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ARTICLE

Anomalous metal segregation in lithium-rich
material provides design rules for stable cathode
in lithium-ion battery
Ruoqian Lin1, Enyuan Hu 2, Mingjie Liu1, Yi Wang3, Hao Cheng4, Jinpeng Wu5, Jin-Cheng Zheng 4,6,

Qin Wu 1, Seongmin Bak2, Xiao Tong1, Rui Zhang7, Wanli Yang 5, Kristin A. Persson 8,9, Xiqian Yu 3,

Xiao-Qing Yang2 & Huolin L. Xin 1,10

Despite the importance of studying the instability of delithiated cathode materials, it remains

difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the

complication of combined chemical and structural evolutions. Herein, we use state-of-the-art

electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-

principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find

surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the recon-

structed surface. Our calculations show that the unexpected ruthenium metal segregation is

due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can

disrupt the reconstructed surface, which explains the formation of a porous structure in this

material. This work reveals the importance of studying the thermodynamic stability of the

reconstructed film on the cathode materials and offers a theoretical guidance for choosing

manganese substituting elements in lithium-rich as well as stoichiometric layer-layer com-

pounds for stabilizing the cathode surface.
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Designing layered cathode materials with high reversible
lithium storage capacity, as well as structural and che-
mical stabilities, is essential for developing new genera-

tions of lithium-ion batteries with long cycle life. Lithium-rich
layered oxides, in particular, are a class of high-capacity layered
cathode materials that can meet the high energy density demand
of battery electric vehicles1–3. These oxides, however, are prone to
significant oxygen loss during charge/discharge cycles, which in
turn leads to notable voltage and capacity fading4–8. The cathode
degradation problem can be improved by surface treatment or
introducing a content concentration gradient9,10. Metal oxide
such as ZnO, MgO, Al2O3

11–13, metal fluoride such as AlF3, or
metal phosphastes such as AlPO4 or CoPO4 have been widely
used as a surface coating layer to protect the cathode materials
from the attack of HF, which is decomposed from electrolyt14–17.
However, poor electronic conductivity and surface roughness are
two of the main problems of current surface coating technologies,
which can be greatly improved by introducing a concentration
gradient or a core shell structure at the secondary particle level.
Cation doping with electrochemical inactive elements, such as Al,
Ti, Mg, has also been widely used to enhance the crystal structure
stability of lithium-rich layered cathode materials18–21, and a
recent computational study shows that Os, Sb, Ru, Ir, or Ta are
the top-ranking dopants that can retain oxygens on the surface of
Li2MnO3

22. All these indicate that the chemical and structural
stability of the surface could be one of the key contributors to
the enhanced cathode performance10,23–27. Apart from surface
treatment, at the bulk level, there has been a new strategy of using
4d or 5d transition metals to stabilize the crystal structure against
oxygen release during the high voltage charging process28,29.
Specifically, a series of new model compounds, Li2IrO3 for
example30, has been successfully applied to investigating the
oxygen anion redox contribution to the charge capacity. How-
ever, unlike their 3d counterparts, most prior studies of 4d or 5d
element containing layered oxides have focused on the pristine
state of these compounds but overlooked the cycling-induced
oxygen loss and surface reconstruction. Therefore, it is desirable
to study how instabilities of the surface-reconstructed layer
can lead to different bulk degradation pathways in the 4d or 5d
element containing layered oxide systems. It is of great impor-
tance to utilize multi-scale mechanistic characterization tools that
can make a clear connection between the degradation pathway
of the bulk and the surface properties.

Here we report the investigation results of a high-capacity
lithium-rich 3d-4d transition-metal-layered compound, namely
Li2Ru0.5Mn0.5O3 or lithium-rich ruthenium-manganese oxide
(LRMO). Replacing manganese by ruthenium in a lithium-rich
structure, Li2MnO3, has many benefits, such as increasing the
electronic conductivity and thermal stability against the oxygen
release during heating, as long as the delithiation level is not too
high. Therefore, the incorporation of 4d transition metal, Ru
here, provides a valuable model compound to study the effects
of 4d metals on the structural and chemical stability6,28,31,32,
as well as their compatibility with 3d transition metals (TM).
Specifically, the model compound, LRMO, can reach a high
capacity of 300 mAh g−1, but still suffers from the voltage and
capacity fading during high voltage electrochemical cycling31,
which has similarity to its 3d counterpart, i.e., lithium- and
manganese-rich nickel-manganese cobalt oxide (LMR-NMC)33–35.
Using this compound, we provide a scrutiny of what would
happen when severe oxygen loss occurs in cells that are charged to
high voltages.

We find that after extended cycling, a three-dimensional por-
ous structure is formed in LRMO and segregation of ruthenium
and manganese at the submicron scale can be observed. More
interestingly and surprisingly, we find that ruthenium is expelled

from the reconstructed oxide surface and forms metallic clusters
at the nanoscale. In conjunction with ab initio calculations, this
study reveals the intricate connection between the instability of
the reconstructed layer at the surface and the degradation of the
layered cathode materials in bulk. At the first glance, the metallic
Ru segregation effect seems to contradict Shin et al.’s computa-
tional prediction that Ru is a high-ranking oxygen retention
dopant on the surface of Li2MnO3

22. On the contrary, the two
studies investigate surface stability of lithium-rick oxides in dif-
ferent regimes of oxygen release. In this study the consideration
of the surface reconstruction phase, when severe oxygen release
takes place in deep charging states, adds an additional constraint
to guide the screening of surface dopants. Our DFT calculations
identify that 3d elements, Sc, Ti, V, Cr, and 4d elements, Y, Zr,
Nb, Mo can be added to the surface to conceal capacity con-
tributing but less stable elements in the bulk. Based on the the-
oretical calculation, we synthesize a lithium-rich nickel-titanium-
niobium oxide material, expecting that titanium and niobium can
stabilize the surface. Imaging results of this material show no hint
of elemental segregation even after 50 charge/discharge cycles,
which experimentally validates our theoretical prediction.

Results
Electrochemical measurement. The electrochemical perfor-
mance of LRMO materials was tested using lithium half-cells in
standard 2032 coin-cells. The cycled electrodes were collected
for the subsequent chemical sensitive electron tomography,
aberration-corrected electron microscopy, and X-ray spectro-
scopy, as well as diffraction studies. The half-cell was cycled
between 2.0 V and 4.6 V. Figure 1a shows the electrochemistry
behavior of LRMO material at a charge/discharge rate of C/10
(see the method section for details). It shows a high voltage
plateau at around 4.2 V in the first charging process and a large
first-charge capacity of 290 mAh/g. It has been widely accepted
that the high voltage plateau is associated with the anionic redox
activation32,36–39. With continued cycling, capacity and voltage
fading were observed for this high voltage charge limit cycling
(Fig. 1a, b).

Bulk structure and chemistry. The lithium-rich layered structure
proposed for LRMO shown in the inset of Fig. 1c is verified by
an X-ray powder diffraction measurement (Fig. 1). Because pair
distribution function (PDF) measurement is sensitive to both
short-range and long-range ordering of structures, we investi-
gated the ensemble structural change of the oxide lattice by X-ray
pair distribution function (PDF) measurement of a pristine
electrode and an electrode after the twentieth cycle (Fig. 1d and
Supplementary Fig. S15). By comparing with the PDF of a
Li2RuO3 reference, it shows that the pristine LRMO material
retains the structure of Li2RuO3 with reduced lattice parameter
values due to the inclusion of the smaller manganese ions. After
20 cycles, however, all peaks in the LRMO PDF become weaker
and broader (also see Supplementary Fig. 15). This is indicative of
the increased disorder in the structure, which suggests that the
long-range ordered oxide lattice has been broken into smaller
domains40. This finding agrees with our electron microscopy
results that will be shown next. In addition, the transition metal-
oxygen (TM-O) peak shifts to a larger distance, indicating the
reduction of transition metal and the loss of oxygen41. Apart from
structural measurement, hard and soft X-ray absorption spec-
troscopy are employed to study the change of local bonding
environment of Ru and Mn. Figure 1e shows the X-ray absorp-
tion near-edge structure (XANES) of Ru K edge before and after
cycling. The change in the XANES spectra, although small, is
noticeable showing that there is a very slight reduction Ru at
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the bulk level; however, the change of Ru oxidation state is
too little to be quantified with statistical significance. On the
other hand, soft X-ray absorption spectra of Mn L3 edge mea-
sured in the partial-fluorescence-yield (PFY) mode and the total-
electron-yield (TEY) mode show a more noticeable reduction
of the valence state. By fitting the PFY Mn L3 edge with a
linear combination of Mn2+,3+,4+ reference spectra, Mn’s
bonding environments are decomposed as Mn2+:Mn3+:Mn4+=
0.024:0.138:0.838 for the pristine material and Mn2+:Mn3+:
Mn4+= 0.039:0.402:0.559 after 15 cycles. The considerable
reduction of Mn suggest that oxygen loss likely occurred. The
decomposition of TEY Mn L3 edge shows more prominent
valence reduction, i.e., Mn2+:Mn3+:Mn4+= 0.220:0.441:0.339
after 10 cycles and Mn2+:Mn3+:Mn4+= 0.320:0.517:0.163 after
17 cycles (It is worth noting that s-XAS has a probe depth of
~100 nm in the PFY mode and a probe depth of ~10 nm in the
TEY mode. Therefore the TEY spectral information reflects Mn
reduction on the surface, which typically is more degraded than

the bulk; whereas, the Mn valence quantification of the PFY
spectra here is considered qualitative for the bulk information).
All these synchrotron X-ray measurements suggest although the
overall oxide structure is maintained, irreversible crystal and
microstructural degradation occurred in the LRMO materials
during cycling.

Morphological and chemical change at the particle and the
atomic scales. To obtain a direct visualization of the structural
changes, electron tomography and atomic-resolution transmis-
sion electron microscopy study were performed. Using energy
dispersive X-ray spectroscopic (EDX) mapping in the scanning
transmission electron microscopy (STEM) mode, in conjunction
with electron tomography, we obtained the chemical distribution
of ruthenium and manganese in the LRMO primary particles
in three dimensions. Figure 2a shows that the as-prepared sam-
ple has a manganese-rich surface and a ruthenium-rich core
(also see Supplementary Movie 1). Apart from some minor
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Fig. 1 Electrochemical, X-ray pair distribution function and absorption analysis of Li2Ru0.5Mn0.5O3 (LRMO). a Charge/discharge curves of LRMO/lithium
half-cell with cutoff voltages of 2 V and 4.7 V. b Charge/discharge capacity and coulombic efficiency of LRMO half-cell as a function of charge cycle.
c Synchrotron X-ray powder diffraction measurement of pristine LRMO (inset: atomic model of LRMO). d X-ray pair distribution function of pristine LRMO,
LRMO after 20 cycles, and Li2RuO3 as reference samples. e Hard X-ray absorption spectra of the pristine LRMO and LRMO after 15 cycles for the
Ru K edge. f Soft X-ray absorption spectra of the pristine LRMO and LRMO after 15 cycles for the Mn L3 edge
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content inhomogeneity, the as-prepared primary particles are
generally in uniform solid solution structure without observable
internal defects or pores (see Supplementary Figures 1 and 21 and
Movie 2 for the visualization of the internal structures of a
pristine particle). It is worth noting that the LRMO primary
particles are terminated with rounded surface with sparseness of
well-defined facets (Supplementary Figs. 1, 23, and 26). This
“potato-like” crystal habit is different from these of the materials
made using co-precipitation or molten-salt methods, which
typical provide primary particles with well-defined facets35. After
97 charge/discharge cycles, however, the chemical distribution
of manganese and ruthenium in a fraction of the particles was
significantly different from the pristine sample as shown in the
reconstructed STEM-EDX tomography images in Fig. 2b and
Supplementary Movie 3. A significant chemical segregation is
observed at the scale of tens of nanometers. To obtain a higher
resolution view of the internal structural changes of the primary
particles, high-resolution tomography tilt series using annular
dark-field scanning transmission electron microscopy (ADF-
STEM) was collected and the reconstructed 3D result is shown
in Fig. 2c, Supplementary Figure 2, and Movie 4. They clearly

show that the interior of the primary particle has been sig-
nificantly degraded: a porous structure throughout the entire
particle is formed (also see Supplementary Fig. 16 a single pro-
jection taken at moderate dose condition shows the porous
structure). This is in sharp contrast to the pristine sample where
a solid and uniform internal structure was observed (Fig. 2a,
Supplementary Fig. 1, and Mov. 2).

To investigate the atomic structure evolution, an extensive
number of aberration-corrected high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
images were recorded. Only some of the representative ones are
shown here in Fig. 3 and Supplementary Figures 20, 26 and 27.
Because HAADF-STEM uses high-angle scattered electrons to
form images, the contrast of the resulting image is sensitive to
the projected atomic mass of the underlying atomic columns.
This contrast is commonly referred to as Z-contrast42. Therefore,
when the layered oxide is oriented such that the c-axis basal
planes are parallel to the electron beam, the atomic-resolution
Z-contrast image would show an alternation of transition metal
(higher intensity) and lithium (lower intensity) layers with a
period of ~4.8 angstroms. Figure 3a(ii, iii, iv) and Supplementary

a b c

Mn Ru

Fig. 2 Three-dimensional visualization of the chemical and structural change of Li2Ru0.5Mn0.5O3 (LRMO) before and after extended charge/discharge
cycling. Three-dimensional distribution of Ru and Mn of a pristine LRMO and b LRMO after 97 charge/discharge cycles reconstructed by STEM-EDX
tomography. c annular dark-field STEM tomographic (ADF-STEM) reconstruction of a LRMO primary particle after 97 cycles. Two cross-sectional images
of the three-dimensional reconstruction are presented to demonstrate that a porous structure had developed throughout the particle (also see
Supplementary Figs. 2 and 16 and Supplementary Movie 2). (Scale bar: 100 nm)
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Figures 20, 26 and 27 show that the projected structure of the
pristine oxide follows this layered pattern, and the lattice
maintains coherence from the surface to the interior/bulk as
expected from previous PDF results. It is worth noting that in
the pristine sample, all lithium channels remain dark with nearly
no observable surface reconstruction layer. To support this claim,
a wide field image of the surface is shown in Fig. 3a(iv) and
images of other surfaces/facets are shown in Supplementary
Figures 20, 26, 27. However, upon cycling, drastic structural
changes occurred in the material as shown in Fig. 3b and
Supplementary Figure 3. The oxide backbones are significantly
disrupted and small 1–2 nm clusters are segregated out onto the

surfaces. In addition, based on the Z-contrast STEM image,
the near-surface portion of the lithium channels are filled with
transition metals (Fig. 3b(ii) and for details see Supplementary
Fig. 4). Furthermore, we analyzed the segregated nanoparticles on
the surface. The higher intensity of the segregated nanoparticles
on the surface indicates that they likely contain ruthenium atoms.
This is further confirmed by STEM-EDX mapping showing
that the high-intensity particles are clearly rich in ruthenium
(Supplementary Fig. 5). Interestingly, we found that the atomic
structure of the segregated nanoparticles agrees well with the
hexagonal close packed ruthenium metal, as shown in the inset
picture in Fig. 3b. Such metallic segregation phenomenon at the

i

i ii

iii

ii iii

iv

a

b

Fig. 3 Atomic-scale imaging of the near-surface structure of primary particles. Aberration-corrected high-angle annular dark-field scanning transmission
electron microscopy (Z-contrast STEM) image of a pristine LRMO and b LRMO after 15 cycles. a Atomic-resolution Z-contrast images show dark lithium
diffusion channels extend from the interior of the particle to the surface indicating that the structure at the surface is nearly the same as the bulk. b Images
show the near-surface area of LRMO was significantly disrupted after 15 charge/discharge cycles. High-intensity clusters are observed over the entire
surface. Insets of b (i) show atomic-resolution images of the segregated clusters agree with the projected structure of metallic ruthenium (atomic structure
overlaid in red). (Scale bar in a (i) 100 nm; scale bar in the rest: 2 nm)
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atomic scale has never been reported before in lithium-ion battery
cathode materials. To eliminate the possibility that the formation
of clusters is caused by a reaction that happens at the lower
voltage region during electrochemical cycling, we raised the
lower cutoff voltage to 3.5 V. Supplementary Figure 6 shows that
in this condition, after one charge/discharge cycle, high-intensity
clusters are still observed in the near-surface region of the LRMO
particles, confirming that the formation of these clusters is not
driven by an electrochemical conversion reaction.

Surface chemistry. To confirm the segregated particles are
ruthenium metal clusters, we further investigated the chemistry of
the segregated particles using spatially-resolved electron energy
loss spectroscopy (STEM-EELS) and X-ray photoelectron spec-
troscopy (XPS) with around 5 nm probe depth. The STEM-EELS
chemical maps, shown in Fig. 4, indicate three different regions:
the first region has all three elements, Ru, Mn, and O (marked as
region 1 in Fig. 4a); the second region has Ru only (marked
as region 2); and the third region has Mn and O and little Ru
(marked as region 3). Figure 4b shows the spectra integrated from
the three marked areas in Fig. 4a. It is interesting to note that

in region 2, both ruthenium M4,5 and M3,4 edges are prominent,
but no signal representing oxygen K-edge and Mn L2,3 can be
detected. In region 3, both manganese L2,3 and oxygen K edges
are present with very little observable signal representing ruthe-
nium M4,5 and M3,4 edges. These results show that the ruthenium
is segregated from manganese oxide framework and fully reduced
to a metallic state.

To understand the chemical environment of Mn and its spatial
variance, we performed a near-edge fine structure mapping of
the O-K edge and the Mn L2,3 edges in the near-surface region
of a cycled primary particle (Supplementary Fig. 7). The results
show that there is a clear down-shift of the Mn L3 white line and
a reduction of L3/L2 ratio as the probed area moves closer to the
surface, which indicate that the valence of Mn decreases when
approaching oxide surface43,44. At the very surface, the Mn
spectral shape has a close reproduction of the near-edge fine
structures of Mn2+, which is consistent with our XPS results
(Supplementary Fig. 24); whereas the area that is 6 nm away from
the surface, a Mn3+ fingerprint and L3/L2 ratio are shown, which
is in agreement with the soft-XAS TEY results (Supplementary
Fig. 7e). The pre-peak of the O-K edge, that probes the unfilled
O 2p-TM 3d hybridized states, shows the same trend; the
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pre-peak intensity is reduced close to the surface area, which
indicates a reduction of the transition metals in the oxide. The
Mn2+ surface layer becomes much thicker in the electrode after
the 120 cycles (Supplementary Fig. 25). All these results suggest
that there is a Mn-O rock-salt or a Li1-xMn1+xO2 lithium-
containing disordered rock-salt reconstruction layer formed on
the surface due to oxygen loss.

To be cautious about the potential artifacts induced by
radiation damage of the electron beam, the EELS map was
collected with limited dosage. To fully eliminate this concern, we
also performed X-ray photoelectron spectroscopy (XPS) study
on the cathode surface to confirm the EELS results, since the
radiation damage caused by a broad X-ray beam in this type
of material is negligible. The XPS results of ruthenium 3p1/2 and
2p3/2 core-level spectroscopy, plotted in Fig. 4c and Supplemen-
tary Figure S22, clearly show that the reduction of ruthenium
from Ru4+ to Ru0 took place on the surface through cycling.
This does not only confirm our atomic-resolution imaging
and EELS results, but also indicates that the reduction of Ru4+

and formation of metallic Ru, occurred not only in limited
regions, but also over most parts of the LRMO cathode surfaces,
since XPS probe a large area of the sample surface. The XPS
spectra of Mn 2p, as shown in Supplementary Figure 24, shows
that after 120 charge/discharge cycles, manganese is reduced from
4+ to 2+ valence state, which is in agreement with our STEM-
EELS results shown in Supplementary Figure 25.

Theoretical understanding and prediction. The formation of
metallic ruthenium on the surface of the cathode is unexpected
and surprising, but it aligns with the observed segregation of
ruthenium and manganese at the submicron-scale by the che-
mical sensitive tomography technique. Our PDF results suggest
that the layered oxide backbone in the bulk is still preserved after
charge/discharge cycling, which is in good agreement with our
atomic-resolution images. However, the STEM-EELS and XPS
results suggest that a rock-salt/lithium-containing disordered
rock-salt surface reconstruction occurred on the cathode surface.
Since ruthenium and manganese are intermixable in the pristine
lithium-rich layered oxide structure, we highly suspect that the
segregation of metallic ruthenium is due to its incompatibility
with the surface-reconstructed rock-salt/lithium-containing dis-
ordered rock-salt environment.

To explore this hypothesis, we performed a full convex-hull
calculation for the Ru-Mn-O system. It is worthwhile to mention
that transition metal segregation and surface reconstruction, from
layered structure to spinel structure and finally to rock-salt/
lithium-containing disordered rock-salt structure, are gradual
degradation processes upon electrochemical cycling. Figure 5a
shows the calculated ternary phase diagram and Fig. 5b presents
the stable phases along the bisecting line of the phase diagram
for Ru:Mn= 1:1 with changing oxygen chemical potential. It
shows that under equilibrium conditions, for the full range of
manganese being 2+ valence state, ruthenium is only stable in its
metallic form. It means it is thermodynamically favorable for
ruthenium to reduce to metallic state, which then subsequently
segregate out as pure ruthenium clusters in the degraded rock-salt
environment.

Our full convex-hull calculation explains why ruthenium
spontaneously segregate out on the surface of LRMO and form
metal clusters. More importantly, it illustrates that even if
ruthenium and manganese are intermixable in their respective
parent layered compounds, oxygen loss and surface reconstruc-
tion can induce reduction and subsequent segregation/dealloying
effects. In comparison, in 3d layered oxides, such as LMR-NMC,
the loss of oxygen and collapse of the lithium channels similarly

occurs at the surface. The surface reconstruction layer is typically
an NMC spinel/rock-salt oxide. Even though it impedes lithium
diffusion, it acts as a relatively stable passivation film because
NiO, MnO, and CoO are intermixable at any ratios26,45.
However, in our LRMO case, the reconstructed surface is
thermodynamically unstable and can spontaneously decompose
at room temperature (see Supplementary Fig. 8 for ab initio MD
calculation revealing the fast kinetics of this decomposition
reaction at room temperature.). It is disrupted into patches due to
the segregation of ruthenium metal clusters. This renders the
reconstructed layer ineffective in passivating the cathode surface
because the disruption exposes new LRMO surface. This process
may repeat itself until the LRMO bulk is fully degraded and hence
such a recursive surface disruption directly impacts the bulk
structure (see Supplementary Fig. 17). In our LRMO case, the
porous morphology is likely a direct consequence of the recursive
disruption pathway—i.e., the domino effect or chain reaction—
and such phenomenon has also been observed in LRMO at the
secondary particle level46.

By combining experiments and ab initio calculations, we have
studied the relationship between the stability of the surface
reconstruction film and the bulk degradation pathway. When
choosing transition metal cations for the surface of layered
cathode, rather than only looking at the stability of the layered
oxides in their pristine structure, it is equally important to look
at the stability and intermixibility of the elements in the
reconstructed metal-oxygen (MO) rock-salt/lithium-containing
Li1-xMn1+xO2 disordered rock-salt phase. To guide future
synthesis, we calculated the formation energy of MO for 3d and
4d transition elements and their intersolubility with MnO, NiO,
and CoO because Mn, Ni, Co are the most widely used elements
that can form/stabilize stoichiometric and lithium-rich layered
oxide. The trend in Fig. 5c is very clear such that Ru and Rh
exhibit positive formation energies and hence possess a thermo-
dynamic driving force for segregation. By further requiring an
intermixability with Mn, Ni, and Co, our calculation can narrow
the selection to a handful candidates (Fig. 5d and Supplementary
Fig. 9), specifically 3d elements, Sc, Ti, V, Cr, and 4d elements,
Y, Zr, Nb, Mo (Molybdenum is a borderline candidate, which mix
well with Co and Ni but not Mn. It is also worth noting that
even though the CaO are SrO are stable in MO, they are not
intermixable with MnO/NiO/CoO). These elements can be added
to the surface to conceal other active elements, Ru for example,
in the bulk. We prospect that only a few atomic layers of doping
with these recommended elements can greatly improve the
surface stability of the material without sacrificing the energy
density and rate capability.

Discussion
Based on our aforementioned theoretical calculations, we syn-
thesized a lithium-rich nickel-titanium-niobium oxide material,
expecting that titanium and niobium can stabilize the surface
(see supplementary methods for details). Additional, niobium
is chosen for it higher intensity in Z-contrast imaging—any
segregation of niobium can be easily observed in Z-contrast
STEM without ambiguity. The electrochemical performance of
lithium-rich nickel-titanium-niobium oxide material is shown in
Supplementary Figure 10. This material was imaged in its pris-
tine state, after 15, and 50 cycles, respectively (Supplementary
Figs. 11, 12, and 13). The atomic-resolution images of the near-
surface area of the oxide material show no hint of elemental
segregation even after 50 charge/discharge cycles. This result
experimentally validates our theoretical calculation.

Here, we only consider using lithium nickel-manganese-cobalt
oxide or Li2MnO3 as the backbone structure as these are widely
studied by the lithium-ion battery community for their potential

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09248-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1650 | https://doi.org/10.1038/s41467-019-09248-0 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


application in next generation batteries for electric vehicles. For
other cathode chemistry, for example Sn-, Ti-, Mo-, Nb-based
lithium-rich oxide, additional intermixibility diagrams need to be
calculated. Additionally, we want to point out that designing a
cathode material requires much more consideration than recon-
structed surface stability, and our study provides new concepts
and an additional design rule for increasing the long-term
cyclability of layered oxides. Of course, surface chemistry and
uniformity are only two of the important factors for novel

lithium-rich cathode material surface coating design. Many other
factors, including electronic/ionic conductivity, energy density,
side reaction with electrolyte, and manufactural cost should also
be taken into consideration.

Additionally, we would like to point out that the ruthenium-
manganese system has high thermal stability as long as the
delithiation level is not too high. This is also indicative that the
Ru segregation, metallic Ru formation, and the resulting porous
morphology could be avoided if the battery cell is not charged to
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Fig. 5 Ab initio calculation for ruthenium segregation and prediction for Mn/Co/Ni substitution that can stabilize the surface. a Ternary phase diagram
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high voltage or the surface of the material is well protected (e.g.,
concentration gradient, surface coating, electrolyte additives).
On the other hand, in this paper, we provide an interesting
study to show what would happen when oxygen loss occurs in
cells that are deep charged or overheated.

A multi-dimensional study on the anomalous structural
and chemical evolution in Li2Ru0.5Mn0.5O3 is presented in this
paper, which combines synchrotron-based X-ray techniques,
atomic-scale imaging and spectroscopy, and three-dimensional
tomography. Our observations indicate that this oxide under-
goes a chemical segregation/dealloying process triggered by
high level of delithiation in the bulk and the oxygen loss at the
surface. More importantly, the metallic ruthenium clusters are
formed and are randomly distributed on the surfaces, which
may in turn facilitate a recursive degradation process similar to
the domino effect. Our findings provide a new and experi-
mentally validated concept in guiding the selections of proper
transition metal elements for the surface of cathode materials in
lithium-ion batteries.

Methods
Synthesis of lilthium-rich ruthenium-manganese oxide. The Li2Ru0.5Mn0.5O3

samples were prepared by a solid state reaction method. Li2CO3 (Alfa Aesar, 99%),
MnCO3 (Alfa Aesar, 99.9%), and RuO2 (Alfa Aesar, 99.9%) (5 wt. % excess of
Li2CO3 was used in order to compensate for the loss of Li) were mixed by hand
grinding for 1 h. The resulting mixture was heated at 900 °C for 15 h and then
950 °C for 15 h. The heating and cooling rates were maintained at 2 °C min−1 46.
Figure S23 shows the morphology and the three-dimensional reconstruction of the
as-synthesized Li2Ru0.5Mn0.5O3 material.

Electrochemical measurement. The composite cathode was prepared by slurring
the active material (Li2Ru0.5Mn0.5O3), carbon black, and polyvinylidene fluoride
(PVDF) with a weight ratio of 8:1:1 in N-methylpyrrolidone solvent. The slurry
mixture was then coated onto an aluminum current collector. High-purity lithium
foil was used as the anode.

Synchrotron X-ray pair distribution function (PDF) measurement. Total scat-
tering pair distribution function (PDF) experiments were carried out at beamline
28-ID-2 in NSLS-II of BNL using an X-ray energy of 66.7 keV (λ= 0.186 Å) and
an amorphous silicon area detector (Perkin-Elmer) to obtain data to large
momentum transfer values. Data were integrated using the program Fit2D47.
PDFgetX348 was used to correct the data for background contributions, Compton
scattering and detector effects, and to Fourier transform (Qmax= 23.5 Å) the
data to generate the pair distribution function, G(r).

TEM imaging and spectroscopy. The atomic-resolution scanning transmission
electron microscopy (STEM) imaging of the LRMO cathode material was per-
formed on Hitachi HD2700 (200 keV), JEOL Grand ARM (300 KeV), and FEI
Talos F200X (200 keV) in a high-angle annular dark-field mode. The electron
energy loss spectra were collected by Gatan Enfina and Enfinium spectrometers.

X-ray photoemission spectroscopy. Our X-ray photoelectron spectroscopy (XPS)
experiments were carried out in an ultrahigh vacuum (UHV) system with base
pressures <2 × 10−9 Torr equipped a hemispherical electron energy analyzer
(SPECS, PHOIBOS 100) and twin anode X-ray source (SPECS, XR50). Mg Kα

(1253.6 eV) radiation was used at 10 kV and 30 mA. The angle between the ana-
lyzer and X-ray source is 45° and photoelectrons were collected along the sample
surface normal.

Electron tomography. The annular dark-field STEM (ADF-STEM) tomography
tilt series were acquired on an uncorrected scanning/transmission electron
microscope with an X-FEG field emission source (FEI Talos F200X). Projection
images were acquired from −70 degrees to +70 degrees with two-degree tilt
intervals. The chemical sensitive tilt series were acquired on the same instru-
ment using the spectroscopic signals collected by a Bruker Super-X energy
dispersive X-ray spectroscopy (EDX) detector. Projection STEM-EDX maps of
ruthenium and manganese were acquired from −70 degrees to +70 degrees
with ten-degree tilt intervals. The tomograms were reconstructed using a
custom-written Matlab script implementing the multiplicative simultaneous
iterative reconstruction technique. The three-dimensional reconstructions are
visualized by Avizo.

Full convex-hull phase diagram calculation. The phase diagram of Ru-Mn-O was
calculated using the Phase Diagram app of the Materials Project49. In this project,
the total energy of compounds is calculated using the density-functional theory
as implemented in the Vienna Ab Initio Simulation Package (VASP) software.
For the exchange-correlational functional, a mixture of Generalized Gradient
Approximation (GGA) and GGA+U are and U values for many transition metals
of interest have been calibrated using the approach outlined in Wang et al.‘s
work50.

Ab initio molecular dynamics simulation. The Ab Initio molecular dynamics
(AIMD) simulation was carried out by Vienna ab Initio Simulation Package
(VASP). The Perdew, Burke and Ernzerhof functional3 functional is used to
describe the electron–electron exchange-correlation interaction with a plane-wave
basis set. The 2 × 2 × 2 supercell of RuMnO2 with rock-salt structure is modeled as
the starting structure. The canonical ensemble is used with Nosé-thermostat4 and
the temperature in AIMD is 300 K. The time step is 0.5 fs with the total 1.3 ps.
Spin polarization was not included in AIMD and formation energy calculations.

Formation energy calculation. Self-consistent field, first-principles plane-wave
calculations within density-functional theory (DFT) were performed for total
energy and optimized structure calculations, as implemented in Quantum Espresso
simulation package51. The calculations made use of the spin-dependent generalized
gradient approximation of Perdew, Burke, and Ernzerhof (PBE)52, including
Hubbard-U corrections following the formalism developed by Dudarev et al53. The
wave function was expanded in a plane-wave basis set with an energy cutoff of 650
eV, and the unit cell and atomic positions of all structures in the delithiation were
optimized until the atomic forces were less than 0.025 eV/angstrom. The electron
states were sampled using a k-point mesh of 4 × 4 × 2 centered at the origin. For
details, please see Supplementary Materials.

Code availability
The custom-written code used in this study is available upon request.

Data availability
The data supporting the findings of this study are available within the article and its
Supplementary Information files, or from the corresponding authors on reasonable
request.
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