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We use elastic and inelastic neutron scattering (INS) to study the antiferromagnetic (AF) phase
transitions and spin excitations in the two-dimensional (2D) zig-zag antiferromagnet FePSe3. By
determining the magnetic order parameter across the AF phase transition, we conclude that the AF
phase transition in FePSe3 is first-order in nature. In addition, our INS measurements reveal that
the spin waves in the AF ordered state have a large easy-axis magnetic anisotropy gap, consistent
with an Ising Hamiltonian, and possible biquadratic magnetic exchange interactions. On warming
across TN , we find that dispersive spin excitations associated with three-fold rotational symmetric
AF fluctuations change into FM spin fluctuations above TN . These results suggest that the first-
order AF phase transition in FePSe3 may arise from the competition between C3 symmetric AF and
C1 symmetric FM spin fluctuations around TN , in place of a conventional second-order AF phase
transition.

Two-dimensional (2D) spin models are one of the
most well-studied magnetic systems in condensed mat-
ter physics. The pioneering solution by Onsager in 1944
[1] revealed that the 2D ferromagnetic (FM) Ising model,
characterized by nearest neighbor coupling J , undergoes
a magnetic phase transition at kBTC = 2.269J , ex-
hibiting an order parameter critical exponent β = 1/8.
The 2D XY model, on the other hand, lacks long-
range order, but it exhibits the ability to undergo a
Berezinskii–Kosterlitz–Thouless transition, during which
the correlation function transitions from an exponen-
tial decay to a power-law behavior as a function of
distance[2, 3]. In real magnetic materials, spins exhibit
free 3D rotation rather than adhering to binary orien-
tations or 2D rotations, and the Hamiltonian for ac-
tual magnetic systems will take the form of a Heisen-
berg model plus magnetic anisotropy [4]. According to
the Mermin-Wagner theorem, in the case of an isotropic
Heisenberg Hamiltonian with short-range magnetic ex-
change couplings, the thermal fluctuations are strong
enough to prevent long-range magnetic order in the 2D
limit at any finite temperature [5], with the correla-
tion length diverging only at absolute zero. Conversely,
in the presence of easy-axis/easy-plane anisotropy, the
renormalization group flow will favor the selection of the
anisotropic component of the Hamiltonian as the relevant
parameter, resulting in critical behavior that aligns with
predictions from the Ising/XY models [6].

The discovery of long-range magnetic order at non-
zero temperatures in the 2D monolayer of several hon-
eycomb lattice van der Waals (vdW) ferromagnets and
antiferromagnets suggests a suppression of the thermal
fluctuations, most likely due to the formation of an Ising-

type magnetic anisotropy gap in these materials [7–11].
To understand the microscopic origin of the long-range
magnetic order in the 2D limit for different classes of
vdW materials, it is therefore important to determine the
magnetic properties of their 3D bulk compounds. While
the FM Ising Hamiltonian on a 2D square lattice has
been solved [1], the situation for Ising spin systems in
2D honeycomb lattices is more complicated. As a non-
Bravais lattice, the honeycomb structure can host a few
different collinear magnetic structures, including simple
ferromagnets, Néel antiferromagnet with c-axis aligned
moments, stripy antiferromagnet, and zig-zag antiferro-
magnet [Fig. 1(e)], depending on the relative strengths of
nearest J1 (NN), next nearest J2 (NNN), and next-next
nearest neighbor J3 (NNNN) magnetic exchange interac-
tions [Fig. 1(a)] [12]. The first two magnetic structures
have the same in-plane ordering wavevectors as the lat-
tice vectors, and respect the three-fold rotational (C3)
symmetry of the honeycomb lattice. The stripy and zig-
zag antiferromagnetic (AF) structures, however, break
the C3 rotational symmetry of the honeycomb lattice
to C1 and fold the first Brillouin zone (FBZ) into a
smaller rectangular magnetic FBZ. In these structures,
there will be three magnetic domains separated by 60◦

degrees, meaning that the overall magnetism still obeys
the underlying C3 lattice symmetry. The magnetic order
parameter is not a direct measure of the ordered or stag-
gered moment because it has multiple components. For
example, the order parameter for the zig-zag AF order
is composed of three components (Ψ1,Ψ2,Ψ3), each re-
flecting the staggered moment along one of the three C3

axes [13]. By probing the static magnetic order and spin
excitations across the magnetic phase transition, one can
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obtain information concerning the behaviors of the phase
transition and compare the results with the expectations
of the conventional Ising or XY models.

For the FM honeycomb system CrSiTe3, the critical
behavior of the magnetic phase transition exhibits 2D
Ising characteristics [14, 15], with a dimensional crossover
from 2D to 3D near TC [16]. For other honeycomb lattice
ferromagnets such as CrI3, VI3, and CrGeTe3, the crit-
ical behavior is more reminiscent of the tricritical mean
field model [17–21]. For AF ordered MnPS3, NiPS3 and
CoPS3, the critical behavior near TN shows 3D XY or
Ising characteristics [22–24]. However, none of these AF
materials follow the genuine 2D Ising model primarily
due to either a small magnetic anisotropy or an XY-type
anisotropy, along with interlayer interactions that impact
the magnetic phase transition [25, 26].

FePS3 and FePSe3 constitute a potential material fam-
ily for exploring an Ising-type antiferromagnetic phase
transition accompanied by C3 symmetry breaking. This
study specifically centers on FePSe3[Figs. 1(a) and 1(c)].
FePSe3 belongs to the rhombohedral R3̄ space group,
with hexagonal layers stacked through weak vdW inter-
actions along the c-axis [Fig. 1(b)] [27]. Compared with
FePS3 in the monoclinic C/2m symmetry group, FePSe3
preserves the C3 symmetry and therefore is ideal to study
any possible magnetic order induced in-plane C3 symme-
try breaking without significant interlayer coupling ef-
fects [28]. Since FePSe3 has an in-plane zig-zag AF struc-
ture below TN=110K, we expect an FM exchange interac-
tion J1 between NN, and AF exchange interactions in J2
and J3 between NNN and NNNN, respectively [Fig. 1(a)]
[27]. In the 3D bulk limit, the AF ordering wavevector is
QAF = (1/2, 0, 1/2) [Fig. 1(b) and 1(f)] due to a weak
AF interlayer coupling Jc [Fig. 1(b)] [27]. The magnetic
Fe2+ ion has a 3d6 electronic orbital with four unpaired
spins, giving S = 2. A strong spin-orbit coupling (SOC)
induces a large magnetic anisotropy with the c-axis as
the easy axis [27, 29]. Raman scattering experiments on
bulk and monolayer FePSe3 have observed a ∼15meV
spin gap, suggesting that the system is Ising-like [11].

In this work, we use elastic and inelastic neutron scat-
tering (INS) to study the magnetic order and spin dy-
namics in bulk single crystal FePSe3. The temperature
dependence of the magnetic order parameter from elas-
tic neutron scattering experiments suggests that the AF
phase transition is first-order in nature [Fig. 1(d)]. In
the AF ordered state, our INS experiments reveal that
spin waves are gapped below ∼15meV, consistent with
Raman scatteirng results [11], and are highly 2D with
weak dispersion along the c-axis [Fig. 1(g)]. By fitting
the spin-wave dispersion spectra using linear spin wave
theory (LSWT) [30], we determine magnetic exchange
couplings, magnetic anisotropy, and find evidence for a
biquadratic term in the spin Hamiltonian. On warm-
ing above TN , we find dispersive spin excitations that
can be explained by AF and FM excitations from hon-

eycomb lattice clusters with the C3 symmetry. These
results are different from the expectation of a conven-
tional AF second-order phase transition, suggesting that
the long-range AF order in FePSe3 is replaced by C3

magnetic honeycomb lattice clusters as the temperature
is raised above TN . The uncorrelated paramagnetic scat-
tering from individual Fe ions is only established at tem-
peratures well above TN .

Single crystals of FePSe3 are synthesized using the
chemical vapor transport method described in ref. [31].
Elastic and INS experiments were respectively performed
at the CORELLI spectrometer [32] on one single crystal
sample and the ARCS spectrometer[33] on ∼0.5g of co-
aligned crystals at the Spallation Neutron Source, Oak
Ridge National Laboratory. The momentum transfer
Q is referenced in reciprocal lattice units (rlu) with re-
spect to the rhombohedral unit cell of FePSe3 with a =
b =6.26Å, c =19.71Å. The magnetic ordering wavevec-
tor observed at QAF = (1/2, 0, 1/2) confirms the zig-zag
magnetic structure, and the temperature dependence of
the order parameter is shown in Fig. 1(d). A power law
fit of the order parameter with I = I0(1 − (T/TN )2β)
yields a critical exponent β = 0.063, which is much
smaller than the 2D Ising model prediction β = 1/8,
suggesting a first-order nature of the phase transition.
This is further supported by measurements of correlation
lengths which jump abruptly at TN [29].

Figures 1(g) and 2(b) show the measured spin wave
dispersions of FePSe3 at 5 K along the c axis and within
the 2D honeycomb lattice plane, respectively. The over-
all dispersion has a band top of ∼40 meV, with an
anisotropy gap of ∼15 meV at the Γ and M point. The
large anisotropy gap value is also observed in the sis-
ter compound FePS3, which is due to the combined ef-
fects of SOC in the 3d6 orbital of Fe2+ and the distor-
tion of the FeSe6 octahedron [Fig. 1(c)]. For compar-
ison, the isostructural compounds MnPSe3 and MnPS3
do not exhibit such large gaps because their 3d5 electrons
have quenched orbital moments [25, 34]. The spin waves
propagating along the c-axis exhibit significantly less dis-
persion in contrast to the in-plane spin waves, featuring
a bandwidth of approximately 1 meV for the former as
opposed to a 20 meV bandwidth for the latter, indicat-
ing the presence of a very weak interlayer coupling Jc
[Fig. 1(g)]. This is consistent with the fact that the
TN of FePSe3 changes little as a function of layer num-
bers, suggesting that the interlayer exchange interactions
have minimal effect on the magnetic phase transition in
FePSe3 [9, 11].

To describe the in-plane spin wave dispersion, we first
use LSWT to calculate the spin waves with the spin
Hamiltonian

H0 =
∑
<i,j>

JijSi · Sj +
∑
i

Dz(S
z
i )

2 (1)
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FIG. 1. Real/reciprocal space of FePSe3 and spin waves along in-plane and c-axis directions. (a) Schematics of the
intralayer AF magnetic structure and exchange interactions. (b) Interlayer magnetic structure and coupling Jc. (c) Local Fe

2+

environment in FePSe3, with the 3d6 spin configuration in an octahedral environment. (d) Neutron intensity of magnetic Bragg
peak (1/2 0 1/2) as a function of temperature. (e) The in-plane zig-zag magnetic structure. The bold black rhombus shows
the lattice unit cell and the dashed red rectangle shows the magnetic unit cell. (f) The reciprocal space with black hexagons
showing the lattice FBZ and the dashed red rectangle shows the magnetic FBZ. The blue dots are the magnetic Bragg peaks
from the magnetic structure shown in (e). (g) Out-of-plane spin wave dispersion along [1/2 0 L] from the experiment.

where the bilinear (Heisenberg) exchange interaction Jij
is summed over the 1st, 2nd and 3rd NN, and Dz is
the single-ion anisotropy with z-axis as its easy axis.
It is worth noting that within the actual system, mag-
netic anisotropy may stem from either single-ion effects
or Ising-type exchanges. Therefore, the Hamiltonian can
encompass Ising exchange terms JzSizSjz in addition
to the single-ion anisotropy. Nevertheless, within the
framework of linear spin wave theory, the Ising term’s
impact on dispersion will be identical to that of single-
ion anisotropy, provided that the respective parameters
are appropriately adjusted (See the supplementary infor-
mation). For the sake of simplicity, we have chosen to
solely include the single-ion anisotropy term here. Us-
ing a least-square-error fitting method with S = 2, we
extract the magnetic exchange coupling parameters as
shown in TABLE I. However, the best fitting using this
model with uniform J1 does not precisely reproduce the
dispersion, especially the low-energy part perpendicular
to the zig-zag direction. In fact, the exact same scenario
is observed in the sister compound FePS3 [36] where a
simple Heisenberg model plus anisotropy cannot account
for the spin excitations accurately. In the case of FePS3,
two approaches have been utilized to resolve this prob-
lem, and here we apply them to FePSe3 as well. The first
is to introduce bond-dependent J1 with J1a bonding the
parallel spins and J1b for anti-parallel spins; The second

is to introduce a biquadratic interaction

H = H0 +
∑
<i,j>

Kij(Si · Sj)
2 (2)

where the biquadratic exchange Kij is summed over the
1st NN only. Both methods stabilize the zig-zag AF
order, and with proper fitting parameters in TABLE
I, they yield nearly identical dispersions that can accu-
rately reproduce the experimental data. For the J1a-J1b
model, the difference between J1a and J1b is large, in-
dicating that a lattice distortion should accompany the
magnetic phase transition as in the case of FePS3. How-
ever, no obvious lattice parameter change is observed
across TN , indicating that the J1a-J1b model is unlikely
to be correct. On the other hand, The existence of bi-
quadratic interaction has been theoretically proposed in
many such 2D magnetic systems with edge-shared octa-
hedron structures[39, 40], and therefore may be the more
suitable model for describing the spin waves in FePSe3.
The situation is similar in the case of iron-based su-
perconductors, where a biquadratic interaction has been
used to account for the observed in-plane spin wave dis-
persions [37, 38]. A noteworthy fact is that the low-
energy magnons at the Γ point are linearly coupled to
phonons, which introduces a magnon-polaronic gap that
lifts the 2-fold degeneracy of the AF magnons[11]. This
suggests the necessity of introducing a magnon-phonon
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FIG. 2. Spin waves in FePSe3. (a) Calculated spin wave
dispersion with (black) and without (red) biquadratic interac-
tions. The inset shows the Q scan path. (b) LSWT fit of the
experimental data with (white) and without (red) biquadratic
interactions.

Model J1 J2 J3 K1 Dz

Uniform J1 -2.30 -0.23 2.01 0 -2.74
J1a-J1b -2.26/-0.72 0.09 1.28 0 -2.45
J1-bq -1.32 0.12 1.28 -0.22 -2.31

TABLE I. Magnetic exchange interaction strength in different
models in FePSe3. All units in meV. In the J1a-J1b model,
the J1a indicates FM interactions in the zig-zag chain, and J1b

indicates interactions between chains. J1, J2, J3 indicate the
first, second, and third nearest neighbor Heisenberg exchange,
respectively. K1 refers to the nearest-neighbor biquadratic
interactions, and Dz stands for single-ion anisotropy.

coupling term into the spin Hamiltonian. However, the
impact of this term is minimal, exhibiting a gap of ap-
proximately 0.6 meV, a value below the resolution of the
instruments. Hence, it is omitted from equation (2). Fur-
thermore, the required strength of the Kitaev interaction
(0.03 meV) to induce the magnon-phonon gap is signif-
icantly less than that of the Heisenberg exchanges, and
thus, these are not taken into account in the fitting pa-
rameters.

The first-order nature of the AF phase transition also
displays itself in the spin fluctuations in the neighbor-
hood of TN . Fig. 3 shows a summary of the INS spec-

FIG. 3. Spin excitations in FePSe3 in different temper-
atures.Spin excitations in FePSe3 in (a) 101K, (b) 107K,(c)
110K, (d) 113K, and (e) 125K. (f) a constant-E cut of the
intensity in (a-e) with E integrated between 4-6meV. The in-
cident neutron energy used here is Ei=35meV.

trum near TN = 110 K. At T = 101 K, in-plane spin
excitations are well-defined and similar to spin waves at
5 K [Fig. 3(a)]. On warming to T = 107 K, spin exci-
tations remain well defined, but become broader with an
anisotropy spin gap above 10 meV [Fig. 3(b)]. Upon fur-
ther warming to 110 K, the spin gap drastically decreases
to zero at the M point, while keeping a non-zero value at
the Γ point [Fig. 3(c)]. A cut along the [H, 0] direction
at E = 5 ± 1 meV shows clearly that the M point spin
fluctuations are enhanced from 110 K to 125 K, different
from the expectation of critical magnetic scattering as-
sociated with a second-order phase transition. Although
the spin gap closing at the M point may arise from the
vanishing static magnetic moment across TN , the differ-
ences in temperature dependence of the spin gap at Γ
and M points cannot be explained by a second-order AF
phase transition since the Γ and M points are equivalent
within the spin wave theory which requires long-range
AF order and folding of the Brillouin zone below TN .
This is consistent with the observed first-order transition
in the AF order parameter(fig.1d). In the paramagnetic
state, the rectangular magnetic Brillouin zone unfolds to
the hexagonal lattice Brillouin zone. However, we find
similar spin excitations as in the AF ordered state [Figs.
3(d), 3(e), and 3(f)].

Although the AF phase transition in FePSe3 is first-
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order, the short-range zig-zag order may still persist near
the phase transition. A natural way to reconcile the ex-
istence of the zig-zag order and the C3 symmetry is to
combine all the zig-zag domains with equal weight [Fig.
4(a)], while the size of the fluctuation domains deter-
mines the correlation lengths of the short-range order.
To understand the nature of the dispersive paramagnetic
spin excitations in FePSe3, we plot constant-E slices in
the [H K] plane at E = 5 ± 2 meV [Fig. 4(c)] and
11 ± 2 meV [Fig. 4(d)] at 110 K, which shows the spin
excitations at the M points and their connections, re-
spectively. The low-energy spin excitations show diffu-
sive hexagonal patterns which are hollow at the Γ point,
and the high-energy excitations show plate-like hexago-
nal patterns. Inspired by the spin cluster methods used
in refs. [45–47], we apply a similar analysis on FePSe3.
Assuming that the spins form clusters of hexagons with
zig-zag order [Fig. 4(a), we calculate the neutron inten-
sity I(Q) with

I(Q) ∝ f2(Q)
∑
⟨m,n⟩

eiQ(rm−rn)(1− Q2
z

Q2
)⟨Sz

mSz
n⟩ (3)

where f2(Q) is the magnetic form factor, m,n ∈ 1, ..., 6 is
the index for spins in Figs. 4(a) and 4(b). The calculated
I(Q) is then averaged over six zig-zag spin configurations.
Figures 4(d) and 4(f) show the calculated intensity from
the zig-zag clusters [Fig. 4(a)], which matches well with
the experimental result at low energy. For the higher en-
ergy part at 11meV, due to the enhanced Γ point spin
fluctuations, an additional FM cluster is required [Fig.
4(b)] in order to reconstruct the plate-like excitation pat-
tern.

The spin fluctuations observed at 110K encode sub-
stantial information regarding the spin correlations in
FePSe3. The pillar-like feature of the spin excitations
at the M point in Figure 3(c) indicates that the Q-
dependence of low-energy spin excitations remains un-
changed below ∼8meV. This implies that an interval over
the low-energy excitations can reasonably approximate
the instantaneous spin correlations. Consequently, de-
spite our zig-zag cluster calculation being used to repro-
duce the spin fluctuation in the energy range E=[3,7]
meV, it is reasonable to infer that this zig-zag arrange-
ment accurately reflects the nature of these instantaneous
spin correlations.

A noteworthy observation is that even in the AF state
at 4K, the dynamical spin-spin correlation centers around
the FM wavevector located at Γ, rather than the AF
wavevector at M [Figure 4(g) and 4(h)]. The reason is
that as the magnetic anisotropy grows, the AF spin wave
excitations are gradually replaced by local spin-flip exci-
tations. In an isotropic AF Heisenberg model, the mag-
netic excitations are spin waves that give zero structure
factor at the FM wavevector, while in a pure AF Ising
model, the spin-flip excitations will introduce a non-zero

FIG. 4. Simulation on spin fluctuations at Neel tem-
perature in FePSe3. (a,b) Zig-zag AF and FM clusters
used to simulate the spin fluctuation, respectively. (c) Ex-
perimental data at T=110K and E=[3,7]meV. (d) Calculated
neutron intensity of the AF cluster in (a). (e) Experimental
data at T=110K and E=[9,13]meV. (f) Calculated neutron
intensity of the AF cluster (a) plus the FM cluster (b). The
AF clusters and FM clusters are weighted with a ratio of 2:1 in
(f). (g) experimentalw3 data at T=4K and E=[14,18]meV.
(h) Calculated neutron intensity at the same energy range as
(g) by LSWT with parameters from TABLE I.

intensity centered at the Γ point. In the case of FePSe3,
the robust magnetic anisotropy shifts the primary spin
excitations from AF spin waves to spin-flip excitations.
As the temperature rises to TN , the local spin-flip excita-
tion remains gapped, indicating that the dynamic suscep-
tibility associated with spin-flip scattering remains non-
zero. Consequently, it cannot be the primary driving
force behind the first-order magnetic phase transition.
Instead, the excitations of zig-zag clusters at TN become
gapless, implying that the dominant component of spin
configurations near TN is the zig-zag short-range order.
It can be speculated that the magnetic phase transition
is driven by a discontinuous condensation of these zig-zag
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hexagonal clusters, corresponding to the C3-C1 symme-
try breaking. This distinguishes it from the fluctuations
observed in conventional Ising magnets that break the Z2

time-reversal symmetry through spin-flip scatterings.

In summary, we utilized neutron scattering to study
the spin excitations and spin fluctuations in FePSe3
across TN . By analyzing the spin wave dispersion, we find
evidence for biquadratic magnetic exchange interactions
in the effective spin Hamiltonian terms. The microscopic
origin of the biquadratic term remains to be determined.
In addition, our magnetic order parameter measurements
indicate that the AF phase transition is first-order in na-
ture. From measurements of the temperature-dependent
spin excitations across TN , we infer that the AF phase
transition may be driven by the C3 to C1 symmetry
breaking from low-energy spin clusters associated with
zig-zag AF honeycomb lattice, respectively. Our results
provide an enriched perspective on the intricate interplay
between magnetic interactions and structural symmetries
in the Ising magnetic systems with additional C3 symme-
try breaking.
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