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Abstract

Thermodynamic measurements of ultra-clean van der Waals heterostructures

by

Alexander A. Zibrov

When interactions between electrons dominate over their kinetic energies, this can

lead to emergent collective states with new quantum degrees of freedom described in

terms of quasiparticles. These collective states can fall into two distinct categories: ei-

ther the interactions lead to a breaking of an underlying symmetry, or electrons can

form topologically ordered states characterized by a degenerate ground state in the zero

temperature limit. The condition for strong interactions is met in two-dimensional elec-

tron systems (2DES) immersed in high magnetic fields, where electron kinetic energies

quench into a ladder of dispersionless Landau levels broadened by disorder. Landau

levels are an example of a topological band, characterized by a Chern number C ∈ Z.

Correlated electron states then appear at partial filling of a Landau level — these are

called fractional quantum Hall states.

In this thesis, I present a series of magneto-capacitance measurements of the thermo-

dynamic density of states of low-disorder dual-gated graphene/boron nitride heterostruc-

tures – two-dimensional materials that can be isolated and later reassembled into stacks

of designer properties. In such devices, we observe the elusive even-denominator frac-

tional quantum Hall states at half filling of mono- and bilayer graphene. For monolayer

graphene, we propose a scenario where the observed states are multicomponent states

that incorporate correlations between electrons on different carbon sublattices. In the

bilayer graphene case, the observed even-denominator states are single-component and

potentially host non-Abelian excitations, i.e. quasiparticles with fractional statistics,

viii



that are neither fermions or bosons.

Moreover, if we introduce a twist between the graphene and boron nitride layers, a

periodic moir e potential will appear. As a result of the interplay between a magnetic

field and the moiré potential, new Hofstadter bands with Chern numbers C 6= 1 can

arise, in which we observe fractional Chern insulators — a generalization of fractional

quantum Hall states to bands with a higher Chern index.

ix



Contents

Curriculum Vitae vii

Abstract viii

1 Introduction 1

2 van der Waals materials in high magnetic fields 7
2.1 Integer (IQHE) and fractional (FQHE) quantum Hall effects . . . . . . . 7
2.2 van der Waals heterostructures . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Capacitive probe of the density of states of 2DEGs 28
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Example: Capacitance probe of trilayer graphene band structure . . . . . 31

4 Even-Denominator FQH effect in monolayer graphene 45

5 Even-Denominator FQH effect in bilayer graphene 59

6 Fractional Chern Insulators in bilayer graphene 75

7 Outlook 88

A Capacitance Bridge 93
A.1 Penetration field capacitance . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Symmetric and anti-symmetric capacitances in BLG . . . . . . . . . . . . 94
A.3 Lumped model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 How to make a transistor mount? . . . . . . . . . . . . . . . . . . . . . . 101

B Supplementary materials for Chapter 3 104
B.1 Model and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.2 Refinement of tight-binding parameters . . . . . . . . . . . . . . . . . . . 109

x



B.3 Effect of interactions: Hartree Fock approximation . . . . . . . . . . . . . 118

C Supplementary materials for Chapter 4 126
C.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.2 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.3 Calculation of ν = 0 phase diagram . . . . . . . . . . . . . . . . . . . . . 139

D Supplementary materials for Chapter 5 143
D.1 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
D.2 Capacitance circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
D.3 Measurement of electronic compressibility and thermodynamic energy gaps147
D.4 Measurement of layer polarizability, ∂p/∂p0 . . . . . . . . . . . . . . . . 150
D.5 Single particle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
D.6 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
D.7 Additional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

E Supplementary materials for Chapter 6 174
E.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
E.2 Supplementary text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 207

xi



Chapter 1

Introduction

An isolated electron is relatively simple to describe, but a collection of many electrons can

be more than just the sum of its parts. In a metal, electrons can superconduct if cooled

below a critical temperature, but the behavior of a sole electron cannot immediately

explain this phenomenon. The essence of this problem is captured by emergence (Fig.

1.1a), the existence of some organizational law that causes the many-body system to

behave differently from its interacting constituents. Collective states of many electrons

can be conveniently described in terms of quasi-particles, emergent long-lived quantum

degrees of freedom whose quantum numbers can differ dramatically from those of the

constituent electrons. These quasi-particles can be created, destroyed, detected and

ultimately manipulated in a physics experiment, giving us a glimpse into the underlying

electron correlations.

If the interactions between electrons are much stronger than any other energy scale,

the resulting collective states can fall into two distinct categories: either the interactions

lead to a breaking of underlying symmetries, or electrons can form topologically ordered

states characterized by a degenerate ground state in the limit of zero temperature. In

this thesis, I show examples of both. The textbook example of a state with topological

1
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Figure 1.1: a Ideas emerging from social interactions at the coffee machine. b Electrons
in a magnetic field move in cyclotron orbits. Their energies c are quantized to integer
values of ~ωc (ωc is the cyclotron frequency). The spectrum of allowed energy levels
is broadened by disorder Γ. d If the Coulomb interaction strength Ec >> Γ the
system is considered strongly interacting and is complicated to analyze, though it could
be treated as a system of non- (or weakly) interacting emergent FQH quasiparticles
in an effective zero magnetic field. These quasiparticles would have new quantum
numbers; for example, they can have a fractional e/4 charge. e If such quasiparticles
are exchanged the wavefunction Ψ(x1, x2) would gain a phase ϕ 6= 0, π, identifying
these particles as neither bosons or fermions. These particles are called anyons; for
the e/4 quasiparticles the phase ϕ is a matrix — such anyons are non-abelian.

order, and for that matter the focus of this thesis, is the fractional quantum Hall (FQH)

state that occurs in two-dimensional (2D) electron systems (2DES) in strong magnetic

fields (Fig. 1.1). In such a state, the collective motion of interacting electrons results in

quasi-particle excitations with fractional charges e/3, e/4, e/5 and so on. These quasi-

particles no longer adhere to the familiar dichotomy of bosons and fermions. If two FQH

quasi-particles are exchanged, the wavefunction describing the composite system would

gain a phase ϕ that is different from the ϕ = 0 for bosons and ϕ = π for fermions, these

particles are named anyons. In fact, the gained phase is not necessarily a scalar at all,

it could also be represented by a matrix — such quasi-partcles are called non-abelian

2



Introduction Chapter 1

anyons and have been proposed as a building block of quantum computers. The ground

state of a group of non-abelian anyons is exponentially degenerate in the number of

particles. The exact state from this degenerate manifold is determined by the sequence

of mutual particle exchanges (braiding operations) — a prerequisite to quantum gate

operations [1]. To date, no experiment has definitively demonstrated the non-abelian

properties of anyons. At the same time, numerical studies of real strongly-interacting

electron states are notoriously complicated, with studies of some FQH states limited to

only a dozen electrons even with powerful modern computers, making highly controlled

experimental platforms a necessity in understanding these states.

The experimental realization of strongly interacting electron systems relies on the

engineering of flat potential energy bands, where the kinetic energy scale is dwarfed by

that of the electron-electron interactions. Landau levels are one example of flat bands,

realized by confining electrons to two dimensions and further quenching their kinetic

energy by applying a large external magnetic field which drives electrons to move in cy-

clotron orbits [2]. Systems in which two dimensional electrons can be found include the

interfaces of semiconducting heterostructures, surfaces of 3D topological insulators and,

starting from the successful isolation of graphene in 2004, atomically-thin 2-dimensional

materials [3, 4]. Today, the family of 2D materials includes semiconductors, insulators,

magnetic materials and superconductors [5]. By assembling these materials layer-by-

layer, one can create structures with designer properties leading to a slew of potential

experiments to explore different interaction phenomena: FQH [6, 7, 8, 9, 10], Mott-like

insulators [11, 12], superconductivity [13, 14] and others. However, the presence of dis-

order in a system significantly impedes observation of these phenomena. In Landau

levels, for example, the electronic bandwidth is driven solely by disorder. Realizing a

low-disorder tunable Landau level system is thus the central experimental challenge for

exploring interacting physics in 2D systems in a magnetic field. However, the require-

3



Introduction Chapter 1

ments of tunability and cleanliness can be at odds. For instance, the Landau level electron

density can be conveniently tuned by electrostatic gating; however, metallic gates can

introduce enough disorder to destroy the weak FQH state. Here we present experiments

enabled by advances in fabrication of extremely clean graphene heterostructures. This

not only allowed us to reproduce the interacting electron phases that were the hallmark

of the cleanest GaAs/AlGaAs heterostructure systems [15], but also to open up new

possibilities for probing elusive emergent phenomena.

The following chapters will describe several interconnected experiments that

probe strongly-interacting electron systems confined to the effectively 2D plane of

several atomic-layer-thick graphite sheets (mono-, bi- and trilayer graphene). In these

experiments we greatly reduced the disorder caused by the proximity of imperfect

electrostatic gates. Additionally, most reported studies of the FQH effect focus on

performing electron transport measurements (measuring sample resistance), where the

measurements probe the edge states propagating along sample boundaries and are

affected by the quality of the edge-state to contact coupling. In contrast, the work

presented in this thesis focuses on measuring the thermodynamic bulk properties of

graphene heterostructures by measuring the capacitance between the electrostatic gates

and the 2D electrons. The signal strength from the bulk scales with the device area,

and is virtually unaffected by the physics at the edge. The details of the measurement

technique are presented in Chapter 3.1.

This thesis is structured as follows:

Chapter 2 introduces two dimensional electron systems in high magnetic fields. The

discussion starts with a semiclassical description of flat energy bands — Landau

levels, where the only length scale is that set by the magnetic field, and the ef-

4



Introduction Chapter 1

fects of the underlying lattice are incorporated through an electron effective mass.

I then describe the single-particle (integer quantum Hall) and interaction-driven

(fractional quantum Hall and symmetry broken states) effects that arise in Landau

levels. I then reintroduce the lattice into the problem and describe the new states

that originate from the competition of the lattice and magnetic length scales. I

conclude this chapter with a description of van der Waals heterostructures with a

focus on graphene and its properties.

Chapter 3 describes the capacitance measurement technique we use to probe the ther-

modynamic density of states of graphene devices. I illustrate the capabilities of

this technique with an example applied to trilayer graphene, where we investigate

the transformations of the Fermi surface topology in response to an applied electric

field.

Chapter 4 describes experiments in high-quality dual-graphite-gated monolayer gra-

phene devices, where we observed a multitude of odd-denominator fractional

quantum Hall states, as well as even-denominator states at filling factors ν =

±1/4,±1/2. The presence of even-denominator fractional quantum Hall states in

the zero energy Landau level of monolayer graphene came as a surprise; thus, we

propose a scenario in which the observed states are multicomponent states which

incorporate correlations between electrons on different carbon sublattices.

Chapter 5 describes experiments in high-quality dual-graphite-gated monolayer gra-

phene devices in which we observe even-denominator fractional quantum Hall

states. These states are observed in regimes where the electron wavefunctions are

single-component, suggesting a Pfaffian phase that is predicted to host non-Abelian

anyons.

5
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Chapter 6 describes capacitance measurements of a bilayer graphene device subjected

to a Moiré potential induced by the beating of the nearly matching boron nitride

and graphene lattice constants. In a high magnetic field, this gives rise to a fractal

energy band structure called the Hofstadter butterfly. The bands are topologi-

cally non-trivial generalizations of Landau levels and also show interaction-induced

symmetry-breaking and emergent topologically ordered states.

Chapter 7 concludes the thesis with an experimental proposal of how the ground state

degeneracy of non-Abelian anyons could be probed by measuring the changes of

the system’s chemical potential in response to a varying temperature.

6



Chapter 2

van der Waals materials in high

magnetic fields

2.1 Integer (IQHE) and fractional (FQHE) quantum

Hall effects

Quantum mechanics defines the discrete energy levels electrons are allowed to occupy.

If the separation between levels is negligible, we speak of continuous energy bands that

are separated from other bands by energy gaps. If interactions are not included in this

picture, electrons will occupy the lowest available energy state. However, if interactions

via Coulomb repulsion are included, the sequence in which the energy levels are filled

can be altered in order to minimize the total electron energy. Emergent phenomena

require flat bands — an engineered environment where electron-electron interactions

(Ec) dominate over the range (or bandwidth BW ) of allowed kinetic energies Ec >> BW

(Fig. 2.1 a). In this case, the Coulomb energy can be minimized if the electron’s degrees

of freedom become strongly correlated. The most well known recipe for creating flat

7
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Figure 2.1: a. Cartoon of a flat band. If the spread of available energy states
(BW ) is smaller than the energy of Coulomb repulsion between electrons, the inter-
actions are considered strong. b. Typical Hall measurement: a current Ix is sourced,
while voltage drops Vx and Vy are recorded. The measurement yields longitudinal
σxx = R−1

xx = Vx/Ix and Hall σxy = R−1
xy = Vy/Ix conductivities. c. The energy spec-

trum of 2D electrons in a magnetic field is a series of highly degenerate Landau levels.
If the Hall conductivity is measured as a function of the Fermi energy (e.g. tuned by
electrostatic doping) then a series of quantized steps is revealed - each filled Landau
level adds ∆σxy = gse

2/h to the conductivity, where gs accounts for spin degeneracy

bands is to place a 2DES in a perpendicular magnetic field.

In the semi-classical picture, when the magnetic field is turned on, the electrons

start moving in cyclotron orbits with a characteristic length scale lb =
√

~
eB
≈

26nm/
√
B[Tesla] called the magnetic length. The electron’s kinetic energy quenches

to a ladder of discrete Landau levels separated by the cyclotron energy gap ~ωc. Each

Landau level has a large degeneracy N = Φ/Φ0 determined by the total magnetic flux

Φ = B · A passing through the 2DES of area A, where Φ0 = h/e is the magnetic flux

quantum. With the above relations, the areal electron density of a filled Landau level is

n0 =
N

A
=
BA

h/e
= (2πl2b )

−1, (2.1)

where all of the electrons are occupying states with the same energy (BW → 0). However,

Landau levels in real systems are broadened by disorder, resulting in a finite bandwidth

BW ∼ Γ (Fig. 1.1 c.). Thus the condition for strong interactions is Ec ∼ e2/lb >> Γ.

Landau levels manifest themselves most directly as the integer quantum Hall effect

(IQHE) (Fig. 2.1). In experiments, a 2DES (in the X-Y plane) is subjected to a perpen-

8
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dicular magnetic field B⊥ = |B|ẑ. A current Ix is passed through the system and parallel

(Vx) and transverse (Vy) voltage drops are measured. If we add electrons to the 2DES1,

filling the Landau levels one at a time, the measured Hall conductivity σxy = Vy/Ix would

reveal a series of quantized steps separated by gse2/h 2, where gs is the spin degeneracy.

The steps in conductivity occur whenever a Landau level is fully occupied. It is conve-

nient to talk about Landau level occupation in terms of a dimensionless filling factor,

defined as:

ν =
n

n0

= n · 2πl2b ν ∈ Z −→ IQHE (2.2)

At the same time, Landau levels can be thought of as a band insulator, and whenever

the Fermi energy is inside the cyclotron gap, there is a large energy cost associated

with adding the next electron. The longitudinal conductivity (σxx) is zero inside a gap

and finite inside a Landau level, where a small change in the Fermi energy in linked to a

significant change in electron density. Analogously to the thermodynamic compressibility

of a liquid κ = − 1
V
∂V
∂P

∣∣∣
N
, where V is the system’s volume and P is the applied pressure,

it is convenient to define electronic compressibility :

κ =

(
n2∂µ

∂n

)−1

, (2.3)

where n is the electron density and µ is the chemical potential. The electronic compress-

ibility signifies the amount of charge flowing into the system if the chemical potential is

slightly increased. Throughout this work the prefactor 1/n2 will be omitted and κ ∼ ∂n
∂µ
,

which is the thermodynamic density of states (DOS). The two will be used interchange-
1In most experiments on 2DES realized in semiconductor heterostructures, changing the electron

density is challenging. Instead it is fixed and determined by the growth conditions, and to measure Hall
resistance, the magnetic field B is swept, tuning the cyclotron energy gap. Whenever the Landau level
energy lines up with the Fermi level, a change in Hall conductivity is detected.

2h/e2 = RK = 25812.80745 . . .Ω is called the von Klitzing constant and is used in metrology to
maintain the value of electrical resistance.

9



van der Waals materials in high magnetic fields Chapter 2

ably and the observed states will be described as compressible (large DOS, e.g. inside a

Landau level) and incompressible (low DOS, e.g. in a gap).

Role of topology

Surprisingly, the exact quantization of the Hall conductivity stands in sharp contrast

to the broad range of devices of varying quality in which it has been observed. Semiclassi-

cally, the quantized conductivity can be understood from noting that while the electrons

in the bulk of the system are bound to move in cyclotron orbits (i.e. electrons are local-

ized) and cannot contribute to the current flow, the electrons at the boundaries cannot

close their orbit and skip along the edges of the system (Fig. 2.1b), forming extended

states that each contribute e2/h. If one imagines some depressions in the boundaries of

the quantum Hall device, they would not affect the skipping orbits, and the Hall con-

ductivity would remain unchanged. The quantum Hall effect is not dependent on the

geometric details of the device, or on how disordered the sample is: the Hall conductivity

always carries the same exact value of e2/h and is a topological invariant.

Topological properties can be identified by examining the geometry of the band, where

for every momentum value k, a local geometric curvature b(k) called Berry curvature can

be defined. For electrons in 2D in a magnetic field, the closed path integral of b(k) over

the whole band (first Brillouin zone, k ∈ BZ) yields the Hall conductivity [16]:

σxy =
e2

h

1

2π

∫
k

b(k)dk =
e2

h
C, where C ∈ Z (2.4)

described by an integer C called the Chern number. Landau levels have C = 1 and carry

Hall conductivity 1 · e2/h. Since the Chern number is an integer, it cannot smoothly

change. At a boundary of two phases described by different Chern numbers, e.g. the

boundary between a 2DES in the quantum Hall regime (C = 1) and vacuum (C = 0),

an intermediary edge state must exist.

10
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Symmetry breaking and quantum Hall ferromagnetism

One of the effects interactions have on many-body electron states is the breaking of un-

derlying symmetries. Ferromagnetism in metals is an example of spontaneously broken

symmetry. Electrons are subjected to exchange and Coulomb interactions. If the inter-

actions are strong, Coulomb energy can be minimized if the electron spins align with

each other, spontaneously breaking the spin symmetry and opening an exchange gap

between the spin-↑ and spin-↓ states.[17].

In a magnetic field, the Zeeman energy would break the gs = 2 spin degeneracy and,

naively, would “freeze” out any spin dynamics. This turns out to not be the case. With

the case of graphene in mind, the Zeeman energy splitting Ez = gµBB = 0.115B/Tesla

meV, where g = 2 is the gyromagnetic ratio and µB is the Bohr magneton. At the same

time, the energy of Coulomb interactions is3 Ec = e2

4πεlB
≈ 8.58

√
B/Tesla meV. Since

Ec >> Ez for most accessible magnetic fields, the spin ordering is defined not as much

by single particle Zeeman splitting but rather by the competition between the disorder

broadening Γ and the interaction energy, which includes Coulomb and particle exchange

interactions. This, just like in metallic ferromagnets, spontaneously lifts the spin degen-

eracy aligning the spins and opens an exchange gap ∆ex >> Ez. Though the Zeeman

energy gap is much smaller, the magnetic field chooses the spin orientation associated

with a lower energy. As it will be later discussed in more detail, graphene has gs = 4

accounting for spin and valley pseudospin degrees of freedom. This 4-fold degeneracy

can be lifted by interactions in a similar manner, which results in a complicated com-

bined spin/valley phase ordering. These effects are collectively known as quantum Hall

ferromagnetism, examples of which will be presented in the following chapters.

Fractional quantum Hall effect (FQH)
3Specifically in the case of interactions between electrons in a graphene sheet encapsulated between

two sheets of boron nitride, with a dielectric screening taken into account by the dielectric constant
ε = ε

‖
BN = 6.6ε0

11
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Beyond breaking symmetries, interactions, more intriguingly, can produce new emer-

gent states of matter. It is very fortunate that Landau levels offer a way of creating

electron systems with low energy dispersion - researchers not only have a tool to force

electrons to strongly interact, but they are also doing so in 2D, which is remarkably

different from the 3D world we live in. In 3D, since two particles can be exchanged with-

out their trajectories crossing, the only quantum particle exchange statistics that are

allowed are either bosonic or fermionic as described by the overall phase gain eiϕ = ±1

[2]. However, in 2D, “in-between” or anyonic statistics, where the phase is not limited

to ϕ ∈ {0, π}, are allowed. These new, non-existent in 3D, particles manifest themselves

in the fractional quantum Hall effect (FQHE), which experimentally manifests similarly

to the IQHE, but at fractional filling factors:

ν =
p

q
; p, q ∈ Z −→ FQHE. (2.5)

The Hall conductivity is quantized to νe2/h. The first FQH state was experimentally

observed at ν = 1/3, with a ground state wavefunction ansatz provided by Laughlin [18].

The single particle wavefunctions in the n = 0 Landau level4 take the form ψ(x, y) ∼

zle−
1
4
|z|2 , where z = x− iy and l is the angular momentum, hence the many(N)-particle

wavefunction must be of the form Ψ = f(zj)e
− 1

4

∑
i |zi|2 , where f(zj) is a polynomial of

degree N . The Laughlin ansatz wavefunction for filling factor ν is

Ψν=1/m =
∏
j<k

(zj − zk)m exp

[
−1

4

∑
i

|zi|2
]
. (2.6)

With cleaner devices, more and more FQHE states have been discovered, with two key

observations: [19]that the FQHE states appear 1) in sequences and with 2) no even
4In the symmetric gauge
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denominators observed. This led to the realization that the similarities of FQHE and

IQHE are not accidental, and in fact, FQHE could be viewed as integer quantum Hall

states of new quasi-particles called composite fermions. The proposed particle is made

up of an electron and 2p flux quanta attached to it, effectively absorbing flux from

the external magnetic field (B). The composite fermions then experience an effective

magnetic field B∗ = B− 2pnϕ0, where n is the electron density. When the Landau level

is half-filled (ν = 1/2), the effective magnetic field experienced by composite fermions is

then B∗1/2 = B − 2νn0ϕ0 = B − 2 · 1/2B/ϕ0ϕ0 = 0. This suggests that the composite

fermions do not notice the external magnetic field and behave just like a compressible

metal! In fact, like free electrons, the composite fermions at half filling form a Fermi

surface that has been observed in experiments [20, 21]. Away from ν = 1/2, the effective

magnetic field B∗ν 6= 0, and composite fermions form Landau level-like energy bands

with the filling factor defined as ν∗ = nϕ0/B
∗, ν∗ ∈ Z. Expressing the magnetic fields in

terms of filling factors, we obtain an expression for a sequence of odd-denominator FQH

states:

ν =
ν∗

2p · ν∗ ± 1
, ν∗ ∈ Z. (2.7)

Many states from this sequence have been observed, with denominators going as high as

16, as well as 4-flux states with p = 2.

Even denominator FQHE (EDFQH)

The abundance of observed odd-denominator states at filling factors predicted by

eqn. 2.7 with wavefunctions similar to the Laughlin wavefunction (eqn. 2.6) made the

discovery of an even-denominator state in a GaAs/AlGaAs quantum well in the N =

2 Landau level at ν = 5/2 an unexpected surprise [22]. The many-body electronic

wavefunctions must be anti-symmetric upon particle exchange, which in the Laughlin

wavefunction is ensured by an odd power m of the polynomial. At first sight, this anti-

13
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d1~lb d>>lb

Figure 2.2: GaAs/AlGaAs double quantum wells left: separation barrier width d is
of the order of achievable magnetic length lb supporting finite tunneling between the
two wells. The observed quantum Hall states are multi-component. right: the barrier
width is much larger that the magnetic length; the two wells are effectively decoupled
and (ignoring spin) the observed quantum Hall states are single-component.

symmetrization requirement could be satisfied by generalizing the Laughlin wavefunction

to include internal degrees of freedom, i.e. spin. This is called the Halperin wavefunction

[23]:

ΨH
m1,m2,n

({z↑j , z
↓
j }) =

N↑∏
k<l

(z↑k − z
↑
l )
m1

N↓∏
k<l

(z↓k − z
↓
l )
m2

N↑∏
k=1

N↓∏
l=1

(z↑k − z
↓
l )
n (2.8)

where the electron-electron interactions are split into inter- and intra-spin interactions.

However, the ν = 5/2 EDFQH state turned out to be spin polarized[24] indicating a

lack of an internal degree of freedom. Such single-component EDFQH states lack the

multi-flavor electrons required for a Halperin-type state, and a different wavefunction

was proposed by Moore and Read[25]:

ΨPF = Pf
(

1

zi − zj

)∏
i<j

(zi − zj)2, (2.9)

where “Pf” stands for Pfaffian and is an antisymmetric matrix. The excitations from the

Pfaffian ground state carry charge e/4 and obey non-Abelian statistics, where exchange

of such particles explores the vast ground state degeneracy[26]. The Pfaffian state has

been extensively studied numerically, but an experimental demonstration of the exchange
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properties of the e/4 quasiparticles still remains an open problem.

Later, multi-component even-denominator states of the form shown in eqn. 2.8 were

observed in double quantum wells at ν = 1/2 (Fig. 2.2). The Halperin wavefunction

is applicable if the electron spin is replaced by a pseudospin that labels which of two

quantum wells is considered. The intrawell interaction strength is tuned by the barrier

width d and the conditions for a FQH state to form are set by the dimensionless scale

d/lb[27]. Specifically, the ν = 1/2 FQH state is defined by the Halperin wavefunction

with the set of polynomial powers (m1,m2, n) = (3, 3, 1) (eqn. 2.8). As a side note,

in order to describe multilayer FQH states in terms of composite fermions, we need to

extend the picture and allow electrons to bind with flux quanta from both quantum wells

[28, 29].

What are the effects of the lattice?

In the treatment of Landau levels the magnetic vector potential (A(r)) breaks transla-

tion invariance along one of the axes (x-axis), but the other direction (y-axis) is assumed

to be translationally invariant. In most cases the lattice scale does not directly come

into the problem, but instead it can be incorporated by replacing the mass of a free

electron with an effective mass that takes the lattice into account. This assumption is

valid as long as the magnetic length scale is much greater than the inter-atom lattice

spacing lb >> a. But what happens if the magnetic field is large and lb/a ∼ 1? This

would of course require extremely large magnetic fields B ∼ 10000 Tesla, but assuming

the condition is met, the electron Landau level spectrum will be modified by the periodic

lattice potential. To find the energy spectrum of an electron gas in a periodic lattice

potential V (x) at zero magnetic field (B = 0), we seek eigenstates of the Hamiltonian

that obey the translation symmetries of the lattice V (x + a) = V (x), where a is a lat-

tice vector. This is done by finding the eigenstates of translation operators Ta that,

when applied to a wavefunction ψ(x), translate it by a: Taψ(x) = ψ(x + a). When a
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magnetic field B = |B|ẑ is applied, the vector potential A(x) (∇ ×A(x) = B) breaks

the translation invariance of the lattice, and upon translation the wavefunction gains an

additional phase ϕa(x) = e/~A (x). Then, the translation operators can be redefined as

TM
a = eiϕa(x)Ta. These new magnetic translation operators will commute with each other

only for a specific choice of {ai} which are defined by the total flux penetrating through

the unit cell Φ = B (a1 × a2). If
Φ

Φ0

= N (2.10)

is an integer, then the problem can be mapped on to the trivial case of zero flux penetrat-

ing the unit cell. On the other hand, if N = p/q is a rational fraction, then the situation

gets more interesting. In order for this condition to be satisfied, we need to consider an

enlarged magnetic super unit cell that is q-times larger than the original cell of the poten-

tial, such that the total flux penetrating the magnetic unit cell is p/q×q = p ∈ Z, and the

eigenstates are simultaneously eigenstates of the translation operators and the Hamilto-

nian. In the absence of a magnetic field, the electrons will scatter at momenta k ∼ 1/a,

but if the unit cell is effectively enlarged, the scattering will occur at k ∼ 1/(q×a), which

could be treated as a splitting of the original (B = 0) Bloch band into q sub-bands. Each

of these bands according to Thouless, et.al [16] carry a Chern number, that can be larger

than C = 1 as in the Landau level case. When N = p/q is irrational, the band is split

into infinitely many bands. The resulting energy spectrum has a fractal structure and

is called the Hofstadter butterfly after Douglas Hofstadter [30]. Hofstadter bands, un-

like the dispersionless Landau levels, have a finite bandwidth. This poses the question

of whether Coulomb interactions can be strong enough to form correlated states inside

these finite-bandwidth Chern bands. The answer is yes, and by analogy with FQHE, we

call these states fractional Chern insulators or FCIs (see Chapter 6).
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Figure 2.3: a. A lattice spanned by unit vectors a1 and a2 in a uniform magnetic
field. Each unit cell is carrying flux Φ = 1/3Φ0. A magnetic unit cell 3a1×a2 hosts an
integer flux Φ = Φ0 and satisfies condition 2.10. b. Single particle energy spectrum at
strong magnetic fields lB ∼ a of a electrons on a hexagonal lattice called “Hofstadter
butterfly”. c. Like Landau levels, each band is characterized by a Chern number. For
LL C = 1, but Hofstadter bands can have a |C| > and carry Hall conductivity Ce2/h.
The colors represent Chern numbers.

2.2 van der Waals heterostructures

Historically, electrons confined to a 2D plane were first realized in heterostructures

of different semiconductors (e.g. GaAs and AlGaAs) — crystals grown in high vacuum

with molecular beam epitaxy. An alternative approach that emerged over the last decade

is to study electrons confined to materials that are atomically thin, or in other words,

2D “by design”. One such material is graphene, an atom-thick (∼ 0.34 nm) layer of

carbon atoms on a hexagonal lattice. Graphene is a member of a family of materials

called van der Waals (vdW) materials. In these materials, the binding energy between

individual planes is weaker than in-plane interatomic bonds. This property makes it pos-

sible to use mechanical exfoliation to isolate nanometer-thick layers of materials. The

range of materials available for exfoliation is rapidly growing, with members including

semiconductors, dielectrics, superconductors and magnetic materials. The isolated thin

layers can then be recombined into stacks with designer properties (Fig. 2.4) [5]. For

example, graphene is a semi-metal with Dirac electrons and has become the workhorse
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Graphene

Bilayer Graphene w/ a twist

Graphene/BN

Graphene/WTe2/BN

a b c

Figure 2.4: a 2D materials “stacked” on top of each other are held by van der Waals
(vdW) forces. The choice of materials (chemical composition, thickness) and their rel-
ative orientation (angle controlled Moiré patterns) used in such vdW heterostructures
can be used to tailor the character of electronic states. b Examples of 2D materials.
Top panel: bilayer graphene (0.7 nm), graphite (15 nm). Bottom panel: hexagonal
boron nitride (45 nm), an optical image of a dual gated device shown in c. Scale bar
is 10um.

for studying 2D electrons; hexagonal boron nitride (hBN) is a large bandgap semicon-

ductor that is used as an insulator in graphene-based field effect transistors; WTe2 is

a transition metal dichalchogenide (TMD) and was used to proximity-induce spin-orbit

coupling in graphene electrons[31] and CrI3 [32, 33] and Fe3GeTe2 show voltage con-

trolled magnetism. Researchers also manipulate the crystal structure of these materials,

working with metastable stacking orders; for instance, ABC-stacked trilayer graphene

demonstrates Mott insulating states [12]. They also can control the relative orientation

of layers; in hBN and graphene, which both have hexagonal lattices with similar atom

spacing, a small rotation angle creates a Moiré pattern that acts as a periodic poten-

tial, leading to a slew of new states. A rotation angle between two graphene sheets

has been shown to demonstrate superconductivity[13], zero magnetic field resistance

quantization[34], and much more.

The ability to observe novel collective electron states is usually hindered by disorder in

the device. For interaction-driven states to form, the disorder potential needs to be much
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smaller than the other energy scales, most importantly the energy of coulomb repulsion

Ec. In quantum Hall experiments, the interaction strength can be boosted by applying

strong magnetic fields Ec ∼
√
B⊥. Being able to observe the interaction phenomena

(symmetry breaking and FQH) at lower magnetic fields implies that the devices must be

cleaner 5. Early graphene devices where made by patterning and contacting graphene

directly on the underlying substrate SiO2 [3, 4, 35]; these devices showed interaction-

driven symmetry breaking at fields larger > 20T [36]. Later, it was found that the SiO2

substrate traps electron puddles, creating a strong disorder potential [37, 38]. To reduce

the substrate disorder, the graphene sheet was placed on top of an exfoliated 2D insulator

- hexagonal boron nitride (hBN) [39, 40, 41]. With this approach, the symmetry broken

quantum Hall states were observed at significantly lower magnetic fields (B = 8.5T)

and later on, fractional quantum Hall (FQH) states [42] were observed. In parallel,

researchers have been working on experiments with suspending graphene[43, 44], where

the SiO2 disordered substrate underneath is totally etched away. In these experiments,

carefully choosing a low-disorder spot with a scanning probe, FQH states with odd-

denominators have been observed, as well as signatures of the elusive even-denominator

state[45, 46] which is a hallmark of the cleanest GaAs/AlGaAs semiconductor devices

[22, 47].

Making graphene devices on hBN substrates required the development of a new fabri-

cation procedure usually referred to as the “dry transfer technique” (Fig. 2.5), where the

stack of 2D materials is assembled layer by layer with the help of a sticky polymer film

such as polycarbonate (PC) or polypropylene carbonate (PPC). The first 2D material

flake is adhered directly to the sticky film, whereas all consequent layers are held to each

other by van der Waals forces. This way, the only surface that is contaminated with
5This is not strictly correct, as the interaction strength is also modified by the proximity of conducting

gates
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Figure 2.5: a. The dry assembly of vDW heterostructures starts with a “pickup”
slide: a soft PDMS (polydimethylsiloxane) cushion with a sticky polymer (e.g. PPC)
is mounted at the edge of a glass microscope slide. With the help of a micropositioner
and a microscope the pickup slide is positioned over a 2D material flake (e.g. hBN)
and brought into contact by lowering the slide. b. Heating the SiO2 substrate the
PPC film would start flowing over until it fully covers the target flake. c. Reducing
the temperature would cause the PPC film to retract and peal off the target flake. An
interference pattern appears between the 2D flake and substrate indicating a successful
pick up of a flake.

the pickup polymer is the topmost surface. After the stack is assembled on the film, it

is transferred onto a clean substrate. Even though the experiments done on suspended

graphene showed more fragile electronic states, the dry-stacking method is more flexible,

allowing an easy assembly of dual gated devices, with the number of layers in a device

limited only by the patience of the stacker.

My own contribution was to further improve on the quality of the BN-encapsulated

graphene devices. I found that metallic (Au) gates, suffering from a spatially varying

work function, can be easily replaced by few-layer graphite gates, with the whole process

seamlessly integrating into the vdW heterostructure assembly procedure [48]. In such

dual graphite-gated devices, symmetry broken states appear at fields as low as ∼ 1.5T

with robust even-denominator FQH at > 6T. Fig.2.6 shows a comparison of capacitive

measurements of a metal-gated and a graphite-gated bilayer graphene device (See Section

3.1 and Chapter 5). The low capacitance features in panels c,d correspond to gapped

states. Panel c shows gapped states in a metal-gated device appearing only at integer

filling factors and a series of electric field tuned phase transitions between wavefunctions
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of different spin/valley and layer “flavor” (See Fig. 2.10). In stark contrast, panel d

additionally shows numerous finer fractional quantum Hall features at partial fillings of

a Landau level, which indicates greatly reduced disorder.
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Figure 2.6: Comparison of metal- and graphite-gated devices. a Optical
micrograph of a metal gated device. Scale bar corresponds to 10 µm. b Optical
micrograph of a graphite gated device. Scale bar corresponds to 10 µm. c Symmetric
capacitance (Section 3.1), CS = CT + CB = ∂n/∂n0, for a metal gated device at
B = 10 T and T ≈ 50 mK. d CS for a graphite gated device at B = 12 T. Graphite
gated devices show much narrower integer QH states, along with many fractional
states. Diagonal features in d are features that depend on only one of the gates (top
or bottom) potentials VB or VT , indicating either single gated regions or electronic
structure within the graphite gates. Reprinted from Zibrov A.A., et. al 2017 [49]

2.3 Graphene

Monolayer graphene (MLG)

Graphene is a layer of carbon atoms arranged on a hexagonal lattice; the thickness of a

graphene layer is ∼ 0.34 nm. Fabricating a single graphene flake, a material closest to a

real 2D system, proved to be experimentally challenging. Nonetheless, in 2004, graphene

was discovered with individual flakes isolated with mind-boggling simplicity - a graphite
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Figure 2.7: a Graphene is spanned by two interpenetrating triangular lattices A and
B. b Corresponding Brillouin Zone with two distinct high-symmetry points K and K’
c Band structure of monolayer graphene. At K and K’ points of the Brillouin zone the
valence and conduction bands touch and low-energy excitation follow a linear (Dirac
particle) dispersion relation.

crystal was peeled apart or exfoliated with adhesive tape. This stands in stark contrast

to the vacuum molecular beam epitaxy growth that is usually used for semiconductor

heterostructures. While making graphene turned out to be as extremely easy, seeing it

was much harder. To make graphene visible under white light illumination, it is usually

exfoliated onto wafers with 300 nm of SiO2[50].

Today, graphene is a textbook example of a non-bravais lattice [51]. It is made

from two distinct triangular sublattices labeled A and B. The full graphene sheet can

be spanned by translating the two neighboring atoms (respectively belonging to A and

B) by vectors a1 and a2 (Fig. 2.7 a). For in-depth treatments on graphene electronic

properties see the reviews by Goerbig[52], McCann, et. al. [53, 54] and Castro-Neto,

et.al. [55].

The most remarkable property is that the valence and conduction bands of electrons

propagating through a hexagonal lattice touch at points of zero energy ε = 0 at the K

and K ′ high symmetry points of the Brillouin zone (Fig.2.7b). The Hamiltonian near

the K-point is HK = ~vFσ · p, where momentum p is defined relative to the K-point,

σ are Pauli matrices6, and vF = 3ta
/

2~ ≈ 106 m/s is the Fermi velocity and depends

6For K ′-point HK = H∗−K′
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on tight binding hopping amplitude t. The energy dispersion relation depends only on

the length of the momentum operator ε(p)K = ~vF |p|, just like relativistic, massless

Dirac particles, with the difference in the group velocity being defined by the Fermi

velocity vF = 106 m/s (Fig. 2.7 c). The electron wavefunctions written in the basis

ψ = (ψA, ψB)T = 1/
√

2(1, eiθ)T , where ψA(B) refers to the component localized on

A(B) sublattice, are equally spread out between the A and B sublattices. However, the

phase uniquely defines if the electrons originate at K or K’ points. Since K and K’ are

degenerate in energy, it is convenient to define a new valley quantum number, or a valley

isospin (K/K ′) that mimics the real electronic ↑ / ↓ spin. All together, the low-energy

electrons in monolayer graphene are 4-fold (spin and valley) degenerate.

In order to obtain the Landau level spectrum of graphene in a magnetic field B = ∇×

A(r), we perform the standard (Peierls) substitution of the gauge-dependent canonical

momentum with the gauge-invariant mechanical momentum: p −→ Π = (p)+e/c A(r).

With a set of ladder operators a, a† ∼ (Πx ± iΠy), the Hamiltonian then reads:

HB>0 = ε

0 a†

a 0

 , ε =

√
2~vF
lb

, (2.11)

where lb is the magnetic length. The Landau level spectrum of graphene and correspond-

ing wavefunctions (ψ = (ψA, ψB)T ) are then:

εn = ±ε
√
|n| (2.12)

ψKn=0 = (0, |0〉)T , ψKn>0 = (|n− 1〉 , |n〉)T (2.13)

ψK
′

n=0 = (|0〉 , 0)T , ψK
′

n>0 = (|n〉 , |n− 1〉)T , (2.14)

where |n〉 are harmonic oscillator eigenstates. It is evident that the n = 0 Landau
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Figure 2.8: left: Cartoon illustrating valley-anisotropic short-range Coulomb interac-
tions between two electron wavepackets localized on the A(B) sublattices respectively.
The long-range interactions falls of as the magnetic length is El.rc ∼ e2/lb ∼

√
B,

while the inter-lattice repulsion scales as Es.r.c ∼ a
lb
El.r.c ∼ B. right: Competing

energy scales in monolayer graphene zero energy landau level. Coulomb interactions
lead to spontaneously broken Spin/Valley degeneracies, while Zeeman splitting and
short-range valley anisotropies as well as single particle sublattice splitting determine
the orientations of the spin and valley pseudospin.

level is special as the wavefunction in the K(K ′) valley is polarized to the A(B)

sublattice. Since the n = 0 LL has an energy ε0 = 0, it is usually referred to as the zero

energy Landau level (ZLL). This connection between sublattice and valley in the ZLL

leads to additional electron-electron interaction-induced valley anisotropy. Whilst long

range interactions do not distinguish between the sublattice degrees of freedom, the

short-range inter-sublattice repulsion biases electrons to reside on the same sublattice.

The energy scale of these valley-anisotropic interactions is Es.r.
c ∼ a

lb
El.r.
c [56]. Moreover,

the AB-sublattice symmetry can be explicitly broken by a choice of substrate (e.g.

BN), making the ZLL particularly interesting for exploring the phases arising from

interactions (Fig. 2.8).

Bilayer graphene (BLG)

Bilayer graphene (BLG) is the next step of increasing complexity. The stable phase

of BLG is called Bernal stacked, when the A sublattice (A1) of one layer is under the
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Figure 2.9: a Stacking order of few-layer graphite and their respective band struc-
tures. b Moire pattern formed between hBN ands graphene.

B sublattice (B2) of the other (Fig. 2.9a). The low-energy band structure, just like

monolayer graphene, has two special valley points K and K ′ where the conductance and

valence bands touch. The difference lies in the dispersion relation, which is no longer

linear in momentum, but instead is parabolic; therefore, bilayer graphene hosts massive

chiral fermions at the K and K ′ points. Another major distinction is that an applied

perpendicular electric field breaks the inversion symmetry of the two graphene layers,

which leads to a gate-tunable gap. The tight-binding description of BLG follows closely

from that of the monolayer graphene case, but here the unit cell has 4 lattice sites - A1,

B1 and A2, B2, which leads to a 4x4 Hamiltonian. Finding the Landau spectrum at

magnetic field B, after the standard Peierls substitution, the ZLL wavefunctions are (in

basis the of (ψA1 , ψB2 , ψB1 , ψA2)):

ψKn=0 = (|0〉 , 0, 0, 0)T , (2.15)

ψKn=1 = (c1 |1〉 , 0, c2 |0〉 , c3 |0〉),
∑
i

c2
i = 1. (2.16)

The two different eigenstates, though they differ in energy, are nearly degenerate.

In fact, if no external electric field is applied and some of the higher order tight binding
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Figure 2.10: left: Schematic depication of the zero energy Landau level orbital wave-
functions, shaded regions depict the relative support on the atomic sites A1, A2, B1,
B2. right: Phase diagram of ZLL as a function of filling factor and an applied exter-
nal polarizing field. Different colors correspond to the 4 orbital wavefunctions ψKn=0

(red), ψKn=1 (orange),ψK′n=0 (blue) and ψK′n=1 (cyan). The figures are adopted from Hunt
B.M., et.al (2017) [57]

parameters are ignored, namely γ4 and ∆′, then the degeneracy is exact. γ4 describes

the interlayer hopping between dimer and non-dimer sites A(B)1 → A(B)2, while ∆′

describes the energy difference between dimer (A2 and B1) and non-dimer (A1 and B2)

sites. Nonetheless, the nearly degenerate orbital wavefunctions ψn=0 and ψn=1 expand

the standard graphene 4-fold degeneracy to 8-fold. While the ψn=0 are fully layer and

sublattice polarized, the ψn=1 have a finite polarization, which can be tuned by an

external electric field. The complicated phase structure of the 8-fold degenerate ZLL of

BLG[57] is shown in Fig. 2.10.

Stacking configurations.

Bernal stacking of BLG is the only stable configuration, though stacking faults can

occur such that a graphene flake will have a domain wall between regions of AB and BA

stacking orders. Trilayer graphene, on the other hand, in addition to the lowest energy

Bernal stacking order, supports a metastable ABC stacking configuration. The band
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structure and shape of orbital wavefunctions of the two differ greatly. ABA trilayer

graphene band structure can be thought of as a monolayer-like band and a bilayer-like

band that can hybridize under an applied electric field. ABC trilayer has a slowly

dispersing energy spectrum at the K-points, where the conductance and valence bands

touch. If a bandgap is induced near the K-point of the ABC trilayer (e.g. with a longer

wavelength lattice), a flat band at zero magnetic field can form, in which correlated

Mott insulator states and superconductivity have been observed [12, 14]. A more

detailed discussion of ABA TLG is provided at the end of this chapter to illustrate the

capabilities of capacitance measurements in clean graphene devices.

“White” graphene, hexagonal boron nitride (hBN) Finally, a few remarks

about hexagonal boron nitride, or as it sometimes is called in the literature, “white

graphene”. This name comes from the crystal’s white color and inter-atom lattice spacing

exceptionally close to graphene’s (the lattice mismatch δ = ahbn
aGR
− 1 ≈ 1.8%). This made

hBN an ideal insulating partner to graphene and also hands researchers another degree

of freedom. First of all, the boron(nitrogen) atoms aligning with the A(B) sublattice of

the graphene layer will break the sublattice symmetry [58], which opens a gap. Second,

a small angle rotation will lead to a long-wavelength (much larger than the inter-atom

separation) Moiré pattern (wavelength λ ∼ 14 nm). Bragg scattering off this long-range

Moiré pattern will open up additional gaps in the Brillouin zone at momentum points

(k = π/λ). This was successfully used in ABC trilayer graphene to isolate a flat band

in which the electron’s kinetic energy is dwarfed by the Coulomb interactions leading

to an observation of a Mott insulating state [12]. Finally, returning to the discussion of

the lattice effects in high magnetic fields from the previous chapter, I want to note that

Φ/Φ0 ∼ 1 for a unit cell defined by a λ = 14 nm Moiré pattern is satisfied at accessible

magnetic fields B ∼ h/e/λ2 = 21 T.

27



Chapter 3

Capacitive probe of the density of

states of 2DEGs

3.1 Overview

To study 2D electron systems in a sheet of graphene, it is desirable to tune as many

parameters as possible. Here, I consider devices with two electrostatic gates. Two

independent voltages (Fig. 3.1) applied to the top (VT) and bottom(VB) gates allow

us to electrostatically induce a net areal carrier density (n0), doping the graphene sheet:

n0 = ctVT + cbVB, (3.1)

where ct(b) = εBN/dt(b) are the geometric capacitances per unit area from top(bottom)

gates to the graphene sheet (εBN is dielectric constant of BN, dt(b) the BN thicknesses).

The two voltages also allow us to set up an external electric field D:

D = εBN

(
VT
dt
− VB
db

)
. (3.2)
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When considering graphene multilayers, it is convenient to rewrite eqn. 3.2 in terms of

charge polarization p0 caused by the applied electric field:

p0 = ctVT − cbVB. (3.3)

The subscript “0” in eqns. 3.1 and 3.3 implies that these values are nominal , which

means that these equations are true if instead of a graphene sheet, we had a perfect metal.

The real charge carrier density (n) and polarization (p) deviates from the nominal value

due to the finite density of states (DOS) of the 2D material in question, or in other words

due to the finite energy cost of adding an electron to the 2D channel that the batteries

need to overcome. This observation, together with total charge conservation, allows us

to directly measure the DOS of the 2D electron system.

In order to extract the density of states, we measure the charge carrier modulation

on the top (bottom) gate δnt (δnb) caused by a small time-varying voltage δVB (δVT),

which for a symmetric device with geometric capacitances from top and bottom gates to

the 2D electron channel is ct = cb = c (eqn. A.6):

CPEN =
δnt(b)
δVB(T)

=
c2

2c+ ν
, (3.4)

where ν = ∂n/∂µ is the thermodynamic density of states of the 2DEG. This measured

capacitance is called penetration field capacitance to emphasize that the electric field

penetrates the 2DEG instead of being fully screened if the 2DEG were replaced with

a metal sheet. When the Fermi level of the 2DEG lies inside a band gap, the density

of states vanishes (ν → 0) and the time-varying electric field penetrates the 2DEG

unscreened, resulting in effectively two capacitors ct = c and cb = c in series, and giving

a measured capacitance CPEN = c/2. Hence, penetration field capacitance varies from
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Vt
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Vb +  δVb

μ(n, D)V0
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a b cδVREF 

Lock-In
Amplifier

HEMT

δnt

δVex 

G S DCREFT<4K

CREF

Figure 3.1: a A dual gated 2DES (e.g. graphene). Independent contacts to the two
gates and the 2DEG allow to control the carrier density n and electric field D across
the 2DES. An AC modulation δVb applied to the bottom gate sets up a time varying
electric field. The DOS of the 2DES can be probed by measuring the penetration field
capacitance CPEN ∼ DOS = DOS(n,D). b The device capacitance is measured by
balancing against a known reference capacitor (CREF): the phase and amplitude of the
AC excitation δVREF applied to CREF is adjusted until the charge modulation δnt is
nulled. The charge modulation is measured by a cryogenic transimpedance amplifier
based on a HEMT transistor (Appendix A) c. A model of a transistor amplifier, the
dimensions are ∼ 4 × 8 × 5 mm. The HEMT transistor is mounted on a vertical
support. This way the applied magnetic field is parallel to the 2DEG in the HEMT.

0 to c/2 as we modulate the DOS. If the DOS is large (∂n/∂µ >> c), the changes in

CPEN ∼ (∂n/∂µ)−1 will capture the changes in the size of the Fermi surface, if ∂µ/∂n is

monotonic, or its topology, if ∂µ/∂n is discontinuous.

Capacitance measurements are not limited to measuring penetration field capaci-

tance. We can probe the capacitance from the top (bottom) gate to the 2DEG channel:

CT(B) = ∂n/∂VT(B) (3.5)

and their symmetric CS = CT + CB and antisymmetric CA = CT − CB linear combina-

tions. In bilayer graphene, the utility of measuring the antisymmetric capacitance can

be understood from Figure 3.2. If the electrons in the bilayer graphene are polarized to

occupy the top (bottom) layer, then the capacitance measured from the top (bottom)

gate would be enhanced. The antisymmetric capacitance is sensitive to the layer polar-
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Figure 3.2: Schematic of an antisymmetric capacitance measurement in bilayer gra-
phene a ∂nBLG/∂Vt is enhanced by electrons polarized to the top layer, a ∂nBLG/∂Vb
is enhanced by electrons polarized to the bottom layer c Measurement layout, two out
of phase AC excitations are applied to the top and bottom gates simultaneously, the
cryogenic amplifier (HEMT) is connected to the BLG

ization p = n1 − n2, where n1,2 are carrier densities of the two layers. In particular, the

phase diagram of the ZLL of BLG (2.10) is mapped out by measuring the antisymmetric

capacitance, owing to the unique relationship between orbital wavefunction and layer

polarization in ZLL BLG. See Appendix A.2 for a detailed derivation that relates the

symmetric and antisymmetric capacitances to observable derivatives of layer polarization

and carrier densities in bilayer graphene.

3.2 Example: Capacitance probe of trilayer graphene

band structure

Abstract: In this section I illustrate the capacitance measurement technique with

an example in which we probe high-quality dual-gated trilayer graphene devices. At

zero applied magnetic field, we observe a number of electron density- and electrical

displacement-tuned features in the electronic compressibility associated with changes in

Fermi surface topology. At a high displacement field and low density, strong trigonal

warping gives rise to three new emergent Dirac cones in each valley, which we term
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“gullies”. The gullies are centered around the corners of a hexagonal Brillouin zone and

related by threefold rotation symmetry. At low magnetic fields of B = 1.25 T, the gullies

manifest as a change in the degeneracy of the Landau levels from two to three. Weak

incompressible states are also observed at integer filling within these triplet Landau

levels, which a Hartree-Fock analysis indicates are associated with Coulomb-driven

nematic phases that spontaneously break rotation symmetry.

The contents of this section have previously appeared as Phys. Rev. Lett. 121, 167601

doi:10.1103/PhysRevLett.121.167601

In graphene multilayers, strong trigonal warping of the electronic band structure leads

to a complex evolution of Fermi surface topology within the low energy valleys located

at the corners of the hexagonal Brillouin zone[59, 60]. The comparatively small energy

A1 B1

A3 B3

A2 B2

γ3

γ5

γ1

γ0

γ4 γ2

MLG

BLGε 
(m

eV
) 20

40

0

-20

-40
-0.05 0 0.05

kxa

Figure 3.3: Trilayer graphene band structure. left: Lattice structure of ABA
trilayer graphene with hopping parameters identified. In addition to the γi, the elec-
tronic structure is determined by the interlayer potentials ∆1 ∝ D and the relative
potential of the inner layer with respect to the outer layers, ∆2. right: Electronic
band structure of trilayer graphene in the absence of an applied displacement field.
The linear monolayer-like and parabolic bilayer-like bands are labeled. The momen-
tum is relative to the K point in the kx ‖ Γ−K direction.

scales characterizing the underlying interlayer hopping processes (∼ 100 meV) renders

these transitions accessible via electrostatic gating, providing a highly tunable platform

for engineering both zero- and high magnetic field electronic structure. Of particular
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interest is the possibility to use band structure engineering to create novel manifolds

of degenerate Landau levels (LLs), where enhanced electron-electron interaction effects

can lead to novel correlated ground states. However, such control comes at the cost of

requiring high sample quality to avoid smearing the subtle electronic features. In this

Letter we report magnetocapacitance measurements of exceptionally high quality Bernal-

stacked (ABA) trilayer graphene devices (Fig. 3.3). Absent an applied perpendicular

electric field, the band structure of ABA trilayer is described by independent monolayer

graphene-like (linear) and bilayer graphene-like (parabolic) bands[61, 62, 63] in each of

the two valleys centered at the high symmetry K and K ′ points (Fig. 3.3). Applied

electric displacement field D strongly hybridizes these two sectors, driving the linear

monolayer-like band to high energies and generating new structure in the low-energy

bilayer-like bands (Fig. 3.4). For large electric fields, the strong trigonal warping is

predicted to lead to the formation of new Dirac cones around three separated quasi-

momentum points we term ‘gullies.’ The gully triplets are centered around each of the

two original valleys[64, 65] and are related to each other by three-fold rotation symmetry.

At quantizing magnetic fields, the three-fold symmetry of the gullies may lead to novel

broken symmetry ground states[66], including nematic states as recently observed on the

surface of high purity bismuth crystals[67].

Past experiments on ABA trilayer graphene[68, 69, 70, 71, 72, 73, 74, 75, 76, 77] have

observed features associated with numerous aspects of the single particle band struc-

ture, including a variety of electric- and magnetic-field tuned LL crossings[78, 79] that

tightly constrain band structure parameters[71, 74]. Recent experiments have also found

evidence for interaction-induced quantum Hall ferromagnetic states at high magnetic

field[73, 76, 77]. However, the high-electric field regime of the Dirac gullies has not been

explored in high mobility devices where interaction driven states might be accessible.

To access the high mobility, high-D regime, we study ABA trilayer flakes encapsulated
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Figure 3.4: Band structure evolution under applied electric field. For a wide
range of electric fields, the low energy structure is described by three isolated Dirac
cones slightly displaced from the K(K ′) points.
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Figure 3.5: Trilayer graphene capacitance device. left: False color electron
micrograph of the measured trilayer graphene device. The active region is indicated
in cyan. right: Device schematic: trilayer graphene encapsulated in ∼ 20 nm BN
with few layer graphite top and bottom gates. Independent contacts to the gates
and graphene layer allow independent control of charge density n = ctVt + cbVb and
displacement electric fieldD = εhBN (Vt/dt−Vb/db), where εhBN ≈ 3 and dt(b) = 18, 20
nm are the thicknesses of the top and bottom gates.

in hexagonal boron nitride dielectric layers and single-crystal graphite gates [49] (Fig.

3.5). We use few-layer graphite to contact the trilayer, allowing us to vary both the

total charge density and displacement field D across the trilayer (Fig. 3.5). We measure

the penetration field capacitance CP [80], defined as the capacitance between top and

bottom gate with the graphene layer held at constant potential. The finite density of
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states ∂n/∂µ of the trilayer only partially screens the electric field between the top and

bottom gate, reducing the measured CP so that (for symmetric top- and bottom gates

with geometric capacitance c) CP = c2/(2c + ∂n/∂µ) ∝ (∂n/∂µ)−1 for ∂n/∂µ � c.

Changes in CP can then be associated with changes in the Fermi surface, with changes

in topology associated with discontinuities in the density of states.

Fig. 3.6 shows CP measured at B=0 as a function of D and electron density n. A

variety of n and D-tuned discontinuities are readily visible and indicated in the Figure

with numeric labels (1)-(9). These include a sharp CP maximum at charge neutrality

for both positive and negative D (1); two elevated CP features with parabolic bound-

aries (‘parabolas’) at negative and positive n (2-3), two low-CP regions with triangular

boundary (‘triangles’) within the parabolic regions (4-5), a ‘wing’-shaped high CP region

both above and below charge neutrality (6-7), and a narrow elevated CP region that

runs parallel to the parabolic feature for negative n bounded by contours (8-9). Some

of the capacitance features can be associated with the single-particle band-structure by

inspection. For example, (1) is consistent with the small band gap or linear band crossing

expected at charge neutrality[64]. The triangular features (4-5), meanwhile, are identi-

fied as the extrema of the linear bands (purple and yellow in Fig. 3.4) which disperse

rapidly to high energy with increasing D. Additional features are thus associated with

the complex band minima of the low energy bands.

To understand the remaining observed compressibility features we perform tight bind-

ing simulations of the trilayer graphene band structure. Energy eigenvalues are computed

using a 6-band tight binding model (see Supplementary information). Hopping between

different atoms within the unit cell is parameterized by six tight binding parameters

γi, i = 1..6, one on-site energy δ, and two energy asymmetries ∆1 and ∆2. The first

describes the potential difference between the top and bottom layers and is most directly

tuned by the strength of an externally applied polarizing electric field D. The second
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Figure 3.6: Trilayer graphene penetration field capacitance measurements
at B = 0. Penetration field capacitance CP at B = 0 T and T ≈ 50 mK as a
function of n andD. The applied displacement field breaks the mirror symmetry of the
ABA-stacked trilayer graphene and induces a on-site energy difference ∆1 between the
top and bottom layer. Main features visible in the experimental data are highlighted
by dashed lines and indexed by numerals (see main text). The D < 0 region is shaded
to increase the visibility of the features. Data is plotted on a saturated color scale (see
Fig. S5).
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measures the potential imbalance between the central layer and the two outer layers, and

screening effects within the trilayer.

Figure 3.7a shows the calculated inverse compressibility within this model, as a func-

tion of the carrier density and ∆1 ∝ |D|. Both the geometric and parasitic capacitances

within the device influence the mapping of ∂n/∂µ ↔ CP between calculated compress-

ibility and measured data. Moreover, interactions likely renormalize the compressibility

particularly when it is high. We thus restrict ourselves to qualitative comparisons of

the magnitude of the signals, and plot both in arbitrary units. We do, however, achieve

quantitative agreement between data and simulation for the position of extrema and dis-

continuities for parameters γ0 = 3.1, γ1 = .38, γ2 = −0.021(5), γ3 = 0.29, γ4 = 0.141(40),

γ5 = 0.050(5), δ = 0.0355(45), and ∆2 = 0.0035, where all energies are expressed in eV.

Notably, the model succeeds in matching the experimentally observed features only for

an exceptionally narrow range of parameters, providing tighter constraints on {γi} and

{∆i} than previously achieved using only LL coincidences[71, 75, 81]. In addition to the

parameters γi and ∆2, a single scale factor α = .165 e·nm is chosen so that ∆1 = α ·D.

The factor α describes dielectric screening of the perpendicular electric field by the tri-

layer, implying an effective ε⊥TLG ≈ 4 for the trilayer itself. Full details of the calculations

are provided in the supplementary materials.

The agreement between theory and experiment allows us to understand the connec-

tion between the observed compressibility features and the nature of the Fermi contours.

Fig. 3.7b shows calculated Fermi surface contours in 11 distinct regions throughout the

experimentally accessed parameter regime. Regions (i) and (xi), for example, are distin-

guished by the existence of a second, independent Fermi surface arising from the second

electron- or hole-subband, respectively, as intuited above. All other regions are sepa-

rated by Lifshitz transitions and distinguished by differences in Fermi surface topology

within a single electron- or hole-band. We note that signatures of Lifshitz transitions
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Figure 3.7: Fermi surface topology a. Left panel: Inverse electronic compress-
ibility ∂n/∂µ calculated from a 6-band tight binding Hamiltonian as a function of
interlayer asymmetry ∆1 and electron density n. Right panel: schematic showing
regions (indexed by the Roman numerals) separated by sharp changes in the com-
pressibility. b. Fermi contours calculated at each of the points indexed by roman
numerals in a. Color indicates the band and follows the convention of Fig. 3.4; note
that panels i-v are Fermi surfaces of electrons while vi-xi are Fermi surfaces of holes.

were recently found in tetralayer graphene[60] at zero magnetic field, but no direct com-

pressibility measurements of Lifshitz transitions have been reported. With the exception

of regions iii-iv, all of the regions are bounded by experimentally observed features de-

scribed in Fig. 3.6. We note that features characterized by a diverging density of states,

such as the iii-iv boundary, only weakly modify the measured capacitance and are barely

discernible even in Fig. 3.6.

Fig. 3.8a-b shows comparisons of traces from the measured capacitance and the

numerically calculated inverse compressibility at n = −1.0 × 1012cm−2. Both data and

simulation show matching discontinuities associated with the band edge of the second

hole subband (i.e., the xi-x transition) as well as the nucleation of three new electron

pockets within the main hole-like Fermi pocket (x-ix). Of particular interest is the regime

of low n and large D, where the gully Dirac points are predicted[64]. Fig. 3.8c-d show

line traces at n = .15 × 1012cm−2. The ‘wing’ region, bounded by sharp discontinuities
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Figure 3.8: a Simulated ∂n/∂µ and b measured CP at n = −1 × 1012cm−2. The
discontinuous jump in the data at D ≈ ±.3 V/nm coincides with population of the
2nd hole subband (xi-x transition), while the jump at D ≈ ± .95 V/nm coincides
with the opening of internal electron-like Fermi surfaces within the main hole pocket
(x-ix transition). c Simulated ∂n/∂µ and d measured CP at n = .15 × 1012cm−2.
The sharp minimum at D ≈ ±.5 V/nm coincides with a Lifshitz transition from one
multiply connected electron pocket (iii) to three disconnected Dirac cones (v). At
the discontinuity at D ≈ ±.9 V/nm, the Dirac cones are joined by three additional
auxiliary pockets.

in both the measured signal and simulated data, is readily identified with region (v), in

which the Fermi surface arises from three isolated gully Dirac cones (Fig. 3.9).

In addition to its thermodynamic signatures at B = 0, the emergence of isolated

Dirac cones can be expected to lead to new transport, optical, and thermodynamic

phenomenology at finite magnetic fields. In monolayer graphene, for example, the two

inequivalent valleys lead to four-fold internal degeneracy of the LLs, with an additional

factor of two arising from electron spin. The observation of four-fold degeneracy was a

critical feature of the first experimental demonstrations of the Dirac spectrum in mono-

layer graphene[3, 4].
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Figure 3.9: Band structure near K-point for ∆1 = 75 meV showing the emergent
Dirac gullies.

The gully Dirac cones similarly manifest as increased LL degeneracy. Figure 3.10

shows CP data measured at B=1.25 T alongside the results of diagonalizing the trilayer

Hamiltonian in the presence of a magnetic field (simulations ignore spin splitting; see

supplementary information for details). Larger energy gaps manifest as prominent peaks

in CP at filling factors ν = eBn/h, spaced by integer multiples of g, the internal LL

degeneracy. Near D = 0, we observe the strongest capacitance peaks spaced by ∆ν = 2,

in agreement with the two-fold valley degeneracy (g = 2) but lifted spin degeneracy

(Fig. 3.11, top). In contrast at large displacement fields (D > 0.7 V/nm) and near

charge neutrality—i.e., in the regime of the Dirac gullies—this behavior changes, with

the most prominent gaps spaced by ∆ν = 3 for −12 < ν < 12 (see Fig. 3.11, bottom).

The calculated single particle energy spectrum (Fig 3.12a) shows that displacement field

leads to the formation of four triplets of LLs per spin projection (labeled T1, T2, T3, and

T4); within each triplet, three LLs intertwine into a single three-fold quasi-degenerate

band consistent with the observed LL degeneracy. We note that triplet LLs are a generic

feature of trigonally warped multilayer band structures, and evidence for three-fold de-
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Figure 3.10: Right panel: Penetration field capacitance CP measured at B=1.25 T
as a function of D and n. The dashed lines indicate the region of low carrier density
near the valence and conduction band minima where trigonal warping has strongest
effect and leads to a formation of new Dirac points. Left panel: simulated inverse
compressibility at B=1.25 T based on band structure parameters. A phenomenological
thermal broadening of 0.1meV is assumed to generate contrast, so that only the largest
gaps are visible in green.
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Figure 3.11: CP traces for n ∈ [−0.5, 0.5]×1012 cm−2 at D = 0 (red) and at D = 1.46
V/nm (blue). The D = 0 line trace shows strong capacitance peaks at even filling
factors, in contrast to the peaks at multiples of three (ν = ±3, 6, 9, 12) for D = 1.46
V/nm.

generate LLs has previously been reported in suspended bilayer graphene samples[82].

While the observation of triplet LLs is consistent with expectations from our single-

particle model, close examination of high displacement field data reveals departures

from the noninteracting picture. In particular, we observe CP peaks at all integer filling

factors −6 < ν < 12, corresponding to the dashed region of Fig. 3.10 (see also Fig.

B.6), including weak peaks at (ν mod 3) 6= 0. These gaps persist without closing over

the whole range of D > 0.7 V/nm. Such behavior is qualitatively inconsistent with the

single particle spectrum, which predicts that within each triplet (denoted T1...T4 as in

Fig. 3.12a) the single particle eigenstates evolve via a series of crossings with increasing

∆1 (Fig. 3.12b). One thus expects these anomalous gaps to undergo repeated closings,

in contrast to their observed persistence.

The failure of the single-particle picture is not surprising. The estimated bandwidth

of each triplet (Fig. 3.12b), δε < 0.5 meV, is smaller than the scale of the Coulomb

interactions, EC = e2/(ε`B) ≈ 10 meV at B = 1.25 T (here e is the elementary charge,

ε = 6.6 the in-plane dielectric constant of hBN[83], and `B =
√
~/(eB) the magnetic

length). Taking these interactions into account, the individual LLs within the triplet are

effectively degenerate; the ground state at integer filling must result from minimizing
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Figure 3.12: a. Evolution of LLs at B = 1.25 T as a function of interlayer potential
difference ∆1. As the electric potential increases, 12 distinct LLs at ∆1 ≈ 0 intertwine
into 4 quasi-degenerate triplets, denoted T1 . . . T4, separated from a near- continuum of
closely spaces LLs by energy gaps. b. Expanded view of the triplet T2 with the average
energy of the triplet subtracted. Insets show the real-space probability distribution
for a coherent state formed from wave-functions in each of the component LLs. All
respect rotation symmetry. c. Real-space probability distribution of the Hartree-Fock
ground state at 1/3 filling of the spin-polarized triplet T2 at ∆1 = 80 meV, showing
strongly broken three-fold rotation symmetry.

repulsive interactions and is likely to result in a gapped, symmetry breaking quantum

Hall ferromagnetic state.

We investigate this quantitatively using a variational Hartree-Fock analysis (see sup-

plementary information) of the ground state when only one out of 3 LLs within a single

spin branch of triplet T2 is filled (1/3 filling). The three insets to Fig. 3.12b show real

space probability distributions for coherent states constructed for each of the three com-

ponents of T2. Absent interactions, the ground state at 1/3 filling consists of the lower

energy component of T2 for a given value of B and ∆1, and preserves rotation symmetry.

In contrast, the Hartree-Fock ground state (shown in Fig. 3.12c) spontaneously breaks

the C3 symmetry–it is a gully nematic. As long as δε� EC , the gap will be only weakly

moduated by ∆1, making it insensitive to the single-particle level crossings, in agree-

ment with experimental observation. The nematic ground state is merely one example

of a symmetry breaking channel. Intuitively, nematics are favored by interactions when

LL wave functions are localized in well separated real-space pockets, as in the case in

the highly anisotropic wave functions of Fig. 3.12c. In a momentum space picture,
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these pockets are associated with the main Dirac gullies represented in the contours of

Fig. 3.7 v-vi. In this limit, ABA trilayer triplet LLs resemble the case of the (111) surface

of SnTe recently considered theoretically. [84]. Our single-particle calculations suggest

that other limiting behaviors can also be realized in ABA trilayer graphene, resulting

in qualitatively different ground states. For instance, the triplet states T1 and T4 are

considerably less anisotropic, being associated with multiple momentum space pockets

close to the K(K ′) points as in Fig 3.7 vii. In these triplets, isotropic ground states

constructed from a superposition of triplet wavefunctions may be favored. Notably, the

relevant anisotropies within each triplet are continuously tunable by external electric

and magnetic fields, making ABA trilayer graphene an remarkably versatile platform

for exploring correlation effects in unusual quantum Hall ferromagnets. Cataloging the

theoretical possibilities, and determining how to distinguish them experimentally, will

be the topic of future work.
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Chapter 4

Even-Denominator FQH effect in

monolayer graphene

Abstract: In monolayer graphene, the two inequivalent sublattices of carbon atoms

combine with the electron spin to give electrons a nearly fourfold degenerate internal

isospin. At high magnetic fields, the isospin degeneracy increases the already large in-

trinsic degeneracy of the two-dimensional Landau levels, making low-disorder graphene

systems a versatile platform for studying multicomponent quantum magnetism. Here,

we describe magnetocapacitance experiments of ultraclean monolayer graphene devices

in which a hexagonal boron nitride substrate breaks the symmetry between carbon sub-

lattices. We observe a phase transition in the isospin system, which is marked by unusual

transitions in odd-denominator fractional quantum Hall states for filling factors Î¡ near

charge neutrality and by the unexpected appearance of incompressible even-denominator

fractional quantum Hall states at ν = ±1/2 and ν = ±1/4. We propose a scenario in

which the observed states are multicomponent fractional quantum Hall states incorpo-

rating correlations between electrons on different carbon sublattices, associated with a

quantum Hall analogue of the Néel-to-valence bond solid transition that occurs at charge
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neutrality.

The contents of the chapter have previously appeared as Nature Physics, volume 14,

pages 930-935 (2018), doi:10.1038/s41567-018-0190-0.

Clean two dimensional electron systems in the high magnetic field limit host various

correlated phenomena including Wigner crystallization of electrons, topologically ordered

fractional quantum Hall liquids, and quantum Hall ferromagnets. Among such systems,

monolayer graphene is distinguished by its zero energy Landau level (ZLL), which spans

ν ∈ [−2, 2] with ν ≡ 2π`2
Bne the Landau level filling factor. Here, ne is the areal electron

density and `2
B = ~/eB is the magnetic length. The four-fold degeneracy of the ZLL

reflects the near-degeneracy of internal spin- and sublattice quantum numbers, while

the π-Berry phase of the massless Dirac electrons pins the center of the ZLL to charge

neutrality at ne = 0. Within the ZLL, the dominant long-ranged Coulomb interaction

does not distinguish between different spin or sublattice flavors, but favors breaking the

approximate SU(4) isospin symmetry by polarizing the ground state into a single isospin

component [85]. Broken isospin symmetry manifests principally as additional gapped

states [86, 36] at integer fillings ν = 0,±1.

Of particular interest is the case of the charge neutral state at ν = 0, corresponding

to half-filling of the ZLL, where Pauli exclusion prevents, for example, simultaneous

spin and sublattice polarization. In this case, the direction of polarization is set by

competing isospin anisotropies including both single particle effects and the anisotropy

of the Coulomb interactions at the scale of the honeycomb lattice. Candidate ν = 0

ground states are sketched in Fig. 4.1 and characterized by either spin or sublattice order,

including a canted antiferromagnetic (CAF) state that breaks spin rotation symmetry[87]

and a partially sublattice polarized (PSP) density wave featuring a Kekulé distortion that

triples the size of the unit cell[88].
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Figure 4.1: Sketches of ground state spin and sublattice polarizations at integer fill-
ing within the ZLL. At ν = −2 the ZLL is empty while at ν = +2 it is fully filled.
At ν = ±1, single or triple occupation permits full spin and sublattice polariza-
tion. At ν = 0, however, corresponding to half filling, a variety of ground states are
predicted[56, 87, 88, 89, 90] including charge density wave (CDW), partially sublattice
polarized (PSP), and canted antiferromagnetic (CAF) phases.

The CAF and PSP states are direct analogs of the Néel and valence bond solid

(VBS) states that arise in studies of two dimensional quantum magnetism, as noted in

a series of recent theoretical works[91, 92, 93]. Within conventional Landau-Ginzburg-

Wilson theory, incompatible symmetry breaking between the VBS and Néel phases (real-

space and spin, respectively) requires a first order transition. However, unusual critical

phases allowing for a continuous transition have been proposed[94], as well as first order

transitions with emergent symmetry at the critical point[92]. Realizing the PSP-CAF

transition in monolayer graphene could thus allow direct experimental probes of this

unconventional quantum phase transition.

Here we report the observation of anomalous fractional quantum Hall features at low

|ν|, consistent with proximity to a PSP-CAF phase transition at ν = 0. The transition is

marked by the appearance—and subsequent disappearance—of even-denominator frac-

tional quantum Hall (EDFQH) states at ν = ±1/2 and ν = ±1/4 in the vicinity of

charge neutrality, coincident in magnetic field with weakening of nearby odd denomi-

nator fractional quantum Hall (ODFQH) states across the range of −2/3 < ν < 2/3.

We observe similar phenomenology in three monolayer graphene samples (A, B, and C)

fabricated by encapsulating the graphene flake between single crystal hexagonal boron

nitride gate dielectrics and single crystal graphite electrostatic gates[49, 95]. The mag-
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netic field at which the anomalous FQH features are observed is directly correlated with

the strength of an observed zero-field insulating state associated with substrate-induced

sublattice splitting ∆AB, with the ν = ±1/2 states appearing for a narrow range of mag-

netic field centered on 28.3 T, 27.5 T, and 5.6 T in the three devices. We interpret the

observed features within a model in which a magnetic field–dependent antiferromagnetic

interaction anisotropy[96] competes with a fixed substrate-induced sublattice-symmetry

breaking gap[97, 98], leading to a transition between sublattice- and spin-ordered phases

at both neutrality[89, 90] and nearby fractional fillings[99].

Figure 4.2 shows penetration field capacitance (CP) for sample A, where CP is defined

as the differential capacitance between the top and bottom gates with the graphene

held at constant electrochemical potential[80]. Data are plotted over a range spanning

the ZLL as a function of magnetic field B and nominal charge carrier density n0 =

c(vt + vb − 2vs), where c is the average gate-to-sample geometric capacitance of the

two (nearly symmetric) gates and vt, vb, and vs are the voltages applied to top gate,

bottom gate, and sample, respectively. We observe gapped quantum Hall states, which

appear as peaks in the measured signal at constant ν (see Section ), at integer fillings

ν = ±2,±1 and 0, as well as at fractional filling factors |ν − bνc| = p
mp±1

, where bνc

is the greatest integer less than or equal to ν. We observe states with m = 2, 4 and p

large as 7 (Fig. 4.2, Fig. C.1). In the absence of four terminal measurements we extract

the Hall conductivity of the high CP gapped states using the Strěda formula[100], which

states that gaps following a linear trajectory in the density-magnetic field plane carry

quantized Hall conductivity equivalent to their slope.

Incompressible EDFQH states appear at ν = ±1/2, but only in a narrow range of

magnetic fields. Similar phenomenology is also observed at ν = ±1/4, with EDFQH

appearing only for a small range of B (Fig. 4.3). The appearance of EDFQH states is

accompanied by weakening or disappearance of adjacent ODFQH states. This is evident
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Figure 4.2: top: False color plot of penetration field capacitance CP/c measured
(see Methods) in sample A at T=300 mK as a function of the the magnetic field, B,
and the nominal charge density n0 ≡ c(vt + vb − 2vs) where vt, vb and vs are the
top gate, bottom gate, and sample voltages, respectively. c is the average geometric
capacitance of the two gates. Fractional quantum Hall states appear as lines of high
CP with a slope proportional to their quantized Hall conductivity[100]. The dataset
spans filling factors ν = [−2, 2], encompassing the zero energy Landau level. bottom:
CP trace taken at constant B = 28.3 T between filling factors ν = −2 and ν = 2,
corresponding to the black arrows in the above color plot. Incompressible states
occur at ν = ±1/2 (red arrows), indicating an even denominator fractional quantum
Hall state, while ν = ±3/2, which are farther away from charge neutrality, remain
compressible. Incompressible features associated with the IQH are omitted to more
clearly show the FQH features.

both near ±1/4 (Fig. 4.3 and Fig. C.3) and ±1/2 (Fig. 4.4a,c and Fig. C.2, C.4), with

weakening most evident at temperatures comparable to the ODFQH energy gaps (see

Fig. C.14). In sample C, an EDFQH state at ν = ±1/2 and weakening/disappearance of

nearby ODFQH states also occur, but at much lowerB (Fig.4.4b,d). Both the appearance

of the EDFQH states and the weakening of the ODFQH states occur only for fillings near
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Figure 4.3: Incompressible FQH states at ν = ±1/4. a False color plot of CP/c
in sample B as a function of ν and B at T=300 mK. In addition to the ν = −1/4
state, FQH states from the ν = p

4p+1 ODFQH sequence are visible, with B-dependent
weakening associated with isospin phase transitions. b Similar data from sample A
near ν = +1/4.

charge neutrality, ν ∈ [−2/3, 2/3]; e.g., no EDFQH is observed at ν = ±3/4, ±5/4, ±3/2

or ±7/4 throughout the experimental range of B. The magnetic field for both ODFQH

weakening and EDFQH emergence occurs at lower fields for transitions closer to ν = 0 ,

but remains constant for 2/3 > |ν| > 1/2 (Fig. 4.4e-f).

EDFQH states have not been previously reported among the many FQH states ob-

served in monolayer graphene[7, 8, 10, 43, 101, 102], nor have they been predicted[103,

104, 105, 106, 107, 108, 109, 110]. However, previous experiments on other quantum

Hall systems have revealed a variety of behaviors at even denominator fractional filling.

In single layer semiconductor quantum wells, the 2D electron system is compressible
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Figure 4.4: Odd denominator fractional quantum Hall phase transitions
associated with the ν = −1/2 state. a CP as a function of B and ν in the vicinity
of ν = −1/2 state for sample A, taken at T = 1.6 K near B=28T. b Similar data
from Sample C, taken at T = 33 mK for B near 5.6T. c CP peak height for selected
FQH states ν ∈ (−1, 0), plotted as a function of B, for sample A and d sample C,
showing the simultaneous strengthening of the even denominator state and weakening
of adjacent odd-denominator states. e Positions of minima (maxima) of the odd
(even)-denominator FQH states for ν ∈ (−1, 1) in Sample A at T=1.6 K. f Similar
analysis of sample C at T= 33 mK. In sample C, two gap closings are observed at
ν = ±3/5, while only one a single gap weakening is observed in sample A. Error bars
in (e) and (f) are defined as the range of magnetic fields where the dips (peaks) are
within 10% of their extremal value relative to a smooth background.

at filling factors ν = 1/2 and 3/2 in the lowest Landau level (corresponding to orbital

quantum number N=0) but forms incompressible FQH states at ν = 5/2 and 7/2 in

the first excited LL (orbital quantum number N=1)[22]. Other single-component FQH

systems, including ZnO[111] and bilayer graphene[46, 49, 95], show EDFQH at different

51



Even-Denominator FQH effect in monolayer graphene Chapter 4

ν but always in a regime corresponding to occupation of N=1 orbital wave functions.

In the MLG ZLL, orbital wave functions are identical to the N=0 LL of conventional

semiconductor systems, and so no single-component even denominator FQH states are

anticipated[103, 104, 109, 110, 112]. Multicomponent systems, however, can host a wider

variety of FQH states[23], including at even denominator filling factors. Indeed, ED-

FQH states at ν = 1/2[113, 114, 115, 116] and ν = 1/4[117, 118] have been observed

in the N=0 LL for structures where electrons are confined to two spatially separated

layers or electronic subbands. By analogy with such systems, it seems likely that the

monolayer graphene EDFQH states are multicomponent in nature, with the role of the

layer/subband quantum number replaced by isospin components within the ZLL. In this

scenario, the ODFQH weakening is similarly associated with transitions between ODFQH

states constructed from different isospin components[101].

The high symmetry of the ZLL permits many possible isospin polarizations at frac-

tional filling, complicating the task of determining the components relevant for form-

ing multicomponent FQH states. However, recent theoretical work has suggested that

the isospin phase diagram of low-|ν| FQH states closely mimics that of the nearby

ν = 0 integer quantum Hall state[99], which can be analyzed within a Hartree-Fock

framework[89, 90]. The ν = 0 ground state is obtained by optimizing the energy of

competing isospin anisotropies constrained by the Pauli exclusion principle, which pro-

hibits double occupation of a spin- or valley component. These anisotropies include the

Zeeman effect (with characteristic energy EZ = gµBB ≈ 1.34K× B[Tesla], where g = 2

and µB are the g-factor of the electron and the Bohr magneton, respectively), the intrin-

sic sublattice-anisotropy of the Coulomb interactions themselves[56] (with characteristic

energy EV = a
`B

e2

ε`B
≈ .98K × B[tesla]) and substrate induced sublattice splitting (with

characteristic energy ∆AB).

A clue to the origin of the observed FQH features is provided by the observation
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Figure 4.5: a Low field Landau fan in sample A, showing evidence of a large zero-field
gap ∆AB induced by sublattice splitting. b Similar data for sample C, showing a much
smaller sublattice gap.

that all the devices showing EDFQH states and ODFQH features are gapped at zero

magnetic field and zero charge density, a phenomenology associated with finite ∆AB.

Figs. 4.5 show low-magnetic field Landau fan plots for samples A and C. The electron

system remains incompressible at ν = 0 for all magnetic fields, consistent with a single-

particle ∆AB[97, 98]. The insulating nature of samples B and C is confirmed by transport

measurements at zero field (Supplementary Fig. C.8; sample A did not have transport

contacts). In a fourth sample showing no measurable sublattice gap, no EDFQH states

were observed (Supplementary Figs. C.9-C.10). Crucially, the magnetic field at which

EDFQH states appear is directly correlated with the measured ∆AB (see Fig. 4.6a and

Fig. C.11), with large ∆AB corresponding to devices with a large appearance field for

the FQH features.

A similar correlation between B and ∆AB arises from analyzing the phase diagram
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of the ν = 0 state, where ∆AB controls the magnetic field of isospin transitions. To

investigate this connection quantitatively, we analyze a mean-field model for the charge

neutral state that accounts for the sublattice symmetry breaking ∆AB observed in our

devices. Such a model has already been studied in the literature for bilayer graphene

[89] where sublattice splitting can be actuated with applied electric field, but is equally

applicable in the present scenario. Symmetry considerations permit two competing inter-

action anisotropies, parameterized by dimensionless couplings gz and g⊥ which we take

to be ∆AB- and B-independent constants. The resulting phase diagram[89, 90] includes

both the partially sublattice polarized (PSP) and canted antiferromagnet (CAF) phases

mentioned above as well as a fully sublattice polarized charge density wave (CDW)

state and fully spin polarized ferromagnetic (FM) state. Among the competing isospin

anisotropies, both EV and EZ grow with B while ∆AB is B independent. Thus the

CDW phase is favored in the low-B limit for ∆AB 6= 0, with phase transitions to EV -

or EZ- driven states possible at higher B. The values of gz and g⊥ are constrained to

g⊥ ≈ −10 and gz > −g⊥ from previous experiments on devices with ∆AB = 0[86, 96] (see

Chapter 4). Figure 4.6b shows the calculated phase diagram as a function of ∆AB and

B for fixed g⊥ = −10 and gz = 15. Two phase transitions are evident within this model:

a 2nd order transition from the CDW to PSP phase, corresponding to the canting of the

sublattice order parameter into the plane, and a first order transition from the PSP to

CAF phase.

Associating the EDFQH states with a particular phase or phase transition of the

ν = 0 ground state imposes two requirements. First, effective interactions and available

components at ν = ±1/2 (and ±1/4) should favor formation of an incompressible state.

Second, these favorable conditions should only persist for a narrow range of magnetic

fields. We propose that these requirements can be satisfied at the PSP-CAF phase tran-

sition. In this scenario, EDFQH states are made up of two isospin components with
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Figure 4.6: c The estimated gap sizes for the three measured samples (∆AB plotted
against the magnetic field at which the ν = ±1/2 states are maximal (Bmax). d Cal-
culated phase diagram at ν = 0 for monolayer graphene as a function of magnetic field
B and sublattice splitting ∆AB. The stability of the canted antiferromagnet (CAF), a
sublattice polarized charge density wave (CDW), and a valley-coherent partially sub-
lattice polarized phase (PSP) were calculated using anisotropy parameters g⊥ = −10
and gz = 15 [90] (see Figs. S17-S18 and associated discussion in Supplementary
information).

opposite sublattice occupation, which become degenerate in energy near the transition,

thus favoring multicomponent states. Furthermore, the anisotropy of Coulomb inter-

actions between between wavefunctions on different sublattices is reminiscent of double

layer systems, where asymmetry between inter- and intralayer interactions leads to the

formation of a multicomponent EDFQH state [23, 113, 114]. The PSP-CAF phase tran-

sition also provides a mechanism for the concomitant weakening of ODFQH states, which

are predicted to undergo isospin transitions[99]. We note that some other experimental

systems have been successfully described using a picture of Zeeman-driven transitions

of non-interacting composite fermion LLs[101, 119, 111]. However, such a naive picture
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fails to explain a number of qualitative features of our data, most notably the observed

weakening of ODFQH states at ν = ±1/3,±1/5. It thus appears empirically necessary to

consider the full range of multicomponent FQH states allowed in the ZLL to qualitatively

understand the FQH physics[99, 120].

We illustrate the mechanism for forming a multi-component incompressible state at

the CAF-PSP phase transition by ignoring both the canting of spin in the CAF phase

(making it a collinear antiferromagnet, denoted AF) and canting of sublattice polar-

ization in the PSP (making it equivalent to the CDW). In this limit, CDW-AF phase

transition is direct, with increasing magnetic field leading to a level crossing between

single-electron LLs with identical spin but opposite sublattice polarizations, depicted

schematically in Fig. 4.7. On both sides of the transition, the ν = −1 state is fully spin

and sublattice polarized. Additional electrons, however, populate different sublattice or-

bitals in low- and high-B regimes: in the CDW, electrons populate the same sublattice,

while in the AF regime they populate the opposite sublattice. Far from the transition

additional electrons occupy a the lower energy sublattice branch of the LL, resulting in a

compressible state as observed in experiment. Near the transition, however, the two sub-

lattice orbitals are degenerate, making inter-sublattice correlated states—which reduce

the energy cost of Coulomb repulsion—energetically favorable. We interpret EDFQH at

ν = ±1/2 and ν = ±1/4 as multicomponent states[23] incorporating intersublattice cor-

relations. We note, however, that within this class of states a variety of multicomponent

wavefunctions are possible[99]. Definitive resolution of the nature of the EDFQH will

thus require more detailed numerical and experimental studies.

A number of experimental observations, however, are not explained even qualitatively

in the simple picture described above, and warrant further study. For example, the

counting of ODFQH phases is not well understood: the presence of three phases at

ν = 1/5 (Fig. 4.3), and differences in the number of phases observed at ν = ±3/5
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for samples with differing ∆AB (Fig. 4.4a,b), suggest a complex interplay of symmetry

breaking and FQH physics. The nature of the transitions between ODFQH states are also

open to further investigation. Some filling factors show a full closing of the gap (Fig. 4.3),

while others only exhibit a weakening (e.g. Fig. 4.4a). Finally, the ν dependence of the

B at which anomalous FQH features appear is strongly dependent on ν for |ν| < 1/2

but appears to completely flatten when |ν| > 1/2 (Fig. 4.4e,f), a phenomenon that must

be accounted for quantitatively in any definitive description of the FQH transitions.

In summary, we have reported the observation of a number of sublattice-splitting

tuned fractional quantum Hall phase transitions in monolayer graphene, as well as the

observation of even denominator fractional quantum Hall states at ν = ±1/2 and ±1/4.

While existing theoretical work has pointed out the possibility of new filling-factor de-

pendent isospin phases[99, 121] arising from the interplay of symmetry breaking and

fractional quantum Hall physics, the EDFQH was not predicted and remains to be

definitively explained. We expect that future theoretical and experimental work—for

example, measurements of tunneling exponents of EDFQH edge states—will be able to

resolve the nature of these new phases. In addition to the obvious puzzle concerning

the precise nature of the FQH states, our analysis suggests the possible existence of

previously unexplored isospin phase transitions at ν = 0. The PSP-CAF transition, in

particular, remains the subject of continued study. Some authors have proposed that

quantum fluctuations destroy the first order phase transition, leading to a deconfined

critical point between the two phases[91, 93], while others suggest the first order phase

transition survives but with an enlarged symmetry of low energy isospin rotations[92].

The most spectacular experimental manifestations of these transitions are likely to occur

in the neutral sector, to which the current experiment is blind. However, future experi-

ments can access this physics directly, for instance by probing thermal[122] or magnetic

[123] transport.
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Figure 4.7: Sublattice level crossing and multicomponent ν = ±1/2 states
within a simplified model. a Spin and sublattice polarizations of ν = −1 and
ν = 0 integer quantum Hall ferromagnetic states in the low B regime where the
charge neutral ground state is in the CDW phase. b Spin and sublattice polarizations
of ν = −1 and ν = 0 integer quantum Hall ferromagnetic states in the high B regime.
Within this model, which neglects spin canting, the charge neutral ground state is a
collinear antiferromagnet (AF). c Level crossing at ν = −1/2 (an identical scenario
obtains at ν = +1/2 by particle-hole conjugation across the ZLL). The ν = −1 state
is identical in both cases, consisting of a single fully sublattice- and spin-polarized
LL, denoted | ↑ A〉. On the CDW side of the transition, ν = −1/2 consists of
an additional partially-filled | ↓ A〉 LL, while in the AF the opposite sublattice is
filled, | ↓ B〉; both cases result in compressible behavior. When the two levels are
nearly degenerate, Coulomb interactions can favor a multicomponent state with equal
sublattice occupation (νA, νB) = (1 + 1/4, 1/4). Bold lines indicate filled levels, the
| ↓ A〉 and | ↓ B〉 levels are pictured as four branches to depict partial occupation.
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Chapter 5

Even-Denominator FQH effect in

bilayer graphene

Abstract: Nonabelian anyons offer the prospect of storing quantum information in

a topological qubit protected from decoherence[124]. Experimental systems predicted

to harbor nonabelian anyons range from p-wave superfluids, to superconducting sys-

tems with strong spin orbit coupling, to paired states of interacting composite fermions

that emerge at even denominators in the fractional quantum Hall (FQH) regime.

While even denominator FQH states have been observed in several two dimensional

systems[22, 46, 111], small energy gaps and limited tunability have stymied experimen-

tal probes of their microscopic ground state. Here, we report the observation of robust

even-denominator FQH phases in a new generation of dual-gated, hexagonal boron ni-

tride encapsulated bilayer graphene samples, with an energy gap three times larger than

previously observed. We compare the observed FQH phases with numerical and the-

oretical models while simultaneously controlling carrier density, layer polarization, and

magnetic field, providing new evidence for the paired Pfaffian phase[25] predicted to host

nonabelian anyons. Electric-field controlled level crossings between states with different
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Landau level index reveal a cascade of FQH phase transitions, including a continuous

phase transition between the even denominator FQH state and a compressible composite

fermion liquid.

The contents of the chapter have previously appeared as Nature, volume 549, pages 360-

364, (2017), doi:10.1038/nature23893.

At high magnetic fields, two-dimensional electrons form flat bands, known as Landau

levels (LLs). At finite charge density n, interactions drive the formation of ordered states

depending on both the LL filling (ν = 2π`2
Bn, where `B =

√
~
eB

is the magnetic length)

as well as the spin and orbital structure of the LL wavefunctions. Of particular interest

is the fate of the half-filled LL, which can be understood as a weakly interacting state of

composite fermions (CFs)[125] consisting of one electron and two magnetic flux quanta.

Having bound part of the external magnetic field, the CFs experience an effective field

Beff = B(1 − 2ν). At ν = 1
2
this field vanishes and the CFs form an emergent Fermi

surface[126] that manifests in both microwave and transport experiments[20, 21]. As

in a conventional metal, the emergent Fermi surface can be unstable, depending on the

strength and sign of the residual interactions between the CFs. Most intriguingly, CFs

have been predicted to form the quantum Hall analog of a superconductor [25, 127] which,

in a single component system, naturally has p-wave pairing symmetry and supports

nonabelian, charge-e/4 quasiparticle excitations in an incompressible liquid. Numerical

studies find that in the lowest LL of a conventional, massive electron system, the CF

interactions are sharp and the Fermi surface is stable, while in the first LL a node in

the single-particle wavefunction leads to softer CF interactions favorable to pairing.[1]

An incompressible quantized Hall state was indeed observed[22] in the first LL of GaAs

quantum wells, at filling ν = 5
2
, though experiments have yet to reveal definitive evidence

for nonabelian statistics.

Bernal bilayer graphene (BLG) is emerging as a new platform for exploring the half-
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BLG

hBN

hBN

Vt

Vb

Figure 5.1: Device schematic. A BLG flake is successively encapsulated in both
hexagonal boron nitride dielectric and graphite gate layers. Charge density n and
layer polarization p are controlled via voltages n0/c ≡ (vt + vb) and p0/c ≡ (vt − vb),
where c is the average geometric capacitance of the two gates to the graphene while
vt(b) are the applied gate voltages.

filled LL. Comprised of two aligned graphene layers in direct contact, it has a rich

phase diagram that depends on both the electron density n and layer polarization p. A

fractional quantum Hall phase was observed[46] at ν = −1
2
in BLG devices suspended

in vacuum and gated from below. The interpretation of this state[128] is complicated

by the complex structure of the BLG zero energy LL (ZLL), which consists of eight

quasi-degenerate components comprising electron spin, a “valley” index characteristic of

honeycomb systems, and an orbital degeneracy unique to BLG. The spin and valley com-

bine to form an approximately SU(4) isospin, while no such symmetry relates the orbital

levels, which are approximately equivalent to the lowest (N=0) and first excited (N=1)
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LLs of conventional, massive electrons. While a nonabelian paired state is expected

theoretically when the fractional part of the filling lies in a single N=1 orbital, this is

difficult to experimentally verify in a singly gated sample. In devices where the BLG

is sandwiched between boron nitride, it can be gated from both above and below, and

the splitting between valley and orbital degrees of freedom can then be controlled using

magnetic and electric fields[42, 129]. A recent experiment[57] exploited this control to

map out the valley and orbital character of the ZLL, revealing that throughout much of

the accessible parameter space, the valence electrons are fully polarized within a single

valley and orbital flavor. However, even denominator states have not previously been

reported in dual-gated devices.

Here we report magnetocapacitance measurements from a new generation of BLG

devices, depicted schematically in Fig. 5.1. Unlike previous dual-gated device

architectures[42, 57, 129], the gate electrodes on both sides of the BLG are made of

few-layer graphite flakes, dramatically reducing sample disorder (see Fig. D.11). The

sum and difference of the two applied gate voltages, n0 and p0, (see Fig. 5.1, caption)

control the charge density n and layer polarization density p within the bilayer. Fig.

5.2a shows the penetration field capacitance, CP , closely related to the thermodynamic

compressibility[130], in a region of the n0 − p0 plane that spans the ZLL, −4 < ν < 4.

Incompressible FQH phases manifest as peaks in CP locked to the filling factor. We

observe a plethora of new incompressible states at fractional ν and numerous p0-tuned

phase transitions where the state becomes compressible at fixed ν.

We group the observed FQH sequences into three categories based on the pattern of

incompressible phases, indicated by red, blue, and green coloring in Fig. 5.2b. In the

red regions, we observe sequences of FQH states at valence fillings ν̃ ≡ ν − bνc = m
2m+1

.

In the blue regions, in contrast, we only observe robust FQH states at ν̃ = 1
3
, 2

3
, and 1

2
,

with weaker states observed at ν̃ = 7
13

and 3
5
(Fig. 5.3, 5.4). The red and blue regions
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Figure 5.2: a Penetration field capacitance CP at B = 12 T. The plot spans the ZLL,
showing incompressible quantum Hall states at all integer filling factors, ν, as well as
at a multitude of rational ν = p/q. b Orbital character of observed fractional quantum
Hall states. As valence electrons fill N=0 orbitals (red), we observe odd-denominator
fractions consistent with two-flux composite fermion hierarchy states. When filling
N=1 orbitals (blue), only multiples of 1

3 consistently appear from this sequence, with
the second most robust state occurring at half-filling. Near orbital and valley level
crossings (green), a cascade of interlayer correlated states is observed[23].

correspond to the experimentally[57] determined orbital character (N=0 or N=1) of the

valence electrons, which have different effective interactions. In red regions, a single

N=0 component is fractionally filled and the effective interactions are sharp, stabilizing

the odd denominator sequence associated with integer quantum Hall states of 2-flux

CFs. We thus ascribe the compressible state at ν̃ = 1
2
to the composite Fermi liquid

(CFL). In the blue regions, a single N=1 component is fractionally filled and the effective

interactions are softer. This suggests the incompressible state observed at ν̃ = 1
2
is a

FQH state constructed from paired CFs. Finally, in the green regions, p0 induces a level

crossing between the eight near-degenerate components[57], and there is a cascade of

phase transitions between incompressible states with a structure that depends on the
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0
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1⁄3 8⁄171⁄2 7⁄13 3⁄54⁄7 2⁄32⁄5
ν~

C
P/c

 (x
10

0)

Figure 5.3: Detail of an N=1 LL from a second device measured at B = 14T and
base temperature, showing particle-hole asymmetric development of incompressible
states at ν̃ = 3/5 and 7/13.

fractional filling.

We first discuss the even denominator FQH states. In an incompressible FQH state,

a finite energy is required to inject an electron or hole. This “thermodynamic” gap

can be determined[130] from CP , shown in Figure 5.5a for different temperatures at

B = 14T. We measure this thermodynamic gap by integrating the inverse electronic

compressibility (∂µ/∂n) with respect to n (Fig. 5.5b), giving a gap of 4K at the base

temperature of our dilution refrigerator (see Chapter D). Transport measurements from

a second device, meanwhile, show the expected quantized Hall plateau and concomitant

longitudinal resistance minimum (Fig. 5.6). Temperature dependent transport shows

a lower value of the activation gap of 1.8±.2K at B = 14T. This discrepancy is not

surprising[130]. The thermodynamic gap measures the energy required to add an entire

electron-hole pair, while thermally activated transport measures the energy cost for in-

jecting a fractionally charged quasiparticle-quasihole pair. For a half-filled FQH state,

the quasiparticle charge is predicted to be e/4, in which case the measured activation
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gap should be roughly a quarter of the thermodynamic gap at T=0[130]. In a bilayer

.1

0

.2

.3 N=1
N=0

Sample A 

1⁄5 1⁄4 2⁄7 1⁄3 2⁄5 3⁄74⁄9 1⁄2 5⁄94⁄7 3⁄5 2⁄3 5⁄7 3⁄4 4⁄5
ν~

C
P/c

Figure 5.4: FQH sequences in valence N=0 and N=1 regions as a function of
ν̃ ≡ ν − bνc for 1 < ν < 2 (blue) and 2 < ν < 3 (red) measured at p0/c = −2.0
and −2.7 V, respectively. The N=0 levels are compressible at half-filling, while the
N=1 levels show incompressibility peaks.

electron system it is natural to ask whether the incompressible states observed at half-

filling are single- or multi-component phases. While the leading theoretical candidates

for a single-component even-denominator FQH phase, the paired Pfaffian[25] and anti-

Pfaffian[131, 132] states, are nonabelian, in multi-component systems the abelian “331”

phase is more likely[23]. Using the map of the valence polarization[57] (aspects of which

were repeated here at higher resolution, see Methods), we find the gapped phase ap-

pears in regions where the fractional filling is polarized into a single N=1 component.

The situation is thus roughly analogous to the ν = 5
2
state of GaAs,[22] where numerics

have long predicted a paired phase. We note, however, that the measured activation

gap is several times larger than the largest gaps measured in GaAs (558 mK[47]), ZnO

(90mK[111]) or suspended BLG (600 mK[46]).

Despite the superficial similarity, the N=1 orbital in BLG differs in two important

ways from its counterpart in semiconductor quantum wells. First, the N=1 LLs of BLG

and GaAs are not strictly equivalent. The N=1 LL of BLG includes a combination of the

conventional |0〉 and |1〉 LL wavefunctions localized on the different sub-lattices of the
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Figure 5.5: a Penetration field capacitance (top curves) and dissipation (bottom
curves) near ν = 3

2 at B = 14T. Labels denote probe temperature in mK. b Den-
sity dependence of the chemical potential, ∆µ ≈ e

kB

∫
(CP /c)d(n0/c), obtained by

integrating curves in (a).

unit cell (see Chapter D), with the relative weight of the |0〉 wavefunction growing with

B. The effective interaction depends on the orbital character, so that B continuously

tunes the structure of electron-electron interactions within an N=1 level. At low B, the

wavefunctions are purely |1〉-like, with comparatively soft interactions, while at high B,

they are an equal admixture of |0〉 and |1〉 and interactions are consequently sharper.

Numerical studies predict that a nonabelian paired phase at lower B should give way

to a gapless CFL at sufficiently high magnetic fields[128, 133] (Fig. 5.7 a). Indeed, we

find that the ν̃ = 1
2
gap changes non-monotonically with B (Fig. 5.7b), peaking around

B = 27T and then decaying up to the limit of our experiment at B = 35T. Over a simi-

lar range, we simultaneously observe the emergence of a conventional odd-denominator

FQH series typical of the lowest LL, providing further evidence that the effective N=1

interactions sharpen with magnetic field (see Chapter D and Fig. D.16). The decrease
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of the ν̃ = 1
2
gap despite an increase in the Coulomb scale EC ∼

√
B supports the

scenario of a paired-to-CFL transition[134] at somewhat higher magnetic fields. Sec-

1
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4⁄3 3⁄2 5⁄3

Figure 5.6: Hall (black) and longitudinal (red) resistance measured in Sample C. Inset:
Arrhenius plot of Rxx ∼ e−∆/(2T ) at ν = 3/2, from which we obtain ∆ = 1.8± .2K at
B = 14T.

ond, particle-hole symmetry breaking differs in BLG as compared with GaAs. Within

a single Landau level, the Pfaffian and anti-Pfaffian states, which can be understood as

different pairing channels, are degenerate due to a particle-hole symmetry (effected by

ν̃ ↔ 1− ν̃). Including scattering between LLs breaks this symmetry and determines the

ground state. Although the subject of longstanding debate, recent numerical agreement

between exact diagonalization and DMRG methods suggests that the ν = 5
2
state of

GaAs is in the anti-Pfaffian phase [135, 136, 137]. However, LL scattering is dramati-

cally different in BLG: scattering between the ZLL and the |N | ≥ 2 levels only breaks

particle-hole symmetry weakly, while scattering within the ZLL breaks it strongly due

to the small splitting (∆10 ≈ .1EC) between N=0 and N=1 levels (see Chapter D). In

our experiment, particle-hole symmetry breaking manifests in the fractions observed in
67



Even-Denominator FQH effect in bilayer graphene Chapter 5

the N=1 LL. We find incompressible states at ν̃ = 7
13

and 3
5
(Fig. 5.3), the particle-hole

conjugates of what is observed in GaAs where unconventional states were observed at 6
13

and 2
5
.[47] To address these differences, we perform comprehensive DMRG calculations

which account for the B-dependent mixed orbital character and screening from filled

|N | ≥ 2 LLs, while non-perturbatively accounting for scattering between the N=0 and 1

orbitals of the ZLL (Fig. 5.7, see Chapter D for computational details). We find that, in

contrast to GaAs [135, 136, 137], the Pfaffian phase is strongly preferred over the anti-

Pfaffian over the experimentally accessible range. Suggestively, 7
13

(as well as 8
17
, where a

weaker feature is also observed) is the predicted filling of the first “daughter” state of the

Pfaffian phase[138]. Our results suggest encapsulated BLG has certain advantages over
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Figure 5.7: a Density matrix renormalization group calculation of the correlation
length ξ at ν̃ = 1

2 in the N=1 level as a function of the energy splitting ∆10 between
theN=0,1 orbitals in units of Coulomb energy, and the magnetic field (see Chapter D).
In the lower right corner, the system transitions to the compressible CFL phase. The
red line denotes an estimate[57] of the trajectory accessed in b. b The thermodynamic
gap ∆µ 1

2
at different B in Sample A (left panel) and sample C (right panel). Data

in the right panel are scaled to the ∆µ 1
2
(B = 14T) gap (see Chapter D). For energy

gaps of other FQH states, see Fig. D.17 and Tables D.1-D.2.

GaAs as a platform for interferometric detection of nonabelian quasiparticles[1]. First,
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the large energy gap and small correlation length relative to GaAs may reduce bulk-edge

coupling that is detrimental to interferometric probes[139], while exponentially suppress-

ing the density of thermally-activated quasiparticles. Second, hBN gate dielectrics can

be made almost arbitrarily thin, allowing one to engineer edges and quantum point con-

tacts using sharp electrostatic potentials. Recent experiments have demonstrated long

coherence lengths in the quantum Hall regime along such gate-defined edges[140]. Fi-

nally, the putative Pfaffian state at ν = −1
2
in BLG would have fewer edge modes than

the anti-Pfaffian state at ν = 5
2
in GaAs, making the former a preferable candidate

for interferometry. Even without phase coherent transport measurements, the thermo-

dynamic measurements presented here, carried to lower temperatures, can be used to

probe topological ground state degeneracy[26], providing smoking-gun evidence for non-

abelian statistics in the near future. In addition to control over the total density n and

ν = -7⁄3ν = -10⁄3|1+>

|0+>

|1->

|0->

ba

ε N
ξ

p0

ε N
ξ

p0

Figure 5.8: Single particle energy level (εNξ) crossing and level filling diagram as a
function of p0, for a ν = −10/3 = −4 + 2/3 and b ν = −7/3 = −4 + 5/3. Occupation
of the levels in increments of ν = 1/3 is represented by schematically showing each
LL as divided into three branches. Three distinct phases are expected by filling the
two lowest lying ‘branches’ in (a). In (b), crossings now involve both N=0 and N=1
levels, and 6 distinct phases are expected.

69



Even-Denominator FQH effect in bilayer graphene Chapter 5

the effective interactions, the dual-gated architecture allows us to tune level crossings be-

tween the eight components of the ZLL. Within the ZLL, the two valleys are supported

on opposite layers, so the electric field (p0) acts like a “valley Zeeman” field and the layer

polarization (p) can be used to infer valley polarization. A schematic of the single parti-

cle energies near p0 ∼ 0 is shown in Figs. 5.8. Four single particle levels are involved in

the crossing, which we label by their orbital (N = 0, 1) and valley (ξ = ±) indices (we

suppress the spin here, since tilt B-field measurements show that the spin-polarization

is unchanged across the transition).

Because the two valleys are distinguished by their crystal momentum, the tunnel-

ing between them vanishes in the absence of short-range disorder and the crossing be-

tween the levels is unavoided, as supported by the sharp transition at ν = −3, p0 ∼ 0

(Fig. 35.9a). Hence, unlike the dependence on B, the p0-dependence across the transition

is not equivalent to continuously tuning the interaction potential. Indeed, when charge

is separately conserved in each valley, the valley polarization cannot change continuously

without closing the neutral gap: just as the charge gap vanishes in a compressible sys-

tem, the neutral gap vanishes in a polarizable system. During such depolarization, the

charge gap may or may not close.

Fig. 5.9a shows CP for near p0 = 0. For the best-developed odd-denominator

ν̃ = m
2m+1

states when −4 < ν < −3, |m| + 1 distinct high-CP incompressible re-

gions are visible separated by |m| low-CP transitions. Referring to Fig. 5.8a, the cross-

ing is predicted to transfer valence filling m
2m+1

between N=0 orbitals in opposite val-

leys. The m compressibility spikes presumably occur when filling 1
2m+1

is transferred

between valleys. This is expected from composite Fermion theory, which predicts two-

component correlated states[23, 125] at fillings (ν+, ν−) = (m+,m−)
2(m++m−)+1

, (here ν± is the

filling of valley ξ = ±) separated by phase transitions where the gap closes. The state at

ν = −4 + 2
3
, p0 = 0, for instance, corresponds to m± = −1 and we ascribe it to a previ-
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ously unobserved valley SU(2) singlet. For −3 < ν < −2, states at filling ν = −4 + 3m+1
2m+1

show 3m + 1 transitions. Four levels are involved in these transitions. At high p0, one

N=0 level is completely filled and the fractional filling resides in the N=1 level of the

same valley. As p0 is decreased, occupation is transferred according to the levels shown

in Fig. 5.8b, consistent with the observed strengths of the gapped phases, whose CP -dips

are strongest when only N=0 orbitals are involved.

For odd denominator states, the high compressibility observed when the system

changes polarization indicates that the gap for charged excitations also closes. This

is not always the case at ν̃ = 1
2
, where the charge gap in the single component N=1

regimes at large and small p0 fades gradually into the level crossing. We can quantify

this transition by directly measuring the layer polarization (see Chapter D). Fig. 5.10a

shows the layer polarizability (∂p/∂p0) over a similar region of four-level crossings. In

contrast to the odd denominator fractions, where the spikes in polarizability are con-

centrated on the spikes in compressibility, near ν̃ = 1
2
there is a region of p0 where the

polarization changes only gradually while the charge gap remains finite. Fig. 5.10b shows

the measured charge gap alongside the integrated change in layer polarization across the

level crossing. The charge gap persists from valley valence filling (ν+, ν−) = (1.5, 0) to

(1.33, .17).

The coexistence of polarizability and incompressibility has intriguing implications.

In the clean limit where charge is conserved separately in each valley (a limit supported

by the sharp transition at ν = −3, p0 ∼ 0), finite polarizability requires a vanishing

neutral gap, implying the existence of a new phase: a gapless fractionalized insulator.

Microscopically, because the layers are atomically close, the finite polarization presum-

ably arises from a finite density of inter-valley (e.g., inter-layer) excitons, and the finite

polarizability implies these neutral excitons are gapless. This is reminiscent of quantum

Hall bilayers at ν = 1, where a charge gap also coexists with a vanishing neutral gap.
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Figure 5.9: a Measured CP for −4 < ν < −2 near p0/c = 0 at B = 12T. b Annotated
phase diagram for the range depicted in (a). Occupations of the four relevant orbitals
are indicated for each fractional multiple of 1/3. Shaded areas correspond to regions
where the fractional filling lies entirely within one orbital. Coloring follows the scheme
in 5.8(a-b).

The transition is thus distinct in microscopic character from the Pfaffian-to-CFL tran-

sition predicted at high B in a single-component level (Fig. 5.7b), where the charge and

neutral gap would vanish in tandem.
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, measured over an analogous quadruple level
crossing at high negative p0 for −1 < ν < 0. b Black curve shows the integrated
change in polarization, 2π`2B∆p = 2π`2B
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dp0, measured in the regions immedi-
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2 , with shading indicating 1σ confidence interval (see Chapter
D). Red curve shows the ν̃ = 1

2 charge gap. Vertical lines demarcate distinct regimes
distinguished by their compressibility and polarizability. The incompressible and un-
polarizable regions are the Pfaffian phase; incompressible but polarizable regions are
the excitonic phase discussed in the main text; compressible but polarizable regions
are presumably two-component CFLs, and the compressible and unpolarizable is a
one component CFL.

Theoretically, the accompanying fractionalization at ν̃ = 1
2
leaves several possibilities

for the ultimate collective ground state—and indeed even the quantum statistics—of

inter-valley excitons[141]. Most simply, the incompressible exciton phase could be disor-

der dominated: as charge is transferred between valleys, the resulting density of excitons

is trapped by local potential variations in a mechanism similar to that which stabilizes

FQH plateaus over a finite range of ν. However, as is evident in Figs. 5.5b-5.6, the even

denominator state itself is only stable to pure charge doping up to ∆ν ≈ .005, more than

an order of magnitude less than the occupation change (∆ν+ ≈ .17) of the N=1 orbital

implied by the depolarization measurement. Absent this mechanism, the incompress-

ible exciton phase may host such phenomena such as interlayer phase coherence or an

emergent Fermi surface, which can be distinguished experimentally by probing thermal
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transport or interlayer Coulomb drag.
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Chapter 6

Fractional Chern Insulators in bilayer

graphene

Abstract: Topologically ordered phases are characterized by long-range quantum

entanglement and fractional statistics rather than by symmetry breaking. First

observed in a fractionally filled continuum Landau level, topological order has since

been proposed to arise more generally at fractional fillings of topologically non-trivial

“Chern” bands. Here, we report the observation of gapped states at fractional fillings of

Harper-Hofstadter bands arising from the interplay of a magnetic field and a superlattice

potential in a bilayer graphene/hexagonal boron nitride heterostructure. We observe

phases at fractional filling of bands with Chern indices C = −1,±2, and ±3. Some of

these, in C = −1 and C = 2 bands, are characterized by fractional Hall conductance —

that is, they are “fractional Chern insulators” and constitute an example of topological

order beyond Landau levels.

The contents of the chapter have previously appeared as Science, volume 360, issue

6384, pages 62-66, (2018), doi:10.1126/science.aan8458.
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Figure 6.1: Magnetocapacitance in a high-quality bilayer graphene moiré
superlattice device. a Optical micrograph of the device. Scale bar is 10 µm.
b Schematic of the device, with top and bottom graphite gates at potential vt, vb.
A Moirè potential is induced by alignment of the graphene bilayer with one of the
encapsulating hBN crystals. c Penetration field capacitance (CP ) as a function of
density ne ∼ n0 ≡ c(vt+vb) and magnetic field B for n0 < 0. T = 300 mK, and CRef is
a reference capacitance. A large electric field p0/c = (vt−vb) = 16 V is applied to force
the valence electrons onto the top layer, which is in contact with the aligned hBN. d CP
for n0 > 0 with vt− vb = −16 V at T = 300 mK. e-f Linear gap trajectories observed
in (C-D) parameterized by ne = t ·nΦ +s. nΦ and ne are the magnetic flux quanta and
number of electrons per moirÃľ unit cell, respectively. n − Φ ≡

√
3λ2B
2Φ0

= 1/2 when
B = 24.3 T and ne = 1 when n0/c = 3.1V. Five trajectory classes are distinguished by
color: integer quantum Hall (gray, s = 0, t ∈ Z), fractional quantum Hall (green, s = 0,
t fractional), Hofstadter Chern insulators (black, s, t ∈ Z, s 6= 0), symmetry-broken
Chern insulators (magenta, fractional s, t ∈ Z) and fractional Chern insulators (cyan,
fractional s, t). g Schematic of a (∆t,∆s) Chern band (see main text).

Bands in electronic systems can be classified by their symmetry and topology [142].

In two dimensions with no symmetries beyond charge conservation, for example, bands

76



Fractional Chern Insulators in bilayer graphene Chapter 6

are characterized by a topological “Chern” number, C [16]. The Chern number determines

the Hall conductance contributed by a filled band, which takes quantized integer values,

σxy = t e
2

h
with t ∈ Z [16] (here e is the charge of an electron and h is the Planck

constant). Systems with an integer number of filled bands with nonzero C (“Chern

bands”) thus show a quantized, nonzero Hall conductance, and are known as Chern

Insulators (CIs). The first experimental examples of CIs are the integer quantum Hall

(IQH) states, observed in isotropic two dimensional electron systems (2DES) subjected

to a large magnetic fields[143]. In the case of IQH, a quantized Hall conductance is

observed when an integer number of Landau levels (LLs) are filled, each with C = 1.

IQH systems are very nearly translation invariant, in which case t is fixed by the

magnetic field B and the electron density n, via t = n
B
h
e
, with some disorder required for

the formation of plateaus in the Hall conductance[144]. Recently, there has been interest

in a different class of CIs where continuous translation invariance is strongly broken by

a lattice, decoupling the Hall conductance from the magnetic field. CIs in which t is

decoupled from n
B
have been observed in magnetically doped thin films with strong spin

orbit interactions[145] and in the Harper-Hofstadter[16] bands of graphene subjected to

a superlattice potential [97, 146, 147]. Haldane’s staggered flux model[148], which has

non-zero quantized Hall conductance even when the net magnetic field is zero, has been

engineered using ultracold atoms in an optical lattice[149].

Interactions expand the topological classification of gapped states, allowing the Hall

conductance t to be quantized to a rational fraction. By Laughlin’s flux-threading ar-

gument, an insulator with t = p
q
(p, q ∈ Z) must have a fractionalized excitation with

charge e
q
[18]. A fractionally quantized Hall conductance in a bulk insulator is thus a

smoking-gun signature of topological order, and fractional quantum Hall (FQH) effects

have been observed in partially-filled continuum LLs in a variety of experimental systems

[6, 7, 150, 151]. Can a “fractional Chern insulator” (FCI) arise from fractionally filling a
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more general Chern band1? Although a FQH effect in a LL may be considered a special

case of a FCI, in this work we focus on FCIs that require a lattice for their existence.

The phenomenology of lattice FCIs differs from that of continuum LLs. Chern bands

with C 6= 1 can arise, leading to different ground states than are allowed in C = 1 LLs.

In addition, unlike LLs, Chern bands generically have a finite, tunable bandwidth that

competes with interactions, providing a new setting for the study of quantum phase

transitions. Finally, FCIs might be found in experimental systems where Chern bands,

but not LLs, are realizable. A large body of theoretical work has begun to investigate

these issues [152, 153, 154, 155, 156, 157, 158, 159].

Here, we report the experimental discovery of FCIs in a bilayer graphene (BLG)

heterostructure at high magnetic fields. The requirements to realize an FCI in an exper-

imental system are, first, the existence of a Chern band, and, second, electron-electron

interactions strong enough to overcome both disorder and band dispersion. We satisfy

these requirements by using a high quality bilayer graphene heterostructure, in which

the bilayer is encapsulated between hexagonal boron nitride (hBN) gate dielectrics and

graphite top- and bottom gates (Fig. 6.1, A and B). This geometry was recently demon-

strated to significantly decrease disorder, permitting the observation of delicate FQH

states[49]. We generate Chern bands by close rotational alignment (∼ 1◦) between the

bilayer graphene and one of the two encapsulating hBN crystals. Beating between the

mismatched crystal lattices leads to a long-wavelength (∼ 10 nm) moiré pattern that the

electrons in the closest layer experience as a periodic superlattice potential (Fig. 6.1B)

(See Appendix E). At high magnetic fields, the single particle spectrum of an electron

in a periodic potential forms the Chern bands of the Hofstadter butterfly[97, 146, 147].

These bands are formally equivalent to Chern bands proposed to occur in zero magnetic
1We use the term “fractional Chern insulator” to denote any non-FQH, topologically ordered state at

fractional filling of a Chern band, rather than a more restrictive definition requiring the states to occur
at zero field.
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field lattice models; at any fractional flux, a finite-field lattice model can be converted

to an equivalent zero-field model using gauge invariance[152].

We measure the penetration field capacitance[80] (CP ), which distinguishes between

gapped (incompressible) and ungapped (compressible) states (See Appendix E). Figure

6.1, C and D, shows CP measured as a function of B and the electron density, n ∼ n0 ≡

c(vt + vb), where vt and vb are the applied top and bottom gate voltages and c denotes

the geometric capacitance to either of the two symmetric gates. We used a perpendicular

electric field, parameterized by p0/c = vt−vb (where p0 is the electron density imbalance

between layers in the absence of screening), to localize the charge carriers onto the layer

with a superlattice potential, e.g., adjacent to the aligned hBN flake. High-CP features,

corresponding to gapped electronic states, are evident throughout the experimentally

accessed parameter space (Fig. 6.1, C and D), following linear trajectories in the nB

plane. We estimate the area of the superlattice unit cell from zero-field capacitance data

(See Appendix E), and defined the electron density ne = Ne/NS and flux density nΦ =

NΦ/NS per unit cell. Here Ne, Ns, and NΦ are the number of electrons, superlattice cells,

and magnetic flux quanta in the sample, respectively. The trajectories are parameterized

by their inverse slope t and n-intercept is in the nB plane,

Ne = tNΦ + sNs, ne = tnΦ + s. (6.1)

The Středa[160] formula, t = ∂ne
∂nΦ
|NS = h

e2
σxy, shows that the Hall conductance of

a gapped phase is exactly t. The invariant s = ∂Ne
∂NS
|NΦ0

encodes the amount of charge

“glued” to the unit cell, i.e., the charge which is transported if the lattice is dragged

adiabatically[161]. Non-zero s indicates that strong lattice effects have decoupled the Hall

conductance from the electron density. Within band theory, the invariants of a gap arise

from summing the invariants (∆tj,∆sj) of the occupied bands, (t, s) =
∑

j∈occ(∆tj ,∆sj)
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— in particular, the Hall conductance t is the sum of the occupied band Chern indices,

∆tj = Cj.

On the basis of the properties of t and s, we observe five classes of high-CP trajectories,

each of which correspond to a distinct class of gapped state (Fig. 6.1, E and F). Free-

fermion band gaps must have integer t and s: trajectories with s = 0 correspond to

gaps between LLs, i.e., IQH states. Trajectories with s 6= 0 indicate the formation of

the non-LL Chern bands of the Hofstadter butterfly[97, 146, 147]. Trajectories with

fractional t or s are beyond the single particle picture and thus indicate interaction-

driven gapped phases. The conventional FQH states follow trajectories with fractional

t and s = 0. Gap trajectories with integer t and fractional s (previously observed

in monolayer graphene [162]) must be either topologically ordered or have interaction-

driven spontaneous symmetry breaking of the superlattice symmetry. The theoretical

analysis below suggests the latter case is most likely, so we refer to this class as symmetry-

broken Chern insulators (SBCIs). Finally, there are gapped trajectories with fractional t

and fractional s, which are the previously unreported class of topologically-ordered FCI

phases.

To better understand states with fractional t or s, we first identify the single-particle

Chern bands in our experimental data by identifying all integer-t, integer-s gapped states.

We focus on adjacent pairs of gapped states with integer (tL, sL) and (tR, sR), which

form the boundaries of a finite range of ne in which no other single-particle gapped

states appear (Fig. 6.1G). Adding charge to the left gapped state corresponds to filling

a Chern band with invariants (∆t,∆s) = (tR − tL, sR − sL). From this criterion we

find a variety of Chern bands with ∆t = ±1,±2,±3 and ±5 in the experimental data

(See Appendix E), each of which appear as a triangle between adjacent single- particle

gapped states. These Chern bands are observed to obey certain rules expected from the

Hofstadter problem: for example, ∆t and ∆s are always coprime, and Chern bands with
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∆t always emanate from a flux n∗Φ = p/∆t.

Interaction-driven phases occur at fractional filling νC of a Chern band, following

trajectories (tνC , sνC) = (tL, sL) + νCC(∆t,∆s). The Chern numbers of the bands in

which some of the observed interaction-driven phases appear (Figs. 6.2, A to C) are

depicted schematically in Figs. 6.2, D to F.

By combining a phenomenological description of the moiré potential with knowledge

of orbital symmetry breaking in bilayer graphene[57], we are able to construct a single

particle model that closely matches the majority of the experimentally observed single-

particle Chern bands (See Appendix E). The calculated energy spectra of the bands

relevant to Figs. 6.2, A to C are shown in Fig. 6.2, G to I. As is clear from the

band structure, stable phases at fractional νC are not expected within the single particle

picture: instead, the encompassing Chern band splits indefinitely into finer Chern bands

at lower levels of the fractal butterfly that depend sensitively on nΦ.

The three columns of Fig. 6.2 represent instances of three general classes of frac-

tional νc states observed in our experiment. Fig. 6.2A shows two gapped states within

a ∆t = −1 band at νC = 1/3 and 2/3. These gaps gapped states extend from nΦ = 0.55

to at least nΦ = 0.8 (See Appendix E). Both are characterized by fractional t and s,

and we identify them as FCI states. As with FQH states, the fractionally quantized Hall

conductance implies that the system has a charge e/3 excitation[18]. The fractional s

values of these states, being multiples of this fractional charge, do not require broken

superlattice symmetry. Gapped states at νC = 1/3, 2/3 in a ∆t = −1 band are accompa-

nied by comparatively weaker states at νC = 2/5, 3/5 (Fig. 6.3B). These fillings match

the odd-denominator composite fermion sequence observed for FQH states (Fig. 6.3C),

in agreement with theoretical predictions [163]).

Figure 6.2 shows gapped states with fractional s and integer t at νC = 1/3, 2/3 in a

a ∆t = +3 band (Fig. 6.2B) and at νC = 1/2 in a ∆t = +2 band (Fig. 6.2C). Filling a
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Chern-∆t band to a multiple of νC = 1
|∆t corresponds to integer t but fractional s. These

states are unlikely to admit a simple interpretation as FCIs; however, we cannot exclude

exotic fractionalized states. Absent fractional excitations, a gapped state with fractional

s = x
y
implies broken superlattice symmetry: the unit cell of such a phase must contain

an integral number of electrons, and the smallest such cell contains y superlattice sites.

Theoretically, such symmetry breaking is expected to arise spontaneously as a result

of electronic interactions, in a lattice analog of quantum Hall ferromagnetism[164]. A

∆t Chern band is similar to a ∆t-component LL, but in contrast to an internal spin,

translation acts by cyclically permuting the components[164, 165, 166]. Spontaneous

polarization into one of these components thus leads to a t-fold increase of the unit

cell[164]. The observation of SBCIs is thus analogous to the observation of strong odd-

integer IQHEs that break spin-rotational invariance. Some of the “fractional fractal”

features recently described in monolayer graphene appear to be consistent with this

explanation[162].

Further, we also observe fractional-t states within a ∆t = +2 band (Fig. 6.3C); for

example at νC = 1/3 (t = 8/3 and s = −1/3) and νC = 1/6 (t = 7/3, s = −1/6). FCIs

in Chern-∆t 6= ±1 bands can either preserve or break the underlying lattice symmetry.

Symmetry preserving FCIs are expected [156, 163, 167] at fillings νc = m
2lm∆t+1

for integers

l,m. The state observed νC = 1/3 is consistent with this sequence (l = 1,m = −1);

in contrast, the weaker state at ν1/6 is not. For the νC = 1/6 state, the observed

t = 7/3 suggests a fundamental charge of e/3. As for SBCIs, the observed s = −1/6

implies implies that each unit cell binds only half a fundamental charge — i.e., the moiré

unit cell is doubled and the νC = 1/6 state is a “SB-FCI” state. A ∆t = 2 Hofstadter

band is similar to a spin degenerate LL, with lattice symmetry taking to place of spin

symmetry. In a spin degenerate LL at νC = 1/6 (i.e., LL filling ν = 1/3) the system

spontaneously spin polarizes, forming a single component Laughlin state. In contrast, at
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νC = 1/3 (ν = 2/3) the system can either spin polarize (observed only for large Zeeman

energy) or form a multicomponent FQH state that preserves spin rotation symmetry.

The absence of an obvious analogue of the Zeeman effect in our Hofstadter band makes

a multicomponent state a more likely candidate for the feature observed at νC = 1/3.

To assess the plausibility of FCI and SBCI ground states, we use the infinite density

matrix renormalization group (iDMRG) to numerically compute the many body ground

state within a minimal model of the BLG[136]. We first consider Coulomb interactions

and a triangular moiré potential of amplitude VM projected into a BLG N = 0 LL[168],

matching the parameter regime in Fig. 6.2A (See Appendix E). We focus on nΦ = 2/3

at a density corresponding to νC = 1/3 filling of the ∆t = −1 band.

If interactions are too weak compared to the periodic potential (as parameterized by

VM/EC , where EC = e2/(εlB) is the Coulomb energy, lB =
√

~
eB

is the magnetic length,

and ε the dielectric constant, and ~ is the reduced Planck constant), the ground state at

nΦ = 2/3 is gapless, corresponding to a partially filled Chern band. If the interactions are

too strong, the system forms a Wigner crystal which is pinned by the moiré potential.

In the intermediate regime, however, the numerical ground state of this model has a

fractional t and s that match the experiment, and hence is an FCI, with entanglement

signatures that indicate a Laughlin-type topological order (See Appendix E). The FCI

is stable across a range of VM/EC (Fig. 6.4A) corresponding to |VM | ≈ 14 − 38 meV,

consistent with recent[169] experiments that suggest |VM | ∼ 25 meV. Fig. 6.4B shows

that the real-space density of an FCI is strongly modulated by the potential, but preserves

all the symmetries of the superlattice.

We next conduct iDMRG calculations to assess the plausibility of the SBCI hypoth-

esis. We focus on the well developed Chern-3 band of Fig. 6.2, B,E and H. As a minimal

model, we project the moiré and Coulomb interactions into the N = 1 LL of the BLG,

fixing VM = 21 meV and EC(B = 17T) = 35 meV, and take nΦ = 3/8.
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At νC = 1/3 filling, the electron density exhibits a modulation that spontaneously

triples the superlattice unit cell (Fig. 6.4C). A similar tripling is observed at νC = 2/3.

These are not merely density waves, however, as they have finite (t, s) invariants, in

agreement with experiment.

We note that the SBCI states are distinct from a second class of integer-t, fractional-s

features, the moiré-pinned Wigner crystals[162, 170]. In the latter case, starting from a

LL-gap at t, s = tL, 0, additional electrons form a Wigner crystal pinned by the moiré;

the added electrons are electrically inert, leading to a state at t, s = tL,
x
y
that can’t

be ascribed to fixed νC of an encompassing band. These states are thus analogous to

reentrant IQH effects, with the moiré playing the role of disorder. In contrast, although

the electrons added to the SBCI spontaneously increase the unit cell, they also contribute

an integer Hall conductance, which together correspond to some νC .

In summary, we find that instead of a self-repeating fractal structure, interactions

mix Hofstadter-band wavefunctions to form stable, interaction-driven states at fractional

filling of a Chern band. Among these are both symmetry-broken Chern insulators and

topologically-ordered fractional Chern insulators, the latter of which constitute a lattice

analog of the FQH effect. Lattice engineering can lead to increased experimental control.

For example, multicomponent FCI states in higher Chern number bands - as may be re-

sponsible for the νC = 1/3 feature in Fig. 6.3C - have been predicted to host non-abelian

defects at engineered lattice dislocations[165]. A pressing experimental question, then,

is thus whether FCI states can be realized in microscopically engineered superlattices.
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Figure 6.2: Interaction driven states at partial Chern-band filling. a-c Details
of Fig. 6.1, C and D showing (a) FCI states in a ∆t = −1 band, (b) SBCI states in a
∆t = +3 band, and (c) FCI and SBCI states in ∆t = 2 bands. d Schematic of (a). FCI
states (black dotted lines) with (t, s) = (−13/3, 1/3), (−22/5, 2/5), (−23/5, 3/5), and
(−14/3, 2/3) occur at fractional filling of a ∆t = −1 band (light blue). FQH states
(gray dotted lines) occur at fractional filling of a conventional LL (∆t = +1,green)
at low fields. e Schematic of (b). SBCI states (dashed lines) at (t, s) = (0, 2/3) and
(1, 1/3) occur at 1/3 and 2/3 fractional filling of a ∆t = 3 band (orange). f Schematic
of (c). Both FCI and SBCI states (dotted and dashed lines) occur in the ∆t = 2
bands. g Calculated Hofstadter energy spectrum E in the regime of (a), matching
the observation that the LL splits into C = −1, 2 bands. h Calculated Hofstadter
spectrum in the regime of (b), matching the observed splitting of a C = 3 band into
C = 5,−2 bands. i Calculated Hofstadter spectrum in the regime of (c). The IQH
gap at ν = 2 separates the two single-particle bands and is much larger than VM .
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and n(r) spontaneously triples the unit cell of the underlying moiré potential, indicated
by gray circles. Here VM/EC = 0.6 and θM = π/8.
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Chapter 7

Outlook

“Never meant to copy, only to surpass.” Chongqing Meiquan, Advertisement slogan1

“We plan, God laughs.” Yiddish proverb

Most of the experiments presented in this thesis are observations of new fractional

quantum Hall states in graphene that were made possible by greatly reducing disorder.

This was achieved by replacing metallic gates with few-layer graphite. However, the

majority of the observed states have ancestral counterparts in semiconductor and thin

oxide heterostructures, dating to work done in the 1980s. Many publications of ever-

increasing complexity that deepened our understanding of interacting electron states in

2DES have paved the way for the experiments presented here. While fabrication of gra-

phene devices is not as extensively developed as that of GaAs/AlGaAs heterostructures,

graphene has already distinguished itself. In monolayer graphene, we have observed an
1A rebuttal to plagiarism claims from Zaha Hadid Architects accusing a Chinese development com-

pany of copying a building design
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unconventional phase transition between a canted antiferromagnet state and a partially

sublattice polarized state, which some authors suggest to be an example of a deconfined

critical point[91, 92, 93]. While EDFQH in bilayer graphene is the direct analog of the

5/2 state in GaAs/AlGaAs, it has several key differences, including: 1) the ν = −1/2

Pfaffian state in BLG would contain fewer edge states than the anti-Pfaffian ν = 5/2

state in GaAs2, thus making it more preferable for interferometry experiments to de-

tect non-Abelian statistics[1], and 2) the polarizability measurements at half Landau

level filling reveal a potentially new phase: a gapless fractionalized insulator. More-

over, in bilayer graphene, we have observed fractional Chern insulator states that can

coexist with conventional quantum Hall states, enabling the investigation of phase tran-

sitions between states of different topological order. Additionally, other research groups

have observed multicomponent states in double layer graphene systems [28, 29] and

even denominator “221-parton” state [172] in monolayer graphene that lack counter-

parts in GaAs/AlGaAs heterostructures. Beyond quantum Hall physics, the flexibility

in manufacturing graphene heterostructures has made graphene a platform for studying

unconventional superconductivity[13, 14].

To conclude, I will describe a potential experimental path that extends the bulk ca-

pacitive measurements towards probing the ground state degeneracy of e/4 quasi-particle

excitation with a Pfaffian ground state that may reveal their non-Abelian properties. The

foundation for this experiment is outlined in Cooper,et al [26] (A similar experiment in

GaAs has been proposed in [173]). Theory predicts that excitations from the ground

state at ν = −1/2 of BLG would be quasiparticles with charge e/4, so for a charge
2Numerics suggest that the ν = 5/2 state in GaAs is described by an anti-Pfaffian state. However,

this is still a subject of debate: recent thermal Hall measurements done by Banerjee, et.al. [171] do not
agree with the predictions for either Pfaffian or anti-Pfaffian states.
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carrier density n next to the gap, the quasiparticle carrier density would be:

ne/4 = 4× |n− 1

2
n0|, (7.1)

where n0 = (2πl2b )
−1 is the Landau level degeneracy. The Pfaffian state will have g =

2ne/4/2−1 ground states with an associated entropy per unit area:

se/4 = kB ln g = kB
ne/4

2
ln 2. (7.2)

In turn, Maxwell relations allows one to relate the entropy density to a measurable

quantity: (
∂µ

∂T

)
n

= −
(
∂s

∂n

)
T

= −
dse/4
dne/4

(
∂ne/4
∂n

)
T

= ∓2kB ln 2. (7.3)

Therefore, by measuring ∂µ/∂T as a function of filling factor, the states with Abelian

statistics should not contribute a signal in the limit of T → 0; on the contrary, the

non-Abelian states would have a finite contribution. A potential realization of such a

measurement is shown in Figure 7.1. The device in this experiment is a 4 plate capacitor,

with two gates and two graphene layers. The first graphene layer is the BLG, tuned to

a half filled Landau level ν = −1/2, where non-Abelian excitations are expected. The

second layer, is a monolayer graphene sheet that acts as a sensor (Similar experiment

was proposed by Zhang et.al. [174]). Both mono and bilayer graphene sheets are in

electro-chemical equilibrium with their respective contacts ϕi + µi = vi, where ϕi are

electric potentials, µi are chemical potentials, vi applied voltages, and i = BLG, MLG.

This implies that any changes in µBLG would cause a change in the electric potentials

doping the monolayer graphene nMLG → nMLG + δn. A capacitance measurement from

the top gate to the MLG would capture the charge variation δn. Using a feedback control

loop we can restore the MLG to the initial state (carrier density), with the control signal
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Top Gate

MLG

BLG

Vt

Vm

Bottom Gate

Vb

V0 μ(n, D)

Feedback control 

Figure 7.1: Measurement layout for entropy measurements. The device is dual-gated
with two active layers separated by an hBN dielectric: 1) the monolayer graphene acts
as a sensor layer and 2) the bilayer graphene is the layer we probe for non-Ablelian
statistics. Since both layers are in electro-chemical equilibrium with their contacts,
any changes in the chemical potential of the bilayer graphene would result in a change
to electric potentials in the device, which in turn modulate the MLG carrier density.
If the variations of the MLG density are detected by a cryogenic HEMT amplifier,
we can form a feedback control signal to the top gate returning the monolayer carrier
density to the initial state. The feedback control voltage is proportional to the change
in BLG chemical potential.

VFB ∼ δµBLG. Practically speaking, modulation of the BLG chemical potential can

be done by passing a time-varying current through a heater connected to the BLG. In

this case, the a measured time varying feedback voltage would be the desired derivative

∂µ/∂T . Though in this scenario, care needs to be taken to keep the electric potential

of the BLG fixed. This can be achieved by using superconducting (e.g. NbN) leads to

short the BLG to an electrical ground: the electric potential will be always vBLG = 0,

but heat would still be injected into the system.

This is just one of the many exciting possibilities offered by investigating 2DES in

graphene. One could imagine an extension of this technique in which three graphene

layers are used, with two monolayers acting as sensors on both sides of the bilayer
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graphene devices. In such an experiment one could potentially probe the difference in

chemical potential of the BLG’s top and bottom layers; mapping this out as a function of

temperature would allow to detect states with charge neutral excitation, but finite layer

polarizability, like the exciton metal proposed in Chapter 5. The high degree of control

offered by dual-gated graphene devices and the configurability of the heterostructure

composition are a fruitful venue for studying correlated electron systems with many

amazing results to come.
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Appendix A

Capacitance Bridge

A.1 Penetration field capacitance

Consider a truly 2-dimensional electron gas (2DEG) with an ohmic contact placed

between two metallic gates. Metals have an extremely large density of states making

the quantum-mechanical energy cost of adding an electron negligible compared to the

electrostatic charging energy. The case is different for the 2DEG. The 2DEG is in

electrochemical equilibrium with the contact:

V0 = ϕ+ µ, (A.1)

where V0, ϕ and µ are the applied voltage, electric and chemical potentials respectively.

The electrostatic equations for the three plate capacitor are:

nt = ct(vt − ϕ), (A.2)

nb = −cb(ϕ− vb), (A.3)

0 = nt + nb + n0 (A.4)
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Replacing the values with their differentials and noting that δϕ = δV0 − δn/ν (ν =

∂n/∂µ is the thermodynamic density of states) we find the expression for the differential

capacitance matrix Cij = ∂ni/∂Vj, with i, j = (t,b) and setting V0 and δV0 = 0 to define

the “zero” potential:

C = Cij =
1

cb + ct + ν

ct(cb + ν) −cbct

−cbct cb(ct + ν)

 (A.5)

The penetration field capacitance for a symmetric device (cb = ct = c) is then

CPEN = Ctb =
c2

2c+ ν
. (A.6)

A.2 Symmetric and anti-symmetric capacitances in

BLG

The contents of the chapter have previously appeared in the supplementary materials

of Hunt B. et.al, “Direct measurement of discrete valley and orbital quantum num-

bers in bilayer graphene”, Nature Communications, volume 8, article 948 (2017), doi:

10.1038/s41467-017-00824-w.

The electrostatic model presented in the previous chapter can be extended to bilayer

graphene if we consider a four-plate capacitor: top and bottom gates, and two layers of

the bilayer graphene. As before, the geometric capacitances from top and bottom gates

are denoted as ct(b), while a new interlayer capacitance c0 is introduced to describe the

bilayer. Both of the graphene layers are in electrochemical equilibrium with the same
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contact at voltage v0. The electric potentials ϕ1,2 are given by:

ϕ1 = v0 − µ1, (A.7)

ϕ2 = v0 − µ2, (A.8)

where µi = µi(n1, n2) are the chemical potentials of the two layer of BLG, and ni are

the respective carrier densities. Capacitance measurements are differential, so we are

interested in the variations of ϕi:

δϕ1 = δv0 −
∂µ1

∂n1

δn1 −
∂µ1

∂n2

δn2, (A.9)

δϕ2 = δv0 −
∂µ2

∂n1

δn1 −
∂µ2

∂n2

δn2 (A.10)

(A.11)

Note, from Maxwell relations ∂µ2/∂n1 = ∂µ1/∂n2.

The experimentally relevant capacitances are: 1) penetration field capacitance

CP =
∂nT(B)
∂vB(T )

(A.12)

and 2) capacitances from the top and bottom gates to the graphene bilayer

CT (B) =
n0

vT (B)

. (A.13)
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Eliminating the electric potentials ϕ1,2:

CP =
cbct(c0κ11κ22 − κ12 − c0κ

2
12)

1− (c0 − ct)κ11 − (c0 + cb)κ22 + (cbct + c0cb + c0ct)(κ11κ22 − κ2
12) + 2c0κ12

(A.14)

CB =
cb(1 + ct(κ11 − κ12) + c0(κ11 + κ22 − 2κ12))

1− (c0 − ct)κ11 − (c0 + cb)κ22 + (cbct + c0cb + c0ct)(κ11κ22 − κ2
12) + 2c0κ12

(A.15)

CT =
ct(1 + cb(κ11 − κ12) + c0(κ11 + κ22 − 2κ12))

1− (c0 − ct)κ11 − (c0 + cb)κ22 + (cbct + c0cb + c0ct)(κ11κ22 − κ2
12) + 2c0κ12

(A.16)

The physical quantities (Chapter 3.1) we are interested in are n ≡ n1+n2 and p ≡ n1−n2,

while the control parameters are n0 = ctvt + cbvb and p0 = ctvt − cbvb. Then the partial

derivatives of n are:

∂n

∂n0

=
∂n

∂vt

∂vt
∂n0

+
∂n

∂vb

∂vb
∂n0

=
1

2

(
CT
ct

+
CB
cb

)
=

1

2

CS
c

(A.17)

∂n

∂p0

=
∂n

∂vt

∂vt
∂p0

+
∂n

∂vb

∂vb
∂p0

=
1

2

(
CT
ct
− CB

cb

)
=

1

2

CA
c
, (A.18)

where c = 0.5(cb + ct) is the average geometric capacitance. With geometric capacitance

asymmetry defined as δ = (cb − ct)/(cb + ct), the symmetric(antisymmetric) capacitance

is given by:

CS(A) ≡
CB

1− δ
± CB

1 + δ
(A.19)
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The partial derivative of layer polarization p:

∂p

∂n0

=
∂n1

∂vt

∂vt
∂n0

+
∂n1

∂vb

∂vb
∂n0

− ∂n2

∂vt

∂vt
∂n0

− ∂n2

∂vb

∂vb
∂n0

(A.20)

=
1

2

(
∂n1

∂vt

1

ct
+
∂n1

∂vb

1

cb
− ∂n2

∂vt

1

ct
− ∂n2

∂vb

1

cb

)
(A.21)

=
1

2

(
ct(κ11 + κ12) + 2c0(κ11 − κ22)− cb(κ12 + κ22)

1− (c0 + ct)κ11 − (c0 + cb)κ22 + (cbct + c0cb + c0ct)(κ11κ22 − κ2
12) + 2c0κ12

)
(A.22)

=
−c0

c(1− δ2)

(
CA(1− δ2) + δ((CS − 2c)(1− δ2) + 4CP )

c(1− δ2)

)
− 4CP δ + CA(1− δ2)

c(1− δ2)

(A.23)

∂p

∂p0

=
∂n1

∂vt

∂vt
∂p0

+
∂n1

∂vb

∂vb
∂p0

− ∂n2

∂vt

∂vt
∂p0

− ∂n2

∂vb

∂vb
∂p0

(A.24)

=
1

2

(
∂n1

∂vt

1

ct
− ∂n1

∂vb

1

cb
− ∂n2

∂vt

1

ct
+
∂n2

∂vb

1

cb

)
(A.25)

=
1

2

(
2 + ct(κ11 + κ12) + cb(κ12 + κ22))

1− (c0 + ct)κ11 − (c0 + cb)κ22 + (cbct + c0cb + c0ct)(κ11κ22 − κ2
12) + 2c0κ12

)
(A.26)

=
c0

c(1− δ2)

(
4CP + (CS − 2c)(1− δ2) + δCA(1− δ2)

c(1− δ2)

)
− 4CP + CS(1− δ2)

2c(1− δ2)

(A.27)
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VS VREF

g

VOUT

Cs

Cp

Cref

Gs

Figure A.1: Lumped element model of the capacitance bridge

For a symmetric device δ ≈ 0, and c0 >> c/2:

∂n

∂n0

≈ CS
2c
, (A.28)

∂n

∂p0

≈ −CA
2c
, (A.29)

∂p

∂p0

≈ ∂c0

c

4CP + CS − 2c

c
, (A.30)

∂p

∂n0

≈ −c0

c

CA
c

(A.31)

A.3 Lumped model

We measure the unknown capacitance Cs by comparing it with a known reference

capacitor Cref (Fig. A.1). During the capacitance measurement we apply a fixed AC

excitation Vs to modulate the sample’s carrier density, the voltage drop at the input of

the amplifier is then zeroed out by adjusting the phase and magnitude of the reference

capacitor excitation Vref.

The output of the amplifier with gain g would then read:

Vout(Z
−1
par + Z−1

ref + Z−1
s ) = VsZ

−1
s + VrefZ

−1
ref , (A.32)

where Zi are the complex impedances of the sample, reference and parasitic capacitors.
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We treat the sample as a “leaky” capacitor with capacitance Cs and bulk conductivity

Gs connected in parallel. Its inverse impedance at excitation frequency ω is then:

Gs + jωCs = Z−1
s . (A.33)

It is convenient to redefine the phase delays to be measured relative to the capacitors

and to introduce a complex dissipation quantity Ds = Gs/ω:

Cs − jDs = Z−1
s (A.34)

Rewriting eqn. A.32:

Vout =

[
CsCΣ +DsDΣ

C2
Σ +D2

Σ

+ j
CsDΣ − CΣDs

C2
Σ +D2

Σ

]
Vs +

Cref

C2
Σ +D2

Σ

(CΣ + jDΣ)Vref, (A.35)

Where:

DΣ = Ds +Dp, (A.36)

CΣ = Cs + Cp + Cref, (A.37)

are the total dissipation (including parasitics) and capacitance. As a reference capacitor

we are using a break in a thin gold lead with negligible leakage.

In order to relate this equation with the measured by a lock-in amplifier quadratures,

it is convenient to rewrite eqn. A.35 in matrix form: Vout = M · Vref + Voffset, where

Vi = (V x
i , V

y
i )T are two-component quadrature vectors. In this notation, balancing the
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bridge determines the transfer matrix M and the offset Voffset:

M =
gCref

C2
Σ +D2

Σ

CΣ −DΣ

DΣ CΣ

 (A.38)

Voffset = Vs
g

C2
Σ +D2

Σ

CsCΣ +DsDΣ

CsDΣ −DsCΣ

 (A.39)

The bridge is balanced (Vout = 0) when the reference capacitor excitation is set to:

V x

V y


ref

=
Vs
Cref

−Cs
Ds

 (A.40)

which immediately provides the sample capacitance and dissipation at balance point.

In order to speed up measurements we avoid rebalancing the capacitance bridge for

every point of the parameter space and assume the amplifier to be in the linear regime.

The assumption is incorrect only in the largest quantum Hall gapped states, where the

sample becomes incompressible and the capacitance signal changes a lot. However, in

the regime of an incompressible sample, quantitative measurements are, in either case,

complicated by the long RC charging time of the sample. Expanding the output signal

Vout = (Vx, Vy)
T in Cs and Ds, assuming CΣ and DΣ constant, we obtain the values for

the off balance capacitance δCs and dissipation δDs:

δCoff
s =

CΣVx +DΣVy
gVs

(A.41)

δDoff
s =

DΣVx − CΣVy
gVs

(A.42)
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A.4 How to make a transistor mount?

Materials and Components:

1. GaAs 4 in. wafers from AXT, polished, undoped, prime grade, 625um thick

2. Insulating epoxy: LOCTITE Stycast 2850FT and CAT 23LV catalyst

3. Conducting silver epoxy: EPO-TEK H20E

4. HEMT transistors Sumitomo FHX14X or FHX35X

5. 100MOhm Resistors (MSHR-6-S-S-10005-K-G) from Mini Systems INC

6. Chip carrier

Prepare in advance:

1. First, we pattern Ti/Au (2/300 nm) leads on a GaAs wafer using standard optical

mask lithography. Then, we cleave in small pieces of two types, labeled “top” and

“bottom” (see Fig. A.2), using a diamond scribe.

2. Prepare an insulating chip carrier. We use a PCB board with dimensions matching

a 16pin DIP socket. The PCB boards are ordered from OSHPark, we use a small

end mill to remove the protective coating.

Assembling a transistor mount:

1. Fix GaAs pieces onto a microscope glass slide with a droplet of PMMA.

2. Under a wire-bonder microscope, use a thin wire to place a droplet of silver epoxy

onto a “top” GaAs piece and glue a transistor; let it dry. You can gently push on

the transistor with wirebonder wire to position it. Note, the transistors are small

and are easy to lose, so use small, sharp tweezers to manipulate them.
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3. Bond the gate, source and drain of the transistor to the gold leads.

4. On a probe station check that the transistor resoponds to a change in gate voltage,

be aware that the effect at room temperature is very small. Check if a biased

transistor responds to light intensity.

5. On the “bottom” piece, using insulating epoxy glue the 100 MOhm resistor; let it

dry. Make a “capacitor” by adding a small scratch in the gold lead. Be careful not

to scratch the surface of the resistor.

6. This is the tricky part: using tweezers the “top” piece needs to be positioned

perpendicular to the “bottom piece”. The top piece can be secured by a small

droplet of insulating epoxy at the corner. Dry the transistor mount in an oven.

7. Now you can connect the leads of the “top” and “bottom” parts by carefully placing

small droplets of silver epoxy at the joints.

8. Bond the resistor to the gate. Bond the drain, source, remaining resistor pad and

capacitor to chip carrier pins.
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HEMT
FHX35X

Resistor
100MΩ

G
S

D

CREF

1.

2.
3.

GaAs Top

GaAs Bottom

Figure A.2: Exploded view of a transistor mount.
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Supplementary materials for Chapter 3

Abstract: In these supplementary materials we summarize the tight-binding descrip-

tion of ABA-stacked trilayer graphene and outline the procedure used to simulate the

density of states. In addition, we discuss how we constrain and refine the tight-binding

parameters using zero field and Landau level data. Finally, we provide details on the

self-consistent Hartree-Fock calculation of symmetry broken states in Landau levels and

discuss their visualization. Supplementary figure B.5.

B.1 Model and Methods

B.1.1 Hamiltonian and bandstructure

To describe the band structure of ABA trilayer graphene we use the Slonczewski-

Weiss-McClure parametrization of the tight-binding model [175]. This parametrization

uses six tight-binding parameters γ0 . . . γ5 to describe hopping matrix elements between
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different atoms:

Ai ↔ Bi : γ0, B1,3 ↔ A2 : γ1, (B.1)

A1 ↔ A3 :
1

2
γ2, A1,3 ↔ B2 : γ3, (B.2)

A1,3 ↔ A2

B1,3 ↔ B2

: −γ4, B1 ↔ B3 :
1

2
γ5, (B.3)

where Ai (Bi) refers to an atom from A (B) sublattice, and index i = 1 . . . 3 labels three

layers (see Fig. 3.3 in the main text). In addition, parameter δ accounts for an extra

on-site potential for B1, A2, and B3 sites, which are on top of each other. Finally, we use

two additional parameters ∆1,2 to capture the effect of external electric field and charge

asymmetry between internal and external layers of ABA graphene. Parameters ∆1,2 are

related to layer potentials U1 . . . U3 as: [176, 177, 178, 61]

∆1 = (−e)U1 − U2

2
, ∆2 = (−e)U1 − 2U2 + U3

6
. (B.4)

We note that the above parameterization is spin-independent. As we shall see below,

spin-degenerate simulations fully capture experimental features at zero magnetic field,

and adequately describe Landau level data except in vicinity of neutrality point. Effects

that break spin degeneracy, i.e. Zeeman splitting and electron interactions, are included

only in Section C where we address symmetry broken states in Landau levels.

Via rotation of basis, the tight-binding Hamiltonian for ABA-stacking trilayer gra-

phene can be decoupled into monolayer-graphene-like (SLG) and bilayer-graphene-like

(BLG) sectors which are coupled due to presence of displacement field ∆1:

H =

HSLG V∆1

V T
∆1

HBLG

 , (B.5)

105



Supplementary materials for Chapter 3 Chapter B

where the matrix blocks are defined as:

HSLG =

∆2 − γ2

2
v0π

†

v0π −γ5

2
+ δ + ∆2

 , (B.6)

HBLG =



γ2

2
+ ∆2

√
2v3π −

√
2v4π

† v0π
†

√
2v3π

† −2∆2 v0π −
√

2v4π

−
√

2v4π v0π
† δ − 2∆2

√
2γ1

v0π −
√

2v4π
†

√
2γ1

γ5

2
+ δ + ∆2


, (B.7)

V∆1 =

∆1 0 0 0

0 0 0 ∆1

 . (B.8)

Here we introduced velocities vi =
√

3aγi/2~ corresponding to some of the tight-binding

hopping matrix elements, where a = 0.246 nm is the lattice constant. These notations

coincide with those used in Ref. [64]. At zero magnetic field B, the operator π in

Eqs. (B.6)-(B.7) can be written as π = ξkx+ iky, where k is crystal momentum measured

with respect to corresponding K± point labeled by ξ = ±1. For finite magnetic field, π

can be replaced with the annihilation (creation) operator acting in the basis of Landau

level states in the K− (K+) valley.

The capacitance measurements presented in this paper are sensitive to the band

structure within a range ∼ 10 meV from neutrality point. Within this energy range one

can obtain additional insights into effects of TB parameters by deriving 2×2 low energy

effective Hamiltonian of HBLG. This Hamiltonian is obtained by projecting out 2 bands
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which are split by energies of order 0.5 eV away from neutrality point:

Heff
BLG = − 1

2m

 0 π†2

π2 0

+
√

2v3

 0 π

π† 0

+

+

γ2

2
+ ∆2 0

0 −2∆2

+ ...

(B.9)

where 1/2m = v2
0/(
√

2γ1)[1 + O(γ4/γ0)2]. We see that, to first order, γ4 doesn’t appear

in the effective Hamiltonian and its effect on the band structure is small.

From explicit form of 2×2 Hamiltonians for monolayer and bilayer blocks, Eqs. (B.6)

and (B.9) one can qualitatively understand the effects of tight-binding parameters on the

band structure. The nearest neighbor hopping γ0 gives the fermi-velocity of the massless

monolayer sector fermions. Interlayer hopping γ1 influences to the effective mass of the

bilayer graphene. The trigonal warping term γ3 determines the behavior of bilayer bands

at small momenta. Finally, small parameters ∆2, γ2, δ and γ5 located on the diagonal

of Hamiltonians (B.6) and (B.9) determine the magnitude of band gap and relative

displacement of BLG and SLG bands.

B.1.2 Simulation method

At zero magnetic field, we numerically calculate the charge density n(µ) and density

of states (DOS) ν(µ) as a function of the external potential ∆1 and chemical potential

µ. We discretize the crystal momentum in vicinity of a given K point. For a fixed

value of ∆1 we calculate single particle energies for each point of the momentum grid by

numerically diagonalizing the Hamiltonian (B.5). Density n(µ) (density of states ν(µ))

is calculated by summing the Fermi-distribution nF (εk−µ) (derivative of Fermi function
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Data set γ0 γ1 γ2 γ3 γ4 γ5 δ ∆2

[71] (Graphite) 3.16 0.39 -0.02 0.315 0.044 0.038 0.037 n/a
[179] (Graphite) 3.0121 0.3077 -0.0154 0.2583 0.1735 0.0294 0.0214 n/a
[75] 3.1 0.39 -0.028 0.315 0.041 0.05 0.034 0
[81] 3.1 0.39 -0.02 to-0.016 0.315 0.04 to 0.14 0.005 to 0.015 0.012 to 0.018 n/a
[77] 3.1 0.39 -0.028 n/a n/a 0.01 0.021 n/a
[180] 3.1 0.39 -0.02 0.315 0.12 0.018 0.02 0.0043 to 0.0044
This paper 3.1 0.38±0.003 -0.021±0.005 0.29 0.141±0.04 0.05±0.005 0.0355±0.0045 0.0035

Table B.1: Different sets of tight-binding parameters from the literature are compared
to the set of parameters determined in this work. All parameters are given in units
of eV, “n/a” means that corresponding reference did not consider the corresponding
parameter.

n′F (εk − µ)) over all points in the grid,

n(µ) = 4gsym
Sk

(2π)2

1

N

∑
k

nF (εk − µ), (B.10)

ν(µ) = 4gsym
Sk

(2π)2

1

N

∑
k

n′F (εk − µ), (B.11)

where N =
∑

k 1 is the total number of momentum points in the considered portion

of the Brillouin zone with area Sk, and factor of 4 accommodates for spin and valley

degeneracies. Finally, gsym takes into account the symmetry of the BZ: for example,

gsym = 6 for our simulations where we use the triangular grid covering 1/6 of vicinity of

K point. The normalization constant in Eqs. (B.10)-(B.11) is chosen so that n(µ) and

ν(µ) have physical units m−2 and m−2 eV−1 respectively.

Simulations of DOS ν(µ) in the presence of magnetic field B = 1.25 T are carried

out in two steps. First, we determine the Landau level spectrum εn(∆1) in each of the

valleys, K+ and K−, as a function of displacement field. The LL spectrum is calculated

via exact diagonalization of the Hamiltonian (B.5) with operators π, π† replaced by

properly truncated ladder operators (see e.g. Ref. [64] for additional details).

Next, we assume that each Landau level (LL) contributes a Lorentzian-shaped DOS
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centered at its energy. The total DOS is calculated as a sum of DOS from all LLs:

ν(µ) =
∑
n

νn(µ), (B.12)

νn(µ) = 2
eB

2π~c
Γ

[µ− εn(∆1)]2 + Γ2
, (B.13)

where factor eB/(2π~c) accounts for the LL degeneracy and Γ is the LL broadening.

Due to the small value of Zeeman splitting, we do not incorporate it in our calculation

and treat all LLs as spin-degenerate. In order to account for this degeneracy, we include

additional factor of 2 in Eq. (B.13). Density n(µ) and density of states ν(µ) are then

calculated by summing individual contributions from all filled LLs for a grid in space of

parameters (∆1, µ). We used value of Γ = 0.1 meV for our simulations.

B.2 Refinement of tight-binding parameters

The determination of tight-binding parameters for ABA trilayer graphene was per-

formed by a number of earlier works [64, 71, 75, 77, 81, 179, 180]. The resulting sets

of tight-binding parameters are summarized in the Table B.1. This table shows that

despite overall consensus, values of some parameters differ quite significantly between

different references.

We use our zero field data and LL data to refine the existing parameter sets. We per-

form refinement of tight-binding parameters starting with values established in Ref. [64].

The tight-binding parameters are divided in two classes:

(i) Parameters γ0, γ3, γ4 and ∆2 which influence ν(µ) (measured via penetration field

capacitance) at zero magnetic field.

(ii) Parameters γ2, δ and γ5, which determine gaps in bilayer/monolayer sectors and
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thus can be constrained using Landau levels.

After determining constraints from experimental data for the Landau levels, we refine

parameters in the set (i) using our simulations at zero magnetic field.

Magnetic field data imposes strict conditions on the tight-binding parameters γ2, δ

and γ5. They must be chosen to satisfy the requirements that prominent LLs have the

correct positions corresponding to experimental data. Figure B.1 illustrates the positions

of special LLs which are used to deduce the constraints on the tight-binding parameters.

The LLs in Fig. B.1 are labeled as Sn± or Bn± for n = 0, 1 and for n ≥ 2 on the electron

side, where letter specifies if the given LL belongs to SLG (S) or BLG (B) sector when

the displacement field is vanishing, ∆1 = 0. We use bar above LL indices to distinguish

the LL on the hole-doped side. For example B3+ (B3̄+) stands for the LL with n = 3

from bilayer sector on the electron (hole) doped side in K+ valley. From comparing LL

fan diagram to experimental data in Fig. B.1 we obtain the following requirements:

(i) At ∆1 = 0, there should be 9 (spin-degenerate) LLs between neutrality point (NP)

and S0+. Likewise, there are 5 (spin-degenerate) LLs between NP and B3̄−. In

addition, LLs S0± and B6± are almost four-fold degenerate.

(ii) Gap at neutrality point should vanish as a function of dispacement field ∆1. The

most natural scenario for this is the touching of new emergent Dirac points, see

Ref. [64].

(iii) LLs B8̄± and S1̄± are degenerate at ∆1 = 0; in addition there are 10 (spin degen-

erate) BLG LLs between B3̄± and B8̄±.

In order to use condition (i) we calculate the energies of relevant LLs. From Eqs. (B.6)

and (B.9) we find that the energies of S0− and B0− are given by ±γ2/2+∆2 respectively.

Thus the number of LLs between S0− and NP, which is close to B0−, is controlled
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by parameter γ2. To satisfy condition (i), this parameter should take the value γ2 =

0.02±0.005 eV which also results in the correct counting for B3̄−. In order to determine

the associated error bars, we fix the value of all other parameters as their final values (see

Table B.1), determine the range of γ2 where condition (1) is still satisfied. The values

of γ2 in the range −0.016 ≤ γ2 ≤ −0.025 eV give the correct total 14 LLs between B3̄−

and S0−. Thus, we determine

γ2 = −0.02± 0.005 eV. (B.14)

Next, we determine parameter γ5 from condition (ii) which implies the triplet crossing

(see the main text). Increasing parameter γ5 shifts the this crossing to smaller values of

electric fields ∆1. In order to satisfy condition (2), we adjust

γ5 = 0.05± 0.005 eV, (B.15)

where error bar is estimated by comparing the position of triplet crossing relative to

crossings between LL S0+ with B12± and B11±.

After we fix parameters γ2,5, δ must be chosen to satisfy the second part of condition

(i). We see from Eq. (B.6) that energies of S0± LLs are −γ5/2 + δ + ∆2 and ∆2 −

γ2/2 respectively. Thus, we obtain one condition which allows us to express δ via γ2,5:

−γ5/2 + δ = −γ2/2. From here we determine

δ = 0.0355± 0.0045 eV, (B.16)

where we estimated error bars from known error bars for parameters γ2,5.

Finally, to satisfy condition (iii), we need to adjust the parameter γ1 by the small

amount compared to its value in the literature. Decreasing γ1 to be γ1 = 0.38 eV increases
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Figure B.1: (left) LL fan diagram shows energies of LLs as a function of displacement
field ∆1 at B = 1.25 T. Blue (red) lines denote LLs from K+ (K−) valley. (right) Ex-
perimental data from the main text. The LL responsible for most prominent crossings
are labeled explicitly.

the cyclotron frequency of the bilayer sector, resulting in the correct counts of LL number

between B3̄± and S1̄±. By checking the range of γ1 which gives correct crossing pattern

between S1̄± and B8̄±, and assuming LL width of 0.1 meV, we determine the error bar

as

γ1 = 0.38± 0.003 eV. (B.17)
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Figure B.2: Increasing γ3 from 0.25 eV (left) to 0.35 eV (right) increases the distance
between the tip of feature (3) and the origin in the simulations, and also reduces the
DOS near Lifshitz transitions at (8) and (9). Here the features are labeled in the same
way as in the main text Fig. 3.6.

After determining parameters γ2, γ5, δ, and adjusting parameter γ1 using LL data,

we fix the remaining parameters γ3, γ4 and ∆2 by matching features in the DOS at zero

magnetic field. Here we label the qualitative band features with the same notation as

Fig. 3.6 in the main text. We keep parameter γ0 fixed, given overall agreement in the

literature. Let us first discuss the qualitative effect of these parameters on the band

structure and resulting DOS pattern. Decreasing γ3 decreases the curvatures of bilayer

bands at small momenta. This decreases the distance between the tip of feature (3),
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which is due to BLG-like band extrema, (see the main text) and the origin, see Fig. B.2.

Parameter ∆2 shifts most of the features on the electron doped side (and also Lifshits

transitions at negative fillings, given roughly by (8) and (9)) away from the NP, see

Fig. B.3. Finally, Fig. B.4 illustrates the effect of changing γ4. We observe that DOS is

not very sensitive to γ4 which has the most pronounced effect on the positions of Lifshits

points (8) and (9) on the hole-doped side.

The above intuition suggests that parameters ∆2 and γ3 has to be respectively in-

creased and decreased compared to their values in Ref. [64]. We determine the values

of ∆2 and γ3 which give the closest agreement between our simulation and experimental

data to be

γ3 = 0.29 eV, ∆2 = 3.5± 0.2 meV, (B.18)

where we estimated error bar for ∆2 from the sensitivity of Landau levels plot. Due to

very weak effect of γ3 on LL crossing pattern, we could not quantify the associated error

bars. However, Fig. B.2 suggests that changing γ3 by 0.05 eV visibly degrades agreement

of our simulations with experimental data.

Finally, Fig. B.4 shows the effect of changing γ4. Increase in γ4 brings Lifshits transi-

tions on the hole doped side closer to each other. This removes the dip in the DOS that

would be present otherwise between Lifshits transition at small values of γ4, and which

is not observed in the experiment. Since the experimental data does not allow for a very

precise determination of Lifshits points, it is hard to estimate the error bar on our value

γ4 = 0.141 eV. At the same time, we can estimate error bar for γ4 using its effect on the

position of the triplet crossing, in a way similar to the estimates for γ5. This gives us

γ4 = 0.141± 0.04 eV. (B.19)

114



Supplementary materials for Chapter 3 Chapter B

Figure B.3: Increasing ∆2 from 0 (left) to 5 meV (right) pulls almost all features on the
electron-doped side away from the neutrality point. In addition, upon increasing ∆2

the first Lifshits transition on the hole side (8) is displaced away from the neutrality
point towards more negative fillings.

115



Supplementary materials for Chapter 3 Chapter B

Figure B.4: Upon increasing γ4 from γ4 = 0.041 eV (left) to 0.1 eV (right) Lifshits
transitions (8) and (9) move closer to each other.
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Collecting together value ranges of tight-binding parameters in Eqs. (B.14)-(B.19)

we arrive to the tight-binding parameter set

γ1 = 0.380± 0.003 eV, (B.20a)

γ2 = −0.020± 0.005 eV, (B.20b)

γ3 = 0.29 eV, (B.20c)

γ4 = 0.141± 0.04 eV, (B.20d)

γ5 = 0.050± 0.005 eV, (B.20e)

δ = 0.0355± 0.0045 eV, (B.20f)

∆2 = 3.5± 0.2 meV. (B.20g)

as the best set of parameters satisfying all constraints. listed in the last row of Table B.1.

Finally, we would like to point out that despite the overall agreement in positions of all

features between experiment and our simulations, we were unable to obtain the correct

magnitude of DOS ν(µ) between the two LPs at negative densities. The simulation values

of DOS far exceed the experimentally observed values. We attribute this disagreement to

possible interaction effects which may be enhanced due to the proximity of two Lifshits

points.
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B.3 Effect of interactions: Hartree Fock approxima-

tion

B.3.1 Symmetry broken states in emergent triplets

In this Section we describe the Hartree-Fock (HF) approximation for completely filled

Landau Levels (LL) originally proposed in Ref. [181]. The essence of the method is a

variational optimization of the energy over a trial set of wave functions (Slater determi-

nants). In this work we largely follow approach of Ref. [182]. We aim to capture the

interactions-induced splitting of emergent (nearly) three-fold degenerate Landau levels

formed at large ∆1. In what follows we refer to such states as “triplets”, where three-fold

degeneracy originates from the set of three Dirac cones related to each other via C3 ro-

tation symmetry, see Fig. 3.9 in the main text. Hence, we restrict our set of variational

states to an arbitrary superpositions of single-particle triplet wave functions.

More specifically, we start with the set of six Landau level wave functions denoted as

ψ
(ms)
tri , m = 1, 2, 3. Index s labels spin projection onto z-axis, so that ψ(m↑)

tri = ψ
(m)
tri ⊗ | ↑〉

and ψ(m,↓)
tri = ψ

(m)
tri ⊗| ↓〉, with the wave function ψ(m)

tri obtained from exact diagonalization

of Hamiltonian (B.5). Three states ψ(m)
tri with m = 1, 2, 3 can be distinguished by their

transformation under C3 rotations which can be intuitively seen as a proxy of “angular

momentum”. Due to presence of discrete rotational symmetry, this “angular momentum”

is defined moduloe 3 and takes values 0, 1, and 2, corresponding to phase of 0, 2π/3 and

4π/3 acquired from rotation by angle of 2π/3.

The wave functions ψ(m)
tri are vectors in the basis of Landau level indices and sub-

lattices. Note, that the valley indices are omitted since all 3 Landau level forming the

triplet belong to the same valley. In addition, we introduce a LL index cut-off Λmax = 12

which allows to represent triplet vector norm of about ∼ 0.9, thus incorporating most of
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the tripltets weight.

Projecting Hamiltonian on the manifold of 6 triplet states, we get the following

expression for the projected Hamiltonian:

〈m, s|H|m′, s′〉 = E0(m)δm,m′δs,s′ − EZMσzss′

+ (UH)msm′s′ + Jmsm′s′ . (B.21)

In this Hamiltonian, E0(m) represents the diagonal spin-degenerate single-particle Hamil-

tonian. The second term is the Zeemann energy which retains its standard form after

projection onto the triplet states. The last two terms in Eq. (B.21) originated from

the interactions and account for Hartree and exchange terms respectively. These terms

can be obtained from the rotation of conventional Hartree and exchange terms by the

wave functions of triplet states, and they depend on the density matrix in the basis of

sublattices (α, α′) and Landau levels (n, n′), ∆α′n′s′
αns . This density matrix can be straight-

forwardly obtained from the density matrix in the triplet basis, ∆misi
mksk

via change of basis:

∆βn′s′

αns =
∑

mi,mk,si,sk

∆misi
mksk

ψ(misi)
αns ⊗ ψ(mksk)†

βn′s′ . (B.22)

Using density matrix in the basis of Landau levels, ∆βn′s′
αns , we can write standard

expressions for Hartree and exchange terms, following Ref. [182]:

〈αns|UH |βn′s′〉 =
EH
2

∆mid(2δB2,α + 2δA2,α − 1), (B.23)

〈αns|Uex|βn′s′〉 = Jαβss
′

n,n1,n2,n′
∆βn2s′

αn1s
. (B.24)

where parameter EH ,

EH =
e2d

2l2Bκ
, (B.25)
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characterises the scale of the Hartree energy. κ is the effective screening constant,

lB =
√
~c/(eB) is the magnetic length and d = 0.335 nm measures the distance be-

tween adjacent graphene layers. Density matrix projection ∆mid =
∑

n,s(∆
A2ns
A2ns

+ ∆B2ns
B2ns

)

corresponds to the electron density on the middle layer. The exchange integral is defined

as:

Jαβss
′

n,n1,n2,n′
=

∫
d2q

(2π)2
Uαβ(q)Fn,n1(−q)Fn2,n′(q)δss′ . (B.26)

The explicit form of the form factors Fnn′(q) is listed in Ref. [181], and the interaction

potential in the exchange integral is given by:

Uαβ(q) =
2πe

qε(q)
Tαβ (B.27)

where ε(q) is the dielectric function. Tαβ = 1, exp(−qd) or exp(−2qd) for α, β in the

same, adjacent or different outer layers.

The projection of the exchange interaction matrix onto the triplet basis is given by:

Jmisimksk
=
∑

ψ
(mksk)
βn′s′ 〈α, n, s|Uex|β, n

′, s′〉ψ(misi)†
αns , (B.28)

where the summation is taken over repeated indices. The same procedure must be

applied to the Hartree term to obtain (UH)misimksk
.

The self-consistent solution of HF equations is implemented as follows. For instance,

fixing filling at N = 1, we start with the trial density matrix in the triplet basis,

∆misi,mksk = (c1, c2, c3) × (c1, c2, c3)T | ↑〉〈↑ |, where ci are random normalized coeffi-

cients,
∑3

i=1 |ci|2 = 1. Using this density matrix, we calculate the density matrix in LL

basis and exchange integrals according to Eqs. (B.22)-(B.27). Finally, by diagonalizing

projected Hamiltonian in Eq. (B.21) we calculate updated eigenstates |n〉 and produce
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a new density matrix ∆misi
mksk

by filling the lowest N of them,

∆misi
mksk

=
N∑
n=1

|n〉〈n|.

The above procedure is repeated until the eigenvalues converge.

We apply the above self-consistent HF procedure to the case of filling N = 1 of

the triplet T2 (see Fig. 3.12b in the main text). We use the constant dielectric function

ε(q) = 6.6 and κ = ε. The calculation yields the symmetry broken state as the one which

has the lowest variational energy. This symmetry broken states consists of superposition

of all three single-particle triplet wave functions ψ(m)
tri . Since each of the single-particle

triplet wave functions acquires a different phase under C3 rotation, such superposition

of single particle wave functions breaks rotational symmetry.

Intuitively, one can easily undertand why the interactions favor the symmetry broken

state at N = 1. Each of the single-particle wave functions ψ(m)
tri , m = 1, 2, 3 lives on

all three Dirac points (see Fig. 3.12b in the main text). In fact, in the limit of weak

magnetic field (or large separation between emergent Dirac gulleys), these single particle

wave-functions become the proper combination of wave-functions localized on each of

the Dirac cones ϕi with an additional phase factors

ψ
(1)
tri =

1√
3

(ϕ1 + ϕ2 + ϕ3), (B.29)

ψ
(2)
tri =

1√
3

(ϕ1 + e2πi/3ϕ2 + e4πi/3ϕ3), (B.30)

ψ
(3)
tri =

1√
3

(ϕ1 + e4πi/3ϕ2 + e2πi/3ϕ3). (B.31)

The C3 rotations simply permutes ϕi between themselves. This results in the function

ψ
(1)
tri being invariant under rotation, and remaining two states ψ(2,3)

tri acquiring a phase

factor e±2πi/3. Now, since support of wave functions ϕi and ϕj are weakly overlapping for
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i 6= j, exchanges favor the state where all weight of the wave function is located in one of

the Dirac gulleys. In the basis of ψ(m)
tri such state corresponds to a coherent superposition

of all three single-particle wave functions and it breaks C3 rotation symmetry.

B.3.2 Visualizing symmetry broken states

In order to visualize the form of the symmetry broken states in real space, we trans-

form the LL wave functions into the maximally localized “wave packet”. This is done via

convolving the single particle LL wave function in the Landau gauge with the Gaussian

envelope function,

Ψn(x, y) =

∫ ∞
−∞

CX exp(iXy/l2B)ψn

(
x−X
lB

)
dX

where ψn is the n-th eigenstate of the Hamiltonian. In order to get the maximally

localized wave packet in both directions, we choose CX = (2πl2B)−
1
2 exp(−X2/2l2B). We

calculate the integral using explicit expression for ψn,

ψn(x) =
1

π
1
4

√
2nn!lB

exp(−x2/2)Hn(x),

where Hn(x) is the n-th Hermite polynomial. This gives the following wave function

describing LL “wave packet” centered at the origin:

Ψn(x, y) =
1√
n!

(
x− iy√

2lB

)n
× exp

(
− x2 + y2

4l2B

)
exp

(
i
xy

2l2B

)
. (B.32)

We numerically simulate the probability distribution for the triplet eigenstates ψ(m)
tri ,

m = 1, 2, 3 at B = 1.25 T and compare them with the momentum band structure. More
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specifically, we plot probability density p(x, y) for the wave function in the basis of LL

and sublattices, ψαn, is calculated as

p(x, y) =
6∑

α=1

∣∣∣∣∣
Λmax∑
n=1

ψαnΨn(x, y)

∣∣∣∣∣
2

, (B.33)

where the inner sum goes over LL and outer sum sums probability density for each of

the sublattices. The probability density calculated for the single-particle triplet wave

functions is shown in Fig. 3.12c in the main text. Indeed, as expected we observe that

maximas of p(x, y) are centered around their spatial semiclassical trajectories which

coincide with the position of Dirac gullies in momentum space after π/2 rotation.

Figure 3.12c in the main text shows p(x, y) for the self-consistent eigenstate at B =

1.25 T and ∆1 = 0.08. From this plot it is clear that the HF state breaks C3 symmetry

as it is strongly localized in a single Dirac gully.

Supplementary figures
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Figure B.5: Penetration field capacitance Cp at B = 0 T and T ≈ 50 mK as a
function of n and D .
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Figure B.6: Penetration field capacitance Cp at B = 1.25 T inisde the dashed region
of Fig 3.10 of main text showing symmetry broken quantum Hall states in the ’gully’
regime
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C.1 Materials and Methods

We used the van der Waals dry transfer method to assemble graphite/ hBN/ MLG/

hBN/ graphite heterostructures. Graphite contact(s) were incorporated in the stack to

contact the dual-gated monolayer. hBN thicknesses of 40-60 nm were used, while graphite

contacts and gates were between 3 nm and 10 nm thick. In samples A-C, windows to the

graphite contacts and gates were etched in a Xetch-X3 xenon difluoride etching system, a

selective hBN etch, and defluorinated with a 400◦C anneal in forming gas. The gates and

contacts were then contacted Ti/Au (5nm/100nm) contacts. In sample D, edge contacts

[48] to the graphite were made with Cr/Pd/Au (3nm/15nm/80nm). Optical images of

the four measured devices are shown in Fig. C.16.

Measurements below B = 14 T were performed in a top-loading Bluefors dry dilution

refrigerator. Reported temperatures were measured using a ruthenium oxide thermome-

ter attached to the cold finger. Higher magnetic field measurements were performed at

the National High Magnetic Field Lab in Tallahassee in a 35 T resistive magnet and 45 T

hybrid magnet, in He-3 fridges with a nominal base temperature of 0.3 K. We performed
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measurements of the penetration field capacitance (CP ) as a function of magnetic field

and gate voltages to probe incompressible/insulating states. This measurement tech-

nique is outlined in Fig. C.15 and described in detail in Ref. [49] and references therein.

Unless otherwise noted, measurements were performed above the low frequency limit (at

f = 60-100 kHz), i.e. there is an out of phase dissipative signal associated with many

of the observed gapped states. In this frequency regime, an elevated CP indicates a

combination of incompressibility and bulk insulating behavior, both are an indication of

gapped states[183]. We focus on gapped states at fixed filling factor, which, by argu-

ments first proven by Strěda[100], have quantized Hall conductance equal to their slope

in the n-B plane.

In. Fig.2a, a fixed filling factor running average of 3 pixels was used to remove line

noise which obscured some weaker features. In Fig.3 c-d, a fixed filling factor running

average of 5 pixels was used to remove line noise.

C.2 Supplementary Figures
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Figure C.1: CP at B = 28.3 T taken between the filling factors ν = −2 and ν = 2 in
Sample A, T=0.3K .
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Figure C.2: CP vs B at different LL filling factors CP peak height as a function
of magnetic field plotted for selected FQH states ν ∈ (−1, 0) for sample A a and
ν ∈ (−1, 1) for sample C b, showing the simultaneous strengthening of the even-de-
nominator state and weakening of the adjacent odd-denominator states.
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Figure C.3: CP from ν = −1 to 0 in sample B. CP vs. filling factor and field,
showing the relationship between the ν = −1/2 and ν = −1/4 states and their asso-
ciated phase transitions. Above 30 T, all FQH states are suppressed by the features
associated with the Hofstadter butterfly, which follow linear trajectories but not con-
stant ν. Despite the similarity of the estimated zero-field gaps and magnetic field of
ν = ±1/2 states, Sample A shows no sign of a moiré pattern up to B = 45T.
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Figure C.4: Phenomenology of the ν = −1/2 state in sample B. (a) CP as a
function of B and ν in the vicinity of ν = −1/2 state for Sample B, taken at T = 300
K (b) Cp peak height as a function of magnetic field plotted for selected FQH states
ν ∈ (−1, 0) for Sample B. (c) Low field Landau fan in Sample B, showing evidence of
a large zero-field gap ∆AB induced by sublattice splitting.
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Figure C.5: Expanded Landau Fan in sample A up to 45 T. Penetration field
capacitance (CP ) as a function of charge carrier density (n0/c) and magnetic field (B)
in sample A.
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Figure C.6: Expanded Landau Fan in sample B up to 45 T. Penetration field
capacitance (CP ) as a function of charge carrier density (n0/c) and magnetic field (B)
in sample B. Despite similarities in the estimated zero field gap (∆) between sample A
and sample B, sample B exhibits a weakening of the fractions and Hofstadter features
with a full flux quantum per unit cell at B = 43T , while sample A does not show any
strong Hofstadter features.
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Figure C.7: Expanded Landau Fan in sample C up to 12 T. Penetration field
capacitance (CP ) as a function of charge carrier density (n0/c) and magnetic field (B)
in sample C. The four flux FQH states are not well developed by B = 6 T, most likely
preventing the observation of ν = ±1/4 states in this device.
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Figure C.8: Two terminal transport in sample B and C. Samples were voltage
biased with an RMS amplitude of 100 µV and the current was measured. (a) Two-ter-
minal resistance as a function of n0 in sample B at T = 34 mK. The high resistance
regime is cut off by the input impedance of our lock-in amplifier. (b) Two-terminal
resistance as a function of n0 in sample C at T = 37 mK, showing a much narrower
insulating regime than sample B.
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Figure C.9: Evidence of the absence of a sublattice gap in sample D. (a) Two
terminal transport in sample D at zero applied magnetic field. The device was voltage
biased at 100 µV and the induced current was measured. (b) Low field CP Landau
fan in sample D, showing the absence of an incompressible peak at ν = 0 just above
B = 0, in contrast with the behavior of gapped samples (Fig. 4a,b).
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Figure C.10: CP Landau fan in sample D. CP as a function of gate voltage (VG)
and applied magnetic field (B). This monolayer sample shows no zero-field insulating
gap, and exhibits phase transitions in FQH states in ν ∈ [−2,−1] and ν ∈ [1, 2] which
are not observed in any of the zero-field gapped samples. ν = ±1/2 states are not
observed up to 14 T.
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Figure C.11: Estimation of zero-field gaps (∆) from capacitance. (a) Line
cuts of CP /CREF , where CREF is an extern reference capacitor, as a function of n0 at
B=0 mT (black) and 200 mT (gray) in sample A extracted from Fig. 2e in the main
text. The gap is estimated to be ∆ = 36mV by the observed width of the peak in CP ,
which is mainly determined by the quantum capacitance. (b) Line cut of CP at B =
100 mT for sample B, extracted from Fig. 4a in the main text. Here, the estimation
of the gap is made difficult by the presence of density of states effects at zero field
and the presence of LLs at finite field. An estimate of the gap is shown in gray, and
a similar scale of gap is estimated from transport (see Fig. S6). (c) Line cut at B=0
mT in sample C extracted from Fig. 4b of the main text. The gap is estimated to be
∆ = 36mV , similar to sample A.
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Figure C.12: Dependence of ν = ±1/2 on tilted magnetic field in Sample A.
CP as a function of density (n0/c) and applied perpendicular magnetic field (B) with
(a) the sample fully perpendicular to the field (θ = 90◦) and (b) tilted to θ = 61.6◦.
The ν = ±1/2 FQH states do not change with an applied in-plane magnetic field.
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Figure C.13: Dependence of ν = ±1/2 and FQH transitions on tilted magnetic
field in Sample C. CP as a function of density (n0/c) and applied perpendicular
magnetic field (B) with (a) the sample fully perpendicular to the field (θ = 90◦)
and (b) tilted to θ = 60.0◦. The ν = ±1/2 FQH states and the transitions in
odd denominator FQH states do not change with an applied in plane magnetic field,
suggesting that spin polarization does not play a significant role in the phase transition
associated with both phenomena.
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Figure C.14: Temperature dependence and thermodynamic gap measure-
ments in sample A. (a) Penetration field capacitance Cp/c (upper curves) and
dissipation(lower curves) at B = 28.3 T, ν = [1/3, 2/3] as a function of tempera-
ture (measured in K). The incompressible state at ν = 1/2 is still present at T = 2

K. (b) Thermodynamic gap ∆µ ∼ e
kB

∫ Cp

c d(n0/c) at T = 1.6K. The comparatively
high temperature is chosen to ensure sufficient conductivity to reach the low-frequency
regime[183]: as T → 0 the gapped bulk becomes exponentially insulating and the mea-
sured penetration field capacitance is no longer an accurate probe of density of states
(see Methods). (c) Thermodynamic gap as a function of magnetic field for ν = −1/2,
ν = −3/7 and ν = −4/9 at T=1.6 K. At its largest ∆µ−1/2 = 2.8K ≈ ∆µ−4/9.
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Figure C.15: Measurement schematic. The penetration field capacitance CP is
measured in a capacitance bridge configuration against a fixed, on-chip reference ca-
pacitor Cstd. A fixed AC excitation is applied to the sample (dvexc) and a variable
phase and amplitude ac excitation of the same frequency (dvstd) is applied to the ref-
erence capacitor to balance the capacitance bridge. The voltage at the balance point
is amplified by a low temperature transistor (FHX35X) which is biased with a 1 kΩ
resistor. In the measurements presented here, the bridge is balanced at the beginning
of a measurement at a fixed location and deviations from balance are measured as the
dc voltages of the sample and/or gate are swept.
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Figure C.16: Optical images of the measured samples. a-d. Optical images of
samples A-D, respectively. Scale bar is 20 µm.
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C.3 Calculation of ν = 0 phase diagram

Here we describe the calculation of the ν = 0 phase diagram, based on the model

outlined in [90]. This model, originally intended for bilayer graphene, is in fact a gen-

eralization of a monolayer model[89] to include a valley Zeeman that neglects bilayer

physics, such as the orbital degeneracy, that would make it inapplicable to monolayer.

Within this model, there are four phases: a spin polarized, valley-singlet Ferromagnet

(F), a valley polarized, spin-singlet lattice-scale charge density wave (CDW), a canted

antiferromagnet that is partially spin polarized and valley unpolarized (CAF), and a

spin-singlet partially sublattice polarized phase (PSP), in which the valley polarization

lies somewhere between the z-axis and the xy-plane. In the limit of ∆AB = 0, the PSP

phase becomes full sublattice unpolarized (with valley polarization lying in the plane).

This phase is known as the Kekule distorted phase (KD) in the literature, and in this

limit, the KD-CDW phase transition is also first order. Following the terminology of

reference [90], the PSP phase is analogous to the partially layer polarized phase (PLP)

while the CDW phase is analogous to the Fully Layer Polarized (FLP) phase.

The energies of the different phases, and their phase boundaries, are obtained by

calculating the energy expressions for explicit forms of the isospin wavefunctions in the

expressions provided in [90]. They are:

phase energy condition

F −2εZ − 2u⊥ − uz

CDW uz − 2∆AB

CAF −uz −
ε2Z

2|u⊥|
0 < − εZ

2u⊥
< 1

PSP u⊥ −
∆2
AB

uz+|u⊥|
∆AB

uz+|u⊥|
< 1

(C.1)

Here ∆AB is the single particle AB sublattice splitting; εZ is the Zeeman energy, and
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uz,⊥ = gz,⊥
a
`B

22

ε`B
are the anisotropic interaction energies as described in the main text.

The energies depend on four parameters: gz, g⊥, εZ , and ∆AB. εZ = gµBBT follows

from the fact that spin-orbit coupling is exceptionally weak in graphene, so that g = 2.

∆AB we estimate from the low field behavior in each device, giving ∼25mV for device A

and ∼2 meV for device B, and ∼0mV for device C. Phase diagrams in the g⊥− gz plane

for different values of ∆AB are shown in Fig. C.17.
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Figure C.17: Phase diagram for different values of ∆AB. (a) For ∆AB = 0,
the phase diagram is magnetic field independent and the CDW-KD transition is first
order. (b) Finite ∆AB = 10 meV stabilizes the CDW phase while transforming the
CDW-KD phase transition to 2nd order. (c) ∆AB = 20 meV.

The interaction anisotropy parameters are more difficult to estimate, and follow from

knowledge of the ν = 0 phase diagram. For example the phase transition from the

CAF to the F occurs at up = −εZ/2, and can thus be tuned by varying the total- and

in-plane magnetic fields independently. Notably, these are determined at high energies,

and are unlikely to be affected significantly by low energy band structure effects such as

the presence of a ∆AB gap, allowing us to estimate them from experiments on ∆AB = 0

samples. Reference [96] reported this crossover at out-of-plane magnetic fields of B⊥ ≈

1T and total magnetic field BT ≈ 25T in single-gated graphene devices. From this
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measurement, we estimate

u⊥ =
εZ
2

(C.2)

g⊥
a

`B⊥

e2

εhBN+εvac
2

`B⊥
= −gµBBT

2
(C.3)

g⊥ ≈ −10 (C.4)

where we use the in-plane dielectric constant of hBN, εhBN = 6.6, most relevant for

screening of Coulomb interactions.

This leaves gz as a free parameter. We assume that gapless (∆AB = 0), neutral gra-

phene at high field is in the CAF state. The evidence for this is somewhat circumstantial:

based solely on [96], the KD phase cannot be excluded. However, as will be evident be-

low, if this is not the case then no phase transition to the CAF in the current experiment

would be possible, inconsistent with our observation of first-order phase transitions in

the FQH regime. From Eq. C.1, we can derive the following constraints:

ECAF < EF ECAF < EKD (C.5)

−uz −
ε2
Z

2|u⊥|
< −2εZ − 2u⊥ − uz −uz −

ε2
Z

2|u⊥|
< u⊥ (C.6)

u⊥ < −
1 +
√

2

2
εZ uz >

ε2
Z − 2u2

⊥
2u⊥

(C.7)

g⊥ . −1.7 gz & −g⊥ +
.93

g⊥
(C.8)

As described in the main text, with the exception of ∆AB, all the anisotropy energies

are linear in B. Thus the low B limit is equivalent to very large ∆AB, where we expect

the CDW ground state to prevail. Conversely, the high B limit in our device is equivalent

to the low ∆AB limit in [90]. Figure C.18 shows the phase diagram for different values

of gz. For choices of gz such that the ‘natural’ state is indeed the CAF, this state will
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obtain at the highest magnetic field, with the magnetic field required tuned by gz as well

as ∆AB.

0 10 20 30 40
0

10

20

30

40

∆AB, meV

B,
  T

0 10 20 30 40
0

10

20

30

40

B,
  T

0 10 20 30 40
0

10

20

30

40

B,
  T

∆AB, meV∆AB, meV

CDW CDW CDW

PSPPSPPSP

CAF
CAF

ba c

Figure C.18: Phase diagram in the B-∆AB plane. Theoretically calculated phase
diagram for (a) gz=15, (b) gz=10, and (c) gz=5.
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D.1 Device fabrication

Devices were assembled using a dry transfer method based on van der Waals adhesion

[48], with top and bottom gates as well as the electrical contacts to the hBN-encapsulated

Bernal stacked BLG device made from ∼ 10 nm-thick graphite flakes. As shown in Figs.

S1-S4, this leads to a significant improvement in sample quality as compared to samples

with evaporated metal gates. Care was taken in order to match the top and bottom

hBN thicknesses, which were approximately 40-50 nm for all three devices. The resulting

mismatch in geometric capacitance was determined to be δ ≡ (ct − cb)/(ct + cb) = 0.018

for Device A, and was < .05 for all devices. Despite efforts to rotationally misalign the

hBN crystals proximate to the graphene bilayer, the effects of an intermediate wavelength

moire pattern[97, 146, 147] are visible on one of the layers at high density in device A

(Fig. D.12). The resulting staggered sublattice potential is responsible for the asymmetry

upon inversion of p0 in some of the transitions visible in Fig. 1 of the main text. While

no secondary fans were observed in devices B and C, similar offsets (albeit of differing

magnitudes and signs) were observed in these devices as well, indicating that coupling
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to one or more of the hBN layers remains relevant (See Figs. D.13, D.14, and D.15).

Devices A and C were patterned by using a dry ICP etch in a mixture of CHF3+O2,

and the graphite contacts were themselves contacted along the edge with a Cr/Pd/Au

metal stack. Device B was first exposed to a XeF2 atmosphere to remove a sacrificial top

hBN layer used for stack assembly, annealed at 400 ◦C in forming gas, and the graphite

contacts and gates were area contacted with a Ti/Au metal stack.

D.2 Capacitance circuit

To measure the small capacitances of our device with high sensitivity, we utilize a

cryogenic impedance transformer based on an FHX35X high electron mobility transistor

[184] in a bridge configuration. This measurement works by effectively disconnecting the

sample capacitance from the large capacitance of the cryostat cabling: the BLG device

is connected only to the gate of the HEMT (with input capacitance of a few hundred

fF) and a large resistor (100 MΩ), with additional ∼ 1pF of stray capacitance. While

the HEMT is operated at or below unity voltage gain to minimize power dissipation, it

effectively transforms the picofarad sample impedance into a 1kΩ output impedance. At

50 kHz, and assuming cryostat cable capacitances of ≈1nF, this translates to a power

gain of approximated 1000.

As described in detail in references [185] and [57], measurements of three distinct

capacitances—the top gate, bottom gate, and penetration field capacitance—provide

a complete reconstruction of both the charge and layer polarization in the bilayer as

a function of applied voltages. For devices in which top and bottom gate geometric

capacitances are symmetric (δ ≡ ct−cb
ct+cb

→ 0, see supplementary information of [57] for

a detailed derivation), one accesses the derivatives of the total density (n) and layer

polarization (p) with respect to the applied voltages n0 and p0 through the relations
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Figure D.1: Simplified measurement schematics. (a) Measurement of penetra-
tion field capacitance, CP . (b) Measurement of symmetric capacitance, CS . Here
DC voltages are denoted vi while AC voltages are denoted δvi. vBP ≈ −.5V pinches
off the multiplexing transistor (on bottom gate or sample, respectively for the two
measurement schemes), tuning the input impedance of the measurement transistor on
that terminal. δvex is the AC excitation applied across the relevant capacitor to be
measured, and δvstd is chosen to balance the bridge such that δvout = 0. vt, vs, and vb
in combination control p0 and n0, with one of the three fixed to control the working
point of the measurement transistor. n0 and p0 are swept and δvout is monitored to
extract the capacitance. In all measurements, the measurement transistor bias vbias ≈
20 mV was limited to prevent excessive heating of the sample.

∂n

∂n0

≈ CS
2c

(D.1)

∂n

∂p0

≈ −CA
2c

(D.2)

∂p

∂p0

≈ c0

c

4CP + CS − 2c

c
(D.3)

∂p

∂n0

≈ −c0

c

CA
c
, (D.4)

where c = (ct + cb)/2 is the average of the top and bottom gate geometric capaci-
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tances, c0 � c is the interlayer capacitance of the bilayer itself, and CS(A) = CT ± CB

are the symmetric and antisymmetric measured gate capacitances per unit area. The

approximation is well justified as δ = .018 for Device A and is similarly small for the

other devices.

In order to measure all three quantities without warming up the sample, low-

impedance access to all three terminals of the device must be possible in situ, in apparent

conflict with the desire to maintain the amplifier input at high impedance. This prob-

lem is solved using a cryogenic multiplexer constructed out of two additional HEMTs,

which allows either the bottom gate or the bilayer graphene flake to be brought to

a high impedance. Figure D.1a shows a simplified electrical schematic for measuring

CP ≡ ∂nT/∂vb, where nT is the charge on the top gate while vb is the bottom gate

voltage. vb ≈ −.3V is fixed to set the transistor operating point, vbias ≈ 25mV is chosen

so that no heating of the probe is observed (see the next subsection on likely electron

temperature). Additional DC voltages on the top gate (vt) and applied to the ohmic

contacts of the graphene (vs) are varied to control n0 and p0, defined as

n0 = ct(vt − vs) + cb(vb − vs) ≈ c(vt + vb − 2vs) (D.5)

p0 = ct(vt − vs)− cb(vb − vs) ≈ c(vt − vb). (D.6)

To measure the differential capacitance, a fixed AC excitation is applied to top gate

(δvex). A second AC excitation at the same frequency is applied to a standard capacitor

δvstd, with phase and amplitude chosen to balance the bridge (δvout = 0). Crucially, for

the CP measurement the ‘bypass’ HEMT attached to the bottom gate is driven deep

into depletion (vBP ≈ vb − .6V ), maintaining the high impedance of the measurement

transistor input. A final DC voltage is applied to all pins of the second amplifier (vs).

Because the FHX35X is depletion mode, in this configuration it shorts out the 100
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MΩ resistor, providing a low impedance connection to the sample. To measure CS, the

situation is reversed (Figure D.1b), with the transistor amplifier on the sample now active

and the bypass transistor on the bottom gate short circuited, providing a low impedance

path for the bottom gate voltage excitation. Although not focus of the current work,

CA can also be measured by applying opposite phase excitation signals to the top and

bottom gate[57]. The frequency and excitation voltages for data shown in all figures are

shown in Table S3.

All measurements below 14T were performed in a dry dilution refrigerator with a

base temperature of ≈ 10 mK. However, the sample temperature was likely higher due

to heating from the cryogenic amplifiers, which were directly connected to the sample

and only a few millimeters away. While we do not have a thermometer for the electron

temperature in our devices, recent tunneling experiments, which use an identical ampli-

fication scheme in a dilution fridge with a similar base temperature, do allow for in situ

thermometry[186]. In these experiments, electron temperatures below 100 mK are pos-

sible only with careful thermal isolation and heat sinking of the HEMT, which is a heat

source directly tied to the sample[187]. Because we have not taken these precautions

in our setup, our electron temperature is likely no less than 100mK for the capacitance

measurements. Indeed, data taken at the NHMFL in Tallahassee in a 3He system with

a base temperature of 300mK do not look qualitatively different.

D.3 Measurement of electronic compressibility and

thermodynamic energy gaps

Most of the experimental data presented in the main text are CP , which we interpret

as proportional to electronic compressibility. As is clear from Eqs. D.1-D.3, this is not
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generally true: solving those equations for CP gives

CP =
c

2
(1− ∂n

∂n0

) +
c2

4c0

∂p

∂p0

. (D.7)

The third term in this equation is unique to multilayers, denoting the layer polarizability.

Near layer polarization phase transitions, where the layer occupation changes rapidly over

a small range of p0, this term can be large; however, in the single component regimes

where, for example, we perform our measurements of the thermodynamic gaps, this term

is tiny. In these regimes, charge cannot move easily between the layers, and the bilayer

system behaves as a single layer system (measurements of ∂p/∂p0, discussed below, are

featureless in this regime). In this case, the conventional quantum capacitance[188]

formula applies, so that

∂n

∂n0

=
1

1 + 2c∂µ
∂n

(D.8)

CP =
c

2
− 1

4

(
1

2c
+

1

∂n/∂µ

)−1

(D.9)

=
c2

2c+ ∂n/∂µ
(D.10)
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Figure D.2: Thermodynamic properties of interlayer correlated states. (a)
Penetration field capacitance 4 × CP/c. (b) Symmetric capacitance CS/c. (c)
4CP + CS, proportional to the polarizability. d) anti-symmetric capacitance CA .
As presented, CP/c and CS/c were offset by constant parasitic capacitance levels
Cpar/c = −0.55 and Cpar/c = −2.84 respectively. The lower panels illustrate the
effective geometric capacitance measured in each case, as would be applicable for a
classical four plate capacitor. CP measures top, bottom, and interlayer capacitance in
series, while CS measures the sum of the top and bottom capacitance. 4CP +CS thus
gives the interlayer capacitance, Cint, which is dp/du ∼ dp/dp0. CA, discussed exten-
sively elsewhere[57], measures the difference between top and bottom capacitances.

From the above formulas, the change in chemical potential follows as

∆µ12 =

∫ n(2)

n(1)

∂µ

∂n
dn =

∫ n
(2)
0

n
(1)
0

∂µ

∂n

∂n

∂n0

dn0 (D.11)

=

∫ n
(2)
0

n
(1)
0

CP
c
d (n0/c) (D.12)

We take the gap as the difference between the maximum and minimum in ∆µ near a

FQH state, as shown in Fig. 5.5b of the main text. As can be seen from Eq. D.12,

quantitative measurement of ∆µ requires accurate knowledge of c. This is calibrated in

situ from the capacitance in an integer quantum Hall gap (where the full c/2 penetration
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capacitance obtains). Unfortunately, this data was not be acquired in the limited time

available at the National high magnetic field lab. For this reason, the gaps in Fig. 5.4

of the main text (right panel) are presented only in relative units, normalized to their

value at B=14T.

Interpretation of any measured capacitance as a thermodynamic derivative requires

that the sample is sufficiently conductive to fully charge over a time scale comparable to

the inverse measurement frequency[183]. At low temperature and high magnetic fields,

our sample becomes strongly insulating at all integer and many fractional filling factors,

precluding this condition being satisfied at high frequency. This is unimportant for

identifying the existence of fractional quantum Hall phases, which manifest as CP peaks

regardless of whether the contrast mechanism is due to low electronic compressibility

or low bulk conductivity; however, it is critical to be in the low frequency limit for any

quantitative analysis of energy gaps following Eq. D.12. Failure to charge manifests as an

increase in the out of phase, dissipative signal in the complex capacitance, C̃ = C + iD,

where we have plotted ‘C’ throughout the text. We can monitor charging across the

parameter range by plotting ‘D’. In order to measure energy gaps, we decrease the

frequency until no features are visible in D. In this limit, it is justified to integrate CP

to extract energy gaps.

D.4 Measurement of layer polarizability, ∂p/∂p0

To measure ∂p/∂p0, as shown in Fig. 5.10b of the main text, we measure penetration

field (CP ) and symmetric capacitance (CS) over a range of n0 and p0 corresponding to

the four-level crossing described in the main text Figs. 5.8. As can bee seen in Fig. D.11,

there are diagonal features in CS within the n0 − p0 plane that correspond to constant

gate voltage. We ascribe these features either to incompressible LL gaps in the graphite
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gates themselves. To avoid them, we perform the measurement in the nearly identical

level crossing at p0/c ≈ −3V for −1 < ν < 0, where diagonal features are not observed

in the regime of the phase transition. CP and CS in this regime are shown in Fig D.2,

along with their weighted sum, 4CP + CS as per Eq. D.3. The two measurements were

calibrated against each other by measuring CT , the top gate capacitance, accessible in

either configuration.

dp/dp0
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-3.0

-2.8

-2.6

-2.4

-2.2

p 0/c
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C
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a b

Figure D.3: Qualitative comparison of incompressibility and depolarization
at ν=1/2 a CP + 4CS ∼ dp/dp0 near ν̃ = 1/2 as a function of p0 and (b) CP as a
function of ν̃ showing the incompressible peak at ν̃ = 1/2 . The gap persists despite
finite depolarization, fading with increasing p but vanishing only between p0/c ≈ −3.3
and p0/c ≈ −2.6.

FQH gaps show strong features in the ∂p/∂p0 data. This is spurious: digital subtrac-

tion of the two data sets measured with different amplifiers leads to systematic errors

where CP and CS have large gradients, for example in FQH gaps. There, small offsets

in n0 and nonlinearities in the amplifier chain can lead to incomplete cancellation of the

two signals, leading to the visibility of the gaps themselves in Fig. 5.10a of the main
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text. This is confirmed by the measurement of dp
dn0

: if the changes in polarization were

real, they would manifest in this quantity as well. ∂p
∂n0

is shown in Fig. D.2d. Because
∂p
∂n0

can be measured directly with a single amplifier(see, for example, [57]), subtraction-

induced systematic errors are automatically canceled. We find no change in polarization

of the ν̃ = 1
2
state relative to its immediate background, indicating that the features in

∂p/∂p0 at fractional filling are indeed spurious. We thus integrate ∂p
∂p0

at ν̃ = 0.495 and

ν̃ = 0.505 and average the results to determine .

To determine the layer polarization change for arbitrary ν and p0, we integrate the

measured CS + 4CP signal, as

∆p12 = 2π`2
B

∫ p
(2)
0

p
(1)
0

∂p

∂p0

dp0 (D.13)

= 2π`2
B

2c0

c

∫ p
(2)
0

p
(1)
0

(
CS + 4CP − 2c

c

)
dp0 (D.14)

= 2π`2
B2c0

∫ p
(2)
0

p
(1)
0

(
CS + 4CP − 2c

c

)
d(p0/c) (D.15)

where ∆p is expressed in filling factor units and all capacitances are understood to be in

units of particle number per area per volt.

γ4γ1
γ0

∆'

γ3 A’B’

B A

Figure D.4: Bilayer graphene hopping parameters used in the single particle
model for the wavefunctions. In the calculations, γ0=-2.61 eV, γ1=.361 eV, γ3=0,
γ4=.138 eV, and ∆′=.015 eV.

The measured data may be subject to an arbitrary offset due to differing parasitic
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capacitances in the CS and CP measurements which need not cancel. In addition, an

overall magnitude error can lead to a systematic under- or over estimate of the change in

polarization. To compensate these errors, we take advantage of the fact that we know,

from band structure, the total layer polarization change that must occur between the

two extremes in Fig. 5.10a (and Fig. D.2a-d). At the bottom of these plots, an N=0

orbital on the bottom layer is fully occupied, while an N = 1 orbital on the bottom layer

has occupation ν̃. At the top, these orbitals are empty while an N=0 orbital on the top

layer is fully occupied while the N = 1 orbital on the top layer has occupation ν̃. Thus,

for a given ν̃ in this regime, we expect a total occupation transfer of ∆ν = 2(1 + αν),

where α = .84 is the layer polarization of the N = 1 orbitals at 12T determined from

tight binding calculations. We use this to fit two constants to the integrated data, a and

b, so that

a

∫ −2.2

−3.6

(
CS + 4CP

c
− b
)
d
(p0

c

)
= 2(1 + αν) (D.16)

where the contour of integration is at constant ν̃ from the bottom to the top of Fig.

D.2c. The constant b can be determined directly by measuring the background level

in a single component region, where we expect ∂p/∂p0 = 0, and this background is

subtracted from the 4CP + CS data set shown in Fig. D.2c. The error with which this

background can be determined is σb = 2.3×10−4. We then calculate a from Eq. D.16 by

performing this integration for 35 combinations of 7 different regions of ν̃, from which we

find a = (422±22) V−1. Following Eq. D.15 allows us to extract the interlayer dielectric

constant of the graphene bilayer, εBLG since,

a = 4πc0`
2
B (D.17)

= 4π
εBLG

dBLG

ε0

e
`2
B (D.18)

∴ εBLG =
a

113.6V−1
= 3.71± .19 (D.19)
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for dBLG = .335nm, B = 12T. This is roughly consistent (to within 25%) with εBLG = 2.8

determined in recent experiments at higher magnetic fields[57]. We note that εBLG

receives contributions from filled Landau levels, and may well be field dependent. To

generate Fig. 5.10b of the main text, we integrate along p0/c, for example

∆p(p0) = a

∫ p0/c

−3.6

(
CS + 4CP

c
− b
)
d
(p0

c

)
(D.20)

σ∆p(p0) =
σa
a

∆p(p0) + σb(p0/c+ 3.6) (D.21)

Because the layer polarization is known also for p0/c = −2.2 V, either the increasing or

decreasing integral are equivalent, and error bars are defined by the lesser of the two.

The largest uncertainty thus obtains approximately midway between the extremes near

p0/c = −2.9 V.

This analysis provides a quantitative view of the correlation of depolarization with

gap size, the existence of a gapped phase despite depolarization is visible in the raw

data. This is evident in Fig. D.3, where a finite incompressibility peak is visible after

considerable polarization has been transferred.

D.5 Single particle model

We use the same single-particle model for bilayer graphene as described in the sup-

plementary information of [57], which includes tight binding parameters γ0, γ1, γ4, and

∆′ (see Fig. D.4). The single-particle spectrum at B =14T is shown in Fig. D.6, with

a level ordering which is typical for all the B-fields used in the experiment. Within

this model, the ZLL wavefunctions in the different valleys (written in the lattice basis
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ψNξ = (ϕA, ϕB′ , ϕA′ , ϕB)) are

ψ0+ =



|0〉

0

0

0


ψ0− =



0

|0〉

0

0


ψ1+ =



cos Θ|1〉

0

cos Φ sin Θ|0〉

sin Φ sin Θ|0〉


ψ1− =



0

cos Θ|1〉

sin Φ sin Θ|0〉

cos Φ sin Θ|0〉


(D.22)

|0〉 and |1〉 denote the n = 0, 1 magnetic oscillator states of a conventional parabol-

ically dispersing system. The layer polarization of the |1〉 orbitals is then α =

cos2 Θ − sin2 Θ
(
cos2 Φ− sin2 Φ

)
. However, Φ is very small (< .033 for fields below

35T). Thus Φ does not shift the balance between |0〉 and |1〉 oscillator states, and so

does not enter calculations of long range Coulomb effects such as fractional quantum

Hall. Θ controls the degree to which N=1 orbitals are strictly analogous to a parabolic

electron system, i.e., purely composed of |1〉 oscillator states. A plot of Θ(B) is shown

in Fig. D.5.

D.6 Numerical simulations

The phase diagram of Fig. 5.7a of the main text was calculated using the density

matrix renormalization group (DMRG) for multicomponent quantum Hall systems[189,

136]. For a detailed exposition and justification of the approach used here, we refer to

Ref.[57], which benchmarked similar numerical computations against the experimentally

determined layer polarization data.

The splitting ∆10 between theN = 0, 1 orbitals of the ZLL is small, while the splitting

between the ZLL and the higher LLs is large, of order ~ωc. Our approach is based on the

hierarchy ∆10 < EC < ~ωc, where EC is the Coulomb scale, which holds throughout the
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Figure D.5: Band structure parameter Θ, as calculated from the tight binding
model as a function of magnetic field.

experimental range of B and p0 (see Fig D.6). Because of the large splitting between the

ZLL and the N ≥ 2 LLs, we project the problem into the ZLL, though will account for

screening from the filled LLs through an effective interaction Veff we will discuss shortly.

The ZLL projected Hamiltonian takes the form

H =

∫
d2q nZLL(q)Veff(q)nZLL(−q) + ∆10N̂1 + [isospin splittings]+ (D.23)

+ [SU(4)-interaction anisotropies] (D.24)

Here nZLL(q) is the Fourier transform of the 2D electron density projected into the

ZLL, Veff is the effective interaction, N̂1 is the electron number in the N = 1 orbital, and

∆10 is the splitting between the N = 0, 1 orbitals. There are also single-particle isospin

(spin-valley) splittings and small SU(4) interaction anisotropies, but since our interest is

in regions where the valence electrons partially occupy a single isospin, while all other
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Figure D.6: Single particle energy spectrum of bilayer graphene at B = 14T,
calculated from a tight binding model and including the Zeeman splitting and inter-
layer potential. The interlayer potential difference u ≈ p0

c
c

2c0
≈ 3.3 × 10−3 p0

c , does
not exceed 15 meV in the data presented. For reference, the bare Coulomb energy at
14T is e2/ε

‖
hBN`B ≈ 31 meV, where we have taken ε‖hBN = 6.6[83]. Interactions thus

strongly mix the N=0 and N=1 levels (and in fact change the order of level filling
within the ZLL, as shown in Ref. [57]), while mixing of the 0-1 manifold with the
|N | ≥ 2 levels is comparatively weak.

isospins are either full or empty, these can be dropped from the problem.

The bare Coulomb interaction is screened by the encapsulating hBN, the graphite

gates at a distance d/2 from the sample, and the filled LLs below the ZLL. Screening

from the hBN is accounted for in the Coulomb scale EC = e2

4π`BεBN
, where εhBN ∼ 6.6 is

the dielectric constant of the hBN[83]. We assume the graphite behaves as a metal, so in

units of `B, EC , the gate screened interaction is V (q) = 2π
q

tanh(qd). The phase diagram

here is presented for device A, d = 40nm, d/`B = 1.56
√
B/T, but the results are largely

insensitive to d at these fields since d/`B � 1.

The residual response of the filled LLs below the ZLL is controlled by the ratio EC
~ωc ≈

0.5− .8. We account for it within a phenomenological RPA-type treatment discussed in
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Refs.[128, 57], taking

Veff(q) =
V (q)

1 + ascrV (q) tanh(0.62q2`2
B)4 log(4)/2π

. (D.25)

Within the two-band model of BLG at ν = 0, RPA calculations give ascr = EC
~ωc ≡ a∗.

However, this value will not be quantitatively correct due to 4-band corrections and the

filling of the isospins within the ZLL. For this reason, we treat ascr as a phenomenological

parameter. In Ref.[57], quantitative agreement between numerics and experiment at 31T

was obtained for ascr ∼ 0.38a∗, which is the value used in the phase diagram of the

main text. To check that our conclusions are qualitatively insensitive to screening, the

calculations below will be repeated for ascr = 0, 0.25a∗, 0.5a∗ and 0.75a∗.

We note that the RPA treatment only renormalizes the two-body Hamiltonian, while

in principle higher-body terms are also generated. However, the two-body screening dia-

grams are larger by a factor of Nf = 4 relative to three-body corrections, and three-body

corrections actually vanish within the “standard” model of graphene, which only accounts

for the nearest neighbor hoppings, due to particle-hole symmetry. When accounting for

the further-neighbor hoppings, there is a small amount of particle-hole symmetry break-

ing, but taken together this suggests the effective three-body interactions from outside

the ZLL are much smaller than those which will be generated (and fully accounted for)

from LL-mixing within the ZLL itself.

Under the assumption of isospin polarization, the nZLL(q) can be restricted to the

contribution from a single isospin, which contains the two LLs N = 0, 1. In this study

we keep the full Hilbert space of both, since the splitting ∆10 between them is small and

mixing between them plays a crucial role in stabilizing the Pfaffian. As discussed, within

the four-band model of graphene, the N = 0 orbital has the character of a conventional

n=0 LL of GaAs, while the N = 1 orbital is an admixture of the conventional n=0 and
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Figure D.7: Entanglement spectrum from cylinder DMRG simulations of
the incompressible half-filled Landau level. Ei is the spectrum of the reduced
density matrix for one half of the cylinder, Ei = − log(ρL), plotted against the mo-
mentum k around the cylinder. The counting of low lying levels, 1, 2, 4, · · · , mimics
the energy spectrum of the chiral edge theory of the Pfaffian phase, which we use to
identify the state as the Pfaffian. The spectrum is shown for BLG model parameters
∆10 = 0.1EC , B = 12T on a circumference L = 19`B cylinder. We repeat the calcula-
tions for two different values of the screening length (a) ascr = 0 and (b) ascr = .75a∗,
where a∗ = EC

~ωc . We find that the Pfaffian is stable over a wide range.

n=1 LLs. Letting ρ̄NN ′(q) ≡
∑

k e
−ikqy`2Bc†N,k+qx/2

cN ′,k−qx/2 denote the “guiding center”

density operator projected into orbitals N,N ′,[190] the density operator is

nZLL(q) =
∑
N,N ′

FN,N ′(q)ρ̄NN ′(q) (D.26)

where F are the BLG “form factors” for LL projection, which depend on the lattice

structure of the wavefunctions, Eq.D.22. Up to small corrections at the lattice scale of

order a0

`B
, the BLG form factors FMN can be expressed as linear combinations of the
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conventional form factors Fmn as

F00 = F00 (D.27)

F11 = cos2(Θ)F11 + sin2(Θ)F00 (D.28)

F01 = cos(Θ)F01. (D.29)

where Θ is determined from the B-dependent band structure, Eq.D.22 and

Fmn(qx, qy) = e−q
2/4

√
m!

n!

(
qx + iqy√

2

)n−m
L(n−m)
m (q2/2). (D.30)

The two-band model is recovered in the limit Θ → 0, while in the four-band model of

bilayer graphene, Θ grows with perpendicular magnetic field B, Fig.D.5 [57, 191].

Having defined the Hamiltonian, which depends on B,∆10/EC , and a, infinite-DMRG

was used to obtain the ground state of an infinitely long, circumference Ly = 19`B cylin-

der. In the main text, the ground state was found on a 6×16 grid of points in the

∆10/EC , B plane at screening strength ascr = 0.38a∗, keeping m = 12000 DMRG states,

with truncation errors less than 10−6. The computations required around 32000 cpu-

hours. The Pfaffian ground state is identified by a finite correlation length (ξ ∼ 3`B in

the most robust regions) and distinctive entanglement spectrum characteristic of the as-

sociated edge chiral CFT [192, 193] (see Fig. D.7). The anti-Pfaffian, in contrast, would

have an entanglement spectrum with the opposite chirality. Unlike GaAs, scattering be-

tween the N = 0 and N = 1 orbitals strongly breaks particle-hole symmetry, unambigu-

ously stabilizing the Pfaffian order over the particle-hole conjugated anti-Pfaffian. For

the reader more interested in how we have distinguished between the Pfaffian and anti-

Pfaffian, we refer to the detailed DMRG study of this question described in Ref. [136],

which studied a cut equivalent to ascr = 0,Θ = 0,∆10.

160



Supplementary materials for Chapter 5 Chapter D

Larger Θ (possibly achievable at the very highest B fields) increases the correlation

length of the Pfaffian and drives a transition into the compressible CFL phase, which

is to be expected since sharper interactions favor the CFL phase.[195, 196, 109] Since

the competing CFL phase is gapless, computing the precise location of the Pfaffian-CFL

phase boundary is extremely difficult; finite size or finite entanglement effects turn the

continuous transition into a crossover. In particular, because DMRG simulations at bond

dimension χ can only capture at most S = log(χ) entanglement, while the CFL has a

log-divergent entanglement, it is impossible to exactly capture the CFL in DMRG. As

discussed in detail in Ref.[194], the DMRG thus induces a “finite-entanglement” corre-

lation length ξ. In the CFL phase, ξ ∼ χκ diverges with increasing bond dimension,

while in the Pfaffian phase, ξ should converge to its physical value. Furthermore, in the

CFL, the entanglement should scale with the finite-entanglement correlation length as

S(χ) = c
6

log(ξ(χ)) + s0, were c = 5 at circumference L = 19.

In Fig. D.8, we plot both S(χ) and S(ξ) at L = 19, ∆10/EC = 0.5, ascr = 0.5a∗ as the

field increases from B = 5 · · · 60T. There is a regime where the simulations are clearly

converging with χ, indicating that the state is the gapped Pfaffian, and regions where

the scaling is consistent with the CFL up to the largest χ. Precisely pinpointing the

transition is clearly difficult, since we can’t really distinguish between a Pfaffian phase

of correlation length ξ > 13 and the CFL.

Further insight is provided by the guiding-center density-density structure factor D̄(q)

shown in Fig. D.9. As discussed in Ref.[194], in the CFL phase D̄(q) is predicted to have

non-analyticities at wave vectors associated with scattering a composite Fermion across

the Fermi surface. At low B, there is only a broad bump, consistent with a Pfaffian,

while at high B three kinks develop close to the positions predicted for a circular Fermi

surface. These kinks are brought into sharper relief by plotting “∂|q|D̄(q),”[194] which is

defined by multiplying the real-space correlations by |x| before Fourier transforming to
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qx. Like the scaling of the entropy, the structure factor is consistent with a Pfaffian to

CFL transition.

We note that a third competing phase is a striped phase, which breaks translation in-

variance. We have checked for this possibility by initializing the DMRG simulations with

a charge density wave state close to the known wavelength of the stripe.[196] Throughout

the phase diagram studied here, the stripes melt and form a liquid at sufficiently high

DMRG accuracy. However, we do find that there is a critical ∆10 < 0 where the Pfaffian

phase is destroyed in favor of a stripe. Potentially, experiments could reach this regime

by tuning ∆10 with very large electric fields (since the N = 0, 1 orbitals have slightly

different layer polarization), but none of our experiments are in this regime.

To address the uncertainty in the screening strength, we present calculations

(m=6000, truncation error less than 10−5) for a variety of screening strengths ascr. Again,

the Pfaffian is preferred throughout most of the phase diagram. The screening has some

quantitative effect on the growth of the correlation length, and hence presumably the

precise location of the Pfaffian to CFL transition.

While we computed a phase diagram in the ∆10/EC , B plane, we do have a mi-

croscopic estimate of the splitting ∆10. As discussed in detail in Ref.[57], it has three

contributions: a B-dependent single particle splitting due to four-band corrections, a

single particle splitting proportional the applied electric field p0, and a “Lamb-shift” con-

tribution arising from the exchange interaction with the levels below the ZLL. The data

from Sample C shown in Fig. 5.7b of the main text were taken at p0=6.0V. The trajec-

tory shown in Fig. 5.7a of the main text is calculated including the effects of B− and

p0 induced orbital splitting for p0 = 6V within the tight binding model described above,

and also include the Lamb shift. The p0 dependence of ∆10 is an interesting feature,

since it can be used to tune the strength of the LL-mixing in-situ.
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Figure D.8: Finite entanglement scaling for the Pfaffian to CFL transition.
Data is shown for L = 19, ascr = 0.5a∗,∆10/EC = 0.5 over a range of B. For each
B, the DMRG simulations are repeated with increasing bond dimension (e.g., accu-
racy) χ = 600, · · · , 12000. The bipartite entanglement S and correlation length ξ are
measured at each point. a) Numerically calculated S(ξ) (solid) compared with the
theoretical prediction for a CFL, S = c

6 log(ξ) + s0, c = 5 (dashed). The log-linear
scaling at high B is consistent with a CFL, while the behavior at low B is not, in-
dicating a Pfaffian. Right) S(χ). For low B, the entanglement is converging with
bond dimension, indicating the state is the gapped Pfaffian. For high B, the scaling
is log-linear up to the largest χ, consistent with the log-divergent entanglement of the
CFL. Arguably the entanglement shows signs of saturating up B ∼ 34− 38T, beyond
which we can’t tell, suggesting the Pfaffian is stable up to at least this range.
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Figure D.9: Structure factor across the Pfaffian-composite fermi
liquid transition. The guiding center density-density structure factor
D̄(q) = 〈: n(qx = q, qy = 0)n(qx = −q, qy = 0) :〉 (a) and its derivative, D̄′(q)
(b). The gray vertical lines indicate the location of predicted kinks for a perfectly
circular composite Fermi surface. At low B, where the state is a Pfaffian, there is
only a single broad peak unattached to these locations. At high B, where the state
is transiting to a CFL, three sharp peaks develop. They are slightly displaced from
the naive prediction because the circular Fermi deforms slightly when it is placed on
a cylinder.[194]
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Figure D.10: Correlation length in the B−∆10/EC plane. The computed DMRG
correlation length ξ/`B is computed for four values of the screening strength ascr.
The plots are analogous to that in Fig. 2d of the main text. Computations are
performed on an L = 19`B cylinder, with χ = 6000 DMRG states. Larger screening
increases the correlation length somewhat, but the general features are changed (e.g.
the entanglement spectrum is consistent with the Pfaffian in the low-ξ regime, Fig.D.7)

164



Supplementary materials for Chapter 5 Chapter D

D.7 Additional data

Table D.1: Thermodynamic energy gaps in the single component N=0 orbital regime
(Sample A). Gaps are measured at B=14T and expressed in Kelvin.

Temperature, mK
ν̃ 20 160 310 450 577 711 810 1000 1150

2/7 0.63 0.77 0.59 0.38 0.3 0.2 - - -
1/3 - - - - - - - 3.77 3.1
2/5 - - - 3.85 3.25 2.63 2.25 1.4 1.15
3/7 - - 1.89 1.46 1.03 0.625 0.53 0.31 -
4/9 0.83 0.8 0.62 0.40 0.29 0.15 - - -
5/11 0.345 0.22 0.13 0.11 - - - - -
6/13 0.12 0.07 - - - - - - -
7/13 0.07 0.06 0.04 - - - - - -
6/11 0.35 0.22 0.18 0.13 - - - - -
5/9 0.96 0.98 0.79 0.57 0.38 0.2 0.18 - -
4/7 2.9 2.67 2.34 1.83 1.36 0.87 0.89 0.48 0.34
3/5 - - - 6.0 5.23 4.36 3.8 2.7 2.1
2/3 - - - - - - - 10.5 9.56

Table D.2: Thermodynamic energy gaps in the single component N=1 orbital regime.
Gaps are measured at B=14T and expressed in Kelvin.

Temperature, mK
ν̃ 20 160 310 450 577 711 810 1000 1150
1/5 1.3 0.9 0.94 0.51 0.3 - - - -
2/7 0.9 0.39 0.33 0.15 0.1 - - - -
1/3 - - - 3.15 2.94 2.4 1.76 0.78 0.63
1/2 3.99 3.17 2.68 1.7 1.01 0.57 0.46 - -
7/13 0.9 0.44 0.4 0.28 - - - - -
2/3 - - - 4.35 3.79 3.12 2.6 1.7 1.1
5/7 1.73 1.02 0.8 0.53 0.43 0.2 0.18 - -
4/5 1.14 0.98 0.81 0.57 0.43 0.21 0.16 - -
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Table D.3: Frequency and excitation voltages used in capacitance data presented in
main text, methods, and supplementary figures.

Figure δVex (mV) f (kHz)
1b 1.4 71.77
1d 0.22 85.77
1e 0.9 2.48
2a,b 0.9 2.48
2e (L) 0.9 2.48
2e (R) 1.6 17.7
3c 0.9 71.77
3e 2.96 8.17

S2a-c 2.96 8.17
S2d 0.9 8.17
S11 2.96 71.77
S12 2.1 81.7
S13 1 71.77
S14 .2 87.77
S15 4.7 84.77
S16 1.6 17.7
S17 0.9 2.48
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Figure D.11: Comparison of metal- and graphite-gated devices. (a) Optical
micrograph of a metal gated device. Scale bar corresponds to 10 µm. (b) Optical
micrograph of a graphite gated device. Scale bar corresponds to 10 µm. (c) Symmetric
capacitance, CS = CT +CB = ∂n/∂n0, for a metal gated device at B=10 T and T≈ 50
mK. (d) CS for a graphite gated device at B=12 T. Graphite gated devices show much
narrower integer QH states, along with many fractional states. Diagonal features in
(d) are features that depend on only one of the gates (top or bottom) potentials VB or
VT , indicating either single gated regions or electronic structure within the graphite
gates.
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Figure D.12: Moire features in Sample A. Landau fan plot of Cp/c in Sample A.
The main fan centered at charge neutrality is visible, along with satellite fans origi-
nating from superlattice zone boundary at n0/c = ±11.8 V. The location of the satel-
lite peaks imply a superlattice constant λ ≈ 13.3 nm, corresponding to near-perfect
(within experimental error) angular alignment of the Bernal bilayer to the underlying
boron nitride.
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Figure D.13: Additional data from Device A. Penetration field capacitance and
dissipation for the data set shown in Figure 1 of the main text from Device A (#SZ13),
taken at base temperature and B=12T. Data was taken with a 1 mV AC excitation at
71.77 kHz applied to the top gate, and is shown in units of an arbitrary fixed reference
capacitor.
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Figure D.14: Additional data from Device B. Penetration field capacitance and
dissipation for Device B (#EMS13), taken at base temperature and B=14T. Data was
taken with a 0.2 mV AC excitation at 87.77 kHz applied to the top gate, and is shown
in units of an arbitrary fixed reference capacitor.
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Figure D.15: Additional data from Device C. Penetration field capacitance and
dissipation for Device C (#HZS63), taken at base temperature and B=14T. Data was
taken with a 4.7 mV AC excitation at 84.77 kHz applied to the top gate, and is shown
in units of an arbitrary fixed reference capacitor.
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Figure D.16: Pseudopotential tuning. Cpen at different magnetic fields in Device
C. Data are taken between ν = 1 and ν = 2 at p0/c = 6 V, corresponding to partial
occupation of an N=1 orbital level. The line-traces are offset for visibility. As the
magnetic field is increased the structure of the wavefunction is tuned from N=0-like
to N=1-like, and a hierarchy sequence of odd denominator states appears.

172



Supplementary materials for Chapter 5 Chapter D

Figure D.17: Measured gaps of fractional quantum Hall states Data are
taken from Device A at B=14 T, within one of the single component regimes between
ν = 0 and ν = 1 (for the N=0 orbital) and ν = 1 and ν = 2 (for the N=1 orbital).
Measurements are taken at temperatures from 20 mK to 1.1 K
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Supplementary materials for Chapter 6

E.1 Materials and methods

The device fabrication and measurement techniques presented in Chapter 6 are iden-

tical to those presented in Chapter 5, and the device we study here is Sample A in that

manuscript. A more comprehensive discussion of fabrication and experimental methods

is found in the supplementary material D. We assembled the heterostructure using a dry

transfer method which utilizes the van der Waals force to fabricate layered structures

consisting of hBN, graphite, and graphene. We contacted the bilayer graphene directly

with a thin graphite contact, which in turn was edge contacted with Cr/Pd/Au metallic

leads [48]. The top and bottom gates are also thin graphite, which results in devices

with significantly less disorder than similar heterostructures with metal gates made using

standard deposition techniques[49]. We performed magnetocapacitance measurements to

identify bulk gapped states as described in Ref. [49] and references therein. In this work

we measure the penetration field capacitance (CP ) and the symmetric capacitance (CS),

both of which primarily access whether the bulk of the device is gapped or not. CP

is the capacitance between the top and bottom gate, and it is suppressed when the bi-
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layer can screen electric fields (i.e. when the bilayer is compressible and conducting).

Gapped states, therefore, appear as peaks of enhanced CP . CS is the sum of the ca-

pacitances of the bilayer to the top and bottom gates, is suppressed when the bilayer

is more insulating/incompressible, and therefore gaps appear as dips in CS. We have

chosen the color scale for both CS and CP such that gaps appear as warmer colors,

despite the sign difference of the gapped features. Due to a small asymmetry between

the top and bottom hBN thicknesses, we observed a corresponding asymmetry between

top and bottom gate capacitances δ = ct−cb
ct+cb

= 0.018 which was taken into account when

applying n0/c and p0/c to the device. The full expressions including this asymmetry are

n0/c = (1 − δ)vt + (1 + δ)vb and p0/c = (1 − δ)vt − (1 + δ)vb, where vt and vb are the

applied top and bottom gate voltages. The data presented here was taken at relatively

high frequencies (between 60 and 100 kHz), where an out of phase dissipative signal is

present in many of the gapped states we observe. This arises because the measurement

time is not sufficient to fully charge the sample. In this regime, measured capacitance is

a convolution of both conductivity and compressibility [183]; however because both low

conductivity and low compressibility are hallmarks of gapped states, this does not affect

the interpretation of high CP or low CS as indicative of a gapped state. We performed

the magnetocapacitance measurements at the National High Magnetic Field Lab in He-

3 refrigerators at their base temperature of T ∼ 300 mK. In both measurements, we

ramped the field continuously while performing the measurements and were unable to

concurrently record the magnetic field. There are systematic errors in the reported field

up to ∼ 0.5T between different data sets due to errors in timing between data acquisition

and the field sweep. We identify t, s of linear trajectories of high-CP features in the main

text by visually comparing slopes to known features such as IQH gaps and identifying

fields at which multiple features intersect. To more robustly confirm the finding of frac-

tional t, s states, we used a peak finding algorithm to identify peaks in each horizontal

175



Supplementary materials for Chapter 6 Chapter E

line scan of CP (Fig. E.1), manually grouped the peaks belonging to a single trajec-

tory and then fit their slope and intercept in the n0 − B plane. Quantum capacitance

prevents a direct conversion from the fitted slope and intercept to quantitative t, s for

the full range of measured voltages and fields. Therefore we used the fitted slopes and

intercepts of nearby CI and FQH features to obtain the local conversion to t, s. These

local conversions also give a quantitative check on the conversions from B to nΦ and n0/c

to ne used in the main text. For Fig. E.1A, we find that BΦ0 = 48.6 T and n0/c = 3.08

V at ne = 1 and for Fig. E.1B we find BΦ0 = 48.3T and n0/c = 3.10 V at ne = 1. Both

of these conversions are consistent with the values used in Figs. 16.1, E-F.

E.2 Supplementary text

Estimating the moiré periodicity

The encapsulated nature of our device does not allow direct scanned probes of the moiré

pattern, so we must rely on electronic signatures of the superlattice. First, we estimate

the periodicity from zero field features in the density of states and the geometry of our

device. We observe satellite peaks in CP at approximately
∣∣∣nSAT0

c
= 11.8

∣∣∣ V, which do

not vary strongly with p0 (Fig. E.2). These peaks are a direct consequence of the moiré

periodicity and occur at ne = ±4 in bilayer graphene, e.g. when there is one of electron

of each spin-valley flavor per moiré unit cell [146, 147, 97]. For a triangular lattice

egsgv2√
3λ2

=
εnSAT0 /c

d
(E.1)

where gs = 2 and gv = 2 are the spin and valley degeneracies, λ is the moiré wavelength,

ε = (3 ± 0.15)ε0 is the dielectric constant for hBN[57], ε0 is the vacuum permittivity,

d = 45 nm is the average thickness of the hBN dielectrics, and nSAT0 /c is the value of
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vt + vb at which satellite peaks appear. We estimate, therefore, that λ = 10.3 ± 0.3nm

and predict nΦ = 1 should occur at B = Φ0

(3λ2)/2
= 42.5− 47.5 T.

A more accurate method for determining the moiré potential is by noting the crossing

of many trajectories around B = 24.3± .2T , and associating this field with as nΦ = 1/2.

This implies a moiré periodicity of λ = 9.92 ± .03 nm, consistent with the zero-field

assessment but considerably more precise. Unlike the zero field assessment, the latter

estimate is less susceptible to quantum capacitance corrections to the realized density.

Note that for analysis of the observed trajectories in CP described in the main text, t

(the inverse slope) is unaffected by the choice of λ, as both ne and nΦ go as λ−2.

A Minimal model for BLG with a single-layer moiré potential

The interplay between the moiré potential and the complex high-field physics of bilayer

graphene is non-trivial. There are a large number of degrees of freedom (spin, valley,

and LL-level index) and competing energy scales (the cyclotron energy ωc, the Coulomb

scale EC = e2

εlB
, the potential bias across the bilayer u, the Zeeman energy EZ , the

amplitude of the moiré potential VM , and various small interaction anisotropies). In

particular, interactions are essential, and even integer gaps cannot be understood based

on a single-particle model[57]. While a complete understanding at the microscopic level

is not required to demonstrate fractional filling of Chern bands, which follows purely from

the observation of quantized fractional s and t, in this section we motivate an approximate

model for the system which is the starting point for our DMRG simulations. A number

of features of our data can be accounted for in this model, including the dominant single-

particle CI features.

The ZLL in the absence of a moiré potential

The LLs of graphene are labeled by the electron spin (σ = ±1/2), the graphene valley

index (ξ = ±), and the integer LL index (N ∈ Z). The spin and valley combine to form an

approximately SU(4)-symmetric “isospin”, and so the order in which the levels fill depends
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on various competing anisotropies. Of particular interest are the eight components of

the zeroth Landau level (ZLL), which includes both N = 0, 1 and fills for 4 < ν < 4, the

regime of our experiment. A detailed experimental and theoretical account of the ZLL in

the absence of a moiré was provided in Ref. [57], to which we refer the interested reader.

Here, we summarize those results at a qualitative level in order to argue the following:

1. it is a reasonable starting point to project the problem into the eight degrees of

freedom of the ZLL

2. because of the large interlayer potential difference u applied in the current exper-

iment, it is further justified to restrict to the four ZLL levels in valley +, i.e.,

|ξNσ〉 ∈ |+0 ↑〉 , |+0 ↓〉 , |+1 ↑〉 , |+1 ↓〉

3. these levels fill in a different order depending on whether u < 0 or u > 0, leading

to different Chern bands and fractional states in these two regimes.

ZLL projection

To a good approximation, the cyclotron energies of BLG scale as Eωc
N ≈ ~ωc

√
N(N − 1).

The N = 0, 1 levels are near degenerate, so together with spin and valley combine to

give the eight components of the “zeroth Landau level” (ZLL). In our experiment, the

cyclotron splitting is ~ωc ∼ 45 − 120 meV across the range B ∼ 1744T, the Coulomb

interactions are at scale EC ∼ 35 − 57 meV. Earlier electron focusing experiments[169]

on encapsulated monolayer graphene estimated the moiré potential magnitude as |VM | ∼

10 − 20 meV. Given the hierarchy of scales EC , VM < ~ωc, it is reasonable to project

the problem into the eight components of the ZLL. Note that even with the large bias u

(controlled by the experimental parameter p0[57]) applied in our experiment, we do not

observed crossings between the ZLL and higher LLs.

Focusing on the ZLL, which fills from 4 < ν < 4, the single particle energies take the

178



Supplementary materials for Chapter 6 Chapter E

form[57]

E
(1)
ZLL = N∆10 − σE(Z) − ξ u

2
αN (E.2)

≈ B

[
meV
T

]
N
(

0.3 + 0.013ξ
u

2

)
− 0.116σ − ξ u

2
(E.3)

Here 1 = αN=0 > αN=1 > 0 and ∆10 > 0 are B-dependent factors which can be

computed numerically from the band structure of bilayer graphene, u is the potential

difference between the two layers due to a perpendicular electric field (in meV), and E(Z)

is the Zeeman splitting.

Restriction to valley +. The effect of the bias u depends directly on the valley ξ = ±;

this is because the ZLL wavefunctions have the property that valley + is largely localized

on the top layer, while valley − is largely localized on the bottom layer. Within the ZLL,

then, valley≈ layer and the bias u splits the valley degeneracy. In our experiment, the top

and bottom gates are approximately 100nm apart and at a voltage difference of ±16V.

The layer separation of BLG is 0.335 nm, so we expect a large bias u/2 ∼ ±160.335
100

eV = ±27 meV across the bilayer, though the precise value of u is modified somewhat

due to the relative dielectric constant of the BLG and hBN. Regardless, |u| is large

enough to ensure that for u > 0, valley ξ = + fills before valley ξ = −, while for u < 0

the reverse occurs[57]. Since the moiré potential couples dominantly to the top layer

(a consequence of the near perfect crystallographic alignment of the BLG with the top

hBN, but misalignment with the bottom hBN), we expect the Hofstadter features to

appear most strongly when valley + is filling. This is confirmed by the Landau fan at

u > 0, shown in Fig. E.3. For n0 < 0, the top layer (+) is filling and we see very strong

Hofstadter features, while for n0 > 0, the bottom layer (−) is filling and the Hofstadter

features are absent or weak. For u < 0 (not shown), the opposite is observed. For this

reason, in the main text we present data for n0 < 0, u > 0, and n0 > 0, u < 0, in order
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to focus on the electrons affected by the moiré. We thus restrict our attention to the

four components +Nσ of the ZLL.

u-dependence of the filling order. For valley +, the splitting between the N = 0, 1

orbitals is

ε10 ∼ B

[
meV
T

](u
2

0.013 + 0.3
)

(E.4)

Comparing with the small Zeeman energy, at the non-interacting level (for moder-

ate u) we expect the levels |σN〉 to fill in the order |↑ 0〉 , |↓ 0〉 , |↑ 1〉 , |↓ 1〉. However,

Coulomb interactions rearrange this order, because filling two orbitals of the same spin,

e.g. |↑ 0〉 , |↑ 1〉, has much more favorable Coulomb energy than filling two orbitals of

opposite spin, e.g., |↑ 0〉 , |↓ 0〉 Having filled |↑ 0〉, this effectively reduces the energy

of the |↑ 1〉 level by an amount ξ10 ∝
√
B (at the level of Hartree-Fock, this is the

difference in “exchange energy”). If ε10 − ξ10 < 0, the orbitals will instead fill in or-

der |↑ 0〉 , |↑ 1〉 , |↓ 0〉 , |↓ 1〉, an effect which was confirmed experimentally in Ref. [57].

However, because ε10 ∝ B while ξ10 ∝
√
B, there is a critical B where ε10 wins out

and the ordering should revert to that expected from the non-interacting picture. For

u >> 0 (e.g. region n0 < 0) ε10 is large and this transition should occur at moderate

B; for u << 0 (e.g. region n0 > 0), ε10 is small and the transition does not occur until

much larger B. While quantitatively predicting the location of the transition requires

accounting for some additional interaction effects (e.g. the Lamb shift and inter-layer

capacitance[57]), such a transition is clearly seen in our experiment. Fig. E.3 shows that

for u > 0, there is a transition at ν = 4 + 2 around B ∼ 17 T (indicated by the white

arrow). This is the transition between filling |↑ 0〉 , |↑ 1〉 (low B) and filling |↑ 0〉 , |↓ 0〉

(high B). No analogous transition is observed for u < 0 at ν = 2, at least up to B = 44T.

The analysis, then, can be summarized as follows. For the n0 < 0, u > 0 side of

the experiment, at high B there is a large splitting ε10 between |+σ0〉 and |+σ1〉, and
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the levels fill in order |+ ↑ 0〉 , |+ ↓ 0〉 , |+ ↑ 1〉 , |+ ↓ 1〉 −4 < ν < 0. In contrast, for the

n0 > 0, u < 0 side of the experiment, the splitting ε10 between |+σ0〉 and |+σ1〉 is much

smaller, and the levels fill in order |+ ↑ 0〉 , |+ ↑ 1〉 , |+ ↓ 0〉 , |+ ↓ 1〉 for 0 < < 4, at least

in the absence of a moiré potential. The moiré will “mix” the N = 0, 1 LLs in this regime,

as we will see.

Effect of the moiré potential on the ZLL

Following the existing literature, and the absence of Hofstadter features in states local-

ized on the bottom layer, we assume that the moiré pattern affects only the top layer

of the BLG, leading to a six-parameter phenomenological model whose effective two-

band Hamiltonian for BLG is given in Ref. [168]. Because the amplitude VM of the

moiré is small compared to ~ωc, we project the moiré Hamiltonian into the ZLL. This

assumption is supported by the experimental observation that the cyclotron gaps at

ν = ... − 8,−4, 4, 8, ... remain robust up to nΦ ∼ 1, which implies the moirÃľ potential

is weak compared to the cyclotron energy. The effective moiré Hamiltonian [168] simpli-

fies drastically when projected into the ZLL, consisting of only a scalar potential. The

simplest form of the moiré which is C3 symmetric is of the form

VM(r) = VM
∑

m=0,1,2

eiGm·r + h.c., VM = |VM |eiΘM , (E.5)

here Gm = R̂ 2πm
2
G0 are the minimal reciprocal vectors of the moiré pattern.

Taking ΘM → ΘM +2π/3 leaves the model invariant up to a translation, while under

inversion ΘM → −ΘM . We note three special cases: (a) ΘM = 0(VM > 0): an inversion-

symmetric triangular lattice in which sites are repulsive (b) ΘM = 2π/6 (equivalent

to VM < 0): an inversion symmetric triangular lattice in which sites are attractive (c)

ΘM = ±π/6 (VM = ±i): an inversion anti-symmetric lattice. Cases (a-c) are shown in

Fig. E.4. Microscopically, there is no inversion symmetry, and no consensus exists on
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the more realistic choice of ΘM .

Hamiltonian of minimal model

Projecting into the +-valley of the ZLL, a minimal model for the system is then

H =
1

2

∫
d2qρZLL+(−q)Vc(q)ρZLL+(−q) +

∫
d2rVM(r)ρZLL+(r) + ε10N̂N=1 + EZσZ ,

(E.6)

where ρZLL+(q) is the projected 2D density operator, which requires the use of BLG

“form factors” as reviewed in Ref. [57]. The model includes (1) a spin-SU(2) symmetric

Coulomb interaction; (2) a moiré potential parameterized by complex amplitude VM (Eq.

(E.5)); (3) a splitting ε10 between the N = 1 and N = 0 orbitals, which depends on B

and u (4) a Zeeman splitting. We ignore the small SU(4)-breaking valley interaction

anisotropies; they are unlikely to play a role here due to the large valley splitting u.

Single particle analysis

We begin with a single-particle analysis to compare the non-interacting (integer t, s)

features we observe to the expected Hofstadter spectrum. Given EC > VM , interactions

may change the observed Hofstadter spectrum significantly, and we do not necessarily

expect quantitative agreement with experiment.

While the limit in which the lattice potential is the largest scale has received the most

attention of late, leading to a tight-binding problem with complex hopping amplitudes,

[148, 197, 198, 30] in our experiment the lattice is weak compared with the cyclotron

gap. In this limit it is appropriate to consider the Hamiltonian of Eq. (E.6), where the

lattice potential is projected into the continuum Landau levels, as analyzed in Refs. [199]

and [200]. Hints of this physics were observed in semiconducting quantum wells with

patterned superlattice [201, 202].

At the single-particle level, the two spins decouple and the phase diagram depends

only on the complex ratio VM/ε10. Two illustrative Hofstadter spectra are shown in
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Fig. E.5. At low nΦ, the energy spectrum collapses into two flat bands separated by

ε10; these are the N = 0, 1 continuum LLs. This is consistent with experiment, where

Hofstadter features only begin appearing around nΦ > 1/3. This can be qualitatively

understood because potentials which vary faster than lB are invisible to the low LLs.

Quantitatively, when potential VM(G) is projected into LL N = 0, 1, it is scaled by the

factor F00(G) = e−
(GlB)2

4 and F11 = e−
(GlB)2

4 (1− (GlB)2

2
) respectively. As (GlB)2

4
= π√

3nΦ
,

the potential vanishes at low nΦ. The N = 1 level also develops bandwidth faster than

the N = 0 level, because of the factor (1− (GlB)2

2
) < −1 in the effective N = 1 potential.

Interestingly, when |VM |/ε10 ' 1 , bands with different Chern number can be realized

for different values of ε10, which can be tuned with u (i.e. p0) in our measurements. This

is evident in the differences in single-particle gaps which appear in our measurements

at positive and negative p0 (Figs. 6.1C-F). In the future, this could be used to engineer

the butterfly spectrum in-situ. To compare this model with experiment, we analyze the

u > 0 and u < 0 cases separately, as they have very different |VM |/ε10 ratios. We recover

many of the single-particle features we observe by fine tuning |VM |/ε10 and ΘM of the

model moiré pattern.

Case I: n0 < 0, u > 0. In this regime, several observations are consistent with

our assertion that u leads to a large splitting ε10 between the N = 0, 1 orbitals. For

large ε10, we expect the filling order is |+ ↑ 0〉 , |+ ↓ 0〉 , |+ ↑ 1〉 , |+ ↓ 1〉. This order is

supported by the presence of a feature at ν = −3, indicated by an arrow in Fig.E.3,

which presumably marks a phase transition from the previously reported [162] lower-u

filling order (|+ ↑ 0〉 , |+ ↑ 1〉 , |+ ↓ 0〉 , |+ ↓ 1〉).

The |VM |/ε10 < 1 limit is also consistent with several other experimental observations:

(1) the LL gaps at ν = 4, 3, 2, 1 persist across nΦ = 1/2, indicating VM is too weak to

overcome ε10 at this magnetic field; (2) filling 4 < ν < 3 looks similar to 3 < ν < 2

(both are dominated by C = −1, 2 Chern-bands, with FCIs in the first C = −1 band),
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while 2 < ν < 1 looks more similar to 1 < < 0. This again supports the filling order

σN = |↑ 0〉 , |↓ 0〉 , |↑ 1〉 , |↓ 1〉. (3) The Hofstadter features begin appearing at nΦ ∼ 1/2

for filling 4 < ν < 2, while they appear earlier, around nΦ ∼ 1/3, for 2 < < 0. This

is consistent with the expected broader moiré-induced bandwidth of the N = 1 levels,

which fill after the N = 0 orbitals.

To compare our single particle model with experiment, we calculated the single-

particle Hofstadter butterfly for VM with different ΘM in the limit of |VM |/ε10 → 0.

(the result is qualitatively unchanged for small but finite |VM |/ε10). In Fig. E.6, we

plot the calculated single particle gaps on a Wannier plot for the three cases shown in

Fig. 6.1C, assuming the |N〉 = |0〉 , |0〉 , |1〉 , |1〉 filling order described previously. In the

N = 0orbital, δt = −1, 2 bands are prominent in the data, and theoretically are predicted

for ΘM = 0, π/6 but not π/3. The inversion-odd case (π/6, Fig. E.6C) favors features

which are more particle-hole symmetric within a LL, and lead to crossing features at low

nÎę which are observed in the data (Fig. 6.1C). Comparing with our data in this regime,

we thus conclude that θM is somewhere between 0 and π/6.

By setting ΘM = π/8, we observe good agreement between the calculated Chern

band structure and the observed bands (Fig. E.7). We used the calculated Hofstadter

spectrum (Fig. E.7A) to generate a Wannier plot (Fig. E.7B) which matches the filling

order of orbitals observed in the data. The color of the points encodes the size of the

single particle gap (∆/|VM |), and we only plot gaps above a threshold, in effect cutting

off the fractal nature of the Hofstadter spectrum. We color the bands of the energy

spectrum and Wannier plot based on their Chern numbers, using the rules outlined in

the main text.

In Fig. E.7C we generate a qualitatively equivalent plot from the data (from Fig.

6.1C) by plotting the height of peaks in CP as a function of density (n0/c) and magnetic

field (B). We again color the Chern bands, now ignoring gapped trajectories which we
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know to be outside of the single-particle picture.

In N = 0 orbitals, we observe ∆t = −1, 2 bands filling above nΦ = 1/2 in both the

calculation and experiment. Additionally, the appearance of ∆t = −2, 3, 5 bands below

nΦ = 1/2 in N = 1 bands is consistent. Some features, e.g. the differences in filling

order of Chern bands in N = 1 orbitals above nΦ = 1/2, cannot be reproduced without

invoking mixing between spin species, which is not allowed in the single particle model

we present. Details of C = −1 band hosting FCI states. The νC = 1/3, 2/3 FCI states

discussed in the main text occur in a C = −1 band of the n0 > 0, u < 0 region, which, as

discussed above, arises in a model of a moiré potential with 0 < ΘM < π/6 projected into

a single |+0σ〉 level. In our DMRG calculations (see next section) we choose ΘM = π/8,

which reproduces most of the large single-particle gaps in the n0 < 0, u > 0 side of the

data as well.

In Fig. E.8, we show the real-space charge density profile and energy dispersion of

this band at nΦ = 2/3, assuming VM/ε10 = 1/6 and ΘM = π/8. From the density profile,

we see that the C = 1 band is localized on a triangular lattice.

Case II: n0 > 0, u < 0. In this regime, we expect ε10 is smaller and, in the absence

of a moiré potential, the levels would fill in order |+ ↑ 0〉 , |+ ↑ 1〉 , |+ ↓ 0〉 , |+ ↓ 1〉. This

is consistent with experiment: the ν = 2 LL gap is robust, and the 0 < ν < 2 physics

looks very similar to the 2 < ν < 4 physics. Strikingly, we see that the ν = 1, 3 LL gaps

are destroyed near nΦ = 1/2. For nΦ = 1.2, 0 < < 2, the system has rearranged from

C = 1, 1 LLs into C = −1, 3 Chern-bands, which requires VM comparable to ε10.

The calculated Wannier plots with |VM |/ε10 = 6.0 shows the dependence on the moiré

parameter ΘM , where the strength of the moiré now strongly mixes N = 0 and N = 1

orbitals of the same spin (Fig. E.9).

At the single particle level, we can ask which values of |VM |/ε10 and ΘM rearrange

filling 0 < ν < 2 at nΦ = 1/2 into C = −1, 3 bands. We find that ΘM = 0, π/6
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both reproduce this behavior, while ΘM = π/3 does not. Weaker features, such as the

presence of C = 5 bands around nΦ = 2/5 favor a more antisymmetric form of the moiré

potential (e.g. ΘM close to π/6). The value π/8 used in our DMRG numerics satisfies

these constraints.

As before, tuning ΘM generates good agreement between the calculated Chern band

structure and the observed bands (Fig. E.10). We find that ΘM = 0.5, |VM |/ε10 = 6.0

gives slightly better agreement for some weaker gaps above nΦ = 1/2 than ΘM = π/8

(which is used in the iDMRG calculations), but the ∆t = +3 band where we performed

the calculation is robust in both cases.

We color both the calculated and experimental Wannier plots (Fig. E.10, B-C) in

the same way as before. Here, we replicated the entire mixed Hofstadter spectrum to

reproduce 2 < ν < 4 and a large ν = 2 gap is assumed. This matches the observed filling

order of |+ ↑ 0〉 , |+ ↑ 1〉 , |+ ↓ 0〉 , |+ ↓ 1〉.

Focusing on 0 < ν < 2 in the experimental data, we find a very close match between

the observed Chern bands. Many features of the data are reproduced, including the nΦ

onset of Hofstadter features in N = 0 and N = 1 orbitals, disappearance of the ν = 1

gap at nΦ = 1/2, presence of a ∆t = 5 band above nΦ = 2/5 and the first and last filled

∆t = +2 bands above nΦ = 1/2.

Deviations between the theory and experiment are primarily in smaller gap features.

For example, the calculated spectrum shows low field δt = +3,−5 bands, which are a

single ∆t = −2 band in the data. Small adjustments to the moiré potential, disorder, or

indeed the same interactions which lead to FCI and SBCI physics could all in principle

change the sizes of smaller gaps enough to generate these discrepancies.

Infinite DMRG Simulations

Here we present infinite DMRG simulations of the model just derived. Following our

discussion, the simulations are not simulations of a tight-binding lattice model, rather,
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we project the interactions and lattice potential into the continuum LLs of the ZLL.

While a number of numerical works have considered fractional quantum Hall physics in

the opposite Harper-Hofstadter tight-binding limit [154, 155, 157, 158, 159, 203, 204, 205,

206, 207, 208], less attention has been payed to the weak-potential limit of the present

experiment [209]. We will consider both an FCI and SBCI, in both cases choosing a

moiré parameter ΘM = π/8 ∼ 0.4, which (at the single particle level) is consistent with

all the dominant integer CI features.

νC = 1/3 FCI in =− 1 band

The C = −1 band detailed in Fig. 6.2 of the main text can be accounted for if |VM |/ε10

is small, as discussed above. Since the simulations are challenging in the presence of the

moiré potential, and |VM |/ε10 is small, we make a further approximation by discarding

the |+ ↑ 1〉 level, projecting entirely into |+ ↑ 0〉. Following our earlier discussion, we

consider the Hamiltonian

H =
1

2

∫
d2qρ(−q)Vc(q)ρ(−q) +

∫
d2rVM(r)ρ(r), (E.7)

VM(r) = VM
∑

m=0,1,2

eiGM ·r + h.c., (E.8)

where ρ(q) is the density operator projected into a single N = 0 LL. The Coulomb

interaction is VC(q) = EC
2π
q

tanh ( qd
2

) (where q is in units of l−1
B ) due to screening from

the graphite gates at a distance d ∼ 10lBd from the BLG. Here EC = e2

εlB
is the Coulomb

scale. However, having projected out the other LLs, to make a more quantitative com-

parison with experiment we also include RPA screening from the filled LLs below the

ZLL [128],

VRPA(q) =
VC(q)

1 + VC(q)Π(q)
, Π(q) = a

4 log (4) tanh (bq2l2B)

2πEC
(E.9)
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The screening weakens the short-distance part of the Coulomb interaction. While

not essential to the existence of the FCI - we also find the FCI state without it - it does

change the range of |VM |/EC where the FCI is stabilized by around ∼ 20%, since it

effectively reduces the Coulomb scale.

Following comparison between DMRG numerics and experimental data in an earlier

work[57], we take a = 0.2EC~ωc , b = 0.62 where ~ωc is the cyclotron energy at the desired

field. For the moiré, we choose VM = e2πi/16|VM | (this choice of ΘM reproduces the

experimentally observed CIs in our measurements), while |VM |/EC is a tunable parameter

to be explored.

iDMRG proceeds by placing the above continuum quantum Hall problem onto an

infinitely long cylinder of circumference L [136]. iDMRG requires an ordering of the

single-particle states into a 1D chain, which arises naturally on the cylinder when the

LL orbitals are taken in the Landau gauge. We emphasize again that the “sites” in our

chain are not the minima of the moiré potential, but rather the orbitals of the continuum

LL. To accommodate the triangular moiré lattice with Bravais vectors a1, a2, we form a

cylinder by identifying r ∼ r + 9a1. Working at nΦ = 2/3 this corresponds to a cylinder

of circumference L ≈ 19.9lB. νC = 1/3 filling of the C = −1 band corresponds to ν = 1/3

of the N = 0 LL. iDMRG[210] using m = 3000 states was used to find the ground state

for a range |VM |/EC . The lattice reduces the continuous translation symmetry of the

cylinder down to Z9, making the simulations more expensive; nevertheless, the DMRG

truncation error was less than 3× 10−6 throughout the FCI phase.

For an intermediate range of 0.29 < |VM |/EC < 0.74, we find a state with a short

correlation length (ξ ∼ 3λ, where λ is the period of the moiré lattice) and t, s = −1/3, 1/3

(we ignore electrons below the ZLL), which we thus identify as an FCI. The entanglement

spectrum of the FCI is shown in Fig. E.11A, and is consistent with a Laughlin type state

but with negative Hall conductance [192].
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We measure (t, s) as follows. Since ν = t + snΦ (tautologically), it is sufficient to

measure either s or t, and in our simulations it is most convenient to measure s. We do

so by repeating iDMRG for a series of moiré potentials which are displaced by a distance

∆x along the cylinder, V (r) = V (r −∆x), obtaining a sequence of ground states |∆x〉.

By definition, s is the amount of charge per unit cell which should be transported along

with the lattice. The charge which passes a cut around the cylinder is ∆Q = sL∆x/A,

where A is the volume of the unit cell.

We can measure the amount of charge transported ∆Q by using the entanglement

spectrum to compute the charge polarization of |∆x〉 as discussed for an analogous mea-

surement of the Hall current in Ref. [136]. To ensure adiabaticity, ∆x was incremented

in units of lB/24 using the previous ground state to initialize the DMRG. The results

give a perfectly quantized value for s within the 10−6 precision of the numerics.

For |VM |/EC < 0.29, the ground state is found to increase the unit cell with a 3x3

reconstruction, forming a triangular Wigner crystal shown in Fig. E.11B. Effectively, all

the electrons in the ZLL are inert: t = 0, s = 1/9. This is to be expected, since the

Coulomb interaction alone stabilizes a Wigner crystal at such low fillings (ν = 1/9). The

location of the transition can be diagnosed from 〈ρ(G0/3)〉, where G0 is a reciprocal

vector of the moiré. To see the symmetry breaking, the numerics must be done with an

enlarged unit cell and lower degree of momentum conservation.

For 0.74 < |VM |/EC , there is a change in the correlation length and entanglement

properties as the system enters a compressible phase through what appears to be a

continuous phase transition. This region is rather complex. When |VM |/EC → ∞, the

system should be a non-interacting metal due to the small but finite bandwidth of the

Chern band. It is very interesting question whether, in 2D, there is a direct transition

between the FCI and this metal, or whether an intermediate state (such as a composite

Fermi liquid or symmetry broken phase) intervenes. However, this 2D physics is subtle
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to address on the cylinder, where we suspect there is in fact a sequence of several KT-

transitions. To see this, we used “finite entanglement scaling” [211] to measure the central

charge c of the cylinder state. At |VM |/EC = 2, we find a very precise value of c = 3

(Fig. E.11C), while at |VM |/EC = 6 we find c = 6. Multiples of 3 are expected, because

the magnetic algebra at nΦ = 2/3 enforces a 3-fold degeneracy in the Fermi surface. The

2D Fermi surface of the metal descends to a several-component Luttinger liquid on the

cylinder due to the quantization of the momentum around the cylinder. As |VM |/EC

changes the Luttinger exponents, it naturally could drive a sequence of KT-transitions

at which some, but not all, of the modes lock.

In precisely the same regime that finite entanglement scaling finds a finite central

charge, we also observe a weak “stripe”-like order; translation is preserved along a1, but

a2 is broken. This can be diagnosed from 〈ρG′/2〉 for an appropriate reciprocal vector.

It is difficult to determine whether this is a true property of the ground state, or is

instead a finite-entanglement artifact, 〈ρ(G′/2)〉 ∝ ξ−∆
FES, where ξFES is a correlation

length introduced by the finite bond dimension of our DMRG numerics. Regardless,

it gives a very clear indication of the onset of the gapless phase, so is the metric we

presented in the phase diagram of the main text.

For comparison with experiment, we note that EC = 48 meV at B = 32 T (nΦ = 2/3)

assuming a dielectric constant of ε = 0.66 for the surrounding BN. This gives the

estimate 14 < |VM | < 38 meV for an FCI, consistent with the expected moiré amplitude.

νC = p/3 SBCI in C = 3 band .

The C = 3 band hosting the SBCI state detailed in the main text emanates from

ν, nΦ = 2, 1/3. As discussed, near nΦ = 1/2 the stability of this C = 3 band requires a

small ε10 which mixes the N = 0, 1 levels. However, we have verified that near nΦ = 1/3,

the C = 3 band remains stable even as ε10 →∞.
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In this limit, the N = 0 level is completely filled and inert, and the potential VM is

effectively projected into an N = 1 level. While a quantitative study of the SBCI may

require keeping both N = 0, 1 levels and finite ε10, this is numerically challenging, so we

take advantage of this finding to take ε10 →∞ and project the problem into the N = 1

level. The Hamiltonian is the same as in Eq. E.9, but now ρ(q) is the density operator

projected into a N = 1 LL (in fact if we incorrectly project into N = 0 level, we do not

find an SBCI). We take VM = |VM |e
2πi
16 as before.

We again place the problem on the cylinder, but this time we identify r ∼ r + 12a1.

This was chosen to accommodate a tripled unit cell with enlarged Bravais vector a1 +a2.

We work at nΦ = 3/8, where νC = 1/3, 2/3 of the C = 3 band correspond to filling

ν = 1 + 7/9 and ν = 1 + 8/9 (the integer part of the filling is now assumed to occupy an

inertN = 0 LL). iDMRG was performed while keeping 3000 states. We have not obtained

a full phase diagram for |VM |/EC , but found a range of values (e.g. |VM |/EC = 0.6

in the main text) which stabilize an SBCI state and are consistent with the domain

of the C = −1 FCI. The SBCI is diagnosed by a tripled unit cell (seen in the real-

space density) and the experimentally predicted t, s again measured by adiabatically

dragging the lattice. We note that working on an infinitely long cylinder greatly simplifies

the detection of the symmetry breaking. Because the symmetry is discrete, it can be

spontaneously broken in this geometry, unlike in finite-size simulation on a torus.
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Figure E.1: Fits to t, s for FCI and SBCI states. (A) Peaks corresponding to
the FCI states presented in Fig. 6.2A,D (black circles) were fit to obtain their slope
and intercept in the n0/c−B plane (black lines). The fitted slopes of nearby CI and
FQH features (gray lines) were used to convert from the fitted parameters to a fitted
t, s, which match the expected values of (−13/3, 1/3) and (−14/3, 2/3) to within 5%.
Numbers in brackets are the 95% confidence intervals obtained by linear regression.
An SBCI in a ∆t = 2 band also matches its predicted value of (t, s) = (−4, 0.5). (B)
Similar analysis performed for SBCI states in Fig. 6.2B, E. t, s values for these SBCI
match within 10% of their expected values of (0, 2/3) and (1, 1/3).
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Figure E.2: Zero magnetic field CP showing satellite Dirac points. (A) CP
taken as a function of the nominal electron density (n0/c) and polarizing electric field
(p0/c). This measurement was taken at the nominal base temperature of our dilution
refrigerator (T < 50 mK) at zero applied magnetic field. We find additional peaks in
CP at n0/c ≈ 11.8 V. The top right and bottom left corners are masked off (data was
not taken in those regions) to protect the gates from leakage. (B) Horizontal line cut
of (A) taken at fixed p0/c = −0.2 V.
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Figure E.3: Full Landau fan at p0/c = +16 V. The effect of the moiré between
the top hBN and bilayer graphene is largely suppressed for states localized on the
bottom layer (e.g. when n0/c > 0 , p0/c = +16 V). In this regime, Landau levels
in the ZLL exhibit the conventional fractional quantum Hall effect up to 31 T and
do not show any Hofstadter (non-zero s) features. Hofstadter features are, however,
observed in higher Landau levels in this regime. Additionally, we observe a feature
B ∼ 16T and ν = −2 (white arrow) which we attribute to a spin transition between
a spin-unpolarized ν = −2 at low fields to a spin-polarized ν = −2 at high fields, as
described in the supplementary text. Above this field, the ZLL fills two N = 0 orbital
states first (rather than an N = 0 followed by an N = 1). This feature, not previously
reported, can be attributed to the very large electric fields used in this experiment as
compared with previous work
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Figure E.4: Calculated moiré potentials. Real-space moiré potentials for (A)
VM = 1, or |VM | = 1,ΘM = 0, (B) VM = 1, or |VM | = 1,ΘM = π/3 (C) VM = i , or
|VM | = 1,ΘM = π/6 . The positive (negative) VM potential is repulsive (attractive)
on the triangular lattice, and attractive (repulsive) on the honeycomb lattice.

Figure E.5: Single particle Hofstadter butterfly. Single-particle Hofstadter
spectrum calculated using the moiré parameters (A) |VM |/ε10 = 1/2 and ΘM = π/8
and (B) |VM |/ε10 = 6 and ΘM = π/8.
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Figure E.6: Calculated Wannier plots for the n0 < 0, u > 0 case. Calculated
gap sizes in units of the magnitude of the moiré potential (∆/VM ) as a function of ne
and nΦ for ΘM = 0 (A), ΘM = π/3 (B), and ΘM = π/6 (C). The splitting between
LLs ε10 is chosen to be larger than any Hofstadter gaps.
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Figure E.7: Comparison of calculated and observed single particle Chern
bands. (A) ) Single-particle Hofstadter spectrum calculated using the moiré param-
eters |VM |/ε10 = 2.0 and ΘM = π/8 are chosen to match the n0 < 0, u > 0 case.
∆t = C bands are labeled from the Wannier plot (B) using the procedure described in
the main text (Fig. 6.1G). (B) Calculated Wannier plot constructed from (A). The
points are colored according to the size of the gap (∆/VM ) while the bands are colored
according to Chern number. To match the experimental data, the spectrum in (A)
was separated by orbital and tiled with filling order N = 0, 0, 1, 1 starting at ν = −4.
(C) Peak height of gapped states (black to gray points), extracted from data in Fig.
6.1C, as a function of charge carrier density (n0/c) and magnetic field (B). The bands
are colored according to their single-particle ∆t, using the same rules as (B).
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Figure E.8: Real-space electron density and k-space dispersion of FCI-host-
ing C = −1 band. For large ε10/|VM | at nΦ = 2/3, the N = 0 Landau level splits
up into C = −1, 2 bands. In (A,B), we show the real-space charge density that arises
from fully filling each of these bands. We see that the C = −1 band is localized on
the triangular lattice. This is the band which hosts the observed FCI states. (C) The
k-space energy dispersion of the C = −1 band, with axes in units of l−1

B and energy
in units of |VM |. At nΦ = 2/3 , the bandwidth is about 10% of |VM |; this percentage
grows as nΦ → 1/2. âĂČ
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Figure E.9: Calculated Wannier plots for the n0 > 0, u < 0 case Calculated
gap sizes in units of the magnitude of the moiré potential (∆/VM ) as a function of ne
and nΦ for ΘM = 0 (A), ΘM = π/3 (B), and ΘM = π/6 (C). The splitting between
LLs ε10 is chosen to be larger than any Hofstadter gaps. |VM |/ε10 is fixed to 6.0 for
all cases. The spin-split ν = 2 gap is chosen to be larger than any Hofstadter gaps.
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Figure E.10: Comparison of calculated and observed single particle
Chern bands for case II. (A) Single-particle Hofstadter spectrum calculated using
|VM |/ε10 = 1/6 and ΘM = π/8. ∆t = C bands are labeled from the Wannier plot (B)
using the procedure described in the main text (Fig. 6.1G). (B) Calculated Wannier
plot constructed from (A). The whole spectrum was replicated twice to match the
experimental data, starting at ν = 0. (C) Peak height of gapped states (black to
gray points), extracted from data in Fig. 6.1D, as a function of charge carrier density
(n0/c) and magnetic field (B). The bands are colored according to their single-particle
∆t, using the same rules as (B).
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Figure E.11: Entanglement spectrum of νC = 1/3 FCI and investigation of
competing phases. (A) Entanglement spectrum of C = −1, νC = 1/3 FCI. The
low-lying counting disperses from right to left as 1, 1, 2, 3, (5), where it merges into
the higher states. Note that in our convention, the ν = 1/3 Laughlin state would
have counting 1, 1, 2, 3, 5,... with the opposite chirality, left to right. This reversal
is a signature of the reversed Hall conductance in a C = −1 band. (B) ) Charge
carrier density 〈n(r)〉 at νC = 1/3 filling of the C = −1 band in the regime where
|VM |/EC < 0.29 leads to a Wigner crystal. The dots indicate the moirÃľ unit cell,
showing a 3x3 reconstruction. (C) Evidence for a gapless phase at νC = 1/3 filling
of the C = −1 band in the regime |VM |/EC > 0.79. We measure the evolution of the
bipartite entanglement entropy S vs. DMRG correlation length ξ as the DMRG bond
dimension increases. In a CFT, S = c

6 log ξ + s0. At the point |VM |/EC = 2 shown
here, we obtain perfect agreement with c = 3. At higher |VM |/EC (not shown) we
find c = 6.
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Figure E.12: Landau fans up to 45T Landau fans of CS for p0/c = 16V (A) and
−16 V (B). We performed a horizontal line-by-line subtraction on (A) to compensate
a change in offsets with field. (C,D) Classification of gapped linear trajectories (A)
and (B) respectively. Interaction-driven features are labeled and their t, s are given
in Tables E.1 and E.2. We observe two classes of linear trajectories which do not fall
into the categories outlined in the main text. The first are associated with Landau
Levels in one of the graphite gates, which appear much more prominently in CS than
in CP and only depend on one of the applied gate voltages (wide hatched lines). These
states are observed as diagonal features in the n0−p0 plane, and appear as a secondary,
broad Landau fan with an x-intercept that depends on p0/c. The second are features
that either do not have t and/or s which clearly match a small-denominator rational
fraction, are short-lived in B, or do not have nearby features which allow us to easily
identify their origin (dashed lines). The FCI states described in the main text persist
between 27 and nearly 40 T.
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Figure E.13: Symmetry broken Chern insulators in a C = 4 band. Detail
from Fig. E.12B, highlighting a C = 4 band at high magnetic fields. (B) Schematic of
(A), SBCI states (dashed lines) with t, s = (0, 1/4) and (1,−1/2) occur at νC = 1/4
and 1/2 fractional filling of a ∆t = 4 band (dark orange).SBCI in ∆t = 2 and ∆t = ±3
are also observed. Broad, negative slope features not represented in the schematic are
due to graphite LLs.
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Figure E.14: Labeled gap trajectories for Fig. 6.1E-F Annotated version of Fig. 6.1
with interaction-driven states labeled according to Tables E.1-E.2.
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Table E.1: List of observed symmetry-broken Chern insulator states (integer t, frac-
tional s). States above 30 T can be observed in data taken up to 45 T (Figs. S1,2).

id t s B [T] (min,max) p0/c [V]
SB1 1 -2/3 (28,36) -16
SB2 0 2/3 (26,35) -16
SB3 0 4/3 (17,20) -16
SB4 1 2/3 (17,21) -16
SB5 3 -2/3 (17,20) -16
SB6 0 4/3 (30,31) -16
SB7 1 2/3 (30,45) -16
SB8 2 -2/3 (30,36) -16
SB9 2 4/3 (17,20) -16
SB10 3 2/3 (17,21) -16
SB11 5 -2/3 (17,19) -16
SB12 3 -2/3 (29,32) -16
SB13 2 2/3 (29,32) -16
SB14 5 -2/3 (29,31) (33,37) -16
SB15 4 2/3 (29,39) -16
SB16 5 2/3 (17,20) -16
SB17 4 4/3 (17,19) -16
SB18 0 1/2 (36,44) -16
SB19 2 1/2 (35,39) -16
SB20 -1 2/3 (18,20) (32,36) 16
SB21 -2 4/3 (18,20) 16
SB22 -2 2/3 (17,19) 16
SB23 -1 -2/3 (29,32) 16
SB24 -2 2/3 (29,32) 16
SB25 -5 -2/3 (18,20) 16
SB26 -4 -4/3 (18,19) 16
SB27 0 -2/3 (32,35) 16
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Table E.2: List of observed fractional Chern insulator states (fractional t, fractional s).
States above 30 T can be observed in data taken up to 45 T (Figs. S1,2). * indicates
a lower bound on the field at which states disappear, as these weak states were not
clearly observed in the higher field data, possibly due to worse signal to noise.

id t s B [T] (min,max) p0/c [V]
F1 2/3 -2/3 (28,31*) -16
F2 8/3 -2/3 (28,31*) -16
F3 5/3 1/3 (29,31*) -16
F4 4/3 2/3 (28,34) -16
F5 10/3 2/3 (28,33.5) -16
F6 11/3 1/3 (28,32*) -16
F7 8/3 -4/3 (35,40) -16
F8 4/3 4/3 (33,39) -16
F9 4/3 4/3 (33,39) -16
F10 -13/3 2/3 (25,36) 16
F11 -22/5 4/5 (27,32*) 16
F12 -23/5 6/5 (27,32*) 16
F13 -14/3 4/3 (26,38) 16
F14 -11/3 4/3 (28,39) 16
F15 -10/3 2/3 (28,39) 16
F16 -11/3 -2/3 (30,36) 16
F17 -10/3 -4/3 (30,38) 16
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