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STABILITY OF AXISYMMETRIC, ANNULAR FLUID INTERFACES

AT ZERO CONTACT ANGLE

"I1lkka Karasalo

ABSTRACT

We study the Stability, in terms of minimal total potential eﬁergy,
of liquid configurétions in axisymmetfic containers, such that the
liquid-vapor interface is annular and meets. the contéiner walls at éero
véontact angle. The proper 1iﬁits‘of sufficient and necessary conditions
for stability, respectively, as‘the contact_anglé ﬁendsvto zero, are
formulated in terms of the Jacobi accessory differegtial equa;ions., The
stability is_shown tb depend crucially on whether the équilibrium liquid-
vapor, interface stays inside the container or not when continued

analytically past the three-phase contact lines.



1. INTRODUCTION

We shall study‘in this paper the stability.of cérfain configgra-
tions of liquid partially filling an axially syﬁmetric tank.in a
gfaVitational field directed along the axis of symmetry.' We require,
" that thé tank shape and fhe liquid volume are such that  the liquid-
* vapor interface is annular, i.e. it does not intersect the axis of

symmetry, cf. figure 1:
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Figure 1: Example of permissible liquid-tank configuratioh
and associated coordinate system.



A cqnfiguration is in stable equilibrium if and only if it strictly

minimizes the total static potential energy of the system,

E=0- (A;-cosy:A)+ Eg‘ | (1.1)

among all nearby configurations with the same liquid volume V. Here
0. > 0 (the liquid;vapor-surfacertension) and 0 <y < 7 (the contact
angle between the liquid-vapor surface and the container wall) are
c&nstants, Af and Aw are the . areas of the liquid-vapor and'the liquid-
wall interfaces, respectively, aﬁd Eg is.the gravitational potential
energy of the liquid. This constrained minimization problem has
received much attention in the literature, see e.g. Huh [5] and
Cillette [4] for extensive lists of references. By a suitabie choiée
of variables, it may be viewed as a variable-endpoint problem of
variational calculus ([4] p. 21 and p. 145). When Y > 0, this approach
results in conditions which distinguish Eetween stable and unstable |
cases in a rather satisfactory way. Therevappear to be fewer rigorous
results, however, concerning to what ektent these stability conditions
also apply to the 1imiting case Y = 0 (cf. [4],.p. 23). The purpose
of this paper -is to analyze this limiting case for axially symﬁetric
liduid configurations of fhe above kind. More specifically, we shall
look at necessary and sufficient conditions, respectively, for
minimum of E based on the Jacobi accessory minimization problem for
the second variatipn of E (see e.g. Akhiezer [1], p. 69), as Y > O.
The formal limits, as Y - 0, of the boundary conditions associated

with the Jacobi accessory differential equations depend crucially on
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whether the curvatures of the equilibrium liquid-vapor interface and

the container wall coincide or not at the three-phase contact lines.

In the latter case these limiting boundary conditions will be of the
fixed end-point type (when using a parametric representation -of the’
surfaces, see further Section 2.1 below).

- We will show, firsfly (Theorems 3.1 and 3.2) that the stability

conditions (sufficient and necessary, respectively) based on the fixed

end-point boundary conditions in fact apply to (1.1) with y = 0 if

only the analytic continuation of the equilibrium liquid-vapor interface

does not penetrate the container walls at the three-phase contact lines.

Secondly (Theorem 3.3), we show that if the analytic continuation of

the equilibrium liquid-vapor interface does penetrate the wall at either

of the contact lines, the configuration will be unstable regardless of

the conditions on the second variation of E.
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2. NOTATION AND SOME PRELIMINARY RESULTS
2.1 The Euier—Lagrange and Jacobi Conditions

It will suffice to coﬁsider (1.1) at small perturbations from
axially symmetric configurations. We will use a parametric arc-length,
normal displacement representation of the surfaces (see e.g; Reypolds,
Saad, Sattérlee [8]).  Thus the unperturbed liquid—vapof interface is

described by

r R(‘s) _ s, <s<s
{ g ' (2.1)
Z2(s) . 0 < ¢ <2m .

z

in the polar co-ordinate system of figure 1, where s is the arc-length
along the curve of intersection between the interface and any plane

¢ = constant. Then the equations

R(s) - n(s,0)Z' () s (9) <5 <5 (9)

m —— )
N R
i ]

Z(s) + n(s,9IR'(s) . 0 < ¢ < 2m

describe a surfaée obtained by moving each point of the surface (2.1)
the distance Nn(s,9) in the direétién of the normal at (s,$). (In
general, éince—we want'the perturbed surface_(2.2) to intersect .the
contaiher walls, the functions R and Z of (2.1) must be continued to
some open intérval containing [so,sl]. A convenient way of doing this,
which we will use in the sequel, is provided By thevdifferential
equations (2.9) below). Similarly, in séme neighborhood of the

unperturbed contact lines (s = So and s = Sl in (2.1)), the container
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wall will be given by

H
I

R(s) - w(s)Z'(s)

N
i}

Z(s) + w(s)R'(s)

2.3)

Then, denoting by SE(n) and 8V(n) the increments of the energy (1.1) -

.and the liquid volume at the perturbation (2.2), we obtain in a

straightforward way

2T sl(¢) E ) .
SE(N) = {£,(n,8) - £,(0,8) + fg(g,s>} dsd¢
0 so(¢) :

2m _
-f / fcos ¥ - £, (w,s) - fA(Q,S) + fg(z,8)§ dsd¢
0 “Ad _ _ '

L 2m s,(4)

Sv(n) f/ / fv(ﬂ,S)dédtb —// f,(w,s)dsdd
, 0 “s (9 ‘ 04

where we have put

N = N0s,9) = (0s,8),m (5,60, (5,6)
w = w(s) = (W(S),W'(S)-,O)T
A¢ = the interval_(so(¢),so)u(sl,sl(¢)) |

and, denoting R = R(s), Z = Z(s),

. (2.4)
, (2.5) -
(2.6)



£,,8) =0 - {® - nz7(% + @+ @2 - 2R
é(l + NER"Z' - z"R'))zil/2

‘ n ey ¥ tHtp t ]
fvﬁn,S) = niL + 5(R"Z' - Z"R YR - gz y

-

+n

£,(,8) = 05 * (2 + 3R - £y(n,s) . | @D

Here p.is ﬁhe constént liquid density and g is the graﬁitatipn constaﬁt
with g > 0 if the gfavitation force acts towards the negative z-axis
in figure 1. |

.The condition, that all first order n-terms in SE(n) should"
vanish for all n such that 8V(n) = 0 then leads to

o, ar ot
3;;‘@2,5) + o (0,s) - kgﬁ—(g,s) =0

in so <s < sl,'with the boundary conditions _ ‘(2;8)

cos Y fA(E(Si)’si) - fA(‘Q’Si) =0 5 l=0’l ’
where \ is a constant (the Lagrange multiplier). Putting Bo = pg/o,

H0 = X/O, using (2.6), (2.7) and the identity R'(s)?-+ Z'(s)2 =1,(2.8)

becomes the Euler—Lagraﬁge boundary value problem

LIV 2 | ._. - 71
R zZ (BOZ B Z'/R)
Z"=R'(BZ-H - 2'/R)
o] o) )
(2.9)
w(s.) =0 : v
1 i=0,1.

W' (s,) = - ean v
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(Without loss of genefality we ha&e excluded ;he contact angles
T - alloﬁed by (2.8)).

: Assuming now thét (2.9) is satisfied, the condition,‘that all
second order N-terms should give a non-negative contribution to

SE(n) for all n such that 6V(n) = 0, takes the form

2ﬂ‘ S : | ,
1
2 2 2
Q, @ =f / O B(s)uy + Cls)n } dsdo
0 = .
2T - © '
+.}{. {aou(s6,¢)2 +»a1u(s1,¢)2} d$ > 0 (2.10)

0

for all u(s,¢) such that

2M s

| 1
/ / R(s)u(s,$)dsddp = 0 . ' - (2.11)

0 s
o

Here we have put

(0,s) = diagi{C(s),A(s),B(s)} , (2.12)

£ __(0,s) +_fgnﬂ(g,s) - @

i

Ann = nn,

_1'i d :
tinz)Y . EE{?OS Y £,(s),8) - £,(0,5) + fg(ﬂ(s),s) - va(ﬂ(s),s$g=s
Sa, 10,1 - ‘ (2.13)

By (2.12) and (2.7), the A, B and C of (2.10) are

A(s) = OR(s)
B(s)

C(s) = -20R" + pg{RR' - 2Z' + ZR(R"Z' - Z"R")}

b

o/R(s)

b

+A{z' - R®R"Z' - Z'R")} . : (2.14)



By (2.9), since R(s) > Rhin:>0 ins_ <s < Sq» A, B and C will be

o
smooth (in fact analytic) in some open intefval containing [so,sl]
and A(s) > A ., >0, B(s) >B . > 0 will hold tﬁere. By standard
- "min - “min
results for symmetric, semibounded quadratic forms in Hilbert space
(see e.g. Kato [7], p. 322 and 352-353), (2.10) may be analyzed in
terms of the,eigenvalﬁes and eigenfunctions of an associated selfadjoint "
differential operator: .
3

n =_—-§E<A<s>us> - 55BNy + Clo)n

in sé <s < 1> 0 < ¢ < 2w, with the boundary conditions, that U

should be periodic in ¢ with period 2ﬂ and

A(si)us(si,¢) = (—l)iaiu(si,¢) , 0<oc<2m

i=0,1.
T has a compiete, orthogonal system of eigenfuﬁctioné of the form

[ee] o0
Y

\{Uik(s) cos k¢}i=1,k=0 S %uik(s) Sin‘k¢}1=l,k=1

with associated eigenvalues 0 (ordered increasingly in the

%t 11,0

index i), determiped from the boundary value problems

S AOUMOIES LR IOR OO REMING

' = (_1yd ) .
A(sj)uik(sj) = ( 1)vocjui (sj) ; ; | (2.15)

k



We notice, that all eigenfunctions but those with k = 0 satisfy the

< constraint (2.11) and that, since B(s) > 0 in s

< s <s the

]_,

K are increasing functions of k. It then follows that

(o}

eigenvalues K,
i

(2.10) with the side-condition (2.11) holds for all u in the class of
continuous functions‘in s, <s < Sl’ 0 < ¢ < 2w, which are periodic

in ¢ with period 27 and have square integrable first derivatives

(see e.g. Kato [7], p. 322-323, Cor. 2.3) if and only if

2

\ ) , |
K, = mm{BlKlo + BZKZO,K11§ >0 (2.16)
2T s
T 2 2
where, denoting (f,g)O = f(s,Pg(s,d)dsdo, 81 and 32 are the
. - 0 s
"solutions to ' °o
2 2 2 2
B ygoR)g = Baligg,R), = 0

(2.17)
82(u )+ Bz(u U,n) =1
1°410°M10% " P2'F20°%2070

with 82 = 0 if the solutions are non-unique.
(2.15) - (2.17) are(the equivalent of)the Jacobi accessory
boundary value problems for our constrained minimization problem. By

(2.13), (2.6) and (2.7), the boundary conditions are

_ (-1)"tan Y uik(sj)
- ‘ | (2.18)
= fsin2 Yy (R"Z' - Z'"R") - cos2 Y w"} < u (sj) j=0,1. '

s=s, ik
J .

We nofice, that if w'"(s.) # 0, j=0,1, (2.18) converges formally to
R J ] g
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uik(sj) =0 , j=0,1 , ‘ (2.19)
as Y > 0.

2.2 Permissible Perturbatiohs. Two Lemmas.

By the contact lines of the liquid-vapor.interface we meén the
two closed_cur&es within fhe container wall, any open neighborhoods
of which intérsects the intefiors of both the liquid_and the vépof'
inside the container (cf. fig. 1). The contact lines determine "
by (2.2) a closed region so(¢) <s < sl(¢), 0 < ¢ <27 in the
(s,d)-plane. We;denote this region with ¥ and require the following

regularity properites from I and the associated function n:
a) n is continuous in ¥ and periodie in ¢ with period 27,

b) Ng and ﬂ¢ are continuous in I except poséibly'at finitely
many isolated points or finitely many piecewise smooth curves

with finite length. 1In particular, N is piecewise

continuous as function of s for all 0 < ¢ < 2m.

o) d(m) = sup|n(s,0)| + sup|n_(s,9)| + sup|ny(s,9)| <=, (2.20)

where the supremum is taken over all points of I where

ns and n¢ are continuous.

d) si(¢),‘i=0,1 are continuous and such that si(¢) - si,'i=0,1,
change sign at most finitely many times in O f'¢ < 2m.

é£(¢), i=0,1, are continuous except possibly at'finitely
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many points in 0-.< ¢ < 2m and

4@ = ) (supls;(®) - s;| + sup[sf(@]) <o (2.21)

o8
Il =
o

where the supremum is taken over all points of 0 < ¢ < 2w

where sé(¢) and si(¢) are continuous.

Remark: The sufficient conditiohs to be considered beiow wi11
ensure the stability of the surface (2.1) with respect to all pertur-
bations (2,2) which éatisfy a) - d) above and for which d(n) + d4d()
is sufficiently small.. Thus in terﬁs of'variational calculus (see
e.g. Bolza [2], p. 68-70) the extremum will be "weak". The detailed
assumptionsbunder b) and 4d) are.introduced for simplicity iﬁ what
‘fdllows, and coﬁld be relaxed slightly by intfoducing more advanced
concepts from the theory of Lebesque integrals. With regard to the

physical background, however, nothing essential is lost by the above.

We will denote the closed rectangle s < s < s

1’

ZO and use, for any f(s,¢) which is square integrablé'on ZO,

< ¢ <
o 0 <¢ <2m by

llfll2 = (f,f) (2.22)
(o] . (o] : .

where ( , )o is defined as in (2.17). Then the following result will

be useful:

Lemma 2.1: Let U(s,{) satisfy the requirements a)-c) on %)andtjneconditjun
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H(s_»0) = u(s;,¢) =0 ,  0<¢<o2m o (2.23)

Let Q (M) be defined as in (2.10) and assume that A > A(s) >A ., >0,
: To — max - - min

B >B(s) >B . >0 and /C(s) <C holdins <s<s Then
max - 7 - min - max o - 1.

there exist positive constants Ké, Ki, LO and,Ll, depending on s , S
. o

1'

A, , A , B ., , B and C but not on |, such that
min max’ “min <~ max max

KQp @) = LIl < T2 + g < ky0 @ + 12 . (2.24)

(2.24) follows from the mean value theorem in a straightforward
way and the proof is omitted. "(By use of a Sobolev—type ineqﬁality
(see e.g. Kato [7], p. 193), condition (2.23) could in fact be omitted,
and this‘strongér result could be used for a similar treatmenf of the
case Y > 0, Karasalo [6]).

Before stating our secpﬁd Lemma we need some further notation.

For any u(s,¢$) satisfying a) - c¢) on Zo and (2.23) we put, for clarity
Q, (4,B,C.1) = Q (1) S - (2.259)

where Q_(U) is defined in (2.10). Further, if 8A(s,9), 6B(s,0) |
and 6C(s,¢) are bounded andvintegrable on_Z0 and € is a positive

éonstant, we put
® = ®(8A,8B,8C,e) = inf QO(A + 8A,B + 8B,C + SB,u) ' (2.26)

over all u satisfying a) - ¢) on Zo’ (2.23) and the conditions .

Ilull0 =1, ' o (2.27)



13-
@ | <edugl + lugll + Ml ). (2.28)

If f(s,$) is bounded on Zo’ we will let, as usual, |Ifll  denote the

supremum of |f(s,¢)| over (s,¢) in Zo. Then we have

Lemma 2.2: Let A(s), B(s) and C(s) éatisfy the requirements in
Lemma 2.1 and let 8A(s,$), 6B(s,$) and 8C(s,$) be bounded and
integrable on ZO. Let € > 0, define ® as in (2.25) —_(2.28), denote

@o = $(0,0,0,0) and put

6 = Nl + lIsBl +llsch_ + ¢ . | (2.29)

Then there exist positive constants C and.dé, independent of 8A, 6B,

8¢ and €, such that

lo-of<c-s ' (2.30)
holds true, if only § < 60.

Proof: Throughout this proof, Mi’ Ni, § i=1,2,3,... will

i’
denote positive constants, independent of SA, 8B, &C, € and u. Let
U satisfy conditions a) -c¢) on Zd (2.23) and (2.27). With the notation
of (2.25), put for brevity, 8Q_ (W) = QO(GA,GB,GC,E). (6QO will be

well defined because of the assumptions.) Then there exist Ml’ MZ’

-N1 and N2, such that

(1 - M8 (W - N8 <Q @ + 6Q 1w

<MW +NS o @a



~14-

because of Lemma 2.1 and the mean value theorem. Noting by (2.26)
and (2.28), that & is a non-increasing function of € and that, by
(2.10) and (2.25); QO(A,B,C,E) is a linear function of A, B and C

we obtain from (2.31)

< (L+M8)0 + NS . : (2.32)

It follows, that we need only consider those U which satisﬁy, e.g;{“thé
additional condition QO(E) + GQO(E) < (1 + 2M16)l®0l + 2N16 when
forming the infimum in (2.26). By'(2.31) and Lemma 2.1, however, for

all such 1

2 2 '
gl + "u¢HO < M2|®o| + N, =M, (?.33)

if only, e.g., 6 < 61 = iﬁ— . Let u be any function satisfying a) - c¢)
1 .

on I, (2.23), (2.27), (2.28) and (2.33). Put

(s - so)(sl - S)_ ,

£*(s,0)

S~ 1 - *
u cl(u Cyf )

1 2
A . *
with € = 0, i.e. c, = (R,u)O/(R,f )os C

where C, and C. are chosen so as to make U satisfy (2.27) and (2.28)

% :
1 1/l C,f HO. Noting

that (R,f*)0 is a positive constant, dependent only on s,» S1 and

R(s), it follows from (2.27) - (2.29) and (2.33) that

le,l <M8 o > 1 - M6 . (2.34)

Furthermore, since f* vanishes on s = s and s = s_, | satisfies (2.23).
? o 1 .
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Then form

Q, M - {o @ + o G}

_ e oy 2.2 '* Y VN
= (c] - DO, + €jCQ () - 8o ()
- .2ﬂ sv : |
2 1 * ok
~ 2C102/ f {A(s)usfs + C(s)uf f dsd¢
0 . .
, 0. : :

Here we use Lemma 2.1, (2.31), (2.33), (2.34), the mean value theorem
and the Schwartz inequality to find upper bouﬁds for the terms to the

right. We obtain, that for some M6, 62
Qo(g) - {Q,(w +q (W} < M s (2.35)
holds true, if only § < 62. Hence
- b <M -8 - o (2.36)

if § < 62, The statement of the lemma follows by combining (2.32) and

(2.36).
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3. STABILITY RESULTS AT y = 0.

Our first statement concerns sufficient conditions for stability

at zero contact angle:

Tﬁebrem 3.1: Lety =20 in (1.1) and assume that the ﬁnperturbed
surface satisfies the Euler;Lagrange equations with the associated
boundary ¢onditions (2.9), and does not intersect the z-axis. Assume
furtﬁer that the function w(s) of (2.3) is twice continuously

differentiable-and that

w(s)-f 0 in some open neighborhoods of s = sO and s = Sl - (3.1)

Let K _ be defined as in (2.15) - (2.17) but with the boundary
conditions in (2.15) replaced by.the fixed end-point conditions (2.19),
and assume that Ko > 0. Let d(m) and d(%) be defined as in (2.20) and

(2.21). Then there exists a constant do.> 0, such that in (2.4)

SE(M) > 0 with equality iff n = 0 in % . S (3.2)

holds for all 7 satisfying the volume const;aint‘év(n) = 0'in (2.5),

the conditions a) - d) of Section 2.2 and the condition

dm) +d(z) <d_. . (3.3)

Remark: When Y = 0, both the energy (1.1) and the liquid volume
remain unchanged if the liquid-vapor interface is continued past the
contact lines by "wetting" dry parts of the container walls. Thus,

when Y = 0, any configuration is neutrally unstable with respect to
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such "wetting" perturbations. With our notation, howeﬁer, the region -
% is unchanged at "wetting" (see the beginning of Section 2.2),

and there is no ambiguity in (3.2) in this respect.

Proof of Theorem 3.1: Let Q0 Be defined as in (2.10). Then,
by (2.15) - (2.17) and the representation theorem for quadratic fofms

in Hilbert space (see e.g. Kato [7], p. 322-323):

inf QO(E) =Kk >0 ' ' (3.4)

.where the infimum is taken over all U satisfying in Zo the conditions

a) - ¢) of Section 2.2, (2.11), (2.23) and (2.27).
Using the notation of (2.7) we put

Fa(.8) = £4(1,8) - £,00,5) + £,(n,8) - My(n,9) (3.5

where A is the constant in (2.8). Then, by (2.4) and (2.5),

21 Sl(¢)
SE(n) = fE(D,S) dsd¢ -
70 s (9) | _
Co2r v ' :
—f/ fE(y_,s) dsd¢ , ' ' (3.6).
0 “Ad _ - . _

“for all n satisfying the volume constraint §v(n) = 0. For convenience

in the following we denote
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Xy = complement of (ZﬂZo) w.r.t. L,
Z- = complement of (ZnZo) w.r.t. 26 and
z —.ZUZO EOUZ+ Zu_ _ | » (3.7)

and define a function ﬁ(S,¢).on % by

| n(s;$) ,  (s,0) €I
fi(s,0) = | - | (3.8)

vW(S)  , (s, € Z_

(i.e. T is obtained by-extending n by wetting those parts of the wall
which dried because of the perturbation n). By (2.6) and (3.7); X

has the boundaries

5_(§) = min{s_(9),s }

s 0<¢<o2m. o (3.9)

v§1(¢) max{sl(¢),sl}

Putting further
0 ", (s,0) €%
n*(s,4) = | ) | . (3.10)
ws) , (s, €I, ,
V(s,0) = i(s,8) - n'(5,0) , (s,0) €L, (3.1

we obtain by (3.6) and (2.5), noting that fE(g’S) = 0 and fv(g,s) =0,
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SE(Mm) = [ £,(f,s) dsd¢ —/ f fp(w,s) dsdd
0 “s () 0 Yk B
2w §1(¢) A o .
fJ,” . ffE(Df +’E) s) - fE(nf,s)}dsd¢ y - (3.12)
0 “s () ‘ "

for all n satisfying the volume constraint

21 §l(¢) _ ' .
sv(n). = £, + v,9) - £,0",0)}dsdd = 0. (3.13)
| 0 “s ()

In the sequelvMi, Ni and di’ i=1,2,3,..., ﬁill denote positive constants,
“independent of 1, N, I, s and ¢. By (3.8) - (3.11), fi, n*, v and

§i(¢) will satisfy the requirements a) - d) of Sectién 2.2. Furthermore,
since w(s) = 0(s - si)2 in the ngighborhood of s = s;» we may find some

. M1 and dl’ such thgt

a®) + a®) + @) + aw) < M {d@) + amy} Gas

if only d(Z) + d(m) < dl.

By (2.9) and since R(s) >0 ins_< s <

o < s the functions R and Z

can be continued analytically to some open interval containing [so,sll

and it will hold R(s) > Rmin > 0 there. It then follows from (2.7),

(3.5) and (3.9) that there exist some d2 and'd3, such that fE(ﬂJs)

and fv(ﬂ,s) are analytic functions of the arguments n, ns’ and né in

the region |n| + |n_| + Ingl <4,

Hence, putting in (3.12) and (3.13)

at all points of i, if only d(Z) f‘d3.
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* *
fE(n + V,s) fE(n »S)

- % T 1. T 'v .
= fp (@8 v+ v £y (©>8)2 + hy(n*,v,s) (3:15)
and
* ' . afv ) :
fv(ﬂ +V,s) f'fV(D"S) = 3 (0,s)v + hv(n ,V,s) (3.16)

there will exiét some M2 and d&’ such that

Mo {d(m) + A} 2 + V]

*
lhE(_Tl ’Y_’S) l ¢

I'A

+ v
Ihy @*v,9) | < My{d) + a@f (gl + vyl + [vD (3.17)

holds at all points of Z where_n* and E:aré continuous, if only

4

am) +d(@) < d
We now observe, that since w(s) < 0 in some opeﬁ neighborhoods of

s =5 and s = $42 the first term to the right in (3.15) gives a

non-negative contribution to SE(n). To see this; first note that

fen(M®ss) = 0 in X, by (3.10), (3.5), (2.7) and (2.8). Second,

when (s,$) € I, we have by (3.10), (2.12) and (2.14)

fﬁn(gf;s)?g = {oR(s) + DR(s)}w'(s)vS +.{C(s) +.Dé(s)fw(s)v (3.18)

where, for some M, and dS’

3

D@ + Ing()] < mflwto)] + v ()%
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if only d(Z)-f dS' Furthermore, since w'(s) is continuous in I, DR
will be cbntinuously.differentiable there. ‘Hence, after‘ﬁartial
integration of the first term in (3.18) noting that v(s,d)w'(s) = 0

on the boundaries of Z+, we obtain
21 s (¢) :
-1 o AT
| T (@¥,9)" - v dsdo
0 s (¢)

‘ T o ' A R -
= /f {—OR(s)w"(s). + D(s)}\) dsd¢ B (3.19)
0 YAe . e . : :

where, for some d65'M4’ ID(s)I E.M4|w’(s)[ if only d(Z):f d Now by

6°

(3.1), since w(si)' w'(si) =0, i=0,1, w"(s)'f 0 in some open

neighborhoods of s s, and s = sl, whence the first factor of the
last integrand will be non—negatiVé, if only d(Z) is sufficiently’
small. Since further, by (3.8) - (3.11), v(s,$) > 0 at interior

points of J,, we can then find some d7, such that for all permissible

n for which §v(n) = 0

21 5.(4)

1 '(s)vz + B(s)V

2

2
¢

0 *5_(9) | | (3.20)

hY

SE(n) > + c(s)v? + 2hE(n*,g,s)}dsq¢ ,

if only d(n) + d(Z) < d,. Furthermore, (3.20) holds with equality

7°
if I, is empty or if w(s) = 0 in Ij. | |
In (3.13) and (3.20) we introduce a change of variable by

putting
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: s' - sbr :
s = s(s',9) = §o(¢) + g;*:—g;(gl(¢) - §O(¢)) v (3.21)
u(s',9) = v(s(s',9),0) . | (3.22)

(3.21) takes T onto-the rectangle Zo in the (s',¢$)-plane. It follows
by (3.17), (3.21), (3.22) and theismoothneSS properties of A, B and

C that in the notation of (2.25)
SE(n) > %(%)(A + 8A,B + &B,C + 6C,u)

where SA(s',¢), S8B(s',$) and 8C(s',d) are bounded and integrable

on-Zo and such that for some M5 and d8 . :

lIsall,, + 8Bl + l8cl, < Md(n) + d(®)

1f d(n) + d(Z) < dg. Similarly, by (3.13), (3.16), (3.17) and

(2.7), there exist M6 and dg; such that

| R | < Mcfdm) + d(Z}}{HuSHO +lugl )+ il _}

if d(n) +d() < d Furthermore, u(s',¢) satisfies (2.23) and

9°
requirements a) - c¢) of Section 2.2 on Zo. We may then use (3.4)
‘and Lemma 2.2'to conclude that there exists some d0 such that, e.g.,

o 2
SE(n) > 3% llull

for all n satisfying the volume constraint, if only d(M) + d(%) < do.

Since, by (3.7) - (3.11) and (3.21) - (3.22) nuno = 0 if and only if
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n=o0 ian, this completes the proof of Theorem 3.1.

The second statement of this section is concerned with necessary
conditions for stability at zero contact angle, based on the fixed
end-point conditions (2.19). As may be expected, these will apply

regardless of the additional condition (3.1):

Theorem 3.2: Let Y = 0 and aésume that the unpeiturbed surface
satisfies (2.9) and does not inte?sect the z-axis. Let Ko_be defined
as in (2.15) - (2.17) but with the boundary conditions (2.19) and
assume thgt Ko < 0. Then, for any do >0 wé may find a Function n
satisfying a) - d) of Section 2.2, the volume constraint 8v(n) = 0

in (2.5) and the condition d(n) + d(¥) < do' such that in (2.4)
SE(M) <0 . (3.23)

Proof: We note that the infimum Ko in (3.4) under the conditions
stated there is attained for U = i where U is either ull or 81“10 + 32“20
in the notation of (2.15) - (2.17). We can use fi to construct a function
N with the propefties required in the theorem as follows: Let e.g.

s . = 250/3 + sl/3, S, = so/3 + 251/3 and put

00 10

(5= %02(510 =9 2§ S5 Sy
g(s) = | ' (3.24)

0 otherwise .
Then put

n(s,0). = fi(s,9) + a(elg(s) (3.25)
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where a(g) is chosen so és to make n(s,$) satisf; the volume.éonstraint;
Using (2.5), the assumption (R,ﬁ)o = 0 and the contréction.mapping
theorem it can be shown that a(e) is well defined when 16! is small
andvthat é(e) = 9(8), E_*‘C. Since ﬁ and'g ére iero'bn s'=‘36 and

s = s, Z+'as defined in (3.7) will be empty;: Henée, by putting

0 5 (s, €2
n*(s,$) = AR - - (3.26)

w(s) - eii(s,9) 5 (8,9) € £_
we obtain by (3.6)

2ﬂ s

SE(n) / f f (eu +n* + a(e)g_,.,) dsdcb : (3.27)

if only € is small ehough for g(s) to be zero within I_, cf. (3.24),
(3.25). Noting that |n*(s,$)| < |efi(s,$)| in I_ and that the area

of X_ tends to zero as € > 0, we get from (3.27)

6E(Tl) f/ %ﬂ_ (O S)u dsdd + . o(e )

2
e , _ ,
= 57 (Ko + o(1)) . e+ 0.

Since Ky < 0, the statement of Theorem 3.2 follows.

Finally, the following theorem states that if the analytic

continuation of the equilibrium liquid-vapor interface penetrates
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the container walls at either of the'three—phase contact lines, the

configurétion is unstable: '
Thebrem'3.3: Let Y = 0 and assume that the unperturbed surface

satisfies (2.9) and does not intersect ﬁhe zZ-axis. Assume further,

that for i=0 or i=l the fupction wks) is twice continuously differ-

entiable in some open neighborhood of s = s; and changes sign at

s‘= si. Then, for any do'> 0, we may find a function n.satisfying

a) - d) of Section 2.2, the volume constraint (2.5) and the condition

d(n) +d(%) < d_, such that (3.23) holds.

Proof: We may assume, e.g. i=l. Then w(s) > O
for s > Sy» and since w(sl) = W'(sl) = 0, w'(s) > 0 holds in some

open interval sl < s < sz. Hence, ;he integral (3.19) can be madg‘
negative by é suitable choice of K¢. Furthermore,’the integral -is
linear in v whilé by (3.12), (3.15) and (3.17) the other contributions
to SE(n) are of higher order in v. 'The proof may then be completed

by choosing some appropriate V(s,¢) and proceeding as in the proof of

Theorem 3.2 to satisfy the volume constraint.

Remark: We note, that the instability stated in Theorem 3.3

. holds regardless.bf.the staﬁility conditions based on the second
variation. fhé method of proof suggests thét the instability should
sth‘by liqdid building up towards the container wall at the contact.

. line s = s, in (3.28). This kind of liquid behavior has somé suppﬁrt

i

in experimental evidence [3].
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