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Abstract of the Dissertation 

Spatially Resolved Measurement in Fibers with Arbitrary Chromatic Dispersion 

by 

Yauheni Myslivets 

Doctor of Philosophy in Electrical Engineering (Photonics) 

University of California San Diego, 2010 

Professor Stojan Radic, Chair 

 

In this dissertation, a new class of measuring techniques for non-destructive 

spatial mapping of fiber physical parameters was developed and experimentally verified.  

The proposed method is based on selective localization of four-photon mixing (FPM) 

obtained by power transfer between the counter-colliding pulses and provides at least one 

order of magnitude increase in spatial resolution over comparable methods. 

The technique was applied to retrieve geometrical, dispersive, stress, and 

birefringent properties of distributed fiber devices with meter-scale spatial resolution.  

The method is capable of resolving fluctuations in fiber transversal geometry comparable 

to a silica molecular diameter. 



1. Introduction 

1.1 Effect of the Dispersion Variations to the 
Operational Properties of Parametric Devices 

The introduction of highly nonlinear fibers (HNLF) has revolutionized optical 

parametric processing [1-7], allowing the construction of true continuous-wave (CW), 

high efficiency devices that have no equivalent in near-infrared band.  Having unique 

properties, these fibers are potentially interesting for a number of practical applications. 

Firstly, the HNLF can be used as a nonlinear platform to obtain a parametric 

amplification.  The main advantage of such amplifiers over standard erbium doped fiber 

amplifiers (EDFA) is that the gain can be achieved in any optical window by proper 

selection of the fiber dispersion properties and pump wavelength positioning.  The 

bandwidth of the EDFAs is typically limited by 40 nm whereas the bandwidth of HNLF-

based ones could be extended for more than 100 nm [8-9].  The parametric gain and 

bandwidth can be programmed by controlling the pump powers.  As an example, a 

record, albeit narrow, band 70 dB-gain in CW mode was achieved in [5] using a 

parametric amplifier pumped by a single 2 W laser.  The alternative two-pump 

configuration provides spectrally flattened parametric gain response [3].  The amplifiers 

based on nonlinear effects can be operated in phase-sensitive manner achieving the noise 

figure values below 3 dB in single quadrature [20].  Secondly, the HNLFs are used in 

1 
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nonlinear mixers and converters utilizing the fact that if a strong pump and a weak signal 

are injected into the fiber, the new spectral products (idlers) are created and matched in 

frequency with the input waves.  The mixers can be used to copy the information from 

the original channel to different carriers, or to replicate the input signals for further 

processing.  For example, the single binary-modulated channel was mapped to 40 carriers 

[10].  The third useful property is that the phase of the created idler is conjugated to a 

phase of the input signal.  This effect can be used to compensate link dispersion without 

using dispersion compensating modules.  If the phase is inverted in the middle of the 

transmission link, the dispersion is perfectly compensated at the end [11].  This approach 

can also be used to construct continuously tuned delay lines.  The idea of such device is 

based on signal wavelength translation to a different carrier (or idler) and propagation in 

a dispersive waveguide.  Delay tuning is obtained by changing the wavelength of the 

created idler resulting in the desired delay [12-15].  For example, a record-to-date delay-

bandwidth product of 62,400 for 40 Gbit/s modulated signal was recently achieved in 

[15]. 

The different class of the applications is based on the fact that the Kerr nonlinear 

response is nearly instantaneous [26].  This property can be used in order to reshape 

signal waveforms by modulated high-power pump.  Specifically, the time-domain 

multiplexed channel can be gated from the nearest channels by a periodic train of narrow 

pulses [10], or an analog waveform can be sampled by short pulses generated by external 

mode-locked laser [17, 18].  The last principle is utilized in photonic-based ADC 

converters [19].  A spectacular parametric device is a fast equivalent-time sampling 

oscilloscope [18] allowing to capture signals with picosecond duration.  The bandwidth 
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of such device is far beyond the maximum bandwidth provided by state-of-the-art 

electronics.  Finally, the nonlinear fibers can be easily pigtailed and incorporated into 

fiber optics networks. 

The efficiency of the nonlinear processes critically depends on the phase 

synchronization of the interacting waves and is recognized as classical phase matching 

requirement.  Dispersion of the nonlinear media causes phase de-synchronization and 

defines the dependence of the group propagation index as a function of signal 

wavelength.  The typical HNLF characteristics include nearly 10-100 times lower 

dispersion and at least 10 times larger nonlinear mode index γ than those of conventional 

single mode fibers (SMF) at standard telecommunication band [22-24].  The precise 

phase matching in HNLF can be achieved by proper alignment of the signal wavelength 

relatively to zero dispersion wavelength (ZDW). 

The fibers have lower nonlinear coefficient than that of nonlinear crystalline 

platforms [26].  However, the phase-matched interaction in HNLF can take place over 

hundreds of meters and have efficiencies exceeding 40 dB.  Unfortunately, the 

microscopic variations in transverse geometry lead to spatially localized dispersion 

fluctuations.  As a result, the phase matching condition varies along the fiber length. This 

effect is identified as the fundamental obstacle in the construction of wideband 

parametric devices [28-30]. 

Recent fabrication advances have reduced transverse HNLF variations to 

multiples of the SiO2 molecular ring diameter [24].  The ratio between transverse HNLF 

dimension fluctuation and its longitudinal scale reaches the value of 10−12, making the 

HNLF one the most precisely fabricated structures in modern engineering.  To match this 

3



 4

ratio, a typical 100-μm-long monolithic waveguide would have to have a transverse 

tolerance smaller than the diameter of a single atomic nucleus.  The remarkable control of 

the HNLF cross section variances makes further tightening of the fabrication process a 

difficult proposition, suggesting a need for alternative means for phase matching control 

over long fiber lengths. 

Fig. 1 demonstrates the simulated gain spectra [30] of the two-pump parametric 

amplifier with 100-m pump separation for a hundred randomly generated spatial ZDW 

profiles with fixed mean and standard deviation σλ = 1 nm.  It is clearly seen that only the 

certain number of realizations provides high spectrally equalized gain.  This 

demonstration implies that by randomly selecting the HNLF sample from a long coil with 

known 1-nm deviation of ZDW, there is extremely low probability for construction of 

wideband spectrally equalized amplifier or converter. 
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Fig. 1:  Simulated gain spectra of the two-pump parametric amplifier.  Each trace corresponds to 
the random realization of the fiber dispersion profile with standard deviation σλ = 1 nm.  100 
realizations. 

In order to quantify the sensitivity of the ZDW to the variations of the waveguide 

geometry, the mode propagation index neff was calculated using the transversal refractive 

index profile n(r) provided by a manufacturer.  The dispersion characteristics were 

obtained by differentiating a phase factor β = neff⋅k0 (k0 = 2π/λ is an absolute value of 

propagation coefficient in vacuum).  The typical HNLF n(r)-profile contains highly 

GeO2-doped core (>2%) and depressed fluorine-doped cladding [23, 24].  The details of 

the used mode calculation algorithm are provided in chapter 4.7.  The dispersion 

characteristics were calculated for the original refractive index profile (center line in Fig. 

2).  Subsequently, the geometry was changed in both directions by ±1% while keeping 

refractive index fixed. 
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Fig. 2:  HNLF chromatic dispersion sensitivity to transversal profile perturbation.  Reference 
(unperturbed) waveguide designed for λ0 = 1560 nm; the core radius perturbed by ±0.5% 
and ±1%. 

Fig. 2 demonstrates that the 1% perturbation is translated to the variation of the 

ZDW by ±15 nm.  As shown previously, in order to construct 100-nm-bandwidth 

parametric amplifier, the accepted variations should be below 1 nm, corresponding to 

0.07% variations of the waveguide transverse geometry.  The typical mode radius of the 

HNLF is approximately 1.8 um so that the variations should be below 1.8 nm which is 

comparable with characteristic 1-nm-dimension of the silica molecular rings shown in 

Fig. 3 [24]. 

Rather than insisting on unphysical fabrication tolerances, wideband parametric 

synthesis can be achieved by obtaining an exact HNLF dispersion fluctuation map which 

can be subsequently used to either select specific waveguide sections, or concatenate 

fiber segments.  Unfortunately, the magnitude of these fluctuations is well below the 

sensitivity and spatial resolution of existing dispersion measurement techniques [32-39].  

6



 7

Conventional techniques are characterized by sub-km spatial resolution and are designed 

to analyze fiber types such as conventional single mode fiber (SMF) or non-zero 

dispersion shifted fiber (NZ-DSF) that possess high chromatic dispersion.  In contrast, 

wideband parametric synthesis requires meter-scale longitudinal spatial resolution in 

nearly dispersionless fiber such as HNLF. 

SiO ~0.6nm

6-fold Ring
SiO ~0.6nm

6-fold Ring

 

Fig. 3:  Molecular structure of silica (SiO2) glass. 

This thesis describes a new class of dispersive measurements based on strict 

localization of four-photon mixing (FPM) with the main application of dispersion 

measurement in HNLFs.  The FPM localization is achieved by counter-colliding power 

delivery to a weak probe pulse and is used for high resolution dispersion retrieval along 

the fiber length.  The dispersion fluctuation map was validated by destructive HNLF 

characterization and mixer response measurements. 

This text is organized as follows: chapter 1 briefly describes the ZDW 

fluctuations, their origin, and existing methods used in order to characterize these 

fluctuations.  In chapter 2, the new localization concept and physical mechanism of the 

counter-colliding power delivery are introduced, as well as the application of this method 
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to measure ZDW fluctuations.  Chapter 3 concentrates on the experimental construction 

of a counter-colliding Brillouin scanner and practical measurement requirements.  The 

numerical algorithms and physics of the inverse dispersion solver are presented in chapter 

4 and 5.  These chapters also describe the validation of the measuring technique for low-

dispersion characterization of HNLF samples.  In chapter 6, a problem of polarization 

gain dependence is resolved using a polarization locking scheme.  In the last part of the 

thesis, a chapter 7, the further applications based on the new localization method are 

demonstrated. 

Several distinct methods for processing of the observables obtained by counter-

colliding dispersion measuring technique are presented.  The validity these methods are 

verified the by solving inverse problem for experimentally obtained and numerically 

generated profiles and ultimately proven in practical devices. 

1.2 Overview of the Existing Methods for 
Dispersion Measurements 

Intense propagating waves modify refractive index of the nonlinear media causing 

the transfer of energy among participating frequencies.  In optical fibers possessing third 

order nonlinearity, two propagating waves beat creating a moving periodic pattern by 

modulating the refractive index.  The third wave scatters on this grating and transfers 

energy to the forth wave.  This process is known as four wave mixing (FWM) [40].  In 

order to provide an effective power transferring process, the phases of four interacting 

waves should be synchronized.  As an illustration, if the phases of the index grating, 

scattered and generated waves are matched, the power of the later wave will grow.  

Conversely, if they are out of phase, the energy can be transferred back and forth 
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mapping the phase mismatch factor along the waveguide coordinates [40].  This inherent 

property of nonlinear interaction efficiency can be used to acquire the spatially resolved 

dispersion. 

Most sensitive methods for spatially resolved dispersion characterization are 

based on observing of evolution of generated FWM sidebands or measuring the nonlinear 

conversion efficiency.  Roughly, all algorithms can be divided into two main groups.  For 

the algorithms from the first group, the spatial localization is achieved physically, i.e. the 

processed signal quantity is extracted at selected spatial point, or a physical effect takes 

place within selected spatial interval.  The interval length defines the physical resolution 

of the method.  The characteristic property of the methods of this kind is that the signals 

in pulsed mode are utilized. 

Gordon [37] has introduced an important technique to measure zero-dispersion 

wavelength of conventional fibers.  Two short pulses propagate inside a fiber and 

generate FWM product as shown in Fig. 4.  Co-propagating pulses with widely separated 

wavelengths Δλ generate FWM light only within the fiber section in which they spatially 

overlap.  The length of this section is defined by the walk-off length 

1. ( ) λ
ττ
Δ

=
Δ

=
Dv

L
g

W /1
 (1.1) 

where D is the fiber dispersion, τ is the pulse duration, vg is the mean group velocity.  

The time/space synchronization of the pulses must be adjusted so that this overlap occurs 

at the desired point within the fiber.  The ZDW is measured by tuning the wavelength of 

the pulse and looking for the maximum power of the generated idler.  As an illustration, 

assume that two pulses propagate in fiber with dispersion slope of S = 0.08 ps/nm2/km.  If 
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the wavelength of one pulse exactly coincides with ZDW and the wavelength of the 

second pulse is shifted by Δλ = 50 nm, after propagation of 1 km, the pulses will be 

delayed by ½·S·Δλ2L = 100 ps.  This means that if both pulses are 100-ps length, the 

maximal achievable resolution is 1 km.  A similar estimation for HNLF fiber with the 

0.02 ps/nm2/km-slope gives the resolution of 4 km, which is significantly longer than 

typical length of the HNLF samples used in practice.  In case of nearly dispersionless 

fibers, such as HNLF, the walk-off length necessarily diverges (LW ~ L) and the technique 

fails to provide spatially resolved measurements.  This deficiency is easily understood by 

noting that, for nearly equal group velocities, two co-propagating pulses will never 

separate in case when launched synchronously.  Conversely, if their launch is delayed, 

the pulses will never overlap within the practical length of the fiber under test.  While 

FPM generation will be maximized in the first case, it can only be used to obtain a 

global, rather than a spatially localized dispersion measurement. 
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Fig. 4:  Schematic representation of Gordon’s method. 

Mamishev [34] reported OTDR-like measurement technique that retrieves the 

localized FPM signature using Rayleigh backscattering.  Two relatively long (sub-
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microsecond) overlapping pulses propagate and generate FWM products.  Because of a 

wave-vector phase mismatch, newly created FWM products oscillate with specific spatial 

frequency which is measured as a function of distance along the fiber.  The oscillations 

are resolved by observing the temporal variations of the back-reflected light at the fiber 

input.  The spatial frequency fZ is given by 

2. ( )
21

⎟
⎠
⎞

⎜
⎝
⎛=

Λ
=

λ
δλλcDf

Z
Z  (1.2) 

in which c is a speed of light, D is a dispersion coefficient, and δλ is a wavelength 

spacing between the signals.  The spatial oscillation period defines a resolution of the 

method.  For example, if the pulses with the wavelength separation of 5 nm propagate in 

standard single mode fiber characterized by 16 ps/nm/km dispersion coefficient, the 

spatial period is 20 m.  In highly nonlinear fibers the corresponding resolved interval is at 

least ten times longer because the typical dispersion coefficient less than 1 ps/nm/km 

within C− and L− bands.  The spatial resolution can be improved by increasing the 

wavelength separation between the pulse wavelengths.  However, the conversion 

efficiency drops fast because it is inversely proportional to squared wavevector mismatch 

Δk2 [40].  The second difficulty of this method is that the power of the Rayleigh back-

reflected light is processed.  Considering the typical reflection coefficient for single mode 

fiber of −80 dB for 1-ns pulses (for 20 cm of propagated distance), the fraction of the 

reflected light for microsecond pulses is only −50 dB.  This means that in order to keep 

the power of the reflected light 30 dB above quantum limit of −98 dBm for 10 MHz 

receiver bandwidth, the power of the generated FWM tone should be at least at −18 dBm 

peak level.  Additionally, the physical resolution is limited by long pulse spatial duration 
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equal to 200 m for 1-us pulses.  It is also useful to point out that the Rayleigh scattering 

itself has a finite bandwidth of several hundreds of MHz. 

Coordinate

Ti
m

e

P
ow

er

P FW
M

(t)

 

Fig. 5:  Schematic representation of Mamishev’s method. 

Alternatively, the processing of the conversion efficiency [21] profiles 

corresponding to different positioning in frequency of interacting CW signals is the 

relevant property of the methods referred to the second group.  The dispersion retrieving 

algorithms are mainly based on Fourier methods for phase reconstruction.  The resolution 

of such methods is defined by sampling bandwidth and is proportional to the range over 

which one can acquire meaningful data. 

Brener [35] has demonstrated a method for the extraction of ZDW variations from 

measurement of the power of the FWM products created from nonlinear interaction of the 

two CW signals.  The wavelengths λ1 and λ2 of the two lasers were tuned keeping the 

spacing Δλ = λ1−λ2 fixed.  The power of the FWM wave given by 

3. ( )
2

0
∫ −∝
L

jqzzj edzeI φ
FWM  (1.3) 
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was measured. The variable q = κλ1 has a dimension of wavevector, ( ) Sc 2
22 λλπκ Δ= , 

S is a fiber dispersion slope, and  is an accumulated phase mismatch at 

z.  If Δλ is kept fixed and the ratio 

( ) ( ) zdzz
z

′′= ∫
0

0λκφ

2λλΔ  is considered as constant, the FWM efficiency 

is governed by the Fourier transform of the phase function ( )zje φ .  The goal is to obtain 

λ0(z) from measured IFWM(λ) by solving the problem known in literature as “phase 

retrieval problem”.  González-Herráez [38] has devised a scheme to retrieve λ0(z) using 

Gerchberg-Saxton algorithm.  The spatial resolution of the proposed method can be 

estimated using a sampling theorem which states that the spatial step is defined by 

maximum “bandwidth” of q.  Considering the typical dispersion slope of HNLF of 

S = 0.02 ps/nm2/km, the spacing Δλ = 10 nm, <λ> = 1550 nm, and tuning range of 

λmax−λmin = 50 nm, the maximum qmax is equal to 0.08 m−1 corresponding to spatial step 

2π/qmax = 80 m. 
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Fig. 6:  Schematic representation of Brener’s method. 
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Mussot [39] used the measured parametric gain profiles for different pump 

wavelengths to obtain a dispersion map.  The spatial dispersion function was then 

optimized to fit the measured data.  Unfortunately, this method does not provide a 

physical interpretation of the spatial resolution and could not be considered as valid as it 

could not be related to a unique physical dispersion map. 



2. New Dispersion Measuring 
Method 

2.1 Counter-Collision Architecture 

In contrast to conventional dispersion mapping techniques designed for high-

dispersion fiber types described in the previous chapter, the primary motivation for this 

work resides in measuring dispersion fluctuations in low dispersion waveguides such as 

HNLF.  Recognizing this fundamental requirement, the new technique, if it is to 

successfully measure the waveguide with arbitrary (including near-zero) dispersion with 

high spatial resolution, it must be capable of spatial FPM control.  More importantly, this 

control must be decoupled from the fiber dispersion or any other waveguide 

characteristics.  Motivated by this requirement, the new measurement method is based on 

a simple idea that co-propagating waves with sufficiently low power will not generate 

significant mixing terms, even when propagating in a low-dispersion waveguide.  By 

engineering spatially discrete, abrupt means for power increase anywhere along the fiber, 

the FPM generation could then be “switched on” in a spatially selective manner. 

The new FPM localization in an arbitrarily dispersive waveguide is illustrated in 

Fig. 7. 
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Fig. 7:  FPM localization principle; a) Low power probe (P) and second signal (S) are launched 
contra-directionally to the pump (Π); b) Collision: probe is amplified by counter-propagated 
pump; c) FPM sidebands (F+/−) are generated along the reminder of the fiber (zC, L). 

The frequency non-degenerate probe (P) and second signal (S) pulses are 

launched into the waveguide with sufficiently low powers to guarantee negligible signal-

probe mixing.  The power of a single (or both) pulses is abruptly increased at the selected 

collision point (zC), resulting in efficient signal-probe mixing along the remaining 

waveguide section.  Highly localized power delivery is accomplished by a counter-

propagating pump (Π) pulse that interacts with one (or both) pulse(s) during the brief fly-

through interval.  The counter-colliding interaction length, defined by the pump-probe 

pulse convolution, effectively represents the physical resolution of the technique: by 

controlling the duration of either the pump or the probe pulse, it is possible, within the 

limits of the physical power transfer mechanism, to arbitrarily program the spatial 
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precision of the measurement.  The powers of the signal-probe mixing terms (F+/−) are 

measured for each collision instance and provide a unique signature of spatially distinct 

FPM processes.  By moving the collision location zC arbitrarily along the fiber, the FPM 

signatures of progressively longer (or shorter) fiber sections are obtained until the entire 

fiber length is scanned, as illustrated in Fig. 8.  Consequently, the FPM powers 

corresponding to all the collision points are used to retrieve the spatial dispersion map of 

the entire fiber. 
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Fig. 8:  Physical picture of the counter-collision technique. 

2.2 Localized Pulse Amplification 

At least two physical mechanisms are capable of amplifying the probe during the 

counter-collision instance − stimulated Raman (SRS) and Brillouin (SBS) scattering 

effects.  The relevant process parameters are compared in Table I: .  Although the Raman 
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process is considerably faster and supports sub-picosecond pulse amplification, the 

stimulated Brillouin interaction has nearly a hundred-fold larger gain coefficient [42, 48] 

and consequently requires lower pump powers.  Furthermore, the interaction distance 

(~ m) required for HNLF-like measurement target is short enough to eliminate any 

significant noise accumulation in the case when Brillouin power delivery is used.  A 

simple estimate of the necessary pump power can be made by requiring that the counter-

colliding Brillouin pump delivers 20 dB of gain within a 2 m pump-probe flythrough 

interval.  Assuming a standard [55] silica gain coefficient Γ of 4.6⋅10−11 m/W and HNLF 

effective area [22] of 10 μm2, the pump pulse should have a watt-peak power.  While the 

counter-colliding power delivery could also be achieved by Raman pumping, hundreds of 

watts of peak pump power would be required in this case and, in effect, would lead to 

pulse self destruction of the pump pulse (mainly, by generating spontaneous noise) in 

HNLF lengths exceeding tens of meters.  Consequently, the Brillouin pumping scheme is 

selected as the mechanism of choice for long (~ km) measurements, while Raman 

pumping is more suited for short waveguide mapping (~ m) that requires sub-millimeter 

spatial resolution. 
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Table I :  Physical Properties of the Stimulated Scattering Effects. 

Physical Process Raman Brillouin 

Gain coefficient ~0.005 m-1W-1 >1 m-1W-1 

Pump Power Required for 10 ns pulse 
and 20 dB gain 

>100 W >1 W 

3-dB-bandwidth 10 THz 20 MHz 

Time Response Δτ1 0.05 ps 25 ns 

Corresponding Spatial Resolution, vΔτ 10 μm 5 m 

The exact Brillouin gain spectrum of a specific HNLF sample can be measured by 

capturing the back-reflection of strong input CW wave, using simple setup illustrated in 

Fig. 9.  The back-reflected spectrum contains the Rayleigh peak centered at the signal 

frequency and symmetrically located Stokes and weak anti-Stokes waves down-shifted 

and up-shifted from the carrier by the characteristic phonon frequency given by the fiber 

composition.  The SBS shift is inversely proportional to the optical wavelength of the 

probe [55], as shown by the HNLF measurement illustrated in Fig. 11a.  The coarse 

(> MHz) measurement of the Brillouin frequency was given by the spacing between the 

Rayleigh and the Stokes waves. 

                                                 

1 The characteristic response time is calculated assuming the relation for the time-bandwidth 

product for Gaussian gain profile Δτ1/2Δν1/2≈1/2. 
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Fig. 9:  The setups used for back-reflection spectral measurement: a) direct measurement of the 
back-reflected light by high-resolution optical spectrum analyzer (HR-OSA), b) measuring of 
the beating of the original CW wave and back-reflected Stokes wave at the receiver using a 
radio frequency spectral analyzer (RFSA).  The indexes used: L – CW laser, OA – optical 
amplifier, C – coupler, CIR – circulator, ISO – isolator, VOA – variable optical attenuator. 
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Fig. 10:  a) Backreflected spectrum generated in 270-m HNLF sample and recorded using the 
heterodyne optical spectrum analyzer (resolution bandwidth ~1 MHz). b) High-resolution 
spectrum of the Brillouin HNLF Stokes component. 

A high precision measurement (< MHz) was performed by maximizing the peak 

power of the amplified probe pulse acquired by a fast sampling oscilloscope.  The precise 

Brillouin frequency-locking mechanism is further described in Section 3.2.  The high-
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resolution capture of the Stokes spectrum shown in Fig. 10 indicates the primary 

Brillouin peak 3-dB bandwidth of 20 MHz.  The secondary 65 MHz-wide peak appears 

nearly 30 dB below the primary peak.  The narrow amplification bandwidth 

(ΔνB ~ 20 MHz) sets a strict limit on the duration of the probe pulse τB = (2ΔνB)−1 ~ 25 ns 

and, consequently, on the spatial resolution of the technique (~ 2 m).  As a result of the 

close match between the pulse and gain spectral width, the amplified pulse does not 

necessarily retain its original shape, as illustrated in Fig. 11b.  In other words, the 

instantaneous gain seen by the probe pulse varies, and the exact amplified waveform 

represents the convolution between the input pulse and the Brillouin gain functions. 
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Fig. 11:  a) Measured SBS frequency shift in a 200-m long HNLF sample. b) Measured 
waveforms of the amplified 10-ns pulse for different HNLF samples and varying SBS gain.  
HNLF section length, peak input power and Brillouin gain are given as (blue) 270 m, 8 mW, 
>20 dB, (red) 210 m, 4 mW, 16 dB, (black) 200 m, 5 mW, 14 dB. 

On the other hand, the slow phonon-photon interaction response, as well as the 

counter-propagating nature of SBS, makes the pulse amplification relatively insensitive 

to the exact form of the pump pulse.  The latter observation is supported by the 
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experimental measurements illustrated in Fig. 11b; gain compression leads to the variable 

characteristic time that can be faster than that of the calculated waveform using a 

bandwidth-constrained linear assumption. 

The probe (pump) pulse duration represents the basic temporal resolution of the 

measurement.  However, an intuitive argument can be constructed in which the exact 

temporal shape of the amplified pulse is not the sole governing factor of the 

measurement.  While the ultrafast nature of the signal-probe mixing does respond to the 

instantaneous power of the pulse, the optical power measured at the end of the fiber is 

defined by the integration of the FPM terms during the entire pulse duration.  It is also 

important to avoid the oversimplification, since the amplified pulse shape does govern 

higher-order accuracy of the nonlinear pulse-probe interaction and is position-dependent.  

In addition, the experimental limitations significantly affect the accuracy of the method.  

Consequently, the optimal technique needs to combine the fact that FPM measurements 

are pulse-integrated measurements and incorporate the corrections borne by intra-pulse 

intensity variations. 

The narrow gain profile and the variation in the Brillouin response require precise 

locking between the pump and probe center frequencies.  In ideal case, negligible HNLF 

transverse geometry fluctuation would guarantee a constant Brillouin downshift at any 

fiber location.  In practice, the optimum Brillouin shift varies along HNLF and has to be 

precisely matched along the entire length of the fiber in order to maintain maximum 

power transfer for each collision instance.  The last fact implies that the spacing between 

signals must be controllable with the accuracy defined by a fraction of the SBS gain 
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bandwidth.  The main reason for such behavior is pump-pulse chirping during 

propagation and the non-harmonic Brillouin response for high pump powers. 
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Fig. 12:  Powers of the Stokes wave corresponding to the maximum (pump-probe co-polarized 
state) and minimum (pump-probe cross-polarized state) Brillouin gain instance. 

In final consideration regarding counter-colliding power delivery, it must be 

recognized that stimulated Raman and Brillouin processes are polarization dependent.  In 

practice, only one polarization state is preferentially amplified, thus requiring strict 

polarization alignment at each collision instance.  More importantly, experimental 

observations have demonstrated that the polarizations of both the probe and pump must 

be controlled to maximize the probe gain.  This implies that their Stokes vectors must not 

only be co-polarized but also have a specific polarization state.  Fig. 12 illustrates the 

effect of precise collision polarization control: the average power of the Stokes FPM 

product was measured for polarization states corresponding to the maximum and 

minimum probe gain.  The detailed properties of the polarization evolution in the fiber 

are described in chapter 7.1. 



3. Experimental Architecture 

3.1 Adaptive Counter-Colliding Scanner 

A qualitatively new dispersion measurement was designed the purpose of this 

research.  Fig. 13 illustrates one of the experimental setups used to validate the new 

principles.  A continuous wave (CW) laser source L1 was split (C1) and used to create the 

frequency-locked pump (Π) and the probe (P) waves.  Firstly, the probe wave was 

downshifted by the exact Brillouin frequency corresponding to each collision instance 

using the single sideband (SSB) modulator driven by the adaptive clock CL1.  The SSB 

clock tracked the exact Brillouin frequency for each collision instance.  Secondly, the 

probe and pump pulses were created by the amplitude modulators AM1 and AM2.  An 

independent laser source L2 and modulator AM3 were used to generate a signal (S) co-

propagating with the probe.  Two laser branches were temporally balanced to obtain a 

complete overlapping of interacting pulses.  The pump and probe pulses were generated 

by two independent pattern generators (PG1,2) synchronized to a master clock (CL2).  The 

spatial localization of the pulse within HNLF was controlled by programmed bit 

sequences in each PG unit.  The accuracy of such pulse positioning (time sampling) was 

defined by the inverse clock frequency.  The experiment used a 1 GHz master clock, 

guaranteeing the spatial (temporal) sampling interval of 20 cm (1 ns).  The complement 

of amplifiers (A1-4), attenuators (AT1-4) were used to manage the power states.  
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Polarization controllers PC1-4 were used to align the input polarizations along modulator 

principle states, PC5-7 − to align pulse polarizations along the transmission axes of the 

front polarizers of the motorized polarization controllers PC8-9.  Thin film tunable filters 

placed after every amplifier and not shown Fig. 13 were used after every amplifier to 

suppress spontaneous noise.  Circulators CIR1 and CIR2 were used to couple counter-

propagating pulses and collect the signal, probe, pump and FPM waveforms.  The 

polarization and (Brillouin-shift) frequency state of the interacting waves were strictly 

controlled prior to each collision instance, facilitated by monitoring provided by an 

optical spectrum analyzer, oscilloscope and power meter diagnostic block. 
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Fig. 13:  Experimental setup. 
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The measurement process was fully automated requiring only initial manual 

localization of the collision at the very end of the fiber. 

3.2 Frequency Locking 

As pointed out previously, the frequencies of interacting signals must be precisely 

locked to match narrow (~20 MHz) SBS gain profile.  The stable frequency position was 

obtained by splitting the output of the laser and shifting the frequency of the single output 

by the optical single sideband (SSB) modulator.  The implementation of frequency 

shifting scheme is illustrated in Fig. 14: a master clock drives two RF arms of the 

modulator; a single arm is delayed by a clock quarter period, while the third (DC) input 

of SSB modulator sets a 90° phase shift between its lower and upper arms. 
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Fig. 14:  SSB modulator biasing scheme.  Inset indicates interferometric topology of the device. 

The biasing of the SSB modulator was a three step procedure.  At the first stage, 

the RF modulator inputs are switched off and the reference (“zero point”) voltages for 

interferometers 1 and 2 are set.  At this configuration, the output does depend on the bias 

for the master (outer) interferometer because zero signals are combined.  At the second 
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stage, the RF peak amplitudes corresponding to carrier-suppressed return to zero (CS-RZ) 

[51] configuration are adjusted to suppress the original carrier.  Finally, the phase delay at 

the master interferometer and the delay between RF signals are set to provide the 

maximum power for the downshifted sideband and minimum power for any other 

harmonic by observing the OSA spectrum.  In ideal case, a solitary downshifted carrier is 

generated.  In practice, the typical suppression ratio of more than 30 dB for the original 

carrier and 25 dB for complementary clock at triple modulation frequency can be 

achieved, as illustrated in Fig. 15.  Precise bias tuning was performed by eliminating any 

modulation of the output waveform using the fast oscilloscope.  The presence of the 

higher order harmonics typically indicated the loss of symmetry in biasing of the upper 

and the lower modulator arms, or the modulator being overdriven.  The biases can be 

automatically tracked by commercially available bias controllers (for example, [52]). 
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Fig. 15:  Typical spectrum achieved by SSB frequency shifting. 

3.3 Polarization Control 

The motorized polarization controllers were used to set the state of the 

polarization (SOP) of the pump (PC9) and probe/second pulse (PC8), as illustrated in Fig. 
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13.  The controllers have input polarizer followed by a pair of half-waveplate (HWP) and 

quarter-waveplate (QWP).  The polarization states are specified by setting polarization 

azimuth η and ellipticity ε.  SOPs were chosen to maximize the power for the amplified 

probe (counter-collision gain).  Specific pump/probe/signal SOP was searched using a 

specific strategy: the polarization states are optimized in Stokes domain.  In first step, 

initial SOP settings (±1, 0; 0), (0, ±1, 0) and (0, 0, ±1) were used in attempt to identify 

the octant with the maximum gain on the standard Poincare sphere.  In the second step, 

the octant was iteratively shrunk to a cone on the Poincare sphere that satisfied the 

condition of growing counter-collision gain.  The process repeated until the SOP was 

localized within the narrow cone defined by a central angle less than 5°. 
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Fig. 16:  Algorithm of the polarization control. 

3.4 Spatial Localization of Pump-Probe Collision 
within the Fiber 

Precise control of the pulse-probe collision position is critical, as it is uniquely 

related to the local dispersion fluctuation map.  The collision scanning process originates 

at the end of the fiber and proceeds to cover its entire length.  In order to localize the 

pulse collision at the end of the fiber, two conditions must to be satisfied: 
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1) the spacing between pulses multiplied by its group velocity must be longer 

than the doubled fiber length, and 

2) the pump-probe pulses must overlap both at the beginning and at the end of 

the fiber. 

These conditions are illustrated in Fig. 17.  The condition requires the precise 

selection of the delay between the pump and the probe pulses and loading of the length-

specific bit sequence to both the pump and probe pattern generators.  In practice, the 

pulse waveforms synthesized by the pattern generators are not ideally rectangular and 

possess a long trailing tail that accounts for finite fraction of the pulse energy.  The pump 

tail could potentially interact with the probe thus delocalizing amplification, or, equally 

important, the tail of probe could be amplified by the counter-propagating pump.  This 

amplified tail can be clearly identified in Fig. 11.  To avoid this impairment, we used the 

pattern generator temporal buffering whereby additional bits were added to the original 

bit sequence that formed the pump/probe pulse.  As an example, consider a 200-m-long 

fiber corresponding to 2 μs double-pass propagation time and 1-GHz master clock.  In 

this case, the required sequence length amounts to 2000 programmed bits.  Upon adding a 

buffer zone of 500 bits, the total bit sequence will consist of 2500 bits, which is a 

sufficient guard-band to avoid the afore mentioned trailing edge impairment. 
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Fig. 17:  Time-space collision analysis: a) collision at the beginning of the fiber, b) collision 
within the fiber. 

The fast calibration can be done by a three-step manual search: 

1) firstly, the position of markers in the probe pattern bit sequence is used as a 

temporal reference (i.e. t = 0), 

2) secondly, the temporal position of the pump pulse is varied in a coarse manner 

to find the no-collision state, (i.e. absence of Brillouin amplification at the end 

of the fiber); 

3) finally, the probe temporal reference is shifted to the position just prior to the 

amplification onset (t′ = 0, i.e. single temporal increment would toggle 

between a gain and zero-gain at this position).  It is easy to note that such 

collision points correspond exactly to the end of the fiber. 
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3.5 Bias Control and its Implications 

The power transfer from the pump pulse to the probe should be strictly localized 

to be confined to collision interval only, avoiding any interaction with the pump pulse 

pedestal (trailing edge).  Practically, any modulation scheme used for pump pulse 

formation has a finite extinction ratio (see Fig. 18a), leading to non-zero light level 

trailing the main pulse.  If this power level is lower than the characteristic threshold of 

the nonlinear effect (Brillouin in this case), the power transfer between the probe pulse 

and the pump pedestal becomes negligible.  Conversely, non-negligible probe pulse 

amplification will occur even in absence of the collision with the main pump pulse.  Such 

amplification regime is distributed, rather than spatially localized, and represents the 

exact opposite of the scheme desired in the type of measurement under consideration.  

Furthermore, it is important to note that in the latter case, the probe pulse would become 

significantly impaired by the amplified spontaneous noise accumulated along the entire 

fiber length.  To illustrate its impact, it is sufficient to estimate the Brillouin threshold of 

a 250 m long HNLF segment using standard scaling between gain, effective area and the 

effective fiber length [42].  The combination of watt pump peak power and SBS 

threshold power of ~20 mW, dictates the minimum 20 dB extinction ratio to be 

maintained throughout the measurement at AM1.  However, we have found that the probe 

gain and OSNR degradation can serve as a reliable feedback signature in case when 

collision did not occur within the HNLF, as illustrated in Fig. 18b. 

31



 32

Zero level

P Pu
m

p
pe

ak
> 

30
 d

B
m

SBS Threshold PTh

η 
≈

20
 d

B

P0

P1

Pump 
Pulse

a)

b)

VBias (Optimum)

VBias+0.02V

 

Fig. 18:  a) Basic requirements for pulse geometry. b) Measured probe pulse waveform at the 
points where no pulse collision occurs in the fiber corresponding to the bias providing 
maximum extinction ratio (blue) and waveform corresponding to 0.02 V shift from optimum 
bias (red). 

3.6 FPM Tone Acquisition and Gain Calibration 

The algorithm of dispersion map reconstruction described in chapter 5 critically 

depends on accurate measurements of the pump/probe/FPM pulse powers.  Our 

measurements have demonstrated that the average powers acquired by a conventional 

power meter were not accurate enough to obtain the precise peak pulse powers as the 

typical error was approximately 2 dB. 

The first reason for this inaccuracy is the finite extinction ratio of the optical 

modulators used to carve the pulses and create frequency-shifted carriers.  Indeed, simple 

calculations reveal that an extinction ratio of 24 dB would lead to a 3 dB discrepancy if 

240-bit long sequence consisting of one isolated mark.  As a second-order effect, the 
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pulse generator also produces a long non-zero transient tail described in the previous 

section.  Finally, the pulse shape after amplification does not possess an ideal rectangular 

shape, as shown in Fig. 11, thus prohibiting simple scaling laws. 

Alternatively, a pulse gating scheme, optical or electrical, should be used.  

Unfortunately, the optical gating scheme based on Mach-Zehnder modulators is not 

viable in practice due to their inherent polarization dependence: the polarization of the 

pulses must be adjusted for every collision instance only to impose temporal gating.  In 

an alternative implementation, an acousto-optic modulator is polarization insensitive, but 

has a long impulse response, rendering its usefulness for the task at hand. 

To address all the issues outlined above, we used a fast sampling oscilloscope for 

pulse localization within the window equal to the length of the loaded bit sequence.  In 

addition, the pulse waveforms were stored for off-line processing.  The detection scheme 

contained two devices with low (<0.1 dB) polarization dependent loss (PDL): 

1) a variable optical attenuator required to keep the peak pulse powers within the 

linear reception band, and 

2) a tunable optical filter required to select a single spectral tone and suppress 

background noise.  Prior to any waveform acquisition, the zero-mean thermal 

noise was reduced by multiple averaging. 

Finally, in case when the probe and the signal pulse powers were high (>25 dBm), 

the undepleted approximation was no longer valid and did not allow simple gain 

estimation using the ratio of the powers measured at the beginning and at the end of the 

fiber.  This mandated the separation of SBS amplification from FPM and Raman power 
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transfer.  In the experiment, the problem was solved by switching the laser generating the 

second pulse off, on the course of the counter-collision gain measurement. 

3.7 Interacting Wave Power Range and its 
Implications 

There are certain ranges of the powers of counter-propagating pulses providing 

best system performance; specifically, the parameters such as contrast, spatially equalized 

gain, and power for FWM product have to be optimized.  In ideal case, the localized gain 

should be as high as possible and constant across the fiber.  However, in practice, the 

gain is limited by the launched pump pulse power.  The low pump power corresponds to 

low gain and poor contrast.  Conversely, if high pump power is high, the pulse is 

distorted by fiber nonlinear effects, predominantly, by generation of the spontaneous 

Raman noise.  As a result, a gain is maximized only at the front fiber section and is being 

degraded as the pump pulse propagates deeper to the waveguide.  If the power of the 

amplified probe or a second pulse is too high, the pulses start exchanging their energy by 

means of Raman amplification, causing significant difficulties in gain calibration and 

adding uncertainties in power readings.  In addition, high pulse powers result in 

polarization walk-off between the pulses (i) degrading conversion efficiency and (ii) 

making inaccurate a scalar model used to reconstruct a ZDW map.  All issues described 

above are summarized schematically in Fig. 19.  The sides of the diagram are attributed 

to three different pulses; the color intensity defines the pulse powers, and the rays 

crossing triangle sides correspond to the optimum power levels. 
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Fig. 19:  A diagram demonstrating how to set optimum pulse powers. 

3.8 Requirements for Pulse Wavelengths 

Establishing the signal and the probe wavelengths with respect to the global zero-

dispersion wavelength (ZDW) is an important consideration for experimental 

measurements.  High pump peak powers (>1 W) dictated positioning within the normal 

dispersion regime to avoid nonlinear pump pulse distortions or pulse self-destruction.  

The second argument is a tradeoff between the efficiency of generation of FPM products 

and measured power dynamic range.  In order to increase the dynamic range, the linear 

phase mismatch should be increased; however this requirement also necessarily leads to 

the efficiency decrease.  The first configuration providing the effective generation of the 

FWM wave corresponds to the close (<5 nm) positioning of the probe and second pulses 
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shifted far (>20 nm) from ZDW to a normal dispersion band.  However, such regime 

provides poor sensitivity of the measured profiles to ZDW variations.  As an illustration, 

the FWM power traces generated in 210-m L-band fiber were measured in forward and 

backward directions (Fig. 20).  Although the fiber has more than 5-nm ZDW fluctuations, 

the traces are almost identical proving a statement of poor sensitivity. 
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Fig. 20:  Measured powers of propagated pulses scanned in both directions for 210-m HNLF 
sample. 

A wide signal-probe separating (>20 nm) and a probe positioning closer to the 

ZDW were identified as one configuration capable of creating the compromise between 

measurement sensitivity and high FPM efficiency.  All experimental results presented in 

the following sections were obtained in this regime. 



4. Numerical Algorithms 

4.1 Nonlinear Schrödinger equation 

The generalized equation describing propagation of signal waveforms in optical 

fibers [54-57] is given by 

1. ( ) [ ] ( )tAtA
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N̂D̂Â ++=
∂
∂  (4.1) 

where A(t) is the complex vector corresponding to propagating sampled bands (the 

complex envelope of the signal in time domain), 2Â α−=  is the operator describing 

fiber losses α measured in [m−1] units,  is the operator responsible for linear effects of 

dispersion,  is the nonlinear operator. 
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which corresponds to differential operator 
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in time domain.  This equation (1) is well known nonlinear Schrödinger equation (NLSE) 

[55-60].  The coefficients βn are the coefficients of Taylor series of the propagation 

coefficient β = neff·k0 expanded in the vicinity of specific reference frequency ωref, neff is a 
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mode propagation index defined by both waveguide and material properties.  The index n 

refers to n-th order term of chromatic dispersion.  The series is truncated considering the 

sufficient number of terms for accurate description of the dispersion effect.  In practice, 

the wavelength dependent dispersion profile Dλ can be obtained using a commercially 

available dispersion measuring test sets.  In this case, the dispersive term defined by eq. 

(4.2) can be replaced by direct integration of dispersion profile 
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The nonlinear operator  describes all effects depending on the power of 

propagated signals.  Relative to characteristic time of the nonlinear response, the 

nonlinear operator can be separated into near-instantaneous part (∼7 fs) [

N̂

55], usually 

referred to Kerr effect, and the time-delayed part characterizing the Raman (molecular 

vibration) scattering [60].  The nonlinear operator defining the evolution of a single 

optical band is given by [59-60] 
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where cAn refωγ 2=  is the fiber mode nonlinear coefficient, n2 is a bulk nonlinear 

refractive index, A is an mode effective area, ρ is coefficient defining the fractional 

contribution of the delayed Raman response to the entire nonlinearity, h(t) is a real 
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normalized Raman response function, ( ) 1=∫ dtth , ξK and ξR are factors (ξK, ξR<1) 

defining polarization properties of Kerr (K) and Raman (R) effects. 

In practice, if the nonlinear interactions outside the specified signal bands are 

negligibly small or not considered, it is advantageous to represents different signals 

relative to their carriers ωn.  In this case, the total electrical field is represented as a 

superposition of corresponding envelopes An(t) 

6. ( ) ( )
n

n etA∑= tnj  (tA ω 4.6) 

Such technique is usually denoted as “frequency decomposition” [60].  After substituting 

expression (4.6) into equation (4.5), the two terms are transformed to five different terms 

for decomposed bands Ai(t) [54-56, 61] 
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The first and second terms define instantaneous and delayed nonlinear effects of the self-

influence known as self-phase modulation (SPM) and intra-band Raman scattering, the 

third and forth terms are responsible for the instantaneous and delayed phase shift (or, 

cross-phase modulation − XPM) of the Ai(t) envelope induced by Ak(t) bands at different 

carriers.  ξ are the polarization factors.  The last term represented by a Fourier component 

at frequency fi−fk of the normalized function of the delayed response multiplied by 

beating term Ai(t)Ak(t)* is responsible for the Raman phase rotation (real part) and power 

39



 40

transfer (imaginary part) between the interacting bands.  The nonlinear coefficient γki of 

two interacting signals is given by 

8. ( )ki

i
ki ffcA

n
,

2ωγ =  (4.8) 

In contrast to the mode effective area A, the overlap integral A(fi, fk) could not be 

measured directly.  However, it can be approximated as average betweeen two effective 

areas measured for fi and fk.  This approximation is accurate if the modes are Gaussian 

profiles.  For example, the Gaussian profile represents the real Bessel mode profile for 

step-index fiber with 96% accuracy [69].  For the fibers with complex transversal 

geometry of the refractive index (such as double-clad fibers), this factor varies between 

90 and 95% demonstrating that Gaussian mode fitting provides a reasonable 

approximation of the real mode profile. 

It is important to note that the NLSE is specified in the moving coordinate frame 

propagated with the group velocity at the reference frequency ωref.  This implies that the 

linear phase rotation and motion of the harmonic are “frozen” and the phases of the other 

spectral components are measured relative to this frequency. 

4.2 Quasi-CW approximation 

In most practical cases, detailed information of the signal waveform resolved in 

time/frequency domain is not necessary or is redundant.  For example, the optimization 

of the broad-band amplifier characteristics for multi-channel system requires the 

knowledge of the gain function for specific channel count; the separate channels can be 

characterized by a single averaged channel power.  The second example is the interaction 
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of the signals propagated in opposite directions.  The signal wave mixes fast with the 

backwardly propagated wave and sees only its averaged field. 

In general case, the figure of merit that governs the use of this approximation is 

defined as a product (η) of the bandwidth of the propagated signal to the characteristic 

time of the physical effect modifying this signal.  There are three distinct situations. 

If η >> 1, the variations of the signal in time are significantly faster than the speed 

of the system response.  In this case, the effect is assumed to be stationary and the system 

transfer function can be represented by a filter with frequency dependent spectral profile.  

A typical example is the simulations of the amplification of the fast modulated signals in 

Er-doped amplifiers. 

If η << 1, the effect can be considered as instantaneous and the evolution of 

different samples of the waveform can be processed independently.  For instance, if the 

rectangular-shape 10-ns pulses are used for counter-collision power delivery and travel 

over sub-kilometer distances, the pulse behavior can be predicted by observing the spatial 

amplitude of a single sample carved somewhere in the middle of the pulse.  In strict 

terms, if η << 1, the equations of the frequency-decomposed sampled waveforms can be 

modified by eliminating the time dependency, which is equivalent to the substitution of 

the optical envelopes Ai(t) by a single complex number Ai.  After this replacement, the 

equation (4.7) is transformed to 
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The newly introduced variable Pi = |Ai|2 defines the power of the signal at frequency fi, 

H(ω) is a Fourier transform of the delayed nonlinear response function.  The factor 

10. ( ) ( )kikikiRkiR ffHffgg −=−= ργ2  (4.10) 

with the dimension of [m−1W−1] is a Raman response function.  It contains both real and 

imaginary parts.  In practice, the imaginary part of gRki can be measured directly by 

tuning the wavelength of the weak probe signal relative to strong pump and measuring 

probe gain spectral dependency [43-45].  The real part can be reconstructed using 

Kramers-Kroenig relation between real and imaginary parts of the analytical function 

[46]. 

The equation (6) does not describe the resonant coupling of the wave at frequency 

fi and three waves at fj, fk, and fl.  The FWM terms must be derived by substituting the 

expression of total field A(t) that accounts four waves ( ) 

into eq. (
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4.5) and grouping the resonant terms with like frequencies.  The final expression 

for FWM operator is given by [61, 63] 
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Subsequently, a FWM nonlinear coefficient γijkl becomes a complex function of four 

frequencies [61, 63] 
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In (4.12), A(fi, fj, fk, fl) is an overlap integral of the modes of four interacting signals 

which can be approximated by 
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This expression is accurate for the Gaussian profiles. 

The most complicated situation corresponds to η having a value close to unity, in 

which case both spatial and temporal evolution must be simultaneously considered. 

4.3 Evolution of the Signals in Counter-Collision 
Setup 

The counter-colliding scanning measurement technique is characterized by a set 

of uniquely defined observables that include signal, probe, pump and FPM powers, 

measured at one or both fiber ends.  Formally articulated, the dispersion retrieval is the 

inverse problem with input variables defined by the powers of controlled signals and 

FPM waves, measured at both waveguide ends.  The signal-probe FPM interactions 

include both degenerate and non-degenerate mixing processes, as illustrated in Fig. 21.  

The dominant FPM process is described by the degenerate photon exchange whereby two 

probe photons are annihilated and create anti-Stokes and Stokes-shifted photons. 
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Fig. 21:  Signal-probe FPM processes. The dominant (degenerate) process 2fP ↔ fS+fF+ is 
indicated by red curve. 

The solution of eq. (4.1) requires special consideration, as it is used in the 

bidirectional counter-colliding power exchange.  Specifically, four interacting pulses are 

represented by a distinct vector representing the total field.  The length of the vector 

depends on HNLF segment length and required spatial resolution.  In a typical example 

used in this research, a 10-nm separation between the probe and pulse required 

calculation arrays composed of 2×105 elements. 

A typical length of the HNLF-based device is shorter than the characteristic 

dispersion distance defined by eq. (1.3.2) [54] and the pulse chirping takes place only at 

its leading and trailing edges.  Therefore, the FPM interaction can be accurately predicted 

by considering mid-pulse power and integrating the set of coupled quasi-CW equations 

with linear (4.2) and nonlinear operators (4.9, 4.11).  This set of equations (4) was solved 

numerically to illustrate the spatial evolution of the FPM wave before and after the pump-

probe collision instance.  Fig. 22 illustrates the collision scanning process by plotting the 
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evolution of powers and phases for all four observables (signal, probe, Stokes and anti-

Stokes FPM waves).  The power evolution was defined by the incident signal and probe 

waves launched with PS = 100 mW and PP = 0.5 mW and centered at 1540 and 1538 nm 

into a 200-m-long HNLF fiber with λ0 = 1579nm, Sλ = 0.025 ps/nm2/km, and 

γ = 25km−1W−1.  The gain experienced by the probe wave was 20 dB at each collision 

instance.  While the format chosen to plot Fig. 22 might seem unconventional, it was 

carefully selected to illustrate the FPM localization of the new measurement method.  

The plot is segmented into two sections that correspond to wave powers immediately 

prior to the collision (left of the 200 m mark) and powers measured at the end of the fiber 

for each collision point (right of the 200 m mark).  In absence of any collision, the 

powers of all four waves at the end of the fiber can be read just left of the 200 m mark 

(PS = 20dBm, PP = −3 dBm, PF− = −9 dBm, PF+ = −31 dBm).  In case of a collision 

instance at, e.g. zC = 100 m, the power of four waves at the end of the fiber is read right 

of the 200 m mark (PS = 20 dBm, PP = 17 dBm, PF−  = −1 dBm, PF+ = 3 dBm). 

Fig. 22 illustrates that the significant growth of the power of FPM sidebands takes 

place only after probe amplification.  Furthermore the abrupt phase change in the FPM 

tone is also induced at the collision instance and is quantified by the last term of eq. 

(4.11).  Indeed if the localized collision increment for the mixing terms AF+/−, (given by 

γAP/S
2AS/PΔz), is considerably larger than the mixing powers just prior to the collision 

their phases are governed by the complex amplitude of the amplified probe pulses. 
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Fig. 22:  Power and phase evolution for signal, probe and FPM waves during the collision 

scanning of a 200-m-long HNLF section. All traces to the right of the 200 m mark 
correspond to the power/phases at the fiber end; to the left − to the power/phases just prior to 
the collision point. 

The validity of the quasi-CW approximation was verified by solving the time-

dependent nonlinear Schrodinger equation describing the counter-collision process.  

Time-dependent simulations (eq. (4.1)) indicated excellent agreement with the quasi-CW 

approach described.  This agreement is illustrated in Fig. 23, indicating near-vanishing 

differences for all interacting wave powers.  The simulation used launched the probe 

(PP = 15 mW, λP = 1558 nm), amplified by 20 dB at every collision instance, and the 

second pulse (PS = 65 mW, λP = 1523 nm) propagated in 250 m of HNLF with 

λ0 = 1560 nm, Sλ = 0.026 ps/nm2/km, and γ = 14.5 km−1W−1. 
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Fig. 23:  Powers of the probe P, second pulse S, and FPM sidebands F+/− at the end of the fiber 

obtained using the integration of the time-dependent Schrödinger and quasi-CW equations. 

The rigorous prediction of the evolution of all interacting pulses is provided by 

the nonlinear Schrödinger equation for the envelope A(t) at a chosen carrier frequency 

using the standard split-step formalism [55] described in more details in chapter 4.4: 

If the power transfer between the probe and the second pulse is negligible before 

the collision instance (undepleted propagation), the power evolution of the Stokes 

amplitude AF+ is described by: 
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where AP and AS are the amplitudes for the probe centered at fP, the pulse fS, and the 

Stokes wave at 2fP−fS, κ is a linear operator given by (4.2). 

Assuming negligible fiber loss, eq. (4.14) can be simplified by using the 

transformation 
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that allows the FPM evolution to be rewritten in the rotating frame of reference 

16. ( )zjeBBj
dz

dB φγ *
S

2
P

F =+  (4.16) 

In eq. (4.16), the phase term φ(z) defines total (linear and nonlinear) retardation 

seen by the FPM wave.  A new variable φ(z) represents the accumulated phase mismatch 

experienced by the FPM wave.  The phase mismatch combines both linear κlin(z) and 

nonlinear κnl(z) contributions defined as: 

17.  (( ) ( ) zdzz
z

′′Δ= ∫
0

linlin κφ 4.17) 

18. ) zdz  (( ) ( ) ( ) ( )( PzPzPz
z

′′−′−′= ∫ +
0

FSPnl 2γφ 4.18) 

The power of the FWM wave at the fiber end can be obtained by integration of 

equation (4.16) 
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L
zj dzedzeBBBLP βφγ  (4.19) 

For a constant dispersion profile, the expression for the FWM power is 

transformed to a classical sinc2-law dependency [58]. 

As implied by equation (4.18), the 1:2 ratio between the probe (PP) and the signal 

(PS) can be used to minimize the nonlinear contribution to total phase mismatch.  By 

acquiring the power of all four waves at the end of the fiber, it is possible to solve the 

inverse problem and retrieve the dispersion fluctuation map along the entire fiber length. 
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4.4 Numerical Integration and Accuracy control 

The split-step method (SSM) is usually used to solve parabolic Schrödinger 

equation (1).  According to this technique, a single integration step is replaced by a 

combination of the steps desribing linear and nonlinear effects independently.  Typically, 

the following symmetrical scheme shown in Fig. 24 is applied.  First of all, the step 

length Δz at every integration step is calculated.  Then, the optical field is modified by a 

liner operator corresponding to the propagation at Δz/2 calculated in the frequency 

domain.  Subsequently, the nonlinear operator corresponding to the full step Δz in time 

domain is applied.  The Raman terms containing the convolutuon of the propagated fields 

and Raman response functions are simulated in frequency domain using a convolution 

theorem.  Finally, the linear operator (2) of the second Δz/2 interval is repeated.  The 

process is continued until the left border of integration is reached.  The integration step 

Δz is usullally selected by specifying the maximum nonlinear phase rotation Δφmax taking 

place in this step. i.e. 

20. ( ) ( )zP
zz

max

max

γ
φΔ

=Δ  (4.20) 

Pmax is a maximum total power (in time) of the optical field at coordinate z.  The typical 

Δφmax providing 0.1-dB-accuracy integration for 1 W signals is less than 0.2°.  However, 

it is worth limiting this step to some reasonable (better random) value if the power of the 

propagating wave is low.  The worst integration strategy is to use the integration grid 

with constant step size in which case the FWM products can be artificially overestimated 

[62]. 
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Fig. 24:  Schematic representation of the split-step method. 

In the previous chapter, it has been proved that the quasi-CW approximation is 

valid for accurate representation of the pulse evolution used in counter-colliding pulse 

scheme.  It was shown that, if the time dependency is exclused, the partial differential 

equation (4.1) is transformed to a set of ordinary differential equations for complex quasi-

CW waves.  The differential equations can be integrated using standard Runge-Kutta 

technique [64].  However, simulations demonstrated that the standard Runge-Kutta 

algorithm provides only the first order accuracy for a set of differential equations.  In 

order to overcome this difficulty, the split-step method can be adapted.  As before, a 

single integrating step has to be divided into 3 steps.  The two linear steps can be 

integrated accurately using analysical expression for the rotated phase.  The nonlinear 

step can be calculated using predictor-corrector scheme.  According to this scheme, if a 

set of coupled equations ( )YxFdxYd ,=  is integrated at dx, the solution at right border 

is first predicted ( ) ( ) ( )( )dxxYxFxYdxxY ,+=+∗ , then it is mixed with the original 

vector to find approximate (averaged) value of the right-hand part of the equation at dx, 

i.e. ( ) ( )( ) ( )( )( dxxYxFxYxF ++ ∗ )YxF = ,,21, , and finally the value of the function at 
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x+dx is calculated ( ) ( ) ( )dxYxFxYdxxY ,+=+ .  Of cause, if only SPM and XPM 

effects are considered, there exists analytical expression for nonlinear phase rotator and 

predictor-corrector step is not required. 

4.5 Phase Matching Conditions 

The linear phase matching factors introduced in (4.17) corresponding to the 

different dispersion order can be analytically calculated for arbitrary nonlinear process 

involving four interacting waves.  If four distinct waves exchange power by means of 

FWM process ω1+ω3 ↔ ω2+ω4 (i.e. dA4/dz ~ A1A2
*A3), the generalized expression for the 

phase matching factor is given by 
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in which βn is a dispersion factor defined in Chapter 4.1, ωref is a frequency at which 

these coefficients are specified, i.e. βn = βn(ωref).  The analytical expressions for three 

lower order phase matching terms can be written as follows: 
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For a degenerate process 2ω1 ↔ ω2+ω4 (ω1 = ω3), these expressions transform to 

25. ( )2
2122 ωωββ −−=Δ  (4.25) 
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26. ( ) ( )ref1
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In practice, the dispersion coefficients βn are calculated analytically using a 

polynomial fit of the dispersion profile D(λ) measured by dispersion measuring test set.  

For example, the first three factors are given by (4.28-30).  As before, the dispersion D, 

slope S, and slope derivative dS/dλ are specified at specific reference frequency ωref. 
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4.6 Modeling of Localized Pulse Amplification 

The interaction of two optical waves ES and EP propagated in opposite direction 

and interacting through Brillouin scattering and a complex acoustic wave ρ is described 

by a set of coupled equations 
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α is the attenuation coefficient, 01 2 ρωγκ nce= , Ae vc2
2 ωγκ =  are the Brillouin 

coupling coefficients, Γ = π ΔfB – photon decay rate, ΔfB is a SBS gain spectrum FWHM, 

fn is the noise source, Aeff is a fiber effective area, Bg=Γ214 κκ  is the Brillouin gain 

coefficient.  The typical values for silica are as follows: electrostrictive constant 

γe = 0.902, material density r0 = 2210 kg/m3, velocity of the acoustic wave vA = 5960 m/s. 

The equations can be solved using a method of characteristics [65].  The basic 

idea of the method is to reduce the two-dimensional integration to a single dimension.  

The integration is performed along characteristic lines (dashed lines in Fig. 25) z = vgt, 

i.e. the integration steps in time τ and space h = vgτ are dependent.  The group velocity vg 

of the optical field is significantly larger that the velocity of the acoustic wave vA so that 

the second term in eq. (4.31) can be neglected.  This implies that the acoustic wave 

evolves in time (vertical lines) whereas the optical waves propagate both in time and 

space (tilted lines).  In a single step, the predictor-corrector integrating scheme described 

in the previous paragraph can be used. 

53



 54

Int
eg

rat
ion

(L,0) z

t

(0,0) h h 

ττ

layer 0

layer 1

layer 2

Initial ValuesIn
pu

t S
ig

na
ls

 F
or

w
ar

d

O
ut

pu
t S

ig
na

ls
 

Fo
rw

ar
d

O
ut

pu
t S

ig
na

ls
 

B
ac

kw
ar

d

In
pu

t S
ig

na
ls

 B
ac

kw
ar

d

B
ou

nd
ar

y 
Va

lu
es

B
ou

nd
ar

y 
Va

lu
es

 

Fig. 25:  Schematic representation of the integration algorithm. 

Fig. 26 demonstrates the profiles of the 10-ns ideal rectangular probe with 3-

dBm-peak input power amplified in HNLF (ΔfB = 50 MHz, Aeff = 12 um2) by 10-ns 

pumps with peak powers varied in 34−42 dBm range.  It is clearly seen that the simulated 

waveforms are very consistent with the measured ones shown in Fig. 11b. 
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Fig. 26:  The profiles of the 10-ns amplified probe. 

4.7 Calculation of the Mode Profile and Dispersion 
Characteristics 

The optical properties of the waveguide can be calculated if the transversal 

refractive index profile n(r) and the material dispersion are known.  In the first step of 

this process, the equation for cylindrically symmetric waveguide [53] 
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is projected to sufficiently dense discrete spatial grid and converted to the matrix form 

LijEj = λEi.  In this expression, the transversal profile of the susceptibility ε(r) = n2(r), 

effective index neff, and mode profiles E are all functions of wavelength.  k0 is the 

absolute value of a free-space propagation vector.  This formulation allows eq. (4.32) to 

be transformed to the standard eigenvalue problem governed by the (variable) effective 

index neff and the mode profile Ei.  From practical point of view, it is advantageous to 

shift a grid from the origin by half of the discretization step Δ, i.e. ri+1 = (i+1/2)Δ.  The 
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boundary conditions at r = 0 are dictated by axial symmetry of the radial mode, i.e. 

E(r1/2) = E(r−1/2).  At the right boundary, the field at the last point E(rimax) can be set either 

to 0 (zero approximation) or selected considering deterministic exponential depletion of 

the mode outside the core (transparent border approximation, E(rimax) = E(rimax−1)⋅e−αr).  

In practice, the simulation window should be selected at least ten times larger than the 

effective core diameter to guarantee significant mode depletion in cladding area.  All 

obtained real effective indexes {neff} lying between the maximum core index and 

cladding index correspond to the fiber guided modes for a certain azimuthal index l.  The 

propagation index of the fundamental mode has the maximum value among {neff}.  The 

matrix Lij has a tri-diagonal nonsymmetrical form with a dominant diagonal (|Lii| > |Li,i−1|, 

|Li,i+1|).  Such matrix can be transformed to a symmetrical tri-diagonal one Lij* [74] with 

identical eigenvalues allowing application of fast linear algebra methods, for example, 

QL algorithm with implicit shifts [72].  The modes Ei (eigenvectors) can be found using a 

method of inverse iterations [73] which converges extremely fast (typically, 3-5 

iterations).  The eigenvector of the transformed symmetrical matrix Lij* is a good guess to 

find the eigenvector of the original matrix Lij.  In addition, by applying inverse iterations, 

the modes and propagation indexes at arbitrary frequencies can be obtained if they are 

calculated at some nearest frequency.  Such strategy makes mode and dispersion analysis 

very fast.  The overlap integrals Aik = A(fi, fk) of the interacting modes at different 

frequencies defined in eq. (8) can be calculated by integrating the obtained mode profiles 
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Fig. 27:  The simulated fundamental mode profile of the HNLF at λ0 = 1560 nm [24]. 

Fig. 27 demonstrates the mode profile for highly nonlinear fiber with zero 

dispersion wavelength of 1562 nm calculated using a transversal refractive index profile 

obtained from fiber manufacturer.  The wavelength dependencies for dispersion, slope, 

and effective area for this fiber and a fiber with ±1 perturbed geometry are shown in Fig. 

2 and Fig. 28.  As seen from Fig. 28, slope and effective area, in contrast to dispersion, 

are almost insensitive to variations of fiber geometry.  This implies that the slope and 

nonlinear coefficient used in the inverse dispersion solver can be approximated by some 

average values.  The later fact significantly simplifies the numerical complexity of the 

dispersion retrieving solver. 
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Fig. 28:  HNLF dispersion slope and effective area sensitivity to transversal profile perturbation.  
Reference (unperturbed) waveguide designed for λ0 = 1560 nm; the core radius perturbed by 
±0.5% and 1%. 



5. Inverse Dispersion Retrieval 

In this thesis, three distinct paths leading to the inverse problem solution will be 

introduced.  The first two methods utilize the approximation in which the evolution of 

propagated pumps is deterministic assuming that the effect of the generated FWM 

sidebands on strong waves is negligible.  This simplification allows creating very 

illustrative graphical constructions (trajectories) in phase space.  In the last approach, the 

experimentally obtained power profiles are fitted by numerical ones by optimizing spatial 

dispersion map. 

As discussed in chapter 4.2, using of the quasi-CW approximation instead of 

solving time-dependent nonlinear Schrödinger equation for long (>1 ns) interacting 

pulses simplifies the numerical analysis significantly.  The validity of this approach was 

verified by numerical simulations.  The observables of the counter-colliding scanning 

measurement are the measured waveforms of the probe, pump, and Stokes waves 

acquired at the end of the fiber and probe gain at collision instance.  Following the quasi-

CW notation, one is ready to consider solving the inverse problem and retrieve the 

dispersion fluctuation map using the signal levels sampled in the middle part of the pulse. 

5.1 Geometrical Method for Dispersion Retrieval 

The geometrical approach is based on a simple notion that the amplitudes of the 

FPM products could be represented by the vectors in the complex (phase) space.  

59 



 60

Propagation along HNLF simply elongates the vector and rotates it according to the 

accumulated (linear and nonlinear) phase retardation that the wave experiences.  The 

evolution of the vectors is fully described by elemental increments defined by RHS of the 

following equation. 

1. ( )zjeBBj
dz

dB φγ *
S

2
P

F =+  (5.1) 

i.e. the entire propagation and discrete collision process simply becomes the vector 

summation problem.  BP, BS, and BF+ are the amplitudes for the probe centered at fP, the 

pulse at fS, and the Stokes wave at 2fP−fS specified in rotating frame. 

To construct the geometrical solution more formally, assume that the FPM wave 

propagates from the beginning of the fiber up to some point zC, with B0 = r0 representing 

its accumulated complex amplitude.  Two distinct cases can be identified: in the first one, 

the probe is amplified at zC; in the second one – the probe is amplified at the nearest 

resolvable point zC+dzC.  Let R and r be the FPM amplitudes measured at the fiber end, 

corresponding to the collision at zC and zC+dzC respectively, and RΣ and rΣ be the FPM 

amplitudes accumulated after zC+dzC: 
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For the undepleted case, their absolute values are equal, i.e. |RΣ| = |rΣ| = Σ because 

the RHS of eq. (5.2) is identical except the constant phase factor δφ.  Let eRΣ and erΣ be 

directional unit vectors for RΣ and rΣ (RΣ  = ΣeRΣ, rΣ = ΣerΣ) and Δ1 and δ1 be the 
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increments to amplitudes R and r during the collision interval [zC, zC+dzC].  A schematic 

diagram of the vector collision description is shown in Fig. 29. 

According to eq. (5.1), the angle between vector r0 and Δ1 corresponds to the 

phase mismatch at point zC corrected by finite increment (Δκlin(zC)+ΔκNL
(AC)(zC))dzC.  By 

analogy, the angle between vector r0 and δ1 is a phase mismatch at point zC corrected by 

(Δκlin+ΔκNL
(BC)(zC))dzC.  Correspondingly, the angle between vectors Δ1 and δ1 is given 

only by collision nonlinear phase shift α = 2γ(P1
(AC)−P1

(BC))dzC.  Finally, the angle 

between the vectors RΣ and rΣ is also α (eRΣ⋅erΣ = cosα) since the increments and rotation 

angles after zC+dzC are identical. 
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Fig. 29:  Vector representation of the evolution of FPM waves. 

The geometrical interpretation of FPM evolution can now be formalized in the 

flowing set of equations: 
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Decomposition of eq. (5.3) to the vector r0 and its perpendicular generates a set of 

four transcendental equations with 6 unknowns.  The number of equations is reduced to 4 

for collision points at the beginning and at the end of the fiber. 

If the powers of the FPM products before the collision are negligible, i.e. r0 and δ1 

are zero-length vectors, the analysis is significantly simplified as the vectors 

corresponding to the amplitudes for two consecutive collision points and the vector Δ1 

create a simple triangle in this case. 
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Fig. 30:  Vector representation of the evolution of FPM products assuming zero mixing power 
before the collision instance. 

To illustrate this important observation, the incremental vector Δi can be plotted 

within one circle of radius Δ, as illustrated in Fig. 30.  Fig. 31 finally reduces the task of 

dispersion retrieval to a trivial geometrical problem: the outer angle is the local phase 

mismatch and is calculated by cosine theorem: 
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Fig. 31:  A triangle formed by vectors of complex amplitudes of the FWM product referred to the 
collisions at some nearest points. 

Local phase mismatch, in turn, defines the local linear propagation difference, and 

correspondingly, the dispersion profile via the simple relation: 

5. ( )
C

Clin
lin dz

zdφκ =Δ  (5.5) 

By consecutively applying the geometrical solution to all collision instances, the entire 

dispersion fluctuation map is retrieved. 

5.2 Dispersion Retrieval Using Finite Difference 
Approximation 

By separating the amplitude and phase, eq. (4.16) can be transformed to: 

6. ( )zPP
dz
Pd

φγ sinSP
F =+  (5.6) 

Integrating the last relation, it is possible to express the absolute value of the Stokes 

amplitude at the end of the fiber as: 
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Eq. (5.7) implies that the generation of the FPM wave is aided by the pump-probe 

collision at zC that delivers abrupt power increase to the probe pulse.  The separate 

subscripts BC and AC correspond to the wave evolution (B)efore and (A)fter the 

(C)ollision instance.  Using a straightforward algebraic approach, it is easy to 

differentiate equation Φ(zC) with respect to the collision coordinate zC and calculate φ(zC) 

by assuming the undepleted pump approximation.  The difference relation following from 

this procedure is given by: 
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where G indicates the abrupt gain experienced by the probe pulse at the collision point zC.  

The newly defined variables Δ and δ are given by: 

9. 
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and represent the absolute values of the amplitude increments before and after the 

collision instances.  The term (∂φ/∂zC) in eq. (5.8) is the derivative of the total 

accumulated phase at the collision point with respect to collision coordinate defined by: 
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It should be noted that linear terms do not present in (5.10) because linear phase 

mismatch is a deterministic (although unknown) value independent on collision 

coordinate. 
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A significant insight is gained by noting that RHS of eq. (5.10) is composed out 

of two distinct parts: the first one unifies the information about pre-collision propagation 

and the phase at collision instance, while the second (integral) term describes the 

difference in the Stokes powers accumulated after collision due to different initial phase 

relations at zC and zC+dzC points.  The value of the accumulated phase can be found using 

the iterative procedure: 
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 (5.11) 

In the initial iteration, the simplest solution can be chosen by setting the second 

term of RHS of eq. (5.11) to zero.  The algorithm then proceeds and can be stabilized by 

dampening the phase guess the at consecutive iterations, φ[j+1] = εφ[j]+(1−ε)φ[j+1] in which 

ε is the (empirical) stabilization factor (0 < ε < 1).  Finally, difference process 

reconstructs the entire phase evolution and leads to dispersion fluctuation retrieval. 

5.3 Accuracy of Dispersion Retrieval Algorithms 
and Uniqueness of Dispersion Fluctuation Map 
Solution 

The basic property of any algorithm is its tolerance to a variation of the input 

parameters that still provide acceptable accuracy in calculating the target physical 

quantity.  We adopted the simulate-then-retrieve strategy in order to gauge the accuracy 

of any dispersion retrieval algorithm.  At first stage, randomly generated dispersion 

fluctuation map Dgen(z) was used to calculate all observable parameters P(zC) within the 

counter-collision scanner system.  Then, these powers were used as input parameters to 
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the inverse solver; consequently the inverse solution Dgen(z) is compared to the original 

(randomly generated) dispersion map.  We refer to the front end of this algorithm testing 

construct as a synthesizer (as it mimics observables in the experimental setup), and the 

inverse solver as an analyzer (as it analyzes the provided observables). 

Dgen(z) P(L,zC)CalculateGenerate

D (z)ret

Inverse Solver

Synthesizer

Analyzer

Compare

Measure

 

Fig. 32:  Schematic representation of the simulate-and-retrieve strategy. 

lity of the introduced 

method

n of the input 

parame

Following proposed strategy, in order to verify the applicabi

s, the set of equations (4.9, 4.11) is integrated numerically for consecutive 

collision instances using the dispersion profile generated by randomly weighed four 

Fourier spatial harmonics, as shown in Fig. 33, and represents the synthesizer block.  The 

output power profiles from the synthesizer are processed by the analyzer using the finite 

difference and geometrical approaches described in sections 5.1 and 5.2. 

Both algorithms exhibit comparable tolerances to the variatio

ters within certain operational regimes, which is not surprising because these 

algorithms use similar physical principles.  More specifically, in the case of low 

signal/probe peak power (<10 mW) and high gain, (>20 dB), the accuracy of the 

dispersion retrieval algorithms is satisfactory, as shown in Fig. 33a.  The discrepancies 
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between the two methods depend on the initial phase of input signals and are pronounced 

at the collision points close to the end of the fiber where the rapid increase of the FPM 

sideband power takes place. 
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Fig. 33:  Dispersion profiles at 1540 nm: generated (exact), inverse solution retrieved by algeb c 
(finite-difference) and geometrical methods. a) PP = 0.02 mW, PS = 20 mW, b) 

rai

P  = 0.05P

 add 

some t

 mW, PS = 50 mW, γ = 14.5 m−1W−1, fiber length L = 270 m, gain G = 27 dB. 

Fig. 33b demonstrates that both methods overestimate the dispersion and

ilt to spatial profile in the case when the pulse powers are increased beyond a 

certain limit (from 20 to 50 mW).  In this operating regime, the accuracy cannot be 

improved by increasing the density of the collision grid (or, equivalently, by decreasing 

the integration step) which means that the other physical effects such as pump depletion 

cannot be neglected.  As seen from Fig. 33b, the maximum tilt is attributed to the 
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collisions taking place close to the fiber end and corresponding to longer propagation 

distances the amplified pulses. 

However, the combination of high gain and low optical signal to noise ratio 

(OSNR) of the FPM pulses pose a real challenge in the counter-colliding scanner 

implementation.  In practical terms, for signal powers below 10 dBm, low FPM powers 

are generated even in high-confinement HNLF sections.  In the ideal (phase matched) 

case, a simple estimation from eq. (5.6) for maximum (peak) power of Stokes wave 

results in PF+ = −14 dBm for 300-m-long fiber with γ = 15 km−1W−1, PP

th the geometrical and finite-

differe

5.4 Dispersion Retrieval by Minimization 

ed a set of 

approx

a fiber as a “black box” with known input and output signals, as illustrated in Fig. 34. 

 = 10 dBm and 

PS = 13 dBm, thus requiring a low-noise detection scheme. 

The limited range of input parameters accepted by bo

nce inverse solvers motivates a different approach less sensitive to signal/probe 

power and gain variances. 

Both geometrical and finite-difference inverse solvers us

imations that ultimately limited the range of their applicability.  In an alternative 

approach, one can take a different position: since complete FPM and collision physics 

can be described accurately for any dispersion fluctuation map, these calculations should 

be repeated until the desired accuracy of matching of experimental and simulated 

observables is reached.  The physical insight is exchanged for an intense computational 

search required to find the unique dispersion profile that, when used to calculate all 

observables, will produce required-accuracy match.  This approach essentially considers 
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Fig. 34:  A schematic diagram of black-box inverse approach. 

The unknown characteristic of the fiber is its dispersion profile that is f nd 

put pulse powers to its output 

using th

ou

following a simple concept.  Target fiber maps measured in

e internal numerical algorithm (propagator), described by a set of equations 

12. ( ) ( )DPP ,,, CinCout jj zLz Φ=  , j = 1…N (5.12) 

in which Pout(zCj, L) represents a vector of output powers (PP ding 

lision at zCj, Pin is a vector of input powers, 

, PS, PF+, PF−) correspon

to col N is the total number of measured 

points, Φ is a function-propagator described by eq. (4.9, 4.11), and D is the unknown 

dispersion fluctuation map.  The simulated powers are compared to the measured ones to 

generate a specific feedback to the algorithm, which is used to update the calculated 

dispersion profile in iterative manner applying chosen minimization algorithm.  A metric 

ε used in simulations 

13. Nzz
2

)()(∑ −= PPε  (
j

jCj Csimulatedmeasured 5.13) 
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is a ge d and simulated profiles specified ometrically averaged difference between measure

in logarithmic units. 

In real fiber, the dispersion varies continuously, i.e. there is a significant spatial 

correlation along its length, justifying the expansion of function D(z) in terms of some 

basis functions fk(z) weighed by dk: 

14. ( ) ( ) fdD ⋅=== ∑ zfdzD kk  (5.14) 

The simplest choice for fk(z) is a set of Fourier harmonics or some orthogonal 

polynomials. 

The minimization methods [75] of choice can be divided into two basic groups: a) 

the first class (conjugate gradient, quasi-Newton and similar) is based on the search in 

multidimensional space by making steps along some optimized direction, calculated 

mainly using the information of local gradient, b) the second class (direction set, simplex, 

genetic algorithms) is based on evaluation of eq. (5.12) along different directions in N-

dimensional D-space and selection of “best”/elimination of “worst” trials. 

The criterion of the method convergence depends on the applied optimization 

algorithm.  For the methods from the first group, the simulations can be stopped if the 

relative metric difference 

[ ] [ ]

[ ] [ ]( )ii

ii

εε
εε

η
+

−
=

+

+

1

1

1 21
15.  (5.15) 

en two consecutive iterations is below som

group, the criterion (5.15) can be enhanced by additional requirement of small difference 

between maximum and minimum metric 

betwe e small factor (say 10−4).  For the second 
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η =  (5.16) 

at every iteration. 

Simulations demonstrated that all of the methods are capable of perfect retrieving 

numerically synthesized dispersion profile.  For measured data that inherently possesses 

ain problem was the 

stability

measured power profiles were 

success

from the measuring of 

the per

built-in uncertainty, the situation was more complicated: the m

 of the algorithm to the initial guess and the ability to converge to the global 

extremum.  The methods based on gradients demonstrated the worst performance, 

converging only if the initial guess was close to the global minimum.  In case of a distant 

initial guess, the solution vector D varied significantly, converging to some local 

minimum, not necessarily related to a physical solution.  Direction set method was almost 

insensitive to the initial guess since multiple linearly independent directions were 

simultaneously tried, but converged in a slow manner. 

While not providing elegance, the optimization approach proved itself to be a 

“working method” for most practical cases.  More importantly, approximations such as 

pump non-depletion were not required and the 

fully used without pre-processing (scaling and smoothing). 

The resolution of the presented method is defined by both considered physical 

effects and numerical algorithm.  Likewise Mollenauer’s method [34] (eq. (1.2)), the 

rough estimation of the average zero dispersion wavelength results 

iod of FWM oscillation.  A minimally resolved spatial cell is limited by collision 

interval.  The mathematical resolution is defined by the primitive period of the basis 

function (5.14).  The fundamental limitation is imposed from the fact that the evolution of 
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FWM sidebands is driven by periodic function of local phase mismatch proportional, at 

the same time, to integrated fiber dispersion (see equation (4.19)).  However, integration 

of some function implies averaging and smoothing.  In proposed method all measured 

points are considered, in which case the definitive characteristic becomes the sensitivity 

of the observable characteristics even to small variations in dispersion profiles.  The 

preferable behavior is when small deviations of dispersion profile are converted to 

significant deviations in power traces, but these deviations have to be resolved by 

measuring technique.  Practically, they should be more than 0.5 dBm.  The high 

sensitivity mode can be obtained by correct positioning of the wavelength of interacting 

pulses relatively to zero dispersion wavelength (ZDW) and selecting peak powers, as 

described in section 3.7 and 3.8. 

The 268-m HNLF sample with mean ZDW of 1560.5 nm, dispersion slope of 

0.025 ps/nm2/km and deviation σλ less than 3 nm was scanned by two co-propagating 10-

ns pulses positioned at λ1 = 1558.23 nm and λ2 = 1530.23 nm and a counter-propagating 

10-ns p

n.  Fig. 35 shows that a good agreement was found 

between standard (destructive) and new counter-colliding techniques for 

ump.  The corresponding FWM tone is located at 1587.3 nm.  Fig. 35 illustrates 

the measured and converged (calculated) power profiles obtained by the metric 

minimization algorithm.  The averaged Stokes product mean-squared deviation between 

the measured and calculated values (upon algorithm conversion) was less than 1 dB 

across the entire fiber collision scan. 

The fiber was cut into 50-m long segments and global ZDW of each section was 

measured by FWM method and noise injection method [50] for blue and red pump, 

providing only 50-m spatial resolutio
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γ = 16.

2

ntation.  While the pump power, as well as the 

gain at

8 W−1km−1.  The dispersion profile was reconstructed using Powell’s method with 

relative metric tolerance η1 of 10−3 [76]. 

The input powers of the co-propagated probe and second pulse were 30 mW and 

58 mW, respectively, throughout the collision scan.  The SBS collision gain varied from 

5 dB at the end of the fiber to 15 dB at the fiber input.  Gain depletion was fully 

accounted for in the algorithm impleme

 the last fiber section, could have been increased beyond the reported values, the 

pulse destruction became evident.  The convergence of the inverse algorithm is illustrated 

in Fig. 36: the simulated Stokes power profile converged to a measured one, with an 

initial guess defined by the constant dispersion corresponding to the average ZDW.  The 

dispersion profiles were calculated using thirteen-harmonic decomposition. 
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Fig. 35:  Measured and calculated powers of propagated pulses 268-m HNLF sample. 
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Fig. 36:  Convergence of the Stokes power. 
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Fig. 37:  Comparison between destructive measurement and the counter-collision mapping 
technique:  red and blue lines show average dispersion profiles of five 50-m long sections 
obtained using a noise injection method for red- and blue-shifted probes, black line 
corresponds to a dispersion profile recovered after convergence of the numerical algorithm. 
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The second 175-m HNLF sample with ZDW of 1562.5 nm and slope of 

0.025 ps/nm2/km was scanned with the SBS gain below 15 dB.  Such regime provides the 

equalized gain along the fiber coordinate and, correspondingly, smoother measured 

traces, as clearly seen form Fig. 38.  In order to keep the minimum measured power of 

the FWM product above −10 dBm, the power of the second pulse was increased up to 

27 dBm, which is at least ten times higher than that used in the previous measurement.  

The new configuration also allowed the equalized powers of the probe and the second 

pulse and elimination the nonlinear phase mismatch defined by (4.18). 
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Fig. 38:  Measured powers and simulated power of propagated pulses scanned in both directions 
for 175-m HNLF sample.  Nonlinear index used in optimization algorithm: 17.2 W−1km−1. 

The fiber was scanned in both directions: after completing the first collision scan, 

the fiber input and output were swapped and the scan was repeated, resulting in good 
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agreement between retrieved dispersion profiles, as shown in Fig. 38.  The used 

wavelengths of the probe and second pulses are λ1 = 1559 nm and λ2 = 1530 nm.  The 

period of the first spatial FPM oscillation differs by approximately 15 m (90 vs. 75 m) 

indicating that the ZDW of the front section is located closer to a probe wavelength by 

1 nm (see eq. (1.2)).  After the converging of the numerical algorithm, the simulated 

profiles reproduced the measured ones with the 0.9-dB accuracy, as shown in Fig. 40.  

The obtained ZDW profiles (Fig. 39) are obtained using simplex method started from the 

constant ZDW profile of 1562.5 nm. 
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Fig. 39:  Comparison between ZDW measurements obtained from traces scanned in both 
directions. 
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Fig. 40:  Relative and absolute error of the simplex algorithm for forward (red) and backward 

Fig. 39 overestimate the real ZDW oscillations.  

Such uncertainty can be addressed to weak sensitivity of the power of FWM wave to 

variations of ZDW at locations of power extrema.  Specifically, for the points 

corresponding to local maxima zmax, the phases of the complex vectors defining the local 

accumulated amplitude BFWM(zmax) of FWM wave and the vector defining the FPM 

contribution Δ(zmax) (see eq. (5.3) and (5.9)) at short subsequent interval dz, dependent of 

the phase mismatch of the three interacting waves, are orthogonal (shifted by 90° in 

phase) so that the total power increase is small, i.e. 

|BFWM max)|á| Δ(zmax)|.  For the points corresponding to local minima, 

the vec

(blue) scans. 

In fact, the oscillations shown in 

(zmax+dz)−BFWM(z

tors BFWM(zmax) and Δ(zmax) are almost parallel so that the local phase mismatch 

(see eq. (5.4)) is badly resolved.  In practice, this difficulty can be surmounted by 

simultaneous processing of several FWM profiles with non-overlapping positions of the 

extreme points and corresponding to different wavelengths of the scanning pulses. 
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Fig. 41:  Evolution of the FWM product in a fiber corresponding to extremal cases of minimum 
and maximum powers. 

It is clearly seen from both measurements that the amplified probe transferred its 

energy for both Stokes wave and the second pulse and its power decreased by several 

decibel.  In this case, the undepleted pump approximation is no longer valid and the 

geometrical and finite-difference methods could not be used. 

5.5 Measuring Fiber Nonlinear Coefficient 

The inverse dispersion retrieving algorithms described in chapter 5 require 

γ

accuracy better than 5%. ethods of measuring γ that exploit different nonlinear 

effects have been proposed.  However, most of them need complicated signal sources, or 

suffer from a large uncertainty in the measured physical characteristics.  This section 

knowledge of the nonlinear refractive coefficient  as an input parameter with the 

  Several m
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describes two “working” methods to measure γ utilizing the pulse sources used in the 

dispersion measuring setup shown in Fig. 13. 

The first method called “two-tone method” presented in [80] is based on the 

measuring of the strength of the first order harmonic formed in nonlinear fiber by self-

phase modulation.  The signal launched to a fiber contains two spectral tones forming a 

periodic pattern in time domain.  In the original article [80], these tones were formed by 

π

two independent lasers.  Such two-tone oscillating pattern can be created using a single 

amplitude modulator driven by a single clock and biased at null point.  The peak-to-peak 

voltage (typically, ~V ) is adjusted in order to guaranty the negligible power for the 

higher order harmonics.  The experimental setup is shown in Fig. 42. 
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Fig. 42:  Experimental setup for two-tone method. 

The difference in power between zero- and first-order harm

FUT

1

Clock 

onics I0/I1 can be 

measured using an optical spectrum analyzer with the resolution of 0.01 nm (for example, 

Ando AQ6317B) and is given by 
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in which Ji is a Bessel function of i-th order, <P> is the average input power (measured by 

power meter), φNL = γ<P>L is the nonlinear phase shift, γ – fiber nonlinear coefficient, L 

– fiber length.  The method provides “natural” means to measure the nonlinear coefficient 

because of low dispersion in HNLF.  In such a fiber, the phase shift between closely-

spaced harmonics is predominantly formed by SPM with a negligible effect of the linear 

phase rotation.  The transcendental equation (5.17) for γ can be easily solved using a 

method of division of the interval of search by two.  An example of the measured spectra 

for different average power launched to a 520-m HNLF is shown in Fig. 43.  The factor η 

and the reconstructed nonlinear coefficient are shown in Fig. 44. 
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Fig. 43:  Spectra measured for different input powers <P>. 
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Fig. 44:  a) Measured ratio I0/I1 and b) and nonlinear coefficient γ calculated using eq. (17) for 
different launched powers. 

The second method [81] is based on detection of the nonlinear phase shift in self-

aligned interferometer shown in Fig. 45.  The input pulse is split between two 

interferometer arms with non-equal power.  The lengths of the two branches are selected 

unbalanced in order to avoid pulse overlapping at the interferometer output.  This output 

is connected to the fiber under test followed by Faraday mirror to unwrap the linear 

polarization rotation and stabilize the interferometer operation.  The pulses propagated in 

the interferometer in clockwise and counter-clockwise directions see the same physical 

len ization controller PC2 is necessary to balance the 

polariz

gth and interfere.  The polar

ation transfer matrices for these directions.  The balancing can be done by 

maximizing output power for a weak input pulse.  In order to simplify calibration 

procedure and to eliminate nonlinear phase shift in backward direction, the power at the 

fiber end was depleted significantly (more than 10 dB).  For some pulse power set by 

variable optical attenuation VOA1 and corresponding to a π-phase shift, the output power 
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reaches a null point.  The typical measured waveforms are shown in Fig. 46.  The 

nonlinear coefficient can be obtained from 

18. PLΔ= γπ  (5.18) 

where ΔP is a power difference of the pulses propagating in long and short arms given by 

⎟
⎠

⎞
⎜
⎝

⎛

SLSplice αααα
11

min

P
0 1 min

(VOA1) corresponding to a null point, αSplice is the fiber front splicing loss, αL and αS are 

interferometer losses of long and short interferometer arms. 

⎟⎜ −=Δ 0P , P  is a pulse power before VOA , α  is the attenuation 
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Fig. 45:  Experimental setup for interferometric method. 
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Fig. 46:  The pulses at the interferometer output.  Blue trace corresponds to low power of the 
launched pulse; red trace − to π nonlinear phase shift.  Pulse duration: 5 ns. 

For the same 520-m HNLF sample, P0 = 5.76 W, αmin = 4.1 dB, αL = 5.43 dB, 

αS = 9.7 dB, αSplice = 0.5 dB, γ = 16.9 /W/km, which is less than the nonlinear index 

measured using two-tone method.  The difference can be attributed to the stronger 

nonlinear polarization rotation because the significantly higher power was used for the 

second method. 



6. Dispersion Measuring Technique 
with Polarization Scrambling 

6.1 Polarization Locking Scheme 

In the previously described realization (section 3.1) of the counter-collision setup, 

the polarization states of the week pulse (probe) and pump launched at opposite ends 

were controlled independently in order to maximize the Brillouin gain.  Such operation, 

however, provides only local polarization synchronization since the counter-propagating 

signals evolve along different optical passes.  The aforementioned setting implies that the 

pump and probe polarization states providing maximized gain even at adjacent points can 

be uncorrelated.  The described practical difficulty can be alleviated by polarization 

reversal. 

The concept is illustrated in Fig. 47.  Assume that the pump and probe are 

launched at one fiber end at orthogonal states using a polarization beam splitter (PBS).  

The Brillouin effect is used to transfer energy from pump to probe so the polarization 

walk-off is negligible and the pulse states stay orthogonal at any point within a fiber 

because of relatively small Brillouin frequency shift.  At the other end, the pulses are 

reflected by a Faraday mirror which guaranties the orthogonality of the polarization states 

of forward propagated signal and the reflected ones at any longitudinal position as well.  
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If the probe and the delayed pump pulses are launched at orthogonal states and the 

reflected probe pulse collides with a strong forward-propagating pump, their polarization 

states will be perfectly aligned.  The interaction between the forward propagated probe 

and reflected backward propagated pump is less effective because of pump power loss in 

Faraday mirror and splices.  For a single collision regime, the spacing between the 

consecutive pulses has to be longer than a quadrupled propagation time, as illustrated in 

Fig. 47d. 
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Fig. 47:  a) Probe is launched through Polarization Beam Splitter (PBS), propagated in fiber 
(FUT) and reflected from Faraday Mirror (FM). b) Pump is launched at orthogonal state and 
collides with backward-propagating probe. c) Probe is passed through circulator (CIR), pump 
is blocked in isolator (ISO). d) Time-space evolution. 
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6.2 Dispersion Map Measuring Using Polarization 
Scrambling 

The polarization control is the slowest part of the original dispersion measuring 

setup shown in Fig. 13.  For example, the algorithm for the polarization tuning described 

in section 3.3 requires at least 50 power readings; the motorized polarization controller 

needs at least 0.25 s to set a certain polarization state.  The total time needed to obtain 

300 points is 300×50×0.25 s = 62.5 min.  This fact raises a question: is it possible to 

make the polarization algorithm faster, or, to eliminate it at all?  The polarization locking 

scheme introduced in section 6.1 allows using only one polarization controller placed 

before a fiber under test instead of the two ones used in the original scheme.  This 

controller must not contain a front polarizer in order to pass the pulses propagating in 

both directions at orthogonal states. 

In the original setup, a calibrated scope was used to process the pulse powers.  

However, the real polarization beam splitters have finite extinction characteristic, 

typically, at the order of 25-30 dB.  This implies that some little fraction of the pump will 

leak to a processing scheme and could not be filtered because of the small spacing 

between the probe and pump frequencies.  During the propagation, the pump pulse 

generates the unpolarized Raman noise which is eliminated by PBS only by half.  It is 

very important to note that the Faraday mirror reverts only the linear polarization 

rotation.  Excessive polarization shift induced by a nonlinear rotation misaligns the 

polarization states of the co-propagating pulses at the output port of the PBS.  

Correspondingly, a certain part of these pulses is blocked, which is the opposite to a 

power calibration requirement (<0.5 dB) described in chapter 3.6. 
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All these facts add uncertainty to the powers of the waveforms measured using a 

scope and motivate us using the method based on different physical principles.  First of 

all, the previous algorithm was based on the precise measurement of the absolute pulse 

powers.  The frequency discrimination was achieved by using a tunable filter in a 

processing scheme.  Alternatively, the averaged pulse powers can be measured in 

frequency domain using an optical spectrum analyzer but the absolute pulse power could 

not be precisely estimated by the reasons described in section 3.6.  The idea of using the 

relative pulse powers can be borrowed from the Mamishev’s method [32-34] described in 

chapter 1.2.  Specifically, the period of the spatial oscillation defines the averaged 

dispersion regardless of the pulse powers used.  The gain value, and correspondingly, a 

peak pump pulse power, is no longer a critical parameter because the oscillations can be 

processed even for gain values of several decibels.  The difficulty with gain polarization 

dependence can be resolved by replacing the polarization controllers PC8 and PC9 shown 

in Fig. 13 by the polarization scrambler (PS) put before fiber under test.  In this case, the 

polarization averaged gain has to be considered in place of the gain maximized in the 

original scheme.  In order to provide orthogonality of the interacting counter-propagating 

pulses, the polarization scrambling speed should be significantly slower than the doubled 

propagation time.  For example, for 250-m HNLF sample, the pulse repetition rate is 

2·108/(2*250) = 400 kHz.  The polarization scrambler with 10-kHz rotation speed is a 

reasonable choice (for example, General Photonics PSM-001).  On the other hand, the 

scrambling speed should be significantly faster than that of the detector measuring the 

power of FWM product to guarantee polarization-insensitive operation. 
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The modified setup is shown in Fig. 48.  The block forming pulses is remained 

unchanged.  The probe and pump pulses are launched to a fiber at orthogonal states in 

accord with the polarization locking scheme introduced in the previous chapter.  The 

probe and the second pulse are combined before PBS so that their polarization sates are 

aligned at the fiber input.  The amplified probe is coupled to the processing scheme using 

the circulator CIR whereas the pump is blocked by the isolator ISO.  The output probe 

power (or gain) is measured as a function of the collision coordinate.  The processing 

scheme can be either a standard optical spectrum analyzer or a lock-in amplifier detecting 

the power of the narrowly filtered FWM product. 
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Fig. 48:  Dispersion measuring setup with polarization scrambling. 
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The maximum length of the FUT amenable to the introduced technique depends 

on the fiber loss and nonlinear effects such as spontaneous Raman scattering depleting 

the pulse peak power.  In practice, a gain of only several decibels is required allowing 

500-m samples to be characterized. 

It is important to emphasize that the scanning steps (defining the measuring 

accuracy) smaller than the interval of interaction of the counter-propagating pulses can 

be used.  Experiments demonstrated that the measured periods of FWM oscillations are 

practically independent of the pump pulse duration for the pumps shorter than 30 ns. 

Fig. 49 demonstrates the power of the FWM product measured as a function of 

fiber coordinate in 210-m L-band fiber having more than 5 nm variations of ZDW and 

0.013 ps/nm2/km slope.  The oscillation period varies between 16 to 23 m mapping the 

ZDW spatial profile shown in Fig. 50. 
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Fig. 49:  Measured power of FWM product as a function of collision coordinate of 210-m HNLF 
sample. Pulse length: 2 m, scanning step: 25 cm, probe wavelength λ1 = 1578 nm, second 
pulse wavelength λ2 = 1535 nm. 
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Fig. 50:  Reconstructed ZDW map. 

The second example of the evolution of FWM product in a 205-m sample 

measured in both directions is shown in Fig. 51.  The dispersion slope of 

0.0236 ps/nm2/km and average ZDW of 1561.19 nm where measured by Advantest 

Q7750 test set.  The oscillation period varied between 9 and 13 m corresponding to 

maximum ZDW deviation of 8 nm (Fig. 52). 
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Fig. 51:  Measured power of FWM product as a function of collision coordinate of 205-m HNLF 
sample. Pulse length: 2 m, scanning step: 20 cm, probe wavelength λ1 = 1537 nm, second 
pulse wavelength λ2 = 1573 nm. 
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Fig. 52:  ZDW map reconstructed from data measured in both directions.  Dashed red line 
corresponds to a global ZDW of 1561.19 nm. 
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6.3 Equalization of the Polarization Walk-off 
Between Co-Propagating Pulses 

The dispersion measuring scheme described in the previous chapter has a 

drawback for the case when the high (<10 m) spatial resolution is required.  For typical 

HNLFs having a dispersion slope below 0.03 ps/nm2/km, such resolution can be achieved 

if the spacing between co-propagating pulses exceeds 40 nm.  The polarization states of 

the probe and the second pulse are perfectly aligned at the fiber input because they are 

launched through the same port of the polarization beam splitter, as illustrated in Fig. 48.  

However, experiment showed that the strength of the nonlinear interactions (i.e. 

measuring “contrast”) degrades for far fiber sections if the polarization is scrambled.  The 

situation is even worse if a fiber contains several spliced pieces.  This behavior happens 

because real fibers necessarily possess random asymmetries in the transversal geometry 

resulted in different mode propagation indexes for two orthogonal polarization directions.  

The effect is known in literature as polarization mode dispersion or PMD.  More 

importantly, it causes the polarization walk-off of the signals at different frequencies.  In 

short fibers, a certain orientation of the polarization (a principle state) minimizing the 

walk-off within a broad band exists.  In HNLFs, the principle states typically present for 

the samples shorter than 200 m.  As an illustration, Fig. 53 shows the evolution of the 

polarization state on the Poincare sphere for a signal swept in wavelength between 1520 

and 1580 nm and measured at the output of the 205-m-long HNLF sample.  It is 

important to emphasize that HNLFs typically have higher PMD in comparison to that of 

standard fibers because of stronger mode confinement.  The effect of PMD is "amplified" 

if the HNLF is spooled onto the low diameter reels. 
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Fig. 53:  Polarization evolution as a function of wavelength.  Wavelength step: 0.1 nm. 

The second difficulty is that the overlapping probe and second pulses transfer 

their energies to FWM waves while propagating in both directions.  Both issues can be 

resolved by combining the second pulse with a probe only at the backward pass and 

separating their polarizations.  Typically, their wavelengths are located at different bands 

so that they can be easily joined with negligible loss using standard C/L band couplers.  

In this configuration, the FWM product has to be coupled to a processing before the 

polarization beam splitter.  The final scheme is shown in Fig. 54.  The WDM is a standard 

multiplexer used to combine pump and signal in Raman or Erbium-doped amplifiers. 



 96

Π

L2

A3

A2

A4PC7

PC5

PC6

S

P

CL2

PG1

PG2
CL1

L1

PC1

SSB

C1

A1PC2
AT1

AT2

AT3

AT4

AM2
PC4

AM3

PC3

CIR
FUT

PS
FM

C/L WDM

Processing
 

Fig. 54:  Dispersion measuring setup with polarization scrambling.  Probe and second pulse are 
separated. 

Experiment proved that the average power of the FWM product is practically 

independent (<1 dB) on the polarization of the second pulse set by PC5 if the pump/probe 

polarization is scrambled. 

Fig. 55 demonstrates the Stokes power oscillations generated in a fiber with 

shifted chromatic dispersion (DSF) having ZDW of 1563.53 nm and slope of 

0.079 ps/nm2/km.  The spatial period is almost constant indicating ultra-low dispersion 

variations (see Fig. 56a).  This result is verified using a noise injection technique [50] by 

observing the spectra of the idler waves.  The idlers are generated by a widely spaced 

(>200 nm) pump, tuned across ZDW, and a fixed probe.  It is seen from Fig. 56b that 

there is a sharp resonant peak centered at 1910.5 nm corresponding to the narrow 0.3-nm 

bandwidth in which the phases of the interacting waves are matched. 
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Fig. 55:  Measured Stokes power as a function of collision coordinate for 100-m long DSF 
sample.  Pulse length: 2 m, scanning step: 10 cm, probe wavelength λ1 = 1560.582 nm, 
second pulse wavelength λ2 = 1610 nm. 
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Fig. 56:  a) Variations of ZDW reconstructed from data measured in both directions.  b) Spectra of 
the idler waves measured for different positions of the pump. 

6.4 Sensitivity and Resolution Control 

The accuracy of the new method requires special considerations.  First of all, the 

period of the spatial oscillation Λz given by 

1. ( ) ( ) πββ 2, =ΛΛ+Δ=Δ∫
Λ+

zz

zz

z

zzdzz  (6.1) 

defines the resolution.  ( )zzz Λ+Δ ,β  is the averaged phase mismatch at interval 

(z, z+Λz) with β given by eq. (4.25-26).  Second, even more important issue is the 

sensitivity of the method to the variation of the zero dispersion wavelength λ0.  Let us 
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assume that the reference wavelength (or, equivalent ωref) is selected equal to a zero 

dispersion wavelength.  In this case, β2 coefficient is zero and the phase mismatch is 

defined by the third order dispersion term given by eq. (4.26).  Assume also that at some 

spatial coordinate z1 the spacing between the probe wavelength λ1 and λ0 is (λ1−λ0(z1)) 

and, at some nearest coordinate z2, is (λ1−λ0(z2)).  The relative difference between the 

ds of oscillation (or contrast factor η) is 

2. 

perio

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( ) 012010121 221 λλ

0201021 λ
λλλ

λλη Δ
=

−+−
−

=
Λ+Λ

− ΛΛ
=

zzzz zz  (6.2) 

λ1−<λ0>), the best 

strategy

O

zzzz zz

In order to maximize this fraction, i.e. in order to increase sensitivity, the 

denominator has to be maximized which means that the position of the probe wavelength 

should be set as closely as possible to an averaged zero dispersion wavelength.  If the 

wavelength difference (λ1−<λ0>) is too small, the spatial resolution decreases.  In 

practice, the contrast of 30% is a reasonable choice.  If the variations of the zero 

dispersion wavelength are high and comparable with the spacing (

 is to scan fiber using several different probe wavelengths λ1. 

Let us consider a typical example.  Assume that the FUT is an HNLF sample with 

measured <λ0> = 1550 nm, zero dispersion profile variations Δλ0 = 5 nm, and dispersion 

slope S = 0.029 ps/nm2/km.  Assume also that the spatial resolution Λz = 10 m is required.  

bviously, the spacing |λ1−<λ0>| has to be larger than Δλ0.  From (6.2), in order to get 

η = 40% of contrast factor across the whole fiber distance, the wavelength of the probe 

must satisfy the relation λ1−<λ0> = Δλ0/η = 12.5 nm, i.e. the λ1 should be set to 

1537.5 nm (1550−12.5).  The position of the second pulse can be estimated using 
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100

e

bandwidth.  The corresponding wavelength of the generated FWM product is 1493.7 nm.

quation (1.2) with D = S(λ1−<λ0>).  The corresponding frequency spacing 

δλ = (λ1−λ2) = 46.5 nm.  The obtained wavelength of the second pulse is either 

λ2
(1) = λ1−δλ = 1491 nm, which has to be rejected because this wavelength is beyond the 

operating bandwidth of standard telecom amplifiers (which is typically 1530−1610 nm), 

or λ2
(2) = λ1+δλ = 1584 nm, which perfectly matches the center of the L-band amplifier 



7. Applications beyond Dispersive 
Measurement 

7.1 Polarization scanning 

Polarization characteristics play a critical role in virtually all applications of fiber 

optics of high practical interest: from communications, to all-optical processing, and 

sensing applications.  After a decade of research of polarization mode dispersion and its 

mitigation, the developed characterization techniques were focused on global polarization 

characteristics [66].  The recent advances in fiber optics and signal processing, however, 

have put forth the importance of local waveguide properties.  In this contribution, we 

extend the introduced counter-colliding power delivery class of characterization methods 

to spatially resolved characterization of fiber polarization parameters.  The method avails 

meter-scale polarization characterization, and thus the full visualization of optical field 

polarization evolution in the fiber.  Linear polarization evolution of a monochromatic 

wave in fibers can be fully characterized if the birefringence vector β is known at every 

spatial point [66].  Provided that the orientation of the principle axis is fixed, a full 

revolution of the field occurs at a distance equal to the fiber beating length ΛB.  The 

second parameter, correlation length, describes the spatial orientation statistic of the 
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vector β.  Several methods based on the polarization OTDR technique [71] have been 

presented to measure the described linear rotation parameters. 

The proposed technique utilizes the fact that the strength of the nonlinear 

amplification strongly depends on the absolute polarization states of the interacting 

signals.  The polarization locking scheme with a Faraday mirror introduced in chapter 6.1 

reduces the dependency of the nonlinear gain to a function of a single polarization 

parameter.  In this case, localized gain measured along fiber coordinate provides direct 

mapping of polarization evolution in optical fiber. 

The polarization scanning setup is a simplified version of the dispersion scanner 

shown in Fig. 54 without a block forming a second pulse and with manual polarization 

controller replaced the polarization scrambler PS.  The output probe power (or gain) is 

measured as a function of the collision coordinate.  During the full length scan, the input 

polarization states of propagated pulses are kept fixed. 

It is important to note that the previous experiments on the Brillouin gain of CW 

signals [68] implied pump and signal co-polarization as a sufficient condition for SBS 

gain maximization.  According to this reasoning, since the interaction is strictly localized 

and the proposed configuration ensures strict polarization co-alignment, the SBS gain 

should be equalized gain along the fiber.  In order to verify the validity of this statement, 

the gain at some fixed spatial point was scanned as a function of coordinate on a Poincare 

sphere.  The polarization states were measured using a polarization analyzer. 
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Fig. 57:  Measured SBS gain as a function of polarization coordinate on a Poincare sphere (views 
from both sides).  100 realizations. 

The experimental results shown in Fig. 57 clearly exhibit that the maximized gain 

is achieved for specific polarizations lying in the plane corresponding to the linear 

polarization whereas the circular polarization state demonstrates the absence of SBS 

amplification.  The typical pulse profiles corresponding to maximum and minimum 

(zero) gain are shown in Fig. 58. 
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Fig. 58:  Pulse waveforms measured at same collision point for polarization states corresponding 
to maximum and minimum gain. 

During the propagation, the polarization of the probing pulse rotates around the 

local axis of birefringence and the polarization dependent gain mimics the local 

polarization state.  Two distinct cases are possible: if the local PS lies on the equatorial 

plane or at some nearby point, the probe polarization vector crosses the equatorial plane 

twice during the scanning interval corresponding to localized polarization beating length.  

The polarization vector crosses equator twice as shown in Fig. 59a, providing two 

maxima and minima of SBS gain.  If the principle state is shifted from equator, the 

polarization vector could cross equator twice, or does not cross it at all, showing only one 

pair of extrema (Fig. 59b) during the whole rotation period.  This limitation imposes 

difficulties to interpretation of the obtained results.  In addition, if the input polarization 

before some short section is located closely the fiber local principle state (PS), the 

polarization vector fills some small area on the Poincare sphere around the PS causing the 

degradation of the measuring gain contrast.  This limitation can be overcome by using a 

second, and if necessary, the third scan for the polarization states rotated by 90° in Stokes 

space relatively to original input SOP.  For fixed spatial coordinate, the trace with the 
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fastest oscillating spatial frequency has to be selected.  The spacing between the nearest 

minima defines the distance corresponding to a half of the fiber beating length.  The 

spacing between the nearest maxima depends on the orientation of the local PS and is not 

equidistant in general. 
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Fig. 59:  Representation of the polarization evolution in Stokes space. 

Fig. 60 demonstrates the measured power of the scanned probe as a function of 

collision coordinate for 42 m HNLF sample for 3 different input polarization states: 

horizontal linear (LHP), 45° rotated linear (L+45°P), and right circular (RCP).  It is 

clearly seen that the spacing between nearest minima varies with the distance. This 

spacing is different for different input polarization states. For example, at the 0-10 m 

interval, the fastest rotation corresponds to RCP state (black line) with the spacing 

between the minima approximately equal to 3 m, or 6 m beating length.  Between 15 and 

25 m, the red trace demonstrates the fastest rotation with 6 m oscillation period.  

Although the power of the pump pulse was constant along the link, the maximum gain 

varied.  The maximum gain corresponds to the interval with the slowest polarization 

rotation.  For example, the gain is maximized for the spatial coordinates between 20 and 
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30 m.  Such behavior can be addressed to intra-pulse polarization rotation providing non-

constant spatial gain during the collision event. 
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Fig. 60:  Measured probe power as a function of collision coordinate for 3 different polarization 
states orthogonal in Stokes space. First 42-m HNLF sample. Pulse length: 2 m, scanning 
step: 40 cm. 

Fig. 61 shows the scan of the power of the amplified probe for the second 210-m 

HNLF sample. The beating length 14 m is observed at 0-75 m and 150-210 m intervals 

but it is nearly doubled at 90-120 m. The degradation of the peak probe power is 

explained by significant pump pulse depletion in the nonlinear fiber by generation of the 

Raman spontaneous noise. 
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Fig. 61:  Measured probe power as a function of collision coordinate for 3 polarization states 
orthogonal in Stokes space. Second 210-m HNLF sample. Pulse length: 2 m, scanning step: 
40 cm. 
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7.2 Spatially Resolved Measurements of the 
Brillouin Frequency Shift 

Brillouin gain spectrum measurement along an optical fiber is a standard 

technique for strain monitoring in installed cables [83], distributed temperature sensing 

[84], as well as the mapping of the Brillouin frequency shift [85].  The counter-colliding 

Brillouin scanner can be easily adapted to measure a map of the SBS frequency shift by 

adding a control for CL1 clock tracking SBS frequency (see Fig. 54).  This setup is 

similar to a scheme presented in [85] but it does not require a polarization alignment 

because polarization states are locked and randomized.  A special attention should be 

paid to the biasing of the SBS modulator.  It was mentioned in chapter 3.2, in order to 

shift a carrier by a SSB modulator, the upper and lower branches have to be modulated 

by clocks shifted in phase by a quarter of period.  In the experimental setup, the phase 

shift was implemented using a trombone RF delay line.  Unfortunately, the delay line has 

a significant dispersion so that the delay varied more than a period when the modulation 

frequency is shifted by 200 MHz.  The half-period shift corresponds to a configuration 

when the optical carrier up-shifted relatively to original frequency violating the initial 

requirement for SBS amplification.  This difficulty can be resolved by (i) disabling one 

RF port of the SSB modulator with an input delay line and biasing both branches at null 

working point, or by replacing (ii) SSB modulator by standard AM modulator biased at 

null point. 

The linear dependence of the SBS frequency shift of the applied straining force 

was experimentally verified using a setup shown in Fig. 9b.  The fiber was stretched with 

tension constant across the fiber.  The SBS gain spectra was read from RF spectrum 
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analyzer detecting the beating of the input and back-reflected signal.  Fig. 62 shows the 

spectra corresponding to 0, 20, 40, 50, 63, 75, 90, and 100% of the maximally available 

tension.  It is clearly seen that the peak shifts in linear manner. 

Fig. 63 demonstrates the measured SBS frequency map of the 100-m HNLF 

stretched using stair-like tension.  The applied tension varies between zero and 75% of 

the maximally available tension resulting in the shift of 350 MHz.  The shift is at least ten 

times wider than the width of the Brillouin gain profile. 
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Fig. 62:  The RF spectra obtained using a setup Fig. 9b for to different tensions.  The inset 
demonstrates the SBS shift as a function of the applied force.  A bold green line corresponds 
to the SBS spectrum of the fiber with monotonic stair-like stretching map shown in Fig. 63. 
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Fig. 63:  Brillouin frequency shift of 100-m HNLF sample as a function of fiber coordinate 
measured at 1537 nm. Scanning step: 50 cm, scanning accuracy: 10 MHz. 

7.3 Spatial Dispersion Equalization 

A method for wideband parametric synthesis can be devised by taking advantage 

of longitudinal fiber stretching.  It was shown previously that the stimulated Brillouin 

scattering (SBS) frequency shift is affected by the applied tension.  In [82], the SBS 

frequency was modified along an SMF spool by applying steadily increasing tension to 

suppress the Brillouin back-scattering of the pump.  Conversely, a spatially resolved map 

of the SBS frequency shift was used to determine the distributed tension as a function of 

the fiber coordinate [83], [85].  On the other hand, the measurements of the ZDW of such 

strained fibers showed that their dispersion characteristics are also modified [86].  

Combining the above with the localized ZDW mapping, the question naturally arises: can 

localized tensioning be supported by the exact knowledge of ZDW fluctuation in order to 

construct superior parametric mixers?  This section aims to answer this question by 

proving that the ZDW fluctuation profile can be equalized by applying spatially 

controlled tension to effectively invert ZDW variations. 
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The method relies on precise knowledge of spatial dispersion profile of the HNL 

fiber.  By introducing a longitudinal tension map, inverse with respect to the measured 

variations, a ZDW profile can be in principle equalized, as illustrated in Fig. 64.  

Consequently, the ability to synthesize nearly arbitrary dispersion profile is an obvious 

generalization of this method. 
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Fig. 64:  Concept of the dispersion equalization. 

The function that defines the dependence of the global ZDW (<λ0>) with respect 

to applied longitudinal force (F) used to stretch the fiber segment was first calibrated to 

estimate the range of the method applicability.  As an illustration, measured dispersion 

shown in Fig. 65 indicates a typical case, supporting the assumption of linear dependency 

that was demonstrated in [86].  This fact significantly simplifies a calibration procedure 

because it requires measurements of only two scalars (F and <λ0>) for unstrained and 

spatially-constant tension.  It is well known that the stimulated Brillouin scattering (SBS) 

frequency shift is affected by the applied tension as well [85].  Consequently, the 

measured spatial SBS frequency map can be used to reconstruct the tension map with 

nearly arbitrary spatial resolution. 
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Fig. 65:  The HNLF dispersion profile measured for different tensions:  The inset shows a 
dependence of the ZDW of the applied tension measured in percent of the maximum value 
provided. 

Two 205-m-long consecutive sections from a single HNLF spool were selected as 

it exhibited significant ZDW deviations; these samples are referred to as the fibers under 

test (FUT), henceforth.  The two samples were characterized by mean (global) ZDWs of 

1551 nm and 1559 nm and dispersion slope of 0.024 ps/nm2/km, as measured using a 

commercial dispersion measuring unit (Advantest Q7750).  Obtained global <λ0> values 

were used in order to calibrate the wavelength positions of the interacting pulses to 

provide 10-m spatial resolution for counter-colliding Brillouin technique with 

polarization scrambling described in section 6.2.  Specifically, in the case of the first 

sample, the positions of the probe and second pulses were set to 1540 nm and 1590 nm 

and for a second sample at 1550 nm and 1600 nm, respectively. 
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In a first step of the procedure, the powers of the FWM product formed by co-

propagating pulses were scanned as a function of the spatial coordinate in both FUT 

directions with a 20-cm spatial step, as illustrated in the upper plots of Fig. 66.  The 

measurement used a master RF clock driving an amplitude modulator to lock the probe 

carrier relative to the pump to a fixed frequency of 9.3 GHz, matching the global SBS 

frequency shift of the fiber samples.  For the first sample (Fig. 66a, upper plot), the 

observed change FWM oscillations period was from 20 to 10 m between the front and the 

rear sections of the fiber, indicating that the probe wavelength is 50% closer to the local 

ZDW at the front section, corresponding to ZDW deviations in excess of 6 nm.  For the 

second sample (Fig. 66b upper plot), period of FWM spatial oscillations decreased 

monotonically from 33 to 10 m within the front 140-m-long section, and corresponds to a 

ZDW variation between 1553 nm and 1563 nm.  The remaining (65-m-long) section 

resulted in FWM oscillation interval changes from 10 to 22 m.  The ZDW profiles of the 

original samples are shown by red circular marks in Fig. 67.  Spatially averaged ZDW 

values are in agreement with the measured global ZDW <λ0>. 
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Fig. 66:  Powers of the FWM product as a function of the collision coordinate: (upper) original 
fiber, (lower) stretched fiber.  Scanning resolution was 20 cm.  a) sample I, λProbe: 1540 nm, 
λSecond Pulse: 1590 nm;  b) sample II, λProbe: 1550 nm, λ Second Pulse: 1600 nm. 

In second step of the procedure, the tension-controlling block of a spooler was 

calibrated by measuring the global ZDW with the fiber stretched using an 80% of the 

maximal tension obtainable.  Two fiber samples were subsequently divided into six and 

seven sections, correspondingly, with slowly-varying ZDW, and spooled by applying 

constant tension that is proportional to the difference between the local λ0(z) and 

maximum ZDW λ0
(Max), used as a target reference.  The tension maps were subsequently 

validated using meter-scale resolution using the counter-colliding setup by searching the 

maximum SBS frequency clock position.  The maximum obtained SBS frequency 

deviations were in excess of quadruple Brillouin linewidth in HNLF (~25 MHz), as 

shown in Fig. 68. 
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Fig. 67:  Measured ZDW maps for the original and stretched sample I (a) and sample II (b): circle 
marks – before tension map application; square marks – after tension map application. 
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Fig. 68:  Measured map of SBS frequency shift mapping tension strength of the sample I (a) and 
sample II (b).  Scanning step: 1 m.  SBS frequency searching step: 10 MHz. 

The FWM power profiles of the fiber with applied tension map are shown in 

lower plots of Fig. 66.  It is clearly seen that the oscillation periods corresponding to 

different sections were equalized across the fiber, indicating a drastic suppression of 

ZDW fluctuations.  The corresponding (flattened) ZDW profile of the first sample 

centered at 1553 nm is depicted in Fig. 67 by blue square marks, showing a reduction in 

the ZDW fluctuations by more than 50%.  For the second fiber, the resulting flattened 

ZDW profile was centered at 1561 nm and had peak-to-peak variations that were three 

times lower than those of the original sample. 
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Finally, the response of a one-pump parametric amplifier was measured to 

validate that the dispersion equalization technique resulting in superior mixer 

performance.  A continuous-wave, 1.8 W pump was spectrally positioned to provide a 

double-sided gain profile with gain of 15 dB.  Fig. 69 demonstrates that the 5-dB 

bandwidth of the amplifier constructed using dispersion equalized fiber was nearly 

doubled from 75 nm (before HNLF tensioning) to 140 nm (after tension map 

application).  Of equal importance, the gain spectrum exhibited a more symmetrical 

response relative to the pump wavelength after stretching. 
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Fig. 69:  Sample I: measured gain profiles for a) tension map applied and b) original HNLF.  
Pump positions were tuned to illustrate amplifier response for close-to-ZDW positioning: a) 
1551.15, 1551.20, 1551.25 nm; b) 1549.95, 1550.00, 1550.05 nm. 

It is important to note that, if the spatial dispersion profile of HNLF with wide 

ZDW fluctuation is equalized, the Brillouin effect should also be suppressed.  From 

practical point of view, a simple strategy applicable to design requiring spatially flat 

dispersion and suppressed SBS calls for fiber with monotonically varying dispersion 

profile and large ZDW variations.  In this case, the dependence of the applied tension 

will be a unique and easily inverted function guaranteeing that SBS center frequencies 

will not be repeated along the fiber and that the Brillouin process will not be seeded by 
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back-reflected light from other fiber sections.  Finally, the modification of the fiber 

birefringence properties requires separate consideration and is not addressed. 

7.4 Strict Localization of Nonlinear Interactions in 
Optical Fibers by Subsequent Brillouin Amplification 
and Attenuation 

High spatial resolution can be naturally achieved if the nonlinear interaction 

responsible for the generation of the measured signal is gated locally along the 

waveguide.  This principle was recently applied to the localization of four-photon mixing 

(FPM) to increase the spatial resolution of dispersive mapping of nearly dispersionless 

fiber [67].  In the aforementioned approach, the nonlinear interaction is excited at a 

certain point along the waveguide [4] and is maintained until its end, while the strength of 

the generated mixing products carries the information about the targeted waveguide 

section [67].  The longitudinal dispersion variation can be retrieved by sequentially 

scanning along the waveguide with the point of excitation [67].  Consequently, it is 

natural to generalize this method to a strict localization approach in which one would be 

able to abruptly increase and decrease the probe power entering and exiting the target 

waveguide section.  In contrast to the previously reported technique [67], the new method 

would generate probe-probe mixing products that do not grow outside the target section, 

thus achieving a higher level of localization. 

As has been demonstrated, efficient amplification of the probe in an HNLF-like 

waveguide can be accomplished with counter-colliding Brillouin pumps [67].  Using this 

implementation, the blue-shifted pump transfers energy to a weak probe to routinely 

generate more than 20 dB of optical gain during the pump-probe counter-collision 
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process.  By introducing a red-shifted pump that attenuates the amplified optical probe at 

a precisely timed delay from the original (blue-shifted) collision, it should be possible, at 

least in principle, to generate highly localized probe power delivery at an arbitrary point 

in a waveguide.  This letter reports this new localization concept.  The abrupt 

amplification and attenuation process was studied theoretically and experimentally in 

order to derive its practical limits.  We have found that a probe contrast in excess of 

20 dB can be achieved by timed amplification and attenuation counter-collisions with 

Stokes and anti-Stokes Brillouin pumps in standard HNLF fiber. 

Optical power localization can be implemented by sending two precisely timed 

pump pulses to counter-collide with the probe pulse at a designated point in a fiber: a 

blue-shifted pump is used to amplify, while a red-shifted pump is used to deplete 

(attenuate) the probe.  Between the two counter-collision events, the amplified probe (or 

probes) possesses sufficient power to generate strong FPM mixing products, allowing 

indirect measurement of waveguide parameters, such as dispersion and the nonlinear 

coefficient, in a targeted section.  The concatenated counter-collision localization 

principle is illustrated in Fig. 70. 
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Fig. 70:  A principle of spatial localization. 

The narrow bandwidth nature of Brillouin amplification imposes a limitation on 

pump pulse frequencies and their relation to the counter-colliding probe: the probe-pump 

frequency separation must be controlled within a fraction of the Brillouin bandwidth.  

The Brillouin linewidth in most fibers of interest is only 25 MHz [67], thus limiting the 

characteristic time of the amplifying/attenuating event to several nanoseconds.  

Consequently, the pulse duration is limited by the same time scale, imposing strict limits 

on inter-pulse timing for the Stokes and anti-Stokes pumps. 
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Fig. 71:  Subsequent generation of amplifying and attenuating Brillouin pump pulse. 

The optical carriers for the probe and the pump wave can be created using a single 

laser and an optical modulator driven by a harmonic excitation at the Brillouin natural 

frequency (fB ~ 9.3 GHz) [67].  A null-point-biased amplitude modulator followed by a 

suppression filter, or, alternatively, a single sideband modulator (SSBM) can be used [67] 

for this purpose.  A single SSBM (rather than using two AM modulators) can generate 

both the pumping and the de-pumping pulses by controlling the sign of the frequency 

shift applied to the pump pulse, as illustrated in Fig. 71.  In practical terms, this can be 

accomplished by introducing a π-phase shift to the clock signal applied to the SSBM.  

Otherwise, the pump can be frequency shifted from fB to −fB simply by changing the bias 

level controlling the phase shift between the two sub Mach-Zehnder interferometers of 

the SSBM.  Measured spectra of the modulated signals corresponding to ±π/2 phase shift 

are shown in Fig. 72, indicating nearly ideal generation of Stokes and anti-Stokes waves. 
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Fig. 72:  Amplifying and attenuating pulses’ spectra after the SSB modulator, corresponding to 
±π/2 phase shift. 

A set of conventional HNLF segments was tested in order to determine the upper 

pump level that can be used in the FPM localization scheme.  Pump pulses with peak 

power in excess of 10 W were depleted in HNLF segments longer than 300 m, primarily 

by spontaneous Raman scattering.  The depletion mechanism effectively sets a practical 

limit that couples pump peak power and the maximum scanned waveguide length.  

Consequently, longer HNLF sections require lower pump peak powers. 

The concatenated collision process was rigorously modeled by a set of scalar 

Brillouin equations (4.31) describing the evolution of the complex amplitude of the 

density variation and that of the counter-propagating probe pulse and pump.  The model 

used the following set of parameters: α = 0.9 dB/km for fiber attenuation coefficient, 

ΔfB = 25 MHz for a SBS gain spectrum full width half maximum (FWHM) width, 

Aeff = 12 um2 for fiber effective area, γe electrostrictive constant of 0.902 for silica, ρ0 

material density of 2210 kg/m3 and vA = 5960 m/s for velocity of the acoustic wave [47]. 

The simplified experimental setup shown in Fig. 13 was used to demonstrate the 

proposed concept and to test the validity of the model.  A branch generating a second 
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pulse was switched off.  The carrier was shifted by shifting a phase of the clock driving 

one branch of the SSB modulator by π. Measured and simulated waveforms of the 

amplified and de-amplified probes are shown in Fig. 73 and Fig. 74.  Typical measured 

gain exceeded 15 dB, and was higher for longer pulse durations.  As mentioned in 

chapter 2.2, a long pulse trailing edge in Fig. 73 corresponds to a decaying refractive 

index grating whose lifetime is longer than the counter-collision event.  The acoustic 

grating decay time was used to estimate the characteristic linewidth of the Brillouin 

interaction ΔfB, and agreed to within several MHz with the measured gain spectral width 

obtained using a heterodyne optical spectrum analyzer. 

The attenuation of the probe pulse by the counter-colliding red-shifted pump is 

illustrated in Fig. 74.  The optimal (temporally flat) probe attenuation corresponds to 

specific pump pulse duration of 6-8 ns; shorter pump duration corresponded to lower 

attenuation contrast.  In the case when a long anti-Stokes pump pulse was used, the probe 

was well attenuated close to its leading edge, followed by pronounced ringing at its 

trailing edge. 

 

Fig. 73:  Measured (left) and simulated (right) waveforms of the amplified 10-ns-probes for 
different pump pulse durations. The pump pulse length varied from 5 ns (red) to 12 ns (blue) 
with 1-ns step. Dotted line indicates unamplified probe. 
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Fig. 74:  Measured (left) and simulated (right) waveforms of the attenuated 10ns-probes for 
different pump pulse durations. The pump pulse length varied from 4 ns (red) to 10 ns (blue) 
with 1-ns step. 

The effect of the pump depletion by the strong probe was investigated 

numerically by increasing the probe power up to 10 dBm.  As seen from the contour plot 

shown in Fig. 75, the counter-colliding gain does not depend on probe power for the 

pump peak powers below 40 dBm. 
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Fig. 75:  The simulated map of the gain for 10 ns pulses as a function of probe and pump powers. 

The deviation between the measured and simulated traces was attributed to linear 

intra-pulse polarization rotation.  In standard HNLF, a complete polarization rotation 
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takes place within the interval of several meters and is comparable with the typical pulse 

duration.  This implies that the polarization of the different parts, the counter-propagating 

probe and pump, are not precisely aligned in polarization, typically reducing the strength 

of nonlinear interactions by 50%. 

The ratio between the probe gain and its attenuation after consecutive blue- and 

red-shifted counter-collisions was dependent on the probe peak power.  This ratio, plotted 

in Fig. 76 for two different pump pulse durations, qualitatively defines the power 

localization of the probe.  In the case when the attenuating pulse duration is not optimized 

(Fig. 76a), the area of high localization (i.e. the 0-dB contour in Fig. 76) corresponds to 

pump powers below 36 dBm and low gain ~10 dB (Fig. 75), resulting in insufficiently 

high FPM levels.  For the optimized 6 ns pulse duration (Fig. 76b), the area of efficient 

de-pumping corresponds to gain values in excess of 20 dB. 
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Fig. 76:  Simulated map of the gain and attenuation difference in decibel scale for different probe 
and pump peak powers: a) both amplifying and de-amplifying pump pulses are 10 ns; b) 
10 ns-amplifying pulse and 6-ns de-amplifying pulse. Probe duration is 10 ns in both cases. 



8. Conclusions and Future 
Directions 

Last decade, significant attenuation has been paid to fiber-based parametric 

technology utilizing highly nonlinear fibers as a nonlinear media.  Unfortunately, all 

efforts were not converted to the introduction of effective CW parametric devices 

available in telecom market.  Present activities are still remained in laboratory stage.  

Originally, the main limiting factor was the objective difficulty to fabricate continuous 

fiber segments longer than 500 m with constant longitudinal dispersion characteristics 

and absence of the compact CW high-power (<25 dBm) low-noise lasers.  For example, 

the typical fibers manufactured ten year ago had fluctuations of ZDW up to several 

nanometers per 100-m length.  Current fabrication technology is capable of suppressing 

these fluctuations below a nanometer.  Further improvement of the fabrication tolerance 

is questionable because of extreme sensitivity of the fiber dispersion characteristics to 

geometry, requiring unphysical molecular scale geometry control.  The efficiency of the 

nonlinear process is defined by a product of pump power P and effective fiber length L.  

This means that, for a given power pump, the only way to increase conversion efficiency 

is to use longer fibers.  However, long fibers have second serious drawback − the 

requirement to suppress parasitic stimulated Brillouin scattering (SBS) depleting pump 

powers.  In laboratories, the suppression can be implemented by placing a phase 
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modulator broadening the pump spectrum before a booster.  Booster necessarily adds 

broadband noise which has to be blocked before launching pump to a fiber.  In addition, 

the pump phase deviations are mapped directly to the phases of the converted/amplified 

signals inducing distortions.  Such implementation is not acceptable in commercial 

product dictating different means for (i) the PL-product increase and (ii) for the SBS 

suppression. 

The introduced method of the counter collided pulses provides a tool for ZDW 

characterization to separate fiber segments with low ZDW deviations.  These fiber 

segments can be concatenated using some algorithm optimizing the parametric response.  

This algorithm requires special consideration and is not a part of this thesis.  Even if 

ZDWs of the separate pieces do not match, they can be equalized using the stretching 

technique introduced in section 7.3.  The experiment showed that the parametric 

converter shorter than 100 m does not require phase dithering to suppress SBS.  If the 

centers of the SBS gain profiles of the segments do not match, the converter created using 

short spliced pieces will not require phase dithering as well.  This requirement can be 

partially (or fully) fulfilled because the stretching induces the shift in SBS profile.  The 

obvious generalization of the method is the concatenation of dissimilar samples providing 

equalized parametric response. 

The following improvements in dispersion measuring setup can be considered: 

1. The first improvement is referred to a detection scheme.  The high spatial resolution 

requires more than 50 nm the wavelength separation Δλ between probe and second 

pulse.  However, the nonlinear efficiency drops as squared sinc-function with Δλ.  

The power of the pulses has to be increased in order to be well above the shot-noise 
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limit.  At the same time, high pulse powers dictate the presence of other nonlinear 

effects, including nonlinear polarization rotation, adding spurious extrema in the 

processed FPM power trace.  Potential candidate for such low noise receiver is an 

extremely narrow (several GHz) tunable filter followed by a power meter or by lock-

in amplifier with dynamically tuned gain. 

2. The polarization behavior of the propagating pulses in a fiber needs more 

investigation.  In last realization shown in Fig. 54, a single polarization scrambler 

randomizes polarization states a) of probe and pump so that the slow receiver sees 

only some FWM power averaged over all polarization states; and of b) probe and 

second pulse to eliminate effect of linear PMD.  Besides linear rotation, there two 

other mechanisms modifying pulse polarization: SPM-induced self-rotation and 

polarization-dependent XPM.  A simple estimation of the rotation angle induced in 

500-m sample by a 500-mW pulse gives 1/6γPL ≈ 50°.  The nonlinear PMD 

correlates polarization states of the co-propagating pumps preventing full polarization 

randomization. 

3. A block forming pulses requires some improvements as well.  This block can be 

made polarization-maintaining to avoid fine polarization alignment before every 

measurement.  The contrast of the measurement degrades significantly (see 

section 3.5) if the bias of a modulator forming a pump pulse drifts for more than 

0.05 V.  There are two reasons explaining such behavior.  First, the pulses are 

amplified by EDFA.  In a pulsed mode, EDFAs behave as power-clamped amplifier 

reacting to the average input power.  If the bias drifts, the peak pump power degrades 

because of a low repetition rate, together with the SBS gain.  The second reason is 
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that the pump pulse pedestal starts amplifying pulses.  These arguments dictate that 

the bias has to be dynamically controlled throughout the measurement. 

The proposed technique was conformed by measuring HNLF dispersion map with 

meter-scale resolution for the first time.  Such resolution is at least one or two orders 

higher than that obtained using any existing schemes described in section 1.2.  The setup 

was assembled using standard components provided by telecom manufacturers and does 

not contain any signal sources and filters tuned in wavelength so that the process can be 

fully automated, making a scheme potentially attractive for commercial applications. 

The concept of the localized FPM by discrete power delivery can be applied to 

diversified set of new measurement techniques for other nonlinear platforms. 
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