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ABSTRACT OF THE DISSERTATION

Rotten Banks: Predicting Bank Failures After Great Recession through Binary

Classification

by

Maxim Ananyev

Master of Science in Statistics

University of California, Los Angeles, 2018

Professor Chad J. Hazlett, Chair

I investigate the determinants of bank failures after the financial crisis of the

years 2007 - 2009 to build a predictive model of bank failures.

I use two paradigms for prediction: accuracy-maximization and Neyman-

Pearson paradigm. Accuracy-maximization implies that Type I errors and Type

II errors are equally costly, thus out-of-sample predictive accuracy is the most

important parameter for evaluation. Neyman-Pearson paradigm implies setting

an upper bound for Type I errors and minimizing Type II errors within that

bound. In this case, the costs associated with Type I and Type II errors can be

different.

I find that, because the bank failures are rare events, many of the accuracy-

maximizing classifiers tend to assign all the observations to the class of non-failing

banks. This achieves out-of-sample predictive accuracy of 96 percent, but misses

all the failures.Two algorithms, post-Lasso logit and random forest tend to have

relatively low level of Type II errors.

The classification with the Neyman-Pearson paradigm performs better in

terms of minimizing Type II errors while containing Type I errors. All of the

algorithms, in out-of-sample testing, were able to identify at least 50 percent of
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the failing banks, while having false positive rate below ten percent. The mini-

mum share of Type II errors were displayed by Ada-Boost algorithm (24 percent),

while GLM with LASSO penalty and sparse LDA did not perform much worse

(the level of Type II errors were 27 percent).

My analysis produces additional substantive insights. I find that low prof-

itability and high proportion of impaired loans are the most important factors

for bank failures.
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CHAPTER 1

Introduction

Financial institutions play many important roles in the economy: they manage

savings, fund entrepreneurial projects, provide mortgages and consumer credit,

support the system of payments, and diversify risk through financial innovation

thus contributing to economic growth (King and Levine (1993), Rajan and Zin-

gales (1998), Bekaert et al. (2005)). When the financial industry works well,

it brings a lot of benefits to the society. Unfortunately, when financial industry

does not work well, every sector of the economy suffers. As was exemplified in

the financial crisis of 2007-08, according to one of the common explanations, just

a handful of banks overexposed to a default risk of the securities in their portfolio

(as a result of a search for higher returns when monetary policy keeps interest

rates low) can trigger a sudden dry up of liquidity leading to a chain reaction of

a self-enforcing financial panic that inflicts lasting damage on the economy (see

Campello et al. (2010), Helleiner (2011), Berger and Bouwman (2013), Bernanke

(2013) and Gorton and Ordonez (2014) among many others on this topic).

This danger is exacerbated by the difficulties in the accurate valuation of the

assets on balance sheets of banks. Two most common approaches to valuation

– mark-to-market and historical cost can be misleading. Mark-to-market (or

fair value) approach implies that a value of an asset equals its market price.

This approach can be unreliable because the market price is volatile, so that

a mark-to-market values can change rapidly thus providing little insight to the

economic situation of the bank (Bernard et al. (1995), Allen and Carletti (2008),

and Heaton et al. (2010) are among the authoritative discussions of this issue).

Another issue is that for many securities originated on the thin markets, market
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price might not be available. Their valuation according to fair value principles

requires strong assumptions.

Historical-cost valuations may not be as volatile, but they are often not rele-

vant for the current economic conditions. For example, if a rating agency down-

grades certain asset-backed securities (as happened during 2007-08 financial cri-

sis), this change reflects on their market price, but not on their historical-cost

valuations, and a balance sheet of an institution that carries those securities

would appear healthier than it should be (Ellul et al. (2015) has a discussion

of this and other issues related to historical-cost accounting). This problem is

especially acute given that prudential regulation - for example, requiring banks

to have a certain fraction of its assets in cash or highly liquid securities has not

been successful in reducing the risks of bank failures (Calomiris and Jaremski

(2016)).

Overexposure to default risks and incorrect valuation of assets do not exhaust

a list of potential problems a financial institution might suffer from. Many banks,

especially in the developing nations, often engage in activities that are different

from those allowed by the regulators. Such activities often involve moving cash

from their host jurisdiction to another, usually more secretive, jurisdiction. In the

extreme form, this activity amounts to money laundering (Reuter (2004)). The

banks who engage in such transactions are dangerous for the economy because

they facilitate illegal transfer of assets, tax avoidance, and, potentially, corruption

and organized crime. Detecting insolvent and outright fraudulent financial insti-

tutions is important for the regulators and investors because of a grave danger

such institutions can pose to the society.

In this project, I attempt to build a predictive model of bank failure using

financial statements from banks. I use a proprietary dataset to collect financial

statements from the sample of US banks on their performance in the year 2008.

I then collect information from the U.S. Federal Deposit Insurance Corporation

about which banks failed after the year 2008. I use not only the items from the

financial statements themselves, but also various performance ratios common in
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the economics and finance literature.

With those features, I deploy a set of classification algorithms, including post-

LASSO logistic regression, Support Vector Machine Classification, and Random

Forest to build a predictive model of bank failures. I evaluate predictive accuracy

of those models and predictive accuracy of an algorithm based on stacking of the

previous models. I find that Neyman-Pearson paradigm of classification that

minimizes Type II error rate while enforcing an upper bound for Type I errors

delivers promising results by being able to predict around 70 percent of actual

failures while also being able to hold false alarms below 10 percent.

In this context, two aspects of this exercise might be useful. First, predictive

accuracy of the models (y-hat problem) and other characteristics of the classifier

(like Type 1 error, Type 2 error, false discovery rate, and others). This informa-

tion enables creating an early warning systems of bank failures that might be of

practical importance. Second, the marginal contributions of each of the factors

into the probability of failure (beta problem) is also of theoretical interest.

Predicting corporate bankruptcy is an important topic within the literature

on management and expert systems (Zmijewski (1984), Lau (1987), Altman et

al. (1994) are among the earlier studies that influenced the ever-growing field

since then. Sun et al. (2014) provides a review) Unlike those studies, this project

focuses solely on banks, since banks have different business model and different

accounting standards. For example, the size of the cashflow have different eco-

nomic interpretation for financial and non-financial firms. Financial firms also

have an additional set of items they need to report that can improve the quality

of the prediction.

Another important strand of literature is a literature on earnings management

(Jones (1991), Dechow et al. (1995), Burgstahler and Dichev (1997), Durnev and

Guriev (2007)). This literature develops a set of indicators that allow detecting

if the management of a firm is systematically using accounting rules to change

the amount or reported earnings. The simplest of such indicators is a difference

between earnings and cashflow. Earnings should be recorded when a service is
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performed (or a merchandise is shipped), but cashflow should be recorded when

the cash changes hands. Depending on the nature of the business, the difference

between earnings and a cashflow can be innocuous, but it might also mean that

the management is ether over-reporting or under-reporting the profits of a firm.

In sum, this thesis attempts to build a system of early warning of bank fail-

ure, using advances predictive modeling and finance. One of the contributions of

this work is that, unlike some of the previous work on financial expert systems,

my main dependent variable is not a measure of financial troubles extracted from

the financial reports (that can be manipulated by banks themselves) but indepen-

dently recorded event of bank failure. I view my contributions as complementary

to the earlier work on financial statistical expert systems.

My findings can potentially be used by regulators to detect problems in the

banking system, investors to decide where to allocate their funds, CEOs and

directors of banks to assess the quality of the bank’s management, auditors to

use as one of the indicators for the soundness of financial reporting of firms, and

social scientists to use as a dependent or independent variable in their studies.

This thesis proceeds as follows. Chapter 2 discusses the sources of data and

presents some descriptive statistics. Chapter 3 presents and discusses additional

features (performance ratios) that I am using as covariates. Chapter 4 presents

and evaluates predictive models for bank failures that use flexible data-driven

algorithms. Chapter 5 concludes.
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CHAPTER 2

Data and Descriptive Statistics

The data come from two sources. I use harmonized financial statements of banks

from database Orbis compiled by Bureau van Dijk. This is a firm-level proprietary

database that contains a set of items extracted from the regulatory filings of firms

and other sources. I download all the items from firms that have NACE code

6418 (“financial institutions – other financial intermediation”) that have industry

category “Banks” and that are registered in the United States. This search

categories yield a representative sample of the US retail banks. The information

available in the database includes balance sheet items (such as total assets, total

liabilities, loans, deposits etc.) and the items from income statement (net income,

costs, taxes etc.).

Unfortunately, not all banks have all the financial information – in fact, many

banks do not have any. After removing the banks for which the majority of items

contain missing data, I end up with 6614 banks in my dataset. Then I remove

variables that have mising values for more than 10 percent of the remaining

observations. This leads to exclusion of five variables. Then I remove all the

observations with missing data, and I end up with 6471 observations. Alternative

approach for dealing with missing data would be to impute the missing values

that would preserve variance-covariance structure of the missing data. I leave the

inference based on multiple imputations for further research.

The second source of data is Federal Deposit Insurance Corporation (FDIC).

FDIC is a governmental agency that oversees retail banks and processes the events

of bank failures. Once management of a distressed bank realizes that the bank

cannot meet its liabilities, a request should be filed within FDIC. The banks
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very rarely undergo a formal bankruptcy procedure which is required for other

firms (filing Chapter 10 or Chapter 11). Usually, FDIC steps in to guarantee

the deposits and facilitate finding another bank, which, with the help of the

government, assumes the liabilities of a distressed bank. This event is categorized

as “bank failure” by FDIC. FDIC maintains a list of all bank failures. For these

events, they record a name of the distressed bank, a name of the acquiring bank

and the date. For years 2009 - 2018, FDIC records 503 failure events. Figure 2.1

shows the number of bank failures per year. The purpose my predictive models

is to predict and provide some qualitative insights into those failures using only

financial data from the year 2008.

Figure 2.1: Bank Failures per Year
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Note: Bank failures per year. The data come from FDIC.

To construct my data set, I merge financial data from Orbis with the failure

events data from FDIC. I end up with 6473 observations. Out of those obser-

vations, 203 observations are the banks that eventually failed. The goal of this

analysis is to estimate an array of flexible models that allow predicting the even-
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tual bank failure from the 2008 financial data.

Table 2.1 shows the descriptive statistics of the financial data of the full

sample for a set of substantively important covariates. I show net income, total

assets, return on assets (a measure of profitability), share of equity to assets (a

standardized size of equity). It also shows to important characteristics of the

vulnerability to liquidity crisis: impaired loans to equity ratio, and liquid assets

to borrowed funds ratio.

Table 2.1: Descriptive Statistics

Variable Mean Median SD

1 Net Income, th USD 2579.85 767.00 205207.80

2 Total Assets, th USD 1710338.27 142804.00 33797991.92

3 ROA 0.45 0.86 2.02

4 Equity/Assets 11.14 9.88 5.03

5 Impaired Loans/Equity 14.80 7.46 27.23

6 Liquid/Borr 9.70 6.59 10.64

Note: Source: Orbis Bureaus Van Dijk database and author’s calculations. ROA

is return on assets. Liquid/ Borr is a ratio of liquid assets to borrowed funds.

All statistics are calculated using the full sample. Impaired Loans/Equity is a

ratio of impaired loans to equity. See Chapter 3 for detailed discussion various

performance ratios used in the analysis.

Impaired loans to equity is a commonly used measure of asset quality. Ac-

cording to the US regulations, a loan becomes impaired when a borrower fails to

make a payment. Impaired Loans to Equity ratio is an intuitive measure of the

size of “bad” loans in the bank’s portfolio. Ratio of liquid assets to borrowed

funds is a measure of the bank’s resilience to possible liquidity crises. Liquid

assets are the assets that could be sold immediately at a market price (usually,

those assets are stocks, bonds, derivatives and other financial instruments). As-

sets that are not liquid are usually land, real estate, inventory, art, rare wines

etc.
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As one can see from the table, there is a significant variation in the values of

those measures. For example, the standard deviation of liquid assets to borrowed

funds ratio is around the same size as the mean. For impaired loans to equity

ratio, the standard deviation is almost twice as large as the mean. This suggest

a huge variation in the vulnerability to liquidity crises among the banks in my

sample. Also, for all the measures except equity to assets ratio the median is

smaller than the mean, so the data exhibit large right tails. This presents a

problem for the feature engineering, especially for the linear model, since the

least-squares loss function is vulnerable to the outliers. I discuss this problem

and suggest a solution in Chapter 3.

After preparing the data set, I randomly divide it into test set and training

set. Test set constitutes the 20 percent of the original data set: 1294 observations

with 49 of them being banks that eventually failed. The rest of the data set is in

the training set. Just by looking at the training data, we can see that the there

are important differences in the distribution of the values of the ratios between

the banks that failed and the banks that have not yet failed.

Figure 2.2 shows the some of those features plotted for the banks that have

failed afterwards and banks that have not failed. We see that the banks that are

to fail have, on average, less assets, smaller income, smaller return on assets, and

smaller ratio of liquid assets to borrowed funds. I consider all these covariates

(as well as many others) in developing predictive models for bank failures.
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Figure 2.2: Some Potentially Predictive Features
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Note: Panels A to D show point estimates and 95-percent confidence intervals

for the various characteristics of banks that have failed afterwards and not failed.

Only training data were used for these estimates.

9



CHAPTER 3

Feature Engineering

As has been noted previously, the values of the items in the banks’ financial

reports might be insufficient for assessing the vulnerability of the bank and its

financial conditions. It is the ratios between those variables that are often viewed

as important determinants of survival probabilities of banks. This section briefly

reviews the ratios that are calculated from the various items of the banks’ balance

sheets and income statements.

1. Solvency Ratio. Solvency Ratio is an after-tax net income divided by the

total liabilities. Also known as “acid-test ratio”, the solvency ratio quan-

tifies the ability of a bank to pay its debts. The higher is the ratio the

better. Usually, the ratio less than 20 percent can be a cause for concern1.

The solvency ratio is a crude way to asses the solvency that has two main

drawbacks. The first disadvantage is that the denominator does not dis-

tinguish between long-term liabilities and short-term liabilities. Of course,

the higher is the share of the short-term liabilities the more problematic is

the situation of the bank. The second reason is equilibrium effects: other

financial institution may see that the bank is in trouble and refuse to pro-

vide funding for the bank. The depositors might also sense trouble and

start withdrawing their deposits. These processes that happen because the

bank is perceived to be in trouble decrease the denominator thus increas-

ing the solvency ratio. In this case, paradoxically, the bank would appear

more “healthy” than it is. Despite these problems, solvency ratio is often

1Often, in solvency ratio the enumerator includes not the net income, but a sum of net
income and depreciation, but because the depreciation values are not available (and are usually
trivially small for the financial firms anyway), the depreciation is not included in the definition
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considered to be an important indicator for assessing the bank’s financial

situation.

Figure 3.1: Solvency Ratio Histogram
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Note: Solvency ratio of the the banks that have failed (shown in red) and the

banks that have not failed (in blue).

Figure 3.1 shows the the distribution of the solvency ratios for the banks

that have not failed (in red) and the banks that have failed (in green). One

could see the the failed banks occupy the very left tail of the distribution,

suggesting that solvency ratio can indeed be predictive of bank failure. One

can also notice that for the same level of solvency ratio, some banks do fail

and some do not, suggesting that a significant proportion of the variation

in probability of failure can not be explained by solvency ratio.

2. Cost to Income Ratio. Cost to income ratio is a popular measure of effi-

ciency of a bank. It is calculated as operating income divided by operating

expenses. Usually, the smaller value of this ratio indicates a more efficient

bank. Importantly, neither assets nor liabilities influence this ratio directly.

Assets only influence the cost to income ratio through the income from in-

terest payments on a loans that the bank gave out, and liabilities influence
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the ratio only through the payments that the bank has to make to meets

its obligations. This is a useful ratio, but because it does not consider any

balance sheet variables, it should only be used with the other ratios.

Figure 3.2: Cost to Income Ratio Histogram
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Table 3.2 shows the distributions of the cost to income ratio among the

banks in my training set. First, we see a huge variation: cost to income

ratio can be as low as -500 and as large 500. Secondly, unlike with the

solvency ratio, there is no discernible pattern in where the failed banks are

located.

3. Loan Loss Provisions to Net Income. Loan Loss Provisions is money

that the bank reserves to cover for bad loans. If the person or an orga-

nization that borrowed money from the bank defaults on its loan, then in

many cases the bank has to cover for than loan (if for example, this loan

has been used as a collateral in the bank’s own borrowing). This ratio can

be interpreted in different ways. One interpretation is that if this ratio is

higher, then the bank is more conservative in its projections, and thus is less

12



vulnerable to the liquidity shocks. Another interpretation is that the bank

with the higher loss provisions to net income ratio has given out more bad

loans and is likely to experience more defaults of its borrowers in the future.

Like the previous performance ratios, this ratio has to be interpreted with

caution.

Figure 3.3: Loss Provision to Net Income Histogram
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Note: Loan loss provision to net income ratio of the the banks that have failed

(shown in red) and the banks that have not failed (in blue).

Figure 3.3 shows the distribution of this ratio in my training sample. We

find, first, that there is a lot of extreme variation in this ratio. Secondly,

non-failing banks tend to have smaller loss provisions to income ratio, sug-

gesting the the second interpretation might be correct: higher amount of

loss provisions indicates higher amount of bad loans and not necessarily

more conservative projections regarding the repayment.

4. Ratio of Liquid Assets to Borrowed Funds Liquid assets are cash

and financial instruments that can be sold for cash fast and with small

transactions costs (usually, stocks, bonds, and derivatives). Borrowed funds

are deposits and loans. This ratio is a way to measure banks’ resilience to
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liquidity crises. For example, if a proportion of the bank’s clients decide to

withdraw the deposits, higher amount of liquid assets would help the bank

to cover for those deposits and continue to operate.

Figure 3.4: Liquid Assets to Borrowed Funds
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(shown in red) and the banks that have not failed (in blue).

Figure 3.4 shows the distribution of this measure in my training sample.

We observe that the banks that eventually failed had had smaller ratio of

liquid assets to borrowed funds. This is consistent with the view that this

measure might be predictive of bank failures.

5. Non-operating Income to Net Income. Banks are supposed to take

deposits from the public and provide loans to businesses and households.

This means that for a well-run retail bank, the major source of income

should be interest payments on the loans it gives. All other sources of

income – dividends, liquidation of collateral, income from buying and selling

securities – should constitute a minor proportion of total income. If it

constitutes a large proportion of net income, then it might indicate that

the bank is engaging in businesses which not typical for a bank. This is
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often considered a bad sign.

Figure 3.5 shows the distributions of this ratio. We do see that non-failed

banks alike the most common value is close to zero, and for non-failed banks

deviations to the right from zero are more likely.

Figure 3.5: Non-Operating Income to Net Income
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Note: Ratio of non-operating income to net income of the the banks that have

failed (shown in red) and the banks that have not failed (in blue).

6. Gross Reserves to Loans Ratio This ratio, as the name suggests, shows

the amount of reserves that the bank has as proportion to loans the bank

has given. Usually, the bank is considered more resilient to shocks if this

number is high. But, alternatively, it may indicate that the management is

afraid that the loans in the bank’s portfolio would become impaired.

Figure 3.6 shows the distribution of this ratio. Failed banks do indeed

have more observations in the right side of the distribution, suggesting that

higher level of gross reserves as proportion of loans might be positively

related to the probability of future failure. However, non-failed banks have

more extreme values.
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Figure 3.6: Ratio of Gross Reserves to Loans
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Note: Ratio of gross reserves loans of the the banks that have failed (shown in

red) and the banks that have not failed (in blue).

I also use several different versions of these ratios, ending up with 58 pre-

dictors. In the next section, I use several flexible data-driven specifications to

formulate the predictive models and evaluate their performance out-of-sample.
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CHAPTER 4

Predictive Models

This section presents a series of predictive models I use to predict the episodes

of bank failures. It should be noted that my goal here it twofold: first, I aim at

predictive accuracy so that those models could be used by regulatory agencies,

policy makers, and the banks themselves to evaluate the risk of failure. I am also

interested in building interpretable models.

4.1 Logistic Regression with Stepwise Forward Selection

The first model I consider is a logistic regression where the covariates are selected

using stepwise forward procedure. The procedure is the following:

1. Start with null model that contains only an intercept and does not contain

any predictors.

2. Fit K logistic regressions (where K is a total number of predictors in the

data) adding to the previous model just one of the predictors. Select into

the model a predictor that results in a model with the largest AIC value.

3. Repeat Step 2 until the maximum value of AIC in all the models considered

under this rule is reached.

I estimate this procedure using the package MASS in R. As a result, out of

58 initial predictors, 41 are selected into the resulting model (the list of those is

reproduced in Chapter 5).

Table 4.1 shows the confusion matrix from the application of the classifier

to the test data. The accuracy is rather high – 96 percent. However, this high
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accuracy is achieved by classifying almost all of the observations into the most

prevalent class, non-failing banks. In the test data, 49 banks belong to the class

of failing banks, but only three cases has been classified as such in such by the

classifier.

Table 4.1: Confusion Matrix for Stepwise Logistic Classifier

Actual Failure Actual Non-Failure

Predicted. Failure 0.002 0

Predicted Non-Failure 0.035 0.96

Note: Confusion matrix is calculated by classifying predicted probabilities larger

of equal to 0.5 as failures, other as non-failures.

Table 4.2 presents separately Type I and Type II error rate on the test data

for this classifier. We see that the rate of false alarms is zero, but the rate of

missed failures is very high. Because bank failures are rare events, just classifying

almost all of the observations into a non-rare class can produce high out-of-sample

accuracy. In the contest on bank failures, however, the cost of Type II error is

high, since when the regulators miss bank failures, this can lead to cascading

adverse effects in the economy. Thus, a classifier that miss most of the adverse

events can hardly be adequate.

Table 4.2: Error Rates for Stepwise Logistic Classifier

Rate

Type I (False Alarm) 0

Type II (Missed Failure) 0.939

Note: Out-of sample error rates are calculated by classifying predicted proba-

bilities larger of equal to 0.5 as failures, other as non-failures.

4.2 Logistic Regression after Selection via LASSO

The second model I consider belongs to a class of post-selection models described

by Efron and Hastie (2016, pp. 394-417). The basic idea of such algorithms is to
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break down the selection into two steps: the first step uses some principled way

to select a model from a certain class of models (in this section, I consider a class

of linear sparse models), and the second step estimates the model and generates

predictions.

Here, I appply the following algorithm:

1. Select the variable for logistic regression via LASSO.

2. Estimate logistic regression with an indicator for bank failure the outcome

and the variables selected by LASSO on the previous step as predictors.

This procedure has been argued to have an advantage over just estimating

logit with l1 penalty, since, in general the coefficient estimates from l1-penalized

regression will be biased (Belloni et al. (2012); Belloni, Chernozhukov, and

Hansen (2014)). Breaking up the estimation procedure into two two steps can

have a debiasing effect.

Post-selection inference in general has been discussed by Berk et al.(2013)

with more specific approaches for high-dimensional models being presented by

Van de Geer et al.(2014), Zhang and Zhang (2014), Javanmard and Montanari

(2014). Belloni et al. (2012) derive rate of convergence for post-Lasso inference

for linear models and apply post-Lasso inference to the study of the effect of

eminent domain on land prices. Bryzgalova (2016) develops a version of post-

Lasso inference to study risk factors in a cross-section of stock returns.

I assume the following data-generating process:

faili ∼ Bernoulli(pi) (4.1)

Here, faili equals 1 if bank i eventually failed, and 0 otherwise; pi is an (unob-

served) probability of failure. This probability is given by an inverse logit link

function:

pi = logit−1(β0 + xTi β) (4.2)
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Here, xi is a vector of covariates of bank i. I also make the assumption of sparsity:

K∑
j=1

1(βj 6= 0)� n (4.3)

Here, K is a number of possible predictors (I have 58 in my dataset, not counting

higher-order polynomial terms and possible interactions). n is the number of

observations. Intuitively, as in LASSO framework, this assumption postulates

that the number of non-zero coefficients in a true data-generating process is very

small.

This assumption in general is useful in situations when K � n. In my setup,

K is smaller than number of observations in the training data. I still find this

assumptions useful because, be selecting only a subset of observations, I might

get better qualitative insights into the process of bank failure and develop an

interpretable model.

Equations 4.1 - 4.3 define the data-generating process. I estimate the vector

of β using the two-step procedure I have outlined above: selecting a vector of

non-zero β’s using LASSO and then fitting a non-penalized GLM.

LASSO, as described by Tibshirani (1996), estimate β’s by minimizing the

least-squares cost function with l1 penalty:

L(β) =
1

n

n∑
i=1

(yi − β0 − xTi β) + λ||β||1 (4.4)

Here, λ is a hyperparameter that describes the magnitude of the penalty.

This setup has an inconsistency: equation 4.4 implicitly treats the variable

yi, an outcome in the model as continuous, however in my case it is an indicator

for bank failure (a binary variable). One might argue that Equations 4.1 - 4.3

and Equation 4.4 imply different data-generating processes. This concern is valid.

However, because, as described above, I have unbalanced data (5023 observations

in the training set, 154 of them failures), the logit with l1 penalty (as implemented

in package glmnet in R), fails to converge in the cross-validation stage – most

likely, because the constant β0 can be estimated is -Infiity1 For this reason, I

1Asymptotically, with unbalanced data, the estimates of constant in a logistical regression
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use ordinary LASSO (with normal family) as a device for variable selection. As

I discuss later, this algorithm would have some desirable properties.

For LASSO, I select the penalty parameter (λ) via cross-validation and choose

the value of λ which is one standard deviation larger than the value of λ that

minimizes cross-validation MSE.

Also, as has been shown previously, as almost all values of in my data-set

have long right tails, a Box-Cox transformation might be appropriate. I apply

cubic-root transformation to all the variables.

After these transformation, I estimate LASSO with glmnet package in R

(Friedman, Hastie, and Tibshirani (2010)).

Out of 58 variables 2, the following ones are selected by LASSO: net income,

return on equity, impaired loans, gross reserves to loans, loss provisions to net

income, impaired loans to equity.

Substantively, it turns out that, intuitively, what seems to matter for the

survival of a bank is its profitability (measured in several ways) and amount of

“bad” loans on its balance sheet (also measured in several ways). Some factors

that are expected to matter turn out to have no predictive power. Those factors

are amount of assets on the balance sheets, structure of those assets, and structure

of income (interest income, dividends, etc.). The amount of assets only matters

in relation to the amount of impaired loans.

As a next step, I estimate logistical regression with these covariates. Table 4.3

presents the result of the estimation. All the variables are standardized, so the

coefficients can be compared. In terms of magnitude and the size of the p-value,

the most important variable is the ratio of impaired loans to equity. Given the

base rate of failure of 5 percent, a logistic coefficient of 1 corresponds (in the

training data) to the change in predicted probability of 4.8 percentage points for

the one standard deviations of impaired loans to equity ratio.

approach infinity (Owen (2007)).

2In a separate estimation, I also included polynomial expansion of all the variable, up to
5th degree. None of the higher-degree variables ended up being selected.
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Table 4.3: Logistical Regression after LASSO Selection

Model 1

Net Income −0.59∗

(0.24)

Return on Equity −0.09

(0.26)

Impaired Loans 0.40∗∗

(0.13)

Gross Reserves to Loans −0.11

(0.12)

Loss Provisions to Net Income 0.61∗∗

(0.20)

Impaired Loans to Equity 1.04∗∗∗

(0.21)

Num. obs. 5177

Note: Logistic regression with the bank failure is dependent variable. Intercept

is not shown. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Figure 4.1 shows the change in predicted probabilities for training data, when

the (standardized) impaired loans to equity ratio goes up.

Figure 4.1: Effects of Impaired Loans to Equity Ratio
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Note: Marginal effects of impaired loans to equity ratio on predicted probability

of bank failure. Results from the logistic regression model.

These results indicate that, at least in the training data, the post-LASSO

logit approach was able to identify a set of variable that are strongly related.

In the test data, the classifier based on post-LASSO logistical fit is also able

to distinguish future failures from non-failures.

If we classify observations, where the predicted probability is larger than or

equal to 0.5 as failures, and all other observations as non-failures, then we gen

the following confusion matrix (Table 4.4 ).

Table 4.5 separately presents the Type 1 and Type 2 error rates for this

classifier calculated on the test data.

The misclassification rate in the test data is 0.083. Since in the test data

only 3.7 percent of cases are actual failures this classifier performs worse than

23



Figure 4.2: ROC curve for Post-LASSO Logistic Classifier

Note: ROC curve for test data from the post-LASSO logistic classifier. Area

under the curve: 0.89

a benchmark that classifies all the cases as non-failures without looking at co-

variates. However, arguably, the benchmark classifier is useless since missing a

possible failure in the context of financial regulation is much more costly than

the false alarm. Since the non-failure benchmark always misses all the failures,

and the post-LASSO logit classifier correctly predicts 73 percent of the failure

and has a reasonable rate of false alarms, the predictive model developed in this

section is arguably more useful for the practical purposes than the non-failure

benchmark.

4.3 Random Forest

Tree-based methods allow predictors to have a complicated structure of inter-

actions. Because it is reasonable to expect that in the case of predicting bank

failures the covariates might interact with one another in a way that is hard to

evaluate ex-ante, I use tree-based methods for prediction.
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Table 4.4: Confusion Matrix for Post-Lasso Logistic Classifier

Actual Failure Actual Non-Failure

Predicted. Failure 0.027 0.073

Predicted Non-Failure 0.01 0.89

Note: Confusion matrix is calculated by classifying predicted probabilities larger

of equal to 0.5 as failures, other as non-failures.

Table 4.5: Error Rates for Post-Lasso Logistic Classifier

Rate

Type I (False Alarm) 0.076

Type II (Missed Failure) 0.27

Note: Out-of sample error rates are calculated by classifying predicted proba-

bilities larger of equal to 0.5 as failures, other as non-failures.

A classification and regression tree (CART) for predicting an outcome y is

an algorithm that uses recursive partitioning of the training data to achieve pre-

diction (Efron and Hastie (2016, p. 124)). At each step of the partitioning, a

variables X (or a set of variables) is selected for which the split is performed and,

for every variable, a value (m) is selected such that all the observations in current

partition are split further into two groups, such that for one group a value of X

is weakly larger than m and for another group the value of X is smaller than

m. At each stem, X and m is selected to maximize the difference between the

two groups regarding the outcome y (see Breiman (1996) and Efron and Hastie

(2016, pp 126-127) for an overview of partitioning rules).

Random Forest builds on the CART approach by building many random trees

using bootstrapped samples of the observations and the variables and the aggre-

gating the resulting partitions. In this section, I attempt to build a predictive

model of bank failures using a Random Forest approach (as implemented in R

package randomForest (Liaw and Wiener (2002))).

To substantively evaluate the possible structure of interaction, it might be
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instructive to start with a simple conditional inference tree (Hothorn, Konik,

and Zejleis (2006)). This method uses recursive partitioning to build a decision

tree for classification.

Figure 4.3: Tree-Based Classifier for Predicting Bank Failures
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Note: Decision tree for classifying the banks into failures and non-failures on

training data. Definition of the variables: impairedloanstoequity is a ratio of

impaired loans to equity, roepl is return on equity, netincome is net income. The

tree is produced using R package party

Figure 4.3 shows a decision tree constructed with the variables selected using

LASSO3.One can see that even with the small number of variables selected by

LASSO, the process might indeed depend on the interactions between variable.

For example, the largest share of bank failures is observed among the banks with

3In a Random Forest procedure, I will be using all the variables
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high ratio of impaired loans to equity and relatively low levels of net income. To

take advantage of such interactions for the predictions, one might find tree-based

methods useful.

I fit a Random Forest algorithm using all the covariates in my data set as

predictors and choosing the hyperparameters with 10-fold cross-validation 4.

I use the fitted model to calculate predicted probabilities of failure on the test

data. The resulting ROC curve is shown in Figure 4.4.

Figure 4.4: ROC Curve for the Random Forest

Note: ROC curve calculated on the test data for the Random Forest predictions.

Area under curve is 0.87

The confusion matrix is shown in Table 4.6. This classifier is worse than the

post-Lasso logistic classifier, since it has the similar amount of correctly predicted

failures but higher amount of false alarms5.

4As a result, the value of mtry parameter (number of variables used after a node is split) is
set to 2

5This also evident from the comparison of AUC for post-LASSO logit (0.89) to the AUC of
Random Forest (0.87)
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Table 4.6: Confusion Matrix for Random Forest Classifier

Actual Failure Actual Non-Failure

Predicted. Failure 0.027 0.0714

Predicted Non-Failure 0.01 0.855

Note: Confusion matrix is calculated by classifying predicted probabilities larger

of equal to 0.5 as failures, other as non-failures.

Table 4.7 presents Type I and Type II error rates of the classifier calculated

with the test data. One can see that the Type II error rate is the same as in the

post-LASSO logit estimation, and Type I error rate is slightly larger.

Table 4.7: Error Rates for Random Forest Classifier

Rate

Type I (False Alarm) 0.077

Type II (Missed Failure) 0.27

Note: Out-of sample error rates are calculated by classifying predicted proba-

bilities larger of equal to 0.5 as failures, other as non-failures.

As in the previous approach, I attempt to formulate which variables are the

most important for predicting bank failures. To assess the importance of the

variables, I use Gini Impurity Criteria, which is a standard procedure for evaluat-

ing importance of features after estimating a Random Forest algorithm (Breiman

(2002) and Louppe et al. (2013)). For this measure, for every variable, a weighted

Gini impurity decrease is calculated once the variable is removed. The higher is

the decrease, the more important that variable is, since its removal contributes

to the decrease in the total difference between the nodes.

Table 4.8 presents top 10 variables with the largest mean decreases in Gini.

As in the post-LASSO algorithm, the ratio of impaired loans to equity is

by far the most important predictor of bank failure. Intuitively, according to

this measure those banks are more likely which have larger proportion of “bad”

loans. The inclusion of the measure of loss provisions to net income and the
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Table 4.8: Variable Importance for Random Forest

Name Mean Decrease Gini

Impaired Loans to Equity 14.9

Loss Provisions to Net Income 8.4

Return on Equity 8.4

Pre-tax Net Income 8.4

Impaired Loans 8.3

Equity to Assets 8

Solvency Ratio 7.8

Net Income 7.7

Equity to Liability 7.5

Note: Mean Gini Decrease is reported for all the variable. Only training data

have been used in the calculation. See Breiman (2002) on the details of Gini

Impurity Criteria

size of impaired loans points to this mechanism also. Unlike in post-LASSO logit

estimation, the solvency ratio sees to be an important predictor. In general, there

is a significant overlap in the features selected by post-Lasso logit algorithm and

variables selected by a Random Forest.

4.4 Support Vector Machine Classifier

This section uses a Support Vector Machine (SVM) classifier for predicting bank

failures using all available covariates. This method has a disadvantage of produc-

ing results that might not be interpretable, but it might achieve higher accuracy

than the other methods.

A linear SVM classifier minimizes hinge loss plus a penalty (Efron and Hastie

(2016, p. 379)):

L(β) =
n∑

i=1

[1− yi(β0 + xTi β)]+ + λ||β|‖22 (4.5)

Here, yi is an outcome, and xi is a vector of covariates.
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As in the previous examples, I transform all the predictors using cubic roots. I

fit the linear SVM model with the hyperparameters tuned using three-fold cross-

validation resampled 10 time6.

The confusion matrix for the test data is presented in Table 4.9. This classifier

has lower misclassification rate than the post-LASSO logistic classifier, however

from the practical perspective it might be worse even though it is more accurate

on average. The reason for this is, as I mentioned before, different costs associated

with Type 1 and Type 2 errors. Because missing a looming bank failure can be

extremely costly for the financial system and for the economy, while implementing

preventive measures in the case of alarm might not be as costly, it might be

better for the classifier to catch as many real bank failures as possible (while also

containing the level of false alarms at a reasonable level).

Table 4.9: Confusion Matrix for SVM Classifier

Actual Failure Actual Non-Failure

Predicted Failure 0.002 0

Predicted Non-Failure 0.036 0.962

Note: Confusion matrix is calculated by classifying predicted probabilities larger

of equal to 0.5 as failures, other as non-failures.

Table 4.10 shows the Type I and Type II errors for linear SVM classifier. The

Type I error rate is zero, but Type II error rate is higher than 99 percent.

Table 4.10: Error Rates for Linear SVM Classifier

Rate

Type I (False Alarm) 0

Type II (Missed Failure) 0.994

Note: Out-of sample error rates are calculated by classifying predicted proba-

bilities larger of equal to 0.5 as failures, other as non-failures.

6Variations in the number of folds and number of resamples turn out to be inconsequential
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The SVM classifier has zero false alarms in the test data, but the level of cor-

rectly predicted failures is also very low. In sum, this predictor is too conservative

and almost never predicts failures. As a result, it is only able to identify correctly

0.6 percent of true failures, which in inadequate for all practical purposes.

4.5 Model Stacking

Finally, I use an ensemble method, model stacking, to combine information from

all the models. The resulting confusion matrix is presented in Table 4.11.

Table 4.11: Confusion Matrix for Model Stacking

Actual Failure Actual Non-Failure

Predicted Failure 0.0007 0.012

Predicted Non-Failure 0.037 0.95

Note: Confusion matrix is calculated by classifying predicted probabilities larger

of equal to 0.5 as failures, other as non-failures.

Table 4.12 presents the results for model stacking.

Table 4.12: Error Rates for Model Stacking

Rate

Type I (False Alarm) 0.01

Type II (Missed Failure) 0.98

Note: Out-of sample error rates are calculated by classifying predicted proba-

bilities larger of equal to 0.5 as failures, other as non-failures.

From these table, the benefits of stacking are not immediately obvious. Some

characteristics are slightly improved in comparison to each of the individual meth-

ods, but some are made worse. The out-of-sample misclassification rate is smaller

than the misclassification rate of post-Lasso logit and Random Forest, but slightly

larger than the misclassification rate of SVM classifier. Most importantly, this

classifier is still too conservative misclassifying most of the actual bank failures.
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In sum, in terms of minimization of misclassification rate, and SVM classifier

turns out to be the best, but I would not recommend adopting it since it achieves

its high accuracy by missing a lot of actual bank failures. Because the price of

these kinds of misclassifications (Type 2 errors) is high in the context of financial

regulation, a classifier that allows for some manageable false positive rate but also

correctly predicts most of the failures seems more preferable. For these reasons,

I would recommend post-Lasso logistic classifier for the practitioners as a useful

device to augment information from other forms of analysis.

4.6 Other Accuracy-Maximizing Algorithms

In this section, I present results of a set of additional algorithms I used to for the

prediction. It turns out that all the cases those algorithms produce results that

are inferior to the results presented earlier. Table 4.13 presents the out-of-sample

performance metrics of those approaches.

Table 4.13: Additional Predictive Algorithms

Algorithm Accuracy Type I Error Type II Error

Logistic Regression 0.96 0 1

SVM with Radial Basis Functions 0.96 0 1

SVM with Polynomial Kernel 0.96 0 1

Weighted Subspace Random Forest 0.96 0 1

Genetic Tree Models 0.54 0.47 0.28

Sparse LDA 0.58 0.44 0.06

Single C5.0 Tree 0.29 0.73 0.06

Neural Network 0.96 0 1

Naive Bayes 0.96 0 1

Maximum Uncertainty LDA 0.003 0.04 0.999

Note: Error rates are calculated by classifying predicted probabilities larger of

equal to 0.5 as failures, other as non-failures.
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Many of these approaches render a non-informative prediction, when all the

observations are assigned to the most prevalent class. Other approaches ren-

der classifiers that can be outperformed by a random classification. The three

classifiers I have presented early turn out to be the best out of larger sample of

classifiers.

4.7 Neyman-Pearson Classifiers

Classifiers I used in the previous section optimized overall predictive accuracy

in the training data. While this approach is valid, an alternative would be to

hold Type I error fixed and minimize Type II errors. In the context of predicting

bank failures this approach might be useful because, as I mentioned previously,

the failure of a bank is a costly event that might adversely impact the economic

system. This is why some level of false alarms might be tolerable, if the early

warning system is able to catch most of the banks that are about to fail.

To capture this difference in costs of of Type I and Type II errors, I apply

an approach developed by Tong, Feng, and Li (2018) who propose an umbrella

algorithm for the classifiers that enforce a pre-selected upper bound for Type I

errors, while minimizing Type II errors. Using R package nproc, I set up an upper

bound for the rate Type I errors to 0.1, and perform the classification using ten

classification algorithms. The out-of sample diagnostics are presented in Table

4.14.

In the Neyman-Pearson paradigm, the rate of Type II errors becomes toler-

able. Naive Bayes and Nonparametric Naive Bayes perform worse than others –

their rate of Type II errors is 49 percent. Penalized GLM performs close to the

the post-Lasso logit presented earlier. The best algorithm, in terms of minimizing

Type II error rate in the test data is Ada-Boost (Friedman, Hastie, and Tibshi-

rani (2000)). Penalized GLM and sparse LDA perform worse, but the difference

is relatively small. I expect on different samples all three methods, Penalized

GLM, Sparse LDA, and Ada-Boost, when Neyman-Pearson paradigm is applied
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Table 4.14: Classification with NP paradigm

Algorithm Accuracy Type I Error Type II Error

Logistic Regression 0.91 0.07 0.37

SVM 0.92 0.07 0.35

Penalized GLM 0.91 0.09 0.27

Random Forest 0.92 0.07 0.35

LDA 0.91 0.08 0.29

Sparse LDA 0.91 0.09 0.27

Naive Bayes 0.90 0.09 0.49

Nonparam. Naive Bayes 0.90 0.09 0.49

Ada-Boost. 0.91 0.08 0.24

Note: Error rates are calculated by classifying predicted probabilities larger of

equal to 0.5 as failures, other as non-failures.

perform reasonably well.

Table 4.15 shows the results when I run nproc when limiting Type II errors to

30 percent and minimizing Type I errors. For Sparse LDA and Penalized GLM

this results in smaller out of sample Type II error rates and Type I error rates. For

Ada-Boost, the Type I error rates became larger, but Type II error rates remained

the same. For other algorithms, like SVM, this resulted in unmanageably high

Type I error rates.
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Table 4.15: Classification with NP paradigm: Type II Error Limited

Algorithm Accuracy Type I Error Type II Error

SVM 0.15 0.88 0.18

Sparse LDA 0.89 0.11 0.22

Penalized GLM 0.90 0.10 0.20

Ada-Boost. 0.88 0.08 0.24

Note: Error rates are calculated by classifying predicted probabilities larger of

equal to 0.5 as failures, other as non-failures.
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CHAPTER 5

Conclusion

The goal of this thesis is to investigate the determinants of bank failures after the

financial crisis of the years 2007 - 2009 and to build a predictive model of bank

failures.

In the existing work, the most common dependent variable is “financial dis-

tress” which is measured using financial statements of the banks. Instead, I use

an independently recorded event – bank failure reported by FDIC – as my main

outcome. I use literature on the economics and corporate behavior of banks to

come up with a set of performance ratios that might be plausibly connected to

bank failures. With those covariates and all the other items from the banks’

income statements and balance sheet, I evaluate a set of predictive models.

I use two paradigms for prediction: accuracy maximization, and Neyman-

Pearson paradigm. Accuracy maximization implies that Type I errors and Type

II errors are equally costly, thus out-of-sample predictive accuracy is the most

important parameter for evaluation. Neyman-Pearson paradigm implies setting

an upper bound for Type I errors and minimizing Type II errors within that

bound. In this case, the costs associated with Type I and Type II errors can be

different.

I find that, because the bank failures are rare events, many of the accuracy-

maximizing classifiers tend to assign all the observations to the class of non-failing

banks. This achieves out-of-sample predictive accuracy of 96 percent, but, of

course, misses all the failures. This is inadequate for practical purposes. Two

algorithms, post-Lasso logit and random forest tend to have relatively low level

of Type II errors.
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I find that the highest out-of-sample accuracy, 96.22 percent, is achieved by

Linear SVM classifier. It is slightly larger than a no-information benchmark

(just predicting no failure for any observation which yields an accuracy of 96.06

percent). However, given that the bank failure is a rare event, this high accuracy

is achieved at a cost of misclassifying most of the actual failures. Because of this

reason, I cannot recommend SVM classifier for adoption by finance practitioners.

The classification with the Neyman-Pearson paradigm performs better in

terms of minimizing Type II errors while containing Type I errors. All of the

algorithms, in out-of-sample testing, were able to identify at least 50 percent of

the failing banks, while having false positive rate below ten percent. The mini-

mum share of Type II errors were displayed by Ada-Boost algorithm (24 percent),

while GLM with LASSO penalty and sparse LDA did not perform much worse

(the level of Type II errors were 27 percent). When Type II error is set to be

bound by 30 percent , and Type I error is minimized, then penalized GLM and

Sparse LDA perform slightly better, but other algorithms perform worse. More

research is needed on whether it would be more efficient to bound Type I errors

and minimize Type II errors, or to bound Type II errors and minimize Type I

errors.

My analysis produces additional substantive insights. Some of the methods

I am using are interpretable and allow tentative conclusions about which factors

are more likely to be associated with bank failure. I find that low profitability and

high proportion of impaired loans are the most important factors. Interestingly,

other factors that are sometimes mentioned in the context of bank failures – size

of assets, structure of assets, balance between short-term and long-term loans,

leverage – do not seem to be selected as important predictors, conditional on the

measures of profitability and bad loans. These findings might contribute to the

literature on the factors of solvency of retail banks, but more research is needed.

One of biggest limitations of my analysis, which is also a limitation of my data

is that the events that I trying to predict are rare. In the whole sample (in the

training set and in the test set combined), I only have 203 failure events out of
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6471 observations. This makes the prediction problem especially hard since many

algorithms, trying to optimize for accuracy will treat the observations of failure

as noise and converge on predicting nonfailure all the time (this is what happens

with SVM with Radial Basis Functions, for example), or will only predict failure

in one or two cases and will miss all the other failure events (this is what happens

with Linear SVM). A high true positive rate can only be achieved at a cost of

substantially increasing false positive rate. More research is needed on how this

issue can be remedied.

One promising way to remedy the limitations of these data is to use the

Neyman-Pearson framework by setting the tolerable upper bound for the level

of Type I errors and minimize Type II errors. This framework can also be used

for the risk analysis in a variety of situations: predicting bankruptcies, extreme

losses in a portfolio of assets, and rapid changes in commodity prices. I leave

those applications to further research.
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CHAPTER 6

Additional Material

6.1 Variables Selected by Stepwise Procedure

Turnover

Net Income Before Tax

Solvency Ratio

Return on Assets

Solvency Ratio

Employees

Net Interest Margin

Loans

Gross Loans

Loans to Banks

Other Securities

Total Earning Assets

Fixed Assets

Non-earning Assets

Deposits from Customers

Bank Deposits

Other Liabilities

Trading Liabilities

Long-term Funding

Other Non-Inerest Bearing Assets

Reserves

Equity
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Impaired Loans

Liquid Assets

Intangible Assets

Net Interest Revenue

Other Operating Income

Net Fees

Overheads

Loans to Provisions

Taxes

Dividends

Loss Provisions to Net Income

Impaired Loans to Equity

Equity to Assets

Equity to Liabilities

Capital Funds to Assets

Net Loans to Assets

Net Loans to State Funds

Net Loans to Borrowed Funds
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