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Affine structure of facially symmetric spaces
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Jerusalem 91160, Israel

AND BERNARD RUSSO

Department of Mathematics, University of California,
Irvine, California 92717, U.S.A.

(Received 2 May 1988; revised 24 November 1988)

In [7], the authors proposed the problem of giving a geometric characterization of
those Banach spaces which admit an algebraic structure. Motivated by the geometry
imposed by measuring processes on the set of observables of a quantum mechanical
system, they introduced the category oi facially symmetric spaces. A discrete spectral
theorem for an arbitrary element in the dual of a reflexive facially symmetric space
was obtained by using the basic notions of orthogonality, projective unit, norm exposed
face, symmetric face, generalized tripotent and generalized Peirce projection, which were
introduced and developed in this purely geometric setting.

In this paper, we investigate geometric properties of these spaces. We analyze the
generalized Peirce decomposition associated with a face and give a useful condition
for two such decompositions to commute. A polar decomposition is proved for an
arbitrary element and a characterization is given of semi-exposed faces in these
spaces and their duals.

The primary example of a facially symmetric space is a Banach space whose dual
is a J5*-triple. In particular, this includes the preduals of von Neumann algebras,
the duals of C'*-algebras and Ji?*-algebras (= Jordan C*-algebras) as well as those of
J*-algebras. The latter includes Hilbert spaces and Cartan factors as special cases.
For an introduction to Ji?*-triples and JBW*-trip\es, see [5, 6, 10].

Characterizations of the state spaces of C*-algebras and of JJ6*-algebras, based on
physically significant axioms, are known and were constructed in a framework of
ordered Banach spaces (cf. [1, 2]). On the other hand, the predual of a JBW*-trij)\e
enjoys analogues of essentially all the properties which are needed in these
characterizations (cf. [5]). We expect that these properties, formulated in a facially
symmetric space, will lead to an algebraic structure on its dual. Because of the lack
of a global order structure however, this will be a triple product rather than a binary
one (cf. the introduction in [7]). This will solve (and give precise meaning to) the
problem stated in the first paragraph.

One approach to solving this problem is via a spectral theorem, functional
calculus, and polarization. However, obtaining a satisfactory continuous spectral
theorem seems to be a difficult task, requiring a new version of Choquet theory.
Moreover, even though spectral theory and functional calculus can be used to define
cubes, it is non-trivial to show that the triple product defined via polarization is
additive in each argument, since this requires a treatment of non-compatible
elements, discussed below.
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108 Y. FRIEDMAN AND B. RUSSO

Fortunately, there is another approach which we believe is tractable for our
problem. It is based on the recent work of Dang and Friedman [3], which gives an
elementary constructive proof of the classification of JBW*-trip\e factors of type I
(cf. also [9]). In the work of Dang and Friedman, a basis is constructed which consists
of tripotents which are related in certain basic ways (orthogonal, collinear, or
governing). All of these notions have meaning in a facially symmetric space.

In order to facilitate the carrying out of this approach, a penetrating analysis is
needed of the facial structure of the unit ball of a facially symmetric space and its
dual. This is the purpose of the present paper. The corresponding analysis in the
predual of a JBW*-tr\ple appears in [5] and the recent work of Edwards and
Ruttiman [4],

An important feature of a JBW*-tr\ple is the existence of a Peirce decomposition
associated with a given tripotent (or equivalently, a norm exposed face) in which
each summand is a JBW*-subtriple. A similar decomposition occurs in the context
of [7], and the stability of the category under generalized Peirce projections will be
of equal importance in our study.

We now discuss the notion of compatibility. A useful general technique is to
decompose a space simultaneously with respect to a family of individual
decompositions. It is therefore important to know conditions under which this joint
decomposition does not depend on the order, i.e. when the corresponding projections
all commute. In this case we say that the members of the family are compatible. For
a comprehensive study of this notion in the context of Jordan triple systems,
see [8].

In the globally ordered case, faces correspond to idempotents, and compatibility
implies commutativity of the idempotents. Therefore it is not possible to study non-
commutative phenomena in this framework without abandoning compatibility, and
thus increasing significantly the complexity of the problem. On the other hand, by
dropping the requirement of a global order structure, it is possible to describe non-
commutative objects by using compatible families. This method, which we intend to
employ toward this end for facially symmetric spaces, was illustrated in the factor
classification of JBW*-triples in [3].

The contents of this paper are as follows. In § 1 we begin by establishing properties
of orthogonality in a normed space Z which depend only on the assumption that the
orthogonal complement of any norm exposed face is a linear space. With this
minimal assumption we are able to prove, for example, the existence part of a polar
decomposition of an arbitrary element. Then, under the basic assumption that every
norm exposed face is symmetric (we shall call such spaces iveakly facially symmetric,
WFS), we discuss the one-to-one correspondence between generalized tripotents and
sj'mmetric faces, and related matters.

In §2 we introduce the notion of neutrality and use it to prove the uniqueness of
the symmetry occurring in the definition of symmetric face. We also explore the
duality between the generalized Peirce spaces in Z and its dual Z* and use it to show
that the latter are spanned in the weak*-topology by certain generalized tripotents.
This is used in §3 to prove the fundamental result which states that two generalized
tripotents are compatible if one of them belongs to a generalized Peirce space of the
other.

Also in §3 we study the behaviour of our spaces under generalized Peirce
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projections. We show that the properties neutrality and WFS are inherited by the
range of any generalized Peirce projection. In the final §4, we restrict our attention
to the subclass of (strongly) facially s\rmmetric spaces. We study the order structure
on the set of generalized tripotents and use it to prove the uniqueness, minimality,
and faithfulness of the polar decomposition. We also study semi-exposed faces in Z
and Z*. We show that every norm semi-exposed face in Z, is exposed and give a
complete description of weak*-semi-exposed faces in the dual ball.

This paper builds on its predecessor [7], but is otherwise self-contained, using only
elementary functional analysis. Although the main result of [7] is not needed here,
we do refer to most of the machinery used in its proof, up to and including lemma
2-8 of [7].

The theory in this paper is developed for real or complex spaces. The proof that
the predual of a e/BJ-F*-triple is a neutral facially symmetric space can be seen from
proposition 8, proposition 1, lemma 1-6 and (1-9) of [5] and the Jordan decomposition
for normal functionals on a JjBJF-algebra. It follows from this fact and the results of
this paper that purely geometric proofs can be given for the commutation formulas
(lemma 110 and proposition 3 in [5]) and for the polar decomposition of a normal
functional (proposition 2 in [5]).

It seems doubtful whether the predual of a real J-BW*-triple will be a facially
symmetric space.

1. Symmetric faces and orthogonality

In this section we review the fundamental concepts which were introduced in [7]
and prove some new properties which are needed in the present paper.

Let Z be a real or complex normed space. Elements/, geZ are orthogonal, notation

/<>g'lf II/+0II = II/-0II = 11/11+ IMI- (i)
This condition is equivalent to the existence of elements u.veZ* satisfying

/ W = 11/11, g(v) = \\gl f(v) = 9(u) = o (2)

(cf. [7], proposition 1-1).
Recall that a norm exposed face of the unit ball Zix of Z is a non-empty set

(necessarily 4= Zx) of the form Fx = {fsZ1 :f(x) = 1}. where x<=Z*, \\x\\ = 1. Note that
b\ f| Fy = F2, where z = \(x + y).

For subsets S, T of Z. SOT means fOg for all feS,geT. From (2) it follows
that

IMI = II2/II = ll*±yll = 1 implies Fx O Fy. (3)
For a subset S of Z, 8° denotes {feZ.fOg for all geS}. It is easy to see that

»S' O T if and only if T c S°. Moreover S° = S000 and S° is closed, but in general
S =t= S°o and <S'° is not additive or complex homogeneous. However, under a mild
assumption, # o will always be a linear subspace. Namely, we say that a space is
facially linearly complemented if it is a real or complex normed space in which the
orthogonal complement F° of every norm exposed face F (of the unit ball) is a linear
subspace.

PROPOSITION 1-1. Let Z be a facially linearly complemented space. Then S° is a linear
subspace for every subset S of Z. Moreover sp~ <S' is orthogonal to S°.
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110 Y. FRIEDMAN AND B. R U S S O

Proof. Since S° = n{{/}° :feS}, it suffices to prove that {/}° is a linear space. Let
and assume without loss of generality that | |/ | | = ||gr|| = ||A.|| = 1. By [7],

corollary 1-3(6) there exist pairs of orthogonal norm exposed faces (F,G) and (H,K)
with feF (]H, geG, heK. Then J: = F 0 H is a norm exposed face and g,heJ°. By
assumption, for any scalar a we have g + aheJ0, implying g + ahe{f}<>.

Since 8°° is a closed linear subspace containing S, it contains spS, i.e.
(sp-S)O<S°. I

From this proposition, by using induction, we have

COROLLARY 1-2. Let Z be a facially linearly complemented space. Then for any
mutually orthogonal family i/rt,...,ijrn we have ||S i/rt\\ = S \\i/rt\\.

The following is a converse of Proposition 1-1, and does not require any hypothesis
on norm exposed faces.

Remark 1-3. Suppose g O h and (g + h) <>/• Then g O / and

Proof. We have

llffll + PII + 11/11 = 11(7 + All + 11/11 = \\9 + h±f\\

<ll(/±/II+ l|A||<ll(7ll +11/11+ W-
Therefore | | ? ± / | | = ||gr|| + | |/ | | , i.e. gOf By symmetry h Of. I

An element ueZ* is called a,projective unit if ||M|| = 1 and (u,F$y = 0. This means
that the norm exposed face Fu is 'parallel' to F£.

In the following proposition, this notion is used to prove the existence of a 'polar
decomposition ' for elements of Z.

PROPOSITION 1-4. For each non-zero f in a facially linearly complemented space Z,
there is a protective unit u with f(u) = \\f\\ and <w, {/}°> = 0.

Proof. Assume ||/ | | = 1. Define <f> on sp{/} + {/}° by <f>(af+g) = a for ge{f}° and
scalar a. Then <f> is a linear functional. Since fOg, by Proposition 1-1 we have
ocfOg and

By the Hahn—Banach theorem, there exists ueZ* with \\u\\ = 1, f(u) = 1, and
<w,{/}°>=0. Since {/} <=FU, we have { / } o ^ ^ . Thus (u,F%)> = 0, i.e. u is a
projective unit. I

We shall improve this result and prove the uniqueness of u under appropriate
hypothesis in §4 (cf. Theorem 43).

Let 8F and °U denote the collections of norm exposed faces of Zx and projective
units in Z*. respectively. The map QlBun-Fue5'' is not onto in general (cf. [7],
example 4).

In order to get a bijection between distinguished subsets of projective units and
norm exposed faces, we need to recall the definitions of symmetric face and
generalized tripotent from [7].

Motivated by measuring processes in quantum mechanics, we define a symmetric
face to be a norm exposed face F in Zx with the following property: there is a
linear isometry SF of Z onto Z. with S% = /, such that the fixed point set of SF is
(spF) @F° (topological direct sum). In particular, 2^° is a closed linear space. We

https://doi.org/10.1017/S030500410006802X Published online by Cambridge University Press

https://doi.org/10.1017/S030500410006802X


Affine structure of facially symmetric spaces 111

shall show in §2 that under a mild assumption, SF is unique. Hence the assumption
of uniqueness made in [7] is not needed.

The rest of this paper will be concerned with the following spaces. In §4 we will
restrict attention to a subclass of this class.

Definition 1. A real or complex normed space Z is said to be weakly facially
symmetric (WFS) if every norm exposed face in dZy is symmetric.

Since a WFS space is facially linearly complemented, the above results are valid
for it.

For each symmetric face F we define contractive projections Pk(F) for k = 0, 1,2
on Z as follows. First PX{F) = \(I—SF) is the projection on the — 1 eigenspace of SF.
Xext we define P2(F) an<^ ^o(^) a s the projections of Z onto spF and F° respectively,
so that P2(F)+P0(F) = \(I+ SF). These projections are called generalized Peirce
projections.

The projections Pk(F) depend, a priori, on the choice of SF. It is immediate from
the definition that

P2(F)+Pl(F)+P0(F)=I

and P2(F)-P1(F)+P0(F) = SF.

The following, concerning the generalized Peirce projections, is an immediate
consequence of Proposition 1-1.

PROPOSITION 1-5. Let Z be a WFS space. Then P2(F) Z O P0{F) Z for every norm
exposed face F. In particular,

\\P2(F)p\\ + \\P0(F)p\\ = \\(P2(F)+P0(F))p\\ (peZ). (4)

A generalized tripotent is a projective unit uetfl with the property that F:= Fu is
a symmetric face and SF u = u for some choice of symmetry SF corresponding to F.

Denote by ^ST and y2F the collections of generalized tripotents and symmetric
faces respectively. By using Proposition 1-5 and the proof of [7], proposition 1-4, we
now have

PROPOSITION 1-6. Let Z be a WFS space. Then the map <^^3u^-Fue6^^ is a
bisection of the set of generalized tripotents and the set of symmetric faces.

Propositions 1-5 and 1-6 were stated in [7] without the assumption that every norm
exposed face is symmetric. The authors wish to thank Professor Kevin McCrimmon
for pointing out that (4) does not follow directly from the definition of symmetric
face.

For each generalized tripotent u in the dual of a WFS space Z, we shall denote the
generalized Peirce projections by Pk(u) = Pk(Fu), for k = 0,1, 2. Also we let

U:=Z*, Zk(u) = Zk(Fu):=Pk(u)Z and Uk(u) = Uk(Fu):= Pk(u)*(U),

Z = Zi(u) + Z1(v) + Z0(u) and U = U2(u) + U1(u) + L\(u).

The inverse of the map ««•/„ of Proposition 1-8 will be denoted by Fh+vF. A sym-
metry corresponding to the symmetric face Fu will sometimes be denoted by <S'U.
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112 Y. FRIEDMAN AND B. R U S S O

Example 17. Let Z = U2 with unit ball given by a regular hexagon with vertices
(±l,0),(i ±!V3),(- i ±iV3). Then

(1) dZl has 12 norm exposed faces, each of which is symmetric; thus Z is a WFS
space;

(2) "U = dUl (since S° = {0} for all 0 #= <S c Z);
(3) the generalized tripotents are (±1,0), (f, ±£V3), (~L ±sV3), (1, ±§\/3),

(0, ± |V3),(-1, ±SV3);
(4) if /= ( l , 0 ) eZ , then any «e{(l,0), (1, ±£\/3)} satisfies /(w) = ||/| | and

Properties (1), (2), (3) show that there exist projective units u which are not
generalized tripotents but for which Fu is a symmetric face. Hence the condition
S* u = u in the definition of generalized tripotent does not follow from the other part
of the definition. Property (4) shows the non-uniqueness of a projective unit
occurring in the polar decomposition of Proposition 1-4 (uniqueness will be shown in
§4 under additional assumption).

In the rest of this paper we shall need the basic orthogonality properties of
generalized tripotents and other elements of the dual space Z* of a WFS space Z, as
developed in [7], §2. These results were stated in [7], for convenience, under an
additional assumption. An examination of their proofs shows that lemma 2-1, lemma
2-4 and lemma 2-5 of [7] are valid in WFS spaces, and therefore they can be used here
in §2 and §3.

The following lemma will be used in §4 to study the properties of a partial order
on the set of generalized tripotents.

LEMMA 1-8. Let Z be a WFS space. For vs^ST and beU0(v) with \\b\\ = 1 and
Fb 4= 0 , we have

In particular, if « , » e ^ J are orthogonal, then Z0(u + v) = Z0(u) D Z0(v).

Proof. By [7], lemma 2-1, we have Fb <= Fb+V. Therefore {Fv+b)° cz Ff 0 Ff.

For any <j>eFb+v, we have

which implies that

if

and \\Po{v)<f>\\-1Po(v)4,eFb if P0(v)</>±0.

Let ifreFf> ()F<>. Then i/r<>P2(v)<f> and f<>P0(v)<f>, so by Corollary 1-2 we have

implying \]/<^(f>, and (5). I
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2. Neutrality and uniqueness of symmetries

In this section we introduce the notion of neutrality and use it to prove that the
generalized Peirce projections are uniquely determined by the symmetric face F
which defines them.

We shall also characterize the generalized tripotents which belong to Uk(F) for
ke{0,1.2}, and show that they span this space in the weak*-topology.

A contractive projection Q on a normed space X is said to be neutral if for each
E,eX, ||(3£|| = ||£|| implies QE, = £,. A normed space Z is neutral if for every symmetric
face F. the projection P2(F) corresponding to some choice of symmetry SF, is
neutral.

If Z is the predual of a JBW*-tri]i\e then Z is neutral (see [5], proposition 1).
Moreover, in a Ji?J'F*-triple, P0(F) is always neutral and Pr(F) is not neutral in
general. This situation prevails in general according to the following result.

LEMMA 2-1. Let Z be a neutral WFS space. Then P0(F) is neutral for every symmetric
face F.

Proof. Let geZ and ||PO(^)?II = IMI = 1 f°r some symmetric face F. There
exist xeZ* with ||x|| = 1 and with (P0{F)g,x} = 1. We may therefore assume that
xeU0(F). Let w and v be the unique elements in ^ST corresponding to the symmetric
faces Fx and F respectively. By lemma 2-1 of [7]

xOv^FxOFv=>Fw = Fx^Ff^Z2(w) c Z0(v) =>P0(v)P2(w) = P2(w).

Also, since geFx = Fw, we have ||_P2(w)gr|| = ||gr||, and by neutrality we have
g = P2(w) g = P0(v) P2(w) g = P0(v) g. I

The following lemma will be used to prove the uniqueness of a symmetry
associated with a symmetric face. It will also play an important role in §3 for proving
the compatibility of two generalized tripotents u,v with ueU^v). It is based on a
simple relation between neutrality of a contractive projection Q and a unique
Hahn-Banach extension property of the range of Q*.

LEMMA 2-2. Let Q be a neutral contractive projection on a normed space X. Then Q*
is the unique weak*-continuous contractive projection on X* with range Q*(X*).

Proof. We show first that V:= Q*(X*) has the following unique Hahn—Banach
extension property: if <j>l,<j>2eX c X** and 0j |K = <j)2\v = <j> say, with H0JI = ||02ll

 =

||011,,., then </>l = (f>2.
To see this, note that || Q(j>t \\x = || <j> \\yt = H^J^. Hence, by neutrality, <f>teQ(X).

Thus for all aeX*, we have < a , ^ > = (Q*a,<f>ty = <Q*a,<f>y, and <px = (j)2.
Now let R:X*-^-X* be a weak*-continuous contractive projection with range V

and let freX. Then \jr\v&V* and, with i/r1 = ifroR, i/r2 = ijroQ*. we have \jrfeX,
a n d ^t\v = ty\v- By the previous paragraph, ifrl = i/r2 so that

For an arbitrary projection Q on X, the kernel of Q* is determined by the range
of Q in the sense that R(X) = Q(X) implies keri?* = kerQ*. The following theorem
shows that the range of Q* is also determined by the range of Q in the ease that
Q = P2(F) or Q = P0{F). This fact will be used in the next section to prove
compatibility of generalized tripotents.
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THEOREM 23. Let Z be a neutral WFS space, and let F be any norm exposed face. For
k = 0 or 2, any xeUk(F) with \\x\\ = 1 satisfies FxcZk(F); conversely, if x is a
generalized tripotent with FxcZk(F), then xeUk(F). Moreover, all such generalized
tripotents generate Uk{F) in the following sense:

Uk(F) = sF>-{vc:GeSr&,G<= Zk(F)} (k = 0,2).

Proof. Throughout let k = 0 or 2.

IfxeUk(F) and ||a;|| = 1, then

psFx implies {Pk{F)p,xy = <p,Pk(F)*x> = </>,*> = 1.

Hence, by neutrality of Pk(F), we have peZk(F) and Fx cr Zk{F).
IfGeSfS? and G <= Zk(F), then SF(G) = G. Hence, by [7], lemma 2-4, S*vG = vG,

i.e.vGeU2(F) + U0(F).
Suppose G t= Z0(F) = F<>. ThenF0 0 <= 6?°. By Proposition 1-5, (SpF) OF0, which

implies spF c Fo<> a G°. Since Z2(F) = gpf and (vG, G°} = 0, we have for arbitrary

<P2(F)*vG, cr> = (vG, P2(F) <r> = 0.

Thus P2(F)*vG = 0 and vGsU0(F).
Now let G t= Z2(F). Then once more by Proposition 1-5 we have G O F°, implying

F° a G°. For arbitrary aeZ we have

<P0(F)*vG,<r} = (vG,Pa{F)<ry = 0.

Thus P0(F)*vG = 0 and vGeU2{F).
We have shown that spw*{vG:G66^^,G <= Zk(F)} cz Uk(F). To show equality,

suppose there exists <j>eZ with ||0|| = 1 and <fi(vG) = 0 for all norm exposed faces
G tr Zk(F), and suppose that <j)(Uk{F)) =t= {0}. We may assume that <j>eZk(F) and
that there is an xeUk(F) with ||x|| = 1 and with <j>eFx. From above, FxcZk(F)
and thus <j){vH) = 0 where H = Fx. This contradicts the fact that <f>&Fx. I

We are now able to prove the uniqueness of a symmetry corresponding to a given
symmetric face.

THEOREM 2-4. Let Z be a neutral WFS space, and let F be any norm exposed face.
If SF and SF are isometric symmetries with the same fixed point set SpF ®F°, then
SF = SF. Moreover the generalized Peirce projections Pk(F),k = 0,1,2, are uniquely
determined by F.

Proof. Let Pk(F) and Pk{F) be the generalized Peirce projections corresponding to
the symmetries SF and SF respectively. Since

P2(F) Z = spF = P2(F) Z = Z2(F) and P0(F) Z = F° = P0(F) Z = Z0(F),

Theorem 2-3 implies that Pk(F)* and Pk(F)* have the same range (k = 0,2). By
Lemma 2-2, these projections are equal, so that

W + 8%) = P2(F)* + P0(F)* = P2(F)* + P0(F)* = £(/ + £*).

Hence S% = SF and SF = SF. I
Our final theorem in this section describes the generalized tripotents in the space

U^F). It is similar to Theorem 2-3, but since PX(F) is not neutral and xeL\(F) does

https://doi.org/10.1017/S030500410006802X Published online by Cambridge University Press

https://doi.org/10.1017/S030500410006802X


Affine structure of facially symmetric spaces 115

not imply Fx cz Zt(F), the condition on the face Fx involves the action of the
symmetry rather than the range of

THEOREM 2-5. Let Z be a WFS space, let FeSfP ,xsXJx{F), ||x|| = 1. Then SF(FX) =
—Fx and vHsUl(F), ivhere H = Fx\ in particular, if x is a generalized tripotent and
SF(FX)=—FX, then xeU^F). Moreover the generalized tripotents in UX(F) generate
U^F) in the following sense:

Proof. Let 4>eZ, where ||0|| = 1. Then

Hence SF(FX) = —Fx. By [7], lemma 24, with H = Fx, we have S*(vH) = v_H = — vH,
\.e.vHsUl(F).

Let Geyp satisfy SF(G) =-G. Then

Thus spw*{vG:GeSf3?,SF(G) = -G}c Ut(F). To show equality, let xjr belong to Z,
\jr{vc) = 0 for all G&&& with SF(G) = - G and suppose ^(U^F)) + 0. We may assume
feZ^F) and ||^|| = 1. Thus there exists xeU^F) with ||x|| = 1 = (i/r,x}, and by
the first statement SF(FX) = —Fx. We now have ft(vH) = 1, a contradiction, where

I

3. Compatible generalized tripotents

Two generalized tripotents u and v are said to be compatible if their generalized
Peirce projections commute, i.e. [Pk(u),Pi(v)] = 0 for k,je{0,1,2}. Theorem 33,
which is of fundamental importance in the sequel, gives sufficient conditions for
compatibility.

In the next lemma and theorem, the following idea occurs a few times. Once it is
proved that Pk(u) T = T for a suitable operator T, then a commutativity formula
follows by duality using Theorem 2*3 to reverse the order of the product. In Lemma
3-1, T = SvPk(u) and [Sv,Pk(u)] = 0 follows. In Theorem 3-3, T = P}(v) and
[Pk{u),P}(v)] = 0 follows.

LEMMA 3-1. Let Z be a neutral WFS space. Let u.ve^ST and suppose SV(FU) = ±FU.
Then

,Pi(u)] for je{0,1,2}. (6)

In particular, if uBUk(v) for some ke{0,1,2}, then (6) holds.

Proof. Suppose that SV(FU) = ±FU. Then P2(u)Sv{Fu) = SV(FU) so that

P2(u)SvP2(u) = SvP2(u). (7)

Since SV(F$) = (SV(FU))° = (±FU)<> = F$

we have Sv(Z0(u)) = Z0(u) so that

PQ(u)SvPo(u) = SvPo(u). (8)
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For S*, by Theorem 23 and [7], lemma 24, we obtain

S*(Uk(u)) = sp™*{Sf(vH):Hey<F,H c Zk(u)}

for A; = 0 or 2. Since (7) and (8) imply that SV(H) c Zk(u), we have

Pi(u)*StPi(u)* = S*Pl(u)*, (9)

and 7J
0(«)*<S:/J

0(M)* = S*P0(M)*. (10)

Using (9) and (7), we have

Pa(u)**8** = Ps[u)**S**P2(u)** = (P2(u)SvP2(u))**

= (SBP2(tt))** = S**A(«)**-
Thus [P2(tt),S,,] = 0.

Similarly, (8) and (10) imply [P0(u),Sv] = 0. Since P^i) = I - P2(u) - P0(u) and
P^w) = | ( / - S J , assertion (6) follows.

Finally, if ue Uk(v), then by Theorem 2-3, SV(FU) = Fu if lc = 0 or 2, and by Theorem
2 - 5 , SV(FU) =-Fu if l c = l , I

The following remark, similar to Remark 1-3, is needed in the proof of the
fundamental Theorem 33.

Remark 3-2. Let F be a symmetric face in a neutral normed space Z. If <f>,\freZ,
<j) O i/r and 0 + ^eZ2(F), then <peZ2(F) and ^eZ 2 (f ) .

Proo/.

so by neutrality, (j>,xj/eZ2(F). I

THEOREM 3-3. Let Z be a neutral WFS space. If u and v are two generalized tripotents
such that ueUk(v) for some ke{0.1, 2}, then u and v are compatible.

Proof. In each of the following three cases, by Lemma 3-1 we have

[P1(v),PJ(u)] = 0 for je{0,l ,2}. (11)

Case 1. k = 0. By Theorem 2-3, Fu c Z0(v) and therefore Z2(u) = spFu c Z0(v). This
means that P0(v)P2(u) = P2(u). Also by Theorem 2-3,

U2(u) = Ww* {vK-K^ Z2(u)} cz sp«" {vK :K c Z0(v)} = U0(v)

so that P0(v)*P2(u)* = P2(u)*. Therefore

Pt(u)**P0(v)** = P2{u)** = (P0(w)/»)** = P0{v)**Pt(u)**,

i.e. [P2(u), P0(v)] = 0.

Since VEU0(U) by [7], lemma 2-5, by sj^mmetry [P2(^),P0(M)] = 0. Finally

[P2(u),P2(r)] = [P2(tt),/-/>(i;)-P0(t;)] = 0

and similarly ^ p ^ = [ P i ( u ) j p o ( j ; ) ] = [i>0(M),Po(t,)] = 0.

Thus M and v are compatible.
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Case 2.1c = 2. Once more, by Theorem 2-3, Fu c Z2(v). Thus P2(v) P2(u) = P2(u)> and
as above, by the same theorem, we obtain

P2(v)*P2(u)* = P2{u)*, and [P2(v), P2(u)] = 0.

Since Fu cz Z2(v) c F°<> by Proposition 17, we have F% => F^00 = F<>. Therefore
Z0(u) => Zo(«) and so P0(u)P0(v) = P0(v).

By Theorem 2-3 again, P0(ti)*P0(v)* = P0(v)*, and [P0(u),P0(v)] = 0. It now follows,
as in the previous case, that [Pf(v),Pj(u)] = 0 for all i,je{0,1, 2}.

Case 3. k = 1. Since P2(I;)+P0(J;) = i(/ + SK), Lemma 3-1 implies that

( i » + i > ) ) Z , ( « ) < = Z y ( u ) for j e {0,1,2}. (12)

Using the fact that Z2(v) O Z0(u), from Remark 1-3 (for j = 0) and Remark 3-2 (for
j = 2), we have

P P P foTi,je{0,2}. (13)

Moreover Q: = Pt(v) Pj(u) is a neutral contractive projection with range
Z,(t;) n Z,(w), fori,J6{0,2}.

Obviously the subspace Q*(C/) contains [/<(«) f"l Uj(u). If these subspaces are not
equal, we may choose <j>eQ(Z) such that <fr(Ut(v) 0 Uj(u)) = {0} and \\<f>\\ = 1. Then
there exists xeQ*(U) with ||x|| = 1 and with <peFx. By neutrality of Q we have
Fx c Q(Z) and by Theorem 2-3, vHeUt(v) 0 Ut(u), where H = #,.. Hence <j>(vH) = 0,
contradicting 0eJ^. Thus we have Q*(U) = U((v) fl t/^w).

Now let R: = P ^ P ^ t t ) Pt(v). From (13) it follows that R2 = R, so thati? is a neutral
contractive projection. For any tfieZ we have

Since Py(«) is neutral for j = 0 or 2, we have R<f> = Pi{u)R<l>. Thus we have
5(Z) = Z/M) n Zt(v). This implies, as above, R*(U) = Ut(v) 0 U}(u) and thus by
Lemma 2-2, Q =-R, i.e.

«) = />(»)/>,(») P,(i;) fort,J6{0,2}. (14)

From this it follows that

P0(u))Pi(v)Pl(u) = (Pt{v)P,{u))\,

implying, by neutrality of Pt(v),

PtWP^u) = P^P^P^u) for ie{0,2}. (15)

Finally, using (13) and (15), we have, for i,je{0,2},

P,(u)Pt{v) = /

i.e. [P4(i'),/>(«)] = 0 for i,je{0,2}. This fact, together with (11) shows that u and v
are compatible. I
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COROLLARY 3-4. Let Z be a neutral WFS space. If u and v are generalized tripotents
such that ueUh(v) for some ke{0,1,2}. then Pi(v)Pi(u) is a projection with range
Zf(v) D Zt(u) for all i,je{Q, 1,2}. Moreover

(a) if ueU0(v), then (b) if ueU2(v), then
(i) P0(v)P2(u) = P2(u) (i) P2(v)P2(u) = P2(u)

(ii) P0(u)P2(v) = P2(v) (ii) P0(u)P0(v) = P0(v)
(iii) P2(u)P2(v) = 0 (iii) P,NP0(«) = 0
(iv) P^u)P2(v) = 0 (iv) P2(u)P0(v) = 0
(v) / » P 2 ( t t ) = 0 (v) P,MP2(«) = 0.

Proof. The proofs of (a)(i-ii) and (6)(i-ii) are included in the proof of
Theorem 33.

If ue U0(v), then
P2(v)P2(u)=P2(v)(P0(v)P2(u)) = 0,

and P1(u)P2(v) = (I-P2(u)-P0(u))P2(v) = P2(v)-0-P2(v) = 0.

By symmetry P^v) P2(u) = 0, proving (a).
If ue U2(v), the proof of Theorem 3-3 showed that Z0(u) 3 Z0(v) and Z2(v) => Z2(u).

Therefore
P^P^v) = P2(u)P0(v) = 0 and P,(t;)P2(tt) = 0,

proving (b). I

We close this section with an important consequence of Theorem 3"3. Namely, we
show that some fundamental properties of a normed space Z are inherited by the
generalized Peirce subspaces. We adopt the following notation: if Y is a closed
subspace of a normed space Z, the collections of norm exposed faces and symmetric
faces in 8YX will be denoted by JFY and Sf^y respectively. Similarly for ^ y , ^ ^ " F ,
and ifif ey#" F , then S(K, Y) and Pk(K, Y) denote a symmetry associated to K and the
corresponding generalized Peirce projections.

For any KelFy, by the Hahn-Banach theorem, K = Fx 0 Y for some xeZ*. If Z is
WFS then a symmetry S, corresponding to the face Fx of Z,. fixes wpFx + F£. If S
leaves Y invariant then S\y is a symmetry of Y fixing

n y = (vpFx n Y) + (F<> n n

Therefore, in order to show that KeS/'&'y, it suffices to prove that S leaves Y
invariant and that spFx f] Y = spK and F% 0 Y = K° 0 Y. The latter is done in
Lemma 3-5 if Y = Q(Z) and Q is any contractive projection on Z. Specializing to
Q = Pk(v) and using some earlier commutation formulae then leads to the fact that
the generalized Peirce spaces Zk(v) are WFS and neutral, whenever Z is WFS and
neutral.

LEMMA 3-5. Let Z be any normed space, let Q:Z->Z be a contractive linear projection,
and let ive^^ fl Q*(U). Then, with Y = Q(Z),

(FwnY)°nY = F%nY, (16)

ami sp (Fw n 10 = sp (Fw) fl Y. (17)
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Proof. Obviously (Fw 0 Y)° 0 Y => F<> n Y. To prove equality, let p belong to
(FW(]Y)<> n Y, where ||p|| = 1, and let <f>eFa. Since w = Q*w, we have Q<j>eFw and
Q^ O p. Hence

2 = ||Q0|| + IIPII = WQt+pW = \\Q(4>±p)\\ < l l^ lpl l ^ 2.

Thus <f> Op, and p e i ^ fl 7, proving (16).
Obviously sp (i^ fi Y) <= sp (i^) fl Y. To prove equality, suppose first that

p = 'Laip( belongs to (spjFJ D Y, so that pteFw. Then p = Qp = 'LaiQpi and
Qpje i^nF . Therefore (spjFJ fl 7 <= s p ^ fl Y). Now (17) follows by approxi-
mation. I

THEOREM 3-6. Let Zbea neutral WFS space. Let v e ^ST. Then Zk(v) is a neutral WFS
space, for k e {0,1,2}. More precisely, for every norm exposed face K in Zk(v), there is a
norm exposed face F in Z such that K = F ft Zk(v) and the generalized Peirce projections
corresponding to a symmetric face in Zk{v) are the restrictions of the global generalized
Peirce projections in Z, i.e. P}(K,Zk{v)) = Pj(F)\Y, {where Y = Zk(v)) for j = 0,1,2.
Furthermore Pk{v) (F) = K.

Proof. Let Ke &Y where Y = Zk(v). Then K = FXV\ Zk(v) for some x in Uk(v) with
||z|| = 1. It is clear that K cr Pk(v)(F) and conversely, if peF, then

<pk(v)P,x} = <p,/»**> = (P,xy =1,

so Pk(v) (F) c K. By Theorems 2-3 and 2-5 there exists w e ^ fl Uk(v) with Fx = Fw.
By Theorem 3-3, the symmetry SF (with F = Fx) leaves Zk(v) invariant. Therefore
SK:= SF\y is an isometric symmetry fixing (spF+F^) fl Zk(v), which equals
s p # + (K0 0Zk(v)) by Lemma 3-5. Therefore KzSf&y and Zk(v) is WFS.

Moreover, since Pj(F) leaves Zk(v) invariant and its restriction has the 'correct'
range, we may define the generalized Peirce projections P^K^^v)) to be Pj(F)\y. It
follows immediately that Zk(v) is neutral if Z is neutral and hence, by Theorem 2-4,
that the generalized Peirce projections are unique. I

We have just proved a hereditary property for certain contractive projections,
namely the generalized Peirce projections. Since it is known that the category of
J.B*-triples is stable under arbitrary contractive projections, the following is a
natural question.

Problem 1. If Z is a WFS space and Q: Z^-Z is an arbitrary contractive projection,
is Q(Z) a WFS space ?

4. Facial structure in SFS spaces

In the previous sections, we obtained properties of WFS spaces. To proceed
further, we restrict our attention to the subclass of strongly facially symmetric
spaces. This class was introduced by the authors in [7] to obtain a geometric spectral
theorem. In [7], these were simply called facially symmetric spaces.

In this section we show that the facial structure of the unit balls of a strongly
facially symmetric space and its dual behave almost exactly as they do in the case
of a JBW*-trip\e and its predual (cf. [4]). This is further evidence that the category
of dual spaces of strongly facially symmetric spaces, which satisfy certain physically
meaningful axioms, will coincide with the category of J5W*-triples.
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Definition 2. A WFS space Z is said to be a strongly facially symmetric space
(abbreviation SFS space) if for every norm exposed face F in Zx and every yeZ*
with \\y\\ = 1 and F <r Fy we have Spy = y, where SF denotes a symmetry associated
with F.

This property implies that y = vF + P0(F)*y and is analogous to orthomodularity in
a lattice (the definition of which is recalled below).

Note that the WFS space Z in Example 1-7 is also neutral. However, it is easy to
see that it is not an SFS space. For u = (1,0) and v = (i.,$y/3), we have Fu <= Fv,
Fu 4= Fv and F%()Fu = 0 since F% = {0}. This shows that [7], lemma 2-7, which is
needed below, fails in neutral WFS spaces. Moreover this example shows that the
spectral theorem ([7], theorem 1) and the uniqueness of the generalized tripotent
occurring in the polar decomposition (Proposition 1-4) are not valid in the category
of neutral WFS spaces.

The only result in the previous sections that does not hold automatically for SFS
spaces is the stability under generalized Peirce projections, which we now prove.

Note that in an SFS space, every projective unit is a generalized tripotent (i.e.
% = yST ), since for M e t , the condition S* u = u is included in the definition of SFS
space.

PROPOSITION 4-1. Let Z be a neutral SFS space. Then for any w e ^ J , and
ke{0,1,2}, Zk{v) is an SFS space.

Proof. Let Fe^,yeUk{v) and suppose K. = F 0 Zk(v) <= Fy 0 Zk(v). We must show
that S(K,Zk(v))*y = y. For any peF, by Theorem 3-6 we have Pk(v)peK and

<p,y> = <p,Pk(v)*y> = <Pk(v)p,y> = 1.

Thus F c Fy, and S(K, Zk(v))*y = SFy = y. I
Although a main theme of our theory is to be free from a global order structure,

a key role will be played by an order structure on the set of generalized tripotents.
A priori, there are three ways to define an order structure on ^^~z, where Z is a

WFS space, namely
(1) by using the bijection of ^^" with S^SF given in Proposition 1-8, and set-

theoretic inclusion of faces;
(2) by using the fact that the sum of orthogonal generalized tripotents is a

generalized tripotent;
(3) by using generalized Peirce projections.
Example 1*7 shows that for WFS spaces these definitions are not equivalent. The

following lemma shows this equivalence in SFS spaces.

LEMMA 4-2. Let Z be a strongly facially symmetric space and suppose that u,ve^STz.
The following are equivalent:

(1)FU<=FV;
(2) v — u is either 0 or a generalized tripotent with (v — u) O u;
(3) P2(u)*v = u.

Proof. (1) implies (2). Since Z is SFS, by [7], lemma 2-8, FU<=FV implies that
v = u + b with b = P0(u)*v. To show that bs^SST, if b 4= 0, it suffices to prove that 6 is a
projective unit, i.e. ||6|| = 1 and <b,F^~) = 0. Since b=¥0,Fu+Fv so by [7], lemma 2-7
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there exists </>eF% ()FV. Thus 0(6) = <j>(v-u) = 1 and ||6|| = 1. Next, let peF$. Since
Fu O Fb, we have P0(u)F? c F£ by Theorem 3-3. Therefore P0(u)peF<> f)F$ = F<> by
Lemma 1-8, and so

<6,P> = <b,po(u)Py = (b+u,po(u)Py = < » , i » p > = o.

(2) implies (3). If v = u + b with b e U0(u), then P2(u)*v = P2(u)*(u + b)=u.
(3) implies (1). If peFu, then <jv,p} = <w,P2(w)p> = (P2(u)*v,p} = <«../>> = 1,

so peFv. I

Definition 3. Let Z be a strongly facially symmetric space and suppose that
. If one of the conditions in Lemma 42 is satisfied, we write u < t>.

We are now able to obtain more detailed information on the generalized tripotent
arising in the polar decomposition.

THEOREM 4-3. Let Z be a neutral SFS space. For any feZ with \\f\\ = 1, there is a
unique generalized tripotent v such that

(a) feFv, and
(b) <«,{/}<>> = 0.
Moreover
(c) Fv is the smallest norm exposed face containing f, and
(d) f is faithful on U2(v) in the following sense:

f(u) = \\P2(u)f\\ > 0 for any ue^3T with u^v.

Proof. The existence of v which satisfies (a) and (b) is given in Proposition 1-4.
To show uniqueness, let w e ^ J satisfy fsFw. Theni^: = Fw V\FV is a norm exposed

face, hence F = Fu for some i t e ^ J . Obviously u ^ v and feFu. If u =t= v, then
u:=v-us<g3~, uOu, and FaOFu, which implies that Fc cz F% a {/}<>, hence
(v,Fa) = 0 by (b). Thus

0 = O,̂ > = <« + t W = <«W,
a contradiction. Therefore Fu = Fv, and Fv c Fw, which proves (c) and the uniqueness.

To prove (d), write v = u + w with w O M; and i c e ^ f . Then

1 =f(u)+f(w) =

Therefore f(u) = | |P2(M)/|| ^ 0. If f(u) = 0, then f(w) = 1 and i o * t , contradicting
(c). I

In a neutral SFS space, for/=f= 0 in Z we denote by v(f) the unique generalized
tripotent v with f(v) = | | / | | and <«!{/}°> = 0. If fgeZ, then fOg if and only if
v(f) O % ) , as follows from corollary 1-3(6) and lemma 2-1 of [7].

An important construct in the study of the facial structure of any convex set is the
notion of a norm semi-exposed face, which by definition is the intersection of an
arbitrary family of norm exposed faces. In the predual of a J51F*-triple, these
objects coincide with the norm exposed faces and the norm closed faces of the unit
ball [4], The next result proves one of these assertions for SFS spaces.
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THEOREM 4-4. Let Z be a neutral strongly facially symmetric space. Then every norm
semi-exposed face of Z1 is norm exposed.

Proof. By Proposition 1-6, any norm semi-exposed face G has the form C\ {Fa: ae T)
where for as T, Fa is the norm exposed face associated with the generalized tripotent
va. Fix fie T and set H = Ffi. For any finite subset A cz T with fie A, define FAe^^
by FA = C\{Fa:aeA}. By Theorem 4-3(d) we have (p,vAy = \\P2(vA)p\\. Moreover if
A cz B then FA => FB, so by Corollary 3-4 we have P2(vB) = P2(vB) P2(vA)• Thus for

P(VB) = \\P2(vB)p\\ = \\P2(vB)P2(vA)p\\ ^ \\P2(vA)\\ = p(vA).

It follows that limx (p,vA} exists for peH. Now define a functional <1> on sp/ / by

Clearly O is linear and of norm 1 so extends to Z2(H). Let xeU be defined by
<z, a} = <&(P2(H) a), for <reZ. Then ||a;|| = 1 and G = Fx. I

The following consequence of Theorem 4-4 provides a local structure of complete
orthomodular lattice in SFS spaces.

Let L be a lattice, i.e. a partially ordered set any two of whose elements a and 6
have a least upper bound aV b and a greatest lower bound a A 6. The least and
greatest elements of L, if they exist, are denoted by 0 and 1 respectively.

Recall that if ueL, where L is a lattice, then u'eL is a complement for u if
u A u = 0 and itVu' = 1. The lattice L is said to be orthocomplemented if there is an
order reversing map u^u1 (called orthocomplementation) on L satisfying wxl = u and
such that u1 is a complement for u; and orthomodular if in addition u < v implies v =
«V(»A UL). Also L is a complete lattice if every non-empty subset of L has a least
upper bound and a greatest lower bound.

PROPOSITION 4-5. Let Z be a neutral strongly facially symmetric space and fix
a generalized tripotent w. The set Lw:= {we'SST: v ^ w} U {0} is a complete ortho-
modular lattice with smallest element 0, largest element w, and orthocomplementation

1 = W — V.

Proof. Since, for u, v sLw, F: = Fu f| Fv is either empty or a norm exposed face with
F cz Fw, it is clear that the generalized tripotent corresponding to F is the greatest
lower bound of u and v. Also, the order reversing map vv+w — v defines a structure
of orthocomplemented lattice on Lw.

To show completeness it suffices to show that every non-empty family has a
greatest lower bound (= GLB). For an arbitrary family {vj <= Lw, if C\aFa = 0, where
Fa is the face corresponding to va, then 0 = GLB va. On the other hand, if V\aFa =t= 0,
then by Theorem 44, C\aLFa = Fu for some u&^ST. and clearly u = GLBwa in this
case.

To prove orthomodularity, let u < v. By Lemma 42 we have v = u+(v — u)
and u O (v — u). Also Fv_u = Fv f\Fw_u, i.e. v — u = v A (w — u) = v Ait1. Finally, since
u O (v — u),

v = u+(v — u) = uV (v — u) = u V (v Au1). I

Each fe Z with | |/ | | = 1 defines a weak*-exposed face in U1 which will be denoted
by Ff, i.e. Ff = {xeU: \\x\\ = 1 =f(x)}. Note that xeFf if and only iffeFx.
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For any generalized tripotent v let F(v) denote the convex set v + U0(v)l. Our next
theorem states that the collection {F(v):ve^^~} coincides with the collection of
weak*-semi-exposed faces of Ul.

THEOREM 4-6. Let Z be a neutral strongly facially symmetric space. For each ve&&~

F(v) = C\{F':feFv},

hence F(v) is a weak*-semi-exposed face. Moreover, for any weak*-semi-exposed face G
of Uv there exists vei?^ with G = F(v).

Proof. For xeF(v) and feFv we have f(x) = f(P2(v)x) =f(v) = 1. Thus xeFf and
F(v) c (1 {Ff:feFv}. On the other hand, if x lies in Ff for ed\feFv, then Fv c Fx, so that
by [7], lemma 2-8 we have x = v + P0(v)*xeF(v).

Now, let G = C\{Ff:feT} be a weak*-semi-exposed face in Uv By Theorem 4-4,
the norm semi-exposed face F:= H{Fx:xeG} is norm exposed, say F = Fv for some
ve<g$~. To prove that G = F(v), note first that if xeG and feT then xeFf, feFx

and therefore T <= Fx. By the first statement, F(v) — C\ {F9: g eFv}, and therefore,
G => F(v), since T c Fv. Conversely, if xe G, then Fv = D {Fy: y e G} cz Fx and therefore
x = v + P0(v)*xeF(v). I

In general, a weak*-semi-exposed face in Ul is not weak*-exposed. However, if the
space Z is not 'too big', for example if it is cr-finite, we do have the following
result:

PROPOSITION 4-7. Let Z be a neutral strongly facially symmetric space which is cr-
finite, i.e. every orthogonal family of generalized tripotents is at most countable. Then
every weak*-semi-exposed face of Ul is weak*-exposed.

Proof. Let ff be a weak*-semi-exposed face of U1. By Theorem 46, there is a
w e ^ J with G = F(v). It suffices to prove that v = v(\]x) for some rjreZ, for then we
will have G = F*.

Let {<j>a} be a maximal orthogonal family of elements of Fv. Then {v((f>a)} is an
orthogonal family of generalized tripotents in Lv and therefore u = LUB v(<fia) exists
in Lv. If u 4= v then there exists (f>sFv(\F2 which implies <j>O<f>a for all a,
contradicting maximality. Thus u = v.

On the other hand, by cr-finiteness, {<f>J = { n̂}n-i> say> ' s countable. We now have,
with ifr:= Y^_x2~nfn, that feFv.

Moreover, if gre{^}0, then (/e{^n}° for all n, by Remark 13. This implies that
(.v(ijrn),gy = 0 for all n and therefore, since

v = w*-lim(i;(^1)-l- ... + v(i/rn))

that <jv, g} = 0. Thus <v, {^}°> = 0, and v = v(f). I

Two important questions remain open concerning the facial structure of an SFS
space and its dual. The answer to each of these questions is 'yes' in the category of
Jj3tr*-triples.

Problem 2. Let Z be an SFS space, let feZ, and let v = v(f). Is the face generated
by / norm dense in Fv ?
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Problem 3. Let Z be an SFS space. Is every proper norm closed face of Zl

automatically a norm exposed face ? In particular, is every extreme point of Zl a
norm exposed point of Zl ?

Both authors are supported by NSF grant DMS 8603064.
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