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Atomistic molecular dynamics (MD) simulations of protein molecules
are too computationally expensive to predict most native structures
from amino acid sequences. Here, we integrate “weak” external
knowledge into folding simulations to predict protein structures,
given their sequence. For example, we instruct the computer “to
form a hydrophobic core,” “to form good secondary structures,” or
“to seek a compact state.” This kind of information has been too
combinatoric, nonspecific, and vague to help guide MD simula-
tions before. Within atomistic replica-exchange molecular dynamics
(REMD), we develop a statistical mechanical framework, modeling
using limited data with coarse physical insight(s) (MELD + CPI), for
harnessing weak information. As a test, we apply MELD + CPI to
predict the native structures of 20 small proteins. MELD + CPI sam-
ples to within less than 3.2 Å from native for all 20 and correctly
chooses the native structures (<4 Å) for 15 of them, including ubiq-
uitin, a millisecond folder. MELD + CPI is up to five orders of mag-
nitude faster than brute-force MD, satisfies detailed balance, and
should scale well to larger proteins. MELD + CPI may be useful
where physics-based simulations are needed to study protein mech-
anisms and populations and where we have some heuristic or
coarse physical knowledge about states of interest.

protein folding | molecular dynamics | integrative structural biology |
Bayesian inference

Computer modeling is an important source of insights into the
properties of protein molecules. There are two main approaches,

each with different main areas of applicability: comparative modeling
and atomistic molecular dynamics (MD) simulations. Comparative
modeling draws inferences from a database of the more than 100,000
known native structures of proteins (1); it is an information-centric
approach. A key area of applicability is in predicting the native
structures of previously unknown proteins. These methods are often
tested in the community-wide blind event for predicting native pro-
tein structures, called community assessment of structure prediction
(2, 3). In contrast, physics-based atomistic simulations are aimed at
computing proper relative populations of the many different states
of a system; this type of modeling is an energy-centric approach.
Computing proper populations (or, correspondingly, free energies) is
essential for elucidating stabilities, motions, and mechanistic actions
of protein molecules.
Physical simulations offer important advantages in the long run,

providing a principled and transferrable basis for understanding
properties; the capability to go beyond just native structures alone
to dynamics, binding, folding, and mechanisms; applicability where
databases are limited, including membrane proteins or other
foldable polymers, such as peptoids (4); and extensibility to other
temperatures, solvents, and binding conditions, for example. A
proper physical model requires a plausible physical energy function
that can accurately predict native structures (validation); that ap-
plies across many different proteins (transferrable); that satisfies
Boltzmann’s law (physical); that scales up to sufficiently large
proteins (practical); and, when predicting folding, that begins from
the fully unfolded state (to avoid inadvertent biases). These ob-
jectives are largely not met by bioinformatics algorithms, which do

not satisfy Boltzmann’s law, or by current atomistic simulations,
which are too computationally expensive to tackle sizable proteins
starting from fully unfolded states.

Major Challenge in MD Is Conformational Sampling
MD simulations are computationally expensive for the levels of
conformational sampling needed to fold proteins from unfolded
states. Integrating Newton’s equations of motion a few femtoseconds
at a time (required for satisfactory approximation of differential
equations by difference equations), finding the native state can take
millions (microseconds) or billions (milliseconds) of integrations,
which translates into weeks, months, and even years of computer
time depending on system size and machine architecture. However,
in many situations, we care mostly about particular “states of in-
terest.” For example, for protein folding, one key state of interest is
the protein’s native structure. For mechanistic actions, we may know
something about the structures of the beginning and ending states.
The present work focuses on problems involving particular states of
interest, even when we do not know their exact structures.
There is a long history of integrating information-centric with

energy-centric methods in seeking states of interest. Integrative
structural biology combines them, for example, in pioneering
methods, such as Modeler (5, 6); methods based on Rosetta (7–
9); and others (10). However, in such marriages, the energetic
modeling is secondary; it does not satisfy Boltzmann’s law or give
proper populations or free energies. Here, because our end goal
is fundamentally to get proper populations, we seek a method
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that satisfies detailed balance. We take the energy-centric ap-
proach as primary.
How might we guide MD simulations to states of interest when

we do not know what those structures are? We describe an ap-
proach based on coarse physical insight(s) (CPI), that is, heuristic
knowledge about the states of interest. For example, we know the
generic features of single-domain, water-soluble, globular proteins.
They have hydrophobic cores. They have substantial secondary
structures and are compact. They have β-strands that are usually
paired. Such information alone is much too vague, nondirective,
and combinatoric for a computer algorithm to find the correct
native structure, given only an amino acid sequence. However, we
show here how that level of “weak information” can be used to
create multiple funnels on MD energy landscapes, accelerating
conformational search while preserving the relative populations of
the states of interest.

Method of Modeling Using Limited Data + CPI
Our approach has two components. First, modeling using limited
data (MELD) is a Bayesian inference approach (11). It combines,
on the one hand, prior information (Eq. 1) based on MD simula-
tions of an atomistic model with the underlying distribution coming
from a force field. On the other hand, sparse, ambiguous, and
uncertain information for the determination of protein structures is
used and evaluated as the likelihood that each structure is com-
patible with the information (11) (Eq. 1). Sparse refers to data that
are accurate but insufficient on their own to specify a structure.
Ambiguous refers to data that are not very precise or where there
are different possible interpretations. Uncertain refers to data that
are only partially correct, where a subset of information is wrong
and would lead to incorrect structures. MELD integrates data that
is limited in these ways with Hamiltonian and temperature replica-
exchange molecular dynamics (H,T-REMD) simulations to refine
protein structures:

pðxjDÞ= pðDjxÞpðxÞ
pðDÞ ∼ pðDjxÞpðxÞ, [1]

where x represents structures, D represents experimental data,
p(xjD) is the probability of the structure given the data, p(Djx) is
the likelihood of the data given the structure, p(x) is the Boltzmann
probability distribution of structures from the atomistic force
field model, and p(D) is an irrelevant normalization factor.
Restraints are used to incorporate the data into simulations.
The second component of our method is the use of CPI to

guide REMD simulations toward states of interest. In particular,
we illustrate the principles on a problem of finding protein native
structures from extended chain states using REMD. The CPIs
that we use here are (i) that proteins have secondary structures,
(ii) that proteins have hydrophobic cores, (iii) that β-strands pair
up, and (iv) that proteins have compact structures. The challenge
is in how to formulate these well-known rules into a formulation
that is more directive than misdirective in an MD simulation.
We do not know which particular interactions will be satisfied

in a given protein. Instead, from collecting statistics in the Pro-
tein Data Bank (PDB) before simulations, we know the fraction,
fCPI, of the possible interactions that will typically be satisfied.
For example, a globular protein of up to 100 residues typically
makes 8% of its possible hydrophobic contacts (fhyd = 0.08), and
70–80% of secondary structure predictions from Psi-blast–based
secondary structure prediction (PSIPRED) (12, 13) or PORTER
(14, 15) are typically correct (fss = 0.8). The combinatorics of
CPIs have a small directive signal toward folding: Only a few of
the exponentially many possible combinations are consistent with
the native structure. MELD + CPI simultaneously infers both
which restraints are correct and the corresponding structural
ensemble. Full details of MELD + CPI are given inMaterials and

Methods and SI Appendix, Methods, and details of MELD are
provided elsewhere (10).
Each type of CPI is turned into a set of possible restraints with a

flat-bottom harmonic functional form (SI Appendix,Methods). Then,
at each time step, given the current configuration, and for each type
of CPI, MELD + CPI will sort all of the restraints by energy and will
activate the fraction f restraints with lowest energy, the “least-
stretched heuristic restraints,” to guide the simulation until the next
time step. Choosing these least-stretched springs is very fast and
reduces the combinatoric problem to deterministic choice. MELD +
CPI uses Hamiltonian and temperature replica exchange, where the
restraints are weak at the highest temperature, whereas the restraints
are strong at the lowest temperature. This pipeline is illustrated
schematically in Fig. 1 in an HP lattice model. The Hamiltonian and
temperature change in the replica exchange. At the highest replica,
the restraint force constants are zero; hence, configurations are
sampled all over the potential energy surface (PES). Moving down in
the replica ladder, the spring constants increase, funneling the PES
toward regions compatible with different combinations of springs.
Because the springs have a flat bottom, the spring energy (and force)
is zero inside the funneled region. Hence, the sampling inside those
regions is just driven by the force field. The relative populations
inside such different regions are the same as in the original force
field. Because the restraint energy is always greater than or equal to
zero, regions that were not preferred by the force field before will
not become stabilized.
Fig. 2 shows in a qualitative way how this procedure makes the

landscape more funneled and frustrated. Under the influence of
the springs, it is not possible to exchange from one minimum to
another. To escape those valleys, excursions to higher replicas
are needed. The temperature increases and spring force con-
stants decrease as a “walker” moves to higher replicas. Thus, the
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Fig. 1. Illustrating how MELD + CPI works, in terms of molecular structures.
The principle of the method is simplest to convey by using a toy HP lattice
model of a short chain in two dimensions. We are given the sequence
HHPPPHPHH. For simplicity, the heuristic information (CPI) that we use in this
case is just the pairing of hydrophobics in HH contacts. (Top Right) All seven
possible HH pairings are shown. Our starting knowledge is that the native
structure will have about 2 HH contacts, but we do not know which ones. The
second row of the figure shows two possible conformations that are achieved
after partial conformational sampling. The third row shows that for a certain
conformation, only the lowest restraint energy HH contact springs will be
guiding the system (i.e., those contact springs that are most compatible with
each given conformation). The fourth row shows the conformations that those
springs lead to. Based on the populations (or number of HH contacts in this
simple model), we can differentiate which of those two conformations will be
the native state. Note that there are many other pathways leading to other
conformations. These conformations were found by a combination of the
physical simulation plus the two heuristic springs that were imposed by using
the knowledge that the protein should have a hydrophobic core.
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PES becomes less frustrated, and there is more kinetic energy to
allow greater configuration sampling, driving each walker in
the REMD to new regions compatible with different springs.
In summary, we sample from a multifunneled energy landscape

using H,T-REMD. Increasing the temperature weakens both the
physical and heuristic-restraint interactions. The H,T-REMD serves
to move from different regions of conformational space. At the
highest replica, the temperature is high and the restraints are in-
active. Hence, the sampling is broad, covering the entire confor-
mational landscape. As we go down the replica-exchange ladder,
the temperature decreases and the restraints become stronger, ef-
ficiently funneling down toward the region of conformational space
where the set of fCPI contacts are satisfied (restraint energy = 0).
We use flat-bottom harmonic potentials so that multiple micro-
states are compatible with this fCPI. At the end of the simulations,
the last half of the bottom five replicas is combined and clustered
using average-linkage clustering (13). The centroids of the top five
clusters by population are used as representative of the folded state.

Results
MELD + CPI Samples Near-Native Structures Very Efficiently. We ap-
plied MELD + CPI to 20 small proteins (SI Appendix, Table S1)
drawn from two datasets (14, 16), ranging from 20 to 92 residues in
length. We assessed our predicted folded structures using three
different measures. The first, Best1Pop, reports the backbone rmsd
of the centroid of the single most populated cluster. The second,
Best5Pop, reports the lowest backbone rmsd from the centroids of
the five most populated clusters. These two measures test the
combined success of the force field and the completeness of the
conformational sampling. The third measure, BestStruc, reports
the lowest backbone rmsd of any single structure sampled in the
simulations. This test is more specific of just MELD + CPI itself,
which helps us to distinguish any flaws of MELD + CPI from flaws
of the force field, per se. We define success as a backbone rmsd
difference of the predicted and experimental structures below 4 Å.
By the BestStruc criterion, MELD + CPI is successful at sam-

pling native and near-native structures for all 20 of the proteins
(SI Appendix, Table S2). By the Best5Pop criterion, we find that
MELD + CPI successfully identifies the native topology for 15 of
the 20 targets (Fig. 3 and SI Appendix, Table S2). By the Best1Pop
criterion, we find that the single lowest free-energy cluster had a

backbone rmsd below 4 Å in 11 of 20 cases (SI Appendix, Table
S2). These results show that the principal limitations are the
force field (17), the solvent model (18, 19), or the sampling time,
rather than the coverage of conformational space, indicating that
these factors are not limitations of MELD + CPI, which is a
sampling method.
Fig. 4 compares the performance of MELD + CPI against un-

constrained MD simulations (20). Although this comparison is not
an apples-to-apples comparison, because those simulations were
not all initiated from fully unfolded states, used a different solvation
model, and were targeted at questions of kinetics (21), there are few
simulations more relevant for comparison. MELD + CPI is up to
five orders of magnitude faster than the estimated folding times
from those unrestrained simulations (Fig. 4A).
Unrestrained MD simulations were performed by Nguyen et al.

(22), whose work is similar to ours in the force-field, implicit-solvent
model (23); REMD sampling; and initiation from completely
extended chain states (22). Fig. 4B shows “receiver operating
characteristic-like” (ROC-like) plots indicating that MELD +
CPI finds conformations near the native structure much more
effectively than the 500 ns of unrestrained REMD (22) (Fig. 3B)
or the longer time simulations (22) from that work. MELD +
CPI samples native states in all 20 proteins, whereas only a
fraction of them were sampled by using MD (22) or T-REMD
(22). Especially relevant is protein G (PDB ID code 1mi0):
Neither an ∼60-μs MD run nor an ∼30-μs REMD run can reach
native-like structures (Best5Pop = 7.5 Å in the unrestrained
REMD) (22). Fig. 4 C and D shows a more complete measure
of performance than either simulation time alone or sampling
efficiency alone. A simple measure, which reflects both sam-
pling effectiveness and search speed, is P = ffolded

t , where P is the
performance (higher P means more efficient simulations), ffolded
is the fraction of structures in the full ensemble that are less
than 4 Å rmsd from the native structure, and t is the total
simulation time (including all replicas). By this definition, P is
also useful for rating the success of single trajectories on the
same footing as sampling from replica exchange. Fig. 4C shows
that MELD + CPI has better sampling performance than in the
corresponding standard REMD simulations. Fig. 4 C and D
shows that for very small proteins, there is not much advantage
to using this strategy, because residues are close enough that
they will often come in contact due to thermal fluctuations.
However, as the system gets larger, MELD + CPI provides an
improvement in efficiency.
The advantage of physics-based strategies is having a proper

thermodynamic way to identify the native state based on pop-
ulations. MELD + CPI is based in REMD so it obeys detailed
balance (11) and hence populations are meaningful. For pop-
ulations to be significant, the REMD should be converged. SI
Appendix, Fig. S1 shows the convergence of the REMD ladder by
plotting the rmsd distributions to the same random structure of
every walker as it visits different replicas. The greater the overlap
between the different distributions, the closer they are to con-
vergence. For proteins like 1fme, 1prm, 2f4k, or 2jof, the dis-
tributions overlap significantly, increasing the likelihood of
success on clustering. On the other hand, proteins like 1lmb,
1ubq, or 2hba would require more sampling to converge the
REMD. When taking the same measure based on a native-cen-
tric view (SI Appendix, Fig. S2), we can count how many in-
dependent replicas have found native-like conformations. The
higher the number, the more likely is identification of the native
state. Longer simulations would increase convergence and the
amount of cases in which just the first cluster is enough to
identify the native state. Convergence of the simulations is out of
the scope of this paper and is not considered in the extrapola-
tions of Fig. 4D. Clustering is performed based on structure
similarity: Unfolded structures are structurally diverse from each
other, leading to small clusters, whereas native-like structures are

Fig. 2. Illustrating how MELD + CPI works, in terms of energy landscapes.
An illustration of the same principle, except using an energy landscape
picture instead of a lattice model and using helix pairings instead of HH
contacts as a heuristic principle, is shown. (A) Suppose a heuristic identifies
three possible pairings of helices. Suppose that we know that, on average,
only two pairings occur in the native structure, but we do not know which
ones. (B) MELD + CPI creates funnels on the energy landscape in specific
regions that satisfy different CPI. The molecular simulation finds the deepest
of these wells.
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clustered together, leading to higher populations, allowing us to
identify native states even in some cases where the replica-ex-
change ladder is not converged.
Of special interest were the five proteins that sampled the

native structures well but did not identify them. Here, we can
distinguish between force field errors and convergence problems.
We reran these simulations starting from the native state (SI
Appendix, Fig. S3). We find that the native state is only stable for
one of the five proteins (2hba). So, for the other four proteins,

the problem is the force field rather than the convergence. For
2hba, expanding the folding trajectory of 2hba from 500 to 800 ns
starting from the unfolded state (SI Appendix, Fig. S4) shows an
increase in the native-like population, demonstrating that our
convergence was the problem in this case.

Different CPI-Restraint Types Play Different Roles in Reaching Native
Structures. We use different temperature dependencies for our
restraints in the REMD temperature ladders. Our restraints on

Fig. 3. Predicted native vs. experiments. The Best5Pop
rmsd is indicated in bold; the BestStruct is not in-
dicated in bold and is shown superposed on the na-
tive structure. Predictions that are closer than 4 Å
rmsd to native in Best5Pop are shown above the line.

NN

A B

C D

Fig. 4. Performance of MELD + CPI vs. unrestrained MD simulations. (A) Comparison of time to fold for MELD + CPI vs. average folding time predicted from
explicit solvent MD (14). (B) Receiver operating characteristic plot: The y axis is the fractional native sampling by MELD + CPI in 500 ns of simulation, whereas
the x axis is the corresponding fraction of native sampling by unrestrained REMD (22). Orange dots indicate 500 ns of sampling in the unrestrained REMD, and
blue dots indicate the whole unrestrained REMD trajectory (22). (C) Performance P (main text) of MELD + CPI vs. unrestrained implicit solvent simulations (22).
N is the number of residues in the protein. (D) Predicted simulated time from extrapolation of data in C to longer chain lengths. The simulation times
represent the time needed to achieve a population of 0.01 native in the ensemble. Dashed gray lines indicate the expected protein size that can be sampled in
1 μs. Dashed black lines indicate the expected simulation time for a 200-residue protein with both methods. In D, the scalings are projected to longer protein
chains. These extrapolations are just based on the sampling, and are not intended to address the scaling of force-field inaccuracies that will also increase with
system size. For 200-mer proteins, the figure shows that the MELD + CPI recruitment of external heuristic knowledge should reduce the computational costs
by about nine orders of magnitude relative to pure brute-force MD.
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secondary structures and compactness are formed over a wide
range of temperatures, whereas our hydrophobic and strand-
pairing restraints are scaled to weaken to a force constant of zero
at high temperatures. This procedure loosely mimics the
folding-kinetics idea of zipping and assembly (24), namely, that
local structures (secondary structures) form early in folding and
nonlocal interactions form later. One general observation is that
the more diverse the information, the faster is the computational
first passage time. Hence, we expect that introducing other types of
heuristic information, from experiments or evolution (17), might
speed up simulations further.
We studied our ubiquitin simulation. Ubiquitin is a challenge for

brute-force MD due to its slow folding time, but it is folded well by
MELD + CPI. We studied the role of the different types of CPIs
(SI Appendix, Table S3) in accelerating the folding of ubiquitin. In
the native state, 18% of the possible hydrophobic contacts are
satisfied in ubiquitin, compared with only the 8% that we imposed,
which is representative of the PDB. We asked whether adding
more hydrophobic restraints would have improved the results. We
found improvement of our best rmsd structure (BestStruct) by
0.6 Å, but we were not able to detect the native state in the top
five clusters. This failure could indicate a longer convergence
time when the accuracy is close to the real native accuracy (there
are many possible sets of hydrophobic pairs enforcing 8% of the
restraints but only one that enforces the correct 18%), or it could
be an effect of backtracking (25).
To test this balance between sampling correct structures and

identifying them further, we tried to fold ubiquitin only using sec-
ondary structure predictions. Surprisingly, our BestStruct is close to
the case where we use hydrophobic contacts and strand pairing.
However, the clustering results are significantly worse (4 vs. 8 Å).
The heuristic on the secondary structure is a local one: It limits the
conformational sampling based on the local environment (helix or
strand) but provides no information about long-range interactions.
At the other extreme, hydrophobic contacts and strand pairings give
us long-range information but do not impose restrictions on the local
environment. This set-up leads to many correct, but not stable,
contacts. Without secondary structure restraints, our simulations did
not sample the native state. Hence, there needs to be a balance in
the restraints: Long-ranged contacts overcome diffusive barriers,
whereas short-ranged ones predispose the local environment to
stable long-range interactions. Without the correct local environ-
ment, successful long-range interactions are less likely to happen.

How Can We Measure the Performance of Constrained Conformational
Search Methods? How can we measure the performance of com-
puter methods that aim for both speed and accuracy in predicting
native protein structures? Computational speed is simple to de-
termine. Here, we want to know how well a conformational search
method, such as the present one, is able to explore a localized
targeted space, such as around the native structure. We focus on
how much the method restricts conformational searching. The
Flory–Huggins (FH) theory of polymer chain conformations (11)
gives us a physical basis for computing the reduction in confor-
mational searching due to different numbers of constraints, in a
mean-field approximation. In FH theory, ρ is the number of con-
tacts made in the chain divided by the maximum possible number
of contacts, so this value corresponds to the fraction of the maxi-
mum possible number of springs that could possibly be enforced.
So ρ goes from 0 (no spring restraints) to 1 (maximally compact
structure defined by springs). Hence, ΔS (ρ) = R ln W(ρ) is the FH
conformational chain entropy as a function of the relative number
of such spring constraints, and W is the size of the conformational
space. The conformational entropy of the remaining degrees of
freedom can also be described as ΔS (ρ) = [(1 − ρ)/ρ] * log(1 − ρ),
which is a mean-field estimate of the reduction of conformational
searching as a function of informational springs. SI Appendix, Fig.
S5 exemplifies this point: in A, three proteins are simulated with

different types of heuristics restraints (2HBA, protein G, and
ubiquitin), showing that as the number of springs increases, so does
accuracy. SI Appendix, Fig. S5B shows the increase in perfor-
mance compared with simulations without springs with an in-
creased fraction of restraints (ρ). The plots showcase the ability to
identify native states better by clustering with shorter simulations as
the amount of restraints increases relative to a given protein chain
length.

What Are the “Computational Pathways” to the Native State?We have
studied the restraint pathways that MELD + CPI finds as it seeks
the native structure. These restrain pathways are not physical
pathways because the intermediate states include restraint poten-
tials; these restrain pathways are just sequences of events that are
observed well in the REMD simulations from one restraint to the
next on the way to the native structure. However, at the end points
of our computational folding, there are no restraints still operative,
because they are flat-bottom potentials. Just as in physical protein
folding, MELD + CPI produces different microscopic routes to the
native structures (SI Appendix, Fig. S2). We have used the
MSMBuilder tool (20) to cluster and process the information from
the 30 replicas for each protein. Our interest is in understanding
how MELD + CPI and REMD help to guide and accelerate
folding, rather than trying to understand the physical folding ki-
netics, which do not make sense in our REMD scheme. We track
p-fold values, replica indexes, and rmsd for each of the states
identified by MSMBuilder and then use MSMExplorer (21) to
visualize the resulting pathways.
We make two observations: (i) the MELD + CPI procedure

explores multiple topologies in parallel through independent
walkers, and (ii) there are many possible computational pathways
that satisfy the folding process in the presence of the heuristics (SI
Appendix, Fig. S6). In general, at high replica indices, the pro-
cedure explores a very broad range of extended states, whereas at
lower replica-exchange indices, the structures become compact,
resembling molten globule states. At the lowest replica indices, the
protein is often native-like. A common theme in most pathways we
have observed (except for some of the simpler proteins, such as
TRP-cage) is that they will fold into intermediates that have certain
characteristics of the native state but can have some secondary
structure elements in incorrect orientations. These structures have
to unfold, going back to higher replica indices, and then refold into
native-like topologies (SI Appendix, Fig. S6).

Limitations of the Method. MELD + CPI is a sampling method. It
cannot fix deficiencies in the force field. Although much faster
sampling is accomplished, convergence can be an issue. The se-
quence and secondary structure predictions define the restraints;
hence, for some proteins, they will be more directive (converge
faster) than others.
The basic engine is classical MD; hence, there is no reactivity. If

disulfide bonds are present in the native state but not specified in
the simulations, they can never be formed. The lack of reactivity can
limit the success of the method in some cases (SI Appendix, Table
S4) due to steric clashes between reduced Cys that would not be
present in the oxidized state. Disulfide bond information can be
determined experimentally (26), greatly improving the results of
the simulations.
Finally, not surprisingly, our “globular-protein” heuristics fail

on proteins that are not globular. We tested the present heuristics
on three nonglobular proteins (16). These proteins make fewer
hydrophobic contacts than expected by our heuristics, forcing
MELD to enforce incorrect restraints and ultimately leading to
incorrect structures (SI Appendix, Table S5). These three pro-
teins are helix bundles, so the only nonlocal heuristics in effect
are the hydrophobic contacts. Our accuracy parameter for this
heuristic is set at 8%, but looking at the native structures, we
find that only 4%, 5%, and 6%, respectively, of the hydrophobic
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contacts are satisfied in the native state. Not surprisingly, we were
not able to identify native-like structures. For the native state, there
is no combination of 8% of springs that have zero restraint energy.
Hence, we no longer fall in the regime where comparing pop-
ulations for the native state within MELD is comparable to com-
paring them with the original force field. Ultimately, there is no
basis why MELD + CPI should work (SI Appendix, Table S5) in this
case. Looking at this table, for one of the structures, we sampled
native-like conformations. In this case, we do not expect that longer,
more converged simulations will help, because there is a problem of
matching the wrong heuristics to the wrong problem. Different
definitions of heuristics to deal with nonglobular proteins would be
needed in those cases.

Conclusions
In summary, MELD + CPI harnesses the desirable features of two
approaches to protein structure prediction. Because it entails
REMD simulations with atomistic force fields that satisfy detailed
balance, it does not require specific template protein structures,
samples the protein degrees of freedom extensively, uses trans-
ferrable physical potentials, computes populations rather than just
structures, and will be useful where knowledge bases are limited.
However, because it also uses external structural insights, it is much
faster than MD. The power of MELD + CPI is that the information
it uses is not exact and correct and specific but, rather, is vague,
unreliable, and combinatoric, such as “having a hydrophobic core”
or “having good secondary structures.” In MELD + CPI, the CPI
speeds up the MD and the MD “picks out” the native-like con-
straints. MELD + CPI is a practical application of the fact that
protein folding is sped up by funnel-shaped landscapes. This method
samples the native structures of 20 of 20 small proteins well, predicts
the native structures for 15 of them well, does so much faster than
unrestrained MD simulations (14), can be performed on laboratory-
sized computing clusters, and appears promising for scaling to
larger proteins.

Materials and Methods
This section provides an overview. Full details can be found in SI Appendix.

MD. We model the proteins in full atomistic detail, combined with the im-
plicit-solvation model of Onufriev et al. (27). For the protein interactions, we
used an in-house modified version of the AMBER12SB force field (28) that
adds a correction map (29) term to reproduce the balance between α- and
β-regions of the Ramachandran plot (the correction map is available at
https://github.com/maccallumlab/meld). All our simulations are 500 ns long
(per replica) unless otherwise noted. Initial conformations are fully extended
as generated by the tleap (28) sequence command. We use the OpenMM
suite of programs (30) with the MELD plug-in (11) with a 2-fs time step and
Langevin dynamics.

REMD. For efficient conformational sampling, we use an H,T-REMD sampling
approach with 30 replicas. The temperature ranges from 300 K in the lowest
replica to 450 K in the highest, increasing geometrically. The heuristic re-
straints weaken at higher temperatures. At a low replica index, force con-
stants are strong (250 kJ·mol·nm−2) and at a high replica index, they are zero,
changing exponentially from the lowest to highest replica. It is also impor-
tant to point out that in MELD + CPI, we have used MD as a sampling
method, but other methods that obey detailed balance [e.g., Monte Carlo
(MC) or a hybrid MD/MC approach] could also be used for sampling.

Clustering into Representative Structures. At the ends of each simulation, we
collect together the most similar structures into clusters, as is commonly done
in structure predictions. We have used average-linkage clustering (12, 13)
with a e value of 2, which is standard (14, 15). As input for the clustering, we
took the five lowest temperature replicas. We test the accuracy of clustering
by computing the rmsd of the centroid to the native state. To avoid situa-
tions of loops and termini disrupting the clusters, the clustering is done on
the Cα carbons of residues having predicted secondary structures. For the
comparison with the native state, we consider the Cα of all residues, ex-
cluding flexible termini, as is standard in the field. SI Appendix, Table S1
contains a description of the residues used for each protein. We arbitrarily
define a threshold in which structures closer than 4 Å to native are regarded
as being within the native basin.
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