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CrowdLoc: Cellular Fingerprinting for Crowds by Crowds
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Determining the location of a mobile user is central to several crowd-sensing applications. Using a Global

Positioning System is not only power-hungry, but also unavailable in many locations. While there has been

work on cellular-based localization, we consider an unexplored opportunity to improve location accuracy

by combining cellular information across multiple mobile devices located near each other. For instance, this

opportunity may arise in the context of public transport units having multiple travelers.

Based on theoretical analysis and an extensive experimental study on several public transportation routes

in two cities, we show that combining cellular information across nearby phones considerably improves lo-

cation accuracy. Combining information across phones is especially useful when a phone has to use another

phone’s fingerprint database, in a fingerprinting-based localization scheme. Both the median and 90 per-

centile errors reduce significantly. The location accuracy also improves irrespective of whether we combine

information across phones connected to the same or different cellular operators.

Sharing information across phones can raise privacy concerns. To address this, we have developed an id-

free broadcast mechanism, using audio as a medium, to share information among mobile phones. We show

that such communication can work effectively on smartphones, even in real-life, noisy-road conditions.

CCS Concepts: • Human-centered computing → Empirical studies in ubiquitous and mobile

computing;

Additional Key Words and Phrases: Localization, GSM, android, cellular fingerprinting, audio communica-

tions
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1 INTRODUCTION

The location of a mobile user is important for many crowd-sensing applications, and the location
information is typically tagged along with the crowd-sourced data (Mohan et al. 2008). It is well
known that there is a location accuracy versus energy trade-off in using GPS (higher accuracy but
high energy) versus the cellular network (low-power but inaccurate). Turning on the GPS on a
phone can drain the battery quickly (Constandache et al. 2009; Paek et al. 2011), since it requires
acquiring and maintaining a fix on GPS satellites. When using the alternative of positioning smart-
phones with cellular networks, the location error can be as high as several hundred meters in the
median and several kilometers in many cases (Chen et al. 2006). This may not be useful for most
scenarios. But, the use of cellular network information is power efficient compared to both GPS
and WiFi (Constandache et al. 2009; Thiagarajan et al. 2011). In terms of battery usage, GPS will
drain the battery in just 9h at a sampling period of 30s (Constandache et al. 2009), whereas WiFi
and GSM can last up to 40 and 60h, respectively. The work in Thiagarajan et al. (2011) reports that
at a sampling period of 1s, GSM is 10×more power efficient than GPS and 6×more power efficient
than WiFi. While A-GPS can reduce GPS’s time-to-first-fix, its steady state power consumption is
high as well (Wang et al. 2009).

Another problem with GPS is that it does not always work in the vicinity of tall buildings,
crowded buses or trains, inside tunnels, or sometimes in users’ pockets (Thiagarajan et al. 2009).
In our own experiments on crowded trains (Mumbai 2012; BBC 2015), GPS availability was found
to be as low as 14%. Further, most smartphone users in the region of our experimental study do
not possess high-end smartphones, which are typically equipped with high-accuracy GPS chips.
WiFi-based location can be an alternative in some urban scenarios, but this too has significant
coverage holes. In our data, we observed a lack of WiFi 20–26% of the time on roads, and 51% of
the time when aboard city trains in Mumbai, India.

In our research, we have focused on crowd-sourcing information, specifically for public trans-
portation commuters. A significant opportunity that arises in this context is of improving the lo-
cation accuracy, by combining information (crowd-sourcing) across “nearby” mobile devices. For
instance, if we could combine the cellular network information across phones of users in a bus,
the location error could potentially reduce. This idea is explored in depth in this paper (Section 3)
and is depicted in Figure 1. The intuition is that location errors arise due to fading and shadow-
ing of cellular network transmissions. The errors would potentially “cancel out,” if we combine
information across “nearby” phones. While the original motivation for combining information to
improve location accuracy arose in the context of public transportation, the idea could be useful
in other settings as well.

While prior work has looked at various aspects of cellular network based positioning (Chen
et al. 2006; Thiagarajan et al. 2009; Paek et al. 2011), we believe that the notion of combining
cellular information across phones has not yet been explored. Combining signals received by a
mobile across multiple cellular towers has indeed been explored previously in Chen et al. (2006)
and found to be useful in reducing errors. However, the direction of our work is different: we seek
to combine cellular information across multiple nearby phones. This is potentially complementary
to combining information at individual mobiles across multiple cellular towers. Further, combin-
ing information across phones can potentially smooth out location errors that can arise due to
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Fig. 1. CrowdLoc: combining information across multiple nearby phones.

client-side variability. We observe that client-side variability is significant, given the ever-growing
variety of smart devices today.

When attempting to combine information across multiple smartphones to improve location ac-
curacy, several questions arise. (1) What exactly is the information to be combined across phones,
and how should this be done? What are the privacy concerns to be addressed? (2) What is the
location accuracy improvement, if any, and how does this depend on the number of phones across
which we combine information? (3) Can we combine information across phones of different cel-
lular operators? How does this compare with combining information across phones of the same
operator? (4) How do we go about detecting which phones are “nearby” in the first place, so that
we can potentially combine their location information?

In this article, we answer the above questions (Section 4) through extensive analysis of ex-
perimental data collected using several smartphones, in two different Indian cities, Mumbai (a
large metropolitan city) and Chandigarh (a smaller city with a well planned road network). In this
article, we refer to the two cities, Mumbai and Chandigarh as city-A and city-B, respectively. We
have collected data in a variety of scenarios from these cities: different types of routes (internal
road, highway, suburban train), different times of day, different phones, across different cellular op-
erators, with/without an active data connection. Prior to exploring the combining of information
across phones, we first experimentally determined that the accuracy of the inbuilt “network”-based
localization mechanism in the Android operating system for smartphones (referred to as NET in
this work). It was poor. The fingerprinting mechanism (Chen et al. 2006) performed better in com-
parison to other localization methods (Haeberlen et al. 2004; Ladd et al. 2005); hence, we explore
the combining of fingerprint information across phones.

Our experimental data shows that combining of information across phones is beneficial in re-
ducing the location estimation error: taken across all of our experimental data, the median location
error reduces by a factor of 1.3× while the 90%-ile error reduces by 1.9×. We see a reduction in
location error by the process of combining information, irrespective of whether the mobiles have
a data connection or not.

Any fingerprinting mechanism has to be concerned with the overhead of fingerprinting. To this
end, we show that the training overhead in our mechanism is small. More importantly, we observe
that there is benefit in combining location information across phones, whether they belong to
the same cellular operator, or to different cellular operators. Further, we also explore the effect
of training versus testing on different phones. This is important, as in practice, it may not be
feasible to collect fingerprints on all different types of client devices. We find that the combining
information across phones is even more beneficial for such a scenario, with the overall median
location error reducing by a factor of 1.6 and overall 90 percentile error reducing by a factor of 3.5.

This article explores next (Section 5) the related aspect of determining which mobile devices are
in the vicinity of one another, which is an important and required step prior to combining infor-
mation across phones. We design a distributed, client-based approach using audio communication
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to share information across nearby phones. This mechanism uses a smart-phone’s audio hardware
(microphone and speaker) to perform id-free broadcast of cellular network fingerprint information.
That is, each client simply broadcasts “this is (my) fingerprint,” without revealing its identity. Since
audio is used, there is no identity at the PHY/MAC layers transmitted either, thus retaining the
anonymity of the users that are cooperating to achieve this improved accuracy. The broadcast is
inherently range-restricted, to about 5m, which acts as a working definition of “nearby” for shar-
ing location information. We carefully design the PHY/MAC layers for the audio communication
protocol, so as to achieve reliable and efficient communication even in real-world noisy outdoor
conditions. We also designed a simple MAC protocol to enable phones to exchange this audio
information.

As in all crowdsourcing solutions, an important concern can be about the feasibility of large-
scale participation of users. An altruistic scenario where the user has to keep sharing cellular
information continually, incurring some energy costs, may not be sustainable or even realistic.
Therefore, in this work, we assume that there is necessarily an engaging incentive mechanism
that may have to be tied to tangible/monetary rewards. To illustrate the feasibility of our solution,
consider the use case of a commuter standing at a bus stop, wanting to know the Expected Time
of Arrival (ETA) of buses on a particular route. In a crowdsensing solution, users inside a bus on
the route must participate by sharing their locations. To motivate users to participate, we assume
that an incentive mechanism such as described in Yang et al. (2012), Jaimes et al. (2012), Biswas
et al. (2015), and Gao et al. (2015) is in place. The incentive by itself could be linked to a subsidy on
a metro travel card of the public transportation system, as in INSINC (2012). With a fingerprinting
database that can be built over a few weeks; and with CrowdLoc potentially being integrated
with popular transportation apps such as Moovit (Moovit 2017), m-Indicator (m Indicator 2017),
Ridlr (Ridlr 2017), MyTransport (MyTransport 2017) in cities such as Mumbai, Singapore, New
York, we believe that it is possible to scale our solution to city-wide deployments.

To summarize, this article develops, implements, and evaluates a real-world system that demon-
strates the benefits of combining cellular information across nearby phones. Our key contributions
are: (1) We propose a crowd-sourced framework for combining cellular information provided by
co-located mobile phones, to improve location accuracy. (2) We extensively study the effect of het-
erogeneity (arising from different phone models, operators, data connections) on fingerprinting
mechanisms using real-world data. (3) We evaluate the feasibility of sharing cellular fingerprints
among co-located mobile phones, in an anonymous fashion, using an audio communication-based
mobile application.

2 RELATED WORK

Cooperative localization is well studied in the context of sensor networks (Patwari et al. 2005).
In cooperative localization, different nodes find out their locations with respect to one another,
e.g., using RF propagation models. In our case, we are not concerned about internode distances
or relative positions, but in improving accuracy of absolute positioning by combining information
across nearby crowd sensing nodes. Wymeersch et al. (2009) has demonstrated indoor localization
using a cooperative approach, in the absence of GPS. It, however, uses UWB radios for internode
ranging as well as extensive inter-node communication. Similar cooperation for indoor location
is considered in robot networks as well (Howard et al. 2003). The work by Hemmes et al. (2010)
uses cooperation to improve dead reckoning errors. Another work by Liang et al. (2016) uses co-
operation to improve GPS only and GPS plus NET localization errors. None of these works have
considered combining cellular network information for localization.

GSM-based outdoor localization has been studied in-depth in past work. Chen et al. (2006) have
examined the feasibility of applying methods from WiFi-based positioning literature to cellular
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phones, in a metropolitan setting. They use a radio fingerprint consisting of a set of cellular tow-
ers and the signal strength from them as seen by the mobile. Using traces collected in Seattle’s
metropolitan area, they found the fingerprinting mechanism, with a median error of 94m, to be
the best among three positioning algorithms, in an area where cell tower density is high. This they
attribute to the presence of buildings and other obstacles in an urban environment that leads to
formation of unique fingerprints, which in turn improves accuracy. They report that if informa-
tion is combined across seven cellular towers, then median error lies in the range of 65–134m, and
the 95 percentile error goes down to 163m. The work also reports the effect of training using one
device and testing on another, a dimension that we also stress upon in our work.

The main difference between Chen et al. (2006) and our work is that we explore combining of
information across “nearby” phones, an aspect not explored in Chen et al. (2006). Combining of
information across phones could potentially smooth out not only fading- and shadowing-related
location errors but also client-side variability: antenna type, receiver calibration, and so on. This
is complementary to combining information from multiple cellular towers, as explored in Chen
et al. (2006). In our experiments, we sought to obtain information about multiple cellular towers
but ran into a practical limitation: we observed that this information is not available on many
current smart-phones (Paek et al. 2010).

Nericell (Mohan et al. 2008) also studied the use of GSM for localization, switching to GPS only
if an event of interest is encountered. They have also used GSM fingerprinting and hence collected
cell-id, signal strength, and GPS values (latitude, longitude) as the training data. A mapping was
created between cell-id (with the strongest signal strength) and GPS data. The median localization
error and 90%ile error reported in Mohan et al. (2008) were 117m and 660m, respectively, in the
city of Bangalore, India. Nericell too does not explore combining of information across multiple
phones, which we explore.

Paek et al. (2011) have developed a Cell-ID Aided Positioning System (CAPS), which leverages
spatio-temporal consistency in user mobility to aid position estimation. It was observed along four
routes that Android’s network-based location API (which we refer to as NET, in our work) gave
a median error of around 400m and 95 percentile error as large as a few kilometers, while CAPS
achieved a median error of less than 75m, while using GPS 4% of the time. While CAPS improves
location accuracy by turning on GPS for some intervals of time, we improve location accuracy
through combining information across multiple phones.

Transfer of small amounts of data between smartphones over short ranges, using audio
communication, has been explored in the recent past. Dhwani (Nandakumar et al. 2013),
PriWhisper (Zhang et al. 2014), ANT (Patro et al. 2011) use audio communication in the audible fre-
quency range. Dhwani (Nandakumar et al. 2013) implemented OFDM-based audio communication
in the range 6–7KHz and achieved a data rate of 2.4Kbps over less than 20cm range, while using
a 24-bit CRC for error detection in noisy conditions. While PriWhisper (Zhang et al. 2014) used a
9KHz carrier frequency and MFSK modulation, to achieve a data rate of 1kbps in the range of less
than 0.5cm, Patro et al. (2011) used FSK modulation over 1200–1300Hz frequencies and achieved
a data rate up to 8bps within few centimetres range. Unlike the above, in our setting, to combine
location information across phones of “nearby” commuters, we need a communication range of a
few metres.

Communication over inaudible frequencies (16–22kHz) can span larger distances of a few me-
ters. In this context, Madhavapeddy et al. (2005) used 21KHz as a carrier frequency to achieve a data
rate of 8bps over a distance of 3.4m, while Lee et al. (2015) used a chirp BOK modulation scheme
over 19.5–22KHz to achieve a data rate of 16bps over a distance of 25m. However, these existing
works in communication over inaudible frequencies have used high-end speakers or microphones
in their implementations. Moreover, they have considered relatively noise-free indoor/lab settings.
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Fig. 2. Cellular Fingerprinting: Training and Testing.

Kannan et al. (2012) proposes an audio-tone counting technique in the 15–20kHz frequency range
using MFSK modulation. The implementation is tested on smartphones for 5m in noisy environ-
ments such as a bus stop and running bus. However, unlike our work, Kannan et al. (2012) focuses
only on detection of mobile phone presence and does not propose a smartphone system for audio
communication.

In contrast to these previous works, we have designed and implemented audio communication
on smart-phone hardware, in noisy outdoor conditions. Noise would include vehicular noise, peo-
ple conversing, and so on. In some parts of the world such as India, road-noise has been reported
to be very high and this includes vehicular honks (Sen et al. 2010; Mohan et al. 2008). The prior
work in the inaudible frequency range have not addressed the issue of noise, e.g., none discuss
a robust preamble detection scheme or PHY layer coding. Dhwani (Nandakumar et al. 2013) uses
high-pass filtering to nullify noise, OFDM to counter frequency selectivity, a chirp-based preamble
for frame synchronization, and basic error correcting codes. However, the communication range
of Dhwani is limited to a few centimeters and it operates in the audible frequency range.

In summary, we believe our work is the first to explore the possibility of combining cellular
information across phones for improving the location accuracy during outdoor localization, and
to implement and demonstrate the same using audio communication in real-world settings.

3 CROWDLOC OVERVIEW

In CrowdLoc, we combine cellular network-based location information of “nearby” phones to
improve their location accuracy. The motivation behind combining location information across
phones is that cellular network-based location is inaccurate because of various fading and shad-
owing effects on cellular signals. It is likely that two different phones in the vicinity of one another
would face different fading and shadowing effects. Thus, we intuitively expect that appropriately
combining information across these devices would reduce location error.

What exactly is the information we should combine? This depends on the mechanism each de-
vice uses for localization. We initially considered the inbuilt Android mechanism for determining
cellular network based location (termed NET (Paek et al. 2011)), to determine each individual
phone’s location. However, early on in our experiments, we realized that NET performs quite
poorly, with a median error as high as 800m in some cases. Hence, we tried the fingerprint algo-
rithm (Chen et al. 2006), which uses the tuple < cell ID, siдnal strenдth > as a fingerprint to map
to a location. This is depicted in Figure 2.

Cellular fingerprinting comprises two phases: a training phase and a testing phase. During the
training phase a cellular fingerprint database, which is essentially a lookup table, is constructed. An
Android application is used to collect the cellular fingerprint and to record the corresponding GPS
coordinates at that location. The < cell ID, siдnal strenдth > tuples, along with the corresponding
GPS locations, are used to populate the lookup table, as shown in Figure 2. It is to be noted that
the cell ID uniquely identifies the operator. The lookup table can be stored locally or hosted on a
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Fig. 3. Co-located phones with same cell-id.

server. During the testing phase, a reverse mapping approach is used. Here, a query comprising
only a < cell ID, siдnal strenдth > corresponding to an unknown location is sent from a mobile
phone to the fingerprint database. In the classical fingerprinting approach (Chen et al. 2006), the
server simply looks up (reverse maps) this tuple to the GPS location in the lookup table. If the cell
ID does not match any of the cell IDs in the lookup table, then the server discards the query. If
the cell ID does match any of the cell IDs in the lookup table, then it retrieves the GPS location
corresponding to the closest value of < siдnal strenдth > in the query and provides this location
as the “best matched” location, as shown in Figure 2. The number of trips conducted during the
training phase coupled with the density of cell towers will determine the richness of the fingerprint
database, and consequently, the accuracy of the location estimated during the testing phase.

Cellular fingerprinting showed better results than NET (details in Section 4) in our experimental
study. Hence, we considered this approach for combining information across phones. We now
present a theoretical analysis that demonstrates the benefits of our proposed solution of combining
cellular fingerprints, and illustrate the same for some simple scenarios.

3.1 Combining Cellular Fingerprints of Co-Located Phones with the Same Cell ID

For simplicity of the theoretical analysis and to focus on the intuition behind our idea, we first
consider a scenario where N co-located mobile phones are associated with the same cell ID, c . Let
< c, s1 >, < c, s2 > . . . , < c, sN > represent their cellular fingerprints as shown in Figure 3. The
GPS location < lati , loni >, where mobile phone i is co-located with a number of other mobile
phones, can be estimated using a reverse mapping of the cellular fingerprint < c, si > of any of
the mobile phones, i . However, this signal strength si may vary significantly, not only across time
instants but also across phones, primarily due to independent shadowing conditions experienced
by each of the phones. The presence of shadowing in a wireless environment does not permit a
1:1 relationship between location and signal strength. Therefore, for a lookup table used for the
reverse mapping process, the GPS location corresponding to the cellular fingerprint of any single
phone, will also vary considerably depending on the signal strength of the chosen phone and can
thus result in large errors in estimated location.

For the reverse mapping based approach, is it then possible to obtain a location estimate with a
lower variance, in this scenario? We explore a solution where we make use of the fact that there
may be multiple phones associated with the same cell ID that are concurrently located at the same
location, as in Figure 3. We first define the sample mean (s̄) of signal strengths of the N phones as

s̄ =
s1 + s2 + · · · + sN

N
.
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Fig. 4. Single-cell ID case: Average location error (in meters) with increasing number of co-located phones

(N).

Since the signal strengths s1, s2 · · · sN perceived by each of theN phones are caused by independent
shadowing conditions, these can be considered to be independent random variables. Consequently,
the variance σ 2

s̄ of the sample mean, s̄ of the N co-located mobile phones becomes (Papoulis and
Pillai 2002)

σ 2
s̄ =

σ 2
1 + σ

2
2 + · · · + σ 2

N

N 2
,

where, σ 2
1 , σ

2
2 , . . . , σ

2
N , are the individual variances of the signal strengths of the N phones, re-

spectively. In the simple case where σ1 = σ2 = · · · = σN = σ ,

σ 2
s̄ =

σ 2

N
.

As can be seen from the above equation, the effect of averaging the independent signal strengths
of the N “co-located” phones, is to reduce the overall variance of signal strength by a factor of
N , when compared to the variance of the signal strength of any one of the N co-located phones.
Therefore, to obtain a relatively consistent (across time and phones) representative location for the
N co-located mobile phones, one can lookup the GPS location corresponding to < c, s̄ > instead
of looking up the locations corresponding to any < c, sn >, where n = 1 · · ·N .

Figure 4 shows a MATLAB simulation of how the average location error (in meters), varies
inversely with increasing N , for 10,000 iterations. The signal strengths in dBm for each phone
has been drawn from a normal distribution with mean and standard deviation of −106 and 2dBm,
respectively, based on observations made in outdoor wireless environments (Rappaport et al. 1996).
A reduced variance in the combined signal strength at a particular location implies that a relatively
consistent value for the signal strength is used to retrieve the location from the lookup table. The
consistency in the signal strength value in turn translates to a consistency in the location estimate
retrieved through the lookup process. Therefore, a direct consequence of the reduction in variance
of the combined signal strength with increasingN is a reduction in the variance of the GPS location
retrieved from the lookup table.
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Fig. 5. Co-located phones with different cell IDs in their cellular fingerprints.

3.2 Combining Cellular Fingerprints of Phones with Different Cell IDs

The above analysis shows the implication of combining signal strengths for the single cell ID
case. We now consider a more practical scenario, where co-located mobile phones may be asso-
ciated with different cell IDs of the same cellular operator or of different operators. In this case,
combining signal strengths (as in the single cell ID case described above) across mobile phones
associated with different cell IDs does not have a logical meaning. We therefore explore an alter-
nate approach, which is a two-step process. We first reverse map the cellular fingerprints to their
corresponding locations in the lookup table. The retrieved locations are then combined using any
of the algorithms described in Section 3.3. We now explain this approach in detail.

To illustrate the idea, consider a two-cell ID scenario where there are N co-located phones. For
simplicity of the theoretical analysis, the N phones are assumed to lie on the line between the two
cell towers, as shown in Figure 5. In practice, the mobile phones can be located anywhere in the
two-dimensional coverage overlap region of the two cell towers. In the following discussion, this
assumption simplifies the two-dimensional localization problem to a distance estimation problem.
Out of the N co-located phones, let N1 phones be associated with cell ID c1; while N2 phones are
associated with cell ID c2 and N = N1 + N2. Let the phones be located at a distance d1 from cell
tower 1 and d2 from cell tower 2, and let d1 + d2 = D, the distance between the two towers, as
shown in Figure 5.

Now, the cellular fingerprints corresponding to the N1 phones associated with cell ID c1 are tu-
ples of the form < c1, s1,n1 >, where s1,n1 is the signal strength measured by each phone n1 in the
group n1 = 1, 2 · · ·N1. Let the location (it is the distance here) corresponding to the measured sig-
nal strength s1,n1 be recorded as r1,n1 in the lookup table during the training phase, for each of the
phones n1 = 1, 2 · · ·N1, respectively. Note that the recorded r1,n1 maybe different from the actual
distance d1 from tower 1, due to shadowing effects. Similarly, the cellular fingerprints correspond-
ing to the N2 phones associated with cell ID c2 are tuples of the form < c2, s2,n2 >, where s2,n2 is the
signal strength measured by phone n2 for the phones in n2 = 1, 2 · · ·N2. Let the location (distance,
here) corresponding to the measured signal strength s2,n2 be recorded as r2,n2 in the lookup table
during the training phase, for phones n2 = 1, 2 · · ·N2, respectively. Due to shadowing effects, the
distances r2,n2 maybe different from the actual distance d2 from cell tower 2.

To obtain a representative location estimate of low variance for the N co-located mobile phones,
we consider the following approach. We first retrieve theN recorded locations (distances): r1,n1 and
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r2,n2 for n1 = 1, 2 · · ·N1 and n2 = 1, 2 · · ·N2, respectively, from the lookup table. We then examine
if combining these locations (distances) will yield any benefits in reducing the variance of the rep-
resentative location of the N co-located mobile phones. In other words, will combining r1,n1 , r2,n2

for n1 = 1, 2 · · ·N1 and n2 = 1, 2 · · ·N2, using any algorithm, reduce the variance of the estimated
distance of the N co-located phones, with respect to cell towers c1 or c2? Will the variance of the
distance obtained after combining the locations be less than the variance of the distance obtained
while considering only the location of each of the individual phones?

To answer these questions, we consider the signal strengths measured at each of the mobile
phones. The signal strength measured at any location is primarily a function of distance from the
cell tower and any shadowing effects. Consider the following log-distance path loss model with
log-normal shadowing (Rappaport et al. 1996):

PL(r )[dB] = ¯PL(r0) + 10α log

(
r

r0

)
+ Xσ .

Here, PL(r ) is the normally distributed path loss in dB measured at a distance r from the cell tower;
¯PL(r0) is the average path loss in dB at a reference distance r0, α is the path loss exponent (ranging

from 2.7 to 3.5dB in urban cellular environments) andXσ is a zero-mean Gaussian random variable
with standard deviation σ , which accounts for shadowing effects in dB. The actual signal measured
at distance r from the cell tower is therefore log-normally distributed (normal in dBm) and is given
by Pt [dBm] − PL(r )[dB], where Pt [dBm] is the transmit power (in dBm) at the cell tower. The
model for the log-normally distributed signal measurement, s (r ) (in Watts), at the distance r , can
be simplified to the linear scale as follows:

s (r ) =
K

rα
,

where the constant K accounts for cell tower transmit power, antenna gains, RF signal frequency
and average channel attenuation. In the above equation, it can be shown that, if the signal strength
s (r ) measured at a location follows a log-normal distribution log N (μ,σ 2 ), the corresponding dis-
tance r from the cell tower also follows a log-normal distribution given by Papoulis and Pillai
(2002):

fr (r ) =
α

rσ
√

2π
exp
−

(
log(r )+

μ
α −log(K )

) 2

2 σ 2

α 2 . (1)

From Equation (1), the mean E (r ) is given by
−μ

α
+ log(K ), and the variance Var(r ) is given by σ 2

α 2 .
In Figure 5, let the N1 phones associated with c1 have log-normally distributed signal strengths

from the distribution log N (μ1,σ
2
1 ) and let the N2 phones associated with c2 have log-normally

distributed signal strengths from the distribution log N (μ2,σ
2
2 ). Without loss of generality, if we

assume the same transmit powers at the two cell towers, from equation 1 the locations of the N1

phones with respect to cell tower c1 follows a log-normal distribution with mean and variance
given by

E (r1,n1 ) =
−μ1

α
+ log(K )

and

σ 2
r1,n1
= Var(r1,n1 ) =

σ 2
1

α2
,

where signal strengths s1,n1 follow a log-normal distribution log N (μ1,σ
2
1 ) for n1 = 1, 2 · · ·N1. For

distance D between cell towers c1 and c2, assuming the towers are located on a line (Figure 5),
the distance of the N2 phones with respect to cell tower c1 is given by r1,n2 = D − r2,n2 , for
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n2 = 1, 2 · · ·N2. Using this relation, the locations of the N2 phones with respect to cell tower c1

then follows a log-normal distribution with mean and variance given by

E (r1,n2 ) = D −
(−μ2

α
+ log(K )

)

and

σ 2
r1,n2
= Var (r1,n2 ) =

σ 2
2

α2
,

respectively, where signal strengths s2,n2 follow a log-normal distribution log N (μ2,σ
2
2 ) for

n2 = 1, 2 · · ·N2.
CrowdLoc potentially combines these locations (distances, in the above discussion) from the

lookup table to obtain a representative location for the N mobiles. In the illustrative scenario
presented in Figure 5, we combine r1,n1 and r1,n2 for n1 = 1, 2 · · ·N1 and n2 = 1, 2 · · ·N2 and N1 +

N2 = N , as follows:

r̄ =

∑n1=N1

n1=1 r1,n1 +
∑n2=N2

n2=1 r1,n2

N
.

Since r1,n1 and r1,n2 are independent random variables, the variance of their sum equals the sum of
their individual variances. Therefore, if we consider a simple combining algorithm that computes
the final location estimate as an average (centroid) of the looked-up locations, then the variance
of the estimated location becomes (Papoulis and Pillai 2002):

σ 2
r̄ =

∑n1=N1

n1=1 σ 2
r1,n1
+

∑n2=N2

n2=1 σ 2
r1,n2

N 2
.

In the above equation, if we set σ 2
r1,n1
=

σ 2
1

α 2 to be the same for all n1 = 1, 2 · · ·N1, and σ 2
r1,n2
=

σ 2
2

α 2

to be the same for all n2 = 1, 2 · · ·N2, then the variance of the combined location r̄ becomes

σ 2
r̄ =

N1
σ 2

1

α 2 + N2
σ 2

2

α 2

N 2
. (2)

As can be seen from Equation (2), σ 2
r̄ decreases with increasing N . We perform a MATLAB

simulation to study the error in the estimated combined location with varying number of phones
N for a case of N1 = N2 = N /2 assuming a log-normal path loss model with α = 3.5, and for the
mobiles located at distances d1 = d2 = 500m (as in Figure 5) from towers c1 and c2, respectively.
We perform our simulation over 10,000 iterations, for a 950MHz RF signal, for Pt = 20W ,σ1 = σ2 =

2dB and with μ1, μ2 determined using the log-distance path loss model. The standard deviation of
estimated location decreases as N increases, and this in turn translates to reduced average location
error for the same scenario, as depicted in Figure 6. As expected, the average location error is higher
and remains nearly constant, if we do not combine cellular fingerprints across phones.

Note that although we have illustrated the advantage of combining cellular fingerprints across
multiple phones using the log-normal shadowing model due to its practical suitability and ana-
lytical simplicity, the results can be generalized for any propagation model. This is because the
advantage of combining follows directly from the sole assumption that the signal strengths mea-
sured by each of the phones at a location are independent of each other, as observed in practice.
Other factors affecting signal measurements, such as heterogeneity across mobile phones, varia-
tions in path loss exponents will further cause the signal strengths measured by different mobile
phones at a location to be independent of each other, causing the analysis to be valid in such
conditions as well.
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Fig. 6. Two cell ID case: Average location error (in meters) versus number of co-located phones (N).

3.3 Approaches to Combine Cellular Fingerprints

Having analysed the benefits of combining fingerprint information in Sections 3.1 and 3.2, we
now present a few approaches that can be used to combine cellular fingerprint information across
co-located phones. The algorithms presented here can be implemented easily and yield location
estimates of comparable accuracies.

Centroid: Given the individual location estimates Li of N devices, a straightforward approach
to combine their location information is to take the centroid of the set {Li }. This gives equal weigh-
tage to all the location estimates.

In Equation (2), the variance of the centroid σ 2
r̄ , may not always be less than σ 2

r1,n1
or σ 2

r1,n2
for

n1 = 1, 2 · · ·N1 and n2 = 1, 2 · · ·N2. For instance, consider the case where σ 2
r1,n1
≈ 0, N1 = 1 and

N2 >> N1. For high σ 2
r1,n2

values, σ 2
r̄ ≈

σ 2
r2,n2

N2
, which may still be a high value compared to σ 2

r1,n1
.

Therefore, even though averaging of locations brings down the location variance with increasing
N , to further reduce the location variance (and hence the location error) of the centroid location, we
may need to suitably combine only the locations of phones, which by themselves have low location
variances. However, due to the mobility inherent to the practical setting, we may not be able to
estimate the location variance of a phone at a particular location. Therefore, we decided to instead
use signal strength as an indication of the location variance (and therefore of the location error) as
follows: a mobile measuring the highest signal strength, possibly has the lowest location error. This
is based on the intuition that: in a log-distance path loss model, a high (low) signal strength reflects
a greater (lesser) proximity to the cell tower, and therefore lower (greater) location uncertainty
(and error), with respect to the cell tower. Therefore, based on this intuition, we implemented the
following alternate approaches.

BestSig: In BestSig, we take the location estimate to be the location corresponding to the phone
that has the best signal strength to its cellular tower. In case of a tie between phones, we take the
centroid of their locations as the final location estimate.

GoodSig: In our data, we found that there was correlation between signal strength and er-
ror in fingerprinting-based positioning. However the correlation was weak (Pearson correlation
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coefficient around −0.3). So, we considered a third approach GoodSig, where we take the centroid
location of all the phones that have a signal strength within a threshold T of the phone with the
best signal strength. We experimentally arrived at a threshold T=10dB, and discovered that varying
this threshold had a marginal effect, as algorithms performed similarly.

The opportunity for combining cellular information across phones is available in plenty in a
number of scenarios. The specific scenario that motivated us to consider the notion of combining
information, is that there are a number of devices in a public transportation unit such as a bus. But
combining of information need not be restricted to this scenario and is more generally applicable.

An important point to note here is that during the process of combining of cellular network
information, a phone need not reveal its identity, as this identity information is irrelevant to
the functioning of the mechanism. Our mechanism also does not require any per-phone history
information.

4 MAKING CROWDLOC WORK IN PRACTICE

We now present our experiment-driven design of CrowdLoc. The primary metric we are interested
in is the error in reported location. For each data point in our experimental run, we compare the
location as determined by an algorithm with the ground truth of GPS-reported location.

We start with a description of our experimental data (Section 4.1). Prior to evaluating the ef-
fectiveness of combining information from multiple phones, we first present results (Section 4.2)
comparing GSM fingerprinting based location determination with the location given by the inbuilt
Android API (referred to as NET in this article). We find that the inbuilt mechanism on Android
phones (NET) performs much worse than GSM fingerprinting. Next, we characterize the amount
of training required for fingerprinting to be effective (Section 4.3). We then evaluate the effec-
tiveness of combining information across phones, with training and testing on the same phone
(Section 4.4), as well as on different phones (Section 4.5). We also explore the effectiveness of com-
bining information across phones of the same versus different cellular operator (Section 4.6).

4.1 Experimental Setup and Data Collection

Since our original motivation for location determination was for crowdsourcing information from
public transportation commuters, we collected our data while traveling on buses. We collected
data along two bus routes in city-A and along one route in city-B. All the phones used in the
experiment had Android 4.0+ as their operating system and had SIMs fpr GSM cellular networks.
We developed an Android app that collected both GPS and GSM cellular information at the same
time.

GPS-based position information was collected as the ground truth. For each data point, note
that we have GPS-reported ground truth from more than one phone (as many as four). The GPS
location as reported by each of the phones may not be exactly the same, due to error in GPS itself.
Hence, we take the centroid of the available GPS location readings at a given data point, as the
ground truth location for that data point.

For GSM, Android has a network-based localization option, which we refer to as NET. The work
in Paek et al. (2011) reports that NET uses cell-tower triangulation to determine the phone’s loca-
tion. Alongside the latitude and longitude obtained from NET, we have logged the GSM network
parameters of cell-id and signal strength. Here cell-id refers to the current cell tower to which
phone is attached at that time instant. We also attempted to record information about neighbour-
ing cell towers, but it turned out that this information is not available universally (Paek et al. 2010);
we found that its availability appears to depend on both the phone in use as well as the operator.
Among the set of phones available with us, only Micromax A63 and Google Nexus 4 were able
to provide us neighbouring cell information, and even with these not for all cellular operators.
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Fig. 7. Bus routes in City-A and City-B for collecting data.

So, we decided to not rely on neighbouring cell towers for our calculation of fingerprinting based
location.

In each data collection trip, the GPS and GSM data were logged once every 2s. In each trip,
we collect data simultaneously on more than one phone, since our primary purpose is to explore
the combination of location information across devices. Data collection in the app was started by
manual press of a “start” button, near simultaneously on the group of phones used for that data
collection run. Thus the data collected on the phones was time-synchronized. Due to the manual
step of button press, there could be a synchronization error of 1–2s, but this is negligible for our
purpose of location determination as the bus is not expected to move much in this short time.
The above time synchronization step is useful for the following reason. In the initial test runs,
we observed that there were many instances where one or more phones in the group lost GPS
connectivity. In such scenarios, the fact that the phones were roughly time-synchronized enabled
us to use the GPS reading from other phones in the group within the same data collection run.

4.1.1 City-A Data. Four phones were used to collect data on city-A’s roads. The phones used
were Micromax A94, Samsung S3 Neo, Samsung Note3 and Samsung S3. They are referred to as
Phone 1, 2, 3, and 4, respectively, in this article. We denote the SIM cards used in these phones
as SIM1x, SIM2y, SIM3y, and SIM4z, respectively. SIM2y and SIM3y belong to the same cellular
network provider while the other two were different: we thus use three different network providers
for our data collection. The data collection spanned about 9 months. Two routes were selected
for data collection in city-A. One route was along a busy internal city road with office buildings
and malls along its route. Another was along an expressway and had a smaller concentration of
buildings along the road. The two routes are labelled “InternalRoad” and “Highway” in the rest of
the article and are shown in Figure 7.

The round-trip distance of the InternalRoad route is 9km and that of the Highway route is
13.5km. For both routes, we collected experimental data both with and without cellular data (3G)
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Table 1. Number of Data Collection Trips in City-A

Data InternalRoad Highway Suburban Train
off 13 11 -
3G 30 9 7
2G 12 - -

Fig. 8. InternalRoad, data turned off: NET vs GSM FP.

turned on. We considered these variations of cellular data connection for the following reasons.
First, users do not always turn on cellular data, as this consumes battery and could also eat into
the user’s data plan. Further, presence of cellular data could potentially affect the error in location
as determined by NET. For the InternalRoad route, we additionally collected data with only a
2G cellular data connection, to examine if there is a difference due to the type of mobile data
connection.

City-A has another popular mode of public transportation, viz. suburban train network. We have
collected over 200km of data in suburban trains from one stretch of the city to another. For this
purpose, we used eight phones with five different operators and kept cellular data (3G) turned on.
Table 1 summarizes the number of trips undertaken for each of the above cases.

4.1.2 City-B Data. A round-trip bus route with a length of 14 kilometres was selected for data
collection in city-B. Primarily two phones, namely Moto E and Moto G were used to collect data
from 15 trips. Apart from this, we also had four data collection trips with three phones: Samsung
Grand, Samsung Prime, and Samsung S4. We used this data to examine the effect of one phone
using another phone’s fingerprint database to determine its location.

4.2 NET vs Fingerprinting (FP)

Prior to exploring combining of information across phones, we first explore as to which mecha-
nism is effective for location determination within a single phone. Given the importance of loca-
tion determination and the maturity and ubiquity of Android phones, we expected that the inbuilt
mechanism in Android, called NET, would be effective. We compare this with a standard GSM
fingerprinting (FP) mechanism for location determination. As mentioned earlier, a location finger-
print consists only of one cell tower’s id and signal strength.

Figure 8 depicts CDF of errors for two phones (the results for the other two phones were similar
and are omitted for clarity). We calculate the CDF as follows. First, we run our algorithms on all
the test trips. We then find the error in location obtained through FP and groundtruth location
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Table 2. Improvement = ErrN ET /ErrF P

Impr. in Impr. in
Route Data median error 90%ile error
InternalRoad off 3.8 2.3
Highway off 7 11.5
InternalRoad 3G 1.9 1.2
Highway 3G 3.8 2.9
InternalRoad 2G 2.4 0.6
Suburban Train 3G 0.9 2.3

Table 3. NET vs GSM FP in City-B

Median error(m) 90%ile error(m)
NET 4,663 10,471
Fingerprinting 216 1,230

(obtained through GPS). These results are for the InternalRoad route in the scenario where mobile
data was turned off. It can be observed that FP performs far better than NET. For example, for
phone-3, the median error is 9.8 times better and the 90 percentile error is 6.5 times better, for
fingerprinting compared to NET.

Similar results were obtained for other cases: the Highway route, and with mobile data connec-
tion turned on. The overall improvement factor in the location error, by using fingerprinting over
NET is summarized in Table 2. The maximum improvement can be seen in the cases where data is
turned off, as NET tends to perform poorly in these cases.

While the above results are for our city-A data, for city-B we have collected 15 trips each on
Moto E and Moto G. Since the signal strength of Moto G remained constant, we discarded its data
during the fingerprinting process. Table 3 shows that fingerprinting performs significantly better
than NET in this case as well. In this data, in fact, we observed that the location reported by NET
changed only twice during the whole journey, thus resulting in high location error.

It is unclear as to why NET performs so poorly as compared to fingerprinting, across so many
different scenarios. The implication of this is that the inbuilt Android cellular network location
mechanism has a significant scope for improvement. The implication of this for us is that, going
forward, we use the fingerprinting mechanism as the location scheme for a single phone, and look
to improve it further by combining information across phones.

We have also compared the efficacy of fingerprinting across the scenarios: without mobile data,
2G connection, and 3G connection. This comparison for InternalRoad route is shown in Figure 9.
Here, only data from two phones is shown, for clarity. We observe here that there is no definite
pattern or correlation between fingerprinting and presence/type of data connection. Similar re-
sults were found for the Highway route. Thus the performance of fingerprinting is independent of
whether mobile data is turned on or off. This is intuitive, as the fingerprinting mechanism takes
into consideration the cell tower id and signal strength, and presence or type of data connection
has little effect on these.

4.3 Fingerprinting: Training Overhead

In any fingerprint-based mechanism, the training overhead is a concern. How much training is
required in our case? We explore this now. The training used for the fingerprinting was varied
from one trip to a maximum of up to four trips. The CDF of the error for InternalRoad, for different
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Fig. 9. InternalRoad: data off vs 2G vs 3G.

Fig. 10. Effect of Training: InternalRoad: Phone 1.

Table 4. Cell Towers, Fingerprint Density (InternalRoad)

Training Avg. Cell towers/km Avg. Fingerprints/km
One Trip 0.9 6.7
Two Trip 2.1 14
Three Trip 2.7 20.3
Four Trip 2.9 23.4

amounts of fingerprinting training, are shown in Figure 10 for phone-1 (the results for the other
three phones are similar). It can be observed that there is a significant improvement in moving
from one-trip training to two-trip training, but lesser improvement with further training data.
For our experiments on both InternalRoad and Highway, we found training using two trips to be
sufficient for all practical purposes: we use two-trip training in our results in the rest of the article.

The change in accuracy with varying number of trips used for training, depends upon the num-
ber of cell towers present in the training set. We extract this information from our data: Table 4
shows the density of unique cell towers seen, as well as the fingerprint density, averaged across
all four phones, as a function of the training set size. We see that there is significant improvement
in these metrics as we go from one-trip training to two-trip training, but lesser improvement with
additional training trips. This is consistent with Figure 10 where the fingerprinting-based location
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Fig. 11. Combining phones 1, 4: InternalRoad, data turned off.

accuracy increases significantly from one-trip training to two-trip training, but not significantly
with additional training data.

Now, is a requirement of two-trip training acceptable? If each user or phone-model is required
to collect fingerprints before using it, then this is a significant overhead. However, as we shall see
in Section 4.5, we can effectively use training databases across different phones. Hence, a two-
trip training requirement is not much, given that thousands of commuters traverse a city’s routes
everyday.

4.4 Single Phone Versus Multiple Phones

We now explore the effectiveness of combining location information across nearby phones, to po-
tentially get a more accurate location estimate. We have explored the three algorithms presented
earlier: Centroid, BestSig, and GoodSig. We first look at the effectiveness of combining information
across a pair of phones. Figure 11 compares the CDF of location errors, of single phone fingerprint-
ing with the combination of phones 1 and 4. We see that there is a noticeable improvement in the
median location error, as well as the 90 percentile location error, especially for Phone-1. We also
see that the three algorithms perform more or less similarly. On closer look at the data, we ob-
served that the GoodSig algorithm performs slightly better than the other two, especially towards
the tail of the distribution.

We have observed the benefits of combining information across pairs of phones is not universal
in all situations. Figure 12 compares the CDF of location errors for the combination possibilities of
phones 1 and 2, as well as phones 3 and 4. We see that when combining information across phones
1 and 2, there is little benefit. However, the performance does not degrade either, due to combining
information across these phones.

Now, in several situations such as in a bus, there will be many more than two phones whose
location information could be combined. We next look at the benefit of combining information
across more than two phones. Figure 13 shows the CDF of location errors when we combine in-
formation across three and four phones. We see that median location error as well as 90 percentile
error improve further, with increase in number of phones across which we combine information.
It is thus beneficial to combine information across a large set of phones.

Figures 14 and 15 show the benefit of combining information across phones with 3G data con-
nection and a 2G data connection, respectively. We see that we continue to benefit from combining
information across phones, in terms of reduction in median as well as 90 percentile location error.
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Fig. 12. Combining phones 1, 2; phones 3, 4: InternalRoad, data turned off.

Fig. 13. Combining info across more phones: InternalRoad, data turned off.

Fig. 14. Combining all phones: InternalRoad, 3G.

In the case of 3G, we see that phones 1 and 4 have relatively large errors when using individual
phone information. Likewise, phone 3 has relatively large location errors in our 2G data. Note that
in such scenarios, combining information across phones is especially beneficial: the reduction in
90% percentile errors in such cases is over a factor of 5.
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Fig. 15. Combining all phones: InternalRoad, 2G.

Table 5. Improvement = Err1 phone F P /Err4 phone F P

Impr. in Impr. in
Route Data median error 90%ile error
InternalRoad off 1.3 1.5
Highway off 1.4 1.3
InternalRoad 3G 1.3 2.3
Highway 3G 1.3 1.9
InternalRoad 2G 1.3 2.4
Suburban Train 3G 1.8 1.7

Table 6. Improvement = ErrN ET /Err4 phone F P

Impr. in Impr. in
Route Data median error 90%ile error
InternalRoad off 5.0 3.5
Highway off 9.9 15.3
InternalRoad 3G 2.5 2.8
Highway 3G 4.9 5.6
InternalRoad 2G 3.1 1.4
Suburban Train 3G 1.7 3.9

Table 5 summarizes the benefit of combining information across phones; the performance im-
provement is measured as a factor of reduction in the median error and the 90 percentile error.
We see that factor of improvement is especially significant in the 90 percentile error: combining
information across phones is effective in reducing location error in the tail of the distribution.

To get an idea of the overall gain, Table 6 summarizes the error reduction ratios comparing
the location error in NET versus the location error in the case of combining fingerprinting-based
location information across four phones. As can be seen from the table, the factor of improvement
in error is over 4 in most cases, and as high as 15!

Combining all our data, across InternalRoad and Highway, and across all four phones, Figure 16
plots the CDF of the location error in three cases: NET, fingerprinting using only single phone
information, and combining information across multiple phones. Comparing single phone versus
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Fig. 16. Overall comparison: NET vs single-phone vs four-phones.

Fig. 17. City-A suburban train: overall improvement.

multiple phones, the overall median error improvement factor is 1.3 while the 90 percentile error
improves by a factor of 1.6.

We saw similar benefits of combining information in case of City-A’s suburban train network.
We show in Figure 17 the overall improvement across all the phones, when two trips are used for
training. The reduction in error when using multiple phones can be clearly observed over NET. The
factor of improvement in median error is 1.7×, and 3.9× for the 90 percentile error, when combining
information across four phones. We also note from the figure that combining information across
all eight phones does not significantly reduce the error further, compared to combining across four
phones; i.e., most of the gains are achieved by combining across just four phones.

It is to be noted here that by combining information, we have been able to bring the median
error below 50m for bus and below 60m for suburban train. For the sake of completeness, the
ground-truth GPS traces that we had collected had a median error of 13.6m as deduced from the
accuracy values reported by Android API (Google 2017). Android reports these values based on
the assumption that errors due to GPS follow normal distribution, which we have also used in
deriving the median error.

An alternative view of the benefit of combining information across phones is the following.
In the fingerprinting-based location scheme, we could have “outages” in location information:
situations where there is no cell-id match in the fingerprint database. In such situations, the best
we can do (in the case of single phone) is to use the last known location. In our InternalRoad and
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Fig. 18. Training & testing on different phones: InternalRoad.

Highway routes, we found that we had 12% and 11% outages respectively. Such outages contribute
to location errors. When combining information across phones, it is unlikely that all the phones
will have an outage simultaneously. In fact, in our data, there was no such situation: i.e., there was
0% outage when combining information across four phones. Thus in terms of the outage metric
too, combining information across phones has significant benefits.

Note that all the evaluations carried out span large geographical areas (around 9–13.5km for bus
routes and around 200km for train routes, as mentioned earlier). We would also like to mention
that, prior to working on bus/train route fingerprints, we had validated the efficacy of combining
cellular fingerprints by traversing the area of our campus. The performance of CrowdLoc was
superior to NET and single-phone fingerprinting, and results similar to those in Figure 16 were
obtained. This in fact motivated us to further validate our approach city-wide, leading us to conduct
experiments on bus/train routes due to their ease of accessibility and scale.

4.5 Training and Testing on Different Phones

An important aspect of the fingerprinting mechanism is the fingerprint database. Thus far, we
have assumed that there is a phone-specific fingerprint database. In practice, assuming that we
have a per-phone fingerprint database for all locations is unrealistic. This is especially true given
the wide and growing variety of smart-phones in the market. It is thus important to explore the
scenario where the fingerprinting mechanism uses a training database from another phone. What
is the benefit of combining information across phones in such a setting? We explore this now.

To examine the possibility of phone-1 using another phone’s training database, note that we
cannot simply use the data described in the prior sections. This is because phone-1 has a unique
cellular operator: its cell-ids will not match with any cell-id of another phone’s training database.
Thus, we collected further data for six trips on the InternalRoad route, where we swapped the SIM
cards of phone-1 and phone-2, and likewise swapped the SIM cards of phone-3 and phone-4. We
use these six trips for testing the fingerprint mechanism, and the earlier data for training. Note
that, in such a scheme, phone-1 would end up using phone-2’s training database (collected with
the same SIM/operator though) from the earlier data, and vice versa. Likewise, phone-3 would end
up using phone-4’s training database and vice versa.

Figure 18 shows the CDF of location errors for the four individual phones, as well as the three
algorithms for combining information across (all four) phones. In all cases, the fingerprinting data-
base was of a different phone as the phone trying to determine its location, as described above.
We see that the benefits of combining information across phones is more significantly visible now.
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Table 7. Testing & Training on Diff. Devices: City-B

Testing phone Training phone Median(m) 90%ile(m)
Samsung S4 Samsung Grand 168 5,182
Moto E Samsung Prime 1,717 1,727
Moto G Samsung S4 57 1,844
All phones (as above) 106 1,834

We can see significant reductions in the median location error as well as the 90 percentile location
error. The latter especially comes down from around a kilo-metre or more in the case of phones 1
and 4, to under 200m; this would be a significant improvement for a variety of location-based
applications.

Taken across all the phones of Figure 18, we observed that the combining of information across
phones improves the median error by a factor of 1.6, compared to the single-phone fingerprinting
case. The improvement in the 90 percentile error was even higher: a factor of 3.5.

In City-B too, two trips each were undertaken for training and testing. Table 7 shows the re-
sults for single phone evaluation as well as combination of all the three phones, with the given
mapping of testing and training phones. We see significant improvement in the median error in
the case of Moto-E, and in the 90 percentile error for Samsung-S4. Moto-E had a high location
errors in the single phone case due to very few fingerprint updates during the journey; however,
the combination of information across phones is able to reduce the location error significantly.

4.6 Same Operator Versus Different Operator

Is it beneficial to combine information across phones only when they belong to different cellular
operators? Or is there benefit in combining information across phones of the same operator as
well? We have used four SIMs (SIM1x, SIM2y, SIM3y, SIM4z) in our City-A’s data collection, with
two SIMs (SIM2y, SIM3y) belonging to the same operator. To compare the combination of infor-
mation across phones of the same operator, we have considered the following two cases: (case-1)
compares data from phone-2 and phone-3 (same operator: SIM2y, SIM3y) versus data from the
same pair of phones (different operators: SIM1x, SIM4z), (case-2) compares data from phone-1 and
phone-4 (same operator: SIM2y, SIM3y) versus data from the same pair of phones (different oper-
ators: SIM1x, SIM4z). In each case, each phone used its own training data set. On plotting the CDF
of the location errors for the two pairs of phones, we observed that the cases of same operator or
different operator were not distinguishable in terms of location error. This is shown for Internal-
Road in Figure 19. Thus, the benefits of combining information across phones will accrue, whether
the phones belong to the same operator or to different operators.

4.7 Fingerprinting Versus Probabilistic Localization

Outdoor localization is a well-researched topic with techniques ranging from deterministic meth-
ods such as fingerprinting on the one hand to probabilistic methods on the other. We compare
two popular probabilistic localization methods with our GoodSig algorithm. The first method
(Haeberlen et al. 2004) divides the geographical area into grids and models signal strength as a
Gaussian distribution for each cell tower for each grid. It then uses Bayesian inference to predict
the posterior probability of an observation belonging to a particular grid. We empirically found
that a grid size of 50m × 50m works well for our target applications. Selecting a smaller grid size
resulted in a statistically insignificant number of observations in each grid for Gaussian fitting. On
the other hand, selecting a larger grid size directly translates to larger errors.
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Fig. 19. Same vs Different operators: InternalRoad.

Fig. 20. Comparison of different localization algorithms.

The other method (Ladd et al. 2005) is that of building signal intensity histograms instead of
Gaussian fitting. Here, unlike storing mean and standard deviation, we store the complete his-
togram of signal intensities for each cell tower and grid. During evaluation, if observations per-
taining to a particular signal intensity are absent, then we simply consider the histogram bin cor-
responding to the nearest signal intensity for which observations are available.

We have implemented the above two methods as well and quantitatively compared them with
the fingerprinting approach. We show these comparisons for InternalRoad route in Figure 20. The
plot contains CDFs for three types of localization approaches viz. Gaussian-based, Histogram-
based and fingerprinting-based. Since the focus of this article is on combining information from
multiple phones, we also show comparison between using one phone versus using all phones
for localization. We show this for each of the three localization approaches. Hence there are six
lines in the plot. It can be clearly observed that fingerprinting outperforms other methods. Also,
combining other phones’ information (GoodSig) is found to be helpful in fingerprinting as opposed

ACM Transactions on Sensor Networks, Vol. 14, No. 1, Article 4. Publication date: January 2018.



CrowdLoc: Cellular Fingerprinting for Crowds by Crowds 4:25

Fig. 21. (a) Server-side approach, (b) Client-side approach.

to probabilistic approaches. We believe that this is due to our dense urban setting, which makes
the signal non-Gaussian due to multi-path effects, interference and absorption.

Computational complexity: Here we compare “GoodSig” with Probabilistic localization algo-
rithms in terms of computational complexity. Let the number of cell towers observed during train-
ing phase be c and average number of signal strength observations per cell tower be k . For “Good-
Sig” algorithm, we just have to perform lookup for a particular cell-id signal strength pair and
return the corresponding locations. Hence, both the space and time complexity here would be
proportional to ck . This could be further improved by hashing. For probabilistic localization, we
had divided the geographical area into grids. Let the number of grid cells be д, each having di-
mensions of 50m × 50m (empirically determined). The sensor model for each grid, for each cell
tower has to be stored in memory. Hence, space and time complexity for Gaussian signal model
is proportional to дc and д, respectively. For Histogram model, we need to additionally store the
whole signal intensity histogram in memory. Due to this, space complexity increases in propor-
tion to дck , for this case. Typical values of c and k are small (c = 50 and k = 12), while number of
grids д, is large. We found “GoodSig” to be significantly more computationally efficient than other
probabilistic localization approaches discussed in this article.

5 FINGERPRINT SHARING MECHANISMS

This section discusses the important aspect of determining the set of phones that are “nearby,”
whose location information can be combined. We have considered two approaches in this regard:
server-side and client-side.

5.1 Centralized Server-Side Approach

We first considered a server-side approach, depicted in Figure 21(a). Each client (phone) peri-
odically sends its fingerprint, i.e., (cell-id, signal-strength) tuple, to a central server. This is the
same server that also maintains the fingerprint database, and answers location queries from client
phones. We have considered a situation where the server knows the clients’ fingerprints at a fine
granularity: every tu seconds; tu = 2s in our evaluation below. Note that a client could bunch up
its fingerprint updates to the server, say every 30s, to amortize the network traffic overhead.

Given the fingerprint of each client, the server first computes the fingerprint-based location
(note that there is no combination of information across phones yet). For a client i , denote its loca-
tion at time t by Li (t ), and the distance between Li (t ) and Lj (t ) by disti, j (t ). The server concludes
i and j to be near one another at t if and only if disti, j (t ) < Dthr .
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Table 8. FNR, FPR for Server-Side Approach

Dthr (m) 100 200 300 400 500
FNR 0.45 0.28 0.17 0.12 0.06
FPR 0.09 0.18 0.31 0.44 0.50

Now, what threshold value Dthr to choose? To answer this, note that the threshold-based mech-
anism can result in false-positives (FP, phones not near each other being detected as being near
each other) as well as false-negatives (FN). To evaluate the server-based approach in terms of FP
and FN, we have used the same data as earlier. In the data, we had four phones traveling together:
this thus becomes a natural test case for evaluating false negatives. To evaluate false-positives, we
considered the location trace of two phones traveling together, and staggered one of them by 3min.
This mimics a situation where one phone is traveling ahead of another, on the same bus route, but
behind in time by 3min. We used this staggered trace to evaluate false-positives.

Table 8 summarizes the false-negative rate (FNR) and false-positive rate (FPR) for this mecha-
nism, for different Dthr . With increasing Dthr , the FNR decreases but the FPR increases. We could
potentially choose Dthr = 200m, with FNR=28% and FPR=18%. These values of FNR and FPR are
not as low as one would ideally desire. This server-side approach also has potential privacy con-
cerns, as the client has to share its real-time fingerprint (location) with the server. Hence, we now
consider an alternate approach to determine if two phones are nearby.

5.2 Distributed Client-Side Approach

To combine cellular fingerprints across “nearby” phones, the phones need to share only their fin-
gerprints; their identity is irrelevant. We now describe a distributed mechanism for phones “near”
one another to share their cellular fingerprints anonymously.

In the proposed mechanism, smart-phones use a short-range communication technology (Fig-
ure 21(b)). Each device broadcasts its cellular fingerprint periodically (say, every few seconds).
Phones that receive the broadcast are assumed to be co-located with the transmitting phones; this
assumption introduces an error of at most the range of the communication link. Each phone can
then simply combine fingerprint information (using the GoodSig algorithm) across all the broad-
casts it has received, over a recent time interval. Note that in this mechanism, mobile phones do

not need to share their identities while broadcasting their fingerprints in an ad hoc manner.
We initially considered WiFi and Bluetooth as possible modalities for the short-range commu-

nication among phones. WiFi suffers from higher power consumption and requires a setup for
key-sharing among phones. Although Bluetooth communication consumes lower energy, most
smartphones in market today, still require “pairing” for data sharing, and may not support adver-
tisement broadcasts. Therefore, at present, not only will the handshaking process associated with
key-sharing and pairing in WiFi or Bluetooth incur significant delay, but more importantly, these
have significant privacy concerns. We therefore explore the possibility of using low-energy audio

communication between smart-phones, for sharing fingerprint information in a manner that does
not reveal the identity of the user.

Audio Communication

Audio communication has the advantage of consuming very little power (Madhavapeddy et al.
2003). It uses the acoustic channel in the inaudible frequency band of (16–22) kHz to transmit
data.1 In our setting, this technique uses the already available speakers and microphones of mobile

1Some children may be able to hear up to 20KHz; but we’ve noticed that in outdoor settings, its hard enough for anyone

to hear in the audible frequency range!

ACM Transactions on Sensor Networks, Vol. 14, No. 1, Article 4. Publication date: January 2018.



CrowdLoc: Cellular Fingerprinting for Crowds by Crowds 4:27

Table 9. Design Parameters for Physical Layer

Audio sampling rate 44.1kHz
Frequency range 16-18.5kHz
Preamble 11-bit Barker Sequence
Frame Synchronization Template matching
Modulation scheme 8-FSK
Error-correcting code Viterbi code

phones, to send and receive data, respectively. Since it does not require any additional hardware,
it is a completely software-based approach. Audio communication is not connection-oriented, and
therefore does not require key exchange in any form. Data sharing thus becomes quick and energy-
efficient. Furthermore, we do not associate any ID with a device; hence, such communication is
anonymous and does not reveal the identity of the user. A disadvantage of audio communication,
is the low data rate. However, note that cellular fingerprint sharing requires the periodic broadcast
of only a few data bytes. Therefore, low-data rates associated with audio communication is not an
impediment for our application. Even with a low data rate, a significant challenge for audio is the
communication range.

Most prior work has reported range as short as a meter or less (Madhavapeddy et al. 2003;
Nandakumar et al. 2013; Zhang et al. 2014). While some have reported a higher range (Lee et al.
2015), they have operated in otherwise silent, noise-free environments. In our setting, we expect a
highly noisy environment: outdoors, on the road, inside a crowded bus/train. In some parts of the
world such as India, road-noise has been reported to be very high and this includes vehicular honks
(Sen et al. 2010; Mohan et al. 2008). For our application, we further require audio communication
for distances of a few meters, to be able to share fingerprint data amongst phones within or in the
vicinity of a bus/train. With these considerations, we have carefully designed the PHY, MAC, and
Link layers of the audio communication, as detailed below.

Physical Layer: We conducted experiments using different mobile phones in lab (typically silent)
environment, as well as noisy settings in crowded buses. These initial experiments used a Samsung
S5 as transmitter and different receivers such as Xperia and Nexus 5. The following are the aspects
we explored (as summarized in Table 9):

(a) Frequency range selection: We conducted preliminary tests on a crowded bus, to understand
whether audio communication can work over these distances and in noisy conditions. We varied
the distance between the transmitter and receiver from about 1 meter to about 5m, within the bus.
In different experiments, we set the transmitter to transmit at 16kHz, 17kHz, 18kHz, and 19kHz.
Our experiments revealed poor SNR performances for frequencies above 18.5kHz. Therefore, we
confine data transmission to the 16–18.5kHz frequency band.

(b) Synchronization with preamble design: To detect the start of each frame, we explored the use
of various Pseudo-Noise (PN) sequences, such as Barker codes, Kasami sequences, and Gold se-
quences, for the preamble. Owing to their favourable auto-correlation properties, PN sequences
proved to be suitable candidates for frame synchronization over the audio channel. Amongst the
explored PN sequences, a 11-bit Barker sequence ASK modulated at 16kHz, was found to be most
suitable due to its lower auto-correlation values at side lobes compared to other PN sequences. We
used a moving window-based template matching technique, to determine the start of the frame, at
the receiver. Here, a preamble-length window of the received signal is correlated with the Barker
sequence preamble template stored at the receiver. Correlation is calculated using the Pearson
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Fig. 22. Throughput, detection rate vs. preamble length.

correlation function. A peak detection algorithm that uses EWMA (Exponentially Weighted Mov-
ing Average), is then applied on the correlation values to find the maximum value, which corre-
sponds to the start of a frame.

To reduce the computation overhead of the template matching algorithm, the moving window of
the received signal is advanced by a larger number of samples (60 samples), until the correlation
exceeds a threshold (experimentally estimated as 0.2), indicating the presence of the preamble.
Thereafter, the window is advanced only one sample at a time, to determine the start of the frame
with finer accuracy. This resulted in reduced correlation computation time—for a 2s window of
received signal, and a sampling frequency of 44.1kHz, it took 83ms and 267ms, on an average, to
calculate correlation when the preamble was absent and present, respectively. Choosing a suitable
length for the Barker sequence preamble, in terms of number of samples was another challenge.
We tested several preamble lengths and the one with good detection rate and throughput (in bits
per second) was selected, for a payload of four data bits. Here, throughput is defined as the number
of bits correctly received per second at the receiver. The graph in Figure 22 shows the detection
rate of the preamble of varying lengths and the corresponding throughput.

Figure 22 shows that when preamble length reduces, detection rate decreases very slowly, and
throughput increases because the preamble overhead is reduced by half each time. After the length
of 3,675 samples, the detection rate reduced to less than 80% because of poor correlation for the
small preamble. Hence, the throughput also dropped. Based on this behaviour, we use a preamble
of length 3,675 (or 84ms) for the 11-bit Barker sequence.

(c) Modulation scheme selection: Multiple trials of our experiments showed that 8-FSK modula-
tion scheme yielded highest throughput (in bits per second) in comparison with 4-FSK and 16-FSK.
For an implementation of 8-FSK in noisy settings, the throughput with different data bits per frame
is shown in the graph in Figure 23. Initially, the throughput increases with the number of data bits
per frame. After 28 bits per frame, corresponding to a maximum throughput of 19.6bps in noisy
settings, it drops as the error rate increased due to more bits per frame.

At 20, 24, and 28 data bits in payload, the throughput is almost same, but the highest throughput
achieved is 19.6bps for 28 data bits per frame in noisy conditions. In lab environment without any
noise, the throughput achieved for 28-bit payload is 23.2bps.

ACM Transactions on Sensor Networks, Vol. 14, No. 1, Article 4. Publication date: January 2018.



CrowdLoc: Cellular Fingerprinting for Crowds by Crowds 4:29

Fig. 23. 8-FSK: Throughput vs. Data bits per frame.

Fig. 24. Throughput vs frame len (4-FSK; Hamming/Viterbi).

(d) PHY layer coding: A-rate 1/2 Viterbi encoder yielded a higher throughput than a (7,4)
Hamming code for 4-FSK modulated 28-bit frames, as shown in Figure 24. A similar obser-
vation was made for 8-FSK. The throughput shown in Figure 23 uses Viterbi encoding at the
transmitter.

At the physical layer, the packet thus consists of the 84ms preamble, followed by the 56 en-
coded bits (corresponding to the rate 1/2 Viterbi encoded 28 data bits), transmitted using 8-FSK
modulation. We now evaluate the overall PHY layer in real-life noisy conditions. Samsung S5
is used as a sender and Nexus 5 was the receiver for these experiments. The distance between
the transmitter and receiver was varied from 1 to 5m for each of the settings. The overall recep-

tion rate is defined as the number of frames correctly decoded out of the total number of frames
received at the receiver; and preamble detection rate is the rate at which the receiver is able to
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Fig. 25. Overall Reception and Preamble detection rate vs. dist. (within city bus).

Fig. 26. Throughput vs. distance (within city bus).

detect a sent packet. Figure 25 shows the variation of preamble detection rate and overall re-
ception rate with sender-receiver distance in a crowded bus. Figure 26 shows the variation of
throughput (in bits per second) with sender-receiver distance for the same setting. As expected,
the preamble detection rate, overall reception rate, and the throughput decrease as the sender-
receiver distance increases. At 5m, the overall reception rate is 19% and the preamble detection
rate is 59%, because of the higher signal distortion at these distances. We observed that the maxi-
mum throughputs achieved for a 28-bit payload, for varying transmitter-receiver distances were:
23.2 bps at 2m for lab settings; 19.6bps at 2m for noisy settings; and 22.9bps at 1m separation for city
buses.

Data Link layer: To perform error detection, we reserve some of the data bits in the frame for CRC
codes. Our experiments revealed that a suitable design choice for our settings was the 8-bit CRC
0x83, with a theoretical 99.61% detection rate. The 28-bit PHY payload mentioned above now has,
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Fig. 27. Energy per frame at 5m: No-Tx, Tx.

20 data bits (to carry the cellular fingerprint) and an 8-bit CRC. Note that the data rates mentioned
above considered all 28 bits in the payload to be data bits (as opposed to 20 bits with 8-bit CRC).
We evaluate the data rate as 14bps for a city bus environment after incorporating CRC within the
28-bit data frame.

MAC layer: Our application requires seamless sharing of fingerprint data, without the need to
transmit identity information or acknowledgement of broadcast receipts. A CDMA or synchro-
nous TDMA scheme would require centralized coordination and synchronization: something un-
suitable for our intended ad-hoc operation. We therefore explored a distributed CSMA (Carrier
Sense Multiple Access) approach.

CSMA requires mobile phones to individually determine if the channel is busy or not, by mea-
suring the signal energy in the channel. We conducted experiments in a crowded bus, where a
frame was transmitted for 1s duration and the energy was measured by an Xperia Z3 phone. We
noticed that the received energy was significantly different for no transmission and transmission

present, at a distance of 1m. However, this difference diminished at a distance of 5m from the trans-
mitter, as seen in Figure 27. Thus, for a given device, carrier sense threshold is distance-dependent.
We further discovered that carrier sense thresholds vary across different mobile phones due to de-
vice heterogeneity. For a given frequency range, mobile phones transmit audio at different energy
levels. Similarly, receptivity of microphones may vary across smart-phones, as shown in Figure 31.
Here, for the Samsung S5 transmitter, the FFT of microphone reception of Xperia Z3 and LG Nexus
are shown to vary. Thus, with a carrier sense threshold that varies across devices and distances,
it becomes infeasible to have a CSMA-MAC scheme. Given the infeasibility of CSMA, we initially
used an ALOHA scheme at the MAC layer. But that resulted in collisions, and hence was not
scalable.

To minimize collisions, we designed a MAC protocol to facilitate sharing of fingerprints. This
protocol is a distributed TDMA protocol: it uses slots to minimize collisions, while at the same
time not requiring any central coordination. In this protocol, we assume a protocol parameter
constant n as the maximum number of participating phones: we justify this shortly. A phone can
be in either of two modes: transmitting or listening. A frame contains n time slots, one for each
phone. We show a typical frame structure in Figure 28. Each phone transmits once in a frame for
a time slot of size ks. When a new phone wishes to join a set of already transmitting phones, it
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Fig. 28. Frame structure.

Fig. 29. New Phone arrival.

Fig. 30. Phones in steady state.

first listens for s frames. If in this duration it observes that all the n slots are already taken, then
it does not transmit and only listens to other transmitters. If there is a free slot, then it uses the
same to transmit in subsequent frames: this is shown in Figure 29. We experimentally tested this
MAC protocol for the case of six phones.

As far as transmitting data is concerned, every phone maintains an internal clock. This clock is
synchronized based on the transmission received from the phone in the preceding time slot. If by
any chance transmission from preceding time slot is not received (packet loss or node detachment),
then phone in the current time slot would simply use its internal clock to transmit. We show this
clearly in Figure 30.
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Fig. 31. Microphone receptivities in frequency domain.

Now, this MAC protocol imposes a limit on the maximum number of transmitters. This is suited
to our application where the transmission is to share information, and in our application we found
in Sections 3 and 4 of the article that combining information from more than four phones has
marginal additional benefits. For this reason, we set n = 4 in our protocol implementation. Also,
we found that setting k = 4s and s = 3 works well in practice.

Distributed sharing of cellular fingerprint (Application Layer): Having determined the PHY,
MAC, and Link layers, we have put together a mobile app SoundShare to share cellular fingerprint
information. The design at the application layer involves the choice of the fields in the data bits.
Each cell ID (eg. 1721) is assigned 16 bits; while RSSI (e.g.,−63dBm) is assigned 6 bits. To look-up the
correct operator in the cell ID database, the frame should additionally carry operator information,
which is assigned 4 bits. With 20 data bits per frame, we will therefore need two frames with the
same sequence number (of length 4 bits) to carry fingerprint data about < cell ID, RSSI > for a
given operator. The first bit of the sequence indicates if the frame contains the 16-bit < cell ID >
or the < RSSI , OperatorCode > tuple. Time taken to transmit the two frames was around 2s at
the sender. Having received these frames, a receiver can potentially identify the operator and
run the GoodSig algorithm to combine locations obtained using cellular fingerprints of different
nearby phones. At no point is any information identifying the phone or the user included in the
information being shared.

CPU time and Power analysis: We now evaluate the delay overhead and energy efficiency of
the SoundShare mobile application. We have used new phones with Android 5.0 and above for
all our measurements. The phone models used were LG Nexus 5x (Android 7.1), Samsung Note
3 (upgraded to Android 5.0), and Samsung Galaxy Grand Max (upgraded to Android 5.1). At the
sender, the application takes 40ms on an average, to Viterbi encode and modulate a frame with a
preamble of duration 84ms and 28 data-bit payload. The average power consumption associated
with the transmission process is 8mW. At the receiver, the time taken for filtering, preamble detec-
tion, and decoding requires an average CPU time of 310ms. For our TDMA-based MAC protocol,
we found an average power consumption of 171mW. In comparison, the power consumption for
GPS is 435mW for the same setting. These values indicate that a distributed cellular fingerprint
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sharing mechanism incurs lesser energy and latency overhead in comparison with a centralized,
GPS-based approach. The receiver side power consumption for SoundShare is high primarily due to
the CPU intensive preamble matching process: we believe further improvements here are possible
with optimized preamble detection mechanisms.

6 CONCLUSIONS AND DISCUSSION

Cellular network-based location determination is attractive for location-based applications, since
the cellular interface is power efficient and is turned on anyway. However, such location determi-
nation suffers from inaccuracies. In this article, we have explored the idea of combining cellular
network information across “nearby” phones. Using theoretical analysis and an extensive experi-
mental study of data collected from two cities, we have shown that such combining improves the
location accuracy significantly, especially when the fingerprinting database used is not the same
as the phone trying to locate itself: in our data, the median error reduces by a factor of 1.6 and
the 90 percentile error reduces by a factor of 3.5. Location accuracy improves even when just two
phones’ information is combined, with the benefits improving further with additional phones’ in-
formation. Combining information across phones is beneficial irrespective of whether cellular data
is turned on or off, and irrespective of whether the phones belong to the same operator or differ-
ent operators. We have also designed, implemented, and evaluated an audio communication-based
mechanism for nearby phones to share cellular fingerprint information, which does not reveal or
use the identity of the user.

We believe that CrowdLoc has the potential for a real-world deployment. There are a number
of popular public transportation apps in different metropolitan cities such as Mumbai, Singapore,
New York, and many others. With an incentive mechanism in place, as well as a fingerprinting
database that can be built over a few weeks, CrowdLoc can potentially be integrated with such
apps to further their services in a city-wide deployment.
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