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Summary

Ectomycorrhizal symbiosis between roots and fungi is founded on the movement of 

carbon from plants to fungi, and of soil resources from fungi to plants. Framing this 

movement as a trade can facilitate an understanding of how this mutualism has 

developed over evolutionary time, but fails to explain experimental observations of 

carbon and nutrient movement. Here, I propose that source-sink dynamics are an 

essential basic model to explain the movement of plant and fungal resources, which

may be modified by plant immune response, variability in fungal molecular 

repertoires, and competition in the soil. Source-sink dynamics provide testable 

hypotheses to illuminate mechanisms of ectomycorrhizal resource movement and 

its consequences for mutualism stability and forest function under climate change.

Keywords: ectomycorrhiza, mutualism, resource movement, rewards for 

cooperation, source-sink dynamics

I. Introduction

Ectomycorrhizal symbiosis is an essential mechanism by which many temperate 

forest trees associate with fungi to acquire crucial nutrients, while fungi receive 

carbon from the plants (Smith & Read, 2008). Discussions of these processes often 

frame the movement of resources as a reciprocal trade of plant carbon for fungal 

resources like nitrogen (Stuart & Plett, 2020; Bogar et al., 2022; Horning et al., 

2023). This framework is appealing because, if reciprocity regulates resource 

movement, mutual cooperation could be naturally reinforced: Fungi must bring 

resources to the plant to receive carbon, and plants must support fungi with carbon 

to receive resources. This process seems to operate in arbuscular mycorrhizal 

associations (Kiers et al., 2011; Ji & Bever, 2016).

However, the evidence for rewards in ectomycorrhizal symbiosis is mixed. 

Occasionally, we find evidence for increased plant carbon investment in fungi 

providing nitrogen (Bogar et al., 2019, 2022; Horning et al., 2023), but more often, 

plant carbon investment is uncorrelated (Näsholm et al., 2013; Hortal et al., 2017; 

Plett et al., 2020) or negatively correlated (Hasselquist et al., 2016) with fungal 

nitrogen provisioning. Phosphorus flow seems to correspond better to plant carbon 
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allocation (Finlay, 1989; Horning et al., 2023), but has not been adequately 

explored in ectomycorrhizal systems. Even when plant carbon rewards for fungal 

resources are detected, they are context- and scale-dependent. For example, 

Mayerhofer et al. (2021) found that at cellular scale, plant-derived carbon and 

fungal-derived nitrogen were tightly coupled in ectomycorrhizas of Fagus sylvatica, 

but this pattern disintegrated at larger spatial scales. We must look beyond carbon-

for-nutrient rewards to fully understand controls on ectomycorrhizal resource 

movement. 

Here I suggest that source-sink dynamics remain the most useful basic 

framework for understanding organismal and ecological-scale resource movement 

in ectomycorrhizal symbiosis. However, these dynamics can be modified. External 

resource availability, the chemical interplay between plant and fungal partners, and

competition in the soil could alter source-sink expectations to produce diverse 

resource movement patterns in ectomycorrhizal associations. By comparing the 

circumstances under which ectomycorrhizal mycelium and plant tissues act as a 

continuous whole against circumstances where the divergent evolutionary 

pressures and disparate physiologies of two partners lead to non-source-sink 

interactions, we can uncover valuable mechanistic insight into how resource 

movement is regulated in this symbiosis. Understanding what drives this resource 

movement will provide insight at the community scale, as resource allocation may 

shape the composition and function of ectomycorrhizal plant and fungal 

communities, and at the ecosystem scale, clarifying how carbon and soil resources 

move through forested landscapes.  

II. Source-sink dynamics remain a useful model for resource movement

At the scale of organs and organisms, source-sink dynamics are a useful model for 

resource movement in ectomycorrhizal symbiosis. Here I use the phrase “source-

sink dynamics” to refer broadly to processes wherein a resource moves from an 

area of relatively high density to an area of lower density, regardless of the 

mechanism of travel. When, for example, plant carbon supplies in leaves exceed the

carbon in roots or fungal mycelium, carbon movement into the fungus might be 

explained by the mycelium representing a physiological “sink” (Cairney, 2012). 

Source-sink processes can happen more easily across steeper concentration 
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gradients (e.g. if a plant is grown in elevated light or CO2) (Choi et al., 2005; Trocha 

et al., 2016). Alternatively, increased conductance in the relevant pathways 

between the source and the sink might speed source-sink dynamics, either through 

increased surface area across which a resource can flow (e.g. Hartig net depth, or 

hyphal proliferation in a resource patch) (Leake et al., 2001; Stuart et al., 2023), or 

with increased transport capacity at the hypha-soil, root-soil, or hypha-root interface

(perhaps via increased density or kinetic efficiency of transporters) (Garcia et al., 

2016). By adjusting local concentration gradients and pathway conductance, 

ectomycorrhizal symbiosis facilitates resource movement between sources and 

sinks.

Carbon movement through plants into fungi is usefully explained in terms of 

source-sink dynamics. Carbon in leaves (and in the plant as a whole) can generally 

be seen as an excess resource (Corrêa et al., 2012; Prescott, 2022) that flows 

towards sinks without requiring much active regulation. A fungus may be expected 

to receive carbon from the plant roughly proportional to the rate at which that 

fungus is respiring, extending its hyphae, or producing biomass. Fungal sink 

strength can vary depending on the nutritional environment, with hyphal 

proliferation in rich patches increasing the sink strength of the fungus locally (Leake

et al., 2001). This effect is likely driven by fungal biomass (rather than linear growth

rate), as hyphal density can predict host carbon contributions to ectomycorrhizal 

fungi (Wu et al., 2002; Stuart et al., 2023). Complicating the situation, plant carbon 

investment may increase the biomass of a fungus and thus increase the carbon 

demand or sink strength of the mycelium – this kind of positive feedback is probably

common. Fungi could also exert different sink strengths depending on the rates at 

which they convert plant carbon into storage compounds like trehalose (Stuart et 

al., 2023). Further, these dynamics may depend on which host plants and fungi are 

involved. Once a mycorrhiza is mature, sink strength of the distal mycelium may be 

controlled by the area across which symbiotic resource exchange may take place

(Stuart et al., 2023), as well as immunological and resource transfer properties of 

the symbiotic membranes themselves. 

Ectomycorrhizal fungal contributions to plant nutrition can likewise be 

explained by source-sink dynamics. Ectomycorrhizal fungal mycelium is typically a 

source of soil resources such as phosphorus and nitrogen, expanding plant-usable 

soil volume beyond what roots could access alone (Torres Aquino & Plassard, 2004),
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and deploying enzymes to improve resource availability (Sun et al., 2023). 

Ectomycorrhizal fungi generally improve plant access to resources when 

background concentrations are low, with mycorrhization benefit and plant carbon 

investment into fungi falling off at higher levels (Torres Aquino & Plassard, 2004; 

Högberg et al., 2021). At the highest levels of available nitrogen, ectomycorrhizal 

fungi can induce artificial scarcity by monopolizing nitrogen (Franklin et al., 2014; 

Hasselquist et al., 2016) and rendering added nitrogen inaccessible (Albarracín et 

al., 2013; Karst et al., 2021). The relationship between mycorrhization and nutrient 

access may vary greatly depending on the availability of limiting resources in the 

soil.

Water, too, moves from sources to sinks in soils, mycelium, and plants. This is

driven largely by pressure differentials (water potential) produced through 

evaporation and physical interactions between water, soil, and organismal transport

systems. The rate of water transport from roots to leaves is known to be governed 

by water potential differences and the conductance of the flow path (hydraulic 

conductivity) (Boyer, 1985). Ectomycorrhizal fungi are unlikely to alter the pressure 

gradient driving water movement from soil into plant tissues, as that is largely 

controlled by transpiration rate and soil matric potential, but the fungi themselves 

may affect the hydraulic conductivity facilitating water movement. Although 

ectomycorrhizal fungi can improve plant performance during droughts, the 

mechanisms driving these effects remain somewhat unclear (Lehto & Zwiazek, 

2011). Direct transfer of water via hyphae has not been demonstrated in 

ectomycorrhizas, but can be significant for arbuscular mycorrhizal symbiosis

(Kakouridis et al., 2022). Some ectomycorrhizal fungi have been shown to improve 

plant hydraulic status (Wang et al., 2021), possibly by increasing the production of 

water transporters (aquaporins) in roots (Marjanović et al., 2005) and hyphae (Xu & 

Zwiazek, 2020) to improve hydraulic conductivity. Elucidating to what extent 

ectomycorrhizal fungi alter plant root hydraulic conductance, and how variable this 

is with fungal species and environmental stress, represents a promising area for 

future research.

Although source-sink relationships can explain basic patterns of resource 

movement in ectomycorrhizal symbiosis, they are often modified in complex ways. 

The saturating response of ectomycorrhizal plants to resource availability gradients,

discussed above, is one prominent example (Fig. 1): the plant alone might take up 

Fig. 1: Ectomycorrhizal symbiosis may 
change how resources move between 
sources and sinks: an illustrated 
hypothesis across a resource gradient. 
(a) With ectomycorrhizal fungi, a plant 
may access recalcitrant or occluded 
resources that would be unavailable to 
roots alone, which can improve resource 
access at low soil concentrations. The 
plant alone illustrates a simple source-
sink expectation, while fungi modify 
uptake dynamics. (b) As resources 
become increasingly accessible, the 
amount of plant carbon (C) required to 
take up resources via fungi may fall 
relative to uptake via roots alone. At 
higher concentrations, however, fungi 
may monopolize available resources (c). 
It remains unclear how intense or 
prolonged this resource immobilization 
might be before a plant begins to divest 
from or sanction fungal partners (d).
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resources in direct proportion to their availability, consistent with a simple source-

sink expectation, but ectomycorrhizal fungi modify this curve (Franklin et al., 2014).

At smaller scales, the carbon requirements of developing mycorrhizas also defy a 

simple source-sink model: new mycorrhizas demand much more carbon per root 

than mature structures (Cairney et al., 1989), despite connecting to much less 

fungal biomass. Although carbon consistently moves from plant source to fungal 

sink in this symbiosis, changes in fungal respiratory demand and potential plant 

control of carbon supply may modify the rates and scales on which these source-

sink processes operate. To understand and predict ectomycorrhizal resource 

movement, we must account for how ecological, physiological, and molecular 

mechanisms modify resource movement to deviate from a simple source-sink 

framework.

III. Beyond source-sink: modifications to resource movement

Source-sink dynamics are a useful null hypothesis for resource movement in the 

ectomycorrhizal symbiosis; however, ectomycorrhizal plants and fungi are separate 

organisms with divergent needs and asymmetrical capabilities. Deviations from 

simple source-sink expectations may account for their most interesting and 

influential interactions. Plants often have more carbon than they need, and many 

mechanisms by which to acquire the soil resources provided by fungi. Each fungus 

is typically obliged to rely on plant-provided carbon, and has little recourse if the 

relationship fails. Thus, many ecological factors may modulate ectomycorrhizal 

resource movement to shift outcomes away from simple source-sink expectations. 

Here, I explore the influence of plant immune response to the fungi, variation in 

plant and fungal resource transport traits, and competition between roots, fungi, 

and other organisms in the soil.

Plant immune response to ectomycorrhizal colonization may be the principal 

means by which a plant can modulate resource (carbon) transfer to fungal partners,

and may defy source-sink predictions of resource movement. It is well established 

that ectomycorrhizal fungal colonization of a root system rewires plant immunity 

both locally and systemically (Plett et al., 2014; Dreischhoff et al., 2020); these 

shifts in plant defense may also change resource transfer. Recent work by Stuart et 

al. (2023) found that plant carbon transfer to different strains of Pisolithus 

Fig. 1: Ectomycorrhizal symbiosis may 
change how resources move between 
sources and sinks: an illustrated 
hypothesis across a resource gradient. 
(a) With ectomycorrhizal fungi, a plant 
may access recalcitrant or occluded 
resources that would be unavailable to 
roots alone, which can improve resource 
access at low soil concentrations. The 
plant alone illustrates a simple source-
sink expectation, while fungi modify 
uptake dynamics. (b) As resources 
become increasingly accessible, the 
amount of plant carbon (C) required to 
take up resources via fungi may fall 
relative to uptake via roots alone. At 
higher concentrations, however, fungi 
may monopolize available resources (c). 
It remains unclear how intense or 
prolonged this resource immobilization 
might be before a plant begins to divest 
from or sanction fungal partners (d).
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microcarpus was best predicted by the expression of genes involved in plant 

defense and stress response, not by the proportion of root tips colonized by the 

fungus. The expression of these defense-oriented genes may be sensitive to the 

context in which a symbiosis is occurring, and to the movement of other resources 

within the root system. For instance, Eucalyptus seedlings with multiple strains of 

fungi on their roots expressed more defense genes with an isolate that provided 

less nitrogen than they did with the other, more cooperative partners (Hortal et al., 

2017), and Larix seedlings inhibited colonization by a non-preferred fungus only 

when alternative fungi were present elsewhere on the root system (Bogar et al., 

2019).  However, it remains unclear what controls the variation in plant defense 

activation between individual colonized roots, different fungal strains and species, 

and different environments, and how these changes affect carbon flow and fungal 

community assembly. Future research should identify plant defense pathways that 

correspond to changes in carbon provisioning, and determine the extent to which 

these changes are tunable, changing carbon flow within a given symbiotic root tip, 

or binary, cutting off resource flow entirely when a fungus is disfavored. Given the 

diversity of ectomycorrhizal plants and fungi, it is likely that plant immune response

to fungi varies extensively, with many possible outcomes on resource flow to the 

fungi.

Variation in plant immune response, however, is just one dimension of the 

immense diversity in molecular traits of interacting ectomycorrhizal plants and fungi

(Garcia et al., 2016; Nehls & Plassard, 2018; Plassard et al., 2019) which may affect 

source-sink movement of resources. Different ectomycorrhizal fungi are known to 

demand different quantities of plant carbon, and to respond heterogeneously to the 

addition of nutrients (Colpaert et al., 1996; Bidartondo et al., 2001; Treseder, 2004; 

Lilleskov et al., 2011). Different taxa also access different nitrogen sources 

depending on their morphologies (exploration types) and evolutionary histories

(Hobbie & Agerer, 2010; Koide et al., 2014; Pellitier & Zak, 2018), potentially 

navigating a trade-off between carbon requirements and their ability to access 

organic nitrogen (Pellitier et al., 2021). This functional diversity among 

ectomycorrhizal fungi may produce complementarity, potentially explaining why 

diverse fungal partners can improve host plant performance under some 

circumstances, such as when available resources are difficult for a plant to access 

alone (Baxter & Dighton, 2005; Diagne et al., 2013). 
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This diversity in both resource uptake and transport functions is likely driven 

by diversity in the molecular tools that ectomycorrhizal fungi employ in symbiosis, 

but significant gaps exist in our understanding of these mechanisms. Phosphorus 

and nitrogen transport have been mechanistically described in a small number of 

tractable fungi, but many fungi lack homologues for the identified transporters

(Garcia et al., 2016; Plassard et al., 2019). And, although ectomycorrhizal plants are

known to provide carbon resources (hexoses) to fungi, the molecular details have 

been characterized only in Populus host plants with few fungal partners (Grunze et 

al., 2004; Garcia et al., 2016). Across the diversity of ectomycorrhizal symbioses, 

alternative carbon forms and transport mechanisms likely remain undescribed. The 

molecular details of resource movement between fungi and plants may vary 

considerably with evolutionary history, with important implications for regulation of 

the symbiosis.

Competition among fungi, as well as competitive interactions between fungi 

and roots, may also change the flow of resources between host plants and 

ectomycorrhizal fungi. The

presence of a competitor, direct or

indirect, can reduce both the

number of root tips an

ectomycorrhizal fungus can

occupy  (Kennedy & Bruns, 2005;

Hortal et al., 2017; Bogar et al.,

2019) and diminish the growth

benefit of colonization to a plant

(Hortal et al., 2016). Competing

with other mycelia for space can

reduce the carbon sink strength of

an ectomycorrhizal fungus by

reducing its hyphal extension rate

(Leake et al., 2001), and

competing with another fungus on

a shared root system can change

the relative amount of plant

carbon that a fungus can access

Box 1: Key outstanding questions 
regarding resource movement in 
ectomycorrhizas

1) How does the strength of a resource
gradient affect source-sink 
dynamics in ectomycorrhizas with 
respect to carbon, nitrogen, 
phosphorus, water, and other 
resources?

2) To what extent does 
ectomycorrhizal fungal diversity 
improve plant access to resources 
(particularly those beyond nitrogen),
and how does this change 
depending on the resource and level
of availability considered? 

3) At what level of resource do fungi 
hinder plant uptake, instead of 
helping? How does this relate to the 
“critical load” of resources like 
nitrogen that can be detected in 
ecological studies, and does it vary 
by resource? 

4) How sensitive are plants to this shift
from helpful to unhelpful fungal 
partners? And how variable is this 
process across different plant-
fungus combinations?

5) On what spatial scale can a plant 
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(Bogar et al., 2022). On the other hand, associating with diverse (and, unavoidably, 

competing) ectomycorrhizal fungi may improve plant nutrient acquisition. The 

competitive context of a symbiotic interaction, and the environmental context in 

which the competition occurs, can shift ectomycorrhizal resource movement in 

significant ways.

IV. Conclusions

Despite the complex molecular regulation that underlies resource movement in 

ectomycorrhizal symbiosis, source-sink dynamics remain a useful first 

approximation to predict how resources may move between fungi and plants. These

processes can be modulated significantly by plant immune response to the fungi, 

fungal diversity in resource transport traits, and competition in the soil. Within this 

framework, plant rewards for fungal cooperation are possible – source-sink 

dynamics would reward a fungus proliferating in a resource patch – but far from 

guaranteed, which may explain the heterogeneous results of experiments 

examining this question thus far. Understanding the mechanisms of resource 

movement, and their diversity, will illuminate the forces that have stabilized 

ectomycorrhizal mutualisms across dozens of independent origins; I suggest several

promising research directions in box 1. As ectomycorrhizal forests face new 

environmental challenges, a better mechanistic understanding of plant and fungal 

resource movement will be essential, both to improve forest management and 

carbon sequestration, and to be able to predict how these ecosystems will respond 

to climate change.
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