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Improved Gamma-Ray Point Source Quantification
in Three Dimensions by Modeling Attenuation in

the Scene
M. S. Bandstra, D. Hellfeld, J. R. Vavrek, B. J. Quiter, K. Meehan, P. J. Barton, J. W. Cates, A. Moran, V. Negut,

R. Pavlovsky, and T. H. Y. Joshi

Abstract—Using a series of detector measurements taken at dif-
ferent locations to localize a source of radiation is a well-studied
problem. The source of radiation is sometimes constrained to
a single point-like source, in which case the location of the
point source can be found using techniques such as maximum
likelihood. Recent advancements have shown the ability to locate
point sources in 2D and even 3D, but few have studied the effect
of intervening material on the problem. In this work we examine
gamma-ray data taken from a freely moving system and develop
voxelized 3-D models of the scene using data from the onboard
LiDAR. Ray casting is used to compute the distance each gamma
ray travels through the scene material, which is then used to
calculate attenuation assuming a single attenuation coefficient for
solids within the geometry. Parameter estimation using maximum
likelihood is performed to simultaneously find the attenuation
coefficient, source activity, and source position that best match
the data. Using a simulation, we validate the ability of this method
to reconstruct the true location and activity of a source, along
with the true attenuation coefficient of the structure it is inside,
and then we apply the method to measured data with sources
and find good agreement.

I. INTRODUCTION

SEARCHING for, localizing, and quantifying radioactive
material using radiation detectors is a problem with a

wide variety of applications, from finding lost sources, to
mapping radioactive contamination after a nuclear accident, to
stopping the transport of material at a border crossing [1], [2].
In many applications, the presence of passive material between
the sources and the instrument, if not properly accounted for,
can limit the ability of an operator to quantify the source
and, e.g., lead to an underestimation or erroneous localization
of the radioactivity. Often in these situations the attenuating
material has three-dimensional structure, which adds another
degree of complexity. Because of the difficulty in sensing and
quantifying the attenuation and scattering by passive material,
these effects are seldom accounted for in search applications,
but nevertheless they can be of vital importance.

Many nuclear security, safety and non-proliferation appli-
cations using radiation detection and/or imaging systems can
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benefit from increased abilities to quantify sources in three-
dimensional environments with attenuation from material in
those environments. For example, better mapping of radioac-
tive sources in three-dimensional volumes can help account for
material stored in casks or waste drums in nuclear safeguards
applications. In the event of a nuclear accident, the ability
to rapidly map and quantify contamination, especially in
complex areas like urban environments where the shielding
from structures is important, could provide responders and
the public with high-quality, actionable information needed
to reduce their dose.

In some gamma-ray imaging applications where the quan-
tification of radiological material is critical, techniques have
been developed to simultaneously solve for the radiation
source distribution and attenuation by passive material. Ex-
amples are in PET and SPECT imaging, where algorithms
have been developed to simultaneously image the target while
optimizing the unknown attenuation due to material in the
body [3], [4], [5]. Such techniques have been found to
improve upon earlier techniques that used X-ray computed
tomography (CT) to estimate the attenuation map [6]. For a
recent review of this field, see [7]. Similar techniques have
been developed for Passive Gamma Emission Tomography
(PGET), where tomographic measurements are used to inspect
spent nuclear fuel assemblies [8]. The optimizations required
are nonconvex [7], so these techniques generally leverage the
constrained detector-image geometry, a dense image space
with a limited spatial extent that the detectors encircle, and
predictable attenuation coefficients (e.g., human tissue or fuel
pins). Generally these constraints are included in the form of
regularization functions that are added to the loss function.
Some techniques even incorporate non-attenuation contextual
data such as magnetic resonance imaging (MRI) to aid in the
reconstruction [9].

However, in the case of a freely moving detector system,
none of these advantages remain. No longer is the space
constrained, nor can one assume much if anything about the
density of material in the scene, or even if the source is in
the same plane as the detectors. Nevertheless, many have
studied the problem of locating and measuring the strength
of a point source of radiation using a series of detector
measurements taken in different locations [10], [11], [12],
[13], [14]. Solutions to this problem have been demonstrated
in 2D [10], [12], [13], [15], [16], and often a grid is used to
simplify the calculations involved and to fully explore the non-
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convex space [17]. Because of the computational complexity
and the difficulty of obtaining a representative model of the
measurement geometry and incorporating it into an algorithm,
attenuation by intervening material is seldom considered [15],
[16]. Only recently have source localization methods been
applied in 3D without attenuation [18], [19], and our recent
work has demonstrated accurate quantitative reconstruction in
3D with freely moving systems in cases when attenuation can
be ignored [14], [20], [21]. It is only when the full geometrical
complexity of source localization problems is considered that
a general attenuation model becomes a logical next step. To
our knowledge, the method has not been applied both in 3D
and with attenuation.

As challenging as the SPECT and PGET reconstruction
problems are, the problem of source reconstruction in 3D with
a freely moving system has even fewer constraints, even before
the simultaneous reconstruction of attenuation is considered.
To make the problem tractable, we make four simplifying
assumptions herein: (1) that we are searching for a single point
source, (2) that the background is relatively constant, (3) that
the contextual data from the LiDAR point cloud constrains
where solid material in the scene can be, and (4) that all solid
materials have the same attenuation coefficient. The objective
of this work is to develop a method to solve this special case
and to demonstrate the proof-of-concept of the approach using
measured data.

The solution framework we will use is referred to as Point
Source Likelihood (PSL) [14], [20], [21]. PSL requires the
knowledge of a detector’s position and orientation in 3D as
it collects gamma-ray events, as well as knowledge of the
detector’s angular response. The goal of PSL is to exploit the
full 3-D trajectory and orientation of a freely moving detector
system, together with its (often sparse) gamma-ray event data,
and infer the position and activity of point sources, including
uncertainties on all quantities. To achieve this goal, PSL uses
a sparse representation of the problem, namely that a single
point source and constant background give rise to the detector
measurements, and it tests for the possible presence of a point
source at a number of fixed positions in space. PSL has also
been implemented with a continuous solver instead of using
discrete points [14], and it has been extended to successfully
solve for multiple point sources [20].

In this paper we will show how PSL can be extended to
include the attenuation of material in the scene (Section II)
and demonstrate with a toy model that fitting the attenuation
parameter can return the correct result (Section II-C). We then
apply the method to measurements of sources in experimental
scenarios (Section III) and conclude by discussing the effec-
tiveness and limitations of the approach (Section IV).

II. METHODOLOGY

In this section, we will explain the existing PSL algorithm,
and then extend and validate a version that includes attenuation
in the scene.

A. PSL without attenuation
In the existing PSL approach, the 3-D environment around

the detection system is first populated with possible positions

of point sources (test points). For example, a regular grid of
3-D space around the detector’s path may be used, and that
grid may potentially be downselected to consider only those
grid points that are near a surface (inferred from, e.g., a point
cloud). The photon events in question are assumed to come
either from a photopeak or from a background that is constant
in time; downscattering is neglected. A response matrix is
generated that gives the average number of photopeak photons
that would be detected in measurement i for a source of unit
activity at test point j. The response matrix R is calculated
using the formula

Rij =
A(qi, r̂ij)

4π|rij |2
BCτij∆ti, (1)

where qi is the system’s orientation, rij is the vector from
the system to the test point, A(qi, r̂ij) is the effective area
given the system orientation and direction to the point, which
we have assumed is in the far field, B is the branching ratio
for the gamma-ray emission of interest, C is a conversion
factor to relate the source activity units to the number of
nuclear decays per second, τij is the fraction of unattenuated
photopeak photons along rij , and ∆ti is the integration time.

For each test point j, a linear model is considered:

ni ∼ Poisson(µij), (2)
µij ≡ Rijsj + ∆tibj . (3)

Dropping the measurement index i and using boldface for the
resulting vectors, n are the measured photopeak counts, µj
are the mean counts, sj is the activity of the source at the
test point, and bj is the background count rate. A maximum
likelihood optimization is performed to find the estimated
source activity ŝj and background b̂j using the multiplicative
Maximum Likelihood Expectation Maximization (MLEM) up-
date rules for Poisson data [22].

Explicitly, the problem solved at each test point is the
following matrix equation:

n ∼ Poisson(µj), (4)

µj =
[

Rj ∆t
]
·
[
sj
bj

]
≡ Xjθj , (5)

where Rj is the jth column of R. Starting with an initial
non-zero guess for θj , the multiplicative update rule is

θj ← θj �

(
X>j · n

Xjθj

X>j · 1M

)
, (6)

where M is the number of measurements, 1M is a column
vector of M ones, and � is element-wise multiplication. For
each test point, at least 100 iterations of the multiplicative
update rules were performed, and iterations were terminated
once the change in all parameters was less than 10−5. The
resulting best fit parameters were denoted θ̂j = [ŝj , b̂j ]

>. Then
the negative log likelihood for each test point was calculated:

− log L̂j =
∑
i

[µ̂ij − ni log µ̂ij + log(ni!)] (7)

=
∑
i

[
(Xj θ̂j)i − ni log(Xj θ̂j)i + log(ni!)

]
. (8)



The overall most likely location for the point source was
determined by finding the minimum negative log likelihood,
− log L̂min, and its corresponding test point jmin.

Spatial confidence intervals were determined by using the
likelihood ratio test (LRT), where the null hypothesis is
the best fit model with all parameters held constant. The
LRT statistic Λj = 2(− log L̂j + log L̂min) is approximately
distributed as a chi-squared distribution with five degrees of
freedom: one for s, one for b, and three degrees of freedom for
the three spatial dimensions, even though they are not explicit
model parameters. The result of the LRT is that the 1−α or z-
sigma confidence interval can be estimated using the following
LRT threshold:

Λthreshold(z) = Φ−1
χ2
5

(1− α) = Φ−1
χ2
5

[
erf

(
z√
2

)]
(9)

where Φ−1
χ2
5

is the inverse cumulative distribution function of
the χ2 distribution with five degrees of freedom. Then all of
the test points whose Λj values are below this threshold are
included in the z-sigma confidence interval.

Source activity confidence intervals were performed in a dif-
ferent manner. The source activity interval could be estimated
as the interval that encloses the ŝj values of all test points
within the spatial confidence interval. However, in practice,
especially if the number of such points is low, this method
might not be conservative enough. To compensate for this
problem, a confidence interval for ŝj was developed for each
test point, and the union of these confidence intervals was
used as the overall confidence interval for s. To estimate the
confidence interval for ŝj at test point j, the observed Fisher
information matrix was used:

Fj;k` ≡
∂2

∂θk∂θ`
(− log L̂j) (10)

=
∑
i

ni

(Xj θ̂j)2i
Xj;ikXj;i` (11)

Fj = X>j diag

(
n

(Xj θ̂j)2

)
Xj . (12)

Holding the test point position constant but considering hypo-
thetical statistical fluctuations (e.g., performing a parametric
bootstrap), the negative log likelihood will vary in the neigh-
borhood of θ̂j according to its Taylor expansion:

− logL∗j ≈ − log L̂j +
1

2
(θ∗j − θ̂j)

>Fj(θ
∗
j − θ̂j) (13)

We then select the range of θ∗j values that result in a negative
log likelihood below the threshold:

Λj + (θ∗j − θ̂j)
>Fj(θ

∗
j − θ̂j) ≤ Λthreshold(z). (14)

When the above condition reaches equality, an ellipse of θ∗j
is defined, although it may be clipped at zero in one or both
dimensions, a complication that would decrease the effective
number of degrees of freedom and which we will ignore for
our purposes of estimation here.

We want to find the maximum range of s∗j (the first
dimension of θ∗j ) given Fj , which happens at the critical

values of s∗j given by:

scritj± = ŝj ±

√
(Λthreshold − Λj)Fj;11

det Fj
, (15)

and scritj− is clipped at zero if negative.
The final range of critical values of s∗j are chosen as

the z-sigma confidence interval for ŝj . The overall z-sigma
confidence interval of smin is then estimated by finding the
minimum and maximum critical values for all points within
the spatial confidence interval; i.e., all test points where
Λj ≤ Λthreshold.

B. PSL with an attenuation parameter

The basic PSL approach from the previous section was
modified to introduce a new parameter — the photon mean
free path (MFP) in any material in the scene. The primary
change is in the calculation of the response matrix element
Rij , where the fraction of unattenuated photopeak photons
τij is found. To calculate τij , the 3-D environment was
represented using a regular grid of voxels that are labeled
as either occupied or unoccupied according to whether they
included any LiDAR points. Restricting the analysis to only
photons in the photopeak region, and assuming a single class
of solid material, the attenuation model becomes dependent
only on the mean free paths of the photons in any intervening
material (air or solid):

τij = exp
(
−rairij /λair

)
exp

(
−rsolidij /λsolid

)
, (16)

where rairij and rsolidij are the total lengths of air and solid
material that are traversed by rij , and λair and λsolid are the
photon mean free paths.

Ray casting was used to calculate the distances traversed
through occupied and unoccupied voxels between any two
points, and these distances were identified as rsolidij and rairij ,
respectively. The engine used to perform the ray casting
was written in Python and used the Amanatides and Woo
voxel traversal algorithm [23]. The algorithm is described in
Algorithm 1 and illustrated in Fig. 1.

With rsolidij calculated, it remains to find the value of λsolid.
The value of λair can be obtained from tables using the photo-
peak energy and assuming dry air at standard temperature and
pressure; λair =107.8 m and 83.4 m were used for the analysis
of 662 keV and 356 keV photopeak events, respectively [24],
[25]. The approach taken was to treat λsolid as another
parameter of PSL to optimize over, in addition to s, b, and
position (x, y, z). In this proof-of-concept, the optimization
was done in a brute-force manner — a grid of λsolid values
was chosen and PSL was solved over a four-dimensional grid
of (x, y, z, λsolid). The test point index j was expanded to
denote both spatial position and λsolid value, and then the PSL
solution with the smallest − log L̂min was chosen as the best
overall point-source model. Because we now effectively have
six degrees of freedom instead of five, a χ2

6 distribution was
used when calculating the confidence intervals (i.e., using the
LRT threshold in Equation (9)). When calculating confidence
intervals, all PSL solutions in the four-dimensional space that
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Fig. 1. Schematic of the ray-casting procedure, shown in two dimensions for
simplicity. The gridding is indicative of voxel edges. Points within the shaded
voxels represent point-cloud returns, thereby causing the respective containing
voxels to be considered occupied. The ray-casting algorithm starts at rstart
and visits each intersection point (open circles) until it reaches rend. The
distance traversed through occupied voxels (gray) is tallied separately from
the distance traversed through unoccupied voxels (red).

Algorithm 1 Ray-Casting Algorithm (based on [23])
1: procedure RAYCAST(rstart, rend,∆)
2: rair = 0
3: rsolid = 0
4: k = (rend − rstart)/‖rend − rstart‖ . Calculate direction
5: r = rstart . Start at origin
6: (ix, iy , iz) = (brx/∆xc, bry/∆yc, brz/∆zc) . Set voxel indices
7: dx = 1 if kx > 0, else 0 . Set voxel index changes
8: dy = 1 if ky > 0, else 0
9: dz = 1 if kz > 0, else 0

10: while r 6= rend do
11: tx ← [(ix + dx)∆x − rx]/kx . Distances to x/y/z boundaries
12: ty ← [(iy + dy)∆y − ry ]/ky
13: tz ← [(iz + dz)∆z − rz ]/kz
14: tend = ‖r− rend‖ . Distance to destination
15: t = min(tx, ty , tz , tend) . Choose shortest distance
16: if occupied(ix, iy , iz) then . Increment traveled distances
17: rsolid ← rsolid + t
18: else
19: rair ← rair + t
20: end if
21: r← r + tk . Move to next point
22: ix ← ix + 2dx − 1 unless kx = 0 . Update voxel indices
23: iy ← iy + 2dy − 1 unless ky = 0
24: iz ← iz + 2dz − 1 unless kz = 0
25: end while
26: end procedure

were below the likelihood threshold were used. Analogous to
spatial confidence intervals, a confidence interval for λsolid can
likewise be generated.

C. Validation of the approach using a toy model

A toy model was developed to simulate the effect of a point
source inside a simple structure with external walls, internal
walls, windows, and doors. The building was constructed
using a regular 3-D voxel space with a voxel size of 15 cm.
It consisted of an 8×8-m external wall that was one voxel
thick, with some portions of the wall removed to represent
windows and doors. Internal walls were added in the form
of one-voxel thick structures. The material making up the

building was assumed to have an MFP of 0.30 m for 662 keV
photons, which is roughly the value for low density wood. A
hypothetical detector with a spherically symmetric response
function (A = 10 cm2) was moved along a 10×10-m square
surrounding the structure over the course of 60 seconds while
traveling at a constant speed, and data were recorded at a rate
of 5 Hz. The height of the detector varied as a sinusoid of
amplitude 40 cm to simulate the motion of walking and add
variation in the vertical dimension. A 500-µCi 137Cs point
source was placed inside the structure 1 meter above the
floor at the same mean height as the detector. The resulting
structure, detector path, and source location is shown in Fig. 2.

PSL was performed with and without fitting the attenuation
from the structure, using all voxel centers inside the structure
as test points. To optimize over MFP, PSL was solved at
100 values spaced logarithmically from 5 cm to 100 m. The
shape of the best fit negative log likelihood as a function
of MFP was concave, and thus there was only one local
optimum for λsolid, which was also the global optimum, which
is 0.37 m. Note, however, that the negative log likelihood
function is not in general guaranteed to be concave along this
dimension, nor in any of the three spatial dimensions. The
algorithm is able to provide a 2σ confidence interval for the
mean free path in the same way as it does for the spatial
dimensions by noting the range of MFP values for which any
test points exist with Λ values below Λthreshold; for the toy
model, this interval is 0.25–0.58 m. The best fit source activity
was 525 µCi, with a 2σ confidence interval of 440–760 µCi,
which is in agreement with the simulated activity. In addition,
the 2σ spatial confidence interval enclosed the true source
position. In contrast, the PSL solution that ignored attenuation
from occupied voxels returned a 2σ spatial confidence interval
whose nearest boundary was approximately 40 cm from the
true position and gave a source activity confidence interval of
270–380 µCi, which excludes the true activity. Fig. 3 shows
the simulated count rates and the 2-sigma bounds of the most
probable source locations in the point cloud for the best PSL
solutions when attenuation is optimized versus set to λair.

III. RESULTS FOR EXPERIMENTAL DATA

In order to test the approach, experimental data were taken
on 17 August 2020 with sources in a realistic scenario.
The scenario consisted of several stacked 20-foot shipping
containers in a field at the Richmond Field Station (RFS) in
Richmond, CA. Two sources were placed in the scene: a 137Cs
source with an activity of 1848 µCi was placed on the outside
of a container in a narrow gap between the containers, and a
638-µCi 133Ba source placed inside on the floor of an empty
container in a second grouping of containers. The sources
were approximately 30 m away from each other, and the path
of the system allowed two subsets of the data to be chosen
that effectively separated the source measurements into two
independent measurements.

The data were collected with the MiniPRISM system, which
consists of up to 64 coplanar grid CdZnTe detectors, each
of which is a 1 cm3 cube [26]. MiniPRISM’s detectors are
arranged into a partially filled 6×6×4 grid of potential detector



Fig. 2. A three-dimensional rendering of the toy model used, showing the
path of the detector (yellow) and the position of the source (blue dot, with
vertical line to indicate horizontal location).

locations, with the detectors in an optimized arrangement for
detection sensitivity and active coded mask imaging perfor-
mance. The detector system is integrated with a package of
contextual sensors, including a LiDAR, Inertial Measurement
Unit (IMU), and camera (Fig. 4) and mounted on an small
Unmanned Aerial System (sUAS) platform. Although the
data are individually read out by detector, for this analysis
the detector events were collected together as if the system
were a single, monolithic detector to maintain simplicity
and keep computation times manageable while demonstrating
efficacy in modeling attenuation. A measurement-validated
simulated response function in all 4π steradians was used
when performing PSL [21], and the simulations used the
actual configuration of 58 detectors used in the measurement.
Only the responses for the 54 detectors that had adequate
performance at the time were summed together and used
in the analysis. The on-board LiDAR and IMU were used
to perform Simultaneous Localization and Mapping (SLAM)
using Google Cartographer [27]. SLAM solves for a fixed
frame and outputs the path and orientation of the system within
that frame, as well as LiDAR points mapped into that frame.
SLAM is performed in real-time by the on-board computer,
and PSL without attenuation and other data products are served
to the user in real-time.

A. Cs-137 in gap between shipping containers

To search for the 137Cs source, the sUAS was flown along
both sides of the container stacks at an average standoff
of 4 m from the sides of the containers and at an altitude
of 3 m above ground level (AGL), and then flown at 8 m
AGL over the center of the stacks (and about 3 m above the
top of the stack) where the source was located, for a total
duration of about 220 s. Data were binned at 5 Hz for analysis,
and the spectral region from 620–700 keV was selected to
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Fig. 3. The simulated counts in the detector for the toy model, showing
the best fit when only air attenuation is included (top) and when a solid
attenuation parameter is fit (second from top). The resulting spatial confidence
intervals are shown in the bottom two figures, where the 2-sigma confidence
intervals are shown as red and orange volumes, for the with-solid and air-
only attenuation models, respectively. The simulated trajectory of the system
is shown in yellow and the true source location is shown as a blue cross. The
point cloud in these plots is a simulated point cloud based on the occupied
voxels of the toy model.

capture the 662 keV photopeak.1 A voxel grid with 13.5-cm

1Although the detectors are CdZnTe and can in principle achieve an energy
resolution of 2% FWHM [28], the individual channel nonlinearities and gain
drift were difficult to correct to the level of the ideal resolution. In addition,
any non-photopeak events can be fit as background by PSL.
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Fig. 4. The MiniPRISM detector system before being mounted on the UAS
platform.

pitch was rotated and translated by hand to align it with the
container stack and exploit its rectilinear shape, and any voxels
containing points from the LiDAR point cloud were marked
as occupied. Those voxels within individual containers were
not considered occupied. The resulting occupied voxel model
is shown in Fig. 5.

PSL was performed using the centers of all voxels within
the grid as test points and optimizing λsolid over 100 values
logarithmically spaced from 0.045 m to 107.8 m (λair for
662 keV). The ray-casting calculation took 60 minutes on a
four-core Intel i7 CPU, and each MFP optimization step took
90 s, for a total of 210 minutes for the entire optimization.
As in the toy model, the curve of negative log likelihood
versus MFP was found to be concave (the blue line in Fig. 6).
The optimal MFP obtained was 0.82 m, with a 2σ confidence
interval of 0.60–1.32 m. The most likely source activity was
1440 µCi, with a 2σ confidence interval of 960–2070 µCi,
which includes the true activity at the time the measurement
was made (1848 µCi). Without attenuation from occupied
voxels, the confidence interval is 380–730 µCi, which excludes
the true activity. The 2σ spatial confidence interval was limited
to only five 13.5 cm voxels, all falling inside the gap between
containers where the source was actually located. The source
ground truth position fell just outside of these five voxels by
about 10 cm, which is on the order of the voxelization and
fidelity of the ground truth itself. These results are shown in
Fig. 7.

The best fit value of λsolid seems at first to be far too
large — the containers are made of steel, so naı̈vely the
MFP should be approximately the tabulated value 0.0176 m
for 662 keV [24], [25]. This apparent discrepancy will be
addressed in Section IV.

B. Ba-133 in an empty container

For the 133Ba source, since the second stack was only a
single layer of three containers, the UAS flew around the
stack once at approximately 2 m above ground level and
roughly 3 m standoff from the sides of the containers, and a
second time at 5 m AGL, which was 2 m above the top of the
containers, for a total duration of about 145 s. This grouping
of containers consisted of three containers only in a single
layer (Fig. 5). Data were binned at 5 Hz for analysis, and the
spectral region from 315–385 keV was selected to capture the
356 keV photopeak. Because the spatial region of interest was
smaller than in the 137Cs case, a finer voxel pitch of 12 cm
was possible. Once again the voxel grid was aligned to the
containers to exploit their rectangular shape.

For PSL, λsolid was swept over 100 values logarithmically
spaced from 0.04 m to λair=83.4 m. The ray-casting calcula-
tion took 30 minutes on the same system as the 137Cs analysis,
and each MFP optimization step took 40 seconds, for a total
of 100 minutes for the entire optimization. Unlike the toy
model and the 137Cs data, the curve of negative log likelihood
versus MFP was not concave. In addition, the negative log
likelihood generally decreased with increasing MFP, leading
to an optimal MFP of 83.4 m, or essentially no attenuation
from occupied voxels.

Inquiring further, it was discovered that the container ad-
jacent to the empty container with the source was filled with
various pieces of large scientific equipment, including many
items made of steel. So the same analysis was performed but
marking all voxels inside that one container as occupied. Once
this was done, the log likelihood-MFP curve became nearly
completely concave again, and the optimal MFP was found
to be 2.58 m with a 2σ confidence interval of 1.11–7.05 m
(see Fig. 6). Moreover, the 2σ confidence interval for the
source activity shifted from 280–550 to 425–800 µCi, which
now includes the true activity (638 µCi). At the same time,
the 2σ spatial confidence interval changes from excluding to
including the ground truth (Fig. 8).

As with the 137Cs analysis, the best fit value of λsolid
again is much larger than the tabulated value of 0.0133 m for
356 keV photons in steel [24], [25], and this will be discussed
in the next section.

IV. DISCUSSION

We have shown that attenuation by objects in the environ-
ment can be a major influence on the effectiveness of certain
point source reconstructions, and it is possible to use three-
dimensional information to estimate the effect of attenuation
by material in the environment and obtain the correct location
and activity of a point source, at least under certain conditions.
To demonstrate this result, experimental data were collected
for two sources in shipping containers, and analysis yielded
source parameters in agreement with the ground truth.

As noted earlier, the values of the best fit photon MFPs
seem at first to be far too large when compared with tabulated
values for attenuation by the steel walls of the containers —
2.58 and 0.82 m, versus 0.0133 and 0.0176 m for 133Ba and
137Cs, respectively. For 137Cs, this apparent discrepancy can
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Fig. 5. The occupied voxel models made from the LiDAR point clouds. The 137Cs source scenario (top left), voxelized at 13.5 cm resolution (bottom left).
The 133Ba source scenario (top right), voxelized at 12 cm resolution (bottom right). The yellow path is the path of the detector system, and the grayscale
points are the LiDAR point cloud colorized by near-infrared reflectivity. In both of the top images, the sUAS carrying MiniPRISM is indicated.
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Fig. 6. The best negative log likelihood values as a function of λsolid for
the experimental data.

be reconciled by the fact that the voxels were much thicker
than the walls of the containers, which are approximately
2 mm thick, although the corrugation of the steel increases the
effective wall thickness to approximately 3 mm [29]. In this
case, the relevant parameter is not λsolid but the dimensionless
quantity λsolid/∆, the ratio of the MFP to the voxel pitch,
which should be approximately equal to the true MFP (λtrue)
over the true characteristic wall thickness ∆true. The expected
ratio for 662 keV photons is therefore 5.9, in agreement with
the 2σ confidence interval 4.5–9.8. Therefore, this scenario is
believed to be explained primarily by steel attenuation.

On the other hand, the 2σ confidence interval of the 133Ba
ratio λsolid/∆ is 9.2–58.7, which excludes the tabulated value
of 4.4 for the steel walls, but the analysis has already shown
that there was attenuation from other materials in addition

to the steel walls. Also, the comparison of λsolid/∆ to
λtrue/∆true is only valid when the attenuating material is
thinner than the voxel size: ∆true < ∆. If the attenuating
material is thicker than the voxel size, which is the case
here for the bulk material inside the container, then the
optimal MFP will increase to account for the thicker material:
λsolid/∆ ∼ nvoxels · λtrue/∆true, where nvoxels ∼ ∆true/∆
is the number of voxels that the attenuating material spans on
average. For this particular measurement, the material does not
uniformly fill the container and is of mixed contents, so no
simple theoretical comparison can be made.

The analysis of measured data shows that PSL with attenua-
tion estimation can work in at least some real-world scenarios,
but it highlights at least one major challenge — by relying on
the LiDAR point cloud alone to sense the 3-D environment,
the 3-D model is only capable representing surfaces, whereas
the contents of the volumes contained within the exterior
surfaces are unknown. For some volumes, such as buildings
with windows, the LiDAR is able to sense some of the interior
and detect interior walls, but for many surfaces such sensing is
impossible with LiDAR. When attenuation from surfaces alone
can explain most of the modulation of the source signal, then
this method works well. This situation was seen in the case
where 137Cs was located in the gap between containers. On
the other hand, if attenuation cannot be explained by surfaces
alone but by the material behind the surfaces, the method will
not work as well until other assumptions are included, such
as the 133Ba example.

In future work, it will be important to make inferences
about the effect of unobserved volumes. One approach could



0 25 50 75 100 125 150 175 200
Elapsed time (s)

0

10

20

30

40

50
Co

un
t r

at
e 

(C
PS

)
measured
PSL fit (air atten. only)
PSL fit (air+solid)

Fig. 7. Results for 137Cs showing the best fit model when no attenuation is
assumed for occupied voxels (orange) and when the optimal MFP is found for
occupied voxels (red). The top plot shows the count rates, while the bottom
two plots show the 2σ spatial confidence intervals for top-down and side
views in the same colors as the count rate plot. The ground truth is shown
with a blue cross. Insets are given to zoom in on the 2×2 m region around
the ground truth. Note that the red region is small, taking up only five voxels,
and localizes the source to within the gap between the containers.

be to draw rays from the LiDAR during the measurement to
determine which voxels in the model have not been visible
to the LiDAR and thus are indeterminate, i.e., not known
to be occupied or unoccupied. PSL can then be performed
by making some set of assumptions about the indeterminate
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Fig. 8. Results for 133Ba showing the best fit model when the containers
are assumed to be empty (orange) and when all voxels inside the top right
container are marked as occupied (red). The top plot shows the count rates,
while the bottom two plots show the 2σ spatial confidence intervals for top-
down and side views in the same colors as the count rate plot. The ground
truth is once again shown with a blue cross. In this case, the result assuming
the containers are empty coincidences with the result when solid attenuation
is ignored, so that model and confidence intervals are not shown.

voxels, such as introducing a second mean free path parameter
and optimizing over it. This approach would add yet another
parameter to optimize over, with increased computational
burden.

Additional contextual data may be helpful for this problem
as well. Visual cameras, combined with modern computer
vision techniques, could label materials in the scene or provide
some inference about the makeup of objects. For example,
knowing that a planar surface is a brick wall could allow
one to make an assumption about its attenuation that will be
robust for many photon energies without making any direct
measurements of the wall’s thickness. Another example would
be an algorithm identifying cargo containers in the scene, thus



allowing an algorithm to posit guesses about what the volume’s
properties would be if it were empty or filled and to test those
different possibilities. A final example could take advantage of
automated segmentation of 3-D volumes and a user interface
that allows an operator to enter information based on domain
knowledge.

Regarding fieldability, the implementation of PSL with
attenuation estimation shown in this work does not run in real-
time, and far from it (210 minutes for the 137Cs analysis and
100 minutes for the 133Ba analysis). However, the processing
here has been done on a single CPU, which is the worst case
scenario. In principle, the ray casting can be parallelized and
run on GPUs, and a single PSL optimization has already been
implemented on a GPU [21]. A better optimization procedure
than a brute force grid search and better initial guesses based
on contextual information should also be able to speed up
evaluation time, and constraints from computer vision classifi-
cation or operator input could further reduce the computational
complexity and afford nearly real-time inference.
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