
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Efficient Metadata Management in Large Distributed Storage Systems††This research is
supported by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and
Sandia National Laboratory under contract 520714.

Permalink
https://escholarship.org/uc/item/9p5319mp

Authors
Brandt, Scott A
Miller, Ethan L
Long, Darrell DE
et al.

Publication Date
2003

DOI
10.1109/mass.2003.1194865

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9p5319mp
https://escholarship.org/uc/item/9p5319mp#author
https://escholarship.org
http://www.cdlib.org/

Efficient Metadata Management in Large Distributed Storage Systems†

Scott A. Brandt
scott@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Darrell D. E. Long
darrell@cs.ucsc.edu

Lan Xue
lanxue@cs.ucsc.edu

Storage Systems Research Center
University of California, Santa Cruz

Abstract

Efficient metadata management is a critical aspect of
overall system performance in large distributed storage
systems. Directory subtree partitioning and pure hashing
are two common techniques used for managing metadata in
such systems, but both suffer from bottlenecks at very high
concurrent access rates. We present a new approach called
Lazy Hybrid (LH) metadata management that combines the
best aspects of these two approaches while avoiding their
shortcomings.

1. Introduction

In large distributed storage systems, avoiding bottle-
necks is critical to achieving high performance and scal-
ability. One potential bottleneck is metadata access. Al-
though the size of metadata is generally small compared
to the overall storage capacity of such a system, 50% to
80% of all file system accesses are to metadata [12], so
the careful management of metadata is critical. We present
Lazy Hybrid (LH) metadata management, a new metadata
management architecture designed to provide very high-
performance, scalable metadata management.

Traditionally, metadata and data are managed by the
same file system, on the same machine, and stored on the
same device [9]. For efficiency, metadata is often stored
physically close to the data it describes [7]. In some mod-
ern distributed file systems, data is stored on devices that
can be directly accessed through the network, while meta-
data is managed separately by one or more specialized
metadata servers [5].

We are developing LH in the context of a large high-
performance object-based storage system [17]. Object-
based storage systems separate the data and metadata man-

†This research is supported by Lawrence Livermore National Labora-
tory, Los Alamos National Laboratory, and Sandia National Laboratory
under contract 520714.

M
et

ad
at

a a
cc

es
s

 Metadata
 Server

 Metadata
 Server

 Metadata
 Server

M
etadata update

Client

Client

Client

Direct data access

Object Based
Storage Device

Object Based
Storage Device

Object Based
Storage Device

Disk array

High speed
networks

Storage area network

Metadata Server Cluster

Disk array

Disk array

Disk array

Disk array

Disk array

High speed
networks

Figure 1. Storage system architecture

agement as depicted in Figure 1. Semi-independent object-
based storage devices (OBSDs) manage low-level data
storage tasks such as request scheduling and data layout,
and present a simple object-based data access interface to
the rest of the system. A separate cluster of metadata
servers manage the namespace and directory hierarchy, file
and directory permissions, and the mapping from files to
objects. The metadata server cluster is otherwise not in-
volved in the storage and retrieval of data, allowing for very
efficient concurrent data transfers between large numbers
of clients and OBSDs.

The goal in systems with specialized metadata manage-
ment is to efficiently manage the metadata so that standard
directory and file semantics can be maintained, but without
negatively affecting overall system performance. This in-
cludes handling large numbers of files ranging from bytes
to terabytes in size, supporting very small and very large
directories, and serving tens or hundreds of thousands of
parallel accesses to different files in different directories,
different files in the same directory, and even to the same
file. A key question in the design of such a system is how to

This paper will appear in the 20th IEEE / 11th NASA Goddard Conference on Mass Storage Systems and Technologies, San
Diego, CA, April 2003.

partition the metadata among the metadata servers to pro-
vide both high performance and scalability.

Currently, popular approaches to metadata allocation
employ one of two techniques. The first, which we call
directory subtree partitioning, partitions the namespace ac-
cording to directory subtrees [6]. In directory subtree par-
titioning, the metadata of complete directory trees is man-
aged by individual metadata servers, analogous to direc-
tory mounting in NFS [14]. This technique suffers from
severe bottleneck problems when a single file, directory, or
directory subtree becomes popular. Furthermore, the direc-
tory hierarchy must be traversed to determine the permis-
sions for each file that is accessed. This is often mitigated
somewhat by client-side prefix caching. However, prefix
caching doesn’t help when large numbers of clients simul-
taneously access the same file or directory.

The second metadata allocation technique, which we
call pure hashing, uses hashing to widely distribute the
namespace among the metadata servers [4]. Pure hashing
assigns metadata to metadata servers based on a hash of
the file identifier, file name, or other related values. This
results in more balanced workloads than directory subtree
partitioning. However, a directory hierarchy must still be
maintained and traversed in order to provide standard hier-
archical directory semantics and to determine access per-
missions, negating some of the apparent benefits. If the
hash is based on the full pathname, a good candidate since
it may be the only information the client has about the file,
then a large amount of metadata may have to be moved
when a directory name is changed. This is the result of the
hash output – indicating which metadata server to store the
metadata on – changing as a result of the changed input.
If the hash uses only the filename (instead of the full path-
name), as is done in Lustre [3], then files with the same
name will hash to the same location, even if they are in dif-
ferent directories. This would lead to a bottleneck during a
large parallel access to different files with the same name
in different directories.

Both directory subtree partitioning and pure hashing en-
counter difficulties when adding metadata servers to or re-
moving them from the cluster. Under both techniques,
a disproportionate amount of metadata may have to be
moved. In directory subtree partitioning this is because
whole subtrees are stored on each metadata server, requir-
ing the entire namespace to be repartitioned to maintain
a balanced workload. In pure hashing, the hash function
itself will have to change to produce outputs in a differ-
ent range, possibly requiring almost all of the metadata to
move to a new server as indicated by the new hash function.

Lazy Hybrid metadata management combines the best
of both hierarchical directory subtrees and pure hashing.
LH addresses the problems mentioned above using a com-

bination of hashing, hierarchical directories, lazy metadata
relocation and lazily updated access control lists (ACLs).
The location of metadata for individual files is determined
by a hash on the full pathname, distributing metadata and
avoiding “hot spots” where a disproportionate percentage
of active metadata requests are to a single server. Hashing
the pathnames allows direct access to file metadata with-
out involving all of the metadata servers storing directories
along the path. Hierarchical directories are maintained in
order to provide standard directory semantics and opera-
tions (such as ls). Lazy update policies allow for efficient
metadata updates when file or directory names or permis-
sions are changed or when metadata servers are added to
or removed from the system. Finally, a unique dual-entry
Access Control List structure allows file permissions to be
determined directly, without traversing the entire path.

LH is designed to meet the following general goals:

� High performance
The metadata server cluster must provide very fast
metadata access. A typical request should involve a
single message to a single metadata server. The meta-
data server cluster should:

– support very large numbers of parallel accesses
to a single file, directory, or directory subtree;

– handle very large numbers of files, with ex-
tremely high variance in size, ranging from a few
bytes to a few terabytes;

– efficiently manage very large directories con-
taining tens of thousands of files, partitioning
them over multiple metadata servers to avoid hot
spots.

� Scalable
Metadata performance should scale with the number
of metadata servers in the cluster.

� Flexible
The metadata server cluster should efficiently sup-
port directory renaming, file and directory permission
changes, and the addition, removal, and replacement
of metadata servers.

� Uniform namespace
All clients should have the same view of the directory
tree.

� Standards compliance
We want to provide a standard interface that will
make the storage system useful in existing systems.
Our overall Object-based Storage System, in which
LH will be one component, will export a POSIX-
compliant interface.

2

2. Related Work

Directory subtree partitioning and pure hashing are
methods used to distribute the namespace and workload
among metadata servers in existing distributed file sys-
tems. Directory subtree partitioning provides a natural
way to partition the namespace among multiple servers in
distributed systems. Each server manages one or more
sub-tree(s) (also called file sets or volumes) of the hier-
archy. LOCUS [15], NFS [13], AFS [9], Coda [16], and
Sprite [11], partition the namespace using this technique.

One advantage of directory subtree partitioning is that
metadata for a file can generally be accessed by contact-
ing relatively few metadata servers, as a particular meta-
data server will store some or all directories in the path of
a given file. Directory subtree partitioning, together with
prefix caching, allows for relatively efficient metadata ac-
cess if the same directories are accessed repeatedly by the
same client. The major disadvantage of directory subtree
partitioning is that the workload may not be evenly bal-
anced among the metadata servers, leading to a system bot-
tleneck and resulting in lower overall performance. When
a file group in a directory subtree becomes popular, the
server on which the subtree resides may be disproportion-
ately busy, causing longer response times or even dropped
requests. Replication addresses this problem to a certain
degree, and may be employed in LH to alleviate bottlenecks
involving many clients simultaneously opening the same
file. In general, replication can involve significant storage
overhead and managing consistency among the replicas can
result in additional performance overhead. Adding or re-
moving metadata servers is also costly with this partition-
ing scheme because the partitions must be carefully crafted
and whole subtrees of metadata must be moved from one
metadata server to another.

Hashing eliminates the problem of unbalanced work-
load among servers. For example, Vesta [4] and Inter-
Mezzo [2] use pathname hashing for both data allocation
and location. If a hierarchical directory structure is used
then the directories themselves may still be hot spots, even
if the metadata for the files they contain is widely dis-
tributed. If a hierarchical directory structure is not used,
then an alternative naming scheme that mimics directory
hierarchies and directory-based permissions must be em-
ployed. Vesta does not address this question, and it is not
trivial as it involves other performance trade-offs. Hash-
based namespace partitioning also has trouble when the
number of servers changes—the hash functions used may
have to change and large amounts of metadata may need to
be moved. Unless a hash update can be found that moves
only the data that really needs to move, the overhead is
tremendous.

In RAMA [8], a file system designed for parallel com-
puters, metadata is divided into positional metadata and
intrinsic metadata. Positional metadata tells the operating
system where to find the data of the files. Intrinsic metadata
describes the data in the file, which includes file modifica-
tion time, access time, ownership and file sizes. By hashing
on the global file identifier, the positional metadata can be
located. Nevertheless, because intrinsic metadata is stored
at the start of a file’s data, RAMA has the trade-off of slow
directory operations such as ls.

Since the idea of specialized metadata management in
large distributed file systems is relatively new and several
such systems are proprietary, there has been relatively lit-
tle published work on metadata management in specialized
metadata server clusters. Lustre [3] is a non-proprietary
Object-based Storage System that uses a hash on the tail of
the filename and the identifier of the parent directory to de-
termine which metadata server will store the metadata for
a given file, but must use hierarchical directory traversal to
retrieve the metadata. The strategy Lustre uses for meta-
data allocation and access has the advantage of distributing
the metadata, but all of the other inefficiencies of hierar-
chical schemes. LH goes a step further, eliminating these
inefficiencies through a combination of all the techniques
of hashing, caching, dual ACLs, and lazy updates.

3. LH Design

Like pure hashing, LH uses hashing to distribute the
metadata across the metadata server cluster. However,
LH also maintains hierarchical directories to support stan-
dard directory hierarchy and permission semantics. LH
uses pathname hashing for metadata allocation and loca-
tion, avoiding the overhead of hierarchical directory traver-
sal, and maintains hierarchical directories to provide ls and
other directory operations.

To access data, clients hash the pathname of the file to
produce a hash value indicating which metadata server con-
tains the metadata for that file. The client then contacts
the appropriate metadata server to open the file and obtain
the file-to-object mapping. The result is extremely efficient
metadata access, typically involving a single message to a
single metadata server.

When a metadata server is contacted, one of three sit-
uations may occur. One is that the metadata exists on the
server and the client has permission to do the requested op-
eration. In that case, the operation is completed and the
client is given the information needed to obtain the file data
from the OBSDs. Another possibility is that the metadata
exists on the server and the client does not have permission
to do the requested operation. In that case, a response is
sent to the client indicating that the requested operation is

3

not permitted. A third possibility is that the metadata does
not exist, indicating that the file itself does not exist. In that
case, the appropriate response is sent to the client.

3.1. Metadata Look-up Table

Rather than using the hash value directly to indicate
which metadata server to contact, LH uses the hash value
as an index into the Metadata Look-Up Table (MLT). The
MLT is a small and infrequently updated global table avail-
able to all clients and metadata servers that provides an
additional level of indirection between the clients and the
metadata servers. The index found in the entry of the
MLT specified by the result of hashing a filename indicates
which metadata server should store the metadata for that
file.

The use of the MLT makes the addition and removal of
metadata servers straightforward by the simple modifica-
tion of one or more entries in the MLT. When a metadata
server is added or removed from the system, the MLT is
updated and broadcast to all of the metadata servers. Client
file systems get the MLT from the metadata server clus-
ter by contacting a designed “master” metadata server at
a well-known address during client file system initializa-
tion. Clients are also sent updated MLTs as needed. When
a client contacts a metadata server, it includes which ver-
sion of the MLT it used. If the contacted metadata server
determines that the client has an out-of-date MLT, it will re-
spond with the updated MLT. If the metadata server is the
correct one (in spite of the updated MLT), then the meta-
data server also sends back the appropriate response to the
client request. If the metadata server no longer contains the
requested metadata, the client can reattempt the transaction
with the correct metadata server. If the metadata server
listed in an outdated version of the MLT no longer exists,
the client can contact the “master” metadata server for an
updated MLT after the unsuccessful attempt to contact the
nonexistent metadata server.

3.2. Access Control

Traditional directory-based access control checks per-
missions by traversing the pathname and checking the per-
mission for each directory along the path. Without modi-
fication, conventional access control is incompatible with
hashing. By hashing to the current location of the file,
the directory path is bypassed entirely, and the permissions
along that path cannot be checked. Systems using pure
hashing to partition the namespace must therefore traverse
the entire path in order to determine the appropriate per-
mission. This incurs as much overhead as directory subtree
partitioning, even though the metadata can be located di-

1. Get file
permissions

4. Construct
path permissions

3. Return path
 permissions2. Request for path

permissions of parent directory /obsd/src/foo

/obsd/src

/obsd

/

file permissions:
 rwxr--r--

path permissions:
rwxr-xr-x

path permissions:
rwxr--r--

Figure 2. Example of creating ACLs.

rectly by hashing. It can also lead to bottlenecks if there
are many concurrent metadata accesses to files in the same
directory or directories.

To avoid this overhead, LH uses a unique dual-entry ac-
cess control list (ACL) structure for managing permissions.
Each file or directory has two ACLs representing the file
permissions and the path permissions for the file or direc-
tory. The file permissions are the ACL for the object it-
self. The path permissions are essentially the intersection
of the file permissions and the parent directory’s path per-
missions – yielding an ACL that represents the permissions
that would be obtained by first visiting the parent directory,
and then visiting the file itself. As the parent directory’s
path permissions were similarly constructed, the path per-
missions represent the permissions that would be obtained
by following the entire directory path down to the file. Con-
structing the path permissions consists of a straightforward
intersection of the two permissions while accounting for
the slight differences in semantics between file and direc-
tory permissions. Path permissions are created at the time
that the file is created, and updated whenever there is a
change to the file permissions of a directory in its path.
Figure 2 shows an example of constructing the ACLs for
/obsd/src/foo.

3.3. LH Efficiency

As a result of the file pathname hashing, MLT indirec-
tion, and path permissions, LH allows for extremely effi-
cient metadata service. Most metadata requests will require
a single message to a single metadata server. In general,
neither the client nor the metadata server cluster need tra-
verse the directory hierarchy to locate the file metadata or
determine the access permissions. With appropriate data
management algorithms in each metadata server, this can
result in extremely efficient metadata access. Table 1 shows
the distribution of a 16-bit namespace on a metadata server
cluster with 4 metadata servers (real systems will use larger
IDs). An illustration of metadata access under normal oper-
ations is shown in Figure 3. Four steps are required for each

4

Table 1. Example metadata server lookup ta-
ble (MLT)

Range of Hash Values metadata server ID

0–3FFE 0
3FFF–7FFD 1
7FFE–BFFC 2
BFFD–FFFB 3

Client

2. Return the Metadata Server ID

1. Client hashes the filename
hash index

4. Send response to client

3. Send metadata request to
the target Metadata Server

 Metadata
 Server

 Metadata
 Server

 Metadata
 Server

MLT
Hash

function

filename

Figure 3. Accessing metadata using LH

access. First, the client hashes the filename. The resulting
hash is used as an index into the MLT to find the metadata
server containing the file metadata. The client contacts the
specified metadata server with its request, and the metadata
server responds as appropriate.

Because the hierarchy is never traversed in normal oper-
ation, and because a hash of full pathnames is used to locate
the metadata servers, certain operations can incur signifi-
cant overhead. A discussion of these operations and our
techniques for mitigating them are the subject of the next
section.

4. Lazy Policies

Because each file is located on a metadata server indi-
cated by a hash of its full pathname, files are widely dis-
tributed among the metadata servers. As a result, most files
will not be located on the same metadata server as their
parent directory. Nevertheless, LH maintains hierarchical
directories to support the standard directory semantics of
general-purpose storage systems. A consequence of this
design choice is that certain operations can incur signifi-
cant overhead. We have identified four operations that can

be particularly expensive in LH: changing permissions on
a directory, changing the name of a directory, removing a
directory, and changing the MLT to indicate the addition or
removal of metadata servers in the cluster. These operation
may incur overhead in two different ways. First, a large
number of messages may need to be sent to the metadata
servers to distribute the changes to each of the files in the
directory hierarchy rooted at the changed directory. Sec-
ond, a large amount of metadata may need to be moved.

When the file permissions are changed on a directory,
the path permissions of all of the files and directories in
the directory subtree rooted at that point will need to be
updated. Because most of the files and directories will re-
side on different metadata servers, updating the path per-
missions may require a large number of messages to other
metadata servers. In general, if there are n metadata servers
and m files or directories in the modified subtree and given
a perfect hash function, m ��� n � 1 ��� n messages will be
required. Assuming 50 ms per update (a goal for our indi-
vidual metadata servers), a subtree of 200 files will result
in a delay of up to 1 second, and a subtree of 12,000 files
will result in a delay of up to 1 minute.

When the name of a file changes, the hash of the new
pathname may indicate that the file resides on a different
metadata server than did the hash of the old pathname.
Thus, the metadata must be relocated to the indicated meta-
data server so that clients can still access it directly via the
hash. The overhead for moving the metadata of a single file
is relatively small. However, the problem is compounded
when the name of a directory changes. In that case, again
because the hash is based on the full pathname, the meta-
data for most of the files in the subtree rooted at that point
will need to be relocated. As with the permission updates,
this can be prohibitively expensive to do synchronously.
Removing a directory incurs similar overhead, except that
the metadata is removed instead of being relocated.

When a metadata server is added to or removed from
the cluster, a significant amount of metadata may need to
be moved. When a metadata server is removed, the meta-
data stored on that server will have to be redistributed to
other servers in the system. This can be accomplished by
modifying the MLT, removing all references to the server in
question, filling in the entries with other servers, then mov-
ing the metadata to the appropriate servers. When a new
metadata server is added to the cluster, which is expected
to be the more common operation by far, metadata will be
moved to the server to redistribute the metadata, restoring
the balance in the system and allowing the performance to
scale with the number of servers. Again, the MLT is up-
dated to move some portion of the hashed metadata values
to the new server, and the metadata is moved to the new
server.

5

The amount of latency incurred by each of these oper-
ations depends upon the amount of metadata affected, but
the worst case for each is prohibitively slow. To address this
problem, we employ metadata invalidation and lazy meta-
data update techniques that defer and distribute the cost
of these operations. When one of these operations is ex-
ecuted, the affected metadata is invalidated or updated (but
not moved). Later, upon the first access, the metadata is
updated or moved by partial traversal of the directory path.
The result is that the initial operation is very fast, and a
small amount of overhead is incurred the first time each of
the modified metadata objects is accessed. This slightly in-
creases the average cost of the accesses, but the operations
that cause this occur relatively infrequently, the overhead
is incurred at most once for each updated metadata object,
and the overhead is relatively small – one or two messages
per updated metadata object, depending upon the update.
Invalidation and lazy update are discussed in more detail in
the following subsections.

4.1. Invalidation

When a directory is removed or its name or permissions
are changed, the change affects all of the files in the subtree
rooted at that point. If the files are accessed hierarchically,
by traversing the path to reach the file, the updates are ob-
tained automatically. However, by hashing directly to the
file based on a hash of the full pathname, mistakes can be
made if the updated pathname or permissions have not been
propogated to all metadata objects in the path. A deleted
file (in a deleted directory) could be accessed, a renamed
file could be accessed by the old name or an access to the
new name could fail, or file access could be allowed or pre-
vented when permissions were changed to prevent or allow
the access. Renamed files are particularly difficult because
a directory could be renamed and a new (empty) directory
could be created with the same name. In that case refer-
ences to files in the old hierarchy should fail, even though
a directory with the same name exists.

To prevent these incorrect accesses, the metadata server
where the operation takes place sends an invalidation or up-
date message to each of the other metadata servers, depend-
ing on whether the operation was a permission change or a
name change. The message contains the pathname of the
affected directory, the time of the invalidation or update,
and the specific operation that took place. The change is
logged on each of the metadata servers. Metadata servers
apply logged operations to affected metadata objects in the
background. At the same time, until the operation is com-
pleted, requested metadata objects can be compared with
the logged operations to see if the invalidation should be
applied to them before the requested operation takes place.

In this way, logged invalidation operations can be pro-
cessed in the background as system load permits, while
still allowing for correct operation of the system until they
have been completed. Thus, once the operations have been
logged, the behavior of the system is as if the invalidation
operation had been completed.

4.2. Lazy Metadata Update and Relocation

By invalidating the metadata, we can prevent incorrect
operations from taking place, but we haven’t yet shown
how we can guarantee that correct operations will take
place. With deferred metadata deletions, applying the de-
ferred operation guarantees correct behavior – the metadata
no longer exists. However, with permission changes, path-
name changes, and metadata location changes (caused by
changes in the MLT), the metadata must still be updated
and/or moved.

As was mentioned previously, the hierarchical directory
structure is maintained in LH. This allows the correct infor-
mation to be obtained, either the permissions of the parent
directory or the actual location of moved metadata. After
invalidation or update, a metadata object can be in one of
two states. Either its path permission is invalidated, or the
pathname is changed. The resolution of the update depends
upon which is the case, but the operation of both is similar.
When an object is found to have an invalid path permission,
the path permission of the parent directory is obtained by
hashing on the filename of the parent directory and con-
tacting the metadata server on which it is located to request
its updated path permission. Given the parent directory’s
path permission, the path permission of the file can be up-
dated accordingly. If the parent’s path permission is also
invalid, then the process repeats recursively until either the
changed directory is reached, or an updated directory in the
path between the file and the changed directory is reached.
Thus, each update only traverses as much of the path as
necessary, and each file or directory path permission can
be lazily updated.

When metadata needs to be moved, its location will not
match that indicated by a hash of its pathname. This is
caused by either a name change, or a change in the MLT
configuration. In either case, metadata may not be present
on the metadata server contacted by a client as directed by
the hash function and MLT. Regardless of the cause, the
action taken is the same: the metadata server contacts the
metadata server containing the parent directory to see if the
file exists or not. If it does not, then the appropriate re-
sponse is sent to the client. If the file does exist, but on
a different metadata server, then the metadata server in-
dicated in the directory is contacted to send the metadata
to the server indicated by the hash function, and the re-

6

5. Locate the
metadata on its

old location

4. Contact
parent directory

6. Move the metadata to its new location

Metadata
Server

Metadata
Server

Metadata
Server

Client
7. Send response to client

3. Send metadata request to
the target Metadata Server

2. Return the Metadata Server ID

1. Client hashes the filename
hash index

MLT
Hash

function

filename

Figure 4. Lazy metadata movement

quest is completed or not, depending on whether or not the
client has the appropriate permissions. When metadata is
moved, the parent directory is updated to record the new lo-
cation. Figure 4 shows the communications between meta-
data servers for a single metadata movement.

It may be the case that the parent directory does not
reside on the metadata server indicated by the hash of its
pathname, in which case the same process recursively takes
place for the parent directory. Once that is resolved, the
process continues for the file in question. This recursive
procedure guarantees that the least amount of directory hi-
erarchy traversal takes place for each request, and takes
place at most once for each file or directory that is located
on a metadata server other than is indicated by the hash
function. Thus, although files are accessed in a flat, effi-
cient namespace through pure hashing, the hierarchical di-
rectory structure is maintained and acts as a stable backup
in locating files when direct access in the flat namespace
fails.

Unfortunately, lazy data movement doesn’t work partic-
ularly well for removing metadata servers, in which case
it may be desirable to update and move the metadata im-
mediately. If this is desired, the update can proceed either
by synchronous traversal of the directory hierarchy, mov-
ing each object that is encountered, or by setting the in-
validation request to move the metadata as it is updated,
with a high priority. Synchronously updating each meta-
data object in the directory can proceed in parallel, as each
metadata server can manage the objects in each subdirec-
tory that it caches, allowing many of the moves to occur
in parallel. This will occur infrequently enough that the
overhead should be acceptable.

4.3. Efficient Log Operation

Comparing a metadata object to the log requires a sim-
ple comparison of the pathnames and times; a match occurs

if the path of the logged operation is a substring of the ob-
ject pathname and the time of the logged operation is newer
than the timestamp of the metadata object. The timestamp
of metadata objects are set to the time of the newest update
they have been compared with, whether the update has been
applied to them or not. To make log management as effi-
cient as possible, logs will be sorted by time such that a
metadata object need only be compared against those with
times newer than the metadata object’s timestamp. Sorting
the operations in time order also guarantees that subsequent
operations to the same file are processed correctly. When a
metadata object is compared against the appropriate invali-
dation requests in the log as determined by the timestamp,
substring matching can be accomplished relatively quickly
using known techniques to determine which requests actu-
ally apply to the object.

Invalidation requests in the log can also have a priority
associated with them such that they can be processed in the
background at different rates depending upon their priority.
In this way, some updates can take place faster than others,
the size of the logs can be kept relatively small, and the
updates can be guaranteed to complete eventually.

While the logs are compared with every object that is ac-
cessed, the background updates do not have to do so – they
can proceed via hierarchical directory traversal. Thus, a
tradeoff can be made between the low number of metadata
accesses of directory traversal (which accesses only those
objects in the subtree) but relatively high number of mes-
sages (one per metadata object in the subtree), and the rel-
atively low number of messages of logged operation (one
per metadata server) but high number of metadata accesses
(one per accessed metadata object – but since they are al-
ready in memory, this overhead is relatively small). In ei-
ther case, once the update is complete, the operation is re-
moved from the log.

To maintain consistency of the log files, the broadcast
of the related directory operations must be synchronous,
processed as a distributed transaction [1]. When a meta-
data server recovers from a crash, before processing any
requests, it should contact other metadata servers to get the
most up-to-date log file. Log file recovery requires that
old log operations be retained until they have been accom-
plished by all servers, at which time they will no longer be
needed for recovery.

4.4. Links

Because the directory hierarchy is not traversed each
time a file is accessed, file system links present something
of a problem. In particular, hashing on a pathname that in-
cludes a hard link or a symbolic link will likely direct the
client to the wrong metadata server. Even if the right meta-

7

/obsd/src_old/foo

4. Forward
request to

target directory

6. Send metadata
to client

5. Locate
targe file

3. Contact parent
directory

2. No such
file exists

1. Access file
/obsd/src/foo

/obsd/src /obsd/src_old

/obsd

/

Client

Figure 5. Accessing a directory via a sym-
bolic link

data server is contacted, a match will not be found for the
specified pathname.

In LH, the lazy techniques we have created for moving
data can be used to handle links as well. The simplest ap-
proach is to let the client try to access the file directly, and
let the recursive metadata-not-found procedure backtrack
up the directory path to the link and back down the ac-
tual path to locate the metadata. With a link to a directory,
accessing the subtree of the destination directory through
the symbolic link always results in a failure because the
subtree’s location is determined by hashing its real name
under the destination directory. This is analogous to the
first access of a file in the subtree of a renamed directory;
hashing fails since the metadata is not moved to the new
location indicated by hash of the new name. Path traversal
is then used to locate the metadata. Unfortunately, unlike
directory renaming, the overhead of name traversal is in-
curred each time the subtree is accessed through the sym-
bolic link. If there are recursive symbolic links, the cost is
higher due to nested redirections. This is not terribly ef-
ficient, but guarantees correct semantics. In the following
example, /obsd/src is a symbolic link to /obsd/src old. The
access to /obsd/src/foo requires six steps using the above
straightforward approach, as shown in Figure 5.

An alternate solution is to allow link names to propagate
through the system, analogous to the movement of meta-
data in the system. In this case, new metadata links can
be created lazily to represent alternate names for each of
the files in the directory hierarchy. This allows the system
to trade storage space for latency – creating the additional
links takes up space, but the end result is that frequently
accessed files in the path of a linked directory can be ac-
complished with almost the same efficiency as regular file

/obsd/src_old/foo

4. Forward request
to target directory

6. Create a shortcut of
target file

6. Send metadata
to client

5. Locate
targe file3. Contact parent

directory

2. No such
file exists

1. Access file
/obsd/src/foo

/obsd/src /obsd/src_old

/obsd

/

Client

/obsd/src/foo

Figure 6. Creating a shortcut under a sym-
bolically linked directory

/obsd/src/foo /obsd/src_old/foo3. Forward request
to target file

2. Reach the
shortcut

4. Send metadata
to client

1. Access file
/obsd/src/foo

/obsd/src /obsd/src_old

/obsd

/

Client

Figure 7. Accessing a file through a symbolic
link shortcut

metadata look-ups: 2 messages instead of one, since the
linked metadata will still have to be found. Figure 6 illus-
trates the creation of shortcut for /obsd/src/foo in the above
example. Figure 7 shows the operations for future access to
/obsd/src/foo after the shortcut is created. Like lazy meta-
data movement, symbolic link and shortcut creation takes
place on a per-file basis as each file is accessed through a
symbolic link path. When directory names or permissions
change, these shortcuts may also have to be updated just
like other metadata objects.

It is worth noting that although they may incur more
overhead in LH than in other techniques, directory re-
names, links and permission modifications occur very in-
frequently. An examination of the Coda traces [10] for

8

one machine (mozart) in a general-purpose environment
shows only 117 directory renames, 1851 directory sym-
bolic links and less than 3000 directory permission and
ownership changes over the course of two years. No data is
available for the frequency of metadata server additions or
deletions, but these operations are also expected to be rela-
tively rare in the system. Thus the performance advantage
from directly accessing metadata with a single request sig-
nificantly outweighs any additional overhead incurred by
these operations, and our lazy techniques will further re-
duce the impact of these overheads.

5. Conclusions

We present Lazy Hybrid metadata management, a scal-
able metadata management mechanism based on path-
name hashing with hierarchical directory management. LH
avoids the bottlenecks of directory subtree partitioning and
pure hashing by combining their best aspects and by pro-
pogating expensive directory name and permission changes
lazily, improving the performance of the system and dis-
tributing the overhead of these potentially costly opera-
tions. LH provides high performance by avoiding hot spots
in the metadata server cluster and minimizing the over-
head of disk access and server communication. We are
currently implementing LH and integrating it into our dis-
tributed object-based storage system. We plan to use trace-
driven and benchmark-driven experiments to compare the
performance of LH with the traditional metadata manage-
ment techniques to show that LH provides significantly bet-
ter performance and scalability than standard techniques.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley Publishing Company, 1987.

[2] P. Braam, M. Callahan, and P. Schwan. The intermezzo
file system. In Proceedings of the 3rd of the Perl Con-
ference, O’Reilly Open Source Convention, Monterey, CA,
USA, Aug. 1999.

[3] P. J. Braam. The Lustre storage architecture, 2002.
[4] P. F. Corbett and D. G. Feitelso. The Vesta parallel file sys-

tem. ACM Transactions on Computer Systems, 14(3):225–
264, 1996.

[5] G. A. Gibson and R. V. Meter. Network attached storage
architecture. Communications of the ACM, 43(11):37–45,
2000.

[6] E. Levy and A. Silberschatz. Distributed file systems: Con-
cepts and examples. ACM Computing Surveys, 22(4), Dec.
1990.

[7] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer
Systems, 2(3):181–197, Aug. 1984.

[8] E. L. Miller and R. H. Katz. RAMA: An easy-to-use,
high-performance parallel file system. Parallel Computing,
23(4):419–446, 1997.

[9] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. H. Rosenthal, and F. D. Smith. Andrew:
A distributed personal computing environment. Communi-
cations of the ACM, 29(3):184–201, Mar. 1986.

[10] L. Mummert and M. Satyanarayanan. Long term distributed
file reference tracing: Implementation and experience.
Software—Practice and Experience (SPE), 26(6):705–736,
June 1996.

[11] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nel-
son, and B. B. Welch. The Sprite network operating system.
IEEE Computer, 21(2):23–36, Feb. 1988.

[12] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A trace-driven analysis of
the Unix 4.2 BSD file system. In Proceedings of the 10th
ACM Symposium on Operating Systems Principles (SOSP
’85), pages 15–24, Dec. 1985.

[13] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS version 3: Design and implementation. In
Proceedings of the Summer 1994 USENIX Technical Con-
ference, pages 137–151, 1994.

[14] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, , D. Noveck, D. Robinson, and R. Thurlow. The
NFS version 4 protocol. In Proceedings of the 2nd Interna-
tional System Administration and Networking Conference
(SANE 2000), Maastricht, Netherlands, May 2000.

[15] G. J. Popek and B. J. Walker. The LOCUS distributed sys-
tem architecture. Massachusetts Institute of Technology,
1986.

[16] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, 1990.

[17] R. O. Weber. Information technology—SCSI object-based
storage device commands (OSD). Technical Council Pro-
posal Document T10/1355-D, Technical Committee T10,
Aug. 2002.

9

