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ABSTRACT 

 

Economic and Environmental Implications of Low-carbon Transition in Energy System: 

Case Studies on Lighting Technologies, Electricity System, and Direct Air Capture  

 

by 

 

Yang Qiu 

 

The decarbonization of energy system plays a fundamental role in global climate change 

mitigation efforts, and it entails unprecedented infrastructural transformations across the 

whole energy supply chain and the end uses as well as large scale deployment of emerging 

low-carbon technologies. In addition to the carbon mitigation potential, it is also critical to 

comprehensively assess other sustainability dimensions of the decarbonization actions.  

Techno-economic analysis (TEA) and life cycle assessment (LCA) are two main methods 

that are used to quantify the economic and environmental performances for energy system 

technologies, respectively. However, applying these methods at technology-level is limited to 

capture the dynamic system contexts and their effect on the technology performances. The 

main contribution and novelty of this dissertation is that it evaluated the economic and/or 

environmental implications of decarbonization actions in the energy system by linking the 

relevant methods with scenario analysis and/or system modeling approaches. This 

methodology integration makes it possible to capture the effects of system interaction and 

evolution on the performance of decarbonization actions.  
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A transition to energy-efficient lighting technologies (e.g., fluorescent and light-emitting 

diode (LED) lightbulbs) assist climate change mitigation by reducing energy consumption. In 

Chapter II, I studied the uses and recycling of critical rare earth oxides (REOs) in the 

efficient lighting technologies. The demand for REOs in the lighting sector shows a rapid 

increase during 1990 and 2014 driven by the global adoption of fluorescent lightbulbs, but 

this increasing trend decreases after the peak as more efficient LED lightbulbs (that requires 

significant less REO consumption than fluorescent lightbulbs) penetrated the market and 

replaced fluorescent lightbulbs. The REO recycling from end-of-life lighting technologies are 

not economically feasible under 2018 REO prices, even though economy of scale can reduce 

recycling cost by two third as plant capacity increases from 100 t/yr to 1,500 t/yr, 

highlighting that the improvement of REO recycling rate may need higher REO prices or 

commensurate policy interventions. 

In Chapter III, I quantified the total system cost of the U.S. electric power system under 

different decarbonization scenarios based on the capacity expansion and dispatch outputs 

from an electricity system optimization model. I found pursuing zero CO2 emission by 

replacing fossil fuel with renewable and other low-carbon energy sources would incur $335–

$494 billion additional cost (5% discount rate, 2020 US$) to the U.S. electricity system 

during 2020–2050 (compared to a reference scenario). Additionally, the marginal costs of 

mitigating the last few percent CO2 emission from the U.S. electricity system could exceed 

the costs of some carbon dioxide removal (CDR) solutions, such as bioenergy with carbon 

capture and storage (BECCS) and direct air carbon capture and storage (DACCS), indicating 

their potential opportunity to decarbonize the electricity system.  
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In Chapter IV, I evaluated the prospective environmental performance of DACCS which is a 

CDR solution that deliberatrely removes carbon dioxide (CO2) from atmosphere. I found 

decarbonizing the electricity sector leads to environmental trade-offs for DACCS by 

increasing its terrestrial ecotoxicity and metal depletion levels both by an average of 56% 

from 2020 to 2100, but these increases can be reduced by improving the material and energy 

use efficiencies of DACCS as it scales up. Also, DACCS deployment aids the achievement 

of long-term climate targets, its environmental and climate performance however depend on 

sectoral mitigation actions, and thus DACCS deployment should not suggest a relaxation of 

sectoral decarbonization targets. 

This dissertation provides robust and reliable insights for the low-carbon transition in energy 

system by evaluating the economic and environmental performances of decarbonization 

actions in dynamic system contexts. Decarbonization actions in the energy system could lead 

to economic and environmental trade-offs which should be carefully studied and considered 

in policy decisions. Future studies and policies may also rely on multi-criterion decision 

analysis to decide how to implement a variaty of decarbonization actions in energy system 

based on the optimization of different sustainability dimensions.   
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I. Introduction 

A. Background 

The increasing anthropogenic greenhouse gas (GHG) emission has been the dominant cause 

of global average temperature rise since the pre-industrial time. To avoid severe and irreversible 

impacts of global warming on human and nature systems, international consensus has been 

formed to limit global temperature rise (relative to pre-industrial levels) to well below 2 °C and 

pursue efforts to meet a 1.5 °C target by 2100 under the Paris Agreement1. These ambitious 

climate targets require rapid reduction of GHG emissions from a wide range of social-economic 

sectors and even deliberate carbon dioxide removal (CDR) from the atmosphere2,3.  

The energy system (including energy supply and end uses) is the single largest contributor to 

global GHG emission, with its CO2 emission reaching 38 Gt CO2/yr in 2019 and accounting for 

approximately two-thirds of annual global anthropogenic GHG emissions (59 Gt CO2 eq in 

2019)4. Therefore, a rapid and sweeping transition of energy system to net-zero GHG emission 

by mid-century plays a fundamental role for achieving the stringent climate targets5. 

Decarbonizing the energy system requires unprecedented infrastructural transformations across 

the whole energy supply chain and the end uses, including: (1) Adoption of variable renewable 

and low-carbon energy sources in the power sector; (2) Improvements in energy generation and 

use efficiency, (3) Electrification of energy end uses, and (4) Application of carbon management 

with CDR solutions6,7.  

Although climate mitigation actions alleviate global warming, they also face other economic 

or non-climate environmental challenges. For example, the cost of energy generation of 

renewable solar and wind have reduced dramatically in recent year8, leading to their rapid-
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growing deployment worldwide to decarbonize the electricity system9. But, due to the temporal 

variability and unpredictability of renewable solar and wind resources, further increase of their 

penetrations in the electricity system may lead to higher fluctuation of energy output and higher 

forecasting errors. These challenges require the electricity system to add more back-up capacity 

and balancing services to maintain the system reliability and stability, which impose additional 

integration cost on the electricity system10,11. In the energy demand side, low-carbon transition in 

the lighting sector is driven by the application of more energy-efficient lighting technologies, 

such as fluorescent and light-emitting diode (LED) lightbulbs. Compared to inefficient 

incandescent lightbulbs, fluorescent and LED lightbulbs need a wider variety of metals in their 

components to achieve high performance, but the increased material complexity can potentially 

cause adverse environmental impacts12 and pose challenges for sustainable waste management13 

at the products’ end of life. CDR solutions contribute to climate mitigation by removing carbon 

dioxide from the atmosphere. However, BECCS is likely to cause competition for natural and 

agriculture land14, pose risks for food production15,16 and biodiversity17. DACCS, which separate 

highly dilute carbon dioxide from air through chemical or physical processes, may requires 

substantial amount of energy and material inputs for its operation, leading to possible adverse 

environmental impacts18–20. Due to these potential concerns and risks, large-scale deployment of 

these CDR solutions still remains uncertain.  

Given the wide variety of economic and environmental challenges related to decarbonization 

actions, it is critical to comprehensively evaluate other sustainability dimensions (beyond the 

goal of carbon mitigation) of these actions, especially for those emerging technologies that are 

not yet commercialized.  
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Techno-economic analysis (TEA) and life cycle assessment (LCA) are two main methods 

that are used to quantify the economic and environmental performances of technologies in 

energy system, respectively21. At the technology level, TEA evaluates the cost and revenue based 

on economic data and input parameters under specific technical and financial assumptions. Such 

analysis can provide useful information about average economic performance of the technology 

or support project-specific policy and investment decisions that are restricted to the parameter 

assumptions21. In the energy system, levelized cost of energy (LCOE) is a common metric that is 

used to estimate and compare the energy generation costs of different technologies in TEA. 

LCOE is calculated by averaging the life-cycle total costs (present value) of an energy generating 

technology by its life-cycle energy outputs22. In the literature, many studies that report the rapid 

cost reductions of renewable energy technologies and their economic advantages compared 

conventional fossil fuels are mostly based on the evaluation of their LCOE8,23,24. Some studies 

incorporate the variability of economic data and input parameters to capture the uncertainty of 

LCOE under different technological, financial, and geographical contexts8,25. However, LCOE 

still faces some limitations, with one main being that the calculation of LCOE is based on static 

technical parameters (e.g., capacity factor and energy efficiency) and focuses on technology 

level, so it does not capture the effects of system operation dynamics and system integration on 

the energy cost. In the power system, the electricity demand is not homogenous in time, instead, 

it fluctuates widely on time scales of minutes up to season, so some generation technologies (also 

called dispatchable generation sources), such as coal, natural gas, hydropower, etc., need to 

adjust their power outputs to maintain electricity supply-demand balance all time. In addition, 

the electricity generation from variable renewable solar and wind are driven by weather and the 

diurnal cycle of the sun, so as these VRE sources increase their shares in power grid mix, the 
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power output variations of dispatchable sources become even more drastic, causing the so-called 

the “Duck Curve”26. The variation of power outputs (depending on the demand and supply 

situation) affects the value of the generated energy, which however, is not considered in the 

LCOE27. Second, the power system transition does not simply imply a one-to-one replacement of 

VRE sources and conventional fossil fuel sources. Due to the intermittency of VRE, additional 

dispatchable capacity is needed as operating or backup reserve, which is made available either 

on-line or on-standby so that it can be called on to generate electricity when supply-demand 

balance is interrupted due to unpredictability or variability of the conditions28. The costs of 

installing, maintaining, and operating these backup reserve are not considered in the LCOE 

either29. Given the limitation of LCOE, it is insufficient to evaluate the economic 

competitiveness of energy system technologies and it also falls short of evaluating the real 

potential and economic implication of adopting renewable energy technologies in the power 

system transition. 

LCA, on the other hand, quantifies the potential environmental impacts of the product or 

service throughout its entire life cycle which spans from raw material extraction through 

production, transportation, use, end-of-life treatment. A traditional LCA (also called attributional 

LCA, or ALCA) focuses on the immediate physical flows within the technology-specific system 

boundary, and the environmental impacts are typically estimated based on average physical flow 

data of each unit process and a linear relationship between the inputs and outputs of the system30. 

Generally speaking, ALCA approach catches a “snapshot” of the average environmental impacts 

of a technology system based on an existing and static supply chain and identifies the 

environmental hotspot throughout life cycle stages, but they are limited in revealing how 

environmental impacts of the studied object may change in a future-oriented manner. The real 
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world is a dynamic and interacting system. A technology at different deployment scales and 

technology readiness level (TRL) could have different material and energy use efficiencies due 

to learning and economy of scale31–33, and technology transition and innovation may also occur 

in the upstream and downstream supply chains over time34,35. All these factors could potential 

change the environmental impacts of the studied object by following non-linear projections with 

material and energy inputs over long-term period36.  

Given the limitations of technology-level TEA and LCA mentioned above, there is a need to 

link these economic and environmental assessment methods with scenario analysis or system-

level modeling approach to evaluate the performance of decarbonization actions in a dynamic 

system context.  

Energy system models are mathematical models that provide holistic analysis and 

evaluations on energy system planning and operations by integrating energy system 

characteristics with economic parameters, environmental regulations, and policy targets37,38. In 

the past decade, a variety of energy system models has been developed to serve different 

purposes. For example, some models focus on long term evolution of energy system and support 

investment decision and planning, and this type of model typically covers a time span of several 

decades, but with coarse temporal resolution in each year (i.e., a year is typically represented by 

several so-called “time slices”), while others only cover one or several years with high intra-

annual resolution (e.g., minutes or hours), enabling the model to analyze the operational decision 

and unit commitment of different energy system technologies under dynamic situations. Also, 

the geographical coverage of these models varies from analyzing single projects or individual 

buildings to modelling the energy system at the national or global level. Additionally, depending 

on the methodology, energy system models are also divided into optimization, simulation, and 
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equilibrium models. Optimization models are expected to identify the optimal solution through a 

pre-defined objective function (e.g., minimizing total system cost) based on a set of constraints 

that consists of energy system operation characteristics, resources availability, and environmental 

regulations, etc. One the other hand, the purpose of simulations models is to estimate and analyze 

a variety of possible scenarios or pathways of energy system as a result of different combinations 

of key parameters related to cost, emission, energy demand, and technologies options, etc. 

Instead of finding an optimal solution, simulation models provide several alternative routes and 

end states with dissimilar strengths and weaknesses, leaving it to the users to make decisions on 

the basis of a variety of considerations. Equilibrium models take an economic approach, and they 

model the energy sector as a part of the whole economy and study how it relates to and interacts 

with the rest of the economy. Such models, therefore, can be used to evaluate the policy 

implications on energy system development in a broader context of the whole economy39,40.  

A growing number of energy system models nowadays incorporate economic metrics, to 

understand the economic implication of energy system transition10,41–44. Compared to 

technology-level TEA, the economic analysis based on energy system models takes into account 

a broader range of technological, economic, environmental, and policy aspects of the energy 

system and also captures the complex interactions within the energy system as well as between 

the system and the rest of the economy, such a comprehensive modeling approach allows for 

more robust and reliable analysis to assist policy decisions on future energy system transition. 

LCA has also been improved to capture the change of environmental impacts based 

prospective LCA frameworks. Prospective LCA deals with changes of environmental impacts 

incurred by the technological improvement and transition that happens both in the studied object 

itself or along its supply chain over long-term time period. Prospective LCA typically consider 
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and evaluate a broad ranges of technology alternatives that can provide a similar function, and it 

also incorporates the predictive scenarios that informs how technological improvement (e.g., 

change of material and energy use efficiency due to technology learning and economy of scale) 

and transition (e.g., low-carbon transition in the energy system) occurs over long term period45. 

Recently, a growing number of prospective LCA studies have incorporated scenarios from 

integrated assessment model (IAM)35,46–48, and these scenarios projects technical and economic 

characteristics of the industrial metabolism that considers natural resources constraints, existing 

infrastructure, and climate policy targets. Hence, these methodological improvements in LCA 

provide the basis for more realistic and robust assessment for the environmental impacts of 

emerging technologies under specific long-term climate change mitigation pathways. 

B. Objective and organization of this dissertation 

In this dissertation, the main objective is to assess and reveal the economic and 

environmental implications of low-carbon transition in the energy system. To achieve this 

objective, I have linked material flow analysis, TEA, and LCA with scenario analysis and/or 

system modeling approaches to study different decarbonization actions in the energy system, 

including energy-efficient transition of lighting technologies, decarbonization of electric power 

sector, and DACCS. This methodology integration makes it possible to capture the effects of 

system interaction and evolution on the performance of decarbonization actions. This dissertation 

includes the following three chapters and is then concluded with a summary:   

The Chapter II focuses on the uses and recycling of critical rare earth elements in the lighting 

sector as it transitions towards more energy-efficient lighting technologies (e.g., fluorescent and 

LED lightbulbs). In this chapter, I quantified demand and end-of-life flows of rare earth oxides 

(REO) in the lighting sector by linking a dynamic material flow analysis with future projections 
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of lighting technologies under different scenarios. Then, I further assessed how economy of scale 

affects the cost-and-benefit of REO recycling in the lighting sector based on our estimated end-

of-life REO flows and technology learning curve approaches. 

In Chapter III, the capacity expansion and dispatch of the U.S. electric power system were 

modelled under different decarbonization scenarios using an electricity system optimization 

model. Based on the model outputs, I quantified the total system cost of decarbonizing the U.S. 

electric power system from 2020 to 2050. The electricity technologies that contribute to the 

system cost and its regional variation were also identified. I further converted the system costs 

and CO2 emissions into CO2 abatement costs for the decarbonization scenarios, and compared 

them with social cost of carbon and levelized cost of two CDR solutions (BECCS and DACCS). 

The comparison provides insights for the cost-benefit of reaching zero-carbon electricity system 

and the potential opportunity of adopting CDRs to mitigate the CO2 emission from the U.S. 

electricity system. 

The Chapter IV evaluated the environmental trade-offs of DACCS technologies under 

climate change mitigation contexts based on a prospective LCA framework. This framework is 

linked with a IAM that provides the future transition pathways of electricity system and the 

projections of DACCS deployment at four global regions (U.S., China, Russia, and Western 

Europe) and the overall world under the 1.5°C climate targets. This linkage makes it possible to 

study the prospective environmental impacts of DACCS by considering the effects of electricity 

system transition and the economy of scale and learning of DACCS. In addition, I also quantified 

the prospective environmental impacts of electricity generation under the scenarios with and 

without DACCS deployment to assess the effect of DACCS on the decarbonization pathway of 

electricity system.   
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This dissertation is ended with a summary of the main findings from the three chapters and a 

higher level conclusion of the whole dissertation.  
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II. Economic feasibility of recycling rare earth oxides from end-of-life 

lighting technologies 

Material from:  

Qiu, Y., & Suh, S. (2019). Economic feasibility of recycling rare earth oxides from end-of-

life lighting technologies. Resources, Conservation and Recycling, 150, 104432. 

https://doi.org/10.1016/j.resconrec.2019.104432 

© 2019 Elsevier B.V. All rights reserved. 

 

Abstract. Transition to efficient lighting technologies, such as fluorescent and LED lamps, is an 

important strategy to mitigate climate change. However, it also increases the demand for critical 

materials such as rare earth oxides (REOs). While recycling can alleviate the dependence on 

primary REOs, recycling these materials from lighting technologies is currently economically 

infeasible, limiting its adoption. As more REOs will become available for recycling, the 

economy of scale is expected to reduce the cost, therefore improving their circularity. Here we 

analyze the effects that the scale of recycling operation and REO prices have on the economic 

feasibility of REO recycling using dynamic material flow analysis and technology learning curve 

approaches. Our results show that end-of-life REOs from lighting technologies are expected to 

peak between 2020 and 2027. Increasing recycling plant capacity can reduce cost from about 

$7,200/t REO phosphors at 100 t/yr capacity to about $2,500/t REO phosphors at 1,500 t/yr 

capacity. Nevertheless, we found that REO recycling would not be economically feasible under 

2018 REO prices, irrespective of scale. For a plant at 800 t/yr capacity, recycling becomes 

profitable only after a threefold increase from 2018 REO prices. The break-even point can be 

further reduced at a larger scale. Our results suggest that scaling-up recycling plants in the course 

https://doi.org/10.1016/j.resconrec.2019.104432
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of growing volume of end-of-life lighting technologies alone will not automatically increase 

REO recycling under current market conditions. Significant improvement of REO recycling rate 

in lighting technologies would therefore require substantially higher REO prices or 

commensurate policy interventions. 
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A. Introduction 

Lighting technologies are undergoing an energy-efficiency transition49,50. Transition from 

incandescent lightbulbs to fluorescent lamps (FLs), including compact fluorescent lamps (CFLs) 

and linear fluorescent lamps (LFLs), started in the 1990s, thanks to their high energy efficiency, 

long lifetime, affordable prices, and the worldwide phase-out of incandescent lightbulbs51,52. 

Globally, FLs accounted for 60% of newly installed lamps in 201553. In recent years, as light-

emitting diodes (LEDs) have become affordable enough for general lighting, LEDs are expected 

to replace FLs and become the dominant lighting technology53–55. Compared to incandescent 

lightbulbs, FLs usually have higher luminous efficacy of 60 to 95 lm/W, and longer lifetime of 

8,000 to 10,000 hours, and LEDs even show better performance compared to FLs, with the 

luminous efficacy of 90 to 120 lm/W and lifetime over 15,000 hours50,51. Lighting is responsible 

for about 15% of global electricity consumption (3300 TWh/yr) and 4.6% of greenhouse gas 

(GHG) emissions (1400 Mt CO2 eq/yr)56. According to a recent UNEP report, the transition to 

more efficient LEDs would lead to an electricity consumption reduction of 800TWh/yr and GHG 

emission reduction of 390 Mt CO2 eq/yr by 203050. 

Despite the energy and environmental benefits of efficient lighting technologies, they 

increase the consumption of a variety of metals including aluminum, barium, copper, gallium 

iron, lead, nickel, zinc, and rare earth elements (REE). FLs contains higher amount of copper, 

lead, zinc and REEs, while LED contains higher amount of aluminum, barium gallium and 

silver12. Within these metals, the REEs are considered as critical materials worldwide, and the 

US Department of Energy ranked several rare earth elements (Yttrium, Europium, Terbium, 

Neodymium, and Dysprosium) as critical metals, indicating their high importance to clean 

energy and the high supply risk57. In the efficient lighting technologies, rare earth oxides (REOs) 
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are used to produce phosphors of FLs and LEDs58. The type and amount of REOs required by 

FLs and LEDs vary among different technologies. FLs use a thin layer of trichromatic phosphors 

coating inside the glass tube, which converts ultraviolet lights to visible white light59,60. For 

LEDs, a yellow phosphor is often used to convert blue LED light into white light, while other 

combinations are also in use61,62. The use of REOs in phosphors for lighting technologies 

accounted for 10% of total market demand and 18% economic value in the rare earth market in 

201363.  

Currently, supply security of rare earth elements (REEs) is uncertain. China dominates global 

REE mining, processing and refining, raising concerns on potential supply interruptions61,63. The 

global shortage of REE supply and corresponding price hikes during 2009 to 2011, for example, 

was ignited by the Chinese restriction of REE export quotas59,64,65. The “balance problem” is 

another reason causing REE supply tensions; the elementary compositions of REEs found in 

natural deposits vary significantly, and they usually do not match with the proportion of REEs 

demanded by the market, causing surpluses of some REEs while shortages of others, which is 

reflected in the drastic disparity of their prices66,67. 

Recycling is considered as a strategy to mitigate the supply risk of critical materials, 

especially for the countries that depend heavily on imported resources68. Recycling REOs from 

end-of-life (EoL) lighting technologies as a secondary supply requires the characterization of 

future REOs demand and EoL streams from lighting technologies. In the literature, few studies 

have traced the stock and flow of REOs from lighting technologies. Machacek et al. estimated 

the global demand and potential secondary supply of yttrium, europium and terbium in the 

lighting sector, focusing on the period from 2015 to 202063. Ciacci et al. analyzed the europium 

cycle and the potential for recycling focusing on 28 EU countries58. Global scale prospective 
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assessment on the recyclability of REOs from lighting technologies, however, has been lacking 

in the literature. 

Economic feasibility plays a key role in understanding market-based recycling practice69. 

Industrial REOs recycling from EoL lighting technologies, for example, is scarcely practiced 

today as REOs recycling can hardly make any profit since the REO price collapse after 201358; 

Solvay-Rhodia opened two industrial-scale facilities in France in 2011, which respectively 

focused on the upstream and downstream processes of REOs recovery from EoL fluorescent 

lightbulbs63,70, but these two plants had to shut down in 2016 following the demand drop of rare 

earth in the lighting sector and the global REE price collapse71. According to Innocenzi et al., 

recycling REOs from EoL FLs is not economically feasible under the 2016 REO market 

prices72,73. Amato et al. also analyzed the profitability of a recycling plant that recovers rare earth 

elements from EoL fluid catalytic cracking catalysts (FCCC), fluorescent powders and 

permanent magnets74. The result showed that the profitability indexes (defined as the division of 

net present value over capital investment) of recycling FCCC, fluorescent powder and permanent 

magnets are 1.26, 0.03 and 1.75, indicating extremely low profitability of the recycling operation 

of fluorescent powder. These studies, however, focused on the costs of recycling based on the 

current volume of EoL lighting technologies, which may be reduced in the future given the 

growing volume of EoL REOs and technology learning.  

Our study aims to answer the following questions: First, what are the future trajectories of 

REO flows from EoL lighting technologies? Second, would the higher volume of REOs from 

EoL lighting technologies and associated learning enable profitable REOs recycling? If not, what 

would be the REO price floor needed for profitable recycling of REOs from efficient lighting 

technologies?  
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B. Methods and data 

In this study, we conducted a dynamic material flow analysis to estimate the global 

trajectories of REOs demand and EoL flow from efficient lighting technologies (FLs and LEDs) 

for the time period of 1990 – 2050. Then, based on the volume of REOs EoL flow that are 

available for recycling, we incorporated the learning curve approach to estimate the possible 

change of REO recycling cost by considering the effect of economy of scale. 

1. Dynamic Material flow analysis 

Stock and flow model is widely used in the field of industrial ecology to quantify the 

accumulation, depletion, or flows of materials in a system75–81. It has been adopted to quantify 

industrial emission82, nanomaterial release83, waste streams84. In this study, we conducted a 

dynamic material flow analysis which incorporated the stock model to estimate the waste stream 

generation of REOs from the lighting sector between 1990 and 2050 based on the annual 

demands and lifetime distributions of different lighting technologies. 

The global CFL and LFL demand data were collected from the IEA and US DOE reports51,57, 

and data were presented in the appendix (Table A1 and A2) . Due to the limited time frames of 

the original data (CFL is 1990-2030, LFL is 2007 - 2025), projections were made based on the 

historical growth trends of these two types of lighting technologies to generate a homogeneous 

time frame from 1990 to 2050. We assumed that the LED technology started to penetrate general 

lighting market from 2010 by replacing the demand for FLs. CFL was replaced by LED bulbs, 

and LFL was replaced by linear LED lamps (Linear LED). Three scenarios were set up to 

represent different LED penetration speeds: low, medium and high. Under the three scenarios, 

LED started to penetrate general lighting market in 2010 by replacing FLs. The replacement 
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rates increased linearly from 0% at 2010, and reached 100% by 2050, 2040, and 2030 

respectively.  

The lifetimes of different lighting technologies were collected, and each lighting technology 

was considered for both residential and non-residential (including outdoor, commercial and 

industrial) applications due to the different daily operational times in these two sectors. The 

average operational times for residential and non-residential lighting are about 2.3 and 11.2 

hours/day respectively 85,86. For CFLs and LEDs bulbs, we assume 70% of them are used in 

residential sector, and 30% of them are used in non-residential sector. For LFLs and linear LEDs, 

20% of them are used in residential sector, and 80% of them are used in non-residential sector 87. 

The lifetimes by year of different lighting technologies within the two application sectors were 

calculated based on their respective lifetimes by hour and daily operational times (Table 1). 

The Weibull distribution has been verified to have better analytical tractability and generate 

higher goodness-of-fit in estimating a product’s lifetime 75,88,89. Therefore, the two-parameter 

Weibull distribution was chosen to approximate the lifetime distributions of lighting 

technologies, and the probability density distribution function is shown as follows: 

𝑃(𝑙) =  
𝛼

𝛽
× (

𝑙

𝛽
)𝛼−1 × exp (− (

𝑙

𝛽
)

𝛼

)                                (1) 

𝛼 is the shape parameter, and 𝛽 is the scale parameter. 𝑙 is the product’s lifetime by year. 

𝑃(𝑙) quantifies the proportion of inflow that will be disposed at lth year. The shape parameter 𝛼 

of different lighting technologies were collected from literatures, and scale parameter 𝛽 of 

different lighting technologies were calculated based on the lifetime by year 𝑙 using the 

following formula: 

𝛽 =  
𝑙

exp (Γ(1 + 
1

𝛼
))

                                                  (2) 

Where Γ is a gamma function: 
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Γ(𝛼) =  ∫ 𝑥𝛼−1 × exp(−𝑥) 𝑑𝑥
∞

0
                               (3) 

The shape and scale parameters of four types of lighting technologies are also presented in 

Table 1.  

Table 1. Lifetime and Weibull distribution parameters for four lighting technologies 

 CFL LFL LED bulb Linear LED 

Lifetime by hour (hr)a 8,000 10,000 15,000 20,000 

Lifetime by year residential (yr) 10 12 18 24 

Lifetime by year non-residential (yr) 2 3 4 5 

Shape parameter (𝛼)b 2.1 1.9 2 2 

Scale parameter for residential (𝛽) 11.3 13.5 20.3 27.1 

Scale parameter for non-residential (𝛽) 2.3 3.4 4.5 5.6 
Note: 
a Data collected from Waide (2010) 51; UNEP (2017) 50 
b Data collected from Heidari et al. (2018) 81; Wang et al. (2013)89 

 

In the stock model, inflow represents the amount of new lighting technology that is installed 

for service at a given year. We assumed that the amount of new installed lighting technology 

each year was equal to the annual demand for that lighting technology. The outflow 𝑂𝑎(𝑛) is the 

total amount of EoL lighting technology a that enters waste stream at nth year, which is 

calculated by: 

𝑂𝑎(𝑛) = ∑ 𝐼𝑎(𝑡)  × 𝑃𝑎(𝑛 − 𝑡)𝑛−1
𝑡=1       𝑛 > 𝑡                                (4) 

𝐼𝑎(𝑡) is the inflow of lighting technology a that is installed in the tth year. 𝑃(𝑛 − 𝑡) is the 

stochastic Weibull distribution which determines the proportion of lighting technology a that is 

installed in the tth year and has the lifetime of n-t. The EoL outflow 𝑂𝑎(𝑛) is the sum of the 

outflows of lighting technology a that were installed in previous years and reached the EoL at the 

nth year.  
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Table 2. Phosphors and REO content of different efficient light technologies      

 Phosphors 

(g/unit) 

Y2O3 

(g/unit) 

Eu2O3 

(g/unit) 

Tb4O7 

(g/unit) 

CeO2 

(g/unit) 

La2O3 

(g/unit) 

CFLa 1.3 0.61 0.04 0.05 0.19 0.08 

LFL (T5)a, c 2.4 0.75 0.05 0.06 0.08 0.25 

LFL (T8)a, c 5.8 1.79 0.12 0.13 0.18 0.59 

LED bulbb 0.0100 0.0049 0.0004 NA 0.0013 NA 

Linear LEDb, d 0.1200 0.0588 0.0048 NA 0.0156 NA 
Note:  
a Data collected from Bauer et al. (2011)57 
b Data collected from Machacek et al. (2015)63 , Lim et al. (2011)55  
c The two types of LFL are differentiated based on the diameter: LFL (T5) has 5/8 inch diameter. LFL (T8) has 

8/8 (1) inch diameter. The overall LFL is reported in the final result.  
d The average phosphors coating area of a linear LED was assumed to be 12 times of a LED bulb according to 90 

therefore the phosphors and REOs contents of linear LED were estimated by multiplying the phosphors and 

REOs contents of LED bulb by a factor of 12. 

 

The phosphors and REO contents in FLs and LEDs were collected from literatures (Table 2). 

The annual inflow and outflow of REOs in lighting sector were determined by multiplying the 

contents of REOs to the amount of lighting technologies: 

𝐼𝑟,   𝑎(𝑛) = 𝐶𝑟,   𝑎  ×  𝐼𝑎(𝑡)                                                 (5) 

𝑂𝑟,   𝑎(𝑛) = 𝐶𝑟,   𝑎  ×  𝑂𝑎(𝑛)                                               (6) 

𝐼𝑟(𝑡) = 𝐼𝑟,   𝑎(𝑡) +  𝐼𝑟,   𝑏(𝑡) +  𝐼𝑟,   𝑐(𝑡) + ⋯                                 (7) 

𝑂𝑟(𝑛) = 𝑂𝑟,   𝑎(𝑛) + 𝑂𝑟,   𝑏(𝑛) + 𝑂𝑟,   𝑐(𝑛) + ⋯                           (8) 

𝐼𝑟,   𝑎(𝑡) and 𝑂𝑟,   𝑎(𝑛) are the inflow and outflow of REO r in lighting technology a at the 

year of n; 𝐼𝑟(𝑡) and 𝑂𝑟(𝑛) are the inflow and outflow of REO r in all lighting technologies (a, b, 

c …) at the year of n; 𝐶𝑟,   𝑎 is the content of REO r in one unit of lighting technology a.   

2. Learning curve 

The unit cost of production has been found to decrease at a rate as the cumulative production 

increases for a wide range of manufacturing and service sectors, which is referred as the learning 

curve or “learning by doing”91. The learning effect can be characterized by a number of 
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mechanisms, such as technology advancement, increased labor productivity, economy of scale 

and improved material and energy efficiency92–94. The learning effect was first described by 

Theodore Wright, who found that the unit labor costs of airplane production declined as a power 

law function of cumulative production95, and it has also been widely observed in other industries, 

such as semiconductor96–98 and energy99,100 technologies. As for the electronic waste recycling, 

Zeng et al., found that technological learning significantly reduced the recycling cost for bulk 

and precious metals (Cu, Fe, Al, Pb and Au) in waste cathode-ray tube TV due to progressive 

automation of demanufacturing101. In this study, the learning curve empirical method was 

applied to estimate the possible cost reduction of the REO recycling process by considering the 

recycling scale. The learning curve function is shown as follows: 

𝐶𝑡

𝐶1
= (

𝑋𝑡

𝑋1
)

𝑎

                                                             (9) 

𝐶𝑡 is the recycling cost at time t; 𝐶1 is the original recycling cost; 𝑋𝑡 is the plant capacity at 

time t; 𝑋1 is the original plant capacity; 𝑎 is the scale factor. 

Industrial scale REO recycling from the lighting sector has been conducted through 

hydrometallurgical processes including leaching, precipitation, filtration and calcination63,70,102. 

The data of capital and operative costs were collected from literatures for two types of recycling 

plants: mobile and fixed plant (Table 3). A mobile plant has limited capacity but better mobility, 

and it is considered a solution for small regions with limited volume of waste stream, while a 

field plant usually has a higher capacity and is able to manage higher volumes of waste69. The 

recycling cost is the sum of capital and operative costs. Given the data availability, the boundary 

of recycling process in this study starts from waste phosphor powders, and the end-product is 

saleable REOs mixture containing Y2O3, Eu2O3, Tb4O7, CeO2  and La2O3. The cost of purchasing 
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the phosphor powders ($1,000/t) is collected from literature and included in the operative cost 

calculation in this study63. 

Table 3. Capacity and cost of recycling facilities. 

Plant type Capacity (t/yr)c Capital cost ($/t)d Operative cost ($/t) Recycling cost ($/t) 

Mobilea 93 1,972 5,460 7,432 

185 991 4,345 5,336 

277 662 3,971 4,633 

370 496 3,773 4,268 

Fieldb 1200 168 2,675 2,842 
Note: 
a Data collected from Innocenzi et al. (2016, 2017)72,73. Recycling cost data of mobile plants in these references 

were collected in 2014 and originally presented as EURO per metric ton (€/t), and we converted them into USD 

per metric ton ($/t) by the average 2014 rate of USD:EURO = 0.753:1 (www.macrotrends.net)  
b Data collected from Strauss et al. (2016)103 
c The unit of plant capacity is “metric ton of REO phosphor powders can be treated per year”. 
d Capital cost is reported by amortizing total capital cost over six (mobile plant) and seven (field plant) years. 

 

3. Uncertainty analysis 

The profit was calculated by subtracting recycling cost from revenue of selling recycled 

REOs to the market. The 2018 average REO market prices were collected for Y2O3, Eu2O3, 

Tb4O7, La2O3  and CeO2, and they are $3.0/kg, $56.0/kg, $461.0/kg, $2.1/kg and $2.0/kg 

respectively104. The revenue was calculated by multiplying the amount of recycled REOs to their 

respective market prices. The revenue was subjected to uncertainty caused by the recycling 

process efficiency rate, REO compositions in the end-product and a discount rate. The recycling 

process efficiency rate was defined as the ratio of the amount of recycled REOs mixture (end-

product leaving the recycling process) to the amount of phosphor powders collected for 

recycling. The discount rate was defined as the depreciation of the market price of each REO 

given the end-product being REOs mixture72. Monte Carlo Simulation is a method that can be 

used to assess model uncertainty105. In this study, 1000 iterations of Monte Carlo Simulation 

were conducted to estimate the range of revenue, and the 90% quartile range of revenue was 
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reported. The model parameters are assumed to follow the triangular distribution, and their 

uncertainty ranges were reported in Table 4. A sensitivity analysis was also conducted to analyze 

the effect of different parameters on the revenue by selling the recycled REO mixture under 2018 

market prices.  

Table 4. Uncertainty ranges of recycling process efficiency rate, REO composition in the 

end-product and discount rate. 

Recycling process efficiency rate (%)a, b  12.1 – 32.3 

REO compositions in the end-product 

(%)a 

Y2O3 80.0 – 88.0 

Eu2O3 4.0 – 5.8 

Tb4O7 0.5 – 1.1 

CeO2 0.4 – 1.3 

La2O3 0.01 

Discount rate (%)a, b 60 – 70 
Note: 
a Data collected from Innocenzi et al. (2016)72 
b Data collected from Strauss et al. (2016)103 

 

C. Results 

1. Demand for lighting technologies 

The result illustrates that demand for FLs experienced a significant increase from 1990 to 

2010, but this increasing trend slowed down since 2010 and reached the peak at around 2014 

given the LED penetration in the general lighting market (Figure. 1). The LED penetration speed 

showed significant effect on the demand for FLs. Under the low LED penetration scenario, total 

demand for FLs remains stable from 2015 to 2025, with a total amount being around 6,500 

million units (CFL and LFL account for around 70% and 30% respectively). After 2025, the 

demand for FLs will rapidly decease. Under medium and high LED penetration, the demand for 

FLs at peak year of 2014 were about 6,700 and 6,200 million units respectively at the global 

level (CFL and LFL account for around 70% and 30% respectively). The total demand rapidly 

declined after the peak year of 2014. 
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Figure 1. Demand for different lighting technologies under low (a), medium (b) and high 

(c) LED penetration scenarios 

 

2. REO demand and waste stream  

The demand for REOs in the lighting sector dramatically increased between 1990 and 2010 

following the global adoption of FLs. Under the low LED penetration scenario, the increase in 

demand for REOs slowed down after 2010 when LEDs started to expand their market shares, and 

the peak year is at 2019, with the total amount of REOs being around 9,700 t/yr. Under the 

medium and high LED penetration scenarios, the peak REO demand from lighting technologies 

is at 2014, with the total amount being around 8,400 to 9,000 t/yr. After 2014, the REO demand 

rapidly declined under these two scenarios. REO flow from EoL lighting technologies is 

expected to follow a similar trend but with a few years of delay; the peak year is likely to be 

around 2020 to 2027 depending on the LED penetration speed, and the total amount of peak 

REO EoL flow will be around 9,300 t/yr, 8,200 t/yr, and 6,800 t/yr for low, medium, and high 

LED penetration scenario respectively. After the peak year, the amount of REOs from EoL 

lighting technologies is expected to exceed the amount of REOs required to meet the demand for 

lighting technologies. In other words, the annual secondary supply of REOs from lighting sector 

will be theoretically sufficient to satisfy its demand after the peak year if REOs can be recycled 
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without loss (Figure 2). The estimated demand and waste of REOs from lighting sector between 

2010 and 2050 can be found in Table A3.  

We also estimated the contribution of different lighting technologies to total REO waste 

stream (Supplementary Table 3). The result shows that FLs will be the dominant source of REO 

secondary supply in the lighting sector until 2030, with more than 95% of share in the waste 

stream under all the three LED penetration scenarios. After 2030, the contribution to total REO 

waste stream will vary depending on the LED penetration speed. Under the low LED penetration 

scenario, the FLs will still account for more than 90% of the REO waste stream until 2050, but 

under high LED penetration scenario, the LEDs will contribute 85% of the REO waste stream by 

2050.  

 

Figure 2. Total REO demand and waste stream in lighting sector under low (a), medium 

(b) and high (c) LED penetration scenarios (dash lines showing the year when REO 

demand in lighting technologies equals to REO flow in EoL lighting technologies) 

3. Recycling cost and profit analysis 

The projected REO recycling cost from the lighting sector is presented in Figure 3. By 

inputting the plant capacity data and corresponding recycling cost data into a regression analysis, 

the scale factor a is estimated to be -0.39 for the REO recycling process considered in this study. 

Model result shows that, to recycle 1 metric ton of phosphor powders from EoL FLs, plant 
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capacity increase can reduce the recycling cost from $7,223/t (plant capacity of 100 t/yr) to 

$2,496/t (plant capacity of 1,500 t/yr). The profit of REO recycling process was calculated by 

subtracting the cost from revenue based on the 2018 REO prices and three other break-even price 

scenarios that allow profitable recycling for three capacity levels (Figure 4). The results show 

that REO recycling is hardly profitable under the 2018 REO prices regardless of the plant 

capacity. The break-even REO prices that lead to profitable recycling varies depending on the 

plant capacity. The break-even REO prices at 100, 800 and 1,500 t/yr of capacities, were 6.3, 2.8 

and 2.2 times that of 2018 REO prices, respectively. 

 

 

Figure 3. Recycling cost projection under different plant capacities (red dots represent 

the empirical data collected from literature, black line represents the estimated recycling 

cost projection). 
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Figure 4. Profitability of REOs recycling process with different plant capacities under 2018 

REO prices level (a) and three other break-even prices of plant scale at 1,500 (b), 800 (c) and 

100 t/yr (d). 

 

The sensitivity analysis shows that by selling the amount of REO mixture recycled from 1 

metric ton of phosphors powder under 2018 REO market prices, the baseline revenue is $1,294. 

The recycling process efficiency rate has the highest impact on revenue, because it can change 

the baseline revenue by ±45%. The Tb4O7 composition can change the baseline revenue by 

±15.4%, which has the most significant impact on the revenue among the five REOs (Figure. 5). 

 

Figure 5. Sensitivity analysis on the effects of different parameters on the revenue of selling 

the recycled REO mixture under 2018 market prices. 
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D. Discussion 

The result of this study shows that the demand for REOs in the lighting sector has reached 

the peak at around 2014 to 2019 depending on different LED penetration scenarios. Among the 

five rare earth elements we analyzed, yttrium, europium and terbium have been considered 

critical materials by both the US and European Union due to their importance for clean energy 

and relatively high supply risk57,106. As the demand for REOs in the lighting sector will 

experience decline after the peak year, the criticality of these REOs is likely to decrease in the 

near future. On the other hand, the amount of REOs from EoL lighting technologies will increase 

for the next one to eight years, allowing potentially increasing volume of secondary supply of 

REOs if recycling becomes economically feasible. Exploiting the secondary supply of REOs 

from EoL lamps through recycling could also counter the supply security concerns over these 

critical natural resources.  

The changes in the market share of lighting technologies and the overall demand for REOs 

are expected to affect the future supply and demand structure of Y2O3, Eu2O3, Tb4O7, of which 

53.7%, 100% and 88.7% have been used for the phosphors manufacturing107. For instance, 

Eu2O3 is currently used exclusively for phosphors. As FLs are replaced by LEDs in the future, it 

is expected that the overall demand for Eu2O3 will decrease, and so will its criticality and market 

price. A potential oversupply of europium is also likely to occur as its demand starts to decline 

after the peak year, therefore recycling will not be a favorable option for Eu2O3
58,108. However, 

yttrium and terbium have relatively diverse applications. Currently, 34% of yttrium is used as 

additives in ceramics and glass, and 11% of terbium is added to the NdFeB magnets as a 

substitute for dysprosium. As the lighting sector uses less Y2O3 and Tb4O7, their supply can be 

possibly absorbed by other applications. For example, terbium is reported to have a better effect 
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in improving the temperature resistance of NdFeB compared to dysprosium, and an increasing 

amount of this material could be applied in magnets as its future demand in lamp phosphors 

decreases. Therefore, recycling could become feasible at a meaningful scale for these two types 

of REOs if demands for other sectors expand67.  

A lack of economic feasibility, however, still is a major challenge in achieving the circularity 

of REOs. Although our results indicate that the increase of plant capacity has a potential to 

reduce cost, recycling of REOs is not profitable given the low REO prices at the moment 

regardless of the plant capacity. As for a recycling plant at 1,500 t/yr of capacity, the REO prices 

need to increase by a factor of 2.2 in order to cover the cost of recycling, and for the mobile 

plant, which usually has smaller capacity, the REO prices need to increase even more to break 

even. When studying the same REO recycling operation based on mobile plant with the capacity 

of 184.0 t/yr, Innocenzi et al. found that the recycling process could be profitable if the final 

REO mixture could be sold at 15.0 €/kg, which was about 2.8 times of the value of the recycled 

REO mixture (5.4 €/kg) reported in that study72. Using the technology learning curve model, we 

also estimated that, for a plant with the capacity of 184 t/yr, the break-even REO prices for 

profitable recycling is 4.0 times that of 2018 REO prices. This value is higher than 2.8, and the 

reason can be that the REO market prices have been further decreased after 2016, therefore the 

2018 REO prices need to increase even more to break even. The sensitivity analysis shows that 

the recycling process efficiency rate and the Tb4O7 composition in the end-product (REO 

mixture) have the major effects on the revenue. Therefore, technologies that can further increase 

these two parameters will significantly improve the economic feasibility of the recycling 

operation. 
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In the future, it is unclear whether the REO prices would increase sufficiently high enough 

for the market to recycle REOs on its own, therefore, we suggest that the government can also 

play a critical role to improve the recycling of REOs from EoL lighting technologies. Currently, 

the few FLs being recycled have been relying on the extended producer responsibility (EPR) 

policy, under which government places the responsibility for treatment and disposal of post-

consumer products on the manufacturers63,109. Under the EPR, the government either allows 

manufacturers to charge customers recycling fees at the time of purchase and fund the recycling 

process110, or levies advanced recycling fees from manufacturers and uses it to subsidize the 

third-party recycling facility111. However, the current EPR policy aims to manage mercury, not 

REOs112. Therefore, should REOs recycling be a policy objective, current EPR policy can be 

expanded to bear the cost of REOs recycling. Besides, Machacek et al. also mentioned that the 

recyclers usually make the decision on recycling or landfilling the waste lamp phosphors 

depending on the cost comparison between these management approaches, therefore, increasing 

the cost or restricting the policy regulation of landfilling the waste lamp phosphors could be 

another option to improve the REO recycling63. 

Additionally, our study shows that more than 95% of the potential secondary supply of REOs 

will be available through EoL FLs before 2030, so we highlight the importance of increasing the 

collection rate of EoL FLs, which is necessary to enable the economy of scale in REOs 

recycling. High collection rates of FLs have been observed in only limited countries and regions, 

such as the EU countries with the average collection rate of FLs being 40%, and Taiwan with a 

collection rate over 80%113, mainly thanks to the mandatory EPR legislation. Other than that, the 

convenient collection system, developed recycling technology, and other infrastructures that 

allow adequate rule enforcement, effective information provision, stable financial management 
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are also important factors for the high collection rates in these countries114. However, in other 

major consumers of the world, such as China, US, Japan and Australia, the EoL FLs collection 

rates are generally below 15%63. Therefore, it is necessary to further investigate how to improve 

the lamp collection rates in these countries.  

The comprehensive recycling operation by Solvay-Rhodia started from the dissembling of 

the waste light bulb, and ended with separated REEs70. However, due to the data availability, the 

recycling operation we considered in this research started from collected waste phosphors 

powder, with the end-product being REO mixture. Therefore, we applied the discount rate to 

account for the depreciation of the market price of each REO given the end-product being REO 

mixture. We recommend that future study focus on the economic feasibility analysis of a 

comprehensive recycling operation for individual REE, for example terbium, which has much 

higher economic value and can be used in other technologies. This type of research will better 

inform the recyclers with their decision-making on recycling the REEs.  

Although economic feasibility is an important factor in determine the recyclability of REOs, 

Machacek et al. also discussed the externalities related to the REO recycling operation (avoided 

environmental and health impact, creation of jobs opportunities, R&D and innovation, and 

broader social value), which need to be considered comprehensively when making decision on 

establishing the recycling facilities63. Therefore, future research that studies these externalities 

will also provide valuable information. 

In this study, we present a dynamic material flow analysis of REOs in lighting technologies 

from 1990 to 2050. The result shows, as LEDs penetrate the market, the demand for REOs in the 

lighting technologies reached the peak at around 2014 to 2019 depending on the LED penetration 

speed. The amount of REOs available from EoL lamps is expected to increase for the next one to 
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eight years with the peak year at around 2020 to 2027, allowing recycling operations to take 

advantage of the economy of scale. Increasing recycling plant capacity can reduce cost from 

about $7,200/t REO phosphors at 100 t/yr capacity to about $2,500/t REO phosphors at 1,500 

t/yr capacity, we find that the rate to which the cost of recycling is reduced may not be sufficient 

to break even under the 2018 REO market prices, irrespective of the scale of recycling operation. 

Significant improvement of REO recycling rate in lighting technologies would therefore require 

substantially higher REO prices, policy support, and improvement of recycling technology.  
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E. Appendix 

Supplementary Table 1. The data of CFL demand from 1990 to 2030 

Year CFL (million unit) Year CFL (million unit) Year CFL (million unit) 

1990 91.8 2004 1539.2 2018 6035.8 

1991 116.4 2005 1897.6 2019 6263.7 

1992 133.8 2006 2812.0 2020 6275.7 

1993 155.2 2007 3450.4 2021 6443.1 

1994 176.5 2008 3412.2 2022 6583.9 

1995 204.3 2009 3702.7 2023 6750.4 

1996 236.0 2010 4584.2 2024 6726.2 

1997 309.7 2011 4891.6 2025 7007.4 

1998 362.7 2012 5214.4 2026 7101.7 

1999 479.1 2013 5370.8 2027 7122.5 

2000 685.3 2014 5992.3 2028 7126.5 

2001 941.3 2015 5752.6 2029 7127.8 

2002 970.9 2016 5743.5 2030 7131.8 

2003 1202.6 2017 5934.3   
Note:  

Data source collected from Waide (2010)51 
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Supplementary Table 2. The data of LFL demand from 2007 to 2025 

Year LFL-T5 (million unit) LFL-T8 (million unit) 

2007 129.1 656.7 

2008 148.0 694.7 

2009 170.8 740.2 

2010 189.8 782.0 

2011 224.0 820.0 

2012 235.4 1375.1 

2013 254.3 1437.4 

2014 280.9 1518.8 

2015 292.3 1627.4 

2016 326.5 1748.3 

2017 345.4 1892.6 

2018 360.6 1997.5 

2019 383.4 2112.3 

2020 406.2 2220.9 

2021 425.2 2331.1 

2022 440.3 2452.0 

2023 455.5 2574.3 

2024 470.7 2687.5 

2025 493.5 2801.5 
Note: 

Data collected from Bauer et al. (2011)57 



 

 

Supplementary Table 3.  REOs demand and waste from lighting sector and the contribution of different lighting technologies to total 

REOs waste 

Year Y2O3 

(t/yr) 

Eu2O3 

(t/yr) 

Tb4O7 

(t/yr) 

CeO2 

(t/yr) 

La2O3 

(t/yr) 

Total REOs 

(t/yr) 

Contribution to 

total REOs waste 

stream (%) 

Deman

d 

Waste Deman

d 

Waste Deman

d 

Waste Deman

d 

Waste Deman

d 

Waste Deman

d 

Waste FLs LEDs 

Low LED penetration 

2010 4,358 2,188 288 145 326 163 1,035 449 862 501 6,869 3,445 100.0

% 

0.0% 

2020 6,148 5,202 408 345 456 388 1,240 1,064 1,419 1,191 9,670 8,188 99.8% 0.2% 

2030 5,061 5,743 337 381 369 424 944 1,157 1,180 1,322 7,941 9,028 99.0% 1.0% 

2040 2,855 4,071 192 271 199 295 579 844 626 901 4,451 6,382 97.3% 2.7% 

2050 276 1,801 23 122 0 120 773 408 0 341 372 2,792 90.4% 9.6% 

Medium LED penetration 

2010 4,358 2,188 288 145 326 163 1,035 449 862 501 6,869 3,445 100.0

% 

0.0% 

2020 5,486 4,916 364 326 405 366 1,108 1,012 1,261 1,118 8,624 7,738 99.7% 0.3% 

2030 3,453 4,670 231 310 246 342 684 962 786 1,050 5,400 7,334 98.4% 1.6% 

2040 256 2,103 21 142 0 144 68 473 0 412 345 3,275 93.0% 7.0% 

2050 276 574 23 42 0 26 73 141 0 69 372 852 63.3% 36.7% 

High LED penetration 

2010 4,358 2,188 288 145 326 163 1,035 449 862 501 6,869 3,445 100.0

% 

0.0% 

2020 4,296 4,346 277 288 304 323 819 908 946 974 6,641 6,838 99.4% 0.6% 

2030 589 2,523 19 169 0 179 1 570 0 504 609 3,946 95.5% 4.5% 

2040 637 643 21 46 0 33 1 159 0 85 658 965 71.1% 28.9% 

2050 684 279 23 22 0 3 1 71 0 10 708 384 15.5% 84.5% 

3
3
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III. Decarbonization scenarios of the U.S. electricity system and their 

costs 

Material from:  

Qiu, Y., Cohen, S., & Suh, S. (2022). Decarbonization scenarios of the US Electricity system 

and their costs. Applied Energy, 325, 119679. 

https://doi.org/10.1016/j.apenergy.2022.119679 

© 2022 Elsevier B.V. All rights reserved. 

 

Abstract. Decarbonizing the electricity system to zero-carbon emission is crucial for climate 

change mitigation. Previous studies have shown that such a transition in the United States (U.S.) 

may lead to higher system cost compared to a business-as-usual case, but it is not well-known 

how the cost of electricity generation varies at sub-regional level under the transition, and studies 

have rarely evaluated the trade-off between the cost and avoided climate damages, as well as the 

potential roles of negative emission technologies (NETs) in the electricity decarbonization. Here, 

we present a regionally resolved national model to quantify the cost of decarbonizing the U.S. 

electricity system under a set of possible scenarios. The result shows that, compared to the 

reference scenario without a decarbonization policy, reaching zero CO2 emission by 2050 would 

incur, depending on the scenarios, 335–494 billion USD additional costs to the electric power 

sector during 2020–2050. The regional costs of electricity generation ranges from 2.4 to 4.7 

cent/kWh, largely due to the generation profiles and renewable resources availability of the 

regions. The additional costs can be translated to average CO2 abatement cost of 29–59 

USD/tonne CO2 (with 2%–7% discount rates), which are comparable to the social cost of carbon 

in the literature at around 4% discount rate. The results also show that the costs of mitigating the 

https://doi.org/10.1016/j.apenergy.2022.119679
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last few percent CO2 emission from the U.S. electricity system exceed the costs of NETs, 

indicating an opportunity for NETs to contribute to electricity decarbonization.  
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A. Introduction 

Decarbonization of the electricity system is crucial for climate change mitigation. To achieve 

the 2 °C climate target of Paris Agreement, the electric power sector needs to rapidly reduce its 

greenhouse gas (GHG) emissions to nearly zero by mid-century2,115–117.  

Literature confirms the technical feasibility of decarbonizing the electricity system to a large 

extent, or even reaching 100% carbon dioxide (CO2) reduction. However, a stark difference in 

views persists as to the cost of such a transition. Some studies have shown that decarbonizing the 

electricity system via deployment of various low-carbon and renewable sources can substantially 

increase average cost of electricity10,41,42,118–121, as additional investments are needed for reserve 

capacity and storage27. While others have found that such a transition will lower the average cost 

of electricity. The lower cost is partially due to the declining prices of photovoltaics (PV), wind 

turbines, and electricity storage systems122–124. In addition, several studies showed the combined 

effect of higher energy use efficiency, electrification, and demand response could potentially 

lower the cost of electricity. This is because electrification and demand response could create 

more flexible load and better matches demand with supply and storage. This mechanism, 

together with higher energy use efficiency, reduces overall energy demand and electricity 

curtailment, thus avoiding overbuilt capacity and the associated cost 125,126,43,127. Furthermore, 

when externalities (health and environmental costs due to carbon emission and other air 

pollutions) are included, a deep decarbonization pathway will also have lower aggregated cost of 

electricity compared to a reference case43,44,125,126.  

In the United States (U.S.), previous studies have adopted various modeling approaches to 

explore the decarbonization pathways and their implications broadly for economy-wide energy-

systems or the electric power sector specifically. Jacobson et al. studied the U.S. energy system 
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powered only by wind, water and solar (100% WWS) using a trial-and-error simulation model, 

and showed that such a 100% WWS system leads to energy cost saving 125,128. This modeling 

approach only simulated the generation profiles on the target year based on supply-demand 

balance without modeling the progressive capacity expansion over time, which does not reflect 

the system dynamics and costs along the transition. Iyer et al. developed a state-level model of 

the U.S. energy system embedded within a global human-earth system model and used it to study 

the evolution of U.S. energy system in the national climate change mitigation context129,130. 

However, this model has relatively large temporal and spatial aggregations, making it 

challenging to capture the granularity of load and resource variations when high renewable 

deployment is involved. To overcome these limitations, recent studies have developed a hybrid 

modeling approach that linked a demand-side model (which estimates time-varying and 

economy-wide energy demand) and a linear programming model with high temporal resolution 

to determine the optimal capacity expansion and operations for a carbon-neutral U.S. energy 

system, and these studies projected multiple feasible pathways of achieving a carbon-neutral 

U.S. energy system but all had higher system cost131,132.  

For the electric power sector, previous studies have mainly adopted capacity expansion 

models or used them in a hybrid fashion to study the implication of power system transition to 

zero or net-zero carbon emission. To capture complex investment and high-resolution operating 

decisions, Cole et al. used a combined capacity expansion and production cost modeling 

framework to quantify the total system cost of transitioning to a 100% renewable energy (RE) 

power system in the U.S. They also observed that such a transition incurs higher system cost 

compared to a reference case, and the incremental costs increase nonlinearly as the transition 

target approaches to 100% RE42. Several other studies took further steps and evaluated the roles 
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of firm low-carbon energy resources (e.g., nuclear, carbon capture-equipped capacity)10, negative 

emission technologies (NETs)133, and inter-regional transmission networks134 in the 

decarbonization of U.S. power sector. These all emphasized that adopting a broader technology 

portfolio to decarbonize the U.S. power sector could reduce system cost and maintain grid 

stability as compared to a system relying on 100% renewable energy sources.  

This work contributes to the existing literature on zero carbon electricity systems at the 

national level, specifically building on the modelling capabilities and scenarios of Cole et al., 

202142, with an in-depth look at two decarbonization pathways of the U.S. electricity system at 

the national and regional levels. In one pathway, the electricity system achieves zero CO2 

emission by 2050 with generation only from renewable sources, while the other pathway adopted 

the same CO2 emission target and trajectory as the first one but allows the use of other low-

carbon sources during the interim and target year of decarbonization. Our goal is to compare the 

dynamic capacity expansion and generation under the two pathways and evaluate how they 

affect the total system cost. Compared to previous works discussed above, we further explore the 

regional variability by looking at the cost of electricity generation across different sub-regions in 

the contiguous U.S. and investigate the contribution of various generation and storage 

technologies to the regional electricity cost. In another extension on prior work, we put the total 

system cost in context by calculating the CO2 abatement costs of the decarbonization pathways 

and comparing them with social costs of carbon and the costs of existing NETs, and this allows 

us to explore the cost-benefit trade-off of a fully decarbonized U.S. electricity system and the 

potential role of NETs as carbon mitigation options in such a transition. 
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B. Method 

In this study, we incorporate the future projections of electricity demand and technology 

costs into a sequential optimization model. We use the model to simulate the least-cost capacity 

expansion and dispatch of electricity system in the contiguous U.S. under various transition 

pathways. The total system cost estimated in this study includes both capital and operational 

costs, which depend on installed capacity and generation output, respectively, over the whole 

transition period from 2020 to 2050.  

1. The electricity capacity expansion model 

Regional Energy Deployment System (ReEDS) is a capacity expansion and dispatch model 

of the electric power sector135,136. By incorporating grid reliability requirements, technology 

resource constraints, and policy constraints, the model determines the least-cost mix of 

technologies that meets regional electricity demand requirements. The cost minimization is 

performed sequentially by solving a linear programming for each two-year period from 2010 to 

2050. The core ReEDS optimization serves load and maintains operational reliability in 17 time-

slices within each model year, which includes four seasons (Spring, Summer, Fall, and Winter), 

and each season has a representative day with four chronological time-slices (overnight, 

morning, afternoon, and evening), and the 17th time-slice is a “summer peak” representing the 

top 40 hours of summer load. In addition, a separate hourly dispatch model uses 7 years of 

hourly load and renewable resource data to inform the core optimization with time-varying 

estimates of renewable energy curtailment, capacity credit for renewables and storage, and 

hourly arbitrage value of storage. In the contiguous U.S., ReEDS simulates the generating 

capacity and balances supply and demand in 134 model balancing areas (BAs), allowing the 
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model to capture the geospatial complexity of resources and technology availability across the 

country. 

In this study, the ReEDS model was applied to estimate the capacity expansion, electricity 

generation, system costs, and CO2 emission in the contiguous U.S. for four alternative electricity 

scenarios. The system costs include capital cost, operational and maintenance (O&M) cost, and 

fuel cost.  

2. The electricity scenarios 

We considered four electricity scenarios that represent different development pathways of the 

U.S. electricity system. We adopted the 2020 version of the ReEDS model developed in the 

study by Cole et al., 202142, focusing on two key decarbonization scenarios presented in that 

work as the base 100% Renewable Energy scenario and the Nuclear Counts scenario.  The four 

electricity scenarios and their assumptions are shown as follows: 

Reference scenario: We assumed the reference projections of electricity demand, technology 

and fuel costs derived from Annual Energy Outlook (AEO) 2020 and 2020 NREL Annual 

Technology Baseline (ATB)137,138. 

Coal scenario: We used almost the same reference projections of electricity demand, 

technology, and fuel costs as in the Reference scenarios except for fuel cost of coal. Instead, we 

used a low coal price projections based on delivered coal price for electric power sector under 

high oil and gas supply scenario from AEO 2020137 (Supplementary Table 1).  

100% Renewable scenario: 1. We used the same reference projections of electricity demand, 

technology, and fuel costs as in Reference scenario; 2. We assumed the shares of renewable 

energy sources increased from 20% at 2020 to 100% at 2050 by imposing a national renewable 

generation mandate constraint (The projection of annual deployment rate is provided in 
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Supplementary Table 2); 3. The definition of 100% renewable means that total generation of the 

electricity system, including transmission and distribution losses, are all from renewable sources 

(a list of renewable sources considered in this study is provided in Supplementary Table 4) in the 

target year of 2050.   

Zero Carbon scenario: 1. We used the same reference projections of electricity demand, 

technology, and fuel costs as in the Reference scenario; 2. Compared to the prior study42, we 

implemented a CO2 constraint to limit the annual CO2 emission from the electricity system such 

that the annual carbon emissions aligned with the annual CO2 emissions under the 100% 

Renewable scenario (Supplementary Table 3). In this way, the Zero Carbon scenario had the 

same annual CO2 emission as the 100% Renewable scenario, allowing us to compare their costs 

based on the same carbon reduction capability.   

3. Cost calculation 

The ReEDS simulated the annual cost every two years based on least cost optimization from 

2010 to 2050. The annual cost included capital cost, O&M cost, and fuel cost for generation, 

storage, and transmission technologies. In this study, the initial (base) year was assumed to be 

2020, and the final year was 2050. Therefore, we calculated the total cost of U.S. electricity 

system by summing up the amortized capital cost, operational and maintenance cost, and fuel 

cost that were incurred and paid off during 2020 and 2050. The capital cost of capacity being 

built before 2020 and the capital costs that would be paid off after 2050 were excluded. The total 

cost of U.S. electricity system from 2020 to 2050 were calculated as the present value (with 

discount rate of 5% and economic lifetime of 20 years) with the base year of 2020 and reported 

as 2020 U.S. dollar (2020$). More details about the cost calculation can be found in 

Supplementary Note 1.  
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4. Cost of electricity generation in sub-regions 

To understand how cost of electricity generation varies among different sub-regions across 

the contiguous U.S. and the underlying technological contribution, we further divided the 

contiguous U.S. into 12 North American Electric Reliability Corporation (NERC) regions. We 

calculated the unit cost of electricity generation 𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡,𝑟,𝑠 and its change from Reference 

scenario 𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑐ℎ𝑎𝑛𝑔𝑒,𝑟,𝑠 for each NERC region 𝑟 and scenario 𝑠 as follows: 

Unit cost of electricity generation 𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡,𝑟,𝑠: 

                                              𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡,𝑟,𝑠  =  
𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑟,𝑠

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑟,𝑠
                                            (1) 

where 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑟,𝑠 represents total cost (present value) of electricity system in region 𝑟 

under scenario 𝑠 from 2020 to 2050, and 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑟,𝑠 represents the total 30-year 

generation (present value) in region 𝑟 under scenario 𝑠, and it is calculated by discounting annual 

generation 𝐺𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑡,𝑟 and summing them up from 2020 to 2050. 

                                 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑟,𝑠  =  ∑ (𝐺𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑡,𝑟,𝑠
𝑡𝑓

𝑡0
×  

1

(1+𝑑)𝑡−𝑡0
)                 (2) 

Change of unit cost 𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑐ℎ𝑎𝑛𝑔𝑒,𝑟,𝑠: 

                            𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑐ℎ𝑎𝑛𝑔𝑒,𝑟  =  
𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑟,𝑠 – 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑟,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑟,𝑠
                             (3) 

where the 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑟,𝑠 represents the total 30-year cost (present value) of one of the three 

electricity scenarios (Coal, Zero Carbon and 100% Renewable) and 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑟,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

represents the total 30-year cost (present value) of the Reference scenario. The change of unit 

cost indicates the cost change per unit electricity generation for each region to transition from 

Reference scenario to the Coal, Zero Carbon and 100% Renewable scenario respectively. Both 

𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡,𝑟,𝑠 and 𝐶𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑐ℎ𝑎𝑛𝑔𝑒,𝑟,𝑠 represent the cost related to electricity generation, rather than 

electricity consumed, in each region. They do not account for electricity import and export across 
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regions and the associated payment and revenue for each region. The geographical boundaries of 

the NERC regions were adopted from the ReEDS documentation135. 

5. Average and incremental CO2 abatement cost 

We also calculated both average and incremental CO2 abatement cost (for both Zero Carbon 

and 100% Renewable scenarios) to quantify the cost of decarbonizing the U.S. electricity system 

in the context of CO2 mitigation following the method developed in the study by Cole et al., 

202142. The average CO2 abatement cost (calculated at four discount rates: 2%, 3%, 5% and 7%) 

represents the average cost of reducing 1 metric ton CO2 emission under the scenario 𝑠, and it 

can be calculated as follow: 

                        𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑂2 𝐴𝑏𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡𝑠 =
𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠− 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒− 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠 
                 (4) 

where 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠 is the total 30-year cost of U.S. electricity system (present value) under 

scenario 𝑠. 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠 is the total 30-year CO2 emission (present value) under scenario 𝑠, and it 

is calculated by discounting annual CO2 emission 𝐸𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑡,𝑠 and summing them up from 2020 

to 2050. 

                                   𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠  =  ∑ (𝐸𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑡,𝑠
𝑡𝑓

𝑡0
×  

1

(1+𝑑)𝑡−𝑡0
)                                 (5) 

The incremental CO2 abatement cost (reported only at discount rate of 5%) quantifies the 

cost of mitigating additional CO2 emission by achieving a higher CO2 reduction (or renewable 

share) target. Here, we first developed a group of renewable scenarios by using the same 

assumption as the 100% Renewable scenario, but setting different renewable share targets (80%, 

90%, 95%, and 99%) by 2050 (Supplementary Table 2). The discounted cost and CO2 emission 

results under these renewable scenarios (including the 100% Renewable scenario) were used to 

calculate the incremental CO2 abatement cost of the 100% Renewable scenario. Then, we 
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developed a group of carbon reduction scenarios based on the same assumption as the Zero 

Carbon scenario but using different CO2 emission constraints. These CO2 emission constraints 

were based on the CO2 emission results from the renewable scenarios, and they reach the CO2 

reduction targets (87%, 92%, 94%, and 99% reduction by 2050 relative to 2005 level) that are 

equal to the 2050 CO2 reduction levels under those renewable scenarios (Supplementary Table 

3). Similarly, the discounted cost and CO2 emission results under these carbon reduction 

scenarios (including the Zero Carbon scenario) were used to calculate the incremental CO2 

abatement cost of the Zero Carbon scenario. The incremental CO2 abatement cost under the 

carbon reduction (or renewable share) targets 𝑇1 and scenario 𝑠 can be calculated as follow: 

                      𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑂2 𝐴𝑏𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡𝑠,𝑇1
=

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠,𝑇1− 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠,𝑇0 

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠,𝑇0− 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠,𝑇1  
           (6) 

where 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠,𝑇1
 and 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠,𝑇1

 represent the total 30-year cost and CO2 emission 

(both in present value) under the targets 𝑇1 and scenario 𝑠, and 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠,𝑇0
 and 

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2,𝑠,𝑇0
 represent the same metrics under the previous targets 𝑇0 and scenario 𝑠. While 

this metric is not a shadow price indicating the marginal CO2 abatement cost, it provides a 

meaningful way to compare CO2 costs across scenarios. 
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C. Results 

1. Total cost of electricity system from 2020 to 2050 

Our results show that the Zero Carbon and Renewable scenarios achieve zero operational 

CO2 emissions by 2050 while incurring $2,567 billion and $2,726 billion total costs (present 

value at 5% discount rate, 2020$), respectively, between 2020 and 2050, which is equivalent to 

15% and 22% increases relative to the Reference scenario (Figure 1a). Cumulatively, they both 

emit around 15 Gt CO2, saving a total 23 Gt CO2 compared to Reference scenario over the 30 

years (Figure 1b). The Coal scenario has the lowest total cost at $2,217 billion, which is $16 

billion (or 0.7%) less than the Reference scenario, but it corresponds to the largest total CO2 

emissions (40 Gt) over the course of 30 years.  

 

 

Figure 1. Total cost (present value at 5% discount rate, 2020$) (a) and total CO2 

emission (b) of the U.S. electricity system from 2020 to 2050 under four electricity 

scenarios.  
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The cost differences can be explained by the evolution of installed capacities and generation 

mixes under the four electricity scenarios. Compared to Reference scenario (2,020 GW total 

capacity in 2050), the Zero Carbon and 100% Renewable scenarios reach much higher total 

capacities (2,885 GW and 3,131 GW, respectively) by 2050, with the additional capacity mainly 

driven by the newly installed solar PV, land-based wind, and battery storage (Figure 2). In 

addition, combined cycle and combustion turbine gas power plants fired with renewable fuels 

(RE-CC and RE-CT) are installed or retrofitted from existing natural gas plants, and they also 

play important roles as renewable firm generation sources that can meet electricity demand when 

needed. RE-CC and RE-CT are nominally assumed to use hydrogen fuel produced from 

renewable electricity. The combined capacities of RE-CT and RE-CC are 485 GW and 506 GW 

in 2050 under the Zero Carbon and 100% Renewable scenarios, respectively, contributing to 

about 5% of annual electricity generation in 2050 for both scenarios. The capacity additions lead 

to higher capital and O&M costs from renewable sources, battery, and transmission for both the 

Zero Carbon (+$612 billion) and 100% Renewable (+$980 billion) scenarios (relative to the 

Reference), and these additional costs negate the cost savings due to less electricity generation 

from fossil (coal and Gas-CC, Gas-CT) and nuclear (only for the 100% Renewable scenario) 

sources. Overall, the Zero Carbon and 100% Renewable scenarios have $335 billion and $494 

billion total additional costs (relative to the Reference scenario) over the course of 30 years 

(Figure 3, Supplementary Figure 2). 

The Zero Carbon scenario keeps 47 GW of nuclear capacity in 2050, which generates about 

5% of 2050 total generation, and it deploys 56 GW of natural gas combined cycle with carbon 

capture and storage (Gas-CC-CCS) during 2040 to 2048 (Figure 2). In comparison, the 100% 

Renewable scenario retires nuclear capacity by 2040, and it also excludes the use of Gas-CC-
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CCS in the interim of decarbonization process, so it requires 226 GW additional renewable 

(mostly solar PV and land-based wind) and 65 GW battery storage capacities (relative to the 

Zero Carbon scenario) to meet the 100% renewable goal in 2050, causing $160 billion additional 

investment mostly for renewable, battery, and transmission capacities (Figure 2, Figure 3, 

Supplementary Figure 2). 

 

Figure 2. The capacity, generation, and CO2 emission of the U.S. electricity system from 

2020 to 2050. The upper four panels represent the capacity of generation and storage 

technologies under the four scenarios. The lower four panels represent the annual generation 

(broken down by technologies, corresponding to y-axis on the left) and CO2 emission (as 

annual total amount shown by the white lines, corresponding to y-axis on the right) under the 

four scenarios. Electricity generation and storage technologies abbreviations include: CSP: 

Concentrated solar power; Gas-CC: Natural gas combined cycle; Gas-CC-CCS: Natural gas 

combined cycle with carbon capture and storage; Gas-CT: Natural gas combustion turbine, 

PSH: Pumped-storage hydropower; PV: Photovoltaic; RE-CC: Commercial combined cycle 

gas power plant fired with renewable fuels; RE-CT: Commercial gas combustion turbine fired 

with renewable fuels; Other includes biopower, landfill gas, and geothermal.  
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Coal and Reference scenarios follow very similar projections in total capacity (reaching 

1,996 GW and 2,020 GW by 2050, respectively) over time, and their annual generations both 

increase from 4,009 TWh in 2020 to 5,297 TWh in 2050 (Figure 2). The relative similar results 

between Coal and Reference scenarios are mainly due to the small difference between the low 

(used for Coal scenario) and reference (used for Reference scenario) coal price projections. Coal 

electricity has slightly higher share (1% to 2% higher) in the annual generation of Coal scenario 

compared to that in Reference scenario over the 30 years (Figure 2), causing $17 billion 

additional costs from coal electricity, but this additional cost could be negated by the cost 

savings from building less renewable, battery, and transmission capacities (-$22 billion) and 

generating less electricity from Gas-CC (-$11 billion), resulting in $16 billion net cost reduction 

in Coal scenario (Figure. 3). 
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Figure 3. The contribution of various electricity technologies to the net cost changes of 

the Coal (a), Zero Carbon (b), and 100% Renewable (c) scenarios from the Reference 

scenario. In each panel, the horizontal bars (on the upper part of each panel) that 

accumulate from left to right correspond to technologies that lead to additional costs for 

each of the three scenarios relative to the reference scenario. The horizontal bars (on the 

lower part of each panel) that show reductions from right to left correspond to technologies 

that lead to cost savings for each of the three scenarios relative to the reference scenario. 

The horizontal bar at the bottom of each panel represents the total net cost change of each 

of the three scenarios relative to the reference scenario. The contribution to the net cost 

changes by both cost type and technology type can be found in Supplementary Figure 2. 
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2. Regional variability of electricity cost 

The unit costs of electricity generation are calculated by dividing the present value of total 

cost by the present value of total generation from 2020–2050, and they show regional variability 

across 12 NERC regions in the contiguous U.S. Regional costs are a unique presentation in this 

work; however, it is important to caveat that these quantities do not account for the cost and 

revenue of power transfers between regions (i.e., imports and exports). As a result, values do not 

reflect how these costs might be allocated across regions to consumers or other entities in 

practice. For example, unit costs might increase in central plains regions as more wind capacity 

and transmission are installed there, but much of this power would likely be exported, reducing 

unit costs in importing regions and the national on average. Regional unit costs adopted here are 

purely a metric to understand how average investment and operation costs vary across the 

country. 

Under the 100% Renewable scenario, the national unit cost of electricity generation (dashed 

lines in Figure 4c) is 3.8 cent/kWh, with a variation between 2.5 cent/kWh in Northwest (NW) to 

4.7 cent/kWh in New England (NE). In general, the eastern regions, including NE (4.7 

cent/kWh), New York (NY, 3.9 cent/kWh), Pennsylvania-New Jersey-Maryland (PJM, 3.9 

cent/kWh), South-eastern Electric Reliability Council (SERC, 4.2 cent/kWh), Florida Reliability 

Coordinating Council (FRCC, 4.1 cent/kWh), and Midcontinent Independent System Operator 

(MISO, 4.0 cent/kWh) have higher unit costs than other regions in the central and western U.S. 

This is mainly because eastern regions and MISO have a higher reliance on fossil fuel (such as 

Gas-CC and coal) and nuclear sources, which incur higher O&M and fuel costs from these 

sources, causing higher overall unit costs in these regions. Higher unit costs in NE and NY 

regions are also driven by the investment in offshore wind capacity, which accounts for 14% and 
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19% of the unit costs in the two regions, respectively (Figure 4a, 4c, Supplementary Figure 9). 

The Zero Carbon scenario has a lower national unit cost being 3.6 cent/kWh, with a variation 

between 2.4 cent/kWh in NW to 4.3 cent/kWh in NE (Supplementary Figure 7). 

 

Figure 4. The unit costs of electricity generation (a, c) under the 100% Renewable 

scenario and their changes relative to the Reference scenario (b, d) at 12 NERC regions 

across the U.S. The map plots (a, b) show the costs at different regions, and the bar plots (c, 

d) show the contribution of different technologies to the costs. The dashed lines in the bar 

plots show the average values at the national level. The red dot in plot d shows the net 

additional unit cost at different NERC regions. NERC region: NE = New England; NY = New 

York; PJM = Pennsylvania-New Jersey-Maryland (covers Mid-Atlantic region); SERC = 

South-eastern Electric Reliability Council; FRCC = Florida Reliability Coordinating Council; 

MISO = Midcontinent Independent System Operator; MAPP = Mid-Continent Area Power 

Pool; SPP = Southwest Power Pool; ERC (ERCOT) = Electric Reliability Council of Texas; 

DSW = Southwest; NW = Northwest; CAL = California. The cost only includes the capital, 

O&M, and fuel cost of the electricity system, but it does not consider the electricity import 

and export among different NERC regions; therefore, the revenue and payment associated 

with electricity import and export are not included in the cost presented here. The results of 

the Reference, Zero Carbon, and Coal scenarios are presented in Supplementary Figure 3 – 

Supplementary Figure 8. 
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Compared to Reference scenario, higher capital investments in renewable, battery, 

transmission capacities exceed the savings mostly from fuel cost, leading to net additional unit 

costs in all regions (0.4 cent/kWh in NW to 1.2 cent/kWh in Southwest Power Pool (SPP)) under 

the 100% Renewable scenario. We also observed regional variability of the additional 

investment in different technologies across the NERC regions. For example, the additional unit 

costs in south-eastern regions (SERC and FRCC) and the Southwest (DSW) are primarily driven 

by PV and battery storage, which can be attributed to the relative abundant solar resources in 

these regions. For central (SPP, MISO, Mid-Continent Area Power Pool (MAPP), and Electric 

Reliability Council of Texas (ERC)) and north-eastern (PJM, NY, and NE) regions, the 

investment in wind electricity has significant contribution to the additional unit costs, which also 

corresponds to the high-quality wind resources in those regions (Figure 4b, 4d, Supplementary 

Figure 9). 

3. CO2 abatement cost of low-carbon electricity pathways 

Compared to the Reference scenario, the Zero Carbon and 100% Renewable scenarios will 

incur higher total costs but reduce CO2 emissions over the course of 30 years, so we calculated 

the average CO2 abatement cost for 2020–2050 under four discount rates (2%, 3%, 5% and 7%) 

to represent the average cost of reducing 1 metric ton (t) CO2 by pursuing these decarbonization 

pathways. This calculation differs from Cole et al., 202142, which included costs through 2069 to 

capture the economic life of investments made in 2050. This change generally results in lower 

abatement costs than observed in this previous study42; we use a 2020–2050 time frame to align 

with U.S. EPA social cost of carbon (SC-CO2) estimations and restrict the calculations to a 

nearer-term period. 
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The average CO2 abatement costs, depending on the discount rates, range from $29–$41/t 

CO2 for the Zero Carbon scenario (higher discount rate leads to the lower abatement cost, and 

lower discount rate leads to higher abatement cost, same for the 100% Renewable scenario) and 

$44–$59/t CO2 for the 100% Renewable scenario (Figure 5a). According to the SC-CO2 

estimated by U.S. EPA, the average SC-CO2 ranges from $15 to $33/t CO2 under 5% discount 

rate from 2020 to 2050 (these average SC-CO2 is a marginal measure with the lower- and upper-

bound representing the value in 2020 and 2050 respectively, same for the numbers at other 

discount rates), and this range increases to $79 to $121/t CO2 with 2.5% discount rate139. In 

comparison, the average CO2 abatement costs under the Zero Carbon and 100% Renewable 

scenarios are generally lower than the SC-CO2 ranges when smaller discount rates are chosen 

(e.g., 2% to 3%). However, at a discount rate of 5% or higher, the average CO2 abatement costs 

of the two scenarios will be above the upper bound of the SC-CO2 range. The SC-CO2 were also 

reported in several other studies. For example, one study that relied on a survey of experts 

showed that SC-CO2 being around $80 to $100/t CO2 at 2066 (3% discount rate)140. Another 

recent study that incorporated mortality costs reported an even higher SC-CO2 of $258 in 2020 

(3% discount rate)141. These numbers are generally higher than the SC-CO2 from the U.S. EPA at 

the same discount rate, which further support our finding that the average CO2 abatement cost of 

decarbonizing the U.S. electricity system is smaller than the potential economic damage caused 

by additional CO2 mission at discount rate equal to smaller than 3%.  

The incremental CO2 abatement costs (5% discount rate) increase non-linearly as the carbon 

abatement approaches to 100% (Figure 5b). Under the 100% Renewable scenario, the 

incremental CO2 abatement cost increases monotonously to $16/t CO2 until 87% CO2 reduction 

relative to 2005 levels. After that, the incremental CO2 abatement cost curve starts to become 
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steeper. An additional 7% CO2 reduction raises the cost by $50/t CO2, reaching $66/t CO2 at 

94% reduction relative to 2005 level. Mitigating the remaining 6% CO2 further increases the 

incremental abatement cost to $122/t CO2. A similar trend is also observed for the Zero Carbon 

scenario, with its incremental CO2 abatement cost increasing to $10/t CO2 until 87% CO2 

reduction, while mitigating the last 10% of CO2 raises the incremental CO2 abatement cost by 

about $70/t CO2, reaching $91/t CO2 at 100% CO2 reduction.  

 

Figure 5 | The average (a) and incremental (b) CO2 abatement cost under the Zero 

Carbon and 100% Renewable scenarios. In Fig. 5a, the dots represent the average CO2 

abatement costs of the Zero Carbon (blue) and 100% Renewable (green) scenarios under 

different discount rates (2.0%, 3.0%, 5.0%, and 7.0%). The three horizontal bands represent 

the average SC-CO2 estimated by U.S. EPA under different discount rates (2.5%, 3.0% and 

5.0%). The lower bound of each band represents the average SC-CO2 in 2020, and upper 

bound represents the average SC-CO2 in 2050. The SC-CO2 was originally estimated based 

on 2007 US$, and we converted them to 2020 US$. In Fig. 5b, the lines represent the 

incremental CO2 abatement costs (5% discount rate) under the Zero Carbon (blue) and 

100% Renewable (green) scenarios at different CO2 reduction targets (compared to 2005 

level). The corresponding renewable shares of the 100% Renewable scenario are also 

indicated by texts on the upper right side (the numbers in the texts represent renewable 

share in 2050, for example, RE-100 stands for 100% renewable share in 2050). The 

horizontal lines represent costs of BECCS142 and DACCS143 for capturing and storing 1 

metric ton of CO2 which were collected from literature (Supplementary Table 5). 
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We further compare the incremental CO2 abatement costs with the costs of capturing and 

sequestering carbon (collected from existing literature) using bioenergy with carbon capture and 

storage (BECCS) and direct air carbon capture and storage (DACCS). We find that the 

incremental CO2 abatement costs exceed the lower bound of BECCS cost ($52/t CO2) at about 

93% (corresponding to about 92% renewable share) and 96% CO2 reduction levels for the 100% 

Renewable and Zero Carbon scenarios, respectively, indicating the possible economic advantage 

of BECCS as a carbon mitigation strategy beyond those CO2 reduction levels. The cost of 

DACCS has higher lower bound ($114/t CO2), so DACCS may become an option for mitigating 

the last 0.4% CO2 emission only under the 100% Renewable scenario (Figure 5b). However, 

CO2 abatement costs never exceed the more conservative high cost estimates for BECCS and 

DACCS, indicating that substantial cost reductions are necessary for these technologies to be 

competitive. 

D. Discussion 

In this study, we have shown that achieving a 100% CO2 reduction in the U.S. electricity 

system by 2050 incurs $335–$494 billion additional costs over a 30-year period under two 

scenarios that transition towards different sources of low-carbon electricity. The additional costs 

are mainly driven by the capital investment in renewable generation technologies, battery 

storage, and transmission. Our conclusion aligns with the findings from many previous studies 

10,42,132,144,145, albeit with lower abatement costs compared to the study of Cole et al., 2021 due to 

the nearer-term focus42. This work, on the other hand, also contradicts with the studies that show 

economic benefits of 100% renewable electricity system compared to the business-as-usual 

counterpart125,43,146,147. The difference can be attributed to several reasons, including that: 1. 

These studies performed single-year simulations for the target year and applied the LCOE-based 
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cost metric without actually modelling the progressive capacity expansion over time; 2. These 

studies considered the demand response and demand-side electrification, which create flexible 

load and increase energy use efficiency, thus helping avoid significant electricity curtailment and 

over-building capacity, while our study does not incorporate those factors; 3. These studies also 

included external social costs (climate and health costs due to carbon emission and other air 

pollutions) which could be significantly reduced under the low-carbon transition of electricity 

system, leading to lower aggregated cost (including both energy and social costs) of the 100% 

renewable case. 

Pursuing a 100% CO2 reduction for the U.S. electric power sector can lead to additional 

system cost compared to the reference case, but the additional cost varies depending on the 

technologies being used. We find that the Zero Carbon scenario, which allows the use of nuclear 

and Gas-CC-CCS, can achieve the same CO2 reduction target while reducing about 6% total 

system cost compared to the 100% Renewable scenario, and this cost reduction effect become 

significant when the decarbonization target reaches above 90% CO2 reduction. This finding 

highlights a consistent conclusion in the literature that having more clean generation options 

available generally allows cost-savings and more reliable electricity supply than relying on a 

more limited technology suite 10,148,149,145,150.   

Furthermore, the NETs, such as BECCS and DACCS, may have an economic advantage in 

mitigating the last few percent of CO2 emission. Our results show that the incremental CO2 

abatement cost of the 100% Renewable scenario increases more rapidly for eliminating 

approximately the last 10% CO2 emissions of the U.S. electricity system, and the incremental 

CO2 abatement costs also exceed the minimum cost estimates of BECCS beyond the 93% CO2 

reduction level (99.6% CO2 reduction level for DACCS), suggesting that the NETs could be 
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more cost-effective decarbonization options for the U.S. electricity system than renewable and 

storage technologies beyond these CO2 reduction levels. A previous study that included NETs in 

power system modelling also confirmed that adding NETs to a mix of low-carbon generation 

technologies could lower the costs of deep decarbonization133. On the other hand, given the fact 

that both BECCS and DACCS are still emerging technologies, and their future deployments 

remain largely uncertain, the electricity system needs to pursue its sectoral effects in 

decarbonization through the deployment of renewable and energy storage technologies, instead 

of relying on NETs as a main option for carbon reduction. To better quantify the capacity and 

operation pattern of NETs required by the electricity system and how they interact with the rest 

of the electric power sector, future studies may continue to integrate NETs into the electricity 

system modelling with region-specific resource availability and more up-to-date cost and 

operation data of NETs as these technologies improve over time. 

Last, our results show that that the unit cost of electricity generation varies across different 

regions in the contiguous U.S. Under the Zero Carbon and 100% Renewable scenarios, the 

eastern regions in general have higher reliance on the fossil fuel sources, leading to higher unit 

cost of electricity production compared to other regions. Regions also vary in their additional 

expenditures (additional unit cost relative to Reference) in different electricity technologies. For 

example, under the 100% Renewable scenario, the additional unit costs in south-eastern and 

south-western regions are dominantly by PV and battery storage, while the investment in wind 

electricity has much higher contribution to the additional costs in the central and north-eastern 

regions. Such regional heterogeneity of electricity cost provides valuable guidance for 

implementing regional specific policies to support the low-carbon electricity with the 

consideration of regional resource and technology availabilities. Note that this regional analysis 
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focuses only on the cost of electricity generation within each region, which provides information 

about the investment and cost in different generation and storage technologies within each 

region. However, the analysis does not consider electricity import and export across different 

regions and the subsequent cost and revenue, so regional unit costs do not necessarily reflect 

wholesale or retail electricity costs for consumers in that region.  

In conclusion, this study evaluates selected pathways of reaching a zero-carbon electricity 

system in the contiguous U.S. and quantifies their costs. Pursuing such a target would incur 

additional cost to the U.S. electric power sector compared to a reference scenario, but we show 

that keeping the nuclear and allowing the use of natural gas with CCS during the decarbonization 

could reduce additional cost (as compared to a 100% renewable target), especially when 

decarbonization is above 90% CO2 reduction. We also observed the possible economic 

advantage of NETs in mitigating the last few percent of CO2 emission from the U.S. electricity 

system, and future studies may continue to integrate NETs into electricity system modelling to 

evaluate their role in a net-zero carbon electricity system.  
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E. Appendix 

Supplementary Note 1 – The total cost of U.S. electricity system from 2020 to 2050 

In this study, we calculated the total cost of U.S. electricity system incurred during 2020 and 

2050, and we did not include the capital cost of all capacity being built before 2020. Therefore, 

the initial (base) year 𝑡0 was assumed to be 2020, and the final year 𝑡𝑓 is 2050. The discount 

rates 𝑑 was assumed to be 5%. The economic lifetime 𝑛, which defines the number of years that 

the capital investment will be paid off, was assumed to be 20 years.  

The model output of capital cost 𝐶𝐶𝑎𝑝,𝑡,𝑠 represents the total cost for building the new 

capacity at year t under scenario s. Firstly, we calculated the amortized capital cost 

𝐶𝐴𝑚𝑜𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝,𝑡,𝑠 by multiplying 𝐶𝐶𝑎𝑝,𝑡,𝑠 to capital recovery factor (𝐶𝑅𝐹): 

𝐶𝐴𝑚𝑜𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝,𝑡,𝑠  =  𝐶𝐶𝑎𝑝,𝑡,𝑠  ×  𝐶𝑅𝐹                                           (7)   

𝐶𝑅𝐹(𝑑, 𝑛) =  
𝑑

1 – 
1

(1+𝑑)𝑛)
                                                     (8)   

Then, we calculated the annual capital cost by summing up all the amortized capital costs 

that would be paid off in the same year. Here, we divided the 30-year timeframe into two 

periods:  

From 2020 to 2039: 

𝐶𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑎𝑝,𝑡,𝑠  =  ∑ 𝐶𝐴𝑚𝑜𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝,𝑡,𝑠 𝑡
𝑡0

                                        (9)   

From 2040 to 2050: 

𝐶𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑎𝑝,𝑡,𝑠  =  ∑ 𝐶𝐴𝑚𝑜𝑡𝑖𝑧𝑒𝑑 𝐶𝑎𝑝,𝑡,𝑠 𝑡
𝑡−19                                    (10) 

The other cost components, such as O&M and fuel costs, were assumed to be paid off in the 

year when they are incurred, so they were all considered as operational cost here. ReEDS 

simulates the results for the even years of the studied period, and we calculated the operational 

cost of the odd years by taking the average between the two closest even years. The annual 
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operational cost is represented as 𝐶𝑂𝑝,𝑡,𝑠. Then, the annual total cost can be calculated by 

summing the annual capital cost and operational cost shown as follow: 

𝐶𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑡,𝑠  =  𝐶𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑎𝑝,𝑡,𝑠  +  𝐶𝑂𝑝,𝑡,𝑠                                   (11)   

The annual total cost 𝐶𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑡,𝑠 here does not consider the time value of the investment, so 

we calculated the present value of annual total cost with the base year of 2020 and summed them 

up from 2020 to 2050 to get the total cost (present value) of the U.S. electricity system from 

2020 to 2050 under scenario s 𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠: 

𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑠 =  ∑ (𝐶𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡,𝑡,𝑠
𝑡𝑓

𝑡0
×  

1

(1+𝑑)𝑡−𝑡0
)                            (12)   
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Supplementary Table 1. Delivered prices of coal for electric power sector under the 

reference and high oil and gas supply scenarios from Annual Energy Outlook 2020137. In 

the ReEDS model, the reference coal price is calculated each of the nine U.S. Energy 

Information Administration (EIA) census divisions, while the low coal price is not provided. 

In this study, we first divide the annual coal price under high oil and gas supply scenario by 

the annual coal price under reference scenario (data showing in this table) to get the annual 

ratios between the coal price under the two scenarios. Then we multiply the ratios to the 

reference coal price (for nine EIA census divisions) used in the ReEDS model to get the low 

coal price projections (also for nine EIA census division), which is further used to develop the 

Coal scenario in this study.  

Year Reference (2019 USD/MMBtu) 
High oil and gas supply (2019 

USD/MMBtu) 

2010 2.05 2.05 

2011 2.05 2.05 

2012 2.05 2.05 

2013 2.05 2.05 

2014 2.05 2.05 

2015 2.05 2.05 

2016 2.05 2.05 

2017 2.05 2.05 

2018 2.05 2.05 

2019 2.05 2.05 

2020 2.06 2.05 

2021 2.03 2.01 

2022 2.00 1.95 

2023 1.98 1.92 

2024 1.97 1.90 

2025 1.95 1.86 

2026 1.96 1.85 

2027 1.97 1.86 

2028 1.96 1.85 

2029 1.96 1.85 

2030 1.96 1.84 

2031 1.95 1.83 

2032 1.95 1.83 

2033 1.96 1.83 

2034 1.96 1.83 

2035 1.95 1.82 

2036 1.95 1.82 

2037 1.96 1.83 

2038 1.96 1.82 

2039 1.95 1.82 

2040 1.95 1.82 

2041 1.95 1.81 

2042 1.95 1.81 
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2043 1.95 1.81 

2044 1.95 1.80 

2045 1.95 1.79 

2046 1.95 1.79 

2047 1.95 1.79 

2048 1.95 1.78 

2049 1.95 1.78 

2050 1.95 1.77 
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Supplementary Table 2. Annual renewable penetration (%) assumptions of U.S. electricity 

system. The 100% penetration case is used to develop the 100% Renewable scenario, while the 

other penetration cases are used to develop a group of other renewable scenarios for calculating 

the marginal CO2 abatement cost of 100% Renewable scenario. 

Year 

80% 

renewable 

penetration by 

2050 

90% 

renewable 

penetration by 

2050 

95% 

renewable 

penetration by 

2050 

99% 

renewable 

penetration 

by 2050 

100% 

renewable 

penetration by 

2050 

2020 20.0% 20.0% 20.0% 20.0% 20.0% 

2021 22.0% 22.3% 22.5% 23.0% 23.8% 

2022 24.0% 24.7% 25.0% 27.0% 27.5% 

2023 26.0% 27.0% 27.5% 30.0% 31.3% 

2024 28.0% 29.3% 30.0% 34.0% 35.0% 

2025 30.0% 31.7% 32.5% 37.0% 38.8% 

2026 32.0% 34.0% 35.0% 40.0% 42.5% 

2027 34.0% 36.3% 37.5% 44.0% 46.3% 

2028 36.0% 38.7% 40.0% 47.0% 50.0% 

2029 38.0% 41.0% 42.5% 51.0% 53.8% 

2030 40.0% 43.3% 45.0% 54.0% 57.5% 

2031 42.0% 45.7% 47.5% 58.0% 61.3% 

2032 44.0% 48.0% 50.0% 61.0% 65.0% 

2033 46.0% 50.3% 52.5% 64.0% 68.8% 

2034 48.0% 52.7% 55.0% 68.0% 72.5% 

2035 50.0% 55.0% 57.5% 71.0% 76.3% 

2036 52.0% 57.3% 60.0% 75.0% 80.0% 

2037 54.0% 59.7% 62.5% 78.0% 83.8% 

2038 56.0% 62.0% 65.0% 81.0% 87.5% 

2039 58.0% 64.3% 67.5% 85.0% 91.3% 

2040 60.0% 66.7% 70.0% 88.0% 95.0% 

2041 62.0% 69.0% 72.5% 92.0% 95.5% 

2042 64.0% 71.3% 75.0% 95.0% 96.0% 

2043 66.0% 73.7% 77.5% 95.5% 96.5% 

2044 68.0% 76.0% 80.0% 96.0% 97.0% 

2045 70.0% 78.3% 82.5% 96.5% 97.5% 

2046 72.0% 80.7% 85.0% 97.0% 98.0% 

2047 74.0% 83.0% 87.5% 97.5% 98.5% 

2048 76.0% 85.3% 90.0% 98.0% 99.0% 

2049 78.0% 87.7% 92.5% 98.5% 99.5% 

2050 80.0% 90.0% 95.0% 99.0% 100.0% 
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Supplementary Table 3. Annual CO2 emission constraints (Gt) of U.S. electricity system. 

87%, 92%, 94%, 99%, and 100% represent the reduction target of CO2 emission by 2050 

relative to 2005 level. These CO2 emission constraints are the projected CO2 emission output 

of the renewable scenarios (matches 80%, 90%, 95%, 99%, and 100% renewable penetration 

assumptions, respectively) based on renewable penetration assumptions described in 

Supplementary Table 1. The 100% CO2 reduction case is used to develop the Zero Carbon 

scenario, while the other CO2 reduction cases are used to develop a group of CO2 reduction 

scenarios for calculating the marginal CO2 abatement cost of Zero Carbon scenario. 

Year 

87% CO2 

reduction 

target 

92% CO2 

reduction 

target 

94% CO2 

reduction 

target 

99% CO2 

reduction 

target 

100% CO2 

reduction 

target 

2010 2459.7 2459.7 2459.7 2459.7 2459.7 

2011 2181.5 2182.5 2183.9 2183.9 2183.9 

2012 1903.2 1905.2 1908.0 1908.0 1908.0 

2013 2091.3 2092.6 2094.6 2094.6 2094.6 

2014 2279.4 2280.1 2281.2 2281.2 2281.2 

2015 1982.4 1985.5 1989.0 1989.0 1989.0 

2016 1685.4 1690.9 1696.9 1696.9 1696.9 

2017 1712.1 1716.6 1721.4 1721.4 1721.4 

2018 1738.9 1742.2 1745.9 1745.9 1745.9 

2019 1568.3 1574.6 1580.5 1580.5 1580.5 

2020 1397.8 1406.9 1415.1 1415.1 1415.1 

2021 1403.9 1396.0 1400.0 1373.9 1363.0 

2022 1410.0 1385.1 1384.8 1332.7 1310.8 

2023 1395.3 1368.4 1352.9 1264.0 1232.5 

2024 1380.6 1351.7 1321.0 1195.4 1154.1 

2025 1357.4 1314.3 1280.5 1123.0 1071.5 

2026 1334.1 1276.9 1240.0 1050.5 988.9 

2027 1304.0 1222.3 1187.8 967.4 898.6 

2028 1273.9 1167.7 1135.6 884.2 808.3 

2029 1225.3 1119.8 1070.5 798.8 704.7 

2030 1176.7 1071.8 1005.3 713.3 601.1 

2031 1119.5 999.1 939.4 622.0 538.2 

2032 1062.3 926.4 873.5 530.8 475.3 

2033 1007.8 862.7 803.5 479.1 421.7 

2034 953.3 799.0 733.4 427.4 368.1 

2035 913.9 758.9 683.6 396.6 340.8 

2036 874.4 718.7 633.7 365.9 313.6 

2037 829.6 654.5 574.7 338.6 280.2 

2038 784.9 590.4 515.7 311.4 246.9 

2039 731.1 540.4 485.7 277.2 187.0 

2040 677.3 490.4 455.7 243.1 127.2 

2041 628.6 463.8 426.1 188.4 112.6 

2042 580.0 437.1 396.5 133.7 98.0 

2043 542.8 396.8 359.3 118.7 88.1 
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2044 505.5 356.5 322.1 103.6 78.2 

2045 471.8 319.8 283.9 92.9 64.8 

2046 438.1 283.1 245.7 82.2 51.4 

2047 409.6 258.3 214.5 67.2 35.9 

2048 381.0 233.4 183.3 52.2 20.3 

2049 352.6 208.9 162.6 36.5 10.2 

2050 324.1 184.5 141.9 20.9 0.0 
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a. Annual renewable penetration (%) assumptions of U.S. electricity system. 

 
b. Annual CO2 emission constraints (Gt) of U.S. electricity system. 

 
 

Supplementary Figure 1. Annual renewable penetration assumptions (a) and annual CO2 

emission constraints (b) of U.S. electricity system showing in figures. 

 

  



67 

 

Supplementary Table 4. Electricity generation and storage technologies considered in 

this study.  

Main 

categories  

Technologies 

Fossil fuel 

sources 

Coal,  

Natural gas combustion turbine (Gas-CT),  

Nature gas combined cycle (Gas-CC), 

Natural gas combined cycle with carbon capture and storage (Gas-CC-

CCS), 

Oil-Gas-Steam 

Renewable 

sources 

Biopower,  

Geothermal, 

Hydropower, 

Landfill gas, 

Commercial combined cycle gas power plant fired with renewable fuels 

(RE-CC)  

Commercial gas combustion turbine fired with renewable fuels (RE-CT)  

Concentrated solar power (CSP), 

Offshore wind, 

Land-based wind, 

Photovoltaic (PV), 

Nuclear source Nuclear 

Storage Battery storage with 2-, 4-, 6-, 8- and 10-hour duration. 

Pumped-storage hydropower (PSH)  
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Supplementary Figure 2. The changes of total costs of the Coal (a), Zero Carbon (b), and 

100% Renewable (c) scenarios from the Reference scenario (breakdown by cost and 

technology types). Three bars in each panel represent the changes of capital cost, O&M cost, 

and fuel cost at each scenario from 2020 to 2050, and each cost type is broken down by 

technologies in different colours. The costs are present value (2020 US$) based on 5% 

discount rate. 
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Supplementary Figure 3. The unit costs of electricity under the Reference scenario at 12 

North American Electric Reliability Corporation (NERC) regions across the U.S.  The 

map plot (a) shows the costs at different regions, and the bar plot (b) shows the contribution of 

different technologies to the costs. The dash lines in the bar plot shows the average unit costs 

at the national level. The cost only includes the capital cost, O&M cost, and fuel cost of the 

electricity system, but it does not consider the electricity import and export among different 

NERC regions, therefore the revenue and payment associated with electricity import and 

export are not included in the cost presented here. The costs are present value (2020 US$) 

based on 5% discount rate. 

 

  



 

 

 

 

 

 
Supplementary Figure 4. The unit capital cost (a), O&M cost (b), and fuel cost (c) under the Reference scenarios at 12 

NERC regions across the U.S. The unit costs are present value (2020 US$) based on 5% discount rate. 
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Supplementary Figure 5. The unit costs of electricity generation (a, c) under the Coal scenario and their changes relative to 

the Reference scenario (b, d) at 12 NERC regions across the U.S. The map plots (a, b) show the costs at different regions, and 

the bar plots (c, d) show the contribution of different technologies to the costs. The dash lines in the bar plots show the average 

costs at the national level. The red dot in plot (d) shows the net additional unit cost at different NERC regions. The cost only 

includes the capital cost, O&M cost, and fuel cost of the electricity system, but it does not consider the electricity import and 

export among different NERC regions, therefore the revenue and payment associated with electricity import and export are not 

included in the cost presented here. The costs are present value (2020 US$) based on 5% discount rate. 
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Supplementary Figure 6. The unit cost and their changes relative to the Refernece scenario under the COAL scenario at 

12 NERC regions across the U.S. The upper three plots represent the unit cost broken down into capital cost (a), O&M cost (b), 

and fuel cost (c), while the lower three plots represent the change of unit cost broken down into capital cost (a), O&M cost (b), 

and fuel cost (c). These costs are present value (2020 US$) based on 5% discount rate. 
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Supplementary Figure 7. The unit costs of electricity generation (a, c) under the Zero Carbon scenario and their changes 

relative to the Reference scenario (b, d) at 12 NERC regions across the U.S. The map plots (a, b) show the costs at different 

regions, and the bar plots (c, d) show the contribution of different technologies to the costs. The dash lines in the bar plots show 

the average costs at the national level. The red dot in plot (d) shows the net additional unit cost at different NERC regions. The 

cost only includes the capital cost, O&M cost, and fuel cost of the electricity system, but it does not consider the electricity import 

and export among different NERC regions, therefore the revenue and payment associated with electricity import and export are 

not included in the cost presented here. The costs are present value (2020 US$) based on 5% discount rate. 
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Supplementary Figure 8. The unit cost and their changes relative to the Reference scenario under the Zero Carbon 

scenario at 12 NERC regions across the U.S. The upper three plots represent the unit cost broken down into capital cost (a), 

O&M cost (b), and fuel cost (c), while the lower three plots represent the change of unit cost broken down into capital cost (a), 

O&M cost (b), and fuel cost (c). These costs are present value (2020 US$) based on 5% discount rate. 
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Supplementary Figure 9. The unit cost and their changes relative to the Reference scenario under the 100% Renewable 

scenario at 12 NERC regions across the U.S. The upper three plots represent the unit cost broken down into capital cost (a), 

O&M cost (b), and fuel cost (c), while the lower three plots represent the change of unit cost broken down into capital cost (a), 

O&M cost (b), and fuel cost (c). These costs are present value (2020 US$) based on 5% discount rate. 
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Supplementary Table 5. Cost of capturing and storing 1 metric ton of CO2 using 

bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and 

storage (DACCS) technologies. 

Technologies  Cost 

BECCS $45–$250/t CO2 (2012 USD*)142 

DACCS**  
Direct air capture $94–$232/t CO2 (2016 USD)143 

Storage $11/t CO2 (2018 USD)151 
*  The cost data of BECCS provided in Caldecott et al, 2015142 was collected from another study152 published in 2012. Because the study did 

not indicate the year of the monetary value, so we assume it to be 2012, which is the year when the study is published.  
** The cost of DACCS was calculated by the summing the cost of capturing and storing 1 metric ton of CO2.  
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IV. Environmental trade-offs of direct air capture in climate change 

mitigation toward 2100 

Material from:  

Qiu, Y., Lamers, P., Daioglou, V., McQueen, N., de Boer, H. S., Harmsen, M., ... & Suh, S. 

(2022). Environmental trade-offs of direct air capture technologies in climate change 

mitigation toward 2100. Nature Communications, 13(1), 1-13. 

https://doi.org/10.1038/s41467-022-31146-1 

Copyright © 2022, The Author(s), under exclusive license to Springer Nature Limited. 

 

 

Abstract. Direct air carbon capture and storage (DACCS) is critical for achieving stringent 

climate targets, yet the environmental implications of its large-scale deployment have not been 

evaluated in this context. Performing a prospective life cycle assessment for two promising 

technologies in a series of climate change mitigation scenarios, we find that electricity sector 

decarbonization and DACCS technology improvements are both indispensable to avoid 

environmental problem-shifting. Decarbonizing the electricity sector improves the sequestration 

efficiency, but also increases the terrestrial ecotoxicity and metal depletion levels per tonne of 

CO2 sequestered via DACCS. These increases can be reduced by improvements in DAC material 

and energy use efficiencies. DACCS exhibits regional environmental impact variations, 

highlighting the importance of smart siting related to energy system planning and integration. 

DACCS deployment aids the achievement of long-term climate targets, its environmental and 

climate performance however depend on sectoral mitigation actions, and thus should not suggest 

a relaxation of sectoral decarbonization targets. 

https://doi.org/10.1038/s41467-022-31146-1
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A. Introduction 

Climate change mitigation scenarios used by the Intergovernmental Panel on Climate Change 

(IPCC)3 suggest that a rapid decarbonization in energy and material related services is likely to be 

insufficient to keep global mean temperature increase well below 2°C by the end of the 21st century. 

The remaining global carbon budget of 420-1,170 gigatonnes (Gt) CO2 is expected to be depleted 

in 10-30 years under present annual emission rates and projected Nationally Determined 

Contributions (NDCs)153. Most IPCC emission scenarios overshoot the carbon budget at first and 

then remove excess carbon via Carbon Dioxide Removal (CDR) technologies, i.e., intentional 

efforts to remove CO2 from the atmosphere and store it on land or in the oceans on the order of 

200-1,200 Gt CO2 toward the year 2100153.  

CDR strategies include the enhancement of natural above- and belowground carbon sinks in 

plants, rock formations, and soils as well as scalable engineering solutions designed to sequester, 

store, or utilize concentrated atmospheric CO2. Direct Air Capture (DAC), despite being at an early 

stage of development, is gaining increasing attention and recognized as a promising climate change 

mitigation strategy3. Given the homogeneous atmospheric CO2 concentration levels around the 

world, DAC facilities can be deployed in locations that provide abundant cheap and carbon-free 

energy and/or that are close to pipeline infrastructure, underground storage, or utilization facilities 

for reducing the CO2 transportation cost154. Also, compared to bioenergy with carbon capture and 

storage (BECCS), an alternate CDR technology facilitating stringent mitigation targets155, DAC is 

expected to have much lower footprints in water and land uses156, reducing concerns around food 

security and biodiversity loss157. 

Direct Air Carbon Capture and Storage (DACCS) uses chemical or physical processes to 

separate CO2 from ambient air and sequesters it permanently in geological storage sites. Due to 
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the highly dilute nature of atmospheric CO2 (currently around 415 parts per million), DACCS 

technologies require substantial energy and material inputs, so their future deployment and role in 

climate change mitigation will depend heavily on process-design and resulting technoeconomic 

and environmental performances154. Two types of technologies are presently considered promising 

from a technoeconomic perspective: solvent-based DACCS, typically relying on aqueous 

hydroxide solutions (potassium hydroxide, sodium hydroxide) for capturing CO2
158–161, and 

sorbent-based DACCS, mostly using amine materials bonded to a wide range of porous solid 

supports162–165. Solvent-based DACCS requires dedicated high-temperature (900°C) heat for CO2 

regeneration161. Thus, from a thermodynamic perspective, heat supply options are largely limited 

to combusting energy dense fuels such as (renewable) natural gas or (renewable) hydrogen, while 

electric resistance heating and electrochemical regeneration approaches are in development. 

Sorbent-based DACCS can function with low temperature (80-120°C) heat for CO2 

regeneration166, offering a larger variety of thermal energy supply options (e.g., heat pump, 

geothermal, and industrial waste heat).  

A growing number of studies have included DACCS in integrated assessment modelling (IAM) 

scenarios. They highlight the critical role of DACCS in meeting stringent climate targets, but they 

also reveal the trade-offs of deploying DACCS, which, on the one hand, could reduce mitigation 

cost and relax the competition for land-use. On the other hand, large scale DACCS deployment 

and operation could also require large amounts of additional energy15,20,167,168. Depending on the 

modeling approach and scenario, these studies project that the DACCS deployment levels for 

meeting a 2°C or stricter climate target by 2100 can reach up to 40 Gt of annual CO2 

sequestration167,20,15,169. At this scale, DACCS (assuming a solvent-based process) could consume 

up to 12% and 60% global electric and non-electric energy by 210020,19. Evidently, for DACCS 
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facilities connected to electric power grids, their environmental performance will depend on the 

electricity system context in which they will operate. Previous studies have shown that DACCS 

can achieve negative emissions, but capture efficiencies are sensitive to the operational efficiency 

and the energy source18,170–172. A recent life cycle assessment (LCA) of DACCS technologies also 

identified potential environmental trade-offs in increased land transformation if DACCS is 

operated by solar electricity (as compared to using grid electricity)173. These studies, however, 

assume DACCS is powered either by a specific generation technology or static electricity systems. 

Thus, they neither reveal how environmental impacts of DACCS might change with energy system 

transitions following stringent mitigation scenarios3, nor do they quantify the potential broader 

environmental trade-offs of power system transitions with and without DACCS deployment in 

such scenarios toward 2100. Also, these studies do not fully account for long-term potential 

technological improvements of DACCS, which are expected to affect the environmental impacts 

of technologies by changing their physical material and energy inputs33,31,94.  

Here, we calculate a prospective LCA of DACCS under climate change mitigation scenarios 

developed by the IMAGE 3.2 Integrated Assessment Model174,175 which are consistent with the 

climate targets of the Paris Agreement. IMAGE 3.2 has been used to project future energy 

supply, conversion, and demand toward 2100 across 26 global regions based on the 

demographic, economic, technological and behavioral narratives of the Shared Socioeconomic 

Pathways (SSPs)176,177. This study uses the ‘Middle of the Road’ pathway (SSP2), which 

assumes future developments in-line with historical patterns. This is then linked with climate 

targets defined by the Representative Concentration Pathways (RCPs)178 to determine required 

carbon prices which lead to changes in the energy system consistent with the achievement of 

specific climate targets. We use three distinct scenarios: An SSP2 baseline without any climate 



81 

 

policies and measures to limit radiative forcing or to enhance adaptive capacity (SSP2-baseline). 

An SSP2 baseline linked with a strict climate change mitigation effort to limit global warming to 

less than 1.5°C, i.e., a radiative forcing level of 1.9 W/m2 (RCP1.9), by 2100, allowing DACCS 

as a CDR option (SSP2-RCP1.9 w/ DACCS). Finally, a counterfactual that follows the same 

socioeconomic and climate change mitigation target but does not feature DACCS as a CDR 

option (SSP2-RCP1.9 w/o DACCS).  

In an LCA study, the technological changes in both background and foreground systems can 

affect the environmental impacts of the studied object. The foreground system consists of 

processes directly related to the object, while the background system includes the upstream or 

downstream processes in the supply chain that are indirectly related to the object179,180. Here, we 

adapt a novel and open-source LCA framework35,181 to modify electricity-related data in the 

background LCI database using regionally and temporally explicit IMAGE projections (on 

electricity mix, generation efficiency, and electricity-associated emissions) from 2020 to 2100 

under the three scenarios. The regional impacts are differentiated for the United States (US) and 

compared to China, Russia, Western Europe, and a global average. Changes in the foreground 

material and energy inputs of the two technologies (solvent- and sorbent-based DACCS) over the 

same period are estimated based on the IMAGE projection of global DACCS deployment using a 

one-factor learning curve approach. We thus assume a commercial-scale operation and 

technology improvements via learning-by-doing. To capture the uncertainty related to the 

specific future learning rates, we apply different rates as part of a sensitivity analysis. Two types 

of heat supply options are also considered for solvent- (natural gas or biomethane) and sorbent-

based DACCS (biomethane or heat pump) to understand how heat sources affect their 

environmental profiles. Furthermore, we also quantify the effect of DACCS deployment on the 
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changes in power system loads, grid mixes, and related shifts in environmental impacts by 

comparing the strict mitigation scenario (SSP2-RCP1.9) with and without DACCS as a CDR 

option.  

The following sections outline the mutual dependence between the electricity system and 

DACCS technologies. First, we compare and evaluate the effects of the electricity system 

evolution (background dynamics) vs. DACCS technology learning (foreground dynamics) on the 

environmental impact per tonne of CO2 sequestered. Second, we quantify the effects of DACCS 

deployment on electricity demand, grid mix, and the environmental impacts per kWh of 

electricity generated. These results are illustrated in a US context. Following, we present the 

environmental impacts of DACCS in a global context by comparing results across four world 

regions before the paper closes with a discussion on implications and policy recommendations.  

B. Methods and Data 

In this study, we adapt a cradle-to-grave LCA framework that evaluates temporal- and 

regional-explicit environmental impacts of direct air carbon capture and storage (DACCS) in 

future electricity systems projected by climate mitigation contexts35. The dynamic framework 

aligns the temporal dimensions of the foreground technology learning and the background 

electricity system contexts. The life cycle impacts for the respective DACCS technologies are 

calculated using Python-coded LCA framework Brightway2182 based on foreground life cycle 

inventory (LCI) of DACCS systems and background LCI data from the ecoinvent database3.6183. 

The (background) electricity system context is provided by TIMER, the energy module of the 

IMAGE3.2 Integrated Assessment Model (IAM)175. TIMER develops regionally and temporally 

explicit projections on electricity mix, generation efficiency, and electricity-associated 

emissions, and these outputs are incorporated into another python-coded framework (Wurst)35 to 



83 

 

update the electricity-related LCI in the ecoinvent database, which is then reflected in the 

Brightway2 calculated impacts per DACCS technology and time-step. The calculations are 

performed for 10-year timesteps from 2020 to 2100. 

1. Models 

IMAGE 3.2 is an IAM framework developed to describe the relationships between humans 

and natural systems and the impacts of these relationships on the provision of ecosystem services 

to sustain human development175. The energy module of IMAGE 3.2, TIMER, is a recursive 

dynamic (i.e. no-foresight) energy system model representing the global energy system, 

disaggregated across 26 global regions, with projections till 2100175. It includes fossil and 

renewable primary energy carriers (coal, heavy/light oil, natural gas, modern/traditional biomass, 

nuclear, concentrated/photovoltaic solar, onshore/offshore wind, hydropower, and geothermal). 

Primary energy carriers can be converted to secondary and final energy carriers (solids, liquids, 

electricity, hydrogen, heat) to provide energy services for different end-use sectors (heavy 

industry, transport, residential, services, chemicals and other). The model projects future (useful) 

energy demand for each end-use sector (industry, transport, residential, commercial, other) based 

on relationships between energy services and activity, the latter of which is related to economic 

growth. For each demand sector, secondary energy carriers (including solid and liquid biofuels) 

compete based on relative costs with each other to meet the useful energy demand. The energy 

system representation of the IMAGE model does include demand elasticity with carbon prices. 

This is represented via two distinct mechanisms: (i) Investment in energy efficiency, and (ii) 

reduced demand in energy services (i.e., reducing consumption and foregoing activities and 

amenities which demand energy/emissions). The former is represented via technological options 

(i.e., invest in insulation, more efficient technologies, etc.) and the latter is represented based on 
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econometric data. Energy prices are based on supply curves of energy carriers184,185. For non-

renewable sources, these are formulated in terms of cumulative extraction; while for renewable 

sources, these are formulated in terms of annual production 186–188. 

Brightway2 is an open source framework for Life Cycle Assessment (LCA) calculations in 

Python182. It consists of several modules that handles data import, managing and accessing data, 

calculating, and analyzing LCA results. The combination of a modular structure, the interactivity 

of Python, and tunable calculation pathways allows for flexibility and user-defined 

functionalities in conducting LCA studies and offers new possibilities compared to existing LCA 

tools.  

Wurst is also a Python-based software that enables the systematic modification of life cycle 

inventory (LCI) databases with external scenario data35. Wurst supports several generic 

modification types, including changing material efficiency, emissions, relative shares of markets 

inputs, and separating a global dataset into multiple regions. The current version of Wurst 

focuses on modifying the ecoinvent LCI database using IMAGE scenario data. More detailed 

information regarding modification steps of Wurst are discussed in the “LCI database 

modifications with climate scenario data” section. 

2. Scenario description 

Baseline scenario (SSP2) projections assume no climate policy whatsoever, thus acting as a 

counterfactual to which policy efforts can be compared. The RCP1.9 scenarios project the required 

effort needed to meet a climate target, defined as an emission budget consistent with a 1.5˚C global 

mean temperature increase. These scenarios also include current climate policy, per region, as 

defined by the NDCs189. For the RCP1.9 scenarios, the IMAGE model determines the additional 

effort needed to meet the 1.5˚C target, represented by emission price projection across all GHG 
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emission sources (fossil fuels, industry, and land use), applied globally, resulting in a cost-effective 

mitigation pathway. The emission price can reduce emissions via two mechanisms: (i) the increase 

in aggregate energy costs promotes investments in energy efficiency, (ii) by attaching this price to 

the carbon content of primary energy carriers, and it affects their competitiveness at meeting final 

energy demand services, thus promoting cleaner energy carriers. The application of an emission 

price makes DACCS competitive as it is assumed that sequestered carbon is renumerated, thus 

overcoming capital and variable costs (which in turn are affected by the projected cost of energy 

supply and technological learning). We present two RCP1.9 variations (SSP2-RCP1.9 w/ DACCS 

and SSP2-RCP1.9 w/o DACCS) to determine the impact of DACCS availability on climate change 

mitigation strategies. Regional cost-effectiveness in DACCS depends on capital and O&M costs 

(including endogenous learning-by doing reductions), electricity price, and CO2 transport and 

storage costs linked to storage potential limitations190. A single DACCS technology (with 

technology parameters and cost data based on plant capacity of 1 Mt CO2/year) is included in 

IMAGE, represented by aggregate of different solvent-based technologies summarized in previous 

studies159,191,192, but we assume that the DACCS deployment result estimated by IMAGE will 

represents the total deployment of a wide range of DACCS technologies (including both solvent- 

and sorbent-based DACCS). In IMAGE, it is assumed that DACCS is not available before 2030, 

and its global growth rate is limited to 1 GtCO2/year. This growth rate limit is a binding constraint 

in the projection once DACCS becomes cost effective, while in the long-term storage potential 

limitation may limit its further expansion. DACCS becomes cost effective when emission prices 

exceed approximately $300/tCO2. This emission price is surpassed in 2050 for both SSP2-RCP1.9 

w/ DACCS and SSP2-RCP1.9 w/o DACCS. In the long-term, the application of DACCS limits the 

growth of the emission price, projected to be $423/tCO2 and $885/tCO2 2100 for SSP2-RCP1.9 w/ 
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DACCS and SSP2-RCP1.9 w/o DACCS respectively. By calculating the differences of electricity 

generation and the associated environmental impacts between the two RCP1.9 variations, we can 

also evaluate the effect of DACCS deployment on the electricity and energy demand systems. 

3. Technology assumptions and details of DACCS systems 

We focus on two types of DACCS technologies: a solvent-based and a sorbent-based 

DACCS, which rely on different capture and release mechanisms to remove CO2 from the 

atmosphere.  

Solvent-based DACCS applies aqueous hydroxide solutions (potassium hydroxide, sodium 

hydroxide) to capture atmospheric CO2 via a chemical reaction158–161. Here, we assume the 

solvent-based DACCS uses potassium hydroxide solution for CO2 capture. In an air contactor, 

the potassium hydroxide solution reacts with CO2 and forms potassium carbonate, which then, in 

a separate reactor, reacts with calcium hydroxide and generates calcium carbonate. The calcium 

carbonate precipitates, and potassium hydroxide solution can be regenerated and recycled back 

to the air contactor. The precipitated calcium carbonate is collected, dried, and then calcined 

under high temperature (about 900 °C) heat, which is typically provided by natural gas 

combustion in pure oxygen, to release the CO2. The CO2 released from calcium carbonate and 

the CO2 generated by natural gas combustion are mixed and collected for further storage161. The 

high temperature heat requirements limit the heat supply options for solvent-based DACCS. In 

this study, we consider natural and renewable gas (biomethane) as the two heat options for the 

solvent-based DACCS (Supplementary Figure 1). Other proposed methods include electric 

resistance heating and electrochemical regeneration, which were not studied here.  

Sorbent-based DACCS typically uses amine materials bonded to a wide range of porous solid 

supports for CO2 capture162–165. Here, we considered the use of amine-based silica as the solid 
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sorbent18. The process consists of two main steps that operate cyclically: adsorption and 

desorption. In the adsorption step, a fan blows air through the air contactor, and the CO2 in the 

air reacts with the sorbent and binds to it. When the solid sorbent has been saturated with CO2, 

the desorption step will start in the air collector. Before heat is supplied, a vacuum is pulled to 

remove residual air from the contactor and decrease the temperature required for regeneration. 

Then, heat at about 100°C will be supplied into the air contactor to desorb the CO2. The collected 

CO2 will then go through a cooling unit, where extra moisture can be removed through 

condensation and CO2 will be brought to ambient temperature. In the desorption step, the 

temperature of heat is about 80 – 120°C, so a wide variety of thermal energy sources (natural 

gas, heat pump, geothermal heat, and waste heat) can be used as the heat supply. Here, we model 

heat pump (with coefficient of performance of 2.518) and renewable gas (biomethane) as the two 

main options (Supplementary Figure 1). 

CO2 transport and storage. Once the CO2 is released from either process, we assume the CO2 

flow will be compressed through a compressor to 11 MPa and then transported through a 

pipeline to the storage site. The length of the transport pipeline is assumed to be 50 km. At the 

storage site, the CO2 will be further compressed to 15 MPa and injected into a geological 

reservoir through wells with the depth of 3 km each. Here, the CO2 will be permanently stored as 

supercritical phase193(Supplementary Figure 1).  

4. Life cycle impact assessment 

The system boundary starts at the inlet air with a CO2 concentration being 415 ppm, and is 

followed by CO2 capture, regeneration, compression, transport, and ends with geological storage. 

Our analysis also accounts for upstream emissions due to indirect energy demands for the 

construction of energy conversion technologies, fuel production and handling. The functional unit 
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is capturing and sequestering one metric tonne (1t) of atmospheric CO2 by DACCS technologies. 

The LCI data of the two studied DACCS technologies and subsequent compression and storage 

were collected from literature or estimated through bottoms-up materials requirements analysis 

(with the assumed plant capacities of 1 Mt CO2 and 0.1 Mt CO2 per year for solvent- and sorbent-

based DACCS respectively), which are discussed in detail in Supplementary Note 2. The LCI data 

are assumed to represent the status quo material and energy consumptions over the life cycle of 

the two selected DACCS technologies. ReCiPe 2016 v1.1 hierarchist perspective is used as the 

characterization method  to convert emissions and natural resource extractions to environmental 

impact categories at mid-point level194.  

In this study, when we compare the environmental impacts of DACCS under different 

electricity decarbonization pathways (SSP2-baseline vs SSP-RCP1.9 w/ DACCS), the results are 

calculated based on static LCI data of DACCS that represent their current material and energy uses 

without considering technology learning. Then, we also calculated another set of LCA results for 

DACCS under SSP-RCP1.9 w/ DACCS scenario based on dynamic LCI data that are estimated 

using learning curve approach, so it captures the effects of both background electricity 

decarbonization and foreground technology learning. By comparing the LCA results of DACCS 

calculated using static and dynamic LCI data under SSP-RCP1.9 w/ DACCS scenario, we can 

evaluate and compare the effects of background electricity decarbonization and foreground 

technology learning on the environmental impacts of DACCS.  

5. Technology learning of DACCS systems 

The learning curve approach has been used as an empirical method to study the unit cost 

reduction over time with cumulative production increases for a wide range of manufacturing195 

and energy technologies196. The learning effect can be characterized by various mechanisms, 
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including technology advancement, increased labor productivity, economies-of-scale, and 

improved material and energy efficiency. The learning curve approach has also been 

acknowledged as one critical means to explore the future expected life cycle impacts of present-

day emerging technologies197,198. Here, we apply the one-factor learning curve approach to 

inform our prospective LCA. While the two technologies under investigation are presently 

operating in pilot- or demonstration scale, we assume a commercial-scale operation for both and 

apply constant learning rates, affecting the future life cycle material and energy consumption. 

Yet, for both technologies assessed herein, these learning effect on material and energy 

consumption are missing in the published literature. Thus, we assumed changes of material and 

energy consumption proportional to the changes of unit cost for the DACCS technologies.  

It has been shown that the capital costs of solvent- and sorbent-based DACCS are likely to 

follow different learning rates given their different design characteristics. The solvent-based 

DACCS is site-built and large-scale, benefitting from economy of scale, but it is also less likely 

to incorporate rapid design or manufacturing improvement, while sorbent-based DACCS is 

based on standardized and modular units, and these units can be mass-produced and deployed, 

which enables fast iteration and learning199. Therefore, we assumed the average learning rates of 

10% and 15% for the material and energy consumption that are related to capital investment for 

solvent- and sorbent-based DACCS, respectively. Then, as for the material and energy 

consumption related to operational costs, we assumed average learning rates of 2.5% for both 

solvent- and sorbent-based DACCS, respectively. We also consider variation ranges for the 

learning rates to reflect their uncertainty (Supplementary Table 10), these variation ranges are 

used to develop a sensitivity analysis to understand how speed of learning affect the 

environmental impacts of DACCS. Furthermore, to avoid unrealistic reduction of material and 
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energy consumption under technology learning, we also set up minimum material and energy use 

factors of both DACCS technologies based on experts’ estimation. As for the solvent-based 

DACCS, the lower bound of material and energy uses related to capital and operational costs 

cannot be lower than 44% and 50% of their original amounts, respectively, and the sorbent-based 

DACCS, the lower bound of material and energy uses related to capital and operational costs 

cannot be lower than 18% and 50% of their original amounts in 2020, respectively. To 

incorporate the minimum material and energy use factors into the learning curve formula, we 

adjusted the learning curve formula into the following Eq. 1: 

𝐷𝑖,𝑡 = (𝐷𝑖,0  − 𝐷𝑖,𝑚𝑖𝑛)  × (1 − 𝐿𝑅𝑖)
𝑙𝑜𝑔2(𝑋𝑡/𝑋0)  +  𝐷𝑖,𝑚𝑖𝑛                               (1) 

In equation (1), 𝑋0 represents the initial DAC deployment capacity at year 0; 𝑋𝑡 represents 

the cumulative DAC deployment capacity at year 𝑡. For a specific material or energy item 𝑖, 𝐿𝑅𝑖 

represents the learning rate of the item 𝑖; 𝐷𝑖,0 typically represents the unit consumption of the 

material or energy item 𝑖 at year 0 (corresponding to the initial CO2 capture 𝑋0). Here our goal is 

to calculate the material and energy use factors (instead of actual unit consumption) under 

technology learning, so we normalize the 𝐷𝑖,0 to be 1; 𝐷𝑖,𝑡 is also a normalized material and 

energy use factors of item 𝑖 at year 𝑡 (corresponding to the cumulative CO2 capture 𝑋𝑡); 𝐷𝑖,𝑚𝑖𝑛 

represents the minimum material and energy use factors of item 𝑖.  

Finally, we assume that solvent- and sorbent-based DACCS each account for half of the 

global cumulative capacity of DACCS (IMAGE model outputs), respectively. Then, we 

estimated material and energy use factors for both solvent- and sorbent-based DACCS from 

2020 to 2100 based on their cumulative capacity, and the results are presented in Supplementary 

Table 11. By multiplying the material and energy use factors at a specific year to the actual unit 

material and energy consumption at the initial year, we can get the actual unit material and 
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energy consumption in that specific year. Assumptions on technology learning rates and 

minimum material and energy use factors of solvent- and sorbent-based DACCS are discussed in 

detail in Supplementary Note 3.  

6. LCI database modifications with climate scenario data 

The ecoinvent database23 is the most widely used LCI database which offers fully interlinked 

unit process supply chains for products presented in the database. It covers all relevant 

environmental flows, material and energy inputs, and products of around 18,000 activities, where 

researchers can collect data about the supply chain to form a comprehensive background system 

in an LCA study. However, since the data in ecoinvent are usually collected in a specific year, 

the database describes the material and energy flows among processes based on an existing 

supply chain system. Therefore, the ecoinvent database is limited in conducting prospective LCA 

studies, which assess the environmental impacts associated to future technologies or emerging 

technologies that evolve over time.  

Here, to evaluate the environmental impacts of DACCS technologies in a context of a 

changing background electricity system, we adapt a novel approach (Wurst)35 that systematically 

integrates the IMAGE projections on electricity mix, generation efficiency, and electricity-

associated emissions with the ecoinvent database, and change the parameters in electricity-

related activity data in the ecoinvent database. Due to the differences of generation technologies 

between IMAGE and ecoinvent database, we develop a matching list to map the available 

technologies for both data sources (Supplementary Note 4). More detailed information regarding 

parameter modification for ecoinvent database using Wurst can be found in a previous study35. 

After the parameter modification, we developed 27 versions of ecoinvent databases, which 
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correspond to 9 different years from 2020 to 2100 under the SSP2-baseline, SSP2-RCP1.9 w/ 

DACCS, and SSP2-RCP1.9 w/o DACCS scenarios. 

C. Results 

1. Prospective life-cycle environmental impacts of DACCS in the US  

DACCS achieves net negative greenhouse gas (GHG) emissions across all technologies and 

heat sources investigated per metric tonne (1t) of atmospheric CO2 captured and geologically 

sequestered in a US context by 2020. The net sequestration efficiency varies by DACCS 

technology and heat source (Figure 1a) with life cycle climate change impacts ranging from -

0.36 to -0.94t CO2-eq for a baseline grid-mix in 2020 (Figure 1a). Net GHG negative implies that 

the DACCS technologies release less GHG emissions than they capture and geologically 

sequester over the plants’ life cycle (cradle-to-grave approach). The influence of different 

background electricity system contexts can be seen by comparing results for the SSP2-baseline 

vs. the SSP2-RCP1.9 w/ DACCS scenarios. In the SSP2-baseline, the US electricity system 

reduces the share of coal generation from 31% in 2020 to 7% in 2100, while its combined share 

of nuclear and renewable generation increases from 35% to 61% over the same period (Figure 

2a). As a result, the climate change impact of DACCS is further reduced to -0.72 to -1.12t CO2-

eq by 2100. The highest sequestration efficiency is achieved by solvent-based DACCS using 

biomethane as a heat source (SV+BM). Since the process collects and sequesters CO2 released 

during the heat generation process step, using biomethane, a non-fossil, burden-free CO2 fuel, 

creates a negative CO2 emission profile beyond the 1t of atmospheric CO2 sequestered.  
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Figure 1. Prospective LCA results of DACCS technologies (per 1 t atmospheric CO2 

captured and sequestered) from 2020 to 2100 considering background electricity sector 

decarbonization (US grid mix) and foreground technology learning of DACCS. Solvent-

based DACCS (SV) can use either biomethane (SV+BM) or natural gas (SV+NG) as a heat 

source. Sorbent-based DACCS (SB) can use either biomethane (SB+BM) or heat pump 

(SB+HP) as a heat source. In each panel, the line plot (left side of each panel) shows the 

trajectory of environmental impacts due to the electricity sector decarbonization (SSP2-

baseline and SSP2-RCP1.9 w/ DACCS) excluding technological learning of DACCS. The bar 

plot (right side of each panel) includes technological learning of DACCS and thus compares 

the effects of the background and foreground systems (all under SSP2-RCP1.9 w/ DACCS 

scenario) on the environmental impacts of the four DACCS systems. The bars without color 
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filling (only with boarder color) mark the percentage changes of impacts in 2100 relative to 

the 2020 level only due to the background electricity sector decarbonization, while the bars 

with color filling mark the percentage changes of impacts in 2100 relative to the 2020 level 

due to both background electricity sector decarbonization and foreground technology learning 

(based on reference learning rates) of DACCS. The error bars (associated to the bars with 

color filling) represent the results under slow and fast learning rates (Supplementary Table 10). 
 

In the SSP2-RCP1.9 w/ DACCS scenario, the US electricity sector achieves a full 

decarbonization by 2035 (Fig, 2d), which is in-line with current targets and an economy-wide 

decarbonization by 2050200. The scenario features an earlier phase-out of coal and natural gas (by 

2050) and higher renewable energy penetration (81%) by 2100 (Figure 2c). In this scenario, the 

climate change impact of DACCS exhibits more rapid reductions before 2050 and reaches levels 

of -0.91 to -1.25 t CO2-eq by 2100 (Figure 1a).  

The life cycle human toxicity, freshwater eutrophication, terrestrial acidification, and water 

depletion of DACCS are sensitive to the shares of coal and natural gas generation in the 

electricity grid mix (Supplementary Figure 9). These impacts decrease from 2020 to 2100, 

showing environmental co-benefits with decarbonizing the power sector (Figure 1b, 1c, 1e, and 

1h). Still, the US electricity system decarbonization creates environmental trade-offs for DACCS 

in other impact categories. We find increases for both terrestrial ecotoxicity (by 33%-80% across 

four DACCS-heat source combinations for both SSP2-baseline and SSP2-RCP1.9 w/ DACCS 

scenarios) and metal depletion levels (by 23%-42% and 40%-73% across four DACCS-heat 

source combinations for SSP2-baseline and SSP2-RCP1.9 w/ DACCS scenario, respectively) 

from 2020 to 2100 given the growing contributions from solar photovoltaic (PV) and wind 

energy generation in the background electricity system (Figure 2f, 2g, Supplementary Figure 9). 

The increased ecotoxicity impact in scenarios with high renewable energy generation is largely 

due to emissions from the production of silicon-based solar PV cells and copper processing (as 

copper is used for wiring in solar PV and wind turbines). The higher relative metal demand (per 
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kW installed) for the construction of solar PV and wind farms also increases mineral extraction. 

The electricity decarbonization barely affects the freshwater ecotoxicity of DACCS due to the 

counteracting effect of increased solar and wind penetrations (which raise the impact) and 

reduced coal generation (which decreases the impact) in the grid mix (Figure 2d, Supplementary 

Figure 9). 

 
Figure 2. The United States electricity mix under (a) SSP2-baseline, (b) SSP2-RCP1.9 

w/o DACCS, (c) SSP2-RCP1.9 w/ DACCS scenarios and (d) the annual CO2 emissions of 

the US electricity system under the three scenarios. In the electricity mix panels (a, b, c), 

the stacked area represents the market shares of the grid mix. “Solar” includes both solar PV 

and concentrated solar power (CSP). “Oil” combines both oil with and without CCS as oil 

with CCS accounts for less than 1% of the grid mix. Other renewables include wave, tidal, and 

geothermal power. In panel c, the red dashed line shows the percent of the annual electricity 

generation consumed by DACCS, corresponding to the secondary y-axis.  

 

The life cycle environmental impacts of DACCS are affected by the technology type and heat 

source. The sorbent-based DACCS + heat pump (SB+HP) system has the highest climate change 
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impact in 2020 because the heat is converted from fossil-dominated grid electricity, which has a 

higher carbon intensity than other heat supplies, but this impact is also more sensitive to 

electricity-sector decarbonization, so it shows a faster decrease over time. Under the SSP2-

RCP1.9 w/ DACCS scenario, the climate change impact of the SB+HP system becomes the 

lowest compared to three other counterparts after 2040. For solvent-based DACCS, using 

biomethane as a heat source leads to a lower climate change impact than using natural gas due to 

the additional biogenic carbon sequestration. Hence, the SV+BM exhibits a lower life cycle 

climate change impact compared to the solvent-based DACCS system with natural gas (SV+NG) 

(Figure 2a).  

As for other non-climate metrics, sorbent-based DACCS generally exhibits higher impacts in 

human toxicity, freshwater eutrophication and ecotoxicity, and metal depletion mainly due to its 

higher unit electricity consumption. In contrast, solvent-based DACCS shows a higher water 

depletion (per 1 t CO2 captured, 3-12 times more than sorbent-based DACCS), because it 

captures CO2 using aqueous hydroxide solution, which evaporates during the operation, while 

sorbent-based DACCS uses solid amine-based sorbents, which consumes much less water during 

the production and use phases. It has also been shown that, due to the affinity of amine sorbents 

for water, sorbent-based DACCS even co-produces water in humid environments, which can be 

used as fresh water or further purified into drinking water166. In terms of the heat source, solvent-

based DACCS using natural gas heat has lower impacts for all studied categories compared to 

biomethane except for terrestrial ecotoxicity (higher impact due to the discarding of toxic drilling 

waste during natural gas production) and water depletion (which is more sensitive to the 

technology type than the heat source). Sorbent-based DACCS exhibits a lower environmental 

impact profile using biomethane for heat. The only increase compared to the heat pump derived 
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heat is terrestrial acidification, which is mostly driven by the anaerobic digestion of biowaste in 

biomethane production (Figure 2b-2h).    

Our results show that continuous improvements via learning-by-doing can mitigate some 

environmental impacts. Under the SSP2-RCP1.9 w/ DACCS scenario, technology learning starts 

to reduce material and energy inputs after 2050 when DACCS is deployed on a large-scale 

worldwide (Supplementary Table 11). Still, the climate change, human toxicity, and freshwater 

eutrophication impacts are mainly attributable to the electricity consumption (Supplementary 

Figure 6) and the electricity sector decarbonization already decreases these impacts (of electricity 

generation) by more than 80% until 2050 (relative to 2020 levels) (Supplementary Figure 9). 

Therefore, DACCS technology learning contributes less than 10% of the total changes (over the 

80 years) in these impacts (Figure 1a-c). While the electricity sector decarbonization increases 

freshwater ecotoxicity (slightly), terrestrial ecotoxicity, and metal depletion per tonne of CO2 

sequestered via DACCS from 2020 to 2100, improvements in material and energy efficiency, 

induced by learning effects, have the potential to offset the increases across these categories. A 

sensitivity analysis confirms the prominent effect of learning in these impacts. Varying the 

learning rates between lower- and upper-bounds (Supplementary Table 10) causes additional 

increases (13% to 23%) or decreases (-10% to -13%) to the total changes of these impacts, while 

varying the learning rates barely affects the total impact changes for climate change, human 

toxicity, and freshwater eutrophication. Water depletion of solvent-based DACCS shows higher 

sensitivity to the change of learning rates compared to that of sorbent-based DACCS (Figure 1h) 

as the solvent use accounts for more than 80% of the total water depletion for solvent-based 

DACCS (Supplementary Figure 6). So, reducing the water evaporation during the operation can 

be an important strategy to decrease the life cycle water depletion of solvent-based DACCS.  
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2. The impact of DACCS on the US electricity sector 

The CDR capability provided by DACCS also affects the long-term development of the 

energy system. In our projections, carbon prices are used as a proxy to promote required changes 

in the energy system to limit emissions. Under the strict mitigation scenario with DACCS (SSP2-

RCP1.9 w/ DACCS), DACCS deployment in the US starts around 2050, and its annual 

operational capacity reaches 0.85 GtCO2/year by 2100 (Figure 3a), consuming about 5% (352 

TWh) of annual US electricity generation (Figure 2c). The availability of DACCS essentially 

acts as a cap on the long-term carbon price, causing hard-to-abate sectors to offset their 

emissions using DACCS as opposed to investing in alternative technologies (e.g., electrification, 

energy efficiency improvement), and this leads to an increase in overall energy demand which is 

partially met by additional consumption of fossil fuel (natural gas, oil, and coal) (Supplementary 

Figure 7a). Consequently, these hard-to-abate sectors promote additional CDR deployment, 

which is first met by additional CO2 sequestration from BECCS, which starts to increase after 

2050, leading to an average 15% higher BECCS use as compared to the w/o DACCS scenario by 

2080 (Supplementary Figure 8a). Subsequently, as DACCS capacity increases more rapidly after 

2080 and gradually meets the additional CDR demand, the annual CO2 sequestration from 

BECCS stabilizes around 1.3 GtCO2/year by 2100, like the levels in the strict mitigation scenario 

without DACCS. It is important to note, that on a global scale, the requirement of BECCS is 

lower in the SSP2-RCP1.9 w/ DACCS scenario than in the SSP2-RCP1.9 w/o DACCS case 

(Supplementary Figure 8a). 

The expansion of BECCS after 2050, peaking at 420 TWh/year by 2080, and reaching 113 

TWh/year by 2100 is noticeable in the US generation mix when mapping out the differences 

between the two mitigation scenarios (Figure 3a). With DACCS, we also see that less electricity 
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is generated from natural gas with carbon capture and storage (CCS) and nuclear during the same 

period, and the annual US electricity generation drops consistently during the BECCS expansion 

phase until 2080 (at -160 TWh/year or -2.3% compared to the without DACCS case). Thereafter, 

the rapid increase of DACCS operational capacity and the respective increase in electricity 

demand narrows the demand gap between the two scenarios. By 2100, 35 TWh/year of 

additional electricity are required under a mitigation scenario with DACCS.  

 
Figure 3. (a) The change in US power generation with DACCS deployment and (b) the 

change in life cycle impacts per unit (1 kWh) of US based power generation with DACCS 

deployment. In panel a, stacked bars show the change of annual generation by technologies 

when DACCS is a CDR option in the same mitigation scenario. The red line represents the net 

difference in annual power generation subtracting the SSP2-RCP1.9 w/o DACCS from the w/ 

DACCS scenario (primary y-axis). The black line represents the annual DACCS operational 

capacity (secondary y-axis). In panel b, the bar in each subplot represents the absolute change 

(per 1 kWh generation) of each impact subtracting the SSP2-RCP1.9 w/o DACCS from the w/ 

DACCS scenario from 2020 to 2100 (primary y-axis). The lines in each subplot represent the 

relative change (percentage) of impact compared to the 2020 reference level (secondary y-

axis) under an RCP1.9 w/ (red) and w/o DACCS scenario (blue). 

 

The availability of DACCS barely changes the annual decarbonization rate of the US 

electricity system (about 6% across both scenarios based on the annual life cycle climate change 
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impact). In both strict mitigation scenarios, the US power system reaches carbon neutrality by 

2035 (Figure 1d), which is in-line with the present US administration’s decarbonization target for 

the sector200. Beginning in 2050, the US grid mix starts to change with increasing DACCS 

deployment, leading to shifts in the long-term life cycle environmental impacts per kWh 

produced. We find a decrease in climate change impact up to -0.019 kg CO2-eq/kWh, which is 

mainly attributable to additional power generation from BECCS. Reductions also occur in water 

depletion and human toxicity impacts per kWh. At the same time, impacts of US power 

generation increase for several other categories including freshwater eutrophication and 

ecotoxicity, terrestrial acidification and ecotoxicity, and metal depletion (bars in Figure 3b). This 

environmental problem-shifting is directly attributable to the power grid mix change caused by 

DACCS. Still, for most impact categories, the changes are indiscernible compared to those 

caused by the electricity system decarbonization overall (lines in Figure 3b). Exceptions are 

metal depletion and terrestrial ecotoxicity, whose levels increase by 123% and 77% respectively 

from 2020 to 2100 due to the decarbonization of the power sector. DACCS deployment 

contributes an additional 10% (on average) after 2050 to both impact categories (Figure 3b). 

3. Environmental impacts of DACCS in other world regions  

To put the US-specific results in a global context, we calculate the life cycle environmental 

impacts of DACCS using regionally explicit LCI data for electricity generation in China, 

Western Europe, and Russia as well as a global average under a SSP2-RCP1.9 w/ DACCS 

scenario (considering technology learning of DACCS). Since the solvent- and sorbent-based 

DACCS systems are commonly associated with thermal energy supply from natural gas 

(SV+NG) and heat pumps (SB+HP) respectively, these two configurations were considered 

representative processes for a global comparison. The results show that, in 2020, the climate 
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change impact of SV+NG systems deployed in Russia and China are 12% and 19% higher than 

the same system at world level, because the electricity grid mixes in these regions are dominated 

by coal and natural gas, respectively (Figure 4a, Supplementary Figure 2, Supplementary Figure 

3). A higher climate change impact is also observed for SB+HP systems deployed in these two 

regions (14% and 23% for Russia and China, respectively) (Figure 4b). Both DACCS systems 

exhibit lower climate change impacts than the 2020 world level if they are deployed in the US 

(9% and 10% less for SV+NG and SB+HP systems) and Western Europe (29% and 35% less for 

SV+NG and SB+HP systems) given the regions’ lower carbon-intensive electricity (Figure 2, 

Supplementary Figure 4). With time, the climate change impacts of DACCS decrease across all 

regions, and so do the regional variations. By 2100, climate change impacts barely differ across 

regions and the global average level, with slightly higher numbers observed for DACCS in 

Russia whose electricity mix is largely dominated by natural gas with CCS (33% of annual 

generation) (Supplementary Figure 3). Similarly, decreasing trends of regional variations are 

observed for human toxicity, freshwater eutrophication, and terrestrial acidification impacts 

resulting from a worldwide decarbonization of the electricity sector under the mitigation scenario 

to limit global mean temperature change to below 1.5°C by 2100. The ranges of regional 

variations remain stable for freshwater and terrestrial ecotoxicity and increase for metal depletion 

over time due to different renewable penetration levels and grid mix profiles across the regions. 

The water depletion of SB+HP systems is more sensitive to the regional electricity system 

context compared to that of SV+NG systems. Thus, SB+HP systems can reduce their already 

lower water demand even further with increasingly cleaner electricity toward 2100 (Figure 4).  
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Figure 4. The regional variation of life cycle environmental impacts of DACCS 

technologies. Impacts of solvent-based DACCS using natural gas (SV+NG) and sorbent-based 

DACCS using heat pump generated heat (SB+HP) in four regions and the world under a 

SSP2-RCP1.9 w/ DACCS scenario (considering technology learning of DACCS with the 

reference learning rates). Per impact category, the reference (100% in 2020) is the World 

level. The results of other region-year combinations are shown as a relative change to the 

reference. These impact changes were calculated based on capturing and sequestering 1t 

atmospheric CO2 by DACCS. Since the technologies’ net negative life cycle Climate Change 

Impacts (CCI) (Figure 1) would create a positive increase in impacts relative to the 2020 world 

level, we do not account for the 1t CO2 captured in the CCI in this figure. Other impact 

category abbreviations: HTI – Human Toxicity Impact, FEI – Freshwater Eutrophication 

Impact, FTI – Freshwater Ecotoxicity Impact, TAI – Terrestrial Acidification Impact, TTI – 

Terrestrial Ecotoxicity Impact, MD – Metal Depletion, WD – Water Depletion. 

 

D. Discussion 

As more IAM scenarios start to include DACCS as a critical CDR technology for meeting 

stringent climate targets, the performance of DACCS should be evaluated in the context of those 

targets to better guide policy decision and deployment of DACCS in the future. As our LCA 

shows, a rapid decarbonization of the power and energy demand sectors that is consistent with 

the 1.5°C climate target can increase the net sequestration efficiency of DACCS and facilitate its 
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climate change mitigation potential, suggesting DACCS deployment and electricity system 

decarbonization should act synergistically in climate change mitigation efforts.  

Several DACCS technologies can offset GHG emissions and aid with long-term climate 

change mitigation efforts, but their net sequestration efficiencies and holistic environmental 

performance are interdependent with the energy system in which they operate. Merely shifting to 

low-carbon energy sources for DACCS plant operation could lead to environmental trade-offs. 

These findings are in-line with other DACCS LCA studies18,170,173. We find that solvent-based 

DACCS generally has lower impacts than sorbent-based DACCS in five (climate change, human 

toxicity, freshwater eutrophication, freshwater ecotoxicity, and metal depletion) out of eight 

impact categories studied herein. This is contrary to the conclusions of another study, which 

states sorbent-based DACCS has lower environmental impacts for the impact categories 

considered therein (under the reference case)201. These differences appear to be linked to the 

study’s optimistic electricity (180 kWh/t CO2) and heat (2.6 GJ/t CO2) consumption assumptions 

for sorbent-based DACCS (under the reference case). These are less than half of those reported 

by several other studies18,151,173 and also used herein (470–700 kWh/t CO2 for electricity and 5.4-

5.8 GJ/t CO2 for heat). Also, the study assumed that DACCS is powered by grid electricity in 

British Columbia, Canada, which is dominated by hydroelectricity (accounting for 72% of grid 

mix183) with low emissions for most impact categories. Thus, the environmental impacts (e.g., 

climate change, fossil depletion) of solvent-based DACCS were mainly driven by other factors 

such as a higher heat consumption. Furthermore, the study ignored the typical process-

configuration for solvent-based DACCS in which the CO2 released during thermal energy 

generation161 is also captured and sequestered, thus artificially increasing the climate change 

impact of that technology and underestimating its potential sequestration efficiency. Neglecting 
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this purposefully integrated process step not only alters the technology evaluation, it also leads to 

an underestimation of the storage capacity requirements and related inputs to regional planning 

and integration efforts. Solvent-based DACCS requires about 30% additional storage capacity 

(based on the 0.05 kg CO2/MJ202, which is the CO2 emission factor of natural gas combustion) 

per tonne of CO2 sequestered compared to sorbent-based DACCS.   

Electricity consumption is a major contributor to the terrestrial ecotoxicity and metal 

depletion levels of DACCS, which are mainly driven by the solar and wind penetration levels in 

the background electricity system in our scenarios. Therefore, as the decarbonization of the 

electricity system progresses with expanding renewable energy generation and storage 

capacities, additional efforts are needed to facilitate sustainable mining, manufacturing, and 

expanding the circular economy of energy materials used in those technologies, which will 

reduce these impact levels.  

Carbon management policies should consider research and development efforts to improve 

process and material efficiencies of DACCS and low-carbon energy generation technologies. 

DACCS technologies have already acquired very high reuse rates of solvent and sorbent18,161, but 

our results show that technology learning prominently reduces levels of ecotoxicity, metal 

depletion, and water depletion (solvent-based DACCS only), highlighting its important role in 

avoiding potential environmental problem-shifting of DACCS deployment under a climate 

change mitigation pathway. Whereas large-scale DACCS deployment will affect the supply and 

demand dynamics of the overall energy system, this effect is negligible compared to the effects 

of decarbonizing the power sector. Thus, the deployment of DACCS is complementary to the 

expansion of other net-zero emission technologies as well as BECCS in stringent climate change 

mitigation scenarios.  
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Decarbonizing the electricity system substantially reduces regional differences of impacts, 

such as climate change, human toxicity, freshwater eutrophication, and terrestrial acidification, 

which are mostly driven by fossil-based energy generation. Still, varying environmental profiles 

across ecotoxicity and metal depletion persist toward 2100 under different renewable energy 

deployment strategies. This stresses the need for smart siting of DACCS, incorporating a wide 

range of environmental and socioeconomic metrics in the future to assess regional trade-offs. 

Given its load profile, DACCS deployment should also be integrated into regional energy system 

planning, including grid-connected and off-grid location assessments. DACCS could for instance 

be intentionally sited in locations with high renewable energy potential and where grid 

interconnections would be expensive.  

The prospective LCA framework presented herein can inform policy discussions around 

research and development prioritization for emerging technologies that support energy sector 

decarbonization and long-term climate change mitigation targets. By incorporating regionally 

and temporally explicit electricity sector scenarios and technology projections for grid-connected 

DACCS, it captures the complex non-linear relationships between a CDR technology and its 

environmental impacts, caused by either changes in the broader energy system203–205 or its 

specific technology context94,36. Future study needs to enhance the capability of this framework 

to model material circularity and capture the technological changes in broader energy and 

industrial sectors. 
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E. Appendix 

1. Supplementary Note 1: Process flow diagrams of two direct air carbon capture and 

storage (DACCS) technologies with subsequent compression and storage system. 

a. Solvent-based DACCS system 

 

b. Sorbent-based DACCS system 

 

Supplementary Figure 1. The process flow diagrams of solvent-based DACCS system (a) 

and sorbent-based DACCS system (b) with subsequent compression and storage system. 
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2. Supplementary Note 2: Life cycle inventory 

In this section, we provide the life cycle inventory (LCI) data of both solvent- and sorbent-

based direct air capture (DAC) systems and subsequent compression and storage system. In the 

literature, some life cycle inventory (LCI) data of construction and operation of solvent-based 

DAC systems are missing, so we estimate some of the missing data based on engineering 

analysis of the material flow, equipment heuristics.  

In this study, solvent-based DAC uses aqueous potassium hydroxide (KOH) solutions to 

capture atmospheric CO2. The plant has an annual capacity of capturing 1 million metric tonnes 

(Mt) CO2, with a lifetime of 20 years. The plant has four major components (contactor, pallet 

reactor, calciner, and slaker) and some auxiliary equipment. The material requirement data for 

constructing the air contactor of a solvent-based DAC plant are provided de Jong et al.206, so 

these data are directly used as LCI of air contactor in this study. As for other components, the 

LCI data are missing in the literature, so their material requirements data were determined by 

sizing the equipment in accordance with the material flows in Keith et al (2018)207 , engineering 

equipment heuristics, sizing approximations based on existing images and industry standards, 

and existing patents held by Carbon Engineering, which are described below.  

Material requirements: Pellet reactor 

The pellet reactor used by Carbon Engineering (CE) is a customized version of a wastewater 

treatment reactor designed by Royal HaskoningDHV, called the Crystalactor®207. From the 

renderings provided in Keith et al (2018), it was estimated that a 1 MtCO2/year plant requires 48 

pellet reactors. Each reactor shell is a stainless-steel cylinder with a height of 12 m and a 

diameter of 1.2 m. The actual shell may be more complex, but specific data could not be found. 

The wall thickness is assumed to be 0.022 m. This thickness comes from a safety factor of 3.5 
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given for a vertical vessel under pressure and with a diameter about 1 m, which account for 

potential corrosion risks208. The reactor shell has a 60-degree conical base with a diameter of 1.2 

m. From this, the sidewall height of the base was calculated to be 3.6 m. The base thickness was 

assumed to be, again, 0.022 m due to the given conditions. The reactor lid was assumed to be a 

flat cap with a diameter of 1.2 m and a thickness of 0.022 m. Extra material required for a more 

complex lid was considered negligible. For the 48 vessel shells, bases, and lids, this results in a 

total stainless-steel requirement of 454 t/plant. Additional material required for automatic 

addition of seeds, washing and drying of seeds, and processing of fines were included in the 

Material requirements: Other equipment.  

Material requirements: Calciner 

The process proposed in Keith et al (2018). employs an oxy-fired fluidized bed calciner to 

produce calcium oxide (CaO) from calcium carbonate (CaCO3). The calcination step can be 

broken up into three steps: preheat, calcination and cooling:  

The preheat step includes two cyclone heat exchangers (preheat 1 and preheat 2), that heat up 

solid stream (mostly CaCO3) up to about 650°C. Since the material flow to the calciner is greater 

than 2,500 t/day, we assume that these cyclones are built as twin systems for a total of four 

cyclone preheaters. The diameters of the preheat 1 and preheat 2 are estimated at 8.1 m and 7.6 

m, respectively (scaled based on the increased diameter and throughput presented in a previous 

study209). Further, the material requirements were determined based on the circumference of the 

preheat cyclone and materials information from literature210. The preheat system also requires 

additional ducts leading from cyclone to cyclone, a draft fan for each set of cyclone preheaters, 

or a dip tube to increase material separation efficiency. These material requirements are included 

in Material requirements: Other equipment.  



109 

 

The calcination step in the Keith et al (2018) is based on fluidized bed calciner reactor, but 

we estimate the calciner material requirements using a rotary kiln, which is more widely 

deployed in industries such as cement making and pulp and paper production. While the two 

calciner configurations are different, the differences are assumed to have negligible effects on the 

material requirements for the calciner. Most of the material requirements for the calciner are 

from the metal body (in this case, steel) and the refractory (in this case, red brick refractory or 

alumina brick refractory). The material requirements for the calciner can be estimated using a 

cylindrical reactor with single refractory brick lining. The two primary material requirements are 

steel for the kiln shell and alumina bricks for the working refractory. Assuming the inside of the 

rotary kiln capable of processing 1,600 t raw material per day is 5.5 m, the working refractory 

layer is 0.254 m (or 10 inches) and the steel kiln shell is 0.04 m thick, this adds 1,000 t of steel 

and 2,050 t of red refractory brick for 1 Mt CO2/year facility. These material requirements are 

then scaled linearly to achieve a throughput 3,960 t/day. Since the rotary kiln configuration is 

different than the fluidized bed, we then adjust the material requirements linearly using the 

projected cost. The cost of an oxy-fired rotary calciner is assumed to be $120 million211., where 

the projected cost for the oxy-fired fluidized bed calciner is $44 million from Keith et al (2018). 

Scaling these values yields material requirements of 910 t steel/plant and 1,856 t refractory/plant.  

The cooling is a step after the calcination where the produced CaO is sent to an additional 

cyclone heat exchanger that preheats the incoming oxygen stream. Similar to the preheat, we 

assume that there are two, identical cyclones necessary on account of the high flow rate. The 

material requirements for the cyclone are estimated to be identical to cyclone preheat 2 with a 

radius of 7.6 m.  
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The complete material requirements for the calciner, broken down into the three sections, is 

shown in Supplementary Table 1Error! Reference source not found.. 

Supplementary Table 1: Material requirements for the calciner unit of 1 Mt CO2/year 

solvent-based DAC plant 

Material Type 
Material requirements (t/plant) 

Preheat Single-Lined Calciner Cooling Total 

Steel 135 910 110 1155 

Refractory Bricks 346 1856 168 2370 

Concrete 195 0 95 290 

 

Material Requirements: Steam Slaker 

Two processes occur simultaneously inside of the slaker at 300°C: an exothermic reaction 

between CaO and water to produce Ca(OH)2 and the heat transfer to solid CaCO3 as a preheat to 

the calciner system212. The reaction vessel processes the solid CaO stream leaving the oxygen 

preheat (170 t/hr, 97% CaO, 3% K2CO3), water condensed from the steam turbine (70.2 t/hr), 

solids from the upstream CaCO3 filter (306 t/hr, 98.2% CaCO3, 1.8% K2CO3) and a recycle 

steam stream207. We assume this vessel is primarily steel (used to form the shell of the reactor) 

and refractory brick (used as insulation).  

The solvent process presented in Keith et al207 and detailed in Heidel and Rossi212 uses a 

novel slaker configuration, mixing both the CaCO3 streams and CaO streams to dry the CaCO3 

stream and recycle uncalcined material to the calciner, as well as create Ca(OH)2. On account of 

the lower temperature requirement (300°C), we assume a refractory thickness of 6 inches 

(0.1524 m) total213,214. We assume that for the two calciners, there will be two slaking units, 

processing a total of 476 t/hr of solid material and roughly 70.2 t/hr of liquid/gaseous materials 

with equal distribution207.  

The outer shell of the slaker is assumed to be 40 mm, consistent with the metal shell 

thickness used for the calciner. The fluidization velocity is 1 m/s 207. Assuming that the 
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fluidizing medium is primarily steam, the specific volume of the superheated steam stream can 

be determined at 300°C and 1 bar (2.6 m3/kg) to give a gas volumetric flowrate of 0.46 m3/s.  

Therefore, we assume each slaker is a 0.4 m diameter cylindrical reaction vessel with an attached 

chamber for a recycle stream that is estimated using a factor 1.5 for the additional steel and 

refractory requirements based on the relative sizing of the cylindrical vessel to the recycle 

chamber. Assuming that the solid particle size entering the slacker experiences little to no 

particle size reduction occurring in the calciner, all particles will be roughly 0.85 mm in diameter 

when entering the slaker207.  

For most industrial fluidized beds, the length to diameter ratio lies between 3 and 16215 and 

the typical reactor length is between 1 and 10 m216. For this analysis, we assume a bed length of 

7.6 m (or a L/D ratio of 10). For the refractory thickness of 0.1524 m, the red silica brick 

requirement per vessel is roughly 9 t/ reactor. For the steel thickness of 40 mm, the steel 

requirements are roughly 8 t/reactor. The total requirements for capturing 1 MtCO2/year from air 

is shown in Supplementary Table 2. 

Supplementary Table 2: Material requirements for the steam slaker of 1 Mt CO2/year 

solvent-based DAC plant 

Material type 
Material requirements 

(t/plant) 

Refractory Brick Required  18.0 

Steel Required  15.8 

 

The steam slaker requires additional equipment, such as a cyclone that separates the outlet 

gas stream, a baghouse unit, fines filter (separating CaCO3 and Ca(OH)2 post-slaker), heat 

exchangers and coolers. The material requirements for these smaller unit operations are included 

in Material requirements: Other equipment. 

Material requirements: Other equipment  
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The material requirements for additional process equipment are assumed to be primarily 

concrete and steel. These additional units include the fines filter, quicklime mix tank, heat 

exchanger, and pumps, as well as any additional auxiliary equipment. To estimate the 

requirement for concrete, we assume 34% of the material costs from Keith et al. (2018) is 

distributed to concrete which is based on the American Institute of Steel Construction (AISC) 

construction material cost ratio to estimate the concrete requirements217. This is also similar to 

the methodology used in the Rhodium Group report Capturing New Jobs218. We assume a cost of 

concrete is $61/t219, consistent with the commodity price as of 2018. The resulting concrete 

requirements for the facility are calculated and outlined in Supplementary Table 3.  

Supplementary Table 3: Concrete requirements of a 1 Mt CO2/year solvent-based DAC 

plant 

Module 
Material cost207 

(Million $) 

Total cost for cement 

(Million $) 

Concrete requirements 

(t/plant) 

Pellet Reactor 28.4 9.7 157,230 

Calciner-Slaker 18.1 6.2 100,207 

Others 31.8 10.8 176,054 

 

The material requirements associated with piping and instrumentation are primarily steel and 

aluminum, and we estimate that separately based on a refinery configuration. The material 

requirements of any subsets (pipe, tubing, valves, fittings, and flanges) of the refinery (at three 

capacity levels: 10,000, 75,000, and 150,000 barrels/stream day) are provided in the Critical 

Materials Requirements for Petroleum Refining220, then we calculated the steel requirements of 

the refinery with total capital cost of $6.06 billion (2018$) and a capacity of 50,000 barrel/stream 

day221 using the scaling factor shown in Eq. 1 below.  

Scale Factor=
log(

Capacity B

Capacity A
)

log(
Material Requirements B

Material Requirements A
)
                                                        (2) 
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Then, we calculate the material requirements associated with piping and instrumentation of 

the solvent-based DAC as proportionate to that of the refinery plant (50,000 barrel/stream day) 

based on their capital costs (total capital cost are $6.06 billion for the refinery, total capital cost 

is $1.13 billion for solvent-based DAC207, both on 2018$). The material requirements associated 

with piping and instrumentation are given in Supplementary Table 4. 

Supplementary Table 4: Material requirements for piping and instrumentation of a 1 

Mt CO2/year solvent-based DAC plant  

 
Carbon Steel 

(t/plant) 

Alloy Steel 

(t/plant) 

Stainless Steel 

(t/plant) 

Aluminum 

(t/plant) 

Material requirements of 

piping and instrumentation 
5,481 951 651 50 

 

Chemical Requirements: Calcium Carbonate (CaCO3) 

The initial requirements of CaCO3 are required to start up the system. This is calculated using 

Figure 2 from Keith et al.207. The inlet CaCO3 includes the three streams of CaCO3 entering the 

pellet reactor: (1) CaCO3 Seed (4.5 t/h), (2) CaCO3 Makeup (3.4 t/h) and (3) CaCO3 Seed from 

Calciner (6.0 t/h). The total startup CaCO3 is 13.9 t/h for the duration of the startup period. The 

startup period discussed here is for the calcium loop (or calcining loop) and it primarily depends 

upon the calciner. Here, we assume a startup time of 24 hours to account for transit time through 

the calciner and associated equipment, which results in an initial CaCO3 requirements to be 330 t. 

After the initial startup period, the annual make-up CaCO3 is 3500 t/year222. Therefore, the 

annualized CaCO3 consumption is 3,517 t (= 330t/20 + 3,500t). 

Chemical Requirements: Potassium Hydroxide (KOH) 

The initial KOH requirements are also directly dependent on the startup time of the system. 

Keith et al. 207 uses a 2 mol/L KOH solution that flows to both the contactor and post-combustion 

absorber at a flow rate of 35,000 t/hr. This is equivalent to roughly 3,000 t of KOH per hour for 
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the duration of the startup period. We assume the same startup time of 24 hours to startup, 

including circulation from the contactors to the regeneration facility and the fluid residence time 

in the pellet reactors. In other words, the startup time accounts for the complete circulation of the 

fluid through the caustic recovery loop. So, the initial KOH requirement is 72,000 t. Although 

KOH is recycled through the system, but drift losses leads to an annual make-up KOH of 400 

t/year222. Therefore, the annualized KOH consumption is 4,000 t (= 72,000t/20 + 400t). 

Chemical Requirements: Water 

The initial water requirements can also be estimated using the 35,000 t/h solvent flow to the 

contactor207, which implies a water usage of roughly 31,000 t/h for the startup period of the 

contacting loop. With a startup time of 24 hours, the initial water usage is 744,000t. The 

temperature and relative humidity are used to estimate the water losses using the correlation 

given in Keith et al.207. We assumed a 60% relative humidity and 20°C, which resembles the 

temperature and humidity near Midland Texas November to March223. At these conditions, the 

evaporative losses are 3.8 t water/t CO2 (430 t water/hour). By assuming a 90% operation 

capacity of DAC facility (7,884 hour/year), the annual make-up water is 3.4 Mt water/year. 

Therefore, the annualized water consumption is 3.44 Mt/year (= 0.74 Mt/20 + 3.4 Mt). 

The overall material requirements for the construction of a 1 MtCO2/year solvent-based DAC 

(except for air contactor) and its annualized chemical and water consumption of are summarized 

in Supplementary Table 5.  
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Supplementary Table 5: The overall material requirements for the construction of a 1 Mt 

CO2/year solvent-based DAC plant (except for air contactor) and its annualized chemical 

and water consumption. 

Material requirements for the construction (t/plant) 

Module Concrete 
Stainless-

steel 

Alloy 

steela 

Carbon 

steel 
Aluminum 

Refractory 

bricks  

Pellet Reactors 157,230 454 0 0 0 0 

Calciners-Slakers 100,497 0 1,171 0 0 2,388 

Other Equipment 176,054 651 951 5,481 50 0 

The annualized chemical and water consumption (t/plant∙year) 

 KOH CaCO3 Water 

Chemical 

Requirements 
4,000 3,517 3,440,000 

Note: 

a Alloy steel combines both alloy steel and any other unspecified steel 
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Life cycle inventory of sorbent-based DAC  

The material and energy requirement data are converted to LCI data for solvent-based DAC 

systems and the subsequent compression and storage system based on 1 functional unit 

(capturing 1 t CO2), which are summarized in Supplementary Table 6. 

Supplementary Table 6. Life cycle inventory of the solvent-based DAC system (based on 

a sorbent-based DAC facility with annual capture capacity of 1 Mt CO2 and lifetime of 

20 years). 

Input Inventory Dataseta Amount Unit (per t 

CO2 

captured) 

Construction 

Air contact 

Concrete  
RoW: market for concrete, 

normal 
0.0067b m3 

Low-alloyed 

steel  

GLO: market for steel, low-

alloyed 
0.27b kg 

Stainless steel  
RoW: steel production, 

chromium steel 18/8, hot rolled 
0.0017b kg 

Polyurethane 
RoW: market for polyurethane, 

flexible foam 
0.0005b kg 

Glass fiber GLO: market for glass fibre 0.0038b kg 

Polypropylene 
GLO: market for polypropylene, 

granulate  
0.0008b kg 

Polyvinyl 

Chloride 

GLO: market for 

polyvinylchloride, bulk 

polymerised 

0.76b kg 

Pellet 

reactor 

Concrete  
RoW: market for concrete, 

normal 
0.0033c m3 

Stainless steel 
RoW: steel production, 

chromium steel 18/8, hot rolled 
0.023c kg 

Calciner 

slaker 

Concrete  
RoW: market for concrete, 

normal 
0.0021c m3 

Low-alloyed 

steel  

GLO: market for steel, low-

alloyed 
0.059c kg 

Refractory brick 
GLO: market for refractory, 

basic, packed 
0.12c kg 

Other 

equipment 

Concrete  
RoW: market for concrete, 

normal 
0.0037c m3 

Aluminium 
GLO: market for aluminium, 

wrought alloy  
0.0025c kg 
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Low-alloyed 

steel  

GLO: market for steel, low-

alloyed 
0.048c kg 

Stainless steel 
RoW: steel production, 

chromium steel 18/8, hot rolled 
0.033c kg 

Carbon steel GLO: market for steel, unalloyed 0.27c kg 

Operation 

Potassium hydroxide GLO: market for potassium 

hydroxide 
4.0c kg 

Calcium carbonate RoW: market for limestone, 

crushed, for mill 
3.5c kg 

Water RoW: market for tap water 3,437c kg 

Electricityd 

US: market group for electricity, 

medium voltage 

CN: market group for electricity, 

medium voltage 

ENTSO-E: market group for 

electricity, medium voltage 

RU: market group for electricity, 

medium voltage 

GLO: market group for 

electricity, medium voltage 

345b kWh 

Heatd 

Natural gas 
RoW: heat production, natural 

gas, at industrial 

furnace >100kW 

RoW: heat production, 

biomethane, at boiler condensing 

modulating <100kWe 

6,280b MJ 
Biomethane 

End-of-lifef 

Concrete 
RoW: treatment of waste 

concrete, inert material landfill 
38g kg 

Steel  
RoW: treatment of waste 

reinforcement steel, recycling 
0.6 kg 

Glass fiber 
RoW: treatment of waste plastic, 

mixture, municipal incineration 
0.0038 kg 

Polyvinyl Chloride 

RoW: treatment of waste 

polyvinylchloride, municipal 

incineration 

0.76 kg 

Polypropylene 

RoW: treatment of waste 

polypropylene, municipal 

incineration 

0.0008 kg 

Polyurethane  

RoW: treatment of waste 

polyurethane, municipal 

incineration 

0.0005 kg 
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Refractory brick 
RoW: treatment of waste brick, 

collection for final disposal 
0.12 kg 

Aluminium 

RoW: treatment of aluminium 

scrap, post-consumer, prepared 

for recycling, at remelter 

0.0023 kg 

Potassium hydroxide 

RoW: treatment of spent solvent 

mixture, hazardous waste 

incineration 

4.0 kg 

Calcium carbonate 
RoW: treatment of limestone 

residue, inert material landfill 
3.5 kg 

Notes: 
a The upstream and downstream inventory datasets are collected from ecoinvent 3.6. 
b de Jong et al., 2019206. 
c Data collected based on the bottoms-up materials requirements analysis described in Supplementary Note 2.  
d Here, we consider DAC system can be deployed in five regions, and the inventory data of electricity production 

are provided for these five regions: the United States (US), China (CN), Western Europe (ENTSO-E), Russia 

(RU) and World (GLO). Two heat supply options (natural gas and biomethane) are considered for solvent-based 

DAC system, and the inventory data of the heat supply are provided.  
e ecoinvent 3.6 database does not include LCI data of the “RoW: heat production, biomethane, at boiler 

condensing modulating <100kW” process, but the LCI data of this process is included in the newest version 

(ecoinvent 3.7). Therefore, we collected the LCI datasets related this process from ecoinvent 3.7 and added them 

to ecoinvent 3.6 to create an extended ecoinvent 3.6. The data is also summarized in 

“4_LCI_biomethane_heat.xlsx” excel file in “LCI_data” folder. 
f End-of-life (EoL) phase includes the treatment of materials used in construction and operation of DAC facility. 

We assume 85% steel (including low-alloyed and stainless steel, and steel pipe) used in the construction phase is 

recycled during end-of-life phase, and 90% aluminium used in the construction phase is recycled during end-of-

life phase. All other materials (100%) are either incinerated or landfilled. 
g Unit conversion of concrete from volume to mass by assuming the density of concrete as 2400 kg/m3

. 
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Life cycle inventory of sorbent-based DAC  

For the sorbent system, the LCI data are collected from the work of Deutz and Bardow based 

on the Climeworks system18. We used the LCI data of the plant with an annual capacity of 100 kt 

CO2/year and a lifetime of 20 years. The LCI data are summarized in Supplementary Table 7.  

Supplementary Table 7. Life cycle inventory of the sorbent-based DAC system (based on 

a sorbent-based DAC module with annual capture capacity of 100 kt CO2 and lifetime of 

20 years). 

Input Inventory Dataset Amount Unit (per t 

CO2 

captured) 

Construction 

Civil 

Engineering 

Concrete for 

fundamentals 
RoW: market for concrete, normal 0.004 m3 

Steel for 

fundamentals 
GLO: market for reinforcing steel 0.471 kg 

Hall 

Concrete for 

fundamentals 
RoW: market for concrete, normal 0.003 m3 

Steel for 

fundamentals 
GLO: market for reinforcing steel 0.274 kg 

Steel structure GLO: market for steel, low-alloyed 0.06 kg 

 Insulation GLO: market for stone wool 0.008 kg 

Collector 

containers 

(without 

sorbent) 

Carbon steel GLO: market for steel, unalloyed 0.138 kg 

Stainless steel 
RoW: steel production, chromium 

steel 18/8, hot rolled 
0.112 kg 

Insulation GLO: market for stone wool 0.005 kg 

Plastics (TPE) 
RoW: market for polyurethane, 

rigid foam 
0.006 kg 

Copper GLO: market for copper 0.005 kg 

Aluminium 
GLO: market for aluminium, 

wrought alloy 
0.08 kg 

Paints, 

coating 

RoW: market for alkyd paint, 

white, without solvent, in 60% 

solution state 

0.005 kg 

Process unit 

Stainless steel 
RoW: steel production, chromium 

steel 18/8, hot rolled 
0.169 kg 

Low-alloyed 

steel 
GLO: market for steel, low-alloyed 0.014 kg 

Insulation 
GLO: market for polystyrene foam 

slab for perimeter insulation 
0.047 kg 
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Plastics (TPE) 
RoW: market for polyurethane, 

rigid foam 
0.005 kg 

Copper GLO: market for copper 0.005 kg 

Spare parts  

(5 % 

exchange 

rate) 

Stainless steel 
RoW: steel production, chromium 

steel 18/8, hot rolled 
0.011 kg 

Low-alloyed 

steel 
GLO: market for steel, low-alloyed 0.006 kg 

Operation 

Amine-based sorbent (amine 

on silica) 

Inventory data of amine-based 

sorbent is collected from literature 

and summarized in SI-Tab.8 

3.0 kg 

Electricity 

US: market group for electricity, 

medium voltage 

CN: market group for electricity, 

medium voltage 

ENTSO-E: market group for 

electricity, medium voltage 

RU: market group for electricity, 

medium voltage 

GLO: market group for electricity, 

medium voltage 

500 kWh 

Heata 

Heat pump 

US: market group for electricity, 

medium voltage 

CN: market group for electricity, 

medium voltage 

ENTSO-E: market group for 

electricity, medium voltage 

RU: market group for electricity, 

medium voltage 

GLO: market group for electricity, 

medium voltage 

5,400 MJ 

Biomethane 

RoW: heat production, 

biomethane, at boiler condensing 

modulating <100kWg 

End-of-life 

Concrete 
RoW: treatment of waste concrete, 

inert material landfill 
14.7 kg 

Steel  
RoW: treatment of waste 

reinforcement steel, recycling 
1.07 kg 

Aluminium 

RoW: treatment of aluminium 

scrap, post-consumer, prepared for 

recycling, at remelter 

0.072 kg 
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Plastics (TPE) 
RoW: treatment of waste plastic, 

mixture, municipal incineration 
0.058 kg 

Copper 
RoW: treatment of scrap copper, 

municipal incineration 
0.01 kg 

Stone wool 
RoW: treatment of waste mineral 

wool, inert material landfill 
0.013 kg 

Amine-based sorbent (amine 

on silica) 

RoW: treatment of spent anion 

exchange resin from potable water 

production, municipal incineration 

3 kg 

Notes: 
a Two heat supply options (heat pump and biomethane) are considered for sorbent-based DAC system, and the 

inventory data of the heat supply are provided. The heat pump considered in this study has a coefficient of 

performance (COP) of 2.5, and it converts electricity into heat, so we use inventory of electricity production to 

represent the inventory of heat generation from heat pump. Heat requirement of sorbent-based DAC is 5,400 MJ/t 

CO2 captured. If heat pump with COP of 2.5 is used to provide heat, the electricity consumption is 2,160 MJ/t 

CO2 captured (600 kWh/t CO2 captured). 
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Life cycle inventory of amine-based silica  

The specific solid sorbent we choose for the sorbent-based DAC is amine-based silica, which 

can be synthesized by impregnate amines polyethylenimine (PEI) on solid silica gel. The LCI of 

amine-based silica is collected from literature (taking average between the best- and worst-

case)18 and summarized in Supplementary Table 8 based on the composition that 1 kg amine-

based silica requires of 0.64kg silica gel and 0.36 kg PEI224 (The data is also summarized in 

“3_LCI_amine_based_sorbent.xlsx” excel file in “LCI_data” folder).  

Supplementary Table 8. Life cycle inventory of 1 kg amine-based silica. 

Input Dataset Amount Unit (per  1 kg 

amine-based 

silica) 

Silica gel (64% in mass composition of 1 kg amine-based silica)a 

Sodium silicate  RoW: market for sodium silicate, solid 0.13 kg 

Sulfuric acid RoW: market for sulfuric acid 0.02 kg 

Thermal energy 
RoW: market for heat, central or small-

scale, natural gas 
0.63 MJ 

Water RoW: market for water, deionised 1.29 kg 

Wastewater 

treatment 

RoW: treatment of wastewater, average, 

capacity 1E9l/year 
1.12 m3 

Particulates (<2.5 

um) 
Emission to air 0.000042 kg 

PEI (36% in mass composition of 1 kg amine-based silica) 

Ethanolamine GLO: market for monoethanolamine 0.71 kg 

Sulfuric acid RoW: market for sulfuric acid 1.14 kg 

Sodium hydroxide 
GLO: market for sodium hydroxide, 

without water, in 50% solution state 
1.00 kg 

Hydrochloric acid 
RoW: market for hydrochloric acid, 

without water, in 30% solution state 
0.07 kg 

Ethanol 
GLO: market for ethanol, without water, in 

99.7% solution state, from fermentation 
1.24 kg 

Diethyl ether 
RoW: market for diethyl ether, without 

water, in 99.95% solution state 
14.84 kg 

Water RoW: market for water, deionised 5.24 kg 

Electricity 
GLO: market group for electricity, low 

voltage 
0.12 kWh 

Thermal energy 
RoW: market for heat, central or small-

scale, natural gas 
2.69 MJ 
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Sodium sulfate (co-

product as output) 
RoW: market for sodium sulfate, anhydrite 1.65 kg 

Unreacted raw 

materials and 

solvents 

RoW: treatment of spent solvent mixture, 

hazardous waste incineration 
0.54 kg 

End-of-Life 

amine-based silica 

RoW: treatment of spent anion exchange 

resin from potable water production, 

municipal incineration 

0.36b kg 

Notes: 
a Silica gel is assumed to be recycled with a rate of 95 %18, so the material and energy flows in this table (for 

silica gel) have factored in the recycling rate, meaning the amounts are 5% of the original required amount. 
b This process only applies for the PEI, because 95% of silica are recycled. 
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Life cycle inventory of pipeline transport and storage system 

Once the captured CO2 is release from the DAC system, we assume the CO2 flow will be 

compressed through a compressor to 11 MPa and then transported through a pipeline to the 

storage site. The length of the transport pipeline is assumed to be 50 km. At the storage site, the 

CO2 will be further compressed to 15 MPa and injected into a geological reservoir through wells 

with the depth of 3 km each. The LCI data of transport and storage system are collected from a 

previous study193 and summarized in Supplementary Table 9.  

Supplementary Table 9. Life cycle inventory of compression, pipeline transport and 

storage system. 

Input Dataset Amount Unit (per t 

CO2 

compressed 

and stored) 

Construction 

Compression 

facility 

Concrete RoW: market for concrete, normal 0.000001 m3 

Copper GLO: market for copper 0.0001 kg 

Low alloyed 

steel 
GLO: market for steel, low-alloyed 0.001 kg 

Polyethylene 
GLO: market for polyethylene, low 

density, granulate 
0.0003 Kg 

Diesel RoW: market for diesel 0.032 MJ 

Electricity 

US: market group for electricity, 

medium voltage 

CN: market group for electricity, 

medium voltage 

ENTSO-E: market group for 

electricity, medium voltage 

RU: market group for electricity, 

medium voltage 

GLO: market group for electricity, 

medium voltage 

0.001 kWh 

Pipeline 

transport 

Sand  RoW: market for sand 1.04 m3 

Reinforcing 

steel 
GLO: market for reinforcing steel 0.13 kg 

Steel pipes 
GLO: market for drawing of pipe, 

steel 
0.13 kg 

Bitumen  GLO: market for bitumen seal 0.0012 Kg 
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Polyethylene 
GLO: market for polyethylene, low 

density, granulate 
0.0025 kg 

Diesel RoW: market for diesel 1.8 MJ 

Transport 
RoW: market for transport, freight, 

lorry, unspecified 
0.12 t*km 

Geological 

storage 

Well 

construction 

GLO: market for onshore well, 

oil/gas 
8.2E-08 km 

Sand RoW: market for sand 3.3 kg 

Un-alloyed 

steel 
GLO: market for steel, unalloyed 0.017 kg 

Low alloyed 

steel 
GLO: market for steel, low-alloyed 0.037 kg 

Concrete RoW: market for concrete, normal 0.000048 m3 

Copper GLO: market for copper 0.0019 kg 

Transport 

RoW: market for transport, freight, 

lorry, unspecified 

 

0.34 
t*km 

 

Operation 

Electricity 

US: market group for electricity, 

medium voltage 

CN: market group for electricity, 

medium voltage 

ENTSO-E: market group for 

electricity, medium voltage 

RU: market group for electricity, 

medium voltage 

GLO: market group for electricity, 

medium voltage 

118 kWh 

End-of-life 

Concrete and sand 
RoW: treatment of waste concrete, 

inert material landfill 
4.4 kg 

Steel  
RoW: treatment of waste 

reinforcement steel, recycling 
0.26 kg 

Copper 
RoW: treatment of scrap copper, 

municipal incineration 
0.002 kg 

Polyethylene 

RoW: treatment of waste 

polyethylene, municipal 

incineration 

0.0028 kg 

Bitumen 
RoW: treatment of waste bitumen, 

sanitary landfill 
0.0012 kg 
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3. Supplementary Note 3: Technology learning assumption of solvent- and sorbent-based 

DAC 

Solvent-based DAC approach uses a liquid solvent and high surface area packing material to 

capture ambient CO2. Current applications require strong bases, such as NaOH and KOH, with 

uptake of 3.1E-5 mol CO2/cm2∙second (0.52 mol CO2/minute∙m3)225. If innovative approaches 

can increase the uptake rate to 7.0E-5 mol CO2/cm2∙second (1.18 mol CO2/minute∙m3), this 

would result in a 2.3 times increase in the uptake rate. This could result from an improved 

packing material that increases the solvent’s exposed surface area, or by the development of 

novel liquid solvents with higher uptake capacities. The increase in uptake translates to a roughly 

proportional decrease in the bed depth of the contactor and a roughly 56% decrease in the cost of 

the contactor unit. The decreased bed depth additionally causes a reduction in the system fan 

power by the same percentage. Then, we also assumed that increased deployment improves the 

system thermal efficiency, which results in a reduction of system thermal energy demand by 2.4 

GJ/tCO2 for a total energy requirement of 6 GJ/tCO2
226. As described in the 2019 National 

Academies of Sciences Engineering and Medicine (NASEM) report on negative emissions 

technologies, the inlet surface area dimensions of contactor are assumed to be 20 m by 200 m in 

both uptake scenarios227. Instead, the bed depth is varied. The cost reduction for the contactor is 

proportional to the size change of contact unit.  

For initial cost of solvent-based DAC, we used the upper bound cost data from the NASEM 

report, which is $264/tCO2 (capital cost = $151/t CO2, operating cost = $113/t CO2, with a 

capacity of 1 Mt CO2/year)227. To estimate the how these costs will come down, we applied the 

56% decrease to the capital cost of contactor, and we assumed that innovation in other unit 

operations will result in achievement of the lower bound capital costs as described in the 
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NASEM report. So, we developed the theoretical minimum capital cost at $67/t CO2 (44% of 

today’s capital cost). (A capital recovery factor of 12.4% was used annualize the capital costs of 

the system). Then, we adopted a learning rate range (1% to 15%)228 from various existing 

emerging technologies to project the reduction of capital cost. Under 10% learning rate, the 

capital cost approximates to the minimum $67/t CO2 when the learning effect is saturated, so the 

10% is chosen as the reference learning rate for capital costs of solvent-based DAC. 

Furthermore, we adopted a range of learning rate (5%–15%) for the capital cost of solvent-based 

DAC from the literature to reflect uncertainty in the actual learning rate199. Similarly, to adjust 

the operating cost, the fan energy was reduced by 56% and a reduction of 2.4 GJ/tCO2 is applied 

to the thermal energy demand, which give the minimum operating costs at $56/tCO2 (50% of 

today’s operating cost). As for the learning rate, a few previous studies adopted a conservative 

assumption by considering a fixed operating cost (no learning) over time199,228, so here we 

assumed an reference learning rate of 2.5% for the operating cost, with a range varying from 0% 

(no learning) to 5%.  

Sorbent-based DAC uses solid sorbents to uptake CO2 in a batch-wise process. The first area 

for innovation lies within the sorbent itself. Sorbents designed with higher uptake rate and longer 

lifetimes can reduce the amount of sorbent necessary in the DAC contactors. Since the sorbent 

makes up roughly 80% of the system’s capital cost151, this has a huge impact on the process 

economics. The current uptake observed in commercial sorbents is 2.5 mol CO2/kg over 3,000 s 

(3.53 mol CO2/minute∙m3)225,227. Higher capacity sorbents are described to reach an uptake of 3.4 

mol CO2/kg over 12 hours in an aminopolymer-impregnated silica sorbent 229. If future 

innovation can lead to similar uptakes in 3,000 s, this increases the specific uptake to 4.76 mol 

CO2/minute∙m3. Additionally, we assume that the average lifetime will lengthen from 0.5 years 
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to 2 years 227, which reduces the amount of makeup sorbent by four times the original value. The 

joint impact of increased uptake and longer sorbent lifetime results in a sorbent cost decrease of 

roughly 82%, resulting in a 74% decrease in the overall capital costs compared to the middle 

case NASEM report. The cost per unit sorbent is assumed to remain consistent at $50/kg. 

The cost data from scenario 4 – High in the same NASEM represent the cost of sorbent-

based DAC with the plant capacity 1 Mt CO2/year too. After adjusting the capital cost to 

represent an economic lifetime of 10 years and a 11.6% discount rate, the total cost is $386/tCO2 

(capital cost = $364/t CO2, operating cost = $22/t CO2). In this study, life cycle inventory data 

we used for sorbent-DAC is based on plant capacity of 0.1 Mt CO2/year, so we further estimated 

the initial cost of a sorbent-DAC with the capacity of 0.1 Mt CO2/year using the learning curve 

approach. We assumed the plant with the capacity of 4,000t CO2/year to be $900/t CO2 (by 

averaging the costs of 4,000t CO2/year sorbent-based plant from multiple sources228,230), and then 

the cost of a plant with the capacity of 1 Mt CO2/year was assumed to be $386/tCO2. We fitted 

these data into a regression of one factor learning curve equation, and then we estimated the cost 

of a sorbent-DAC with the capacity of 0.1 Mt CO2/year to be $550/tCO2 (capital cost = $518/t 

CO2, operating cost = $32/t CO2), and we use this cost as the initial cost of sorbent-based DAC 

plant (with the capacity of 0.1 Mt CO2/year).  

The aforementioned changes to the sorbent capacity and lifetime coupled to the assumption 

that other process innovations will shift the capital cost from scenario 4 – High to scenario-2 

Low described in the NASEM report result in a reduction of the system’s levelized capital costs 

by 82% ($101/tCO2). For the operating cost, we also shift it from scenario 4 – High to scenario 2 

– Low, resulting in a minimum operating cost of $16/tCO2 (50% of initial operating cost). Using 

similar method for developing the learning rate as described in the solvent-based DAC, we 
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adopted a learning rate range for sorbent-based DAC, which is from 5% to 20%. The higher 

range is chosen is because, compared to solvent-based DAC which is highly integrated and 

large-scale, sorbent-based DAC relies on standardized and modular units, which can be mass-

produced and deployed, and therefore enables fast iteration and learning199. The learning rate 

chosen to best represent the capital costs of sorbent-based DAC is 15% (as the reference learning 

rate), and the uncertainty range was set to be 10%–20%199. For the operating cost, we used the 

same learning rate as the solvent-based DAC, with the reference rate being 2.5% and variation 

range being 0%–5%. 

Here, we also assume that the subsequent CO2 transport and storage facilities will follow the 

same learning rates as the corresponding solvent- and sorbent-based DAC systems. The selected 

learning rates and theoretical minimum costs of both solvent- and sorbent-based DACCS are 

summarized in the Supplementary Table 10. Because the effects of technology learning on 

material and energy use of DACCS are so far missing in the published literature, we assume the 

changes of material and energy consumption are proportional to the changes of the costs of 

DACCS technologies. Therefore, we used these learning rates and their theoretical minimum 

values to estimate the corresponding material and energy uses that are related to these cost 

metrics.   
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Supplementary Table 10. Assumed reference learning rate (and their uncertainty 

ranges), theoretical minimum value of capital and operational costs (also representing 

the material and energy consumption associated to these cost metrics) of DACCS 

technologies. 

Technology type 
Solvent-based 

DACCS 

Sorbent-based 

DACCS 

Learning ratea 
Capital cost 10% (5%–15%) 15% (10%–20%) 

Operational cost 2.5% (0%–5%) 2.5% (0%–5%) 

Theoretical minimum 

values (percentage of 

initial cost) 

Capital cost 44% 18% 

Operational cost 50% 50% 

Note: 
a Numbers in the parenthesis represent the uncertainty ranges 

 

There is no concrete way to imply the learning rate between two points. This approximation 

has DACCS approaching a theoretical minimum cost at different rates. Future innovation is 

unpredictable and, therefore, the actual minimum cost may be different from the estimated 

values.  

 



 

 

Supplementary Table 11. Cumulative DACCS deployment and material and energy use factors of DACCS technologies 

from 2020 to 2100 

Year Cumulative 

DACCS 

deployment 

(Gt/yr)a 

Solvent-based DACCS Sorbent-based DACCS 

Material and energy use 

factor (capital cost)b 

Material and energy use 

factor (operational cost)b 

Material and energy use 

factor (capital cost)b 

Material and energy use 

factor (operational cost)b 

Slow Reference Fast Slow Reference Fast Slow Reference Fast Slow Reference Fast 

2020 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2025 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2030 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2035 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2040 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2045 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2050 0.003 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2055 0.021 0.92 0.86 0.80 1.00 0.97 0.93 0.79 0.70 0.62 1.00 0.97 0.93 

2060 0.069 0.88 0.79 0.71 1.00 0.95 0.89 0.69 0.57 0.48 1.00 0.95 0.90 

2065 0.209 0.85 0.73 0.65 1.00 0.93 0.86 0.61 0.48 0.39 1.00 0.93 0.86 

2070 0.680 0.82 0.69 0.60 1.00 0.91 0.83 0.54 0.41 0.32 1.00 0.91 0.83 

2075 1.758 0.79 0.65 0.57 1.00 0.90 0.81 0.49 0.36 0.28 1.00 0.90 0.81 

2080 3.284 0.77 0.63 0.55 1.00 0.89 0.80 0.46 0.34 0.27 1.00 0.89 0.80 

2085 5.036 0.76 0.62 0.54 1.00 0.88 0.79 0.44 0.32 0.25 1.00 0.88 0.79 

2090 6.906 0.76 0.61 0.53 1.00 0.88 0.78 0.43 0.31 0.25 1.00 0.88 0.78 

2095 8.828 0.75 0.61 0.53 1.00 0.87 0.77 0.42 0.31 0.24 1.00 0.87 0.78 

2100 10.671 0.75 0.60 0.53 1.00 0.87 0.77 0.42 0.30 0.24 1.00 0.87 0.77 
Note:  
a The cumulative DACCS deployment are calculated by dividing the global cumulative DACCS deployment results (IMAGE output under SSP2-RCP1.9 w/ 

DACCS scenario) by half, because we assume solvent- and sorbent-based DACCS contribute the same to the DACCS deployment globally.  
b The material and energy use factors are developed based on cumulative DACCS deployment, learning rates, and theoretical minimum value of capital and 

operational costs (Supplementary Table 10). The material and energy use factors are 1 in the starting year (2020), and then factors of the following year are 

expressed as the ratios relative to those in 2020 as the technology learning starts. By multiplying these material and energy use factors to the actual amount 

of material and energy uses of DACCS systems in 2020, we can get the dynamic material and energy use data of DACCS, which can be used as LCI data to 

evaluate the prospective environmental impacts of DACCS with the consideration of technology learning. The results under the columns named by 

“Reference” were estimated based on the reference learning rates in Supplementary Table 10. The results under columns named by “Slow” and “Fast” were 

estimated based on the lower bound (slow) and upper bound (fast) learning rates, respectively, and that is why the results under “Slow” column 

(representing slow learning) have higher numeric values, while the results under “Fast” column (representing fast learning) have lower numeric values. 

1
3
1

 



132 

 

4. Supplementary Note 4: Technologies map between IMAGE 3.2 and ecoinvent v3.6   

Given the differences of generation technologies between IMAGE and ecoinvent database, 

here we adopted the matching list from a previous study35 to map the available technologies in 

both data sources (Supplementary Table 12). Most of the generation technologies in IMAGE can 

be linked to one or more processes in the ecoinvent 3.6, which provides their LCI data. But there 

are some electricity generation technologies that appears in IMAGE scenarios but are missing in 

ecoinvent databases, so we imported their LCI data from external data sources to extend our the 

ecoinvent database (indicated as foot notes in Supplementary Table 12). 

Supplementary Table 12. Technologies map between IMAGE 3.2 and ecoinvent v3.6   

IMAGE technology Ecoinvent processes 

Solar PV power (central) electricity production, photovoltaic, 570kWp open ground 

installation, multi-Si 

Solar PV power 

(decentral/residential) 

electricity production, photovoltaic, 3kWp facade installation, 

multi-Si, laminated, integrated, 

electricity production, photovoltaic, 3kWp facade installation, 

multi-Si, panel, mounted, 

electricity production, photovoltaic, 3kWp facade installation, 

single-Si, laminated, integrated, 

electricity production, photovoltaic, 3kWp facade installation, 

single-Si, panel, mounted, 

electricity production, photovoltaic, 3kWp flat-roof installation, 

multi-Si, 

electricity production, photovoltaic, 3kWp flat-roof installation, 

single-Si, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, a-Si, laminated, integrated, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, a-Si, panel, mounted, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, CdTe, laminated, integrated, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, CIS, panel, mounted, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, multi-Si, laminated, integrated, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, multi-Si, panel, mounted, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, ribbon-Si, laminated, integrated, 
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electricity production, photovoltaic, 3kWp slanted-roof 

installation, ribbon-Si, panel, mounted, 

electricity production, photovoltaic, 3kWp slanted-roof 

installation, single-Si, laminated, integrated 

Concentrated solar power electricity production, solar thermal parabolic trough, 50 MW,  

electricity production, solar tower power plant, 20 MW 

Onshore wind power electricity production, wind, <1MW turbine, onshore, 

electricity production, wind, 1-3MW turbine, onshore, 

electricity production, wind, >3MW turbine, onshore 

Offshore wind power electricity production, wind, 1-3MW turbine, offshore 

Wave powera electricity production, wave 

Hydro power electricity production, hydro, reservoir, alpine region, 

electricity production, hydro, reservoir, non-alpine region, 

electricity production, hydro, reservoir, tropical region, 

electricity production, hydro, run-of-river 

Other renewables (tidal and 

geothermal power) 

electricity production, deep geothermal 

Nuclear electricity production, nuclear, boiling water reactor, 

electricity production, nuclear, pressure water reactor, heavy 

water moderated, 

electricity production, nuclear, pressure water reactor 

Coal steam turbine electricity production, hard coal, 

electricity production, lignite, 

electricity production, peat, 

electricity production, hard coal, conventional, 

electricity production, hard coal, supercritical 

Oil steam turbine electricity production, oil 

Natural gas open cycle 

turbine 

electricity production, natural gas, conventional power plant 

Biomass steam turbine electricity production, wood, future 

Integrated gasification 

combined cycleb 

Electricity, at power plant/hard coal, IGCC, no CCS/2025,  

Electricity, at power plant/lignite, IGCC, no CCS/2025 

Oil combined cycle electricity production, oil  

(Use copy of Oil steam turbine here as Oil combined cycle does 

not exist in ecoinvent) 

Natural gas combined cycle  electricity production, natural gas, combined cycle power plant 

Biomass combined cycleb Electricity, at BIGCC power plant 450MW, no CCS/2025 

Coal with CCSb Electricity, at power plant/hard coal, pre, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/lignite, pre, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, post, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/lignite, post, pipeline 200km, storage 
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1000m/2025, 

Electricity, at power plant/lignite, oxy, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, oxy, pipeline 200km, 

storage 1000m/2025 

Oil with CCS Electricity, at power plant/hard coal, pre, pipeline 200km, 

storage 1000m/2025,  

Electricity, at power plant/lignite, pre, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, post, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/lignite, post, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/lignite, oxy, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, oxy, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/natural gas, pre, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/natural gas, post, pipeline 200km, 

storage 1000m/2025 

(the LCI data of oil with CCS is not available, so we just use the 

dataset of coal and natural gas with CCS as a proxy) 

Nature gas with CCSb Electricity, at power plant/natural gas, pre, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/natural gas, post, pipeline 200km, 

storage 1000m/2025 

Biomass with CCSb Electricity, at BIGCC power plant 450MW, pre, pipeline 

200km, storage 1000m/2025 

Coal combined heat and 

power (CHP) 

heat and power co-generation, hard coal, 

heat and power co-generation, lignite 

Oil CHP heat and power co-generation, oil 

Nature gas CHP heat and power co-generation, natural gas, combined cycle 

power plant, 400MW electrical, 

heat and power co-generation, natural gas, conventional power 

plant, 100MW electrical, 

heat and power co-generation, natural gas, 500kW electrical, 

lean burn 

Biomass CHP heat and power co-generation, wood chips, 6667 kW, state-of-

the-art 2014, 

heat and power co-generation, wood chips, 6667 kW 
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Coal CHP with CCS Electricity, at power plant/hard coal, pre, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/lignite, pre, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, post, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/lignite, post, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/lignite, oxy, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, oxy, pipeline 200km, 

storage 1000m/2025 

(the LCI data of coal CHP with CCS is not available, so we just 

use the dataset of coal with CCS as a proxy) 

Oil CHP with CCS Electricity, at power plant/hard coal, pre, pipeline 200km, 

storage 1000m/2025,  

Electricity, at power plant/lignite, pre, pipeline 200km, storage 

1000m/2025, 

 Electricity, at power plant/hard coal, post, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/lignite, post, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/lignite, oxy, pipeline 200km, storage 

1000m/2025, 

Electricity, at power plant/hard coal, oxy, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/natural gas, pre, pipeline 200km, 

storage 1000m/2025, 

Electricity, at power plant/natural gas, post, pipeline 200km, 

storage 1000m/2025 

(the LCI data of oil CHP with CCS is not available, so we just 

use the dataset of coal and natural gas with CCS as a proxy as 

a proxy) 

Natural gas CHP with CCS Electricity, at power plant/natural gas, pre, pipeline 200km, 

storage 1000m/2025,  

Electricity, at power plant/natural gas, post, pipeline 200km, 

storage 1000m/2025 

(the LCI data of natural gas CHP with CCS is not available, so 

we just use the dataset of coal and natural gas with CCS as a 

proxy as a proxy) 

Biomass CHP with CCSb Electricity, at wood burning power plant 20 MW, truck 25km, 

post, pipeline 200km, storage 1000m/2025 
Note:  
a LCI of wave electricity generation is collected based on an attenuator-type floating oscillating body system 

wave energy converter with a capacity of 750kW231. The LCI data is also summarized in 

“1_LCI_wave_electricity.xlsx” excel file in “LCI_data” folder. 
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b We adopted the LCI of fossil fuel with CCS that is summarized in a previous study35. The LCI data is also 

summarized in “2_LCI_CCS.xlsx” excel file in “LCI_data” folder.   
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5. Supplementary Note 5: Limitations  

In this study, we modify the background LCI database using IMAGE projections of grid mix, 

generation efficiency and emissions of thermal power plants (fossil-based sources, biomass, and 

nuclear), while the renewable sources and their efficiency levels are based on existing available 

technologies. Technological innovation has been observed for renewable (especially solar232,233 

and wind234) and energy storage235,236 technologies, and they will continue to evolve as they are 

more widely applied in the energy system. Therefore, to better evaluate the prospective 

environmental impacts of energy-intensive technologies, such as DACCS, under specific climate 

contexts, the analysis framework could be expanded to consider the advancement, particularly in 

material efficiency or circularity of VRE and storage technologies in the background electricity 

system.  

Previous studies looking to the technology learning of DACCS have focused on cost 

reductions199,228,237. Publicly available, empirical studies that reveal how material and energy 

inputs change as DACCS scales could not be identified. Given this limited data availability, we 

assume the material and energy inputs of DACCS follow the same learning rates as the 

associated cost projections. In reality, technology learning rates are likely to vary depending on 

processes and physical input types94,238. Future LCA studies aiming to quantify the effects of 

technology learning on environmental impacts might be able to rely on more detailed learning 

data of specific physical inputs. In addition, learning rates of emerging technologies tend to 

change with technology-readiness-levels (TRL)239–241. Prospective analyses of emerging 

technologies ideally reflect this by applying a multi-factor learning curve approach, 

differentiating between the varying learning rates at different TRL. The technologies analyzed 

herein operate at demonstration scale (TRL-7) while we apply a single-factor, constant learning 
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rate, postulating learning-by-doing improvements at commercial scale (TRL-9). The learning 

rate at commercial scale is a research frontier and presently unknown. Yet, at the scale of our 

analysis, a respective differentiation is unlikely to add accuracy or insight. The uncertainty with 

respect to the specific single learning rate at commercial scale is captured by testing how 

different learning rates affect our results. Using a single-factor learning curve approach, we thus 

attribute the cost change and its related material and energy consumption to the cumulative 

installed capacity of DACCS over time, limiting our capability of revealing the correlation 

between technology progress and other factors, such as (prior) R&D expenditure242.  

The life cycle impact assessment step relates emissions and resource use to environmental 

impacts through characterization factors. The framework we adapted here applied global or 

European scale characterization factors. While location-generic characterization factors are 

suitable for global impacts such as climate change impact, they may lead to large uncertainty for 

quantifying non-global impacts, such as acidification243, eutrophication244, and ecotoxicity245, 

which are typically affected by regional meteorological, hydrological, soil conditions and the 

sensitivity of ecosystems to emissions. While country-dependent characterization models and 

factors have been developed for these impact categories, they have not yet been incorporated into 

the LCA framework applied in this study. Further methodological improvements are needed to 

enhance the capability of the existing framework for conducting regional impact assessments.   

This study shows the environmental impacts of DACCS could have different trajectories 

depending on the background energy system, so it is important to keep monitoring those 

environmental metrics or even considering them in the decision-making process. Future research 

could explore the feasibility of incorporating life cycle environmental metrics into IAMs for 

better environmental impact assessment. State-of-the art IAMs typically include some 
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environment-related metrics, such as greenhouse gas emission, land and water use as constraints, 

but they lack many other environmental impact dimensions. For example, metal consumption 

could be an important metric given the increasing penetration of renewable and battery storage in 

the energy system, which are resource intensive. Furthermore, life cycle environmental metrics 

capture the emissions from all life cycle phases (e.g., construction, transport, operation, and end-

of-life, etc.), and IAMs evaluate the interrelationship among different sectors. Therefore, the 

integration of life cycle environmental metrics and IAMs should carefully allocate the emissions 

of different life cycle phases to the corresponding sectors/energy carriers in IAM to avoid double 

counting48.  
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6. Supplementary Note 6: Supplementary results   

 
Supplementary Figure 2. The electricity mix of China under (a) SSP2-baseline, (b) SSP2-

RCP1.9 w/ DACCS, (c) SSP2-RCP1.9 w/o DACCS scenarios and (d) the annual CO2 

emission of from the electricity system under the three scenarios. In electricity mix panels 

(a, b, c), the stacked area represents the market shares of the grid mix. “Solar” includes both 

solar PV and concentrated solar power (CSP). “Oil” combines both oil with and without CCS 

as oil with CCS accounts for less than 1% of the grid mix. Other renewables include wave, 

tidal, and geothermal power. In panel c, the red dash line represents the percent of the annual 

electricity generation consumed by DACCS, which corresponds to the secondary y axis on the 

right of this panel. 
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Supplementary Figure 3. The electricity mix of Russia under (a) SSP2-baseline, (b) SSP2-

RCP1.9 w/ DACCS, (c) SSP2-RCP1.9 w/o DACCS scenarios and (d) the annual CO2 

emission from the electricity system under the three scenarios. In electricity mix panels (a, 

b, c), the stacked area represents the market shares of the grid mix. “Solar” includes both solar 

PV and concentrated solar power (CSP). “Oil” combines both oil with and without CCS as oil 

with CCS accounts for less than 1% of the grid mix. Other renewables include wave, tidal, and 

geothermal power. In panel c, the red dash line represents the percent of the annual electricity 

generation consumed by DACCS, which corresponds to the secondary y axis on the right of 

this panel. 
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Supplementary Figure 4. The electricity mix of Western Europe under (a) SSP2-baseline, 

(b) SSP2-RCP1.9 w/ DACCS, (c) SSP2-RCP1.9 w/o DACCS scenarios and (d) the annual 

CO2 emission from the electricity system under the three scenarios. In electricity mix 

panels (a, b, c), the stacked area represents the market shares of the grid mix. “Solar” includes 

both solar PV and concentrated solar power (CSP). “Oil” combines both oil with and without 

CCS as oil with CCS accounts for less than 1% of the grid mix. Other renewables include 

wave, tidal, and geothermal power. In panel c, the red dash line represents the percent of the 

annual electricity generation consumed by DACCS, which corresponds to the secondary y axis 

on the right of this panel. 
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Supplementary Figure 5. The world electricity mix under (a) SSP2-baseline, (b) SSP2-

RCP1.9 w/ DACCS, (c) SSP2-RCP1.9 w/o DACCS scenarios and (d) the annual CO2 

emission from the electricity system under the three scenarios. In electricity mix panels (a, 

b, c), the stacked area represents the market shares of the grid mix. “Solar” includes both solar 

PV and concentrated solar power (CSP). “Oil” combines both oil with and without CCS as oil 

with CCS accounts for less than 1% of the grid mix. Other renewables include wave, tidal, and 

geothermal power. In panel c, the red dash line represents the percent of the annual electricity 

generation consumed by DACCS, which corresponds to the secondary y axis on the right of 

this panel. 
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Supplementary Figure 6. The contribution of different life cycle stages to the total environmental impact (per 1 t 

atmospheric CO2 captured and sequestered) under SSP2-RCP1.9 w/DAC scenario (US case). Different colors of the stacked 

bar represent different life cycle stages. Each year corresponds to two bars representing the results of no technology learning (“NL”, 

on the left) and with technology learning (“L”, on the right).  
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Supplementary Figure 7. The difference of annual total primary energy consumption of 

fossil fuels (coal, oil and natural gas) in the United States (a), China (b), Russia (c), 

Western Europe (d) and the World as a whole (e) between SSP2-RCP1.9 w/o DACCS 

and SSP2-RCP1.9 w/ DACCS scenarios. The difference is calculated by subtracting the 

primary energy consumption under SSP2-RCP1.9 w/o DACCS scenario from that under 

SSP2-RCP1.9 w/ DACCS scenario. The red dots represent the net difference in each year.  
  



149 

 

 
Supplementary Figure 8. The annual total CO2 sequestration in the United States (a), 

China (b), Russia (c), Western Europe (d) and the World as a whole (e) under SSP2-

RCP1.9 w/o DACCS and SSP2-RCP1.9 w/ DACCS scenarios. There are two stacked bars 

for each year. The left bar (“ND”) represents the results under SSP2-RCP1.9 w/o DACCS 

scenario. The right bar (“D”) represents the results under SSP2-RCP1.9 w/ DACCS scenario. 

Different colors in the stacked bars represent different technologies used to sequester CO2. 

BECCS is bioenergy with carbon capture and storage. DACCS is the direct air carbon capture 

and storage. Other includes carbon capture and storage (CCS) technologies applied in fossil 

fuel power plant, hydrogen, and industry sectors.  
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Supplementary Figure 9. The life cycle environmental impact of 1 kWh US electricity generation from 2020 to 2100 under 

SSP2-Baseline, SSP2-RCP1.9 w/o DACCS and SSP2-RCP1.9 w/ DACCS scenarios. The stacked area represents the contribution 

of different electricity technologies to the total impacts. Impact categories abbreviations: CCI – Climate Change Impact, HTI – Human 

Toxicity Impact, FEI – Freshwater Eutrophication Impact, FTI – Freshwater Ecotoxicity Impact, TAI – Terrestrial Acidification 

Impact, TTI – Terrestrial ecotoxicity Impact, MD – Metal depletion, WD – Water depletion. 
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V. Summary 

The dissertation evaluated the economic and environmental implications of decarbonization 

actions in the energy system, including energy-efficient transition of lighting technologies, 

decarbonization of electric power sector, and DACCS. To achieve these research objectives, I 

linked TEA, LCA, and material flow analysis with scenario analysis and/or system modeling 

approaches. These methodology integration makes it possible to capture the effects of system 

interaction and evolution on the performance of decarbonization actions.  

In Chapter II, I studied the uses and recycling of critical REOs in the transition to energy-efficient 

lighting technologies (e.g., fluorescent and LED lightbulbs). The demand for REOs in the 

lighting sector shows a rapid increase after 1990 and peaked at around 2014 (with 9,000t/yr REO 

at a medium LED penetration scenario) driven by the global adoption of fluorescent lightbulbs, 

but this increasing trend decreases after the peak as more efficient LED lightbulbs (that requires 

significant less REO consumption than fluorescent lightbulbs) penetrated the market and 

replaced fluorescent lightbulbs. The REO recycling from end-of-life lighting technologies are not 

economically feasible under 2018 REO prices, even though economy of scale can reduce 

recycling cost from $7,223/t to $2,496/t (2014 US$) as plant capacity increases from 100 t/yr to 

1,500 t/yr, highlighting the improvement of REO recycling rate may need higher REO prices or 

commensurate policy interventions. 

In Chapter III, I quantified the total system cost of the U.S. electric power system under different 

scenarios based on the capacity expansion and dispatch outputs from a regionally resolved 

electricity system optimization model. I found pursuing zero CO2 emission by replacing fossil 

fuel with renewable and other low-carbon energy sources would incur $335–$494 billion 
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additional cost (5% discount rate and 2020 US$, equivalent to 0.46–0.68 cent/kWh) to the U.S. 

electricity system during 2020–2050, with regional costs ranging 0.20–1.20 cent/kWh. 

Additionally, the marginal cost of CO2 abatement increases to as high as $122/t CO2 for reaching 

100% CO2 reduction by 2050, which is higher than the cost lower bounds of BECCS ($52/t CO2) 

and DACCS ($114/t CO2), indicating their potential opportunity to decarbonize the last few 

percent of CO2 emission from the U.S. electricity system.  

In Chapter IV, I evaluated the prospective environmental performance of DACCS. I found 

decarbonizing the electricity sector improves the sequestration efficiency but increases the 

terrestrial ecotoxicity (by 33% to 80% depending on technology and heat sources) and metal 

depletion (by 40% to 73%) levels per tonne of CO2 sequestered from 2020 to 2100. These 

increases can be reduced by improving the material and energy use efficiencies of DACCS as it 

scales up. DACCS exhibits regional environmental impact variations, highlighting the 

importance of smart siting by considering concerning environmental metrics. DACCS 

deployment aids the achievement of long-term climate targets, its environmental and climate 

performance however depend on sectoral mitigation actions, and thus DACCS deployment 

should not suggest a relaxation of sectoral decarbonization targets. 

This dissertation provides robust and reliable insights for the low-carbon transition of energy 

system by evaluating the economic and environmental performances of decarbonization actions 

in dynamic system contexts. Decarbonization actions in the energy system could lead to 

economic and environmental trade-offs which should be carefully studied and considered in 

policy decisions. Future studies and policies may also rely on multi-criterion decision analysis to 

decide how to implement a variaty of decarbonization actions in energy system based on the 

optimization of different sustainability dimensions.   
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