
UC Irvine
UC Irvine Previously Published Works

Title
Steering state statistics with output feedback

Permalink
https://escholarship.org/uc/item/9p83b93p

ISBN
9781479978861

Authors
Chen, Yongxin
Georgiou, Tryphon
Pavon, Michele

Publication Date
2015

DOI
10.1109/cdc.2015.7403244

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9p83b93p
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

Steering state statistics with output feedback

Yongxin Chen, Tryphon T. Georgiou and Michele Pavon

Abstract

Consider a linear stochastic system whose initial state is a random vector with a specified Gaussian distribution.
Such a distribution may represent a collection of particles abiding by the specified system dynamics. In recent
publications, we have shown that, provided the system is controllable, it is always possible to steer the state
covariance to any specified terminal Gaussian distribution using state feedback. The purpose of the present work is
to show that, in the case where only partial state observation is available, a necessary and sufficient condition for
being able to steer the system to a specified terminal Gaussian distribution for the state vector is that the terminal
state covariance be greater (in the positive-definite sense) than the error covariance of a corresponding Kalman filter.

Keywords: Linear stochastic systems, stochastic control, covariance control, Kalman filter.

I. INTRODUCTION

The classical paradigm of stochastic optimal control is to regulate the response of system in such a way so
as to minimize a prescribed performance index. The quality of the response in terms of tracking reference signals
and/or reaching a prescribed destination point is encoded in the performance index which penalizes deviation from
desirable mean-value response. The effect of state uncertainty at the starting point, and of stochastic disturbances
and measurement noise, is that sample paths of state and output processes incur a certain amount of spread. The
role of the performance index is precisely to limit this spread, indirectly, as a result of the optimal strategy that
keeps the cost low and hence curtails deviation from the desired mean response.

The viewpoint presented here is based on recent work by the authors [1], [2] and departs substantially from this
classical recipe and aims to specify directly the spread of the state-vector. Thus, in this work, we first considered the
question of whether specific state-distributions are attainable over a finite or infinite time-interval through (noise-
free) state feedback. In the present, we address for the first time the control of the state-distribution, over a finite
or infinite interval, via output feedback in the presence of measurement noise. It turns out that, our ability to steer
the state-distribution, as compared to what is possible by noise-free state feedback, is only limited by an inequality
of admissible state-covariances to exceed the error covariance of a corresponding Kalman filter.

For motivation and background we refer to [1], [2] as well as to the largely expository paper [3] which has
also been submitted in these proceedings (CDC 2015).

II. FINITE HORIZON STEERING

Consider the linear time-invariant (LTI) system

dx(t) = Ax(t)dt+Bu(t)dt+B1dw(t) (1a)
dy(t) = Cx(t)dt+Ddv(t) (1b)

where
(A,B,B1, C,D) ∈ Rn×n × Rn×m × Rn×m1 × Rp×n × Rp×p,
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(A,B) is controllable, (A,C) is observable, D is invertible, and x, y, u, w, v represent the state, output, control
input, process noise, and measurement noise respectively. We assume that w and v are both standard Wiener
processes and independent of each other. We assume that at t = 0 the state, x(0), is Gaussian with mean equal to
zero and covariance Σ0 > 0, i.e., having probability density

ρ0(x) = (2π)−n/2 det(Σ0)
−1/2 exp

(
−1

2
x′Σ−10 x

)
. (2)

The assumption on having zero-mean is made only for simplicity of the exposition and can be easily removed.

Our goal is to steer the state distribution using dynamic output feedback to a “target” Gaussian end-point
distribution

ρT (x) = (2π)−n/2 det(ΣT )−1/2 exp

(
−1

2
x′Σ−1T x

)
, (3)

for the state vector, with ΣT a given symmetric and positive definite n× n matrix.

A. Feasibility conditions

We first determine conditions on the terminal state covariance ΣT that permit the existence of control that
steers the stochastic system to the corresponding end-point state density (3).

Consider state estimates provided by the Kalman filter

dx̂(t) = Ax̂(t)dt+Bu(t)dt+ L(t)(dy − Cx̂dt), (4)

with (optimal) gain
L(t) = P (t)C ′(DD′)−1

and P (t) the state error-covariance obtained by solving the differential Riccati equation

Ṗ (t) = AP (t) + P (t)A′ +B1B
′
1 − P (t)C ′(DD′)−1CP (t) (5)

with initial condition P (0) = Σ0. As usual, we denote by x̃(t) = x(t)− x̂(t) the estimation error, which satisfies

dx̃(t) = (A− L(t)C)x̃(t)dt+B1dw(t)− L(t)Ddv(t)

and is orthogonal to x̂(t), i.e., E(x̂(t)x̃(t)′) = 0. It follows that

Σ(T ) := E(x(T )x(T )′) (6)
= E((x̂(T ) + x̃(T ))(x̂(T )′ + x̃(T )′))

= E(x̃(T )x̃(T )′) + E(x̂(T )x̂(T )′)

= P (T ) + E(x̂(T )x̂(T )′) ≥ P (T ).

Therefore,
ΣT ≥ P (T ) (7)

is a necessary condition for a terminal state covariance to be “reachable” through suitable steering of the system
dynamics. Our first result states that the strict inequality is ΣT > P (T ) is in fact sufficient. This relies on [2,
Theorem 3] which establishes a “controllability” result for a matrix differential Lyapunov equation. We note that
the above argument on the necessity of (7) does not assume any particular form for the functional dependence of
the control input u on the output y. Yet, in the proof of the theorem below it is seen that, under the slightly stronger
condition ΣT > P (T ), a control input of the form u = −Kx̂ is sufficient to ensure the terminal distribution of
x(T ).

Theorem 1: Given the stochastic linear system (1) with distribution for the state vector at t = 0 specified by
(2), and given

ΣT > P (T ) (8)
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where P (t) satisfies the Riccati equation (5) with initial condition P (0) = Σ0, there exists a control process u(t),
adapted to the output process y(t), such that the distribution of the state vector at t = T is given by the density in
(3).

Proof: Consider a control u = −K(t)x̂(t) where x̂(t) is the state of the Kalman filter and K(t) a time-varying
gain matrix. The state covariance of the combined state + estimation error system[

dx
dx̃

]
=

[
A−BK BK

0 A− LC

] [
x
x̃

]
dt

+

[
B1dw

B1dw − LDdv

]
,

satisfies the matrix differential Lyapunov equation[
Σ̇ Ṗ

Ṗ Ṗ

]
=

[
A−BK BK

0 A− LC

] [
Σ P
P P

]
+

[
Σ P
P P

] [
A−BK BK

0 A− LC

]′
+

[
B1B

′
1 B1B

′
1

B1B
′
1 B1B

′
1 + LDD′L′

]
.

Denote by Σ̂ := Σ− P the error covariance of the Kalman filter state. From the above it readily follows that
˙̂
Σ = (A−BK)Σ̂ + Σ̂(A−BK)′ + LDD′L′. (9)

Since Σ(t) = Σ̂(t) + P (t) for all t, it suffices to steer Σ̂(t) to a terminal value Σ̂(T ) = ΣT − P (T ) > 0 with a
suitable choice of K(t) over [0, T ].

The claim of the theorem now basically follows from [2, Theorem 3] which states that a differential Lyapunov
equation

Q̇ = AQ+QA′ +BU(t)′ + U(t)B′

is controllable, i.e., Q(t) can be steered by a proper choice of U(t) between any two conditions at t = 0 and t = T ,
if and only if the system (1) is controllable, and moreover, the path Q(t) for t ∈ [0, T ] can remain within the cone
of positive definite matrices provided the boundary conditions Q(0) and Q(T ) are. The corresponding value for
K(t) is U(t)′Q(t)−1. The only technical issue we need to address is that the conditions in [2, Theorem 3] require
that the initial covariance be positive definite, while here, the initial condition for (9) is Σ̂(0) = 0. To this end, we
consider the choice K ≡ 0 over a short window of time, [0, ε). As we explain below, the conditions of the theorem
will be fulfilled at t = ε, and thence we apply [2, Theorem 3].

We claim that the solution to (9) with K ≡ 0, namely
˙̂
Σ = AΣ̂ + Σ̂A′ + LDD′L′ with Σ̂(0) = 0, (10)

satisfies that Σ̂(t) > 0 for any t > 0. To see that this is true, first note that Σ̂ := Σ− P where P satisfies (5) and
Σ satisfies

Σ̇ = AΣ + ΣA′ +B1B
′
1. (11)

Hence, both Σ(·) and P (·) are continuously differentiable functions with the same initial value Σ(0) = P (0) = Σ0

and therefore, Σ̂(ε) = Σ(ε)− P (ε) is of order O(ε) for small ε > 0. Rewrite (11) and (5) as

Σ̇−1 = −A′Σ−1 − Σ−1A− Σ−1B1B
′
1Σ
−1,

Ṗ−1 = −A′P−1 − P−1A− P−1B1B
′
1P
−1 + C ′(DD′)−1C.

It follows that

eA
′t(P (t)−1 − Σ(t)−1)eAt =

∫ t

0
eA
′τC ′(DD′)−1CeAτdτ

−
∫ t

0
M(τ)dτ (12)



4

where

M(τ) = eA
′τ
(
P (τ)−1B1B

′
1P (τ)−1

− Σ(τ)−1B1B
′
1Σ(τ)−1

)
eAτ

is differentiable and satisfies M(0) = 0. Thus, the second term on the right hand side of equation (12) is of order
O(t2) for small t while the first term, ∫ t

0
eA
′τC ′(DD′)−1CeAτdτ

is of order O(t). Moreover, this first term is strictly positive for any t > 0 since (A,C) is observable. Therefore,

eA
′t(P (t)−1 − Σ(t)−1)eAt > 0

for t > 0 and small enough. We conclude that Σ(t) > P (t), that is Σ̂(t) > 0, for small t. The fact that Σ̂(t) > 0
for larger t as well readily follows from (10).

B. Sufficient conditions for optimality

So far, we have established that provided ΣT > P (T ) as in Theorem 1, it is possible to steer (1) from the
initial probability density ρ0 to the “target” final probability density ρT . Further, it is easy to also see from the
constructive proof of [2, Theorem 3] that steering can be effected with a finite energy control. Thus, from now
on, we denote by U the (non-empty) family of admissible control processes u, that is, processes that are adapted1

to the output process, have finite energy, and effect the steering of (1) from ρ0 to ρT . With the benefit of having
resolved the controllability question, we now focus on minimum-energy steering, namely the following.

Problem 2: Determine u∗ that minimizes

J(u) := E
{∫ T

0
u(t)′u(t) dt

}
<∞, (13)

over all u ∈ U , i.e., over adapted inputs that steer the system from state-covariance Σ0 to ΣT .

Since ΣT is the covariance of x(T ) which is already specified, Problem 2 is equivalent to minimizing

J̃(u) = E
{∫ T

0
u(t)′u(t) dt

}
+ E{x(T )′Π(T )x(T )}

over all u ∈ U . This observation allows us to identify the form of an optimal control strategy. The reasoning is as
follows. Without the terminal constraint on u to meet the end-point state density, it is standard that an y-adapted,
finite-energy control, minimizing J̃ is of the form

u(t) = −B′Π(t)x̂(t), (14)

where x̂(t) is the Kalman estimation of x(t) and Π(t) satisfies the Riccati equation

Π̇(t) = −A(t)′Π(t)−Π(t)A(t) + Π(t)B(t)B(t)′Π(t) (15)

with boundary value Π(T ) at t = T (see e.g., [4]). Therefore, provided a suitable choice of Π(T ) can be found so
that the controlled state xu

∗
(T ) at t = T has covariance ΣT , this control strategy (14) is the solution to Problem

2. We summarize this conclusion as follows.

Theorem 3: Let Π(·) and P (·) be solutions of the Riccati differential equations satisfy (15) and (5), respectively,
and let Σ̂(·) satisfy

˙̂
Σ(t) = (A−BB′Π(t))Σ̂(t) + Σ̂(t)(A−BB′Π(t))′

+L(t)DD′L(t)′

1depend on t and on {yu(s) | 0 ≤ s ≤ t} for each t ∈ [0, T ]
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with boundary conditions Π(T ), P (0) = Σ0, and Σ̂(0) = 0. If Σ̂(T ) = ΣT − P (T ), then the control law (14)
solves Problem 2.

Theorem 3 provides a sufficient condition for a control u ∈ U to be a solution of Problem 2. The boundary
condition Π(T ) in the statement of the theorem is not specified by the data of the problem; it only needs to be a
symmetric matrix and not necessarily positive semi-definite. Thus, the statement of the theorem suggests a shooting
method to iterate on the correspondence Π(T ) 7→ Σ̂(T ) as an approach for obtaining optimal control laws. In
general, an optimal solution may not exist and thus, this type of a computation approach that Theorem 3 naturally
lends itself to, requires a detail investigation.

However, since for any ΣT > P (T ), Problem 2 is always feasible and therefore, suboptimal solutions exists
(with cost arbitrarily close to infu∈U J(u)). A possible computational approach to construct such suboptimal
solutions is given next.

C. Numerical optimization scheme

We follow steps that are analogous to our recent work [2] on minimum-energy steering via state-feedback.
Herein, we consider the control-energy functional

J(u) = E
{∫ T

0
(K(t)x̂(t))′(K(t)x̂(t)) dt

}
=

∫ T

0
trace(K(t)(Σ(t)− P (t))K(t)′)dt

=

∫ T

0
trace(K(t)Σ̂(t)K(t)′)dt

to be minimized over K(t) so that (9) holds as well as the boundary conditions

Σ̂(0) = 0, and Σ̂(T ) = Σ(T )− P (T ). (16)

Let U(t) = −Σ̂(t)K(t)′. The objective function becomes2

J(u) =

∫ T

0
trace(U(t)′Σ̂(t)−1U(t))dt,

which is jointly convex in U(·) and Σ̂(·). The constraint (9) also becomes linear in U , namely,

˙̂
Σ = AΣ̂ + Σ̂A′ + LDD′L′ +BU ′ + UB′. (17)

Optimizing J(u) can now be recast as the semi-definite program to minimize∫ T

0
trace(Y (t))dt

subject to (16)-(17) and [
Y (t) U(t)′

U(t) Σ̂(t)

]
≥ 0.

This can now be solved numerically via discretization in time and space. A (suboptimal) control feedback gain
K(·) then can be recovered by K(t) = −U(t)′Σ̂(t)−1.

III. INFINITE HORIZON STEERING

We now consider the stationary counterpart of our problem to ensure a terminal state-distribution by output
feedback.

2Note that, as indicated earlier, Σ̂(t) > 0 for t ∈ (0, T ].
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A. Feasibility and characterization of stationary statistics

Consider the stationary Kalman filter

dx̂(t) = Ax̂(t)dt+Bu(t) + L(dy − Cx̂dt).
As usual, the Kalman gain is L = PC ′(DD′)−1 where P is the covariance of the estimation error x̃(t) = x(t)−x̂(t)
and satisfies the Algebraic Riccati Equation (ARE)

AP + PA′ +B1B
′
1 − PC ′(DD′)−1CP = 0. (18)

It is a direct consequence of optimality of the Kalman filter, just as in (6) for the finite interval case, that for any
linear (dynamical and causal) control scheme that ensures stationarity, the covariance Σ of the state vector must
satisfy

Σ ≥ P. (19)

For any such input, define Sux := E{u(t)x(t)′} (= S′xu). Standard Itô calculus gives

d(x(t)x(t)′) = (Ax(t)x(t)′ + x(t)x(t)′A′ +B1B
′
1)dt

+ (Bu(t)x(t)′ + x(t)u(t)′B′)dt

+B1dw(t)x(t)′ + x(t)dw(t)′B′1.

By taking the expectation we obtain

0 =AΣ + ΣA′ +B1B
′
1 +BSux + S′uxB

′,

and therefore, for any feasible state covariance Σ,

AΣ + ΣA′ +B1B
′
1 +BX ′ +XB′ = 0 (20a)

can be solved for X.

Condition (20a) can be equivalently expressed as:

rank

[
AΣ + ΣA′ +B1B

′
1 B

B 0

]
= rank

[
0 B
B 0

]
. (20b)

and ensures that AΣ + ΣA′ + B1B
′
1 is in the range of the linear map X 7→ BX ′ + XB′, cf. [5, Proposition 1].

See also [6] for an alternative but equivalent condition in terms of AΣ + ΣA′ + B1B
′
1 belonging to the kernel of

a suitable operator. We summarize our conclusion as follows.

Theorem 4: If a positive-definite matrix Σ ≥ P can be assigned as the stationary state covariance of (1) via a
suitable choice of feedback control, then Σ satisfies any of the equivalent statements (20a-20b).

We next discuss the converse direction. In this we explain that the equivalent conditions (20) together with
Σ > P are almost sufficient for Σ to be a stationary state covariance, in the sense that a covariance matrix arbitrarily
close to Σ is admissible. Moreover, we show that this can be achieved by output feedback that is implemented by
a Kalman filter and control u(t) = −Kx̂(t).

We begin by considering the joint dynamics of the system state and estimation error x̃(t) = x(t)−x̂(t), namely,[
dx
dx̃

]
=

[
A−BK BK

0 A− LC

] [
x
x̃

]
dt

+

[
B1dw

B1dw − LDdv

]
.

The steady-state state covariance of this system satisfies the algebraic Lyapunov equation

0 =

[
A−BK BK

0 A− LC

] [
Σ P
P P

]
+

[
Σ P
P P

] [
A−BK BK

0 A− LC

]′
+

[
B1B

′
1 B1B

′
1

B1B
′
1 B1B

′
1 + LDD′L′

]
. (21)
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It follows that
AΣ + ΣA′ +B1B

′
1 −BK(Σ− P )− (Σ− P )K ′B′ = 0, (22a)

and
(A−BK)(Σ− P ) + (Σ− P )(A−BK)′ + LDD′L′ = 0. (22b)

and therefore, Σ satisfies (20a) for K = −X ′(Σ− P )−1.

Provided A−BK is a Hurwitz matrix, Σ is an admissible stationary covariance. However, in general, A−BK
may fail to be Hurwitz because of imaginary eigenvalues. In this case there is a “nearby” admissible stationary
state-covariance. This can be shown by adapting a similar argument that was used for the case of state-feedback
in [2, Remark 5]. Briefly, let Σ̂ = Σ− P > 0, and consider the control

Kε = K +
1

2
εB′Σ̂−1 (23a)

for ε > 0. Then, from (22b),

(A−BKε)Σ̂ + Σ̂(A−BKε)
′ = −εBB′ − LDD′L′

≤ −εBB′.

The fact that A−BKε is Hurwitz is now obvious. Let Σε be the solution to

(A−BKε)(Σε − P ) + (Σε − P )(A−BKε)
′ = −LDD′L′. (23b)

Then, the difference ∆ = Σ− Σε ≥ 0 satisfies

(A−BKε)∆ + ∆(A−BKε)
′ = −εBB′,

and hence is of order O(ε). Thus, the algebraic condition that Σ satisfies (20) and the positivity constraint Σ > P
together, are in effect sufficient in this approximate sense that we just explained since Σε is an admissible state
covariance.

B. Conditions for optimality

In general, since there may be more than one solution, we focus on one that minimizes the expected input
power (energy rate)

Jpower(u) := E{u′u}. (24)

Thus, assuming feasibility for a specified state covariance Σ we consider the following problem.

Problem 5: Determine u∗ that minimizes3 Jpower(u) over all u(t) = −Kx̂(t) such

ρ(x) = (2π)−n/2 det(Σ)−1/2 exp

(
−1

2
x′Σ−1x

)
(25)

is the stationary distribution for the state vector.

Problem 5 admits the following finite-dimensional reformulation. Let K be the set of all m × n matrices K
such that the corresponding feedback matrix A−BK is Hurwitz. Since E{x̂x̂′} = Σ̂,

E{u′u} = E{x̂′K ′Kx̂} = trace(KΣ̂K ′),

and Problem 5 reduces to finding a K ∈ K which minimizes

J(K) = trace
(
KΣ̂K ′

)
(26)

3Or, equivalently, a u that minimizes limT→∞
1
T
E
{∫ T

0
u(t)′u(t)dt

}
.
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subject to the constraint (22a). Now, consider the Lagrangian

L(K,Π) = trace
(
KΣ̂K ′

)
(27)

+ trace
(

Π((A−BK)Σ̂ + Σ̂(A′ −K ′B′) + LDD′L′)
)
.

Note that since K is open, a minimum point may fail to exist. Standard variational analysis leads to the form
K = B′Π for the optimal gain. This analysis provides the following sufficient condition for optimality.

Proposition 1: Assume that there exists a symmetric matrix Π such that A−BB′Π is a Hurwitz matrix and

(A−BB′Π)Σ̂ + Σ̂(A−BB′Π)′ + LDD′L′ = 0 (28)

holds. Then,
u∗(t) = −B′Πx̂(t) (29)

is a solution to Problem 5.

C. Minimum energy control

In a similar manner as before, we next provide a numerical scheme to compute a solution to Problem 5. The
average input power (energy rate) is

E{u′u} = trace(KΣ̂K ′) (30)
= trace(X ′Σ̂−1X)

in either K, or X . Thus, the optimal constant feedback gain K can be obtained by solving the convex optimization
problem

min
{

trace(X ′Σ−1X) | (20a) holds
}
. (31)

After obtaining the optimal K from (31), we need to check whether A−BK is Hurwitz or not. If not, the scheme
in (23) can be applied to approximate the solution.

Fig. 1: State trajectories in phase space
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Fig. 2: Control input

IV. NUMERICAL EXAMPLE

We consider motion of particles modeled by

dx1(t) = x2(t)dt

dx2(t) = u(t)dt+ dw(t)

dy(t) = x1(t)dt+ 0.1dv(t)

Here, u(t) represents a control input (force) at our disposal, x1(t) represents position, x2(t) velocity, y(t) noisy
(integral) position measurements, while dw(t) models random white-noise forcing and dv(t) represents measurement
noise. Our goal is to steer the spread of the particles from an initial Gaussian distribution with Σ0 = I at t = 0
to a terminal marginal Σ1 = 1

2I at t = 1, and to maintain the particles’ distribution constant after t = 1. For the
steering part on the interval [0, 1], Σ1 is feasible since Σ1 > P (1), where

P (1) =

[
0.0471 0.1049
0.1049 0.4587

]
is the estimation error of Kalman filter at t = 1. For the maintaining part, it is possible since Σ1 satisfies (20a)
with X = [−1/2, −1/2]′, and Σ1 is greater than the solution of the Algebraic Riccati Equation (18), which is,

P =

[
0.0447 0.1000
0.1000 0.4472

]
.

Moreover, the corresponding feedback gain K = [5.4440, 19.7854] makes A−BK be Hurwitz.

We now implement the time-varying output feedback as explained in Section II to steer the distribution of
particles over the interval [0, 1] and from there on, we implement the stationary control consisting of the stationary
Kalman filter and the above constant gain. Figure 1 displays typical sample paths in phase space, as functions
of time, over the time window [0, 3], and Figure 2 displays the corresponding (color coded) control signals,
u(t) = −K(t)x̂(t).

V. CONCLUDING REMARKS

We have addressed the problem of steering the state statistics of a linear stochastic system via output feedback.
In this case, where only partial state observation is available, we have provided necessary and sufficient conditions
for being able to specify a terminal Gaussian distribution for the state vector as well as a stationary Gaussian
distribution. The paper builds on our recent work [1], [2] where we studied the problem to steer state statistics
via state feedback. The viewpoint presented herein differs from standard Linear Quadratic Regulator theory [7],
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[8] in that the control objective is specified directly in terms of terminal or stationary distributions for the state
vector. Applications of this viewpoint are envisioned in areas where a distribution rather than a set of values for the
state vector is a natural specification, e.g., in quality control, industrial and manufacturing processes, as well as in
thermally driven atomic force microscopy, the control of molecular motors, laser driven reactions, manipulation of
macromolecules, and so on, see e.g. [9], [10], [11], [12], [13]. Future work is expected to focus on such applications
based on this framework.
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