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Abstract

Comparing the Intrinsic Hardware Efficiency of the Human Brain with Silicon

Based Computers

Jet Widjaja

The human brain and modern computers are both extremely efficient computational

machines, executing large amounts of operations at incredibly fast speeds. Such

performance costs energy, with the theoretical minimum being Landauer’s limit. We

attempt to investigate and compare the efficiency of computation between our brain

and the modern computer, i.e. cost of energy per bit of information. Every machine,

including our brain, specialize in certain types of computation. We are more adept at

survival tasks such as spotting colors versus mathematical operators, which the

modern computer is so efficient at. Therefore, we will avoid the algorithm and

architecture aspect of these computational machines. We instead quantify what a bit

of information is and estimate the energy cost in both machines. We find that modern

computers are extremely efficient, requiring approximately 10-19 J/bit which is only

103 away from the Landaeur’s limit while our brain requires 10-18 J/bit. Despite the

lack of precision, the disparity is great enough to establish that modern computers are

more efficient at executing a bit of computation.
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Introduction

The relentless advancements in technology have transformed the landscape of

computation, leading to an ever-increasing demand for energy-efficient computing

systems. From microprocessors that power our personal computers to the intricate

neural networks of the human brain, all forms of computation require energy. Beyond

this similarity however, the human brain and modern computers are individually

unique, each with its own unique architecture, algorithm and hardware. As we

continue to explore the potential of artificial intelligence and machine learning,

understanding the fundamental limitations of energy consumption during computation

becomes paramount. The Landauer Theory states that the theoretical physical limit

for computation for a single bit operation is kBT ln2 which approximates to 10-21 J. [1]

Unfortunately, as we will discuss, our brain and computers are both orders of

magnitude away from this limit.The hope is that by better understanding our brain’s

computation, we will be able to incorporate the lacking aspects of our technology,

thereby improving our computers which is plateauing. This thesis aims to investigate

and compare the efficiency of energy consumption in the human brain and modern

computers.

Brain

The human brain, a marvel of biological complexity, serves as an efficient and

intricate computing system capable of performing a myriad of tasks. Through

millions of years of evolution, our brain, similar to the relatively compact history of
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computers, has also grown more efficient and powerful. With approximately 88

billion neurons and a power consumption of approximately 20 W, the human brain

demonstrates remarkable energy efficiency. At the core of this functionality lies a vast

network of interconnected neurons that communicate through electrical signals

known as action potentials. Understanding the energy dynamics of action potentials is

crucial for uncovering the mechanisms that enable the brain’s remarkable energy

efficiency and offers valuable insights into the development of efficient computing

technologies.

Action potentials, or nerve impulses, are the fundamental means of communication

between neurons in the brain. These electric signals are generated through the

orchestrated interplay of ion channels and pumps that maintain and manipulate the

transmembrane potential, enabling the propagation of information along axons. While

the generation and propagation of action potentials are essential for the brain’s

functionality, they also entail significant energy costs. A detailed understanding of the

energy dynamics of action potentials is not only critical for grasping for the brain's

energy efficiency but also may have broader implications for the development of

energy-efficient computing systems. We will investigate the energy consumption of

action potentials in human brain axons through two different methods:

1) Through the induced voltages and current from an action potential

2) By calculating the capacitance across the axon membrane
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By thoroughly investigating these aspects, we aim to develop a comprehensive

understanding of the energy dynamics of action potentials in human brain axons.

Modern Computers

Modern Central Processing Units (CPUs), the primary components responsible for

executing instructions in computers, consume a significant portion of a system’s

energy. Modern CPUs, characterized by their advanced architectures and billions of

transistors, are responsible for performing a wide range of tasks, from executing

complex calculations to managing system resources. The energy consumption of

CPUs depends on various factors, including clock speed, transistor count,

manufacturing process, and power management techniques. In recent years, there has

been a continuous push for improved performance, often accompanied by an increase

in energy usage.

Despite the increase in total energy consumption, the average cost of computation,

defined in terms of floating point operations (FLOPS), has decreased significantly

over the years, by as much as 1012 since its inception in the 1940s.
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Figure 1: Computations per kWh over recent history. Taken from Dr Jon Koomey,

http://www.koomey.com/post/14466436072, CC BY-SA 3.0

The Electronic Numerical Integrator and Computer (ENIAC) was the first

programmable general-purpose electronic digital computer built during World War I,

utilizing vacuum tubes. It was first proposed by physicist John Mauchly in 1942,

which was then used by the US Army to calculate complex wartime ballistics tables.
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This 1800 ft2 computer was capable of computing 5000 additions per second with a

clock speed of 100 kHz. However, this technology was extremely energy inefficient,

requiring 160 kW, most of which was lost as heat.

The first transistorized computer, Transistor Digital Computer (TRADIC), was built

in 1954 by Jean Howard Felker of Bell Labs. An improvement from the ENIAC,

TRADIC had a clock speed of 1 MHz, which unfortunately was still slower than the

vacuum tube computers of the day. However, shifting from vacuum tubes to

transistors significantly reduced the power consumption down to less than 100 W and

shrank it to a mere 3 ft3. Since then, as Moore’s law predicted, the rate of computing

power and efficiency has since exponentially increased, with a mere 800 transistors in

TRADIC to billions today. Combined with an improvement in architecture, the

average computer today has a clock speed of approximately 5 GHz and a processing

speed of 1 teraflop with just approximately 100 W, while the world’s fastest

supercomputer performs at 124.5 petaflops. Our computing power and efficiency has

since come a long way which begs the question if computers or the human brain,

through millions of years of evolution, is more efficient?
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Comparison

Many argue that our brain’s computing efficiency is superior to our most advanced

modern computers. For instance, OpenAI’s ChatGPT, an artificial intelligence that

serves to answer any of queries, thus mimicking an extremely smart human being,

took megawatts and several months to train. Another similar Large Language Model

(LLM), the BigScience Large Open-science Open-access Multilingual Language

Model (BLOOM) with 176 billion parameters, took 118 days to train, using a

staggering 433196 kWh or 1.56 TJ of energy, several orders of magnitude larger than

any human would consume in a lifetime. [2] Yet, in many ways, humans are superior

to these LLMs, which often still make many minor mistakes that the average human

does not. However, this is most likely due to the underlying algorithm. Afterall, the

human brain has had millions of years to evolve and adapt to be more efficient at such

tasks. It is therefore important to distinguish the difference between the “software”

and “architecture” of these computers which includes algorithms and “hardware”.

Our focus here will be on comparing the efficiency of the “hardware”, or the material

through which signal is being transmitted in both the brain and computers instead of

the algorithm. We will be comparing the energy required for the fundamental

processing of 1 bit of information, which we consider to be an action potential for the

brain and the flipping of a transistor switch in a modern computing processor.

How our brain processes these bits of information depends on its algorithm and thus

software and architecture which we will not be investigating in this thesis.
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We are assuming a fairly standard model of neuronal processing which is quite

similar to the way artificial neurons are modeled. Namely that the output of axons are

generated by first doing a weighted sum over time averaged inputs, and then put

through a nonlinear activation function. This involves order N computations, so with

N inputs there is of order one computation per input. It is also possible that the

processing is more complex, resulting in an underestimation of the efficiency of

computation in the brain. However, we have yet to find any experimental evidence to

support this.

The overall computing process in a brain is far more complex than mere action

potentials and transistor bit flips. Neurons in the brain communicate with many

others, up to thousands through synaptic potentials. Similarly, multiple transistors

work in conjunction with one another during computational processes. It is therefore

extremely difficult, if not impossible to quantify the amount of information being

processed, i.e. what 1 bit of information is in our brain and CPUs. We believe that our

assumption is reasonable for our comparison in energy efficiency between the brain

and modern computers.
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Calculating energy consumption

Brain

The brain is an extremely complex system we are unable to fully comprehend until

today. Therefore, we will be taking two different approaches towards calculating the

computational energy of our brain to verify our estimation. We will specifically be

estimating the energy consumption per action potential along the length of our brain

neurons.

Figure 2: Anatomy of a neuron in the human brain

https://qbi.uq.edu.au/files/24323/Axon-neuron-brain-QBI.jpg
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Action potentials are essentially electrical signals that facilitate communication

between neurons,the primary cells of the nervous system. They are fundamental for

most bodily processes like cognition, sensation, and motor control.

The process starts with a stimulus that causes the neuron’s membrane to depolarize in

some region, meaning it becomes less negative compared to the resting potential. If

this depolarization reaches a certain threshold, an action potential is triggered. The

voltage-gated sodium channels open, allowing sodium ions to rush into the neuron,

causing further depolarization.

This rapid influx of sodium ions causes the inside of the neuron to become positively

charged relative to the outside, which is the “upstroke” of the action potential. This

process is referred to as depolarization.

Once the local membrane potential reaches around +30 mV, the sodium channels

close and the voltage-gated potassium channels open, allowing potassium ions to flow

out of the neurons. This returns the neuron to a more negative internal charge, a

process known as repolarization.

Sometimes, the efflux of potassium ions can cause the neurons to become more

negative than the resting potential, a state known as hyperpolarization. Eventually, the

membrane potential in a local region returns to the resting state and an area close to it
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becomes depolarized. It is however worth noting that there is a wave propagating

down the axon. The whole axon does not simultaneously change its state.

Figure 3: Voltage vs Time plot of an action potential in a neuron

https://www.moleculardevices.com/sites/default/files/images/page/what-is-action-pot

ential.jpg

The entire process propagates along the length of the axon in a wave-like fashion,

serving as a mechanism for transmitting information from the neuron’s cell body to

the synapse, where it can influence other neurons via neurotransmitter release. The
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“all-or-nothing” nature of the action potential ensures that the signal can travel long

distances without losing strength.

The brain can be divided into white brain matter (myelinated axons) and gray brain

matter (unmyelinated axons). Myelin, a type of fatty tissue, wraps around the axons

of many neurons in a series of layers. This myelination serves a couple of important

functions, including speeding up signal transmission and insulating the axon.

Myelinated axons transmit action potentials much faster and more efficiently than

unmyelinated axons due to a process called saltatory conduction, where the electrical

impulse jumps from one node of Ranvier (exposed gaps between the myelin sheath),

to the next. In contrast, the entire length of an unmyelinated axon needs to be

depolarized during an action potential, thus requiring significantly more energy. The

only upside to unmyelinated axons is that they take up less space which can be crucial

in areas of the brain where space is extremely limited.

However, the function of white brain matter, as currently understood, serves to speed

up transmission of signals between gray brain matter, where the bulk of computation

and processing occurs. Since we are comparing the computational energy between the

human brain and modern computers, we will be focusing on the gray matter.

Estimation of the brain’s energy consumption will be done so through two methods,

the peak voltage/current of an action potential, and by obtaining the capacitance of an

unmyelinated axon, coupling it with the peak voltage of an action potential. A third
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method was attempted using ATP molecules. We attempted to search for data on the

number of ATP molecules consumed per action potential by an unmyelinated axon.

However, the current literature on this is extremely limited, with the availability of

some data only on myelinated axons.

Peak Voltage/Current

The first method we will be using is by obtaining the peak change in voltage and

current during an action potential. Due to the absence of real human data, we will be

reviewing data from other mammalian species due to our similar genetic composition,

in particular, cats and mice.

An average of 0.62nA of peak current was delivered to the soma (cell body) of a

neuron during the visual stimulation of a cat’s visual cortex. [3] Pairing that together

with the average change in potential during an action potential of approximately

70mV.

𝑃 = 𝐼𝑉 = 0. 62𝑛𝐴 * 70𝑚𝑉 = 43. 4𝑝𝑊

This voltage/current spike lasts for approximately 1ms which gives us an approximate

average energy consumption of

𝐸 = 𝑃𝑡 = 43. 4𝑝𝑊 * 1𝑚𝑠 = 43. 4𝑓𝐽
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A patch clamp experiment on the axon initial segment (AIS) of the cortical layer 5

pyramidal neurons in Wistar rats (2-4 weeks old) showed a similar reading of 500 pA

or 0.5nA. [4] The induced change in voltage here is about 60 mV within 1 ms. This

gives an estimated energy consumption of

𝐸 = 𝐼𝑉𝑡 = 0. 5𝑛𝐴 * 60𝑚𝑉 * 1𝑚𝑠 = 30𝑓𝐽

Both experiments gave similar results for the estimated energy consumption for

action potential in mammalian brain neurons, approximately within the 10-14 J range.

These results are admittedly somewhat inconclusive and debatable, due to the

extremely complex nature of the brain and use of data collected from other

mammalian species.

Capacitance

To determine the surface area of the axon that should be used in this calculation, let

us first consider the length along the axon that the potential is elevated, during an

action potential moving down the axon. The average velocity of an action potential in

an unmyelinated axon is about 0.5 m/s to 10 m/s. [5]. Taking a conservative estimate

of 1 m/s, coupled with the spike time of 1 ms, this gives us an approximate of about 1

mm for the axon’s length. Another approach would be to look at the density of

cortical neurons which is approximately neurons/mm3. [6]. The average𝑛 = 4 * 104
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distance between neurons is which is approximately 0.03 mm. On the other1/𝑛1/3

hand, there are of order 103 connections (many of which are on a single axon

however). This might then give us an average distance 10 times the distance between

neurons, which is 0.3 mm. In this case, we will be using 1 mm, which we consider to

be the upper bound for the length of an axon, in our subsequent estimations.

The average capacitance per unit area of a cortical pyramidal neuron is

0.92 ± 0.05 𝜇F/cm2. [7] With an approximate diameter and length of 1 micron and 1

mm respectively, we can estimate the average capacitance of axons in a neuron to be

28.9 pF. The average diameter of the soma is about 21 𝜇m. [8] This gives us a radius

of 10.5 𝜇m and an average somatic capacitance of 12.7 pF. The total average

estimated capacitance of a neuron is therefore 41.6 pF. An experiment which

analyzed the somatic capacitance of varying sizes of Wistar rats shows that this

estimation is reasonable. [9] Coupled with the average peak action potential of

approximately 70 mV, we can estimate the total energy of this action potential to be

𝐸 = 1
2 𝐶𝑉2 ≃ 100𝑓𝐽

assuming a length of 1 mm, and about 52.5 fJ, taking the length to be more typical of

two connected neurons in the gray matter. The white matter is a completely different

issue. Axons in that region are often many centimeters long. However fMRI studies

show that most of the oxygen uptake, and therefore energy consumption is in the gray
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matter. Altogether, the capacitance calculation we described is surprisingly close to

the voltage/current calculation described above, both being at the 10-13 to 10-14 J

range, depending on the length and size of the axon and soma respectively.

Discussion

We have established that an action potential requires approximately 10-14 to 10-13 J of

energy, Another approach to estimating this would be to take the total number of 86

billion [10] neurons in the brain and multiply that by the average 1000 synapses it

has. Even though synapse potentials are smaller than action potentials, they are still

within the same order of magnitude, 101mV and are therefore relevant for this

estimation. From Figure 3, we can see that an action potential, coupled with its

refractory period, takes approximately up to 5 ms. We can estimate the number of

action potentials per second by finding the inverse of that duration. Running at a

frequency of a few hundred hertz, and assuming that we only use about 10% of our

brain, we arrive at approximately 10-14 J. This is within the bounds of reasonable and

realistic parameters. However, since synapses are not actually responsible for

processing bits of information, but rather for neurons to communicate with each

other, we will not investigate this method further. Rather, this should support that our

10-14 J approximation is highly plausible.
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Modern Computer

There are several measurements of computational speed in a modern central

processor unit (CPU), mainly floating point operation per second (FLOPs) and clock

speed. FLOPs refer to the speed at which the CPU can perform numerical calculation

or floating point operations per second. It is most often used in scientific computing.

Due to the nature of its specific mathematical application, we will avoid using this

measure of speed. We will instead focus on clock speed.

Clock speed refers to the number of clock cycles a CPU undergoes in a second. To

simplify it, a clock cycle in a CPU is one complete round of sequence of events in

which a single instruction is processed by the CPU. During each clock cycle, the CPU

can perform, or partially perform a certain number of operations, such as reading data

from memory, performing a mathematical operation, or writing data back to memory

which is in contrast to FLOPs. All of these operations are determined by bit flips in

the billions of transistors encased within an average 16 mm x 16 mm modern CPU

chip. A bit flip in a transistor corresponds to a change in its state, from 0 to 1 or vice

versa, otherwise known as an operation on a bit. This change in state is fundamental

to the operation of digital circuits, including the CPU in a computer.

The number of operations a CPU can perform per clock cycle depends on its

architecture and design. Thus, while clock speed can be used as a gauge of computing

performance, there are other factors such as architecture and number of cores to
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consider. While we can include the number of cores by simply multiplying it with the

clock speed, as discussed above, we will not attempt to consider any measure that has

to do with the CPU’s architecture in our comparison, as we believe that this will give

us a more direct comparison of the efficiency of the underlying hardware.

We will be using the following equation:

𝐸𝑛𝑒𝑟𝑔𝑦/𝑏𝑖𝑡 =
𝑃

𝑚𝑎𝑥

#𝑐𝑦𝑐𝑙𝑒/𝑠 × #𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠

where refers to the maximum wattage rating of the CPU, # cycles/s refers to the𝑃
𝑚𝑎𝑥

number of clock cycles the CPU undergoes every second and # transistors refers to

the total number of transistors in a chosen CPU.

Advanced Micro Devices’ (AMD), one of the world’s leading CPU manufacturers,

commercial grade chip AMD Ryzen 7 7800X3D released in 2023, has a maximum

power rating of approximately 120 W with 6.57 billion transistors.
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Figure 4: Specifications of the AMD Ryzen 7800X3D CPU

https://www.techpowerup.com/cpu-specs/ryzen-7-7800x3d.c3022

Assuming only 10% of the transistors changing their state under “maximum load”, an

extremely conservative estimate, we will get an average output of 4.22*10-18 J or

4.22 aJ/bit, approximately 3 orders of magnitude away from the Landauer’s limit, a

theoretical threshold for the minimum amount of energy required per bit of

information. In essence, our current computing hardware is extremely advanced,

nearing its theoretical limit. Any further improvements have diminishing returns and

new types of computer, such as quantum computers are required for us to make any

giant leaps.
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Conclusion

As our estimations have shown, modern computers’ hardware are several orders of

magnitude more efficient than our human brain at computation. More specifically,

computers use approximately 10-18 J per bit of computation versus our brain which

requires about 10-14 J. Our brain is a technological marvel we cannot truly

comprehend despite our other scientific accomplishments, including putting men on

the moon. Several sources argue that the brain, being a mere 20 W “machine”,

computes tremendous amounts of information at once, including processing all 5 of

our sensory organs. However, the efficiency is more likely due to our brain’s

architecture, programming and algorithm, which we have lumped together to call

“software”, to distinguish it from its underlying hardware, namely, neurons

communicating via action and synaptic potentials.

The “hardware” of computers, including the copper wires and transistors are

extremely efficient at transmitting information, beating out our axons and dendrites

by several orders of magnitude. Seeing that computers are nearing its theoretical

limit, unfortunately, any further engineering improvements bring minimal gains. As

can be seen from major technological companies such as Google and Microsoft,

efforts are already being focused on researching quantum computers, although the

technology is still at its infancy with several limitations such as its physical size, a

problem our modern computers faced in the early days too.
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Seeing how efficient our brain is with overall computation leads us to believe that

other factors, mainly the “software” of our brain, are extremely well adapted to

minimal energy consumption and rightfully so through millions of years of evolution.

However, even then, it is difficult to pinpoint which algorithm is superior since

everything that computes, ranging from mobile devices, to humans and even insects

are specialized. For instance, our modern computers are extremely fast at doing

numerical operations, particularly floating point operations and the fastest human is

orders of magnitude slower than a computer despite on average only consuming 10%

the energy of a modern computer. In contrast, we have fantastic motor skills and the

most advanced human-like robots are far from mirroring our physical movements,

and as of 2023, we still have intellectual capabilities that the most advanced AI

algorithms do not have, such as being able to come up with relativity and quantum

mechanics or prove Fermat’s last theorem.

Nevertheless, having a deeper understanding of our brain mapping can aid us in

developing more efficient computing architectures and programming for various

specialized applications. I reviewed approximately 10 papers that I could find about

energy cost of action potential. All of them had flaws their made their conclusions

unreliable.

An example would be a paper we studied regarding the amount of ATP molecules

converted per action potential. [11] This highly cited paper calculated the energy cost
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from ATP based on what appears to be a flawed analysis. In particular, below their

equation 8, they state, without explanation, a novel variant of the Nernst equation,

which instead of comparing potential differences between different points in space,

involves differences in time. This is clearly incorrect. If one were to slowly increase

the potential of the solvent holding the neurons, by an arbitrary amount, this would

not affect charges or any of the physics on the neuron themselves. This tells us that

the energy analysis of action potentials require more work and increases the

significance of my work here.

While we are extremely far away from being able to mimic the brain for all potential

computing technology, we should constantly strive to continue studying and learning

more about the brain, while contributing genuine and well written scientific papers to

the community so that we can make better and quicker progress in the field of

neuroscience and possibly computing.
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