
UCLA
UCLA Electronic Theses and Dissertations

Title
Improving Skin Color Diversity in Remote-PPG Using Synthetic Subjects

Permalink
https://escholarship.org/uc/item/9p07n1zf

Author
Bozkurt, Oyku Deniz

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9p07n1zf
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Improving Skin Color Diversity in Remote-PPG Using Synthetic Subjects

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Oyku Deniz Bozkurt

2022



© Copyright by

Oyku Deniz Bozkurt

2022



ABSTRACT OF THE THESIS

Improving Skin Color Diversity in Remote-PPG Using Synthetic Subjects

by

Oyku Deniz Bozkurt

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Achuta Kadambi, Chair

Camera-based remote photoplethysmography (rPPG) provides a non-contact way to measure

physiological signals (e.g., heart rate) using facial videos. Recent deep learning architectures

have improved the accuracy of such physiological measurement significantly, yet they are

restricted by the diversity of the annotated videos. The existing datasets MMSE-HR, AFRL,

and UBFC-RPPG contain roughly 10%, 0%, and 5% of dark-skinned subjects respectively.

The unbalanced training sets result in a poor generalization capability to unseen subjects and

lead to unwanted bias toward different demographic groups. Here we show a first attempt to

overcome the lack of dark-skinned subjects by synthetic augmentation. A joint optimization

framework is utilized to translate real videos from light-skinned subjects to dark skin tones

while retaining their pulsatile signals. In the experiment, our method exhibits around 31%

reduction in mean absolute error for the dark-skinned group and 46% improvement on bias

mitigation for all the groups, as compared with the previous work trained with just real

samples.
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CHAPTER 1

Introduction

Photoplethysmography (PPG) is an optical technique that measures blood volume changes

in the skin by detecting the light reflected or transmitted through the skin. It is widely used

in medicine due to its low cost and ability to capture vital signs such as oxygen saturation,

heart rate, blood pressure and cardiac output. PPG can also assess autonomic function and

detect peripheral vascular disease [7]. In clinical settings, a contact device called a pulse

oximeter is placed on the finger of the patient to measure PPG signals.

New contactless PPG methods have also been emerging as an alternative to contact-

based methods such as pulse oximeters. These contactless methods are called Remote Pho-

toplethysmography (rPPG) and they aim to acquire PPG signals from a camera. In light

of the recent COVID-19 pandemic, rPPG is gaining increasing relevance due to its potential

to reduce viral transmissions if widely adopted by clinicians. As cameras are ubiquitous in

modern electronic devices, rPPG can be used in telemedicine without any equipment set-up

needed [8]. Camera-based rPPG techniques have also been used in other applications such

as driver monitoring [9] and face anti-spoofing [10].

Algorithms for non-contact rPPG can be roughly classified into three categories: Sig-

nal decomposition [11, 2, 12, 13, 14], model-based methods [15, 16, 17], and deep learning

methods [18, 3, 19, 20]. Signal decomposition techniques based on Blind Source Separa-

tion (BSS) decompose/demix the face videos into different sources utilizing PCA [11] or

ICA [2, 12]. For model-based methods, Pulse Blood Vector [15] utilizes the characteristic

blood volume signature to weigh different color channels. CHROM [16] first eliminates the
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specular components and applies color space transforms to linearly combine the chrominance

signals. POS [17] modifies this by first projecting the temporally-normalized skin tone onto

the plane which is orthogonal to the intensity variation direction and then linearly combining

the projected signals. These model-based methods usually use spatially averaged intensity

values of skin pixels for pulse extraction, which may achieve sub-optimal results as each pixel

can contribute differently to the underlying pulse signals.

More recently, deep learning and convolutional neural networks (CNN) have been more

popular due to their expressiveness and flexibility [21, 3, 22, 20, 23, 24, 6, 25]. The relation-

ship between the pulse signal and the color variations on the face captured by cameras is very

complex due to various optical effects such as specular reflection. CNNs learn the mapping

between the pulse signal and the color variations with end-to-end supervised training on the

labeled dataset, thus achieving state-of-the-art performance on vital sign detection. There-

fore, the performance of data-driven rPPG networks hinges on the quality of the dataset.

Even though data-driven rPPG networks have exhibited remarkable estimation accuracy

for non-contact camera-based sensing [18, 3, 19, 20], there is still a lot of bias in the results

of these networks against people with darker skin tones. Unfortunately, this bias is not

surprising given other machine learning algorithms that have been shown to discriminate

based on race and gender [26, 27]. For the case of rPPG, at least a part of the bias can

be attributed to unbalanced datasets with little representation of darker skin tones [28].

Currently, available rPPG datasets MMSE-HR, AFRL, and UBFC-RPPG contain roughly

10%, 0%, and 5% of dark-skinned subjects respectively. Realizing the difficulty of recruiting

patients to collect large-scale rPPG datasets in the university setting, synthetic augmentation

of facial videos has become an active research topic recently. McDuff et al. [29] use synthetic

avatars with ray tracing to reflect the blood volume changes under various configurations.

However, as the authors point out, that infrastructure is labor-intensive and requires a

significant amount of rendering time for each frame (approximately 20 seconds per frame),

which impedes their scalability. Pulse signals can also be incorporated to make the synthetic
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avatars more lifelike, yet it is difficult for avatar-based methods to generate a balanced

dataset due to the lack of dark-skinned avatars [30]. Given this reality, we have set out to

directly augment the existing rPPG datasets to create synthetic face videos that can be used

to train rPPG networks and reduce dataset bias.

This thesis will first provide a background of PPG technology and discuss notable previous

works in rPPG. Then, a novel method for mitigating the effects of dataset bias in rPPG will

be presented. This method involves using bio-realistic skin tone translation in order to

augment existing datasets with artificial skin tone diversity. Next, the performance of our

custom rPPG model will be demonstrated through empirical results and compared against

the performance of other state-of-the-art models. Finally, the results of this work will be

discussed and future work will be proposed.

1.1 Contributions

To summarize, the contributions of this thesis include:

• We introduce a first attempt to translate facial videos of light-skinned subjects to dark

tones while preserving the underlying blood volume variations;

• We demonstrate that our synthetic videos can be directly utilized to improve the

performance of the state-of-the-art deep rPPG methods with mitigated bias across

different demographic groups;

• We propose a simple yet efficient rPPG estimation model based on 3D convolution

operations and show that the proposed model can achieve state-of-the-art performance

on various facial videos.
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CHAPTER 2

Background

2.1 The working principle of the pulse oximeter

A pulse oximeter is a contact-based sensor that measures light absorption in blood. It

is typically placed directly on the finger of a patient in order to read their blood oxygen

saturation levels (also called hemoglobin saturation) and pulse rate. The pulse oximeter uses

a light source (most commonly an LED) to transmit light through the skin and a photodiode

to measure the amount of light received back at the device after traveling through blood.

The design of the pulse oximeter is based on the Beer-Lambert law which relates the

attenuation of light through a medium to the properties of that medium. This relationship

can be mathematically formulated as:

A = εlc (2.1)

where A represents the absorbance, ε the absorptivity of the medium, l the path length in

cm, c the concentration of the solution.

Methemoglobin (MetHb), carboxyhemoglobin (HbCO), hemoglobin (Hb) and oxyhe-

moglobin (HbO2) are the only significant light absorbers commonly found in blood [31].

However, pulse oximeters emit two wavelengths (660 nm and 940 nm) and therefore can only

account for two separate absorbers. These absorbers are hemoglobin and oxyhemoglobin,

which have different absorption spectra at 660 nm (red) and 940 nm (infrared) wavelengths.

At 660 nm, HbO2 absorbs less light than Hb and at 940 nm Hb absorbs less light than

HbO2 [32].
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Figure 2.1: PPG Waveform Generation [1]. Light transmitted through the skin gen-

erates a PPG signal on the pulse oximeter’s photodiode. The AC component of the PPG

signal encodes pulsatile information.

Applying the Beer-Lambert law to the light received at the photodiode at these two differ-

ent wavelengths, the concentration of both hemoglobin and oxyhemoglobin can be measured.

Then, the hemoglobin saturation (SaO2) can be calculated using the ratio between the con-

centration of hemoglobin and oxyhemoglobin [33]:

SaO2 =
HbO2

HbO2 +Hb
· 100 (2.2)

This ratio is calibrated using direct measurements of hemoglobin saturation collected from

a group of volunteers and the calibration values are stored inside of the pulse oximeter for

later use.

5



As the pulse oximeter cycles the 660 nm and 940 nm light sources on and off to capture

the red light, the infrared light and the ambient light, there is also a photoplethysmographic

(PPG) transmission waveform produced [31]. This PPG waveform has a direct current

(DC) component and an alternating current (AC) component. While the DC component is

dependent on the structure of tissue inside a pulse oximeter, the AC component corresponds

to the blood volume changes that happen throughout the cardiac cycle [1]. The fundamental

frequency of the AC component can be used to calculate the heart rate (HR).

2.2 Remote PPG

As opposed to the contact-based pulse oximeter, remote PPG techniques only require a

video of a subject’s facial region to obtain their PPG waveform. Most commonly, the video

is taken by a consumer-grade webcam, which captures a mix of the PPG signal and other

light sources present in the environment. In this section, different techniques to acquire the

underlying PPG signal will be discussed.

2.2.1 Blind Source Separation techniques

2.2.1.1 ICA [2]

Because absorptivity varies with wavelength, each color channel in the RGB sensor captures

a different combination of the underlying PPG signals when a face video is recorded by a

webcam. The ICA model assumes that these combinations are linear and attempts to find

a demixing matrix that can approximate the underlying source signals from the captured

signals.

To this end, first, a region of interest (ROI) is determined using the Viola–Jones object

detection framework. Then, the video is cropped according to the ROI keeping only the

face region in the video. Afterwards, the cropped video is separated into its three channels:

6



red, green and blue. For each time stamp and for each color channel, the video is spatially

averaged to produce a raw 1D signal that varies with time. All three raw signals are detrended

and normalized before independent component analysis (ICA) is applied, which returns three

separated source signals. The signal whose power spectrum contains the highest peak is then

chosen as the underlying PPG signal and smoothed using a five-point moving average filter

and bandpass filtered. The passband for the filter is 0.7-4 Hz, which corresponds to the

frequency of a normal heart rate.

Figure 2.2: ICA Pipeline [2]. The video is cropped using face detection before it is

separated into the R, G, and B channels. Then, each channel is spatially averaged and

normalized before applying ICA to get a corresponding source signal which encodes PPG.
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2.2.2 Model-based methods

2.2.2.1 CHROM [16]

Similar to ICA, CHROM assumes that blood volume pulse is captured by the camera in the

form of light reflected from the face. CHROM models this process for each color channel:

Ci = ICi(ρCdc + ρCi + si), (2.3)

where ICi is the intensity of the light source integrated over the exposure time of the camera

in image i for color channel C, ρCdc is the stationary part of the reflection coefficient of the

skin in color channel C, ρCi is the zero-mean time-varying fraction caused by the pulsation

of the blood volume and si is the specular reflection contribution.

The specular reflection component contains the light that is reflected directly back from

the surface and doesn’t contain any pulsatile information. Additionally, assuming white

light, each color channel is affected by the specular reflection contribution equally. Therefore,

CHROM eliminates this specular component by subtracting color channels from each other,

which results in two chrominance signals X and Y :

X = R−G (2.4)

Y = 0.5R + 0.5G−B3 (2.5)

Then, a ratio between the normalized chrominance signals (Xn and Yn) is used to calculate

the underlying PPG signal:

S =
Xn

Yn

− 1 (2.6)

Considering non-white illumination and the standard deviation of the chrominance, the

coefficients in the chrominance calculation can be further adjusted. For more details, see [16].
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Figure 2.3: Illustration of the dichromatic skin model. Light incident on skin produces

two reflective components. The specular component is due to the reflection from the skin

surface, and the diffuse component is related to the absorption and scattering properties of

the skin tissues. CHROM aims to eliminate contributions from the specular component in

the RGB video since they do not contain pulsatile information.

2.2.2.2 POS [17]

POS stands for “Plane-Orthogonal-to-Skin” and is yet another rPPG model which estimates

a PPG signal from the specular and diffuse reflections of light captured on RGB video. The

POS model is similar to CHROM, but alters the order in which the main expected color

distortions are reduced using different priors [17]. While CHROM first eliminates specular

reflection using chrominance, POS first eliminates intensity variations.

The skin reflection model of POS separates the temporally-normalized and spatially av-

eraged RGB matrix at time t (Cn(t)) into three components: intensity, specular and pulse.

Because the intensity component is in the direction of the unit vector 1 = (1, 1, 1)T in this

formulation, Cn(t) is projected onto a plane orthogonal to 1 to eliminate intensity variations.

This projection can be expressed as:

S(t) = Pp ·Cn(t), (2.7)

where Pp is a 2x3 projection matrix and Cn(t) represents the temporally-normalized and

spatially averaged RGB matrix at time t.
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Because Pp is a plane that is orthogonal to 1 in the normalized RGB space, it is also or-

thogonal to the temporally-normalized skin tone. The main advantage of projecting the RGB

matrix Cn(t) onto a “Plane-Orthogonal-to-Skin” is that motion-induced intensity variations

are usually larger distortions that affect all three RGB channels at once.

POS and CHROM achieve similar performances with POS gaining a slight overall edge in

various benchmarks [17]. Most notably, POS has been shown to perform better than CHROM

on subjects with diverse skin tones due to its skin-tone-orthogonal projection methodology.

2.2.3 Deep learning based methods

2.2.3.1 PhysNet [3]

PhysNet is an end-to-end spatio-temporal rPPG network that uses a 3D convolutional neural

network (3D-CNN) architecture. The input to this network is T frames of RGB video, which

is forwarded through the 3D-CNN block. Within the 3D-CNN block, there are multiple

convolution and pooling operations as shown in Fig. 2.4. The 3x3x3 convolutions in the 3D-

CNN block help extract the semantic rPPG features in both spatial and temporal domain

simultaneously [3]. After the 3D-CNN block, the final signal projection is achieved using

aggregation.

Because PhysNet aims to not only discover the underlying heart rate but also locate

precisely where the peaks in the PPG signal are, the negative Pearson correlation is used

as the loss function for this network. The negative Pearson correlation helps maximize the

trend similarity and minimize peak location errors [3].

PhysNet was trained on the OBF dataset and tested on both the OBF dataset and

MAHNOB-HCI. Through these experiments, it was shown that PhysNet could outperform

model-based methods such as CHROM and POS.
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Figure 2.4: The architecture of the 3D-CNN block used in PhysNet [3]. The input

frames go through a convolution filter with a 1x5x5 kernel, followed by a max pool layer and

two layers of 3x3x3 convolution which are repeated 4 times. The resulting feature map is

then average pooled and passed through a final 1x1x1 convolution.

2.2.3.2 3D-CNN [5]

3D-CNN is a multi-task learning framework that simultaneously generates synthetic videos

and estimates PPG signals from video (Note: This is a different 3D-CNN than discussed

in the previous section). While being able to augment source rPPG videos by other pulse

signals, this framework is restricted to the face appearance in the original source videos and

fails to produce novel videos with dark skin tones.

The 3D-CNN multi-task learning framework contains three networks: rPPG network,

Image-to-Video network, and Video-to-Video network. The rPPG network estimates PPG

signals from input videos, the Image-to-Video network generates a synthetic video given a

target rPPG signal and a source image, and the Video-to-Video network takes a source video

and imposes a different target rPPG signal onto it. First, the rPPG network is pre-trained

using source videos. Then, the Image-to-Video and Video-to-Video networks are trained

using the pre-trained rPPG network. During this step, the weights of the rPPG network are

frozen. Lastly, the newly generated synthetic videos are used to finetune the rPPG network.
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CHAPTER 3

Methods

This chapter presents a novel method for improving the accuracy of deep learning based

rPPG models by reducing skin tone bias in existing datasets. Specifically, bio-realistic skin

tone translation augments existing datasets by realistically translating the skin tone of some

subjects to be darker while retaining PPG signal integrity.

3.1 Bio-realistic skin tone translation

In order to translate real subjects with light skin tones to synthetic subjects with dark skin

tones, we utilize two interconnected networks: a video generator G and an rPPG estimator E,

as illustrated in Figure 3.1. We next describe the proposed 3D convolutional video generator,

the rPPG estimation network, and our joint optimization scheme.

3.1.1 3D convolutional video generator

The goal of our video generator G is to translate frame sequences of real light-skinned

subjects to synthetic dark-skinned subjects. We propose a novel 3D convolutional neural

network to accomplish this goal. The model consists of an encoder (several convolutional

layers), a transformer (6 ResNet Blocks), and finally a decoder (several convolutional layers).

The architecture of the generation network can be seen in Fig 3.2.

The generator takes 256 consecutive frames Ilight at size 80×80 as the input and generates

the corresponding translated frames in the same dimension. Since the paired ground-truth
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Appearance loss PPG loss 

Generator G Estimator E

Generation phase:

t

Generator G Estimator E
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PPG estimation phase:

PPG loss PPG loss 

FrozenActive

Frozen Active

Pulse Wave

Pulse Wave

t

Figure 3.1: Illustration of the proposed joint optimization framework. Our frame-

work is capable of translating light-skinned facial videos to dark skin tones while maintaining

the original pulsatile signals. With a two-phase weight updating scheme, the rPPG estima-

tion network can benefit from the synthetic dark-skinned videos and gradually learn to

conduct inference on dark-skinned subjects without accessing real facial videos with dark

skin tones.

translated frames do not exist, we use a race transfer model [4] pretrained on VGGFace2 [34]

to generate the pseudo target frames Idark. More specifically, the generator Caucasian-to-

African in [4] is utilized to translate videos of light-skinned subjects in the existing rPPG

dataset to dark skin tones.

The generator is first supervised by the L1 distance between the pseudo target frames

Idark and the generated frames Îdark = G(Ilight) to learn the visual appearance of the synthetic

dark-skinned subjects. At this stage, the output frames Îdark do not contain pulsatile signal,

since the target frames Idark from [4] are generated in a frame-by-frame manner without
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temporal pulse correspondence along the time dimension. In the joint optimization section,

we describe how to further incorporate the pulsatile signals presented in the original videos

Ilight into the generated frames.

3.1.2 PRN: rPPG estimator with residual connections

The rPPG estimator is designed to model the BVP temporal information from a sequence

of facial frames. Similarly, it takes 256 consecutive frames at size 80 × 80 as the input,

and its output is the corresponding BVP value for each input frame. We build our novel

rPPG estimator based on 3D convolution operations. It consists of three consecutive 3D

convolutional blocks with residual connections, and an average pooling is performed after

each block for the downsampling purpose. The full architecture can be found in Fig 3.3.

To supervise the network, we use a negative Pearson correlation loss between the esti-

mated pulse signals p̂ ∈ RT and the ground-truth pulse signals p ∈ RT :

Lppg(p, p̂) = 1−

T
∑T

i=1 pip̂i −
∑T

i=1 pi
∑T

i=1 p̂i√(
T
∑T

i=1 p
2
i −

(∑T
i=1 pi

)2
)(

T
∑T

i=1 (p̂i)
2 −

(∑T
i=1 p̂i

)2
) . (3.1)

This negative Pearson correlation loss has shown to be more effective as compared with the

point-wise mean squared error (MSE) loss in the previous work [3]. We first train PRN with

only real subjects, and this simple yet efficient architecture can already achieve state-of-the-

art performance on the existing rPPG datasets. In the next section, we detail how to further

incorporate the synthetic subjects into the training process.

3.1.3 Joint optimization

The generator trained with L1 loss in the previous section fails to produce synthetic dark-

skinned subjects with desired pulsatile information, and the rPPG estimator trained with

only real light-skinned subjects exhibits poor generalization capability on unseen data or
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data that rarely appears in the training set (i.e., the underrepresented group with dark skin

tones). To make use of these two models, we design a joint optimization mechanism to

incorporate pulsatile signals into the synthetic videos and improve the generalizability of the

rPPG estimator simultaneously.

We use a two-phase weight updating scheme to train the video generator and the rPPG

estimator simultaneously. These two phases are alternated within each mini-batch as illus-

trated in Figure 3.1. In the generation phase, we freeze the weight of the rPPG estimator E,

and the generator G is supervised by the following loss function to maintain both the visual

appearance and the pulsatile information:

LG(Ilight, p) = Lppg(p, E(Îdark)) + λ ∗ LA(Idark, Îdark), (3.2)

LA(Idark, Îdark) =
1∑
i zi

∑
i

zi|Idarki − Îdarki |, (3.3)

zi =


0 if |Idarki − Îdarki| < ϵ

1 otherwise
, (3.4)

where Îdark = G(Ilight) is the generated frame sequence from synthetic dark-skinned subjects,

λ is the balance factor, LA(·) is the visual appearance loss designed based on a threshold L1

loss, and ϵ is the selected threshold. The weighting factor λ is chosen to be 1.0. Directly

enforcing a L1 loss between Idark and Îdark causes the generator to struggle between the

visual appearance and the pulse information, since the pseudo ground-truth Idarki from [4]

do not contain the desired BVP variations. Therefore, we relax the appearance loss LA(·)

by a threshold ϵ. The relaxation is based on the observation that the color changes due to

BVP variations are subtle in the RGB domain. In our implementation, we select ϵ = 0.1

based on an empirical analysis of the color variations in real videos.

In the rPPG estimation phase, we freeze the weight of the generator G and train the

rPPG estimator E with both real and synthetically augmented frame sequences:

LE(Ilight, Îdark), p) = Lppg(p, E(Îdark)) + Lppg(p, E(Ilight)). (3.5)
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Both real and synthetic subjects are utilized to supervise the rPPG network E while updating

its weights. This arrangement allows E to gradually adapt to the synthetic dark-skinned

subjects without losing estimation accuracy on real subjects. With this two-phase updating

rule, both the generator and the rPPG estimator benefit from each other in an alternate

manner. At convergence, the generator G can successfully translate frame sequences from

real light-skinned subjects to dark skin tones while maintaining the original BVP variations,

and the estimator E can generalize its performance to dark skin tones without using actual

real videos from dark-skinned subjects.

3.2 Datasets

UBFC-RPPG [35]: UBFC-RPPG database contains 42 front facial videos from 42 sub-

jects, and the corresponding ground-truth PPG signals are collected from a fingertip pulse

oximeter. The videos are recorded at 30 frames per second with a resolution of 640x480 in

the uncompressed 8-bit AVI format. Each video is roughly one minute long.

VITAL dataset [36]: Facial videos are recorded at 1920x1080 pixel resolution and 30

frames per second for 60 subjects at room lighting in the highly compressed MP4 format.

Each video is roughly 2 minutes long. A Philips IntelliVue MX800 patient monitor is utilized

for ground-truth vital sign monitoring. The subject wears a blood pressure cuff, 5-ECG leads,

and a finger pulse oximeter, which is connected to the MX800 unit. Diverse skin tones and

varied demographic groups are represented in the dataset. We use 58 subjects in the VITAL

dataset (subject 26 and subject 40 are left out due to data errors in the collecting process).

For the skin types quantified by Fitzpatrick scales [37], there are 5, 16, 14, 11, 5, 7 subjects

respectively from I (lightest) to VI (darkest).
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3.3 Model training and evaluation

In this section, the training and evaluation pipeline of PRN is described.

3.3.1 Preprocessing

The PRN model takes as input an 80x80 facial video. The facial bounding box for each video

is estimated by applying a face detector based on Multitask Cascaded Convolutional Neural

Networks (MTCNN) [38] to its first frame, and a square region with 160% width and height

of the detected bounding box is cropped and resized to 80× 80 using linear interpolation.

3.3.2 Training

The UBFC-RPPG dataset is randomly split into a training set (32 subjects) and a validation

set (10 subjects). The training set is used to jointly optimize the generator G and the rPPG

estimator E. Models with minimum validation loss are selected for a cross-dataset evaluation

on the VITAL videos.

The learning rate for the generator and the rPPG network are 0.0001 and 0.0003 re-

spectively. The learning rates are modified base on a cosine annealing schedule during

training [39]. The networks are initialized with Kaiming initialization [40] with a batch size

of two and ReLU activation. We use the Adam [41] solver with β1 = 0.5 and β2 = 0.999.

The network architectures are implemented with batch normalization [42] in PyTorch [43],

and the experiments are conducted on a single NVIDIA Tesla V100 GPU.

3.3.3 Evaluation

In real-world applications, it is common that the test subjects are in a different environment

(e.g., illumination conditions) in contrast to the training samples. Therefore, we conduct a

cross-dataset evaluation on the VITAL dataset using the models trained on the UBFC-RPPG
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videos.

After obtaining the estimated pulse waves from each model, we apply a Butterworth filter

to the output signals with cut-off frequencies of 0.7 and 2.5 Hz for heart rate estimation.

The filtered waves are divided with sliding windows of 30-second length and 1-second stride,

and a heart rate is estimated based on the position of the peak frequency for each window.

For each subject, four error metrics are calculated and averaged over all windows. The four

metrics include MAE, RMSE, PCC between the estimated heart rate and the ground-truth

heart rate, and SNR of the estimated PPG waves. The ground-truth HR for UBFC-RPPG

is obtained by applying the same procedures as described above to the ground-truth pulse

waves, and the ground-truth HR for the VITAL dataset is obtained from the MX800 patient

monitor through ECG signals.

Here are the formulas used to calculate MAE, RMSE, PCC, and SNR:

MAE =

∑N
i=1 |HRi − HRi|

N
, (3.6)

RMSE =

√∑N
i=1 (HRi − HRi)

2

N
, (3.7)

PCC =
T
∑T

i=1 pip̂i −
∑T

i=1 pi
∑T

i=1 p̂i√(
T
∑T

i=1 p
2
i −

(∑T
i=1 pi

)2
)(

T
∑T

i=1 (p̂i)
2 −

(∑T
i=1 p̂i

)2
) , (3.8)

SNR = 10 log10


∑2.5

f=0.75

(
Ut(f)Ŝ(f)

)2

∑2.5
f=0.75

(
(1− Ut(f)) Ŝ(f)

)2

 , (3.9)

where N is the total number of windows, p is the ground-truth pulse wave, p̂ is the estimated

pulse signal, Ŝ is the power spectrum of the pulse signal, f is the frequency in Hz, and Ut(·)

is a binary mask. For the heart frequency region from fHR - 0.1 Hz to fHR + 0.1 Hz and its

first harmonic region from 2 * fHR- 0.1 Hz to 2 * fHR + 0.1 Hz, Ut(·) is set to be one. For

other regions, Ut(·) is set be zero.
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Comparison methods: We compare our model with three conventional methods outlined

in the Background of this thesis: POS [17], CHROM [16] and ICA [2]. These rPPG baseline

methods are implemented based on the publicly available MATLAB toolbox [44], and we

follow the procedures in the toolbox to obtain facial pixels of interest, i.e., converting facial

frames from RGB to Y CRCB and identifying skin pixels based on a predefined threshold.

We also compare with a data-driven state-of-the-art rPPG algorithm 3D-CNN [5]. It is

implemented based on the architecture description as detailed in the original publication.
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Figure 3.2: Architecture of the generation network.
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Figure 3.4: The proposed method successfully incorporates pulsatile signals into

the generated videos, while the existing work [4] only focuses on the visual

appearance. For different facial regions, frames generated by the proposed method exhibit

similar pixel intensity variations as compared with frames from real videos, while the prior

work shows unrealistic RGB variations. As a result, pulsatile signals can be well preserved

in our method as opposed to the vanilla skin tone translation.
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CHAPTER 4

Results

In this section, we demonstrate the superiority of our proposed method with empirical results

on UBFC-RPPG [35] and VITAL [36] for HR estimation using various metrics: mean abso-

lute error (MAE), root mean square error (RMSE), Pearson’s correlation coefficient (PCC),

and signal-to-noise ratio (SNR). As will be shown, the synthetic videos generated by our

model can also improve the performance of the existing data-driven PPG estimation models

with reduced bias across different skin tones.

For a qualitative evaluation, some generated frames in the UBFC-RPPG validation set

are also illustrated in Figure 4.1. Our generator G can successfully produce photo-realistic

videos that reflect the associated underlying blood volume changes. Estimated pulse waves

from the real videos and the synthetic videos are both closely aligned with the ground truth.

In the frequency domain, power spectrum of the PPG waves is also preserved with a clear

peak near the gold-standard HR value.

4.1 Performance of HR estimation on UBFC-RPPG

Performance metrics of different models in the UBFC-RPPG validation set are listed in

Table 4.1. We list the HR estimation accuracy of PRN trained with the proposed joint

optimization pipeline (referred as PRN augmented), real samples (referred as PRN w/ Real),

and synthetic samples (referred as PRN w/ Synth). The synthetic samples are generated by

our generator G through translating the real samples in the UBFC-RPPG training set when
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the joint optimization converges. As a comparison, we also include the performance of a

state-of-the-art deep learning model 3D-CNN [5] that is trained with both real and synthetic

samples (referred as 3D-CNN w/ Real&Synth), just real samples (referred as 3D-CNN w/

Real), and just synthetic samples (referred as 3D-CNN w/ Synth). Performance of three

traditional methods (POS [17], CHROM [16] and ICA [2]) are also provided in the table.

Notably, the proposed PRN architecture has already outperformed other rPPG estima-

tion methods even without synthetic skin color augmentation. More specifically, the proposed

PRN has around 31% improvement on MAE and around 14% improvement on RMSE over

the state-of-the-art 3D-CNN using real training samples. With the synthetic augmentation,

the performance of PRN can be further improved. PRN trained with augmentation achieves

9% improvement on MAE (from 0.75 BPM to 0.68 BPM) as compared with PRN trained

with just real samples. This suggests that even for UBFC-RPPG dataset which is over-

whelmed by subjects with light skin tones, increasing the diversity of training samples is

still able to enhance the performance. This finding is consistent with the recent research [45]

that demonstrates a balanced dataset can lead to optimal performance for all the groups.

The joint optimized generator G can be beneficial to other data-driven models as well.

For example, we trained 3D-CNN with both real and corresponding synthetic samples from

G. As compared with the 3D-CNN model trained with just real samples, the 3D-CNN model

trained with both real and synthetic samples exhibits 18% improvement on MAE and 13%

improvement on RMSE. This further indicates that our generator has successfully learned

to produce both visually-satisfying and BVP-informative facial videos, and these synthetic

videos can facilitate the learning progress of the existing data-driven rPPG estimation al-

gorithm without conducting the joint optimization process again to adapt to another new

network architecture.
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Table 4.1: Performance of HR estimation on UBFC-RPPG. Boldface font represents

the preferred results.

Method MAE RMSE PCC SNR

PRN augmented 0.68 1.31 0.86 5.76

PRN w/ Real 0.75 1.64 0.83 7.91

PRN w/ Synth 4.32 6.56 0.54 -1.93

3D-CNN [5] w/ Real&Synth 0.89 1.66 0.88 7.74

3D-CNN [5] w/ Real 1.09 1.91 0.84 7.80

3D-CNN [5] w/ Synth 0.95 1.80 0.82 3.48

POS [17] 3.69 5.31 0.75 3.07

CHROM [16] 1.84 3.40 0.77 4.84

ICA [2] 8.28 9.82 0.55 1.45

4.2 Performance of HR estimation on VITAL dataset

Cross-dataset verification can provide more visibility on the generalization capability of mod-

els trained on UBFC-RPPG videos. In order to demonstrate the improved HR estimation

accuracy on the VITAL dataset using the proposed method, we report MAE, RMSE, PCC,

and SNR of various models trained with real and synthetic samples in Table 4.2. Since

the VITAL dataset contains testing subjects of diverse skin tones with the associated Fitz-

patrick scale labels (F1-6), we group the subjects into three categories, i.e., F1-2 (light skin

color), F3-4 (medium skin color), and F5-6 (dark skin color), to measure performance across

different demographic groups.

PRN trained with the joint optimization pipeline exhibits significant improvement across

these metrics as compared with PRN trained with just real samples. More precisely, there

is 1.01 BPM reduction on MAE and 1.33 BPM reduction on RMSE for the light skin color
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group, 1.72 BPM reduction on MAE and 2.01 BPM reduction on RMSE for the medium skin

color group, and 2.22 BPM reduction on MAE and 2.5 BPM reduction on RMSE for the dark

skin color group. For all the methods, it is observed that the error of light skin tone group is

generally lower than other groups. This is probably due to the melanin concentration of the

light-skinned subjects is the least, and more light can be reflected to the camera. However,

it should also be noted that models trained by both real and synthetic data have a relatively

smaller performance difference among the three groups. For the dark skin color groups, PRN

trained with synthetic data shows lower estimation errors as compared with real data, and

the errors are reversed for the light skin color group. This validates the fact that data-driven

rPPG estimation models are heavily impacted by the skin color distribution of training

samples, and it is critical to create a diverse and balanced training set for generalizability

and real-world deployment of rPPG algorithms.

To assess the cross-dataset generalization capability of synthetic videos, we also evaluate

3D-CNN trained on real and synthetic samples from UBFC-RPPG on the VITAL dataset.

Similar improvement can be observed in the 3D-CNN model, where 3D-CNN trained with

both real and synthetic samples outperforms the model trained on only real or only synthetic

samples. This supports that our synthetic videos can accurately reflect subtle color variations

due to blood volume changes and can serve as a bio-realistic augmentation to the real samples.

POS [17], CHROM [16] and ICA [2] show relatively large HR estimation errors as com-

pared with the data-driven models, where their MAEs on the light skin color group is usually

larger than 4 BPM. Their MAEs are even higher for other groups. Unlike the end-to-end

rPPG estimation networks, these conventional methods usually require preprocessing steps

which may diminish the subtle color changes on the face and degrade the performance. Be-

sides, these models need to average the pixel intensities over the skin region, and this might

be a sub-optimal solution since skin pixels at different facial regions can contribute differently

to the pulse signals.

The cross-dataset experiment indicates that the improvement of our proposed framework
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is more substantial as compared with intra-dataset evaluation where all the samples are ob-

tained within the same environment. This suggests that synthetic videos can provide more

significant benefit by diversifying the training samples when there exist some data distri-

bution shifts between real training and testing videos. This finding is also consistent with

the observation for ray-tracing based augmentation method [29]. Synthetic augmentation

techniques thus become particularly effective for cross-domain learning and can improve the

generalization capability of HR estimation for real-world applications.

4.3 Bias mitigation

It is critical for an algorithm to have consistent performance across different demographic

groups in real-world medical deployment. To quantify the performance gap for each group, we

use the standard deviation of MAE and RMSE for each Fitzpatrick scale as the measurement.

This measurement has also been used in some prior work [29, 4]. The standard deviation for

each method in the VITAL dataset is illustrated in Figure 4.2, together with a sample portrait

for each skin scale from F1 to F6. Conventional POS method exhibits large variation (MAE:

2.66 BPM, RMSE: 3.19 BPM) across different Fitzpatrick scales, while the jointly optimized

PRN shows the lowest bias (MAE: 1.53 BPM, RMSE: 1.80 BPM) as compared with all the

conventional methods. In contrast to PRN trained with just real samples (MAE: 2.03 BPM),

the augmented training offers a 25% improvement of bias mitigation among different groups

while simultaneously improving the overall performance of all the groups. This suggests our

joint training framework can provide a more desired trade-off between performance and bias.

For 3D-CNN, the standard deviations for MAE and RMSE are also reduced by adding the

synthetic samples into the training set. We attribute this improvement to the more diverse

and balanced dataset augmented by our generator.
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Table 4.2: The proposed method shows an improved HR estimation accuracy on

the VITAL dataset. Boldface font denotes the preferred results.

Method
F1-2 F3-4 F5-6 Overall

MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

PRN augmented 2.37 3.13 2.95 3.82 4.39 5.98 3.04 4.01

PRN w/ Real 3.38 4.46 4.67 5.83 6.61 8.48 4.60 5.88

PRN w/ Synth 4.27 6.01 4.52 6.18 5.64 8.33 4.66 6.57

3D-CNN [5] w/ Real&Synth 2.32 3.11 3.18 4.09 5.45 7.07 3.34 4.35

3D-CNN [5] w/ Real 3.31 4.64 5.86 6.78 7.07 8.89 5.19 6.44

3D-CNN [5] w/ Synth 3.88 5.23 4.68 6.07 7.81 9.88 5.04 6.56

POS [17] 4.97 6.28 5.36 6.86 7.25 9.74 5.69 7.25

CHROM [16] 6.51 8.92 5.01 6.38 7.83 14.56 6.14 8.99

ICA [2] 7.65 9.66 7.14 8.40 5.75 7.31 7.04 8.63

F1-2 F3-4 F5-6 Overall

PCC↑ SNR↑ PCC↑ SNR↑ PCC↑ SNR↑ PCC↑ SNR↑

PRN augmented 0.40 3.45 0.63 5.73 0.30 -3.38 0.48 3.02

PRN (w/ Real) 0.36 0.32 0.50 0.03 0.08 -7.00 0.36 -1.32

PRN (w/ Synth) 0.29 -0.64 0.42 -0.44 0.11 -6.35 0.31 -1.74

3D-CNN [5] (w/ Real&Synth) 0.42 3.96 0.65 5.21 0.17 -4.84 0.47 2.68

3D-CNN [5] (w/ Real) 0.30 -0.61 0.48 -1.26 0.11 -8.26 0.34 -2.47

3D-CNN [5] (w/ Synth) 0.07 -2.04 0.38 -1.34 0.10 -6.38 0.21 -2.64

POS [17] 0.26 -2.22 0.42 -1.04 0.27 -5.59 0.33 -2.41

CHROM [16] 0.15 -2.14 0.46 -1.11 -0.10 -5.53 0.23 -2.40

ICA [2] 0.24 -2.06 0.32 -1.73 0.06 -5.04 0.23 -2.53
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Real Frames (Upper) & Synthetic Frames (Lower) PPG Waveform Power Spectrum

Figure 4.1: Illustration of real frames and the corresponding synthetic frames

in the UBFC-RPPG dataset. Our proposed framework has successfully incorporated

pulsatile signals when translating the skin color. The estimated pulse waves from PRN

exhibit high correlation to the ground-truth waves, and the heart rates are preserved in the

frequency domain.
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F1 F2 F6F5F4F3

Figure 4.2: Synthetic dark-skinned videos can help to reduce bias in HR estima-

tion. The augmented PRN and the 3D-CNN [5] trained on both real and synthetic videos

show a reduced standard deviation on MAE and RMSE across Fitzpatrick scales F1-6 in the

VITAL dataset.
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CHAPTER 5

Conclusions

In this thesis, we showed a first attempt to overcome the lack of dark-skinned subjects

in existing rPPG datasets using synthetic augmentation. Our method involves translating

subjects with light skin in existing datasets to subjects with dark skin while keeping the

rPPG signals intact. For this purpose, we used a joint optimization framework composed

of a generation phase and a PPG estimation phase. During the generation phase, we froze

the weights of the rPPG estimator and trained a novel 3D convolutional neural network to

translate skin tone. During the PPG estimation phase, we froze the weights of the generator.

Using this approach, we were able to take advantage of the strengths of both architectures

to create bio-realistic synthetic subjects.

The proposed jointly optimized rPPG estimator can outperform the existing state-of-

the-art methods with reduced estimation bias across different demographic groups. More

specifically, PRN trained with augmentation has around 31% reduction in MAE for the

dark-skinned group along with 46% improvement on bias mitigation in the VITAL dataset,

as compared with 3D-CNN [5] trained with just real samples. Our generated synthetic videos

maintain both photo-realistic and bio-realistic features, and can also be beneficial to other

data-driven models. For example. 3D-CNN trained with both real and synthetic samples

exhibits 18% improvement on MAE compared to 3D-CNN trained with only real samples.

Our current pipeline focuses on skin color translation, and therefore all the remaining

factors (e.g., pulse signals, body motion, and other facial attributes) are directly copied from

the original videos. To improve the generalization capabilities of rPPG networks and to
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maximize the benefit of synthetic augmentation, it is also critical to extend the generation

framework to incorporate arbitrary facial attributes and pulse waves. Besides, it should also

be noted that the generated frames are limited by a fixed resolution at 80 × 80. Future work

may produce solutions to generate frames at arbitrary pixel resolution to fit the requirements

of various subsequent rPPG estimation models without frame size interpolation.

Finally, we acknowledge that video synthesis, such as deepfakes, has raised public con-

cerns [46]. Over half a decade, these ‘fake’ videos generated by deep learning have been

used for face manipulation, and the malicious usage has drawn a lot of social attention. We

demonstrate a positive example that these bio-realistic ‘fake’ videos can also be utilized for

the purpose of social good. Our synthetic videos are capable of reducing both HR estimation

error and bias for rPPG models and further facilitate the development of remote healthcare.

We hope our framework can act as a tool to address some social issues in existing medical

applications.
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