64,000,000 n=72,000,000 n=80,000,000 

n=88,000,000 n=96,000,000 n=104,000,000 n=112,000,000 n=120,000,000 

n=128,000,000 n=136,000,000 n=144,000,000 n=152,000,000 n=160,000,000 

Figure 10: Noose Evolving 
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illustrates several things. First, at higher temperatures (i.e. near the beginning of the computation) 
the movements are fairly violent and the knot quickly becomes a jumble of line segments. During 
this time it is difficult to determine if the knot is evolving toward its canonical form. Even at 
iteration 16,000,000 it isn't clear what has happened. By iteration 24,000,000 the knot seems 
simpler and by iteration 40,000,000 all the inner loops have essentially unwound. The pictures of 
the next 120,000,000 iterations show how slowly the algorithm converges to final, minimum energy 
configuration. More will be said about this later. 

1 o'o'---2-:':0-~40:----,eo~--:!:eo=------:c1o~o--:1:7.20:---:-:14-=-o ---:-:160 
Millions of iterations 

(a) Overall Evolution 

460 

eo 90 

3,5 Torus 

Trefoil 

Unknot 

100 110 120 130 140 150 160 
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(b) Energy Splitting 

Figure 11: Physical Energy of Evolving Knots 

The overall results of the computations using the physical energy are summarized in Figure 11. 
The first graph shows the energy as a function of the number of iterations. The computations for all 
the knots mentioned above appear on this graph. Each time the cooling was restarted the energy 
of the knots drops rapidly and then levels off. If the cooling was not restarted the energy would 
not drop much more during the rest of the computation. Note that all the knots follow essentially 
the same energy curve until the end of the computations; here they begin to split. The second 
graph shows a close up of the final portion of first graph. The energies have split into five distinct 
levels which correspond to the five different topological knots present. Note that in some cases the 
minimum energy of different topological knots is not very different. Thus, some topological knots 
which are different might not be easily distinguished using this energy. 

Some other points should be made. The convergence of these computations to a global minimum 
would be asymptotic if the temperature was inversely proportional to the logarithm of the number 
of iterations. With the restarting of the cooling no such convergence is guaranteed. During the 
computations several examples did not converge. One of the computations with a 5 turn noose failed 
to unwind all the inner loops. When computed again with the same parameters and a different set 
of random numbers all the inner loops unwound and the final configuration was approximately a 
circle. Computations with the 2,5 torus knot and the 2,7 torus knot also failed to converge during 
some computations. The results shown in the graphs correspond to the runs that found the lowest 
energies in each case. 

In addition to the minimum energy, the form of the final configurations is worth noting. For 
the unknot the final configurations were all approximations of a circle in three dimensions. In the 
case of the trefoil knots the final configuration was less appealing. A typical example is shown in 
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Figure 12. Here the essence of the knot collapses into a small portion of space as the detail shows 
in an exaggerated fashion. The results are similar for the other torus knots. Since the energy ~s 
defined pointwise, the algorithm found a way to minimize the energy by interleaving the points. 
The 2,5 and 2, 7 torus knots computations ended in configurations similar to the trefoil knot (i.e. 
with one large and one small loop). This explains the similarity in energy. The 3,5 torus knot 
computation resulted in a final configuration which had one small loop, one slightly larger loop 
around that loop and one large loop. This accounts for the relatively large increase in minimum 
energy for this knot compared with the other torus knots. Again, the essence of the knot collapsed 
into a very small region of space. This collapsing also seems to be responsible for some of the 
convergence problems. 

(a) Actual (b) Detail 

Figure 12: Minimum Energy Trefoil 

In summary, the algorithm was able to put initially complex knots into a consistent form based 
on their topological type. The physical energy used seemed to be inadequate for several reasons. 
First, the minimum energies of different topological knots were often not very different and thus 
difficult to resolve with this algorithm. Second, the final configurations were difficult or impossible 
to recognize since the details of the knot structure collapsed into a very small volume. 

4.2 Geometric Energy 

Some computations were performed with the geometric energy described in section 3.2.2. These 
computations required much more time per iteration because O(N) double integrals needed to be 
evaluated each iteration. Initially, we attempted to evaluate these integrals by point sampling the 
integral at the midpoints of the segments. For the trefoil knot this led to final configurations similar 
to those shown in the previous section. These were spurious results because the geometric energy 
goes to infinity as the distance between distinct portions of a knot goes to zero. The problem 
resulted from the point sampling of the integral at fixed values in the parameter space. The energy 
of these spurious final configurations was about one half the expected minimum energy [3]. 

To avoid these problems an adaptive technique was used in the integral evaluation. This elim­
inated the spurious solutions. Unfortunately, it greatly increased the time to computed each iter­
ation. As a result, the total number of iterations feasible for a given computation was much less 
than in the case of the physical energy. 

Due to this restriction, the knots used in these computations were not particularly complex 
however, when possible, several starting configurations were chosen. The knots used are shown in 
Figure 6a, Figure 7, and Figure 9. These include an unknot, two trefoil knots, and several other 
torus knots. 
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Figure 13: Geometric Energy Splitting 

For all the computations the restart time tr was chosen so the cooling restarted, as described in 
section 3.4, when the ratio of Tk to Tk+l was equal to 10. This implies that tr = e10 - e ~ 22, 000. 
The constant Ct was chosen so 20, 000 iterations took place during this time. The initial temperature 
To was 200.0 and the minimum temperature Tmin was 0.0002. Thus, 120,000 iterations were 
performed in each case to compute the minimum energy configuration. The constant Cu was 1.0 in 
all cases. 

In the initial stages of the algorithm, the results look very much like the results obtained with 
the physical energy, but as the temperature drops the energies of the different knot types split more 
distinctively, see Figure 13. Note that these computations have not completely converged due to 
the limited number of iterations per computation. Also, it appears that a 2,9 torus knot might 
have a minimum energy very similar to a 3,5 torus knot. 

(a) Trefoil (b) 2,5 Torus 

(c) 2,7 Torus (d) 3,5 Torus 

Figure 14: Minimum Geometric Energy Configurations 

The minimum energy configurations of the geometric energy are much more recognizable. Ex­
amples for all the knots tried are shown in Figure 14 (the unknot is not included since its minimum 
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energy configuration is simply a circle). Remember that the geometric energy is invariant under 
Mobius transformations of the knot. Thus some of the final configurations might look a bit unusual 
but they are only a Mobius transformation away from a more appealing form. 

4.3 Observations 

Although simulated annealing with these energies was very successful putting knots in a canon­
ical form, several things should be noted. Picking the constant of proportionally between the 
temperature and variance is not always trivial. Theoretically, with logarithmic cooling, the algo­
rithm converges to a global minimum regardless of the value of the constant but in practice it 
makes a very large difference if the knot is very complex. If this constant is too large, most of the 
perturbations are rejected because they cause the knot to cross itself or the energy increases too 
much for the new configuration to be accepted. If the constant is too small, the perturbations are 
too small and the knot doesn't reach a minimum energy configuration in a reasonable amount of 
time. 

Also, choosing the rate of cooling is problematic. Less problematic, but still ad hoc, is the 
choice of the time to cool before restarting the cooling process. In general, a reasonable rule is: 
If the knot doesn't reach a minimum energy configuration by the end of the computation, then 
reduce the cooling rate and restart after a longer time. In this way more time (i.e. iterations) is 
spent logarithmically cooling in each temperature range; for a given problem, this is eventually 
long enough for the algorithm to (nearly) converge. Unfortunately, this is strongly dependent on 
the initial knot. The more complex the knot, the more iterations are required in each temperature 
range. 

Finally, the convergence of the algorithm to the minimum energy configuration once the knot 
is near the global minimum is very slow. This problem becomes worse as the number of segments 
increases (i.e. the dimension of the configuration space). 

5 Future Work 

Given our initial success recognizing knots using simulated annealing to minimize the energy of 
knots, many improvements are possible. Speeding up the computation is an obvious and important 
improvement. This can be achieved in a variety of ways. 

One way involves using a simulated annealing algorithm that converges faster. Several have been 
proposed in the literature. One is based on choosing perturbations from a Cauchy distribution and 
is outlined in [13]. This method claims convergence if T = fft· Another method first discussed 
in [8] and later made available in software form claims exponential convergence (i.e. convergence if 
T = Toe-t). In both cases, the knot must be perturbed globally each iteration (i.e. all the vertices 
need to be perturbed simultaneously). Other approaches involve keeping the temperature fixed 
until the configurations reach "equilibrium" and then lower the temperature more quickly. These 
approaches are attractive if a suitable notion of equilibrium is available. 

It is also clear that much of the computation time is spent finding the global minimum once 
the current configuration is close the minimum energy configuration. This time could be greatly 
decreased if a deterministic method for finding a local minimum (e.g. gradient descent) could be 
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used. For this to be successful the algorithm needs to detect when the current configuration is in 
the global minimum basin of attraction (i.e. the global minimum is the current local minimum). It 
is not clear how to do this automatically in best possible way. Switching to a deterministic method 
at a given temperature would be a reasonable start. 

Another issue is the convergence of the algorithm. Even if the correct cooling was used with this 
algorithm, the proof of asymptotic convergence is only valid when minimizing a function over all 
Euclidean 3N space. The algorithm is restricted to a subset of this space which corresponds to all 
geometric knots that can represent the topological knot corresponding to the initial geometric knot. 
This constraint manifests itself in the algorithm when perturbations are rejected because they would 
cause the knot to cross itself (see section 3.3). This problem becomes acute, both theoretically and 
practically, when global perturbations are used. We believe scaling the perturbations to "fit" the 
constraints of the space can overcome this problem. This amounts to moving the boundaries we 
cannot cross to an infinite distance. Thus, the algorithm will operate inside an unconstrainted 
space with a distorted metric. This should help make a proof of asymptotic convergence possible 
and it makes global perturbations reasonable in practice. 

6 Conclusions 

In the context of recognizing knots, simulated annealing has proved useful in finding geometric 
knots close to a global minimum of an energy function. Our computations have shown that given 
enough iterations all the knots tried end up close to a canonical form. If purely logarithmic cooling 
was used and the space was unconstrainted this result would be guaranteed. It is clear that physical 
energy used in some of these computations does not have all the properties desired. The energy 
minima do seem to lead to knots with a minimum of "clutter". Unfortunately, the portion of the 
knot that distinguishes it from other types of knots collapses into a small region and it cannot be 
viewed easily (if at all), 

The more sophisticated geometric energy gives more desirable results. The energy minima for 
different topological knots are more distinct. The energy minimizing knots are much easier to 
recognize, but the Mobius invariance of this energy sometimes makes these final knots surprising 
in form. 

In the case of both energies it is unlikely that the minimum energy alone of a topological knot 
will distinguish it from other topological knots, at least, in practice. It is also clear that faster 
methods of computing energy minimizing geometric knot are needed. 
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