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ABSTRACT OF THE DISSERTATION 

 

Interactive Neurorobotics:  

Brain and Body Coupling During Interactive Multi-Agent Scenarios 

 

by 

 

Eric Jeffrey Leonardis 

 

Doctor of Philosophy in Cognitive Science 

University of California San Diego, 2022 

Professor Andrea Chiba, Chair 

 

This thesis is about the investigation of brain and body coupling with agents and objects at 

multiple scales in different contexts. We seek to characterize the reaction of behavioral and multi-

region brain dynamics during interaction between rodents and other conspecifics, robots, and 

objects. Then we examine how these coupled agents and systems learn in the form of habituation 

during exploration of other agents. We highlight the importance of regulatory behaviors such as 

grooming, which may serve an important functional role in stabilizing the nervous systems using 

a phase alignment. The lessons learned from this empirical research are used to inform design 
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principles for an autonomous interactive robot. These regulatory observations will act as a 

foundation for the proposal of a new learning framework which emphasizes the functional role of 

regulatory behaviors for maximizing safety. Recent studies introduce interactive robots as a 

dynamic comparison case or control condition for object and social interactions for the purposes 

of neuroscience. This dissertation will examine how interactive robots, as dynamic objects or 

potentially social others, can act as tools for probing questions related to agency, animacy and 

autonomy in social cognition, self-regulation, and perceptual exploration.  Descriptions of the 

current state of interactive neurorobotics as a field are set forth, while also establishing design 

principles based on empirically-grounded interaction design studies. Chapter 1 is an introductory 

chapter introducing brain and body coupling as the basis of social cognition, animat and systems 

research and neural coupling during agent assessment.  Chapter 2 examines how agent-based 

interactions perturb behavioral and brain states by characterizing the dynamics of behavioral and 

brain states that emerge during interaction with rats, robots, and stationary objects. To quantify 

dynamic interactions, we demonstrate the use of convolutional neural networks for offline animal 

and robot tracking. Chapter 3 examines olfactory habituation with rats and robots. Chapter 4 

compares phase-amplitude coupling across brain regions during exploratory sniffing and 

regulatory self-grooming behavior.  Chapter 5 provides a dynamical systems interpretation of the 

behavioral and neural data using a novel method for measuring dynamic coupling between neural 

systems, known as Convergent Cross Sorting. This lexicon of neurobehavioral dynamics will be 

used to inform design principles for interactive neurorobotics platforms. The results suggest that 

allostasis and autonomic regulation are crucial for designing interactive robots. In Chapter 6, 

exploration and regulation-based principles learned from the empirical portion of the dissertation 

are applied to developing autonomous algorithms for interactive robots, suggesting an 
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ethologically grounded approach to learning. The Conclusion examines lessons learned overall 

and raises some ethical issues in the field of human-robot interaction.  
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CHAPTER 1: BRAIN AND BODY COUPLING IN SOCIAL COGNITION 

Brain and Body Coupling in Social Cognition 

Perception, action, and social cognition are inextricably entangled with the body, the 

environment, and with the other agents around us (De Jaegher & Froese, 2008). The 4E school of 

cognition asserts that cognition is embodied (body-based), embedded (environment-dependent), 

extended (includes other technologies, objects, and others) and enactive (exhibits sensorimotor 

autonomy) (Varela, Thompson, and Rosch, 1991; Wilson, 2002). These points of view compel us 

to look beyond the individual and challenge traditional notions of reductionism (Nunez and 

Freeman, 1999). While 4E approaches are often philosophically compelling, they lack sufficient 

mechanistic grounding in the biophysics of the brain and the body (Rojas-Libano & Parada, 

2020; Bechtel and Abrahamsen, 2010). This dissertation will utilize an interdisciplinary 

approach merging insights from systems neuroscience, robotics, and nonlinear dynamical 

systems to lay the groundwork for a physiologically grounded theory of brain and body coupling 

in embodied social cognition.  

Social cognition is said to result from an organism's history of coupling with the brain, 

body and world (Rojas-Libano & Parada, 2020). To develop a compelling embodied theory of 

social cognition, we must account for physiological processes such as sensorimotor exploration, 

autonomic self-regulation, and brain-body coupling within and between organisms. In service of 

investigating brain-body-world coupling in social appraisal, we have proposed and utilized a 

novel method for measuring nonlinear dynamic coupling. By examining non-linear coupling, we 

can shed light on how systems within the brain can form holistic bidirectional relationships that 

are not captured by previous methods. This method was applied to electrophysiological coupling 

between multiple brain regions in the rat brain during social and regulatory behaviors. These 
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methods will eventually be extended beyond the brain to examine coupling between agents and 

other social creatures.  

 Robots are physically present and embodied agents which can perform behaviors and 

actions that are more relevant to questions in social cognition research than traditional 

approaches have been. Neuroscientific studies of social cognition often compare the complexity 

of living organisms with static objects. The comparison with static objects leaves a lot to be 

desired, and as a result a new wave of studies have turned to the use of dynamic and interactive 

robots to serve as a better comparison case (Ishi et al, 2006; Wiles et al, 2012; Heath et al, 2018). 

This dissertation will utilize robots to examine the role of self-propelled motion, animation, and 

autonomy in social cognition and sensorimotor exploration. The lessons learned from these 

studies were used to develop autonomous robots and multi-agent systems better able to engage 

living rodents while accounting for their complex physiological reactions to physical presence.  

Animats and Systems Theory 

The synthetic approach to understanding behavior relies on our ability to design systems 

that serve similar functions to the behaviors they are meant to model. Animats are a type of 

simulated artificial animal that often act as hypotheses about target animal behaviors or 

functions. The animat approach seeks to capture the situated nature of interactions between 

sensors, effectors and the environment, taking inspiration from the situated cognition approach 

(Suchman, 1986; Kirsh, 2009).  The animat approach uses methods from robotics, dynamical 

systems, adaptive learning algorithms, and minimalist design (Brand, Prokopowicz, & Elliot, 

1995). Animat systems are types of ‘ludic spaces,’ an artificial space, lacking the sensory 

complexity and structure of real space, whose function is to support simplification and 

gamification of interaction (Adams, 2003). Despite the oversimplified nature of animat ludic 
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spaces, they serve as compelling arguments about how sensorimotor systems become embedded 

within a particular ecological niche (Brand, Prokopowicz, and Elliot, 1995). Animats can act as a 

way of examining and investigating questions in neuroethology by emphasizing sensorimotor 

contingencies. Despite the majority of animat research being restricted to virtual simulations of 

vehicles and creatures, a strength of this dissertation is that we will be examining the interaction 

between embodied animal robots and living creatures. Animats must not only learn about the 

environments they are in but also learn how to use their own bodies to complete goals 

(Barandiaran, 2008). In a framework like this, it is important to remain cautious and flexible 

about how directly the model relates to the target system, as the target system is often 

significantly more complex than the toy model (Godfrey-Smith, 2005).  

The animat approach and field of artificial life (ALife) has a compelling set of principles, 

but like the themes of cyberpunk literature it is “high on tech, low on life.”  By creating a 

juxtaposition between biological and artificial agents, we hope it can highlight the relatively 

impoverished nature of artificial systems and where they can be improved by taking biology and 

behavior into account. This dissertation will rely on many frames and theories posited by 

animatists especially with relation to agency and autonomy. Autonomous agents lie on a 

continuum of computational entities. Objects are entities with declarative attributes and 

procedural capabilities. Agents are objects with goals, while autonomous agents are agents with 

motivations (Aube and Senteni, 1996).  This established conceptual and simulation modeling 

paradigm involves a class of hypothetical systems that, through a resemblance relationship with a 

target system, should help us characterize and understand some of their essential features and 

functions. This means that the interrelated components and relations within these hypothetical 

animat systems gives rise to a set of characteristic features that are shared with the model system.  
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In his book Vehicles: Experiments in Synthetic Psychology (1984), Braitenberg presents 

to the reader a progression of thought experiments each in the form of a mobile robot controlled 

by a circuit which links sensors and motors forming elegant neuroethological theories of 

perception and action. A neurophysiologist who researched visual ganglia and cell assemblies in 

the fly, Braitenberg took his experience to developing a new toy world of vehicles, describing 

excitatory/inhibitory mechanisms with contralateral and ipsilateral connections relative to a light 

source as being in states of fear, aggression, and even love (Figure 1.1). When one of the 

vehicles is in a state of love, its light sensors have inhibitory connections to the actuators on the 

ipsilateral side. In Braitenberg’s playful interpretation, this causes the vehicle to tend to its 

beloved light with doting admiration, coming just close enough to attend to its sweet lovely light. 

The synthetic approach championed by Braitenberg shows how connectivity between sensors 

and effects can result in interesting ecologically relevant behaviors. 

We can trace the influences of the “animat way” and Braitenberg’s Vehicles back to  

Jacques Loeb’s “tropisms” in animals and man, which was heavily influential on the early 

learning theories of Watson (Greenspan & Baars, 2005; Loeb, 1918). A tropism is when an 

animal or plant is drawn to or orients towards an external stimulus . For instance, a heliotrope is 

the growth of a plant in the direction of the sun. Loeb was particularly interested in explaining 

bodily symmetry.  Cited by Braitenberg as a key influence, Loeb proposed a mechanism that has 

excitatory and inhibitory heliotropic relations to external stimuli and presented diagrams of 

galvanotropic reactions of legs as they were related to stimulation (see Figure 1.1). Loeb was a 

champion for the “mechanistic conception of life” (the title of one of his books), specializing in 

mechanistic accounts of volitional and instinctive action in the nervous system. In Forced 

Movements, Tropisms, and Animal Conduct, Loeb introduces what he calls the “artificial 
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heliotropic machine,” declaring that “the best proof of the correctness of our view would consist 

in the fact that machines could be built showing the same type of volition or instinct as an animal 

going to the light.” Loeb goes on to describe an example of an artificial heliotropic machine by 

describing an orientation mechanism that was built into the “Hammond Dirigible Torpedo.” 

 Tolman is a key figure in the cognitive psychology of the rodent, having posited 

cognitive theories during a time when such things were denounced as heresy. In light of the 

discovery of hippocampal place cells and the cell assemblies that support spatial navigation 

(O’Keefe and Dostrovsky, 1971), it became clear that one of Tolman’s key ideas might really be 

the case, that is that animals actually have an allocentric cognitive map of their position in a 

maze. Tolman developed a theory of spatial orientation as an automaton (the “schematic 

sowbug”). Tolman was significantly influenced by the Gestalt psychologists, and rejected crude 

stimulus response reductionism in favor of cognitive behaviorism.  

In addition to citing Loeb as an influence, Tolman cites the work of Gestalt psychologist 

Kurt Lewin, who is known as the father of both social and industrial/organizational psychology. 

Lewin was a general systems theorist who was particularly concerned with representing 

organism environment interactions using a series of diagrams that use vector fields to describe 

the behaviors and affordances of a particular situation. Lewin, the creator of Topological 

Psychology, was talented at representing and envisioning an organism’s psychological 

environment in the form of mathematical formalisms and maps that could be visualized for the 

purposes of hypothesis generation and testing (Figure 1.1). Lewin’s general systems approach 

paired with topological maps of the environment, conceptualized goal-oriented behavior in terms 

of vector forces that determined social behavior (Figure 1.1). A key lesson from Gestalt 

psychology is that animals may need to temporarily retreat from a goal in order to solve a task. 
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This was demonstrated in animal behavior through Lewin’s colleague Wolfgang Kohler’s ape 

experiments requiring retreating to a platform and moving it towards a suspended banana in 

order to acquire it. Lewin’s topological diagrams allow for the modeling of such forces for the 

purpose of explaining goal oriented behavior. These insights are of key importance to the animat 

approach. Lewin had influential graduate students such as Fritz Heider, who would perform key 

experiments with Marianne Simmel in the classic 1944 social psychology experiment which 

demonstrated humans will automatically interpret animated shapes as having social, emotional, 

and intentional states.  

 

 

Figure 1.1: Tolman’s Sowbug, Lewin’s Life Space and Braitenberg’s Vehicles  

 In addition to ethological approaches and situatedness the animat approach has an 

underlying theme of emphasizing neural architectures. Positing the neural underpinnings of 

mobile robots is nothing new. Neurophysiologist W. Grey Walter, a participant in the Macy 
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Conferences on Cybernetics in 1953, also contributed to this homeostatic robotic lineage with his 

self-charging robotic Tortoises. Walter’s robots implemented specific tropisms and he studied 

their behavior maintaining a series of homeostatic feedback loops. The tradition set by Shannon, 

Walter, and Tolman paved the way for Braitenberg’s Vehicles, and now as neuroscience matures 

provides an interesting framework to further investigate the role of situated body, brain and 

environment interactions underlying agency.  

Neural Coupling During Agent Assessment  

When assessing whether machines can think like humans, a popular method of agent 

assessment is the Turing Test (Turing, 1950). Turing posited a thought experiment where a 

human judge is physically separated from either a computer or a human on the other side. They 

can only interact with written language passed back and forth. For a computer to pass the test 

they must respond in such a way that the judge is convinced they are engaging in thinking. 

Saygin has advocated for an advanced version of the Turing Test with the dividers removed that 

she called the “Neural Turing Test,” which posits that to truly pass the test the same brain areas 

recruited during social interaction with humans should also be recruited when interacting with 

humanoid robots acting as human replicants (Saygin, Cicekli, & Akman, 2000; Leonardis & 

Saygin, 2015). This points out the possibility that even if someone may consciously believe that 

the agent is human, some unconscious brain processes might have collected evidence to suggest 

the contrary. Saygin and Urgen have provided neuroimaging and electrophysiological results to 

suggest that brain areas that process the bodily form of a humanoid robot may respond to their 

human-likeness, however an android’s unnatural motion characteristics can be a dead give away 

resulting in error signals propagated throughout the brain (Saygin et al, 2012; Urgen, Kutas, & 

Saygin, 2018). This dissertation is concerned with a similar set of questions as to what degree 
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mobile robots pass a version of the Neural Turing Test for animals. Robots may seem like an 

artificial or unnatural stimulus. However, urban ecology shows that rats are actually quite well 

suited to master human technologies, as evidenced by the proliferation of rats throughout human 

societies across the world (Sullivan, 2005). The use of animals allows for more invasive and fine 

grained measurements of the brain that are often not available for investigation in humans.  This 

dissertation asks: are circuits of the brain that are usually recruited for social processing of a 

conspecific also recruited when assessing a mobile robot? 

The mechanistic role of neural oscillations in cognition and behavior has been 

increasingly emphasized in systems neuroscience in recent years (Buszaki, 2006). Neural 

oscillations refer to the generated rhythmic patterns of electrical activity that groups of neurons 

naturally exhibit in vivo and have been widely studied (Buzsaki and Draguhn, 2004; Fries, 

2006). While historically they were viewed as largely epiphenomena of single unit activity, 

recently it has been emphasized that neural oscillations are emergent properties in complex 

neural systems and may be causally efficacious components in cognitive mechanisms (Fries, 

2006). Due to their mathematical similarity with the circadian rhythm mechanisms specified by 

Bechtel and Abrahamsen (2012), neural oscillations seem to be promising candidates for 

explanations of cognition and behavior.  

Tinbergen suggested that observational ethology can generate hunches about the function 

of patterns of behavior, leading to the best way to solve that problem if the animal was designed 

by an engineer. Following behavioral ecology, the experimenter asking oneself about the concept 

of current utility relative to a particular behavior is a way to inquire about the function (Bateson 

& Laland, 2013). We recognize that this is not a traditional approach to cognitive neuroscience, 

because this methodology resists the temptation to impose psychological categories beforehand 
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and emphasizes the neural structure of naturalistic behavior. Whereas it may create experiments 

with a more observational bent in pursuit of ecological validity, it should be better equipped to 

tell us what the brain is trying to do for the system. We will utilize the methods of computational 

ethology to create a quantitative ethogram for the purpose of making these observations more 

concrete and testable using statistics (Datta et al, 2019). These methods will be used in service of 

the questions of neuroethology, which uses the tools of ethology to inquire about how brain 

functions support behavior.  

In particular, in this study we will examine how the neural circuitry for assessing an 

individual’s own state is co-opted to assess other agents (Fotopolou & Tsakiris, 2016). An 

individual’s  brain and body are intricately coupled in order to promote behavior that is adaptive 

to social demands and demands of the environment (Zhao, et al., 2022). In exploring new 

creatures, places and things, an individual inevitably uses their past perceptions, their ability to 

sense, and their decisive ability for action. We often consider the state of the brain in response to 

these processes, but it is also important to consider the way in which the body and brain 

coordinate through the autonomic nervous system and information coming from the body to the 

brain and vice versa (Livneh & Andermann, 2021). Rats have a keen capacity to recognize and 

act on olfactory information, not only based on past perceptions but even on stimulus 

predispositions and their evolutionary histories (Rosen et al, 2015). Thus, given limits on 

sampling from a variety of sensory areas, selecting olfactory sensing, and recording from the 

olfactory bulb, in rodents is intended to provide insight into sensing other agents and objects. Of 

added value, the olfactory bulb contains signal information about the autonomic system through 

signals indicative of respiration rate (Rojas-Libano et al, 2014). The vagus nerve carries visceral 

information from the autonomic system into the insular cortex and the amygdala, allowing 
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organisms access to the state of their bodily systems (for review see Chen et al, 2021). These two 

structures also receive direct projections from the olfactory system and are interconnected with 

each other. Additionally, the amygdala is densely interconnected with the hippocampus, a 

structure that inevitably codes spaces and places that can guide the state of an organism and their 

actions (McGaugh, Cahill, & Roozendaal, 1996). The hippocampus also receives heavy 

projections from the olfactory system, not surprisingly, as rodent olfaction can also guide spatial 

function (Jacobs, 2012). Taken together the circuit represents a dynamic system allowing an 

organism access to the state of their body and the outside world in space and at a particular point 

in time. Whereas each of the structures mentioned, the olfactory bulb, the amygdala, the insular 

cortex, and the hippocampus, can work in concert, the individual unit activity in the structures 

are demonstrated to have multiple roles in coding different aspects of the brain and body, in 

addition to expressing characteristic rhythms (Tort et al, 2018). To examine the dynamics, 

rhythmic signatures, and coupling capacity of the system, recording the oscillatory activity in 

each region was the best starting point to begin to understand the physiological space in which 

one might assess their own state and repurpose the same circuitry for incorporating the 

assessment of other organisms, objects, and agents in the environment. 

Fries (2006) puts forward the ‘communication-through-coherence’ hypothesis which 

posits that the structure of neural communication between neural groups is ‘mechanistically 

implemented’ by coherence between neural oscillations. Coherence, in this view, refers to the 

phase-locking of oscillating neural groups as measured by fluctuations in spike-timing relative to 

the local field potential. The origin of the local field potential remains a mystery, but is likely 

some function of pre- and post- synaptic potentials, as well as subthreshold oscillations (Brea et 

al, 2009; Buzsaki, 2012). Fries suggests that these phase-locked oscillations open and close 
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rhythmic temporal windows where neurons can communicate effectively. Fries claims that for a 

“sending group to communicate a message effectively to a receiving group, the sending group’s 

output has to be timed such that it arrives at the receiving group when that group is excitable” 

(2006, p. 476). When saying that these neural groups are “communicating a message” between a 

“sending group” and “receiving group,” Fries appears to be appealing to a fairly traditional view 

of information processing in the brain. This concept is reminiscent of a set of coordinated 

telegraphs reminiscent of Shannon’s formalization of information within a sender/receiver 

framework (Shannon, 1948).  Given the lessons provided in traditional approaches to 

information theory by cybernetics and systems theory, such as the use of positive and negative 

feedback in these communication systems, Fries’ explanation might lack sufficient complexity to 

provide an adequate explanation of component operations that underlie cognition and behavior. 

What Fries’ paper does offer  is an explanation for the operations of “neural groups” and lays a 

potential foundation for dynamic mechanistic explanations of large-scale neural communication, 

when considered in concert with some other proposed theories. 

Fries’ earlier collaborative work (Engel, Fries, & Singer, 2001) seems to suggest that 

neural groups are highly variable in terms of scale and organization depending on the 

explanandum of interest. These neural groups could either be composed of millions of neurons 

scattered throughout the cortex and measured by the local field potential, or of single units, each 

coordinating with a few thousand others in their local area. These neural groups seem to be 

highly dependent on the organization of the neural system in question. In order to clarify the 

meaning of Fries’ “neural groups,” we might be better served referring to them as ‘cell 

assemblies.’ Buszaki and Draguhn define ‘cell assemblies’ as “distributed networks of neuronal 

groups that are transiently synchronized by dynamic connections” (2004). They specify that the 
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mechanisms that produce these assemblies are not known, but one mechanism is the change of 

synaptic weighting of neural connections, the other being the cost effective use of oscillations in 

a similar fashion described by Fries (2006). This makes for an interesting problem, that “cell 

assemblies” are the components of the mechanism of interest and can only be defined in terms of 

their interaction. Buzsaki (2006) suggests that cell assemblies resemble clusters that form around 

network hubs  in graph theoretic small world networks, mainly, clusters of highly interconnected 

nodes that are responsible for specific computational functions.  

Neural oscillations are a prime candidate for dynamic mechanistic explanations of 

perceptual, cognitive and behavioral function, yet in its current state, defined components remain 

underspecified and the organization of systems often remains unclear (Bechtel and Abrahamsen, 

2010). Fries’ communication-through-coherence hypothesis offers one possible component 

operation performed by neural assemblies, but it is not clear how these simple operations 

coordinate between components to explain perceptual and cognitive mechanisms of interest. 

Rather than “communication-through-coherence” this dissertation argues for “communication-

through-coupling” as a better model of neurophysiological communication. We fully address this 

by developing methods for examining coupling dynamics in Chapter 5. In the forthcoming 

chapter, we first establish a study examining the introduction and assessment of different rats, 

agents, and robots, in addition to the space of exploration. Subsequent chapters delve into the 

efficacy of individual behaviors evident within this framework, culminating in the development 

of multi-agent autonomous robotic systems with coupled artificial neural networks that operate 

within the developed ethological framework. 
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CHAPTER 2: 

INTERACTIVE NEUROROBOTICS:  

BEHAVIORAL AND NEURAL DYNAMICS OF AGENT INTERACTIONS 

 

The content within this section, titled “Chapter 2: Interactive Neurorobotics: Behavioral 

and Neural Dynamics of Agent Interactions” reflects material from a paper that is in review at 

Frontiers in Psychology Special Issue on Robots and Bionic Systems as Tools to Study 

Cognition: Theories, Paradigms, and Methodological Issues. The full citation is as follows: 

 

Leonardis, E.J., Breston, L., Lucero-Moore, R., Sena, L., Kohli, R., Schuster, L., Barton-

Gluzman, L., Quinn, L.K., Wiles, J., & Chiba, A.A. (Under Review) Interactive Neurorobotics: 

Behavioral and Neural Dynamics of Agent Interactions. Frontiers in Psychology Special Issue 

on Robots and Bionic Systems as Tools to Study Cognition: Theories, Paradigms, and 

Methodological Issues. 
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Abstract 

Interactive neurorobotics is a subfield which characterizes brain responses evoked during 

interaction with a robot, and their relationship with the behavioral responses. Gathering rich 

neural and behavioral data from humans or animals responding to agents can act as a scaffold for 

the design process of future social robots. The goals of this research can be broadly broken down 

into two categories. The first, seeks to directly study how organisms respond to artificial agents 

in contrast to biological or inanimate ones. The second, uses the novel affordances of the robotic 

platforms to investigate complex phenomena, such as responses to multisensory stimuli during 

minimally structured interactions, that would be difficult to capture with classical experimental 

setups. Here we argue that to realize the full potential of the approach, both goals must be 

integrated through methodological design that is informed by a deep understanding of the model 

system, as well as engineering and analytical considerations. We then propose a general 

framework for such experiments that emphasizes naturalistic interactions combined with 

multimodal observations and complementary analysis pipelines that are necessary to render a 

holistic picture of the data for the purpose of informing robotic design principles.  Finally, we 

demonstrate this approach with an exemplar rat-robot social interaction task which included 

simultaneous multi-agent tracking and neural recording 
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Introduction  

 

Figure 2.1: A. An artist’s depiction of rat-robot and rat-object interactions inspired by Quinn et 

al., 2018 (Illustration by Rosana Margarida Couceiro). B. A picture of live rat-robot interaction.  

As technology and automation increasingly permeate every aspect of modern life, our 

relationship with these systems have begun to blur the lines between tool use and social 

interaction. Humans are routinely being asked to engage with artificial agents in the form of chat 

bots, recommender systems, and social robots which all exhibit facets of agency more familiarly 

associated with living beings (Saygin et al., 2012; Saygin & Cicekli, 2002; Gazzola et al., 2007).  

Such a promethean transition has raised an urgent need to study how biological organisms adapt 

and extend their social mechanisms to new digital simulacra (Baudrillard, 1981). The 

proliferation of technology has made sophisticated robotics accessible to many more scientists, 
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empowering them to create a wide array of new applications, such as the use of robots to 

investigate animal models by physically interacting with those animals. 

 The goals of this research can be broadly broken down into two categories. The first, 

seeks to directly study how organisms respond to artificial agents in contrast to biological or 

inanimate ones. The second, uses the novel affordances of the robotic platforms to investigate 

coordination dynamics complex interaction phenomena between agents, such as coordinated 

dynamics during minimally structured interactions that either peak the organism's curiosity or 

evoke avoidance and fear responses resulting in a rejection. Here we propose that to realize the 

full potential of the approach, both goals must be integrated as they provide complementary 

information necessary to contextualize one anothers results. For example, if one were to use a 

robot to study acceptance, without characterizing the organism’s differential response to robots 

and conspecifics, then it would be difficult to know whether the results reflected a generalizable 

reaction, or was an artifact of the animal’s particular response to the robot. Despite these 

epistemological liabilities, the degree to which animals’ responses differ between agent types, as 

well as the character of those differences, remains an open question. 

At the nexus of our broadly construed categories is the nascent field, interactive 

biorobotics, that uses robots to experimentally probe questions in behavioral ethology, 

neuroscience, and psychology, using a variety of human and animal assays (Ishii et al., 2006; 

2013; Gergely et al., 2016; Lakatos et al., 2014; Narins et al., 2003; Narins et al., 2005). Robot 

frogs that can emit auditory calls have been set up in environmental habitats and elicit fighting 

and even mating responses from wild frogs (Narins et al., 2003; Narins et al., 2005).  Robot fish 

that interact with living schools of fish and vibrating robots that attract bees have shown effects 

on collective behavior in laboratory and naturalistic environments (Schmickl et al., 2021).  Robot 
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rats, like the Waseda Rat and the iRat, interact with living rats and affect their behavior in 

laboratory settings (Ishii et al., 2006; Wiles et al, 2012). 

In this paper we provide multimodal recordings from rats engaged in a social experiment 

with rats, robots, and objects. We show that interactions with agents of varying animacy and 

motion characteristics evoke different behavioral responses. In addition, we show measurable 

variations in the activity of multiple brain regions across different interactive contexts.  

Background   

Real organisms do not exist within a sterile world, acting against a quiescent backdrop. 

The world they adapted to is dynamic, inhabited by other agents, each behaving and interacting 

according to their own imperatives. Therefore, if science is to actually understand how the brain 

synthesizes stimuli and produces effective behavior it must tackle these complex, weakly 

constrained settings. It is technically complex to administer experimental manipulations in a 

minimally constrained environment, and the availability of new technology created an 

opportunity for experimentalists to partner with roboticists and computationalists to create data 

capture and analysis tools necessary to extract robust effects from the results of their use. 

Interactive biorobotics presents a promising new approach to facilitate experimental 

manipulation while retaining the complexities of inter-agent dynamics. As Datteri suggests, 

interactive biorobotics is a methodologically novel field that is distinct from classical biorobotics 

(Datteri, 2020). In classical biorobotics experiments, the robot is meant to “simulate” or replicate 

a function of a living system without direct interaction with the organism itself. In interactive 

biorobotics, the robot is meant to stimulate interaction with living systems and is instead 

bestowed with certain capacities to engage and stimulate a living system. The target of the 

explanation is the behavior of the living system in response to the robotic agent. A key aspect of 
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interactive biorobotics is the integration and habituation of living systems to interactive robot 

counterparts (Quinn et al. 2018, Datteri, 2020). A popular example of an interactive biorobotics 

paradigm with animals was the Waseda Rat, a rat-like robot that continuously chases a living rat 

to induce anxiety-like behavior (Ishii et al, 2006; Shi et al, 2013). 

Many experiments have demonstrated the viability of this technique for investigating 

neuroscientific questions. These results are the purview of interactive neurorobotics,  a subfield 

which characterizes brain responses evoked during interaction with a robot, and their relationship 

with the behavioral responses. An early example of a pioneering interactive neurorobotics study 

is Saygin et al. (2012), which used neuroimaging to present human subjects with robots and 

androids for the purposes of studying the neural basis of the “uncanny valley.” This is an effect 

which shows that as a robot’s appearance increases in human-likeness, the more eerie or creepy 

it may seem to a human during interaction (Mori, 1970; Saygin et al, 2012). Behavioral evidence 

has been presented suggesting that macaque monkeys also have a similar response when 

presented with virtual avatars (Steckenfinger & Ghazanfar, 2009). However, it is unknown to 

what extent the uncanny valley effect is present in other animals, like rodents. While this is a 

fascinating question, this paper seeks to examine neural and behavioral responses to non-rodent-

like robots with hopes of sidestepping any potential uncanny valleys leading to easier 

acceptance.  

An example of an interactive neurorobotics experiment, where the brain is measured 

along with animal behavior, was conducted with the predator-like robot known as “Robogator.'' 

This robot alligator that can walk and bite, interacted with rats in a dynamic foraging task (Choi 

& Kim, 2010). In their task, as a rat approaches a food reward, the Robogator suddenly snaps its 

jaws towards the rodent, resulting in an approach-avoidance conflict paradigm. In this 
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experiment, Choi and Kim (2010) drastically inhibited amygdala function by locally infusing 

muscimol (a GABA agonist) and inducing electrolytic lesions. They found that without 

amygdala function, animals showed diminished fear responses towards the robot. They also 

demonstrated that local infusions of muscimol globally suppressed amygdala activity, leading to 

increased exploration of the robot. Similar approach and avoidance dynamics are present in a 

variety of behavioral paradigms related to predation, social interaction, reward learning, and 

threat detection (Jacinto et al., 2016; Mobbs & Kim, 2015). The increase in exploration under 

conditions in which the amygdala is suppressed underscores the importance of the state of the 

animal in approaching potentially threatening, frightening, or unknown stimuli.  

When potential danger or even conditions of high uncertainty are present, there is a cost 

to exploration due to rats’ natural propensity for neophobia (Mitchell, 1976; Modlinska et al., 

2015).  Inherent in introducing robot counterparts to rats is not only the uncertainty of novelty 

but also risk assessment regarding the fear of harm. Thus, in order to explore robots, rats must 

engage in regulatory behaviors allowing the neural system to enter states that allow exploratory 

behaviors. Inevitably, this necessitates a balance between the sympathetic nervous system and 

the parasympathetic nervous system, invoking allostatic processing in which systemic stability is 

achieved through continuous change. Robots have been more often used in fear and stress 

inducing paradigms with novel robots that exert extreme regulatory demands on the rat (Ishi et 

al, 2006; Choi and Kim, 2010). During the management of uncertainty, self-regulatory behaviors 

actively modulate internal demands to meet external demands (Nancy & Hoy, 1996). 

In addition to examining behaviors related to novelty and fear, studies have also been 

performed examining the similarity between rodent social behaviors and behaviors toward a 

robot. Rats have been shown to behave similarly towards mobile robots as they do to rats, 
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exhibiting behaviors such as: approaching, avoiding, sniffing, and following (del Angel Ortiz et 

al, 2016; Wiles et al, 2012; Heath et al, 2018). The analysis showed that the rats demonstrated 

similar relative orientation formations when interacting with another rat or moving robot.  

Analysis of relative spatial position in rat-rat dyads in comparison with rat-robot dyads show 

similarities, raising the question of whether these dynamic interactions might have social 

elements (del Angel Ortiz et al, 2016).  Endowing robots with coordination dynamics that 

mitigate concerns of dominance still leave uncertainty regarding potential animacy of the agent. 

A robot’s ability to engage in self-propelled motion is crucial for its potential to elicit 

social and attentive behaviors. Studies of social recognition and novel object recognition 

traditionally disregard dynamic objects that exhibit self-propelled movement despite early 

demonstrations that even two-dimensional objects that exhibit self-propelled movement are often 

associated with sociality, agency, and animacy detection (Heider & Simmel, 1944). Self-

propelled motion can take various forms. Biological motion is associated with maximizing 

smoothness and can be recognized as animate even with minimal representation (Flash & Hogan, 

1985; Todorov & Jordan, 1998; Saygin et al., 2004). Mechanical and materials constraints on 

interactive robots make the use of biological motion rare and difficult to achieve. However, 

interactive robots provide an opportunity to experimentally manipulate agency by utilizing 

elements of animation through movement trajectories and temporal coordination (Hoffman & Ju, 

2014).  

A robotic platform that displayed emergent semi-naturalistic movement patterns is the 

iRat neurorobotics platform (Ball et al., 2010, Wiles et al, 2012). The iRat was originally 

developed with a neurally feasible model that simulated the function of the hippocampus, 

entorhinal cortex and parietal cortex for the purpose of learning spatial environments (Ball et al., 
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2010). By virtue of entering an environment and exhibiting appropriate spatial navigation and 

object avoidance, iRat garnered observational attention from on-looking rats (Wiles et al.,2012). 

This brought about the question of whether iRat could be driven to behave in a socially 

interactive manner that would result in rats engaging in prosocial behavior with the iRat as they 

do with conspecifics (Rutte & Taborsky, 2008; Bartal et al., 2011). Quinn et al. (2018) used the 

iRat to interact with rats for the purpose of eliciting social responses and examining prosocial 

behavior towards robots (For Artists Depiction and Picture of Live Interaction See Figure 2.1). 

Rats will not only engage in prosocial behaviors with each other, such as freeing other rats from 

an enclosed restrainer, but have also been shown to reciprocate with robots (Quinn, et al. 2018, 

Wiles et al., 2012).  

In this paper we further prior work by investigating the effect of agent type on both 

behavioral and neural outcomes. For our experimental model we considered rats engaging in a 

socio-robotic experiment developed according to principles of rodent-centered design (See 

Figure 2.1). In this study, rats interacted in a circular arena with other rats, robots, or objects. 

They engaged in naturalistic behaviors during this time and the resultant observational data was 

used to characterize the dynamics of rats’ behavioral repertoires in the presence of different 

agents or objects. While the rats were freely behaving, we used multi-site electrophysiological 

recordings to examine brain states during different behavioral states. We examine how the agent-

based interactions influence neural oscillations within local field potentials in the olfactory bulb, 

amygdala and hippocampus (see Brain Areas of Interest) during grooming, immobility, and 

rearing behaviors (see Behaviors of Interest). To investigate dynamic interactions, we 

demonstrate the use of deep learning video tracking for offline multi-animal and robot tracking.  
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Brain Areas of Interest  

The neural circuit examined in this paper was chosen because it spans specific functional 

aspects critical for social behavior. Together, the olfactory bulb, amygdala, and hippocampus 

form a tightly connected network (for review see Brodal, 1947) that provide information about 

autonomic, sensory, spatio-temporal, and affective context (Moberly et al, 2018, Jacobs, 2022) 

(See Figure 2.2). They are, thus, well situated to provide valuable information regarding the 

benefits and liabilities of the external environment during social interaction, exploration, and 

sampling of the sensory information. Further, they have well characterized anatomical 

connectivity and diverse observed forms of frequency dynamics which makes them an excellent 

subject for studying the holistic closed loop processing of social information.  

 

Figure 2.2: A, Diagram of electrode placement in the Main Olfactory Bulb (MOB), Medial 

Amygdala (meA), Hippocampus (CA1/CA2). Figure adapted from scidraw.io under Creative 

Commons 4.0 license (Tang, 2019). B, Raw traces from the MOB, Ca1/Ca2 and meA.  
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The olfactory bulb  is a dominant primary sensory organ for rodents, playing a central 

role in odor discrimination and social cognition for rats (Dantzer et al., 1990). The main 

olfactory bulb (MOB) local field potential exhibits neural oscillations associated with sensory 

processing (Kay et al., 2009). Kay et al. (2014) have shown that the frequency of the theta 

oscillation in the olfactory bulb LFP reliably follows respiration rate (2-12Hz). Respiration-

entrained oscillations provide information about the state of the autonomic nervous system, and 

are distinct from theta oscillations (Tort et al., 2018). It is important to note that respiratory 

rhythms are not restricted to the olfactory bulb, and are also found throughout the brain (Heck et 

al., 2017; Rojas-Libano et al., 2014). The following study seeks to highlight the important 

contribution of olfaction and respiratory-related brain rhythms to brain dynamics (Jacobs, 2012; 

Lebedev et al., 2018), in order to simultaneously examine sensory and autonomic dynamics as 

they relate to agent and object interactions. Olfactory and hippocampal theta oscillations also 

show coherence during olfactory discrimination tasks (Kay, 2014). Recent work also suggests 

coupling of the beta rhythm from olfactory bulb to hippocampus, which suggests a directionality 

of functional connectivity going from OB to hippocampus (Gourévitch et al., 2010).  The 

olfactory bulb also exhibits two distinct gamma oscillations associated with contextual odor 

recognition processing, low gamma (50-60Hz) during states of grooming and immobility and 

high gamma (70-100Hz) associated with odor sensory processing (Kay, 2005). The low gamma 

range was selected based on Kay et al (2009). Future work will highlight the role of these 

rhythms, whereas the current work focuses on dynamics within the theta, respiratory, and beta 

frequencies. (For raw traces of the MOB LFP see Figure 2.2). 

The amygdala is a complex of historically grouped nuclei located in the medial temporal 

lobe, commonly associated with affective processing, saliency, associative learning, and aspects 
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of value (Gallagher and Chiba, 1996). Oscillations in the amygdala and their coherence with 

other brain structures have been linked to learning and memory performance (Paré et al., 2002). 

The function of the medial amygdala (MeA) is associated with the accessory olfactory system, 

which receives inputs from the vomeronasal organ, playing a role in social recognition memory, 

predatory recognition, and sexual behavior (Bergan et al., 2014). The MeA receives input from 

accessory olfactory areas and has projections to hypothalamic nuclei that regulate defensive and 

reproductive behavior (Swanson & Petrovich, 1998). The basomedial nucleus has been linked to 

the regulation and control of fear and anxiety-related behaviors (Adhikari et al, 2015). Amir et al 

(2015) investigated how principal cells in the basolateral amygdala respond to the Robogator 

robot during a foraging task. A group of cells reduced their firing rate during the initiation of 

foraging while another group increased firing rate. It was found that this depended on whether 

the rat initiated movement, with the authors’ suggesting  that the amygdala is not only coding 

threats and rewards, but also is closely related to the behavioral output. (For raw traces of the 

MeA LFP see Figure 2.2). 

The CA1/CA2 subregion of the hippocampus is functionally associated with spatial 

navigation, contextual information, and episodic memory formation. The CA1 region of the 

hippocampus is commonly associated with spatial navigation dorsally and social/affective 

memory ventrally (van Strein et al., 2009). The hippocampal theta rhythm is a 4-10Hz oscillation 

generated from the septo-hippocampal interactions, which temporally organize the activity of 

CA1 place cells according to the theta phase.  The CA2 region of the hippocampus plays an 

important role in modulating the hippocampal theta rhythm and also is an essential part in social 

memory (Mercer et al., 2007; Hitti & Siegelbaum, 2014, Smith et al 2016).  CA2 receives 

projections from the basal nucleus of the amygdala, which plays an important role for contextual 
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fear conditioning (Pitkanen et al., 2000; Goosens & Maren, 2001). Ahuja et al. (2020) 

demonstrated that CA1 pyramidal cells were responsive to a robot that indicates a shock zone. 

Robots have also been developed for the purpose of improving behavioral reproducibility when 

examining aspects of rodent spatial cognition in neuroscience. When rats navigate through a 

maze, there can often be a variety of factors that an experimenter might want more control over. 

In this case a robot with an onboard pellet dispenser was used to regulate the rat’s direction and 

speed as they moved through the maze (Gianelli et al.,2018). (For raw traces of the CA1/CA2 

LFP see Figure 2.2B). 

 

Figure 2.3: A depiction of a rat engaging in rearing, immobility and grooming behaviors. Figure 

adapted from scidraw.io under Creative Commons 4.0 license.  

 

Behaviors of Interest 

The types of behavioral epochs used for the comparative neural analysis were chosen due 

to their ready identifiability and representation of distinct types of exploratory and self regulatory 

behavior. The behaviors are generally demonstrated when the rat temporarily stopped running or 

walking and was not physically exploring the other agent on the open field. The behaviors we 

prioritized include immobility, self-grooming, and rearing (See Figure 2.3). Given that the state 



26 

of the rat differed widely across behaviors, it was particularly important to examine how the 

presence of different agents (rat, robot, or object) perturbed their state within a particular 

behavior. 

Immobility is a complex behavior distinguished by the motionlessness exhibited by the 

subject. This behavior is made distinct and significant as an intermediary behavior between the 

regulatory and exploratory states rats can alternate between. During immobility, the rat is likely 

in a heightened state of arousal, with an intensity of alertness. With current comprehension, 

engaging in immobility is a behavior indicative of risk assessment, occurring preemptively to a 

threat or as a result of one (Kay, 2005). Immobility allows the rat time to acquire and interpret 

environmental stimuli, triangulate any potential discomfort or stressors, and act accordingly.  

Self-grooming, hereafter referred to as grooming, is a behavior inherent to rodents that is 

communicative of not only hygienic regulation, but also self-regulation of stress relief 

(Fernandez-Teruel & Estanislau, 2016). Grooming is a regulatory process, which often serves the 

function of de-arousal (Kalueff et al., 2016). Grooming includes sequences of rapid elliptical 

strokes, unilateral strokes, and licking of the body or anogenital area. Due to the behavioral 

complexity of grooming, frequency and duration of grooming bouts is dependent on context 

(Song, Berridge, & Kalueff, 2016).  

Rearing is an exploratory action, exhibited as a means of increasing the rat’s access to 

stimuli in the environment. In both instances, the rat straightens and lengthens their spine and 

maneuvers their forelegs to increase their height. When rearing, rats increase their sensory 

exploration of the surrounding environment (Lever, Burton, & O’Keefe, 2006). This fluid 

behavior varies greatly in its duration and frequency. For the purposes of this paper, rearing was 

specifically defined with relation to the wall of the environment. 
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Materials and Methods 

Animals and Housing 

All experiments and maintenance procedures were performed in an American 

Association for Accreditation of Laboratory Animal Care (AAALAC) accredited facility in 

accordance with NIH and Institutional Animal Care and Use Committee (IACUC) ethical 

guidelines and preapproved by the IACUC committee. 6 Sprague-Dawley rats (n = 6) (Harlan 

Laboratories) performed in the behavioral experiments. 3 rats (n = 3) were surgically implanted 

with electrodes for electrophysiological recordings. They were acquired at 6 weeks old and 

housed in pairs. Cagemates were put together in an enriched environment for 30 minutes a day 

and were maintained on a 12 hour day/night cycle. After receiving surgery, the implanted rat was 

single-housed for the whole of the experiment. To offset the lack of social enrichment from 

being single-housed, they were taken out to play in the enriched environment with the former 

cagemate on the same schedule. 

Experimental Conditions and Trial Information 

Trials were collected from a rat and a robot freely roaming in an arena (n = 40). 

Comparison conditions included object trials (n = 21), social interaction trials with other rats (n = 

20), and solo open field exploration (n = 84) (See SI for Animals and Housing). Trial lengths 

were approximately 3 minutes long. Trials were counterbalanced for order effects. The robots 

and the animals' were recorded using an overhead camera. The videos were used to hand-label 

behaviors and estimate position of the interacting agents for each video frame (See SI Behavioral 

Coding). Rats were surgically implanted with electrodes in the main olfactory bulb, hippocampus 

and amygdala simultaneously to record local field potentials during freely moving behavior (See 

SI for Surgical Procedure and Neural Implants and Recordings).  
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Surgical Procedure 

Rats (n = 3) underwent surgery for electrode implantation in order to record local field 

potentials from multiple brain areas simultaneously. Surgeries were performed in accordance 

with IACUC ethical guidelines. The rats were treated with isoflurane anesthesia (4-5% induction, 

1-2% maintenance) and were placed in a stereotaxic apparatus to allow for placement 

localization (Kopf Instruments). Three holes were made through the skull, and the underlying 

dura was removed. LFP signals were referenced to a skull screw above the cerebellum. Anchor 

screws were inserted around the skull to support the neural implant which was cemented using 

dental cement. For the stereotrodes, pairs of 25 μm tungsten wire were twisted together and 

threaded through polyamide insulation. For the tetrodes, four sets of 12 μm wire were twisted 

together, and threaded through polyimide insulation  (California Fine Wire). Electrodes were cut 

to the same length and wires were gold-plated in solution (Sifco) until impedances were reduced 

to approximately 100–300 kΩ measured at 1 kHz (Impedance tester IMP-1; Bak Electronics, 

Germantown, MD, USA). The stereotrodes were implanted using the stereotactic apparatus into 

the main olfactory bulb (8.5AP, 1.5ML, -3.5 DV), basomedial amygdala (-2.12AP, ±4.0ML, -

9.2DV) and CA2/CA1 region of the hippocampus (-3.8AP, 3.8ML, 3.2DV) laterally. 

Neural Implants and Recordings  

The stereotrodes and tetrodes were connected using gold pins to create contact between 

the wire and a Neuralynx E/I board cemented to the skull and anchor screws that send the 

electrical signal to an amplifier for signal processing. In the first rat, activity from 5 stereotrodes 

encased in polyamide tubing were connected to a 16-channel Neuralynx electrode interface 

board (EIB-16) that was cemented to the skull. The signals acquired from the E/I board were 

amplified using the Cheetah-32 system and Lynx-8 amplifiers (Neuralynx Technologies, 
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Bozemon, MT). Amplifiers were integrated with the Cheetah data acquisition software provided 

by Neuralynx Technologies. The sampling rate for the recorded local field potentials was 

1010.10Hz. Video was recorded from a camera above the field at 29.97FPS at 720x480 pixel 

resolution. Video was captured through the Cheetah data acquisition software, allowing for 

alignment between the timestamps of the neural data and video frames.

Signal Processing 

Local field potential recordings from amygdala, hippocampus, and main olfactory bulb 

were indexed according to hand-coded behavioral epochs. To control for amplitude differences 

between subjects, LFP traces were normalized by overall standard deviation of the LFP per brain 

region for each rat. An infinite impulse response (IIR) bandstop filter was applied between 59-

61Hz in order to filter out 60Hz line noise. Events with artifacts were detected using a .4 

millivolt threshold on the CA1/CA2 and amygdala channels, and a .6 millivolt threshold on the 

MOB channels. An FIR bandpass filter was used to isolate the respiratory rhythm (2-6Hz), theta 

(6-10Hz), and beta (15Hz-35Hz). Although the respiratory rhythm commonly varies between 2 

Hz and 12 Hz, the respiratory frequency overlaps with the theta so the range was restricted 

(Rojas-Libano et al, 2014). Shifts from respiratory to theta ranges often correspond to slower and 

faster sniffing rates (Tort et al, 2018). Power spectral densities and spectrograms were estimated 

using the Julia Fourier Analysis library, which is a windowed average across the log of the 

absolute value of the fast fourier transform (FFT) of the signal. The FFT decomposes the signal 

into frequency and amplitude features which can be used to identify the presence of oscillations 

or aperiodic rhythms in the signal.

 

Robot 
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The iRat (n = 2) is a robotics and modeling platform created by the Complex and 

Intelligent Systems Laboratory (Ball et al, 2010). iRat is a two wheeled mobile robot that is 

180mm x 100 mm x 70 mm. The iRat is capable of both WoZ interaction and performing pre-

programmed behaviors. Robots were distinguished visually by color (red and white iRat / green 

and white iRat) and using distinguishing olfactory odors. The Red iRat was tagged with 

frankincense essential oil, the green iRat was tagged with myrrh essential oil. These odors were 

chosen in order to match preference profiles and are within the same category of woody scents. 

Our lab has previously shown that rats do not demonstrate a preference for either scent (Quinn et 

al, 2018). For information about the experimenter’s control of the robot’s movement dynamics 

see SI Wizard of Oz (WoZ). For the experiment, locomotion of both robots was limited and 

reduced to below 0.5m/s. In addition to the iRats, multiple Arduino-based mobile robots were 

also used. 

Wizard of Oz 

While ultimately the goal of interactive neurorobotics as a field will be to examine the 

interactions between rats and autonomous robots. This experiment is concerned primarily with 

how the form and motion of the robots compares with the animal data using Wizard of Oz 

methods and semi-autonomous robots to modulate the robots dynamics. The current experiment 

uses more traditional HRI methods, like WoZ and semi-autonomous methods. This experiment 

was performed using the iRat and DIY OpenSource Board of Education Shield robots. Robots 

and rats freely roamed the open field while the robot was controlled using Wizard of Oz mode 

(Riek, 2012). Experimenters controlling the robot were instructed to avoid dominance displays, 

cautiously approach, and modulate the position and movement dynamics to engage exploration 
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and attentive behavior from the rat.  The goal of the driver was to get the rat to follow, chase, or 

engage in tag-like play with the robot.  

Objects 

6 Objects (n = 6) were assembled by gloved hands with LEGO pieces. A small drop of 

diluted essential oils was placed on the back end of the object with a cotton swab so that they 

could more easily distinguish between the objects. Scents included frankincense, myrrh, tea tree, 

cedarwood, pine and rosemary. The objects had a length by width by height of 15x10x8cm.  

Much like the affordances of robots, the objects could support rearing and even climbing or 

mounting by the rat. Object position was varied from trial to trial to avoid place preferences.  

Board of Education Shield Arduino Robot (DIY Option) 

Another set of robots (n = 4) were created using an Arduino UNO, an OpenSource 

prototyping microcontroller that executes code written in Arduino programming language, and 

the Board Of Education (BOE) Robot Shield Kit by Parallax Inc.   These robots were used 

because they are readily available OpenSource robots that are easily accessible. The BOE kit 

includes the necessary parts for constructing a three wheeled robot with two continuous servo 

motors in the back of the robot, and one wheel on the front to allow for stability. Plastic 

Memorex CD cake boxes were melted and shaped to cover the electrical components of the 

device to ensure safety. This kit allows for remote-controlled driving by the experimenter 

(Wizard of Oz (WoZ) mode) or the execution of pre-programmed movements.  

Behavioral Video Coding 

Video was coded for behavioral epochs using ChronoViz (Fouse, Weibel, Hutchins, 

Hollan, 2011), as well as ELAN 6.0. The following epochs were extracted during the 

experiments/trials, with each event having variable length. Rearing was coded when the rat 
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lengthened their spine and extended their nose in order to better investigate the environment with 

their paws either braced against an object or wall, or held against the rat’s chest when free-

standing. Immobility was the final coded behavior, in which a rat remained motionless and alert, 

while interpreting incoming environmental stimuli. Self-grooming was identified as the animal 

going through the behavioral sequence of paw licking, unilateral strokes, bilateral strokes, body 

and anogenital licking. There were three agent subcategories present within the condition, 

labeled as robot, object, and rat, indicating who or what the subject interacted with during each 

trial. 1,212 behavioral events were identified in the video data. During trials with the robot agent, 

there were 75 counts of immobility, and 71 counts of rearing. During the trials with the rat agent, 

there were 15 counts of immobility, and 39 counts of rearing. The trials with the object, had 128 

counts of immobility, and 62 counts of rearing. For the open field trial, there were 119 counts of 

immobility, and 575 counts of rearing. 128 baseline epochs were pulled from the open field data 

from epochs where the animal is neither rearing or immobile. When asked to label 100 randomly 

drawn clips of the behavioral epochs, agreement between two independent raters for these 

behaviors was high (Cohen’s Kappa = .9).  

Neural Network Offline Tracking, Training, and Validation Results 

Position tracking for the rat and the robot was performed with U-Net convolutional 

neural network trained using the Social LEAP Estimates Animal Pose (SLEAP) tracking system 

(Pereira et al., 2020). Videos were recorded at 29.97 FPS with a frame size of 720x480 pixels. 

SLEAP has been shown to be robust to multi-animal tracking issues with intersecting parts, close 

interaction, and swaps. The bottom-up approach was utilized to compute probability maps 

known as partial affinity fields for each frame of the video. Skeletal landmarks were estimated 

by computing a part confidence map and fitting gaussians for each part. Each body part 
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estimation is the peak of the fit gaussian. The rats' skeletal tracking points were defined 

according to the specification of Sturman et al. (2020), including the nose, head center, left ear, 

right ear, neck, left side, body center, right side, left hip, right hip, and tail base. A Kalman filter 

was used to address the temporal association problem of shifts between frames to maintain 

identity of the skeletons.   

The iRat tracker performed the most accurately based on 477 labels. The BOE robot 

tracker was trained on 1573  labels. 1/5th of the labels were set aside as the test set, while the 

remaining labels were included in the training set. The multi-animal rat tracker was trained on 

6,700 labeled instances of rats from 3380 video frames from single and multi-rat trials. For 

accuracy results on the multi-rat tracker and robot trackers see Figure 2.4. For training and 

validation loss results see Figure 2.4.  

 

Figure 2.4: A, Training and validation results from neural network tracking of multi-rat, iRats 

and BOE robots. B, Accuracy results for the neural network tracker for multi-rat, iRat and BOE 

robots.  

 

Automated Tracking-Based Behavior Segmentation 
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Figure 2.5: A, Animal and Robot Position Tracking With SLEAP. Automated tracking-based 

behavior segmentation with state vectors 𝑆𝑟 
and 𝑆𝜌 

, and the inter-agent distance (IAD). B, 

Tracking data from a robot freeroam trial is plotted. 

 

Let 𝑆 refer to the agent’s state which is the position in Cartesian x,y coordinates over 

time and 𝜃 orientation in radians over time t by video frames (See Figure 2.5). The position and 

orientation for the rat is denoted by  𝑆𝑟  =  {𝑥𝑟𝑎𝑡, 𝑦𝑟𝑎𝑡, 𝜃𝑟𝑎𝑡} and the robot 𝑆𝜌 =

 {𝑥𝑟𝑜𝑏𝑜𝑡, 𝑦𝑟𝑜𝑏𝑜𝑡, 𝜃𝑟𝑜𝑏𝑜𝑡}. Inter-agent distance (IAD) was calculated by taking the euclidean 

distance between 𝑆𝑟 and  𝑆𝜌 position vectors. 

Behavioral and Tracking Statistics 

For the tracking data, inter-agent distances were calculated using the euclidean distance 

between agents for the rat-rat, rat-robot, and rat-object interaction conditions. The distributions 

of inter-agent distances, mean event counts per trial, and mean event duration per condition were 

compared using one way Welch’s t-tests, and effect sizes were calculated using Cohen’s d. For 

the behavioral events, the event frequency was calculated per trial and the mean duration for 

each behavioral event type was calculated per condition. The events and durations were also 

compared using one way Welch’s t-tests, and effect sizes were calculated using Cohen’s d.  
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Mixed Effects Model 

A general linear mixed-effect model was constructed to perform an ordinary least squares 

regression of a response variable as a function of mixture of fixed and random effects. Fixed 

effects include the behavior and agent type, while random effects include the influence of the 

variance of each individual rat on the response variable within the region.  Null distributions 

were created by taking the aggregate average of all behavioral events. This allows for the 

comparison of changes in average power within rats, while controlling for any uneven sample 

sizes and individual differences in overall power within brain regions. The effect size was 

estimated by subtracting the means in question and dividing by the standard deviation of the 

residual. The mean coefficients, standard errors, z scores, p values, and effect size estimates are 

reported. The intercept of the baseline group is reported as Int., standard error of the mean as 

SEM, and the mean coefficients of the comparisons are reported as M. Z scores and p values are 

also reported.  

Results 

Tracking Results 
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Figure 2.6: A, Agent-based interaction manifolds represented by 2D histogram bins along the 

relative x and y position axes. B, Relative position over time for the rat-rat and rat-robot 

interactions with a colormap revealing inter-distance between agents C, shorter segments of 

relative position of rat-rat and rat-robot interactions with a colormap revealing relative 

orientation. D, a histogram of inter-agent distance per rat, robot and object conditions.  

 

The inter-agent distances maintained during interaction were minimal between rats, 

slightly longer for rats and objects, and the longest for rats and robots (See Figure 2.6). The inter-

agent distances for rat-robot interactions indicate that the rat and robot maintain a significantly 

longer distance on average (M = 167.09 pixels, SEM =.14) than interactions with conspecifics 

(M =110.20 pixels, SEM = 0.21, t = 227.86 pixels, p < e-10, d = .75). The rat-robot inter-agent 

distance distribution had a significantly higher mean than the rat-object distance distribution 

(m=131.44, sem=.22, t=135.56, p < e-10, Cohen’s d = .48) The rat-object inter-agent distance 

distribution showed a significantly higher mean than rat-rat distances (t = 69.93, p < e-10, d = 

.28).  

Behavioral Hypothesis Tests 
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For a summary of the hand-coded behavioral event identification please see SI Behavioral Video 

Coding. 

 

Figure 2.7: Mean counts per trial and mean duration per condition for grooming, rearing and 

immobility events. Error bars indicate the standard error of the mean.  

 

Immobility 

It was predicted that interaction with the robot leads to increased risk assessment 

behaviors, signified by increased immobility behavior (See Figure 2.7). The mean frequency of 

immobility events during rat-robot interactions (M = 2.70, SEM = .37) per trial was significantly 

larger than those from rat-rat interactions (M = 1.31, SEM = .31, t = 3.29, p = .001, d = .75). The 

mean duration of immobility during open field interactions (M = 4.95, SEM = .30) was 

significantly longer than robot (t = 2.73, p < e-4, d =1.44), rat (t = 8.77, p < e-4, d = 1.15) and 

object (t = 9.06, p < e-4, d = 1.40) interactions.   

Grooming 

Another hypothesis was that the robot would perturb grooming behavior due to distress 

related to a possible threat and stimulus uncertainty (See Figure 6). During interaction with the 

robot, although grooming events were significantly less frequent (which was counter to our 

prediction) on average per trial (M = 1.16, SEM = .11) than the rat (M = 1.74, SEM = .22, t = 
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2.38, p = .012, d = .82) and object interactions (M = 2.29, SEM = .11, t = 2.07, p < .04, d = 1.00).  

Despite being less frequent, grooming events during interaction with the robot (M = 9.93, SEM = 

.85) show a marginally longer duration than interaction with rats (M = 6.15, SEM = .94, t = 1.78, 

p < .04, Cohen’s d = .36) and objects (M = 5.8, SEM = .93, t = 1.93, p < .03, d = .39), indicating 

an alteration in duration of distress related grooming in the presence of robots. 

Rearing 

It was predicted that the robot and open field will result in increased rearing as escape-

related exploratory response (See Figure 2.7). Rearing events during interaction with the robot 

(M = 3.09, SEM = .26) show a significantly longer duration than rat (M = 2.32, SEM = .18, t = 

2.36, p = < .01, Cohen’s d = .30) and object (M = 2.17, SEM = .16, t = 2.94, p < .002, d = .38), 

confirming the hypothesis that the presence of a robot might elicit exploration. The mean 

duration of rearing events during open field interactions (M = 3.9, SEM = .12) was significantly 

longer than the robot (t = 2.99, p < .002, d = .34), object (t = 8.99, p < e-4, d = .76), and rat (t = 

7.62, p < e-4, d = .69) conditions. Empty open fields typically elicits exploratory vigilance, thus 

it appears that the open field induces an increase in hypervigilance relative to the robot. 

Neurophysiological Results 

Neurophysiological signals were recorded in rats during their behavioral displays 

(grooming, immobility, and rearing) occurring throughout interaction sessions with different 

agents (rat, robot, object). The behavioral epochs were extracted from continuous data and occur 

naturally throughout the interaction sessions. This means that the display of behaviors varies 

both with respect to inter-agent position and order of occurrence. The event durations of these 

naturalistic behavioral epochs differ, so as not to impose artificial cut-offs on natural display of 

behaviors. 
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Spectrograms 

To demonstrate an example of inter-agent variation within one behavior type, 

spectrograms below (see Figure 2.8) show multi-region brain dynamics from periods in which 

implanted rats exhibited immobility behaviors during rat, robot or object interactions. The pre- 

and post- event windows are 1 second in length providing a sense of scale for the viewer. In 

Panel A the period of immobility to a rat is approximately one second and in Panel B the period 

of immobility to robot is approximately 3 seconds.  

 

 

Figure 2.8: Spectrograms of immobility events from rat, robot and object conditions. Frequency 

(Hz) is represented along the y-axis with markers for 8Hz and 127 Hz, time is represented along 

the x-axis, the colormap represents high amplitude in red and low amplitude in blue. The start 

and end indicators denote the onset and offset of the variable duration behavioral events. 



40 

 

The immobility event which occurred during rat-rat social interactions in Figure 2.8 

Panel A shows increased amplitude within the theta range in all brain regions with some 

transient beta oscillations in MOB and amygdala towards the end of the event. The immobility 

events that occurred during robot and object interactions in Figure 2.8 Panels B and C show high 

amplitude in respiratory oscillations in all regions with more pronounced beta oscillations in the 

amygdala during the event. 

Power Spectral Densities  

 

Figure 2.9: Average power spectral densities for MOB, CA1/CA2, and Amygdala  for A, 

grooming, B, rearing, and C, immobility events. Amplitude is represented on the y-axis, 

frequency is represented along the x-axis. Average amplitudes during interaction with rats is 

represented in green, robots in blue and objects in red.  
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Neural Hypothesis Testing 

The results of the mixed effects model showed a variety of effects in the respiratory, 

theta, and beta frequency ranges (See Figure 2.9 for average power spectral density plots). There 

are also marginal effects in the gamma range that will require a larger data set for validation and 

will not be addressed in this study.  

Theta Oscillations: Olfactory Exploration and Salience 

Other conspecifics were expected to elicit heightened sensorimotor exploration relative to 

robots and objects (See Figure 2.9). Rats are inherently more complex olfactory stimuli, and this 

is indicated by theta oscillations. Immobility events showed significantly higher theta amplitude 

in MOB during the rat-rat interaction trials (Int = .026, SEM = .0055) compared to the events 

from the robot (M = -.0057, SEM = .0020, z = -2.83, p < .005, d = -.96) and marginally larger 

than object trials (M = -.0043, SEM = .0018, z = -2.36, p < .02, d = -.7). In the MOB, the rat-

robot interactions showed significantly lower theta amplitude during grooming events (Int = 

.010, SEM = .002) than rat-rat interactions (M = .0028, SEM = .0009, z = 2.75, p < .003, d = .82) 

but no difference from objects (M = .0008, SEM = .0013, z = .65, d = .24). Rearing events during 

rat-rat interactions (Int. = .0015, SEM = .0001) exhibited significantly larger amygdalar theta 

oscillations than rearing events during rat-robot interactions (M = -.0002, SEM = .0001, z = -

2.76, p < .006, d = -.59) but showed no difference from rat-object interactions (M = -7.2e-5, 

SEM = .0001, z = -.62, d = -.29).  

Respiratory Rhythms: Autonomic State and Distress Regulation  

As an indicator of autonomic state and distress regulation, we predicted higher amplitude 

respiratory oscillations for the object and robot interactions during grooming (See Figure 2.9). 

Immobility events showed a significantly higher respiratory amplitude in the amygdala during 
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the rat-robot interactions (Int. = .0032, SEM = .0001) than rat-rat interactions (M  = -.001, SEM 

= .0003, z = -3.06, p < .0022, d = -1), but showed only a trend towards a significant difference 

between rat-object interactions (M = -.0004, SEM = .0002, z = -2.07, p < .04, d = -.4). 

Respiratory rhythm amplitudes in the amygdala during grooming events from rat-robot 

interactions (Int. = .0039, SEM = .0004) were significantly larger than events from rat-rat 

interactions (M = -.00016, SEM = .0006, z = -2.75, p = .006, d = -.8), but showed no significant 

difference from rat-object interactions (M = e-5, SEM = .0007, z = -.04, p = .96, d = -1.47e-2).  

Taken together these findings indicate that both robots and novel objects elicited an increase in 

arousal relative to conspecifics. Consistent with this interpretation, rearing also showed a 

significantly larger amygdalar respiratory amplitude for rat-robot conditions (Int. = .0022, SEM 

= .0002) when compared with rat-rat (M = -.0007, SEM = .0003, z = -2.55, p < .01, d = -.7), but 

not significantly different from rearing events from rat-object interactions (M = -.0001, SEM = 

.0003, z = .43, p = .67, d =-.1).  

Theta and High Beta Oscillations: Sensorimotor Exploration and Recognition 

Although we did not have explicit prior hypotheses regarding the hippocampus and 

amygdala theta oscillations during grooming, we did expect that there may be differences 

revealing whether the rat was recognizing the robot more as an object or more as a conspecific 

(See Figure 2.9). Hippocampal theta amplitude during grooming events from rat-rat interactions 

were significantly different from the object conditions (M = -.0015, SEM = .0005, z = -3.05, p < 

.002, d = -1.5), but showed no difference when compared with robot (M = -.0009, SEM = .0001, 

z = -1.42, p = .16, d = -.9). The amplitude of theta oscillations in the amygdala during grooming 

events from rat-rat interactions (Int = .0013, SEM = .0001) were significantly larger than object 

conditions (M = -.0002, SEM = .0001, z = -2.58, p < .01, d = -1) but not significantly different 
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from robot conditions (M = -.0001, SEM = .0001, z=1.28, p = .2, d = -.5). One implication of 

this is that movement dynamics of another rat may elicit larger theta than the moving robot or 

stationary objects. Although this may be obligatory movement coding in the hippocampus, this 

dynamic might also serve to monotonically index rat, robot, and object based on this parameter.  

As observed in previous work, it was expected that the object would result in a robust 

burst at beta frequency (15Hz-30Hz) in the hippocampus due to learning of the object stimulus 

(Rangel et al, 2015) Instead, the presence of increases in high amplitude beta in this work were 

moreso within the high beta/low gamma range (35Hz-45Hz) observed in the hippocampus during 

object place associations (Trimper et al, 2017). The amplitude of beta during rearing events from 

rat-object interactions (Int. = .0005, SEM = e-5) were significantly higher than events from rat-

rat (M = -.0002, SEM = 1e-5, z = -4.9, p < 1e-6, d = -2) and rat-robot interactions (M = -.0001, 

SEM = 1e-5, z -4.17, p < 1e-4, d = -1). This too indicates that the rat is likely associating the 

object with its place and differentiates the object from the robot and rat, both of which are 

moving. 

Discussion 

Animals are inextricably embedded within an environment and situated within a rich 

social world, bound to active exploration in recursive loops of perception and action (Kirsh & 

Maglio, 1995; De Jaegher & Froese, 2008). Brain dynamics rapidly and transiently switch from 

exploring the external world to evaluating the internal effect of the world on the organism 

(Marshall et al, 2017). Artificial systems often lack the complexity, adaptivity and 

responsiveness of animate systems, but can mimic kinematic and dynamic properties that 

inanimate objects often lack. It is an open question in the literature as to whether the rat 

perceives the robot as an animate or inanimate object and to what degree their coordinated 
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movement resembles social interaction or object exploration. This study presents data to suggest 

that brain regions preferentially dissociate between rat, robot, and object based on sensorimotor 

exploration, salience, and autonomic distress regulation, indicating that the robot bears similarity 

to both a rat and an object. Primarily, this study outlines a general approach for such experiments 

that emphasize naturalistic interactions and complementary analysis pipelines that are necessary 

to render a holistic picture of the behavioral and brain dynamics evoked during interactive 

neurorobotics experiments.  

Dynamic behavioral data regarding inter-agent distance suggest that the rat may be 

initially engaging in risk assessment behaviors when interacting with the robot, whereas they 

more readily approach another conspecific or stationary object. This may indicate that the rat 

feels safer approaching conspecifics and stationary objects than a robot. The distance between 

agents was also affected by the robot more often occupying the middle of the field and the rat 

showing a preference for the wall, a thigmotactic strategy generally attributed to safety seeking 

(Lipkind et al, 2004). While that may have influenced the distance, the trajectories over time 

show a spiraling between rat and robot which suggests that the rat was actively avoiding the 

robot. The trajectories also suggest that as time passes the rat may become habituated to the 

robot and allow for decreased inter-agent distance at the end of a trial (see Figure 2.6). This 

differs from two prior robot-rat studies, the Waseda rat and the Robogator, where rats’ 

engagement with the robot is primarily enemy avoidance (Choi and Kim, 2010; Shi et al, 2013). 

Instead the rats in our study begin to engage in closer interactions across time rather than keeping 

their distance. This is more consistent with a behavioral study of the robot e-Puck and rats in 

which the robot elicits social behaviors from the rats (del Angel Ortiz et al, 2016).  
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In the present study, however, rats do show distress responses to the robot that exceed 

those to a conspecific or a novel object. However, they demonstrate maximal anxiety on the 

empty open field (used to test anxiety, Prut & Belzung, 2003); this indicates that the robot on the 

open field might provide comfort or that it presents a degree of behavioral competition between 

curiosity and anxiety. Specifically, interactions with a robot elicited or perturbed immobility, 

grooming, and rearing behaviors. The authors note that the rat-rat interactions resulted in few 

instances of immobility due to their active engagement, and reduced self-grooming likely due to 

the availability of social grooming by the other conspecific and the absence of distress with the 

conspecific. Rat conspecifics interacted, heavily engaging in coordinated exploration, following, 

interactive play, and anogenital exploration (also see Figure 2.6). This is consistent with findings 

detailed in a prior study (del Angel Ortiz et al, 2016).  

Thus, this initial data from our exemplar rodent-centered design study suggest that agent-

based comparisons within behavior are a promising direction moving forward in the field of 

interactive neurorobotics. A limitation of this study is that the robots' motion dynamics were 

animated by human drivers, this introduces potential issues with anthropomorphism of 

interaction which can be dealt with better using automatic and autonomous robots. However, 

WoZ is a necessary step in the development of autonomous systems allowing for a diverse 

collection of movement dynamics that autonomous robots currently lack the complexity and 

sensitivity to exhibit. Follow up studies will be performed using autonomous robotic systems, 

such as PiRat (Heath et al, 2018). Autonomous robots allow for the manipulation of dynamics or 

functions that can be systematically manipulated according to model-based reasoning.  

From a design perspective, roboticists look for cues regarding whether the rat perceives 

the robot as more of an object or as an animal. Neuroimaging studies of human subjects viewing 
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social androids and their movements addressed this question, discovering that the brain 

dissociates between androids and humans according to form and motion interactions (Saygin et 

al, 2012). Neural data in the present study demonstrate both robust and subtle differences to the 

rat, the robot, and the object. Specifically, hippocampal theta during grooming differentiates the 

rat from the object, however the robot (falling in between the two) is not significantly different 

from either. Here it is possible that the rat is coded according to  spatiotemporal dynamics that 

are missing from the object, and that the moving robot carries features of each.  

In contrast, theta dynamics in the MOB are similar for robot and object while 

differentiating the rat. This was expected based on the complexity of the inherent biological 

odors of the rat. The increased amplitude in respiratory rhythms during alert immobility in the 

amygdala to robot and object suggest autonomic regulation related to increased distress related 

arousal when compared with a rat. This suggests that interacting with a rat may be more 

engaging and less distressing. This finding is consistent with the behavioral interaction data. 

Thus, the brain appears to differentiate between a rat and our robots, but also distinguishes 

between the robot and objects. These findings provide support for the context-based modulation 

of brain signals (Kalueff et al, 2016). They also imply that through iterative design of robots, one 

could eventually produce a robot for which many regions of the brain do not readily distinguish 

the robot from a rat. 

Comparing the neurobehavioral states evoked by conspecifics, robots and objects may 

clue us into some of the minimal requirements for an animal to perceive artificial agents as social 

others. A key insight from Datteri (2020) about the philosophical foundations of the field is that 

interactive biorobotics experiments by themselves do not necessarily tell us about how organisms 

interact with conspecifics or predators, and suggests we should examine these interactions in 
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their own terms before drawing unwarranted conclusions from the observations. This does not 

preclude a comparative approach, it just requires that we first take the robot case on its own 

terms and then compare it with data from social, object, and predator interactions.  

Future directions will also involve collecting a larger data set for the purpose of 

examining transient gamma activity, especially during investigation of the other agent or object. 

Rhythms like high gamma indicate active processing of the external sensory world, while low 

gamma is likely related to regulating an animal’s internal interoceptive milieu (Kay et al, 2009). 

It is recommended to use techniques such as burst detection to capture the more transient agent-

based brain responses within behavior. Future approaches should also examine inter-regional 

communication, such as coherence and dynamic coupling (Fries, 2015; Breston et al, 2021). 

Additionally, future studies should also incorporate a richer repertoire of stimuli and robots. 

Interactive robots have visual, auditory, olfactory, tactile and even gustatory aspects that 

should be actively taken into account during the design process. For instance, audition plays a 

key role. It is critical that interactive robots exhibit audio frequencies outside of the range of 

rodent distress calls, which induce panic, irritation, or stress responses. When designing 

interactive robots for animals it is also critical to take the animals preferred sensory systems into 

account, which for rats brings olfaction to the foreground and is why the robots in this study 

were tagged with olfactory stimuli. Contestabile et al (2021) used a dynamic moving object as a 

control for complex social stimuli and found that mice prefer complex social stimuli where more 

multisensory information such as tactile, visual, olfactory and auditory cues are available.  They 

demonstrate that the object imbued with social odor does not recapitulate the complexities of 

social interaction, but instead the authors emphasize the importance of multisensory integration. 
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Future approaches for designing interactions should emphasize the multisensory nature of the 

design problem.  

Robotics has significant potential  to offer animal research because its use enables 

experimenters to control complex experimental parameters and to test embodied computational 

models that interact with the real world (Webb, 2000). The dynamics of sociality are non-trivial 

and require convergent data regarding the model system. The holistic framework of capturing 

naturalistic behaviors in multiple contexts with fine-grained analyses, sets forth rich neural and  

behavioral data to scaffold the design process of future social robots (See SI Proposed 

Framework). The field of interactive neurorobotics allows for the examination of how robots 

evoke emergent behavior and brain dynamics in living creatures during a variety of agent-based 

interactions. This approach can be generalized to other animals and to humans. Social robotic 

interactions with humans also have affective dimensions that are indexed by autonomic signals 

and design principles can be improved by taking detailed behavioral interactions and neural 

signaling into account. It is essential that we also look beyond these narrow experimental 

contexts and generalize these lessons to our own technologically enmeshed world.  With the 

increasing integration of human life with autonomous systems, we have the opportunity to use 

the methods and insights gained from interactive neurorobotics to mold them into cooperative 

companions.  

Studying interactions between animals and robots might clue us into some of the minimal 

requirements for an animal to treat an artificial agent as being social. Robotics has a significant 

amount to offer animal research by allowing for experimenters to control complex experimental 

parameters and to test embodied computational models that interact with the real world (Webb, 

2000). When studying social interaction, robots give us the opportunity to carefully manipulate 
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parameters of interaction in order to measure differences in the reciprocal behavior of the 

conspecific. This approach is primarily concerned with the neurophysiological and autonomic 

signals that underlie social behavior, and will also attempt to explore a much larger question: 

What are the minimum interactive capabilities required of an artificial agent to elicit social 

behaviors.
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CHAPTER 3: HABITUATION TO RATS AND ROBOTS 

Introduction 

Social and interactive cognition is fundamentally linked to how coupled agents learn 

about each other. This requires a constitutive type of coupling where a creature's body adapts to 

other agents with concurrent changes in neural coupling between brain regions. This chapter is 

concerned with characterizing learning about other social and robotic agents. One of the most 

fundamental types of learning is habituation, and is indicated by increased exploration of novel 

stimuli and a decrease in responsivity to familiar stimuli (Sokolov, 1963; Gheusi et al, 1994; 

Thompson, 2009). However, if an animal is under sufficient stress, it will choose to engage the 

familiar conspecific more often (Sachser, Dürschlag, Hirzel, 1998).  This chapter is concerned 

with how multiple brain regions involved in olfaction, salience detection, memory formation 

and autonomic regulation habituate to social and robotic stimuli.  

Evidence suggests that neural oscillations emerge during learning dynamics and are 

indicative of aspects of habituation. Olfactory learning paradigms have shed significant light on 

the dynamical properties of the brain supporting learning and behavior. Olfaction has been 

shown to play a significant role in these recognition processes, as bulbectomized animals show 

relative indifference between novel and familiar conditions (Dantzer, Tazi, & Bluthé, 1990). 

Following habituation learning, upon repeated presentation of an odor stimulus rather than 

showing a stable discrete representation, the olfactory bulb shows decremented response to 

learned stimuli (Freeman, 1987). Breathing is a fundamental rhythm of brain function and is a 

critical channel for coordinating activity in many brain regions (Heck et al, 2017). Nasal 

respiration has been shown to entrain neural populations globally across the rodent brain (Tort, 

Brankack, & Draguhn, 2018). Without taking sniffing and respiration into account respiratory 
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effects are often mistaken as delta at slow respiration rates and theta at large respiration rates 

(Rojas-Libano et al, 2014). The olfactory bulb local field potential has been shown to reliably 

follow diaphragmatic EMG.  

When encountering novel stimuli, animals exhibit complex and structured exploratory 

behavior. Rodents attempt to maximize novelty for maximizing new information for the 

purposes of learning. After being exposed to highly novel states, rats often have a novelty 

triggered retreat behavior (Gordon, Fonio, and Ahissar, 2014). In addition to the olfactory bulb, 

the exploration of a novel environment shows differential modulation of hippocampal 

interneurons (Nitz and McNaughton, 2004). The amygdala has also been shown to respond to 

repeating visual stimuli that are familiar to a subject (Wilson & Rolls, 2004; Farovik, Place, 

Miller, Eichencaum, 2011).    

In service of the recognition of conspecifics and predators, animals have evolved 

complex and intricate mechanisms for assessing other agents in the world in terms of affect, 

identity, and interaction history. Animals learn to easily sense affective states such as 

aggression, fear, or distress in their conspecifics, as well as in their prey and predators (Bartal, 

Decety, & Mason, 2011). Using social memory systems to process olfactory cues, animals can 

associate the identity of a conspecific with information such as kin recognition, mate selection, 

social hierarchy, and prosociality (Gheusi, Bluthe, Goodall, & Dantzer, 1994; Kogan, 

Frankland, & Silva, 2000; Thor & Holloway, 1982; van der Kooij & Sandi, 2012). Distinctions 

have been made between the operational definitions for “social” and “individual recognition”. 

“Social recognition” is the classification of  conspecifics based on their general properties, such 

as male/female, subordinate/dominant, and kin/non-kin. “Individual recognition” 
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is  specifying  the identity of an individual based on that individual’s idiosyncratic traits 

(Gheusi, Goodall, Dantzer, 1997).  

In this study, we will examine whether these same recognition processes extend from 

conspecifics to mobile robotic agents. A rat's primary sensory modality is olfactory in nature, so 

in order to study habituation we will be looking at exploratory sniffing behavior during agent 

assessment. The recognition and interpretation of the multitude of signals supporting social 

cognition requires the interplay between many neural populations. This study examines the 

habituation of socially relevant neural populations during agent assessment with rat and robot in 

the main olfactory bulb, medial amygdala, CA1/CA2 hippocampus, and the insular cortex. 

Additional Behaviors of Interest  

 

Figure 3.1: MOB raw trace during a social sniffing event when sampling another rat. The raw 

trace was filtered for the respiratory and high gamma rhythm to illustrate the relationship 

between the amplitude gamma envelope and respiratory phase.  

 

Sniffing 

This study will examine exploratory sniffing behavior of other conspecifics, robotic 

agents and objects. Sniffs are defined as the behavioral events where the implanted animal nose 

pokes through a hole of the enclosure and samples the olfactory information of the agent. Sniffs 

serve as a key perceptual structure for the rodent (Kepecs, Uchida, & Mainen, 2006). Sniffing 
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has a periodic structure of phases of inhalation and exhalation, which exhibit changes in 

frequency in response to internal and external demands and coordinate neural oscillations across 

the brain (Heck et al, 2017; Tort, Brankack, & Draguhn, 2018).  Phase-amplitude coupling is an 

encoding mechanism which commonly relates the phase of a low frequency oscillation with the 

amplitude of faster oscillations, and is believed to coordinate communication between neural 

populations. This chapter will examine variations in phase-amplitude coupling between 

respiratory rhythms, low gamma and high gamma oscillations in the olfactory bulb, amygdala, 

hippocampus and insular cortex during olfactory exploration of novel and familiar agents.   

Brain Areas of Interest  

 

 

Figure 3.2: A diagram of electrode placement in the main olfactory bulb (MOB), medial 

amygdala (MeA), CA1/CA2 hippocampus, anterior insular cortex (AI). 

 

Anterior Insular Cortex 

From humans to rodents, the insular cortex is considered to be an anatomical hub, 

receiving signals from visceral organs (Saper, 2002) that are essential for an organism’s ability 

to engage in interoception or perceiving their own internal state (Craig, 2003; Livneh & 

Andermann, 2021). The ability to perceive internal state is thought to be used to monitor health, 

energy, the impact of the present context on self, “state of being”, and has even been extended 
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to assessing the state of other creatures (Decety, 2015). The anterior insula shares bidirectional 

projections from the nucleus tractus solitarius in the dorsal medulla and thalamic relays (Saper 

2002, Gogolla, 2017). The insula monitors bodily states related to blood pressure, oxygenation, 

motility of the digestive system, heart beats, hunger, itch, nausea, tickle, pain, and many more 

bodily sensations (Craig, 2003, Gogolla, 2017). The insula also exerts strong control over 

autonomic functions like heartbeat regulation, blood pressure, and gastric motility through the 

connections to the nucleus tractus solitarius and areas like the lateral hypothalamus (Ruggiero et 

al, 1987, Cechetto, 2014, Gogolla, 2017). The behavioral manifestation of this connectivity 

results in the anterior insular cortices’ involvement in interoceptive and allostatic processing, 

such as sensory perception of gastrointestinal malaise (Aguilar-Rivera et al, 2020). The insular 

cortex also receives inputs from primary sensory areas, thalamic nuclei, and many other 

subcortical structures. The insular cortex has reciprocal connectivity with the basolateral 

amygdala, nucleus accumbens, and ventral pallidum (Chikama et al, 1997). Through the 

integration of sensory cues and interoceptive cues, the insular cortex has been shown to mediate 

behaviors that are integral to successful social interactions in rats, including appropriate 

approach and retreat behavior from conspecifics (Rogers-Carter, et al 2018). Notably, these 

behaviors may heavily rely on an assessment of the conspecific. 

Medial Amygdala, Hippocampus, and Main Olfactory Bulb 

Please see Chapter 2 Brain Areas of Interest for more information.  

Methods 

After characterizing a rat’s reaction to a rat, robot, and object with unrestricted 

exploration in previous chapters, we wanted to use a learning framework to examine a more 

restricted type of agent and object exploration.  Rats, robots and objects were placed into an 
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enclosure which restricts their motion, and the implanted rats were allowed to explore the 

enclosures. The enclosures had small circular openings on the side which would allow for the 

rats to nosepoke and sample olfactory information in a more controlled way. This more 

constrained behavior allows for the characterization of habituation in terms of behavioral and 

brain responses to novel and familiar agents. This chapter is concerned with how rats learn 

about social, robotic and object stimuli. The agents and objects used in the study vary in terms 

of complexity. The rat was the most complex definitively social stimulus. The robot and object 

were tagged with the same scents but different in terms of dynamic motion or lack thereof.  

 

Figure 3.3: Live pictures of interaction trials with the rat and robot.  

Habituation 

Rats were habituated to the robots by being presented inside of enclosures and 

performed pre-programmed automated behaviors (See Figure 3.3). After the initial free roaming 

exposures describe in Chapter 2, one robot (20 trials), rat (76 trials), or object (17 trials) was 

presented at a time inside of the enclosures for the rat to freely investigate. When inside the 

enclosures, the iRat performed simple forward and backward movements for a small number of 

trials and the BOE robots were placed in semi-autonomous mode which performed those 

movements in a more controlled but non-periodic fashion for a majority of trials.  
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Table 3.1: Robot’s Automated Movements For Habituation and Interaction 

Behavior Sequence Action 1 Action 2 Action 3 

1) Forward/Back Forward: 300ms Stop: 500ms Back: 300ms 

2) Stop  Stop: 2000ms  

3) Side-To-Side Turn Left: 200ms Stop: 500ms Turn Right:200ms 

4) Stop  Stop: 2000ms  

5) Forward/Back Forward: 100ms Stop: 500ms Back: 100ms 

6) Stop  Stop: 2000ms  

7) Side-To-Side Turn Left: 200ms Stop: 500ms Turn Right: 200ms 

8) Stop  Stop: 1500ms  

9) Forward/Back Forward: 200ms Stop: 400ms Back: 200ms 

10) Stop  Stop: 3500ms  

 

Interaction Task 

Novel and familiar rats (25 trials), robots (22 trials) and objects (5 trials) were placed in 

a plexiglas enclosure while another rat, on the outside of the enclosure and free to roam the 

field, sniffed through holes in the side of an enclosure. Due to a small number of object trials, 

objects were left out of the subsequent analysis.  The implanted rat on the outside was presented 

with two enclosures in the field. Depending on the trial, the rat will either see one rat in each 

enclosure or one empty. Rats were removed from the field after 3 minutes after the onset of a 

trial. Sixteen rats (n = 16) were presented inside of the enclosures in various combinations, 

counterbalancing for novelty by switching the novel and familiar enclosures between trials. The 

robots performed the same movements as described in the habituation condition.  

Surgical Procedure 
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Rats (n = 4) underwent surgery for electrode implantation in order to record local field 

potentials from multiple brain areas simultaneously. Surgeries were performed in accordance 

with animal care guidelines. The rats were treated with isoflurane anesthesia (4-5% induction, 

1-2% maintenance) and were placed in a stereotaxic apparatus to allow for placement 

localization (Kopf Instruments). Three holes were made through the skull, and the dura under 

the skull was removed. LFP signals were referenced to a skull screw above the cerebellum. 

Anchor screws were inserted around the skull to support the neural implant which was 

cemented using dental cement. For the stereotrodes, pairs of 25 μm tungsten wire were twisted 

together and threaded through polyamide insulation. For the tetrodes, four sets of 12 μm wire 

twisted together, and threaded through polyimide insulation  (California Fine Wire).  

Electrodes were cut to the same length and wires were gold-plated in solution (Sifco) 

until impedances were reduced to approximately 100–300 kΩ measured at 1 kHz (Impedance 

tester IMP-1; Bak Electronics, Germantown, MD, USA). The stereotrodes were implanted using 

the stereotactic apparatus into the main olfactory bulb (8.5AP, 1.5ML, -3.5 DV), basomedial 

amygdala (-2.12AP, ±4.0ML, -9.2DV), and anterior insular cortex (2.7AP, 4.4ML, 4.0DV), and 

CA2/CA1 region of the hippocampus (-3.8AP, 3.8ML, 3.2DV) laterally. For the three rats, 

tetrodes were implanted above the CA2/CA1 region of the hippocampus (-3.8AP, 3.8ML, 

3.2DV).  

Robots 

The robots used for the habituation experiment were either the iRat or BOE arduino 

robot. The iRat was controlled via the WoZ method, while the BOE robot automatically 

produced forward/backward, still, and side-to-side motions in an irregular rhythm. Designing 

and Constructing Robots: The robots were created using an Arduino UNO, an OpenSource 
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prototyping microcontroller that executes code written in C programming language, and the 

Board Of Education (BOE) Robot Shield Kit by Parallax Inc. The BOE kit includes the 

necessary parts for constructing a three wheeled robot with two continuous servo motors in the 

back of the robot, and one wheel on the front to allow for stability. Electrical tape was put over 

the holes in the wheels in order to protect the rat’s tails from becoming caught. Tape was also 

used to cover any wires that were protruding from the bottom of the robot. Plastic Memorex CD 

cake boxes were melted and shaped to cover the electrical components of the device to ensure 

safety. This kit allows for remote controlled driving by the experimenter (Wizard of Oz (WoZ) 

mode) or the execution of pre-programmed movements. To allow for wireless remote controlled 

driving, an HC-06 bluetooth slave was attached to the serial communication pins of the arduino 

allowing for pairing with a Dell Precision M2800 laptop which executed a program that used 

the Arduino serial port to control the robot’s velocity and direction. X-Keys XK-24 USB 

Programmable Keypad was used to execute macros which sent the necessary commands to the 

serial port allowing for more fluid control of the system (rather than typing keyboard 

commands). For the Novel/Familiar Robot Test, the robot executed a series of automated 

forward/backward, still, and side-to-side motions. Time intervals were chosen for each 

movement behavior as to not exhibit  rhythmic patterning, although the same pattern was 

repeated in a loop during the experiment. 

 

 

 

 

 



59 

Stimulus Properties  

Table 3.2: Stimulus properties of rat, robot and object, stimuli with respect to pheromone, 

olfactory, auditory, visual, tactile and movement. 

Stimulus  Rat Robot Object 

Pheromone  ✅ ❌ ❌ 

Olfactory ✅ ✅ ✅ 

Auditory ✅ ✅ ❌ 

Visual ✅ ✅ ✅ 

Tactile ✅ ❌ ❌ 

Movement ✅ ✅ ❌ 

 

Table 3.2 denotes that agents have different stimulus properties relative to different 

senses and capabilities. Rats have the most complex olfactory stimulus including complex 

pheromone signaling. Robot and Object were tagged with olfactory odors for the purpose of 

discrimination. The see-through enclosure and holes allowed rats to see what was inside. Rats 

emit complex auditory signals as well in the form of alarm calls and other vocalizations. The 

robots motors emit an auditory signal as well, however the objects do not. Both the rat and the 

robot have self-propelled motion but the objects do not. The rats often engaged in controlled 

tactile stimulus, by licking each other through the hole and touching nose-to-nose allowing 

some whisker interaction. The robot and object did not come as close to the hole so were not 

available for tactile interaction.  

Neural Implants and Recordings  

The electrodes were connected using gold pins to create contact between the wire and a 

Neuralynx E/I board cemented to the skull and anchor screws that send the electrical signal to 

an amplifier for signal processing. In the first rat, activity from 5 stereotrodes encased in 
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polyamide tubing were connected to a 16-channel Neuralynx electrode interface board (EIB-16) 

or EIB-36 Narrow that was cemented to the skull. The signals acquired from the E/I board were 

amplified using the Cheetah-32 system and Lynx-8 amplifiers (Neuralynx Technologies, 

Bozemon, MT). Amplifiers were integrated with the Cheetah data acquisition software provided 

by Neuralynx Technologies. The sampling rate for the recorded local field potentials was 

1010.10Hz. Video was recorded from a camera above the field at 30Hz at 720x480 pixel 

resolution. Video was captured into the Cheetah data acquisition software allowing for 

alignment between the timestamps of the neural data and video frames. 

Signal Processing 

Local field potential recordings from amygdala, hippocampus, main olfactory bulb, and 

insular cortex were indexed according to hand-coded behavioral epochs. To control for 

amplitude differences between subjects, LFP traces were normalized by overall standard 

deviation of the LFP per brain region for each rat. An infinite impulse response (IIR) bandstop 

filter was applied between 59-61Hz in order to filter out 60Hz line noise. Events with artifacts 

were detected using a .4 millivolt threshold on the hippocampal, insular, and amygdala channels, 

and a .6 millivolt threshold on the MOB channels. An FIR bandpass filter was used to isolate the 

respiratory rhythm (2-6Hz), theta (6-10Hz), beta (15Hz-35Hz), low gamma (50Hz-59Hz) and 

high gamma (70Hz-100Hz). Although the respiratory rhythm commonly varies between 2 Hz 

and 12 Hz, the respiratory frequency overlaps with the theta so the range was restricted (Rojas-

Libano et al, 2014). Shifts from respiratory to theta ranges in the MOB often correspond to 

slower and faster sniffing rates (Tort et al, 2018). Power spectral densities and coherence was 

estimated using the Julia Fourier Analysis library, which is a windowed average across the log of 

the absolute value of the fast fourier transform (FFT) of the signals. For the phase-amplitude 
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coupling analysis FIR bandpass filter was used to isolate the MOB respiratory rhythm (2-12Hz), 

and low gamma (50Hz-59Hz) and high gamma (70Hz-100Hz) in all regions. A Hilbert transform 

was used to extract instantaneous phase information from the respiratory range oscillations and 

instantaneous amplitude from low and high gamma oscillations. The mean phase amplitude 

coupling metrics were normalized into a z-score and rose plots were generated for all phase bins. 

A circular mean was used to calculate the mean to account for the wrap-around at 0 and 2π. 

Phase values were randomly shuffled to create null distributions for testing the significance of 

phase amplitude coupling values.  

Mixed Effects Model 

A general linear mixed-effect model was constructed to perform an ordinary least squares 

regression of a response variable as a function of mixture of fixed and random effects. Fixed 

effects include the behavior and agent type, while random effects include the influence of the 

variance of each individual rat on the response variable within the region.  Null distributions 

were created by taking the aggregate average of novel and familiar sniffing events This allows 

for the comparison of changes in average coherence within rats, while controlling for any uneven 

sample sizes and individual differences in overall coherence within brain regions. The effect size 

was estimated by subtracting the means in question and dividing by the standard deviation of the 

residual. The mean coefficients, standard errors, z scores, p values, and effect size estimates are 

reported. The intercept of the baseline group is reported as Int., standard error of the mean as 

SEM, and the mean coefficients of the comparisons are reported as M. Z scores and p values are 

also reported.  

Convolutional Neural Network Tracking Evaluation  
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Position tracking for the rat and the robot was performed with U-Net convolutional 

neural network trained using the Social LEAP Estimates Animal Pose (SLEAP) tracking system 

(Pereira et al., 2020). Videos were recorded at 29.97 FPS with a frame size of 720x480 pixels. 

80% of data was included in the training set. 20% of data was held out in the validation set. 

Models were evaluated with the sleap.nn.evals.evaluate function operating on ground truth labels 

from the validation set and predictions on the validation set. Localization error was calculated by 

the Euclidean distance between the ground truth labels and predictions for each body part (See 

Chapter 2: Neural Network Offline Tracking Training and Validation Results for more details 

about the body parts).  Mean average precision is the calculation of the area under the curve of 

the average precision of the predictions. Mean average recall is the calculation of the area under 

the curve of the average recall of the predictions relative to the ground truth validation set. The 

object keypoint similarity (OKS) was calculated with a standard deviation of .125 to account for 

variability in the ground truth labels and is scaled by the area of the instance. The area under the 

precision-recall curve (AUC-PR) was calculated for 5 OKS thresholds (.5, .6, .7, .8 and .9).  The 

iRat tracker performed the most accurately based on 477 labels. 1/5th of the labels were set aside 

as the test set, while the remaining labels were included in the training set. The multi-animal rat 

tracker was trained on ~6600 labeled instances of rats from 2083 video frames from multi-rat 

trials. A Kalman filter was used to address the temporal association problem of shifts between 

frames to maintain identity of the skeletons. 

Tracking-Based Behavioral Analysis 

An interaction zone was identified in a 100 pixel diameter around the enclosure for novel 

and familiar rats. The tracking data from the freely roaming rat outside of the enclosure was used 

to determine the amount of timesteps spent within the novel and familiar interaction zones. For 
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each trial, the ratio of time spent with the novel rat and robot was calculated by taking the total 

time spent in the novel interaction zone divided by the amount of timesteps in the trial. A ratio of 

time spent with familiarity was calculated using the same method. These ratios were calculated 

for both the rat and robot conditions for the interaction test. Welch’s t-tests were performed to 

compare whether rats spent more time near the novel or familiar stimulus within the rat and robot 

conditions. Cohen’s d was also calculated to estimate effect size.  

Results 

Tracking Results 

 

Figure 3.4: Precision-Recall Curve, Object Keypoint Similarity, and Localization Error for 

multi-rat tracking (top) and multi-robot tracking (bottom).  

 

Figure 3.4 shows the precision recall curves for the rat and iRat neural network tracker. 

The robot tracker shows a mean average recall of .87 and mean average precision of .85. The 



64 

multi-rat tracker shows a mean average recall of .86 and a mean average precision of .84. See 

Table 3.3 for the results from the area under the precision-recall curve (AUC-PR) calculation. 

Table 3.3: The area under the precision-recall curve (AUC-PR) at 5 object keypoint similarity 

thresholds 

 AUC-PR 

OKS Threshold Multi-Robot Tracker Multi-Rat Tracker 

.5 .93 .95 

.6 .91 .93 

.7 .91 .91 

.8 .86 .88 

.9 .81 .73 

 

Behavioral Results 

 

Figure 3.5: Tracking results for rat and robot interaction trials, samples of the multi-rat x,y 

trajectories are shown in a time series. The 2D plot depicts the implanted rats position in the rat 

and robot trials. Red and blue circles illustrate the interaction zone for the novel and familiar 

agents, respectively.  
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 Trajectories show that the freely roaming rat had preferential exposure for the novel 

agent and spent less time exploring the familiar agent for both rat and robot conditions (See 

Figure 3.5). The tracking results show that the ratio of time spent in the novel rat’s interaction 

zone  (M = .44, SEM = .028) was significantly larger than the familiar rat (M = .31, SEM = .03, t 

= 3.05, p < .01, d = 1). The ratio of time spent with the novel robot’s interaction zone (M = .47, 

SEM = .045) was also significantly larger than time spent with the familiar robot (M = .30, SEM 

= .04, t = 2.84, p < .01, d = .97). The rat was more likely to climb on top of the enclosures if 

there was a rat inside as demonstrated by the example trace.  

Power Spectral Densities 

 

 

Figure 3.6: Power spectral densities for novel and familiar sniffing events for rat and robot.  
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Power spectral densities in the MOB indicate larger high gamma amplitudes to novel rats 

(Int = .006, SEM = 5.5e-4) when compared with familiar rats (M = -6.3e-4, SEM = 3.3e-4, z = -

1.95, p = .05, d = .3). The same effect holds for the novel robots (Int = .0047, SEM = .0004) 

when compared with familiar robots (M = -.0011, SEM = .0004, z = -3.13, p = .0018, d = .55). 

Power spectral densities in the MOB indicate an increase in amplitude in the slower respiratory 

rhythm (2-6Hz) when sniffing the rat (Int. = .098, SEM = .008) when compared with the robot 

(M = -0.015, SEM = .005, z = -3.2, p = .0014, d = .37). The MOB shows an increase in 

respiration rate in the theta (6-12Hz) range when sniffing the robot (Int = .115, SEM = .006) 

when compared to the rat (M = -0.011, SEM = .0039, z = -2.79, p = .005, d = .3). This indicates a 

frequency shift of faster sniffing during olfactory sampling of the robot.  The insula shows an 

increase in amplitude of high gamma oscillations to the novel rat (Int = .0041, SEM = .0008) in 

comparison with the familiar rat (M = -.0003, SEM = .0001, z = -2.43, p = .015, d = .3). Insula 

showed no difference between the novel and familiar robot (Int. = .0025, SEM = .0003; M = 

1.4e-5, SEM = .0002, z = .08, p > .05, d = .02). The insula shows lower amplitude theta (Int = 

.057, SEM = .005) and respiratory rhythm for the rat (Int = .106, SEM = .016) when compared 

with the robot theta (M = -.005, SEM = .002, z = -2.23, p = .025, d = .25) and respiratory 

rhythms (M = M = -.011, SEM = .005, z = -2.39, p = .016, d = .27).  

The hippocampus shows an increase in amplitude of high gamma oscillations for the 

novel rat (Int = .0015, SEM = .0001) when compared with the familiar rat (M = -.0001, SEM = 

4.8e-5, z = -2.85, p = .004, d = .2). There was no significant difference in hippocampus between 

novel robots (Int = .0015, SEM = .0002) when compared with familiar robots (M = -7.9e-5, SEM 

= .0001, p > . 05, d = .1). The hippocampus shows a larger theta amplitude for rats (Int = .116, 

SEM = .004) when compared with robots (M = -.007, SEM = .003, z = -2.43, p = .015, d = .23). 



67 

Beta oscillations show higher amplitude when sniffing robots (Int = .0102, SEM = .001) when 

compared with rats (M = -.001, SEM = .0003, z = -3.30, p = .001, d = .3).  

 The amygdala shows no significant difference in high gamma amplitude for the novel rat 

(Int = .004, SEM = .0006) when compared with familiar (M = -.0002, SEM = .0001, z = -1.49, p 

= .13, d = .14). When compared with sniffing rats (Int = .01, SEM = .003), the amygdala shows a 

higher beta amplitude for robots (M = 8.8e-4, SEM = 3.1e-4, z = 2.82, p = .0047 , d = .26). This 

agent-based effect is also apparent in the amygdala theta rhythm to robot when compared with 

rat (Int = .0004, SEM = .021; M = .0037, SEM = .0018, z = 2.04, p = .04, d = .2), as well.   

Discussion 

Rodents use a wide variety of olfactory signals to process complex social information in 

their environments (Gheusi, Goodall, & Dantzer, 1997; Johnston, 2003; van der Kooij, & Sandi, 

2012). In most social interaction studies, experiments with rodents have used static objects as a 

comparison case to understand the significance of the behavioral and neural changes observed 

(Tendler & Wagner, 2015). This study has presented a novel method for using robots as an 

intermediary control for complex social stimuli for learning experiments. The brain and 

behavioral data indicates that there is differential responsivity to novelty and familiarity 

corresponding to rat and robot. The behavioral data exhibit the expected novel/familiar effect in 

the rat and robot conditions as seen in previous habituation/dishabituation paradigms with 

rodents and objects.  

The neural data showed expected changes in the olfactory bulb, hippocampus, and insula 

for the novel/familiar rat and robot conditions. The data indicated a forward frequency shift 

when sniffing the robot compared to the rat indicating a higher arousal state possibly related to 

panic. Another explanation is a possible dominance display, because dominant rats have been 



68 

shown to increase their sniff frequency relative to subordinate rats. It was also shown that if the 

subordinate did not slow their respiratory frequency that would lead to an escalation of 

aggressive behavior by the dominant rat (Wesson, 2013). Beta effects to the robot may relate to 

signaling uncertainty with respect to the safety of the stimulus (Quinn, Nitz & Chiba, 2010). 

These findings could be explained by increased motor function, for future directions a properly 

velocity controlled study is required to tease out these movement related effects.  

Learning is crucial for agent assessment which involves not only olfactory habituation 

but nuanced risk assessment involving unusual stimuli. The decrement of olfactory high gamma 

oscillations in the MOB to the familiar rat and robot indicate successful olfactory learning and 

habituation.  High gamma oscillations in the insula distinguish between novel and familiar rats 

but not the robot, which indicates that the rat is inducing coupling between the physiological 

state of the biological conspecific. Future experiments could be performed to try to induce an 

insular response by imbuing the robot with signals which resemble biological rhythms like 

breathing and heart rate.  
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CHAPTER 4: EXPLORATION, REGULATION, AND COUPLING 

Introduction 

Exploration, Regulation and Coupling 

Active exploration of the environment requires balance. To maximize the effectiveness of 

exploratory learning an animal must feel safe and remain calm. Rodent exploratory patterns 

involve establishing a home base, a place the animal deems safe that they commonly return to 

engage in regulatory behaviors like grooming (Eilam & Golani, 1989). When a rat grooms does 

it ease the learning and memory process? In other words, does the exploration process include 

self-regulation in the service of learning? Embodiment implies that cognition is extended, 

including actions performed by the body (Varela, Thompson, & Rosch, 1991). In translating this 

to rodent behavior, self-grooming is an embodied act which can facilitate learning.  Regulatory 

subsystems involve an animal dynamically decoupling from the environment and coupling with 

its own body in the service of motivations (Barandarian and Moreno, 2008). Self-grooming is a 

behavior inherent to most animals that involves not only hygienic regulation, but also self-

regulation of stress relief (Fernandez-Teruel & Estanislau, 2016). Self-grooming involves the 

regulation of a variety of physiological processes like maintenance of hygiene, thermoregulation, 

de-arousal and social communication (Kalueff et al., 2015). Due to these functional roles, 

grooming is a behavior which is highly related to interoception. Self-grooming is a particular 

form of body-brain coupling where the organism turns inwards and actively regulates their 

bodily and brain states. Grooming involves slower breathing patterns and these respiratory 

patterns appear across the brain (Heck et al, 2017; Karalis & Sirota, 2022). It is possible that 

grooming plays a functional role in the alignment of brain signals for the purpose of stabilizing 

neural systems to promote readiness for exploration.  
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Exploratory behavior is central to active perception and is important for the purposes of 

learning about other agents and the environment. Regulatory behaviors provide an important link 

between autonomy, motivation and resource management (Aube and Senteni, 95; 96). Grooming 

has a characteristic effect on frequency and amplitude encoding in the brain. It has been shown 

to elicit a frequency shift in areas like the main olfactory bulb, which suggest that the animal is 

slowing their breathing or sniffing rate (Kay, 2009).  Grooming leads to increased amplitude of 

low gamma oscillations in the olfactory bulb (Kay, 2009). High gamma is commonly present 

during behaviors like sniffing and rearing which involve processing external sensory stimuli. 

High gamma is aligned with the rising phase of the respiratory rhythm, and low gamma is 

aligned with the exhalation phase of the respiratory rhythm and may relate to memory 

consolidation and the processing of the internal milieu (Karalis & Sirota, 2022).  

Fotopolou & Tsakiris (2016) have proposed that the process of  interacting with other 

social beings is scaffolded by the same processes that monitor an organism's own homeostatic 

regulation. Due to the behavioral complexity of grooming, frequency and duration of grooming 

bouts is dependent on context (Song, Berridge, & Kalueff, 2016). Grooming is a highly 

contextual behavior which can occur in anticipation or after being exposed to a stressful 

stimulus.  It has been suggested that the “fight or flight” response be revised in rodents to be the 

“freeze, fight, flight, and groom” response. It is important to note that grooming bouts evoked by 

stressful high arousal situations might differ greatly from those evoked in states of low-arousal 

comfort and medium arousal novelty-seeking  (Song, Berridge, & Kalueff, 2016). Though linked 

to external demands, grooming behavior is better characterized as a type of turning inward or 

turning toward the body rather than the environment. 
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Stability in the brain may arise from the alignment of brain regions elicited by bouts of 

grooming. Integration of neuronal populations is thought to be achieved by coupling the phase 

and amplitude of oscillatory activity across brain regions (Munia & Aviyente, 2019). Phase-

amplitude coupling is an encoding mechanism which often relates the phase of a low frequency 

oscillation with the amplitude of faster oscillations resulting in a nested relationship.  Phase is a 

circular statistic that characterizes the fraction of a cycle in a repeating function (commonly 

measured in degrees and radians). Phase relations denote a temporal relationship between two 

oscillatory signals, which capture to what degree repeating waveforms are shifted relative to each 

other.  This encoding method may support communication between both local and distant neural 

populations. It has been proposed that effective communication between neural populations is 

likely to some degree dependent on their phase relations (Maris, Fries, & van Ede, 2015). To 

support the functional relevance of phase, it is important to show that phase relationships can be 

modulated by sensorimotor events (Maris, Fries, & van Ede, 2015).  Little is known about how 

regulatory behaviors lead to the coordination of multi-region phase-amplitude coupling at the 

level of the local field potential.  

This chapter will examine variations in phase-amplitude coupling between respiratory 

rhythms, low gamma and high gamma oscillations in the olfactory bulb, amygdala, hippocampus 

and insular cortex during exploration and regulation.    

Methods 

Signal Processing 

Signals were filtered with a 60Hz notch filter to filter out line noise. An FIR bandpass 

filter was used to isolate the MOB respiratory rhythm (2-12Hz), and low gamma (50Hz-59Hz) 

and high gamma (70Hz-100Hz) in all regions. A Hilbert transform was used to extract 
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instantaneous phase information from the respiratory range oscillations and instantaneous 

amplitude from low and high gamma oscillations. Mean high and low gamma amplitudes for 

olfactory bulb, amygdala, hippocampus and insular cortex were extracted and calculated in 

relation to the phase of the olfactory respiratory rhythm and hippocampal theta rhythm. For all 

statistical tests, vector strength based on mean amplitude per phase bin was used.  A moving 

mean with periodic boundary conditions was used to calculate the average to account for 0 and 

2π being adjacent values. Phase values were shuffled using random permutations to generate null 

distributions with a mean of zero for the purposes of testing for the significant presence of non-

zero PAC. Welch’s t-tests were performed to compare the differences in magnitude of phase 

preference and phase difference for all regions during sniffing and grooming. For the purposes of 

visualization, the mean phase amplitude coupling metrics were normalized into a z-score and 

rose plots were generated for all phase bins. In this transformed distribution, negative z-values 

correspond to the anti-phase component of the coupling. The anti-phase components when 

represented visually cause the relationship to be cluttered on the polar plot, so only the positive 

components were included. 

Grooming and Sniffing Behavioral Analysis 

Video was coded for behavioral epochs using ChronoViz (Fouse, Weibel, Hutchins, 

Hollan, 2011), as well as ELAN 6.0. The following epochs were extracted during the 

experiments/trials, with each event having variable length. There were three agent subcategories 

present within the condition, labeled as robot, object, and rat, indicating who or what the subject 

interacted with during each trial. See Chapter 3 for information about video coding for sniffing 

behavior and Chapter 2 for self-grooming behavior.  

Results 
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Phase-Amplitude Coupling Results 

Table 4.1: Statistical Tests for The Presence of Non-Zero PAC 

Amplitude Phase 

Main Olfactory Bulb Respiratory Rhythm Hippocampal Θ 

Behavior Frequency t p d t p d 

 

Sniff 
High γ 33.01 e-99 1.6 22.46 e-67 1.27 

Low γ 15.38 e-40 .79 16.14 e-42 .9 

 

Groom 

High γ 36.59 e-99 2 25.19 e-76 1.46 

Low γ 20.49 e-60 1.09 15.86 e-41 .89 

 Hippocampus Respiratory Rhythm Hippocampal Θ 

Behavior Frequency t p d t p d 

 

Sniff 
High γ 15.16 e-39 .79 22.53 e-84 .83 

Low γ 17.06 e-46 .93 28.37 e-99 1.1 

 

Groom 

High γ 16.85 e-45 .94 22.30 e-77 1 

Low γ 18.97 e-53 1 20.49 e-60 1.1 

Amygdala Respiratory Rhythm Hippocampal Θ 

Behavior Frequency t p d t p d 

 

Sniff 
High γ 23.14 e-73 1.21 20.41 e-60 1.08 

Low γ 17.47 e-49 .9 30.88 e-99 1.18 

 

Groom 

High γ 21.46 e-64 1.12 22.07 e-76 .94 

Low γ 20.41 e-60 1.08 24.18 e-87 1.09 

Insula Respiratory Rhythm Hippocampal Θ 

Behavior Frequency t p d t p d 

 

Sniff 

High γ 16.12 e-39 1 28.47 e-99 1.15 

Low γ 15.42 e-37 .98 25.01 e-92 1.05 

 

Groom 
High γ 16.89 e-42 1.14 25.19 e-76 1.4 

Low γ 16.75 e-41 1.08 15.86 e-41 .89 
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Figure 4.1: Mean high and low gamma amplitude per olfactory respiratory phase bin during 

grooming, immobility, rearing and sniffing behaviors.  

 

Results generally show precise selectivity of gamma amplitude to the phase of respiratory 

rhythm and hippocampal theta (See Table 4.1 and Figure 4.1). All regions show a significant 

phase difference between high and low gamma oscillations relative to the respiratory rhythm 

during grooming across all regions (t = 23.98, p < e-99, d = .66).  However, during sniffing there 

is a more modest phase difference relative to the respiratory rhythm between high and low 

gamma oscillations across all regions (t = 6.9, p < e-11, d = .19). For sniffing, there is no 

significant difference in phase preference to hippocampal theta between high and low gamma 

oscillations across all regions (t = .9, p = .35, d = .02). For grooming, there is a significant 

difference in phase preference to hippocampal theta between high and low gamma oscillations 

across all regions (t = 13.16, p < -37, d = .35). 
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 For exploratory behaviors like sniffing there is increased magnitude in phase preference 

to the hippocampal theta oscillations in the high gamma range when compared with grooming 

for the hippocampus (t = 3.1, p = .0017, d = .12), amygdala (t = 4.9, p < e-5, d = .2), insula (t = 

3.4, p < .001, d = .14), and olfactory bulb (t = 3.99, p < e-4, d = .18). There is increased 

magnitude in phase preference for sniffs between respiratory oscillation and high gamma range 

when compared with grooming for the hippocampus (t = 2.9, p = .003, d = .16), amygdala (t = 

2.3, p = .02, d = .12), insula (t = 2.7, p = .007, d = .18), and olfactory bulb (t = 4.3, p < e-4, d = 

.23). There is increased magnitude in phase preference for grooming between the respiratory 

oscillation and low gamma range when compared with sniffing for the hippocampus (t = 3.5, p < 

.001, d = .2), amygdala (t = 6.16, p < e-8, d = .32), insula (t = 3.45, p < .001, d = .16), and 

olfactory bulb (t = 12.05, p < e-28, d = .64). There is no increase in magnitude in phase 

preference for grooming between the hippocampal theta oscillation and low gamma range when 

compared with sniffing for the hippocampus (t = 1.7, p = .08, d = .06). There is no increased 

magnitude in phase preference for grooming between the hippocampal theta oscillation and low 

gamma range when compared with sniffing for the amygdala (t = 7.13, p < e-11, d = .26), insula 

(t = 5.9, p <-8, d = .22), and olfactory bulb (t = 7.74, p < e-13, d = .42). 

Discussion 

 Evidence presented in this paper suggests that sniffing and grooming behaviors lead to 

strong phase preferences of the amplitude of gamma oscillations in the amygdala, insular cortex, 

and hippocampus with the olfactory bulb respiratory rhythm and hippocampal theta. Large effect 

sizes indicate the presence of respiratory and hippocampal theta coupled PAC.  Precise 

alignment between brain regions may induce stability in neural systems, possibly priming the 
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communication of distant brain regions for the purpose of promoting a state ready for assessing 

and learning about the external and internal environment.  

Sniffing is a primary way that rodents explore the world. Behaviors like self-grooming 

play an important role in regulating internal states in the form of de-arousal. Rhythms like high 

gamma indicate active processing of the external sensory world, while low gamma is likely 

related to regulating an animal’s internal interoceptive milieu (Kay et al, 2009).   During 

grooming, high and low gamma usually occupy opposite phases for behaviors relative to the 

respiratory rhythm and hippocampal theta. However, during sniffing there is an upwards shift in 

the phase preference of the low gamma oscillation for all regions. High gamma oscillations and 

having a phase preference at the peak of lower frequency oscillations may be a channel by which 

the  olfactory bulb, amygdala, insular cortex, and hippocampus organize to process external 

sensory stimuli. Exploratory states seem to promote phase diversity (Maris, Fries, and van Ede, 

2016). 

Grooming is characterized by a downward shift in respiration denoted by increased low 

frequency respiratory rhythm amplitude in the olfactory bulb. Grooming behavior also shows an 

increase in low gamma activity. In comparison with the sniff results from Chapter 3 which more 

directly involve the processing of external stimuli, the grooming events lead to a decrease in 

variability in low gamma oscillations. The strong increase in the magnitude of phase preferences 

in multiple regions to the respiratory rhythm in the olfactory bulb is indicative of the integration 

of their own olfactory information and potentially a de-arousal signal for the purpose of 

stabilizing brain dynamics. Low gamma oscillations may be a channel by which areas like the 

olfactory bulb, amygdala, insular cortex, and hippocampus organize with slower rhythms such as 

theta and respiratory rhythms to signal the internal state of the organism.  Grooming leads to 
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increased low gamma coupling at precise phase delays between regions in comparison with 

exploratory brain states.   One possibility is that the effect of increased coupling could be 

explained by the animal being more familiar with their own odor than other odors, given that 

olfactory bulb phase relationships have been shown to fall into attractors upon presentation of a 

well-learned stimulus, but a larger dataset would be required to make this judgment.  

While measures like PAC are interesting metrics for analyzing inter regional 

communication, more work is required to understand the nonlinear nature of coupling between 

regions. We propose using nonlinear coupling methods, such as convergent cross mapping, to 

examine the bidirectional nature of inter-regional communication. This will allow us to 

investigate the hypothesis of whether grooming not only serves as a de-arousal function but also 

stabilizes bidirectional coupling between brain regions to promote readiness for learning and 

memory consolidation.  
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CHAPTER 5:  

CONVERGENT CROSS SORTING FOR ESTIMATING DYNAMIC COUPLING 

 

 

The content within this section, titled “Chapter 5: Convergent Cross Sorting for 

Estimating Dynamic Coupling” reflects material from a paper that has been published in the 

journal Scientific Reports. The full citation is as follows:  

 

Breston, L., Leonardis, E. J., Quinn, L. K., Tolston, M., Wiles, J., & Chiba, A. A. (2021). 

Convergent cross sorting for estimating dynamic coupling. Scientific Reports, 11(1), 1-10. 
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Abstract 

Natural systems exhibit diverse behavior generated by complex interactions between their 

constituent parts. To characterize these interactions, we introduce Convergent Cross Sorting 

(CCS), a novel algorithm based on convergent cross mapping (CCM) for estimating dynamic 

coupling from time series data.  CCS extends CCM by using the relative ranking of distances 

within state-space reconstructions to improve the prior methods’ performance at identifying the 

existence, relative strength, and directionality of coupling across a wide range of signal and noise 

characteristics.  In particular, relative to CCM, CCS has a large performance advantage when 

analyzing very short time series data and data from continuous dynamical systems with 

synchronous behavior.  This advantage allows CCS to better uncover the temporal and 

directional relationships within systems that undergo frequent and short-lived switches in 

dynamics, such as neural systems. In this paper, we validate CCS on simulated data and 

demonstrate its applicability to electrophysiological recordings from interacting brain regions. 
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Introduction 

Previous chapters have utilized methods that assume there are linearly separable 

oscillatory frequency bands that can be neatly isolated by filtering. Methods like power spectral 

density and coherence estimated by Fourier methods assume a linear separation of sine waves of 

different frequencies. Rather than advocating for the “communication-through-coherence” 

hypothesis, this dissertation advocates for the “communication-through-coupling” hypothesis. 

This chapter will be concerned with using a novel nonlinear coupling method to examine the 

bidirectional interaction between brain regions during grooming and social sniffing behaviors.  

While linear methods may be easier to use, that does not necessarily mean that they 

capture the right aspects of coupling relevant to the highly nonlinear and dynamic brain. While 

traditionally information flow in the brain is usually measured with algorithms with stochastic 

linear assumptions like Granger Causality, cross-mapping tools provide promising tools for 

estimating and quantifying nonlinear and deterministic coupling patterns. These methods are 

meant to uncover correspondences between the trajectories of dynamical systems, which can 

lead to subsequent predictions about coupling and hypotheses which can be tested in an 

interventionist paradigm.  Sugihara’s convergent-cross mapping algorithm was originally 

designed to map weather systems and biological populations, and has also been applied to neural 

and behavioral systems. Convergent cross-mapping is a method for estimating correspondences 

between attractors that have generated the time series observations. Using Takens’ delay 

embedding theorem for phase-space reconstruction, methods like Convergent Cross Mapping 

can be used to estimate nonlinear coupling between measured observations. One critical aspect 

of Takens’ embedding theory is that when variables are coupled, they are inseparable, that is to 

say that each variable contains information about other variables within itself. New methods 
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which expand on the CCM algorithm are sensitive to weak-to-strong coupling and are 

informative beyond frequency decomposition methods like coherence. The proposed method 

Convergent Cross Sorting expands CCM to a larger range of applicable systems. 

Convergent Cross Sorting for Estimating Dynamic Coupling 

Determining the “causal” relationships between the components of a system is a 

ubiquitous challenge across the sciences. To this end, many methods have been developed to 

estimate these interactions from their observed time series.  Each method’s domain of 

applicability is determined by its definition of causality, and its assumptions about the underlying 

system. Convergent Cross Mapping (CCM) is an approach, based on state space reconstruction 

(SSR) (also referred to as phase space reconstruction), which is best suited for complex, 

nonlinear systems, such as those found in neuroscience, ecology, and the social sciences 

(Sugihara et al, 2012; Ma, Aihara & Chen, 2015; Quyen et al, 1999; Hlaváčková-Schindler et al, 

2007; Chicharro & Andrzejak, 2009; Arnhold et al, 1999; Schiff et al, 1996; Ye et al, 2015; 

Cummins, Gedeon, & Spendlove, 2015).  These systems’ myriad feedback loops and 

deterministic components cause the information about their variables to become inseparably 

mixed (1).  This presents a challenge to methods based on stochastic processes, such as Granger 

Causality (GC), because they define causation as the ability of one process to provide additional 

predictive information about another (Granger, 1969). These assumptions may not be as suitable 

for deterministic systems because every coupled variable carries information about the others, 

meaning that variables cannot be fully removed from the system for analysis, which violates the 

assumptions of GC (Sugihara et al, 2012).   

In contrast, CCM tests for causal coupling by measuring the correspondence between the 

SSRs produced from time series of two different variables.  If there is a smooth mapping 
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between them, then both variables are likely part of the same dynamical system and thus 

deterministically coupled.  CCM has been successfully applied to a diverse range of systems, 

including fisheries, online social networks, and fMRI (Sugihara et al, 2012, Luo, Zheng, & Zeng, 

2014; Wismüller et al, 2014).  

Despite its success, CCM has several practical problems that have been noted in the 

literature: It requires a large number of samples to converge, it struggles in cases containing 

strongly coupled variables or synchrony, and its performance degrades with noise (Chicharro & 

Andrzejak, 2009; Schiff et al, 1996; Ye et al, 2015; Cummins, Gedeon, & Spendlove, 2015).  

Subsequent work has tried to address some of these problems. For instance, Ye, et al. introduced 

lagged CCM estimates to improve performance on strongly coupled variables, while Ma, et al. 

introduced Cross Map Smoothness to reduce the required time series length (Ma, Aihara, & 

Chen, 2015;Ye et al, 2015). Though these approaches were successful, they only address 

individual failure modes.  

To improve CCM’s performance on issues related to coupling strength, noise and sample 

size, we propose a new implementation known as Convergent Cross Sorting (CCS). CCS 

measures the correspondence between reconstructed manifolds by comparing the relative ranking 

of the pairwise distances between samples. This approach affords multiple advantages including 

selectively sampling the most informative distances and normalizing for geometric 

transformations that distort absolute distance but preserve relative order. 

In this paper we validate CCS’s ability to identify the existence, directionality, and 

relative strength of coupling relationships for a wide range of simulated signal and noise 

characteristics. We also highlight the importance of using CCS on well-characterized systems 

with known structural connectivity informed by the functional dynamics reported in prior 
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literature. As an exemplar, we demonstrated the multiple uses of CCS as applied to neural 

recordings from known anatomical circuits to examine dynamic network states during complex 

behaviors. 

Results 

Theoretical Model Validation 

Simulated Data 

 

 

Figure 5.1: Simulated Data. (A) Time series from the three classes of model used for validation: 

(i) Van der Pol Oscillators, (ii) Logistic Maps, (iii) Autoregressive Models. (B) Trace of a VDP 

with measurement noise(top) and (Bottom) dynamic noise. (C) Types of causal networks used 

to generate trials for assessing detection accuracy. Three variable networks afford the ability to 

test a method’s performance in the presence of third party confounds such as the common driver 

of two uncoupled variables in (Top Left). All other three variable topologies had to be omitted 

because they contain transitive causal relationships which leads to ambiguous pairwise results. In 

each network the coupling strength, 𝐾, of both edges is the same. (D) Two variable network used 

to test the response to coupling parameters.  𝐾𝑥→𝑦 and 𝐾𝑦→𝑥 can vary independently. 

 

To validate CCS, we compared its performance to CCM on simulated data sets for which 

the true coupling parameters were known.  To cover a wide range of potential signal properties, 
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we considered three types of model systems: Van der Pol oscillators (VDP), Logistic Maps (LM) 

and Autoregressive Models (AR). (Fig 1A, SI Simulated Data) VDPs are deterministic, 

continuous, and approximately periodic; LMs are deterministic, discrete, and chaotic, while ARs 

are linear and stochastic.  ARs were included to test the SSR methods’ performance when 

applied to processes which violate their underlying assumption of nonlinearity and have a high 

degree of dynamic stochasticity.   

Additionally, to test the methods’ robustness to noise, we corrupted the signals with both 

measurement noise, 𝜀, and dynamical noise, 𝜖. (Fig 1B, SI Simulated Data) Measurement noise 

was simulated by adding gaussian noise to the final output time series, while dynamical noise 

was injected into the system’s ongoing dynamics. To normalize the units for measurement noise 

we used the Signal to Noise ratio (𝑆𝑁𝑅) of the magnitude of the uncorrupted time series to the 

magnitude of the added noise.   
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Figure 5.2: The ROC AUC of CCS and CCM for detecting causal coupling in networks of three 

variables as a function of signal type, time series length, coupling strength, measurement noise, 

and dynamical noise. For each condition, the area under the curve (AUC) was calculated using 

200 trials of three variable networks. The shaded boundaries represent the 95% confidence 

intervals of the AUCs. 

 

Detection Accuracy 

Fig 2 compares the accuracy of CCS and CCM at identifying the causal relationships in 

networks of three variables (Fig 1C) for varying time series length, 𝐿, coupling strength, 𝐾, 

𝑆𝑁𝑅, and 𝜖.  Each method’s accuracy was quantified using the Area Under the Curve (AUC) of 

the Receiver Operator Characteristic (ROC). This is a measure of how well an ideal classifier 

could separate the coupled vs non-coupled time series and corresponds to the probability that a 

method will score a randomly chosen coupled relationship higher than a non-coupled one.    

CCS broadly outperformed CCM on the deterministic systems (VDPs and LMs). It had 

the largest advantage on VDPs, maintaining an approximately .1 higher AUC than CCM for 
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trials with 𝐿 > 100 and 𝐾 > .04.   CCS also had better accuracy for 𝜖 < .78, at which point the 

system became too noisy for either method to perform much above chance.  While both methods, 

were degraded by measurement noise, CCS had slightly better accuracy for 𝑆𝑁𝑅 > 30  𝑑𝐵.  

For LMs, CCS and CCM both had excellent accuracy under noise free conditions, 

however, CCS had much higher accuracy on short trials with 𝐿 < 100.  At 𝐿 = 50, CCS had an 

AUC of .78 compared to CCM’s .64.   CCS also had better accuracy in the case of high 

dynamical noise with an AUC of .75 at the highest 𝜖 value.  

 

Figure 5.3:  A comparison of CCS and CCM’s ability to determine the relative strength and 

directionality of coupling. (A) CCS and CCM scores for the drive from 𝑥 → 𝑦 as a function of 

the 𝐾𝑥→𝑦 and 𝐾𝑦→𝑥, signal type, 𝐿, SNR, and 𝜖. 𝐿 = 400, SNR=∞, and 𝜖 = 0, unless otherwise 

specified. (B) The Spearman correlation between the true difference in coupling strength, 

(𝐾𝑥→𝑦 − 𝐾𝑦→𝑥) and the estimated one, 𝑠𝑐𝑜𝑟𝑒(𝑥 → 𝑦) − 𝑠𝑐𝑜𝑟𝑒(𝑦 → 𝑥).  (C) CCS and CCM 

𝑠𝑐𝑜𝑟𝑒(𝑥 → 𝑦) and 𝑠𝑐𝑜𝑟𝑒(𝑦 → 𝑥) as a function of 𝐾𝑦→𝑥  where 𝐾𝑥→𝑦 = 0 (i.e., unidirectional 

coupling).  The asterisks show the points at which the means of the two distributions of scores 

was significantly different. The shaded regions in B and C represent 95% confidence intervals.   
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Relative Bidirectional Coupling Strength 

Beyond identifying the existence of causal coupling, it is also desirable to know the 

relative magnitude of the interactions between bidirectionally coupled variables, such as those 

shown in Fig 1D. This case is widely applicable to many complex natural systems that have 

ubiquitous feedback loops.  Fig 3A shows the CCS and CCM scores for the coupling from 𝑥 →

𝑦 as a function of the generating parameters, 𝐾𝑥→𝑦 and 𝐾𝑦→𝑥.  Ideal performance would look like 

a graded increase from left to right and no variation from top to bottom.  This would represent a 

monotonic response to coupling strength without any dependence on the drive in the opposite 

direction.  

 To quantify how well these scores reflect the true, relative coupling strength, we found 

the Spearman correlation between the difference in estimated strength and the difference in 

generating coefficients,  𝜌 = 𝑐𝑜𝑟𝑟(  𝑠𝑐𝑜𝑟𝑒(𝑥 → 𝑦) − 𝑠𝑐𝑜𝑟𝑒(𝑦 → 𝑥), 𝐾𝑥→𝑦 − 𝐾𝑦→𝑥 ).  Since the 

differences are signed, 𝜌 captures each method’s accuracy in estimating both the magnitude and 

direction of the difference in coupling parameters.  Furthermore, since the Spearman correlation 

is a rank statistic, it is strictly testing for the monotonicity of the relationship.   

Fig 3B shows the 𝜌 of CCS and CCM as function of system type, 𝐿, 𝑆𝑁𝑅, and 𝜖.  CCS 

has much better accuracy for every condition other than very low noise LMs.  CCM actually has 

a negative correlation for VDPs with 𝐿 < 200 and 𝑆𝑁𝑅 < 20 𝑑𝐵 and LMs with 𝑆𝑁𝑅 < 20 𝑑𝐵, 

which means that its score systematically misidentified the direction of the coupling.  This 

incorrect bias can be seen clearly in the top right quadrant of 3A where higher 𝐾𝑦→𝑥  decreases 

 𝑠𝑐𝑜𝑟𝑒(𝑥 → 𝑦) for constant 𝐾𝑥→𝑦 above moderate values.   

The first column in the bottom left quadrant of 3A shows that CCM outperforms CCS on 

low noise LMs because CCS saturates at weak coupling strengths.  The second two columns 



88 

demonstrate how small amounts of noise significantly improve the CCS correlation by 

preventing this saturation.  

Unidirectional Coupling  

Fig 3C shows how well the methods differentiated between bidirectional and strong 

unidirectional coupling.  The graphs contain the CCS and CCM scores for 𝑥 → 𝑦 and 𝑦 → 𝑥 as a 

function of 𝐾𝑦→𝑥 while holding 𝐾𝑥→𝑦 = 0.  Both methods performed very well on LMs. They 

accurately identified the direction of coupling, and their scores for 𝑥 → 𝑦 remained close to zero 

at even high values of 𝐾𝑦→𝑥.   Each method had small tradeoffs: The CCM estimate for 𝑥 → 𝑦 

had a slightly larger dependency on 𝐾𝑦→𝑥, increasing from ≈ 0 to ≈ .2, and the CCS estimate 

had a higher variance.  The VDPs presented a more difficult challenge because they are much 

more susceptible to synchrony.  Both methods’ scores for 𝑥 → 𝑦 had a strong dependency on 

𝐾𝑦→𝑥. However, only the CCS scores were statistically distinguishable.  The mean of its score 

for 𝑦 → 𝑥 was significantly greater than that of 𝑥 → 𝑦 for trials with 𝐾𝑦→𝑥 > .1.   
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Figure 5.4: Neural experimental setup.  (A) Two rats were placed in separate Plexiglas 

enclosures, while an implanted rat on the outside was free to roam the field and sniff through the 

holes in those enclosures. The implanted rats were presented with both a novel and a familiar rat. 

The implanted rat freely roams the field and investigates either the novel or familiar rat. Rats 

were removed from the field 2 minutes and 30 seconds after the onset of a trial. Trials were 

counterbalanced to control for place preferences, so novel and familiar rats were presented on 

alternating sides of the field with each trial (See SI for more info on Social Interaction Task and 

Animals and Housing). (B) Rats were surgically implanted with electrodes for 

electrophysiological recordings in the main olfactory bulb (MOB), hippocampus (CA region) 

and medial amygdala (MeA) (See SI for more details on Surgery and Neural Recordings). Figure 

adapted from scidraw.io under Creative Commons 4.0 license (16).  

 

Applications 

Neural Recordings  

To demonstrate the effectiveness of CCS at revealing directional relationships in noisy 

real-world data, it was applied to estimate dynamic coupling in time series data collected from 

the olfactory bulb (OB), hippocampus (Ca), and amygdala (Amg) during social interaction and 

self-grooming behavior of laboratory rats. The social behavior of interest is the olfactory 
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investigation of another conspecific. (Fig 4A) Self-grooming behavior promotes hygiene 

maintenance and involves tactile self-soothing, as well as olfactory self-investigation (See 

Behavioral Video Coding in SI).  Oscillatory activity was measured by examining local field 

potentials (LFPs) (Fig 4B) occurring at different anatomical points in a neural circuit proposed to 

be important for social memory processing (Bielsky & Young, 2004) (See Surgical Procedure 

and Neural Recordings in SI). This network has previously been shown to elicit increased 

coupling during social behavior (Tendler & Wagner, 2015). The application of CCS to this 

simultaneous multi-region LFP data allows for the examination of the coupling strength and 

direction of coupling between these reciprocally connected brain structures during complex 

behavioral changes. These relationships are determined by the system’s anatomical and 

functional connectivity.   

Structural Connectivity 

The amygdala shares reciprocal connectivity with the main olfactory bulb (Pitkänen, 

2000). The amygdala and hippocampus share strong bidirectional connectivity (18). Amygdalar 

activity can also play a key role in influencing hippocampal activity through amygdalo-

entorhinal networks (Pare, Dong, & Gaudreau, 1995). The hippocampus and the olfactory bulb 

also share connectivity in both directions (Martin, Beshel, & Kay, 1995). 

Functional Connectivity 

The olfactory bulb LFP contains rich information not only about smell but also the 

autonomic nervous system, by generating respiratory rhythms that follow inhalation and 

exhalation cycles (Rojas-Líbano et al, 2014; Kay et al, 2009). Hippocampal theta, one of the 

most well characterized oscillations in the brain, is associated with spatial mapping and memory 

(Buzsaki, 2002). Respiration-coupled activity has also been found in hippocampus (Sirota et al, 
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2003; Lockmann et al, 2016; Heck et al, 2017). The OB and hippocampal LFP exhibit coupling 

during odor discrimination (Martin, Beshel, & Kay, 2007). The amygdala LFP has been 

associated with the formation of emotional memories, and exhibits coupling with hippocampus 

(Paré, Collins, & Pelletier, 2002). 

 

Figure 5.5:  Application of CCS to multi-region neural recordings in rats.  (A) Example LFP 

trace from a 1 second epoch. The blue, red, and green lines represent the signals from the Main 

Olfactory Bulb (OB), Hippocampus (Ca) and Amygdala (Amg), respectively. The time points, 

T1, T2, and T3 are the centers of 400 millisecond windows shown by the shaded regions of the 

plot.  (B) Average 1 second CCS scores between the three regions during baseline, grooming, 

and sniffing behavioral epochs. The error values represent the SEM of each score. All of the 

scores have a significance  < 10
−5

. (C) Illustration of how the CCS scores can be represented by 

a 6-dimensional vector.  (D) The distribution of 400ms CCS scores colored by type of behavior 

and plotted using the first two principal components. (E) The distribution of 400ms CCS scores 

colored according to k-means cluster using five means. The inserted graphs show the network 

diagram corresponding to the centroid of the cluster indicated in the bottom left corner.  The 

values in these diagrams have been corrected for the normalization and whitening 

transformations used for the PCA. Edges with negative values have been omitted.  (F) Tables 

with rows showing the most frequent temporal sequences of CCS states during epochs from each 

of the behavioral conditions. The first three columns are the moving CCS estimates labeled and 

colored according to their cluster from E. The 4th column is the percentage of epochs with that 

sequence. The error value is the standard error of the percentage. The 5th column is the negative 

log of the p-value that nth most frequent pattern would have a frequency as extreme as the one 

observed.  
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Average Network State 

Fig 5B Shows the average CCS scores for each behavior.  The coupling was strongest 

between CA and Amg for every condition, which is consistent with the regions’ degree of 

anatomical connectivity.  Grooming exhibited the highest overall coupling, containing the 

maximum score for every edge in the network.  Sniffing saw the largest asymmetry in the 

reciprocal coupling between regions. During sniffing the drive from CA to OB and Amg to OB 

was 27% and 40% higher, respectively, than the coupling in the reverse direction.  In the other 

two behaviors, the reciprocal coupling differs by no more than 16%.  

In general, the results (in Fig 5B) follow previously established patterns of connectivity. 

For example, as expected, CCS demonstrated that the hippocampus and amygdala share more 

connectivity in general than with the distant olfactory bulb (Pitkänen, 2000, Pitkänen et al, 

2000). These results suggest that the amygdala and olfactory bulb share increased coupling 

during social investigation relative to baseline, and that the amygdala and hippocampus both 

show a larger influence over the MOB than in the feedforward direction. During the grooming 

behavior, all regions showed increased coupling relative to baseline, with more balanced 

bidirectional coupling between regions than the social sniffing behavior.  

Temporal Dynamics of Network States  

For higher temporal resolution, we computed 6-dimensional CCS scores using a moving 

window on each 1s epoch. (Fig 5A, 5C) Fig 5D shows a scatterplot of the first two principal 

components of these scores, colored according to behavioral type.  The plot doesn’t show 

obvious clustering according to behavior, meaning that at that time scale the different behaviors 

are composed of varying distributions of similar network states.   
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To understand the temporal dynamics of the network, we analyzed each epoch’s 

trajectory through the 6-dimensional coupling space. To make comparisons more tractable, we 

quantized the space using five k-means clusters which assigned every CCS score to one of five 

network states (Fig 5E) (Coates & Ng, 2012).  

Fig 5F shows the most common sequences of network states during the epochs from each 

type of behavior.  Since the epochs were extracted from larger events, and from video with a 

lower sampling rate than the neural data, the order of the sequences is not informative and cyclic 

permutations should be considered the same.  The three behaviors differed in both the specific 

highly represented patterns, and the general distribution of sequences. Baseline tended to 

oscillate from high to moderate coupling, grooming remained in a consistent highly coupled 

state, and sniffing oscillated between low and high coupling. Baseline also had the flattest 

distribution of sequences.  The top ten most frequent sequences in that condition comprised 

between 4.1% to 2.6% of the epochs, while the most frequent sequence in grooming and sniffing 

comprised between 6.6% to 2.2% and 8.6% to 2.9%, respectively. This result makes sense since 

baseline is the least restrictive of the behavioral conditions which means it should have the most 

diverse temporal patterns.  Taken together, the results in Fig 5D and Fig 5F show that the 

dynamics of the network during the three behaviors are composed of similar bases of states but 

differ in their distribution of sequences.   
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Figure 5.6: Illustration of Takens’ theorem. (A) A Lorenz attractor with time points colored 

according to proximity. (B) Time series of the 𝑥 coordinate. (C) Delay reconstruction from 

lagged 𝑥 coordinates. The timepoints have the same colors as those in A.  Notice how the delay 

reconstruction preserves the relative locations of the time points despite being transformed and 

warped. This demonstrates the homeomorphism between the two manifolds.  

 

Methods 

Convergent Cross Sorting  

All SSR methods leverage Takens’ theorem to reconstruct the higher dimensional 

attractor of the dynamical system which generated an observed time series.  This attractor is the 

manifold of points, 𝑀, visited by the system as it evolves through state space. (Fig 6A) State 

space is a Euclidean space with axes corresponding to the state variables, {𝑥, 𝑦, 𝑧 … }, of the 

system. Takens’ theorem shows that one can produce a topology preserving embedding of 𝑀 

using delayed values of just one of its variables as surrogate coordinates. This means that there is 

a homeomorphism, or a smooth, invertible mapping, between the system’s trajectory in the 

coordinates {𝑥, 𝑦, 𝑧 … } and {𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏), … } (Fig 6B-C) (Takens, 1981). 

Furthermore, since homeomorphisms are transitive, the reconstructions created from each 
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variable will all be homeomorphic to one another.  SSR methods rely on this transitivity by 

testing if there is a smooth mapping, ~,  between the manifolds, 𝑀𝑥 and 𝑀𝑦,  reconstructed from 

two different variables, 𝑥 and 𝑦. If 𝑀𝑥~𝑀𝑦, then 𝑥 and 𝑦 are likely components of the same 

dynamical system.  In the case of unidirectional coupling, the driving variable is a component of 

the driven dynamical system but not vice versa. Therefore, there will only be a mapping from the 

driven variable to the undriven one (Sugihara et al, 2012, McCracken & Weigel, 2014). 

The primary challenge in determining if there is a smooth mapping between 

reconstructed manifolds is that their topologies are unknown. SSRs represent geometric point 

clouds whose topologies must be inferred from the distances between their points.  It follows that 

a test for a smooth mapping must measure the correspondence between the relative location of 

time points in each reconstruction. That is, if time points are relatively close (as compared to all 

other points) in one reconstruction then, if there is a smooth map, they should also be close in the 

other. Complicating this process is that many real-world variables that could benefit from SSRs 

tend to be noisy and sparsely sampled, which makes any resultant reconstruction only weakly 

representative of the true topology of the attractor.   

CCM tests for this correspondence using the nearest neighbors (NN) of contemporary 

time points in each manifold (Fig 7A) (Sugihara et al, 2012; Ye et al, 2015). The NN 

implementation suffers from several practical problems. First, it requires a large number of 

points for the manifold to be densely sampled enough for the neighbors to be meaningful. 

Second, it fails to accurately estimate the interactions between strongly coupled or synchronous 

variables because their neighborhoods diverge at longer distances than those being considered 

(Mønster et al, 2017; Ye et al, 2015). This problem extends more generally to all oscillatory 
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signals whose nearest neighbors tend to be points close in time. Finally, its estimates are 

degraded by noise, and are unreliable for stochastic systems (Mønster et al, 2017). 

 

Figure 5.7: (A) An illustration of the CCM method. 𝑥𝑡 is point in 𝑀𝑋. The blue triangular 

markers represent its 𝐷 + 1 nearest neighbors where 𝐷 is the embedding dimension. The arrows 

show the mapping of each neighbor in 𝑀𝑋 to its location in  𝑀𝑌.  𝑦𝑡
∗|𝑥𝑡 is the estimate of the 

point 𝑦𝑡 from exponentially weighted average cross mapped neighbors from 𝑥𝑡.  𝐶𝐶𝑀(𝑦 → 𝑥) =
𝑐𝑜𝑟𝑟(𝑦𝑡

∗, 𝑦𝑡)  (B-F) An illustration of the CCS method. (B) Pairwise distances between the same 

four timepoints in 𝑀𝑋 and 𝑀𝑌 colored according to which time points they span. (C) The 

magnitude of the distances in both manifolds. (D) The rank of each distance in  𝑀𝑋, 𝑅𝑋, plotted 

against its rank in 𝑀𝑌, 𝑅𝑌. The black dashed line represents perfect correspondence. The blue 

and red lines show the error between ranks, 𝐸𝑅𝑅 = 𝑅𝑋-𝑅𝑌, as a function of 𝑅𝑌 and 𝑅𝑋, 

respectively. 𝐸𝑅𝑅(𝑥 → 𝑦) =  𝐸𝑅𝑅(𝑅𝑌) and 𝐸𝑅𝑅(𝑦 → 𝑥) =  𝐸𝑅𝑅(𝑅𝑋) because they measure 

how well ranks in the manifold of the driven variable predict ranks in the manifold of the driver.  

(E) 𝐸𝑅𝑅2 as a function of rank for a bidirectionally coupled logistic map.  The ranks have been 

normalized between 0 and 1. The dashed green line represents the null expected 𝐸𝑅𝑅2 for 

uncorrelated ranks. (F) The cumulative average of the normalized error, [𝑁𝐸𝑅𝑅2], as a function 

of rank, for the system shown in E.  𝑁𝐸𝑅𝑅2 = (𝑛𝑢𝑙𝑙 − 𝐸𝑅𝑅2)/𝑛𝑢𝑙𝑙.  [𝑁𝐸𝑅𝑅2] is thresholded at 

a maximum rank and fit to an exponential curve.  The CCS scores are given by the y-intercepts 

of the fitted curves. Extrapolating from the best fit curve improves the estimate of the local 

correspondence by leveraging information from larger scales to overcome the high variance in 

𝑁𝐸𝑅𝑅2 observed at very low ranks. 
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CCS overcomes these challenges by taking a more global perspective. Instead of just 

using local neighborhoods, it tests for a correspondence between the ranks of the pairwise 

distances between all the time points in each reconstruction. (Fig 7B-F, SI Convergent Cross 

Sorting) The primary advantage of this approach is that it creates a mechanism for only 

sampling the connections that are most informative of the topology of the space. By limiting the 

scope of the comparison to some lowest fraction of distances, CCS selectively considers the most 

densely covered portions of the manifold. This not only confers the direct benefit of eliminating 

the errors caused by outlying points but allows CCS to include far more pairwise distances than a 

KNN method because it doesn’t risk including more erroneous points. This means CCS can 

integrate more information from sparsely sampled manifolds which improves its performance on 

short and noisy data.  It also enables CCS to test for the long-range divergences that are 

necessary for differentiating between strongly driven systems and bidirectional causation. 

Additionally, using ranks, instead of raw distances, normalizes for geometric transformations 

that distort absolute distance but preserve relative order.  This has been shown to be a more 

reliable indicator of manifold structure (Chicharro & Andrzejak, 2009).  

Ethics Approval  

All animal experiments and maintenance procedures were performed in accordance with 

NIH and IACUC regulations. Surgeries were performed in accordance with UCSD IACUC 

animal welfare standards. Additionally, the study was carried out in compliance with the 

ARRIVE guidelines.  

Discussion 

Non-linear dynamical systems analyses provide a vehicle for measuring coordinated 

activity across a variety of networks, whether they be social, behavioral, neural, or ecological. 
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Rooting the analyses of these systems in SSR methods expands the possibilities for uncovering 

dynamic relationships, revealing structure that goes beyond coupling strength to address 

directionality. This paper compares the performance of the new CCS algorithm with CCM on 

simulated data from multiple model systems (VDP, LM and AR) where coupling parameters are 

known. In addition to the simulation results, we provide an exemplar application of CCS to 

systems neuroscience using an animal model informed by brain connectomics.  

On the simulated data, CCS had higher accuracy than CCM for almost all test conditions. 

CCS saw its largest advantages on VDPs and short time series Logistic Maps.  These results 

mean that CCS is particularly relevant to systems in which network states change very quickly, 

requiring high temporal resolution, and those that have smooth oscillatory components. CCS also 

retained much better accuracy on the stochastic ARs for which CCM fell below chance.  

Additionally, CCS was better at capturing the relative strength of bidirectional coupling for all 

but the lowest noise LMs. This may allow it to better capture the state of many real-world 

complex systems in which all the variables are coupled to some degree.  

As an exemplar application to complex data, CCS was used to estimate bidirectional 

coupling between neural populations in the olfactory bulb, hippocampus and amygdala during 

social and self-grooming behavior. This application reinforced previous findings from the 

neurophysiology literature and provided further insight into the temporal dynamics of coupling 

strength and direction between brain regions during social interaction 

These regions switch rapidly from weak to strong oscillatory coupling. Whereas these 

oscillations typically maintain nested timescales, CCS was able to determine the strength and 

directionality of these interactions during social and self-grooming behavior. Grooming leads to 

a greater influence of autonomic input compared to social investigation, leading to stronger and 
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more balanced coupling. These findings suggest that grooming is not only tactile and motor 

behavior, but also engages olfactory and autonomic processing.  

The observed coupling dynamics changed across time and differed according to 

behavioral circumstances, where social behavior increased coupling lead by structures involved 

in affective appraisal and social memory. The pheromonal and olfactory stimuli encountered 

during social sniffing behaviors is highly salient compared to the other conditions tested, so this 

likely engages interaction with amygdala.  The hippocampus also had increased influence on the 

olfactory bulb during social behavior as well, and this is likely associated with processes that 

underlie social memory formation. The results showed that there was increased influence in a 

primary sensory region from the amygdala, this may be due to the amygdala having a key role in 

saliency detection. These findings further support the idea that amygdala, hippocampus and 

olfactory bulb are part of a memory network that elicits increased coupling in response to social 

stimuli (Bielsky & Young, 2004; Tendler & Wagner, 2015).  

The experimental results demonstrate that CCS is a promising tool for uncovering 

dynamical relationships within systems that exhibit weak-to-strong coupling, rapidly changing 

network states, and/or oscillatory components. These systems include many types of physio-

behavioral coupling both within and between individuals, and in larger groups or teams (Jakubik, 

2020; Baxter & Murray, 2002; Strang et al, 2014).   

CCS’s improved performance on dynamical and measurement noise, as well as coupled 

stochastic autoregression, suggest that it is useful for examining systems that are largely 

deterministic but contain some stochastic elements, such as commodity futures yoked to climate 

fluctuations.  
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CCS’s robust performance on a wide range of signals makes it a powerful tool for data 

analysis. It advances the state of the art by extending existing SSR methods to short, noisy, and 

oscillatory signals, greatly increasing the types of problems to which it applies. Furthermore, it is 

able to better distinguish relative coupling in bidirectionally coupled systems which improves its 

ability to reveal the coupling dynamics of real-world complex systems. We are releasing the 

method publicly such that other researchers can use CCS to investigate coupling within a 

diversity of nonlinear dynamical systems.   

Acknowledgements 

Chapter 5, in full, is a reprint of the material as it appears in material from a paper 

that has been published in the journal Scientific Reports, 2021, Breston, Leo, Leonardis, 

Eric J., Quinn, Laleh K., Tolston, Michael, Wiles, Janet, & Chiba, Andrea. A. The 

dissertation author designed the experiment, collected the data used in this paper, and was 

co-author of this paper. 

 

 

 

 

 

 

 

 

 

 



101 

CHAPTER 6:  

DESIGNING AUTONOMOUS INTERACTIONS WITH THE PIRAT ROBOT  

 

 

The content within the first section, titled “PiRat: An autonomous framework for 

studying social behavior in rats and robots.” reflects modified material from a paper that has 

been published in the conference proceedings of the IEEE/RSJ International Conference on 

Intelligent Robots and Systems. The full citation is as follows:  

 

 

Heath, S., Ramirez, C., Arnold, J., Olsson, O., Taufatofua, J., Pounds, P., Wiles, J., 

Leonardis, E., Gygi, E., Leija, E., Quinn, L., Chiba, A. (2018) PiRat: An autonomous framework 

for studying social behavior in rats and robots. 2018 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS 2018), Madrid, Spain. 
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Introduction 

Autonomy is a central question in robotics that relies on a robot’s ability to successfully 

perform goal-directed actions successfully without human intervention (Beer, Fisk, & Rogers, 

2014). Agency and autonomy have become a central focus of complex systems and cognitive 

science research within the past few decades. In machine learning, artificial intelligence, 

complex systems modeling, and agent-based modeling, the term agent has been expanded to a 

wide variety of computational mechanisms and devices, including reinforcement learning, 

biological cellular models, social networks, epidemiological models and much more (Sutton & 

Barto, 2018; Beer 2004). This chapter will use the insights from the previous chapters to design a 

new robot capable of autonomous adaptive behavior that mimics the familiarization process 

observed in the data.  

 

Figure 6.1: Live photo of the rat meeting PiRat and PiRat’s overhead tracking system 

The international iRat team collaborated to create a new robot specifically for the purpose 

of eliciting social interactions, using the Raspberry Pi microcontroller, known affectionately as 

the PiRat (Heath et al, 2018). The authors point out that there are several advantages to using 

embodied robots for interaction experiments, such as running online models of behavior and the 
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ability to manipulate a robot’s sensorimotor properties in order to potentially identify critical 

features of sociality (Figure 6.1). They presented a low-latency platform for tracking both the rat 

and the robot in real-time, and preliminary results of the tracking system during habituation and 

an open field test (Figure 6.3).  This system will allow for the robot to have autonomous 

behavior relative to the rat’s position, and allows for the development of real-time computational 

models that govern the robot’s behavior.  

Wiles et al (2012) point out the design of an interactive social robot for neuroscience 

experiments with animals requires careful consideration. In social animals, contingencies in the 

form of mirroring and following exhibit fast timescale dynamics. Therefore, a socially capable 

robot must be able to respond quickly to an interlocutor's actions, which creates a series of 

computational constraints on the information processing from sensor to effector. In human-robot 

interaction experiments, often robots can take seconds to respond, while the design team chose 

200ms as a maximum delay time to constrain contingent interactions. Strategic multithreading of 

the GUI and tracker was required to minimize computation time in the loop. The PiRat GUI 

allows for the simulation of virtual agents which are governed by the PiRat control system. The 

GUI allows for piloted, semi-autonomous (triggered), and autonomous behaviors. Ramp 

functions were created.  Behaviors like approach, avoid, follow, and retreat have been defined as 

behavioral primitives. The PiRat utilizes lightweight low-friction gimbal motors to minimize any 

noise within distress call range. The design allows for the wheels and motors to be removed for 

easy cleaning and is attached to the chassis with magnets. 

The results of this study also have implications for engineering design. From an 

engineering perspective, key considerations of social robots are safety, interactivity, and 

robustness. Safety is a critical aspect of autonomy, so significant measures must be taken to 
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avoid any harm to the rodents such as running over or pinching their tail or bumping into them. 

Multiple protocols were created to avoid collision with the rat, the walls of the field, or any 

objects in the environment. Safety must also be factored in when designing the shape of the 

chassis and cover. Care should be taken to ensure that all edges are rounded so that both rats and 

users would not be harmed or intimidated by the robot. The cover should also completely contain 

all mechanical and electrical components, preventing any damage to those interacting with the 

robot as well as protecting the robot itself.  

Robustness is crucial and can be increased overall by increasing the durability and 

strength of individual components (Kragic, 2004). Falling under both safety and robustness 

constraints, covers should be designed so that they can be easily removed by users, but not by the 

animals, and made of a relatively non-porous material that can be easily cleaned in case of 

contamination by any substance. Robotic platforms made for interaction with non-human 

animals must be generally water-proof. This is because urination and urine marking are common 

occurrences based on our observations, thus the robot’s shell or exterior coating must effectively 

seal the electrical components from an animal’s urine. We observed multiple occasions where 

animal’s urine marked the field, stationary objects and occasionally other conspecifics. Cloth, 

fibers, or other such materials should be avoided or carefully tucked away from the rats’ access 

to prevent choking, shredding, or scent marking that would damage either the rat or the device. A 

robot’s weight should also be considered and be carefully weighted for the agents it will be 

interacting with. If the robot is too light, it can be easily tipped over, dented or crushed in. If the 

robot is too heavy, it can impact the motors, adding strain, reducing speed or maneuverability, or 

cause damage to the environment or to the rodents. 
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Interactivity consists of multiple sensory stimuli implemented to engage with the rats, 

with highly stimulating robots contributing to a more engaging environment. However, these 

stimuli must not be overwhelming, irritating or frightening. Rats can hear frequencies around 

250 Hz to 80 kHz, are able to hear ultrasound, as well as being highly sensitive to frequencies 

between 8 kHz and 38 kHz (Escabi et al., 2019). It is critical that interactive robots exhibit audio 

frequencies outside of the range of rodent distress calls, which induce panic, irritation, or stress 

responses. Ultrasonic motors or traditional servos generate too many high frequency sound 

emissions, as we discovered during the piloting and recording of ultrasonics. The solution for the 

PiRat was to use gimbal motors which were sufficiently quiet within the necessary frequency 

range (Heath et al, 2018). Olfactory tags were used in this experiment to engage the rodent’s 

dominant sensory system. Each of the two iRats were tagged with either frankincense or myrrh 

essential oils, meant to comply with preference profiles indicative of a naturalistic, woody scent.  

While it may seem making the robot more like a rat will elicit naturalistic social 

behaviors, that is complicated by the possibility of the “uncanny valley” effect for animals. 

While this is primarily an effect associated with humans (Mori, 1970; Saygin et al, 2012), 

previous studies like those with the Waseda rat showed that the rat-like robot resulted in an 

anxiety response (Ishii et al, 2006; Shi et al, 2013). This would mean that the closer the robot is 

to having that animal’s appearance the more of a distressing stimulus it may be due to bearing 

high similarity to a rat but having some features that are a mismatch.  

The iRats are visually unobtrusive, with a tapered, rounded ‘nose’, and a wider backside. 

They are approximately three to four inches tall and four to five inches in length. In addition to 

its rounded shell, the cover of iRat is smooth, hard plastic, durable enough to support the weight 

of a rat without damage to the robot and without pricking the paws of the rat. iRat maneuvers the 
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field with smooth, coordinated movements, pivoting around objects and rats at a sufficiently 

moderate speed so as not to provoke the rats, though the pace can be adjusted by the researchers 

so as to more accurately mimic the quick darting pace of a rat at play or the subdued crawl of a 

prowling robot.  When associating the robot with a reward it is highly recommended that the 

robot and the reward site be separated from the agent. Gianelli et al. (2018) and Waseda Mouse 

No.8 had the robot itself act as the pellet dispenser. Ishi et al (2006) has shown separately that 

robots can easily teach rats to receive a reward at a nearby pellet dispenser. Interactive 

neurorobotics platforms would benefit from segregating the reward in order to avoid the 

confounding of extrinsic reward learning in the brain with the intrinsic reinforcement of the 

robotic stimulus. 

The considerations must not only be viewed from the perspective of sound engineering 

design, but they must also be considered from the internal perspective of the animal meant to 

interact with the robot. For example, the observational data and quantitative analyses suggest that 

a key aspect of designing interactive robots is safety. In this case safety must be considered not 

only by making sure that the robot is designed with physical safety in mind but more importantly 

whether the animal interlocutor feels safe when interacting with the robot. Safety is a key first 

step towards the eventual goal of getting the animal to accept the robot as a potential social 

companion and, thus, a primary consideration in interactivity as well.  

Safety and robustness must also be considered from the perspective of species specific 

behaviors. For rats, robot shells or covers should be designed so that it can be easily removed by 

users, but not by the animals, and made of a relatively non-porous material that can be easily 

cleaned in case of contamination by any substance. Robotic platforms made for interaction with 

non-human animals must be mostly water-proof. This is because urination and urine marking are 
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common occurrences based on our observations, as they are natural features of interactivity, and 

thus the robot’s shell or exterior coating must effectively seal the electrical components from an 

animal’s urine. We observed multiple occasions where animal’s urine marked the field, 

stationary objects and occasionally other conspecifics. Urine marking is a communicative act, 

which can denote territoriality, dominance, and is full of rich social information (Leonardis et al, 

2021). Marking may bias future interactions if the robot is contaminated with social odor from 

another conspecific. 

Methods 

PiRat - The Second Generation iRat 

The PiRat system is designed to address the limitations of previous studies with regards 

to autonomy, and sensors, and to give more control of the study to the experimenters. The PiRat 

system is formed from several components including the robot platform, a Kinect v2 for 

tracking, a router for connecting components together and a laptop (see Figure 6.1). Multiple 

software components run on the laptop, including the tracking system, the behavior manager and 

MATLAB running a ROS server. Each of these components is outlined in the following sections. 

For a video overview of the framework and experimental set up, see https://www. 

youtube.com/watch?v=uzqJsvfEnr4. 

PiRat is intended to be a smaller and faster version of our previous iRat [10]. Initial 

specifications were collected through extensive dialog between engineers and neuroscien- tists 

(see Table 6.1). PiRat consists of a shaped plastic shell that houses two gimbal motors — high-

speed, brushless DC motors — and circuit boards that are required to drive the motors and 

communicate over WiFi. The shell is constructed from 2 pieces, both of which are 3D printed 

using a Form2 3D printer. The two pieces of the shell are held together using magnets, so that the 

https://www./
https://www./
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top half can be quickly removed (necessary for replacing PiRat’s batteries and shell cleaning). 

The motors are mounted on a separate piece of plastic, which allows both motors to be easily 

removed and cleaned. PiRat electronics consist of three circuit boards stacked one on top of the 

other having an identical footprint to that of a Raspberry Pi Zero (Pi Zero), The top board in the 

stack is the Pi Zero (running Raspbian), allowing PiRat to connect to Wi-Fi networks through its 

inbuilt wireless card. The Pi Zero is connected to the distribution board through a novel USB 

connector that slots in at a right-angle to the other two boards. The second board (the distribution 

board) contains an STM32 F042 microcontroller that handles the USB connection to the Pi Zero, 

PWM connections to magnetic wheel encoders and a USART connection to the third circuit 

board. The third circuit board (the driver board) is a custom-made two gimbal motor driver based 

on Martinez Gimbal board1) that generates the control signals for PiRat’s gimbal motors. 

Software on PiRat is minimal. The Pi Zero uses Robot Operating System (ROS) to communicate 

with a tracking system and behavior manager. Translational and angular velocities are forwarded 

from the Pi Zero to the gimbal motors. PiRat weighs 0.24 kg, has a top speed of 1.1m/s and a top 

angular velocity of 4.7m/s. The PiRat also includes Pi Zero camera and two new whisker sensors 

(that are still under development), neither of which are used in the current study. 
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Table 6.1: The technical specifications of the PiRat regarding size, speed, weight, auditory 

stimulus, autonomy and cleanliness. 

 

PiRat GUI and Online Tracker 

 

Figure 6.2: PiRat GUIs a) the GUI used for tracking, b) the GUI used for managing PiRat 

behaviors.  

 

The PiRat environment is a model of the circular arena and agents within it. The PiRat 

system contains a GUI and an online tracking system which provides an estimate of the absolute 

position, orientation, linear and angular velocity of rat and robot during interactions. The online 

tracker publishes the state variables to a ROS-based environment and the GUI serves to control 
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the robot and provide visualization capabilities to the experiment. The tracker allows for 

intervention from the experimenter in case there are any swaps or tracking errors.  

Behavioral Design 

The PiRat has been endowed with efficient deterministic behaviors such as approaching 

and retreating from the other agent in a continuous manner. There are also waypoint behaviors to 

allow for the reproduction of specific trajectories or going to a particular goal location such as a 

home base location. The GUI is designed so that the behaviors can either be triggered by the 

experimenter or autonomously selected. The behavior manager is a Python program that controls 

PiRat through a set of simple behaviors. Examples of behaviors are: approaching, following, 

retreating, exploring, avoiding, and collision-avoiding. The manager maintains a simple model of 

the environment (the tracked positions of PiRat and rat), which are the only inputs used by the 

behaviors (PiRat sensors are not used in this study). Only the approaching, avoiding, and 

collision-avoiding behaviors are used in this study.  

Introduction: The PiRat follows a circular trajectory following the walls of the circular 

arena, due to the rats preference to stay by the wall, this behavior is meant to maximize their 

interaction while minimizing the perceived threat of occupying the center of the arena.  

Approaching: PiRat calculates the distance between itself and the rat, and then moves 

towards the rat until the distance is half of the initial value.  

Avoiding: PiRat calculates the direction of the rat from the center of the arena, then 

moves towards the diametrically opposite point on the boundary of the arena.  

Collision-avoiding: When PiRat comes within close proximity of the rat or arena edge, 

forward velocity is slowed and angular velocity increased in proportion to the direction and 

distance away from the obstacles.  
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The manager additionally implements a random selection of the behaviors, such that 

behaviors can be run for a random amount of time, or until a natural completion condition before 

switching to another behavior. Multiple behaviors can simultaneously control the iRat’s actuators 

through a time dependent influence that is used to mix the linear and angular velocities from 

each active behavior together. 

Behavioral Experiment 

The study consisted of rat-robot interaction trials with 8 rats (6 Sprague-Dawley and 2 

Brown Norway rats) over 2 days. All studies were run with the room lights on. The procedure 

was as follows:  

Day 1: Habituation  

1) A rat is placed into the arena alone for 1 minute.  

2) The rat is then removed from the arena.  

3) The rat is placed into the arena with a stationary iRat for 1 minute.  

Day 2: Trials  

1) A rat is placed into the arena with the PiRat running circles of the arena (the Introduction) for 

2 minutes.  

2) The rat is removed from the arena. 

3) The rat is placed in the arena with the PiRat running either the Avoid or Approach condition 

(counterbalanced across subjects) for 2 minutes. 

4) The rat is removed from the arena.  

5) The rat is placed in the arena with the PiRat running the second condition (Avoid or 

Approach) for 2 minutes. 
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Results 

The RGB-D frames were post-processed using the tracking software offline. The 

positions of PiRat and rat were recorded for each frame. The positions taken from tracking the 

rat and PiRat show the different trajectories of the rat and PiRat in each condition (Figure 6.3). 

Distances between the rat and PiRat were calculated for each study. Metrics for the rats’ 

responses to the robot yielded similar values across the approach and avoid behaviors, but were 

quite different for the Introduction when compared to the other behaviors (see Table 6.2). For the 

mean distance between rat and PiRat, the Introduction shows the lowest number across all the 

rats, while the approach behavior is lower than the avoid behavior for 7 of the 8 rats. This 

difference between avoid and approach could be explained by the behavior of PiRat alone. For 

the 1 rat where the metric is lower for the avoid behavior, the PiRat started an approach from 

very close to the rat and spent a significant period following the rat around before reaching half 

the distance.  

The Introduction has the highest number of meetings for all rats, and lowest mean 

distance between for 7 of the 8 rats, but the component velocities in the direction of PiRat vary. 

This can be explained by the rat’s behavior where in many of the Introduction trials, the rat 

would run ahead of PiRat, and then wait for PiRat to catch up (see component velocities in 

Figure 6.3).  

One rat, S2, has the highest number of meetings, and shows differences from the other 

rats across all the phases. In particular, the velocity components in the direction of PiRat show 

that this rat was more active in creating meetings. In observations of the study, S2 often moved 

in front of PiRat in all the phases, temporarily blocking the robot from proceeding. Based on this 
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observation, further exploration of the way in which the dominant or subordinate behavioral 

phenotype of the rat impacts its interactions with robots should prove interesting. 

Table 6.2: Individual rat-robot interactions. 𝝻 is the mean distance between rats. # is the number 

of meetings (distance drops below 0.2m), d is the sum of the positive components of the rat’s 

velocity in the direction of the PiRat (m). 

 
Trajectory Plots 

 

 
Figure 6.3: Trajectories of, and distances between, the rat and PiRat. The circular plots show the 

trajectories between rat (in blue) and PiRAt (in orange) and the component of the rat's velocity in 

relation to the PiRat. The black vertical bars in these plots show when an interaction encounter 

occurs (the distance between rat and PiRat drops below .2 meters). a),c),e) show the rat that had 

the least encounters (S1) across the introduction, approach and avoid behaviors respectively. b), 

d), f) show the rat that had the most encounters (S2) across the introduction, approach and retreat 

behaviors.  
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We divided our behaviors into two different conditions: approaching, and avoiding. The 

Introduction phase was added before initiating the other behaviors, to facilitate the rats’ comfort 

around PiRat. We found that the difference between how rats responded to these two behaviors 

was minimal; however, differences in the Introduction phase were notable, with all the rats 

meeting the iRats more times in this phase than the other two phases. This may be because the 

Introduction featured a predictable motion in a space that the rat would usually occupy (PiRat 

always following the walls), whereas the other behaviors were dependent on the rat’s motion. 

The introduction behavior shows an interactive strategy that is more successful at engaging than 

previous WoZ interactions like those in Chapter 2 which primarily occupy the center of the field. 

By periodically visiting the homebase and remaining closer to the wall that makes the robot more 

accessible to the rat. An interesting result is that in the avoid behavior (Figure 6.3 E), the rat 

learned the contingency that the robot responded to its movement so the rat stopped moving to 

ensure that the robot would not move either. The rat is capable of maintaining distance from the 

robot, often by running in the opposite direction of the robot's movement in an avoidant fashion.  

Discussion 

In this study, we aimed to create a rat animat and closed- loop control system that was 

capable of adapting its behavior to the state of a rat. Results showed that the rats took different 

trajectories in response to the different behaviors of the robot, showing a preference for the robot 

to behave in a predictable and repetitive manner. This result is an important benchmark in 

enabling a robot to autonomously interact with a rat, demonstrating the robot’s relevance to the 

rat’s behavior. Metrics for close interaction suggest that the rat attended to the robot in several of 

the cases, with the highest quality interactions occurring in the Introduction behavior. While the 

rats in this study had more meetings with PiRat in the habituation phase, we hypothesize that a 
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combination of further habituation, and changes that initially enable PiRat’s behavior to 

approach less directly, will positively impact the number of encounters that the rat and robot 

have. These changes will allow rats sufficient time to accommodate to PiRat, reducing aspects of 

fear or perceived threat. 

The framework presented in this paper was designed to facilitate rat-robot interaction 

studies through creation of an autonomous PiRat, by having the rat’s position as a behavioral 

input to PiRat, by providing low-latency control of PiRat, and by making the system extensible 

to new behaviors. The first two metrics (mean, standard deviation, and number of meetings) are 

also influenced by the behavior of PiRat, while the third metric (average rat velocity in direction 

of PiRat) better captures the rat’s behaviors, but can not capture sequences where the rat 

deliberately waits for the PiRat to approach. The framework was semi-autonomous, as a person 

was still required to correct tracking failures. However, the tracking for both rat and PiRat were 

robust, and the operation of the system required only occasional human intervention, in contrast 

with the constant human input required in previous iRat studies. The increased autonomy is what 

enables PiRat to ensure reproducible experimental conditions. The human intervention has only a 

minor effect on reproducibility, as the human is not controlling any of the behaviors, instead 

intervention is limited to correcting the world-view of the framework. Allowing the rat’s position 

to be used as an input enables behaviors that are specific to each individual rat. While the rats in 

this study had more meetings with PiRat in the habituation phase, we hypothesize that a 

combination of further habituation, and changes that initially enable PiRat’s behavior to 

approach less directly, will positively impact the number of encounters that the rat and robot 

have. These changes will allow the rats time to accommodate to PiRat, reducing aspects of fear 

or perceived threat. 
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For studies that use tracking as part of their behavior, the latency from sensors to robot 

behaviors is important. In contrast, for studies that use tracking for post-processing, the framerate 

of the sensor is the most important factor. It is important to note that for many sensors, latency 

can be much slower than framerate, e.g., the Kinect v2 has a latency of 100 ms from sensor to 

screen, but is able to provide a new image to a screen every 33.33 ms. Our framework has to 

consider latency so that the real-time response of PiRat happens as close as possible to any 

change in the rat’s position, and these initial estimates suggest that the system maintains a fairly 

low total systems latency within the real-time loop. 

Finally, the behaviors implemented on PiRat are still simple, but as the platform is 

extensible, we intend to extend the framework with further behaviors, model-driven approaches 

to social interaction, and the addition of PiRat’s sensors as inputs to the framework. We intend 

for this new robot platform to allow us to continue exploring behavioral and neural responses of 

rats to a robot, allowing a systematic approach to the study of rat social behavior. 

The Exploration-Regulation-Exploitation Dilemma  

While the deterministic behaviors created in the previous section are highly efficient, 

they lack exploratory complexity and may be too simple to be interesting or engaging. By using 

adaptive learning methods, the robots may be able to generate behaviors that better engage the 

attention of living systems. By having a robot explore the environment as well as the agents it 

interacts with, like living creatures do, a rat may be more compelled to interact with it. By 

learning a behavioral policy a robot will learn how to act within each environmental state to best 

maximize some objective function. During the habituation process, an animal may begin to learn 

the policy of a robot just as they predict the actions of other social agents. By operationalizing 

our previous observations within a multi-agent reinforcement learning framework, we may be 
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able to develop autonomous robotic systems that are themselves curious, it may be able to better 

engage the curiosity of the rat.  

A recurring theme in this dissertation is that there is a cost to exploration and that 

regulatory behaviors play an important function in the exploration process. A common paradigm 

for reinforcement learning is the exploration-exploitation dilemma. The exploration-exploitation 

dilemma is often depicted with the epsilon greedy reinforcement learning algorithm. Depending 

on the value of epsilon, the agent will either pick a greedy decision which maximizes reward 

based on past observations, or a random decision scaled by epsilon to stochastically explore the 

unknown state space. Based on previous observations, a modification to the classical paradigm is 

to include regulatory behaviors, resulting in our proposed framework known as the exploration-

regulation-exploitation dilemma. This dilemma assumes that high exploration or high 

exploitation, purely in terms of maximizing information and reward, may lead to instability in 

the learning dynamics. This instability can be corrected by engaging in regulatory behaviors or 

including regulatory mechanisms within an artificial system.  

Exploration is central to active perception and is important for the purposes of learning 

about other agents and the environment. Reinforcement learning models operationalize 

exploration in the form of epsilon greedy action selection and information maximization control. 

In previous chapters we use behavioral and local field potential data from the rat brain to 

examine exploratory behavior of novel stimuli and self-regulation of the autonomic nervous 

system. We seek to use those empirical observations to extract a framework for robots to include 

exploratory and regulatory behavioral events in their interactive algorithms. Robots that take 

their rodent interlocutors' exploration and regulation into account will be better at promoting 

engagement.  
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Regulatory behaviors provide an important link between autonomy, motivation and 

resource management (Aube and Senteni, 95; 96). Barandarian and Moreno (2008) argue that 

regulatory systems are a requirement for a system’s adaptivity and argue that a basic metabolic 

organization may provide a conceptual framework for naturalizing the teleology of behavior. 

These regulatory subsystems involve an animal  dynamically decoupling from the environment 

and coupling with its own body in the service of motivations. The role of motivation is often 

underappreciated and provides a promising framework for thinking about multi-agent systems.  

Safety is a key issue in autonomous robotics and autonomous policies should not explore 

the state space so far that they can not recover. Adaptive stability is critical for the maintenance 

of a system's processes which go beyond the objective function, such as energy or hardware 

constraints.   Reinforcement learning methods have demonstrated high instability and multiple 

methods for correction have been introduced to stabilize the learning dynamics of actor-critic 

models, such as the utilization of multiple critics and actors updating asynchronously to stabilize 

learning.   

When collecting real data with rats, they often have to regulate their metabolism, 

hygiene, affect, and stress levels by engaging in regulatory behaviors like self-grooming. This 

paper seeks to use the regulatory behaviors observed in rodent exploratory data to develop 

principles to inform computational reinforcement learning paradigms. Regarding interactive 

robots, it is critical for the robot to take into account the rats' regulatory behaviors, such as the 

march back and forth to home base, and also its own way of regulating the learning process to 

increase stability. When potential danger or even conditions of high uncertainty are present, there 

is a cost to exploration. For example, exploring novel stimuli often comes at a metabolic and 
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regulatory cost, due to rats’ natural propensity for neophobia (Mitchell, 1976; Modlinska, 

Stryjek, & Pisula, 2015).  

While many algorithms are known to be greedy, i.e. choose the most optimal action 

relevant to the task at all times, Kirsh argues that there is often as much benefit to being 

immobile or going to a hiding place as actually engaging in a task. By not acting, animals can 

filter out hard initial states of the task and utilize a game theoretic notion known as the “just say 

no” strategy (Batali & Kitcher, 1996). Sometimes it may be useful to pump the brakes on greed 

and follow Herman Melville’s immortal words “I would prefer not to.” In addition to “just say 

no'' strategies, there are two other less immediate strategies such as routine maintenance and 

undertaking exploratory actions (Kirsh, 1996). While Kirsh focused mainly on how the 

manipulates the external environment, this extends also to the maintenance of the body and 

internal milieu. Task-external conditions may require us to revise models of behavior to either 

include temporally and spatially distant actions as of the task in some way or that information-

gathering actions that lie outside the boundary of the task are capable of changing the activity 

inside of it (Kirsh, 1996). 

Interestingly, these reinforcement learning algorithms have been found to be related to 

human social dynamics. Movellan modeled the contingency of attentional dynamics of social 

interaction using a robotic arm with a sound detector that implemented Bellman’s equation to 

select actions that maximize information return (Movellan, 2005). It was found that turn-taking 

behavior spontaneously emerged between the robot and human as a consequence of the 

information maximization algorithm. The use of adaptive reinforcement learning agents in game 

theoretic scenarios have also shown that when agents adapt to human input, humans perceive 

those artificial learning agents as more social than non-adaptive agents (Craig et al, 2013). 
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Proximal Policy Optimization (PPO) in Multi-Agent Scenarios 

Actor-Critic methods are notoriously unstable and require regulatory mechanisms. Recent 

methods like TD3 and A3C are attempts to stabilize the high variance and dynamic updates of 

the actor and critic by training off-policy networks at every timestep but updating the on-policy 

network much less frequently. The regulatory mechanism in the PPO algorithm is the policy clip. 

PPO clips the probabilities of the policy update in order to stabilize learning dynamics to 

minimize rapid change of the policy and critic. Proximal Policy Optimization is a modification 

of Trust-Region Policy Optimization which also limits how much a policy can be updated from 

one timestep to the next by limiting KL Divergence between the old policy and new policies. 

PPO uses a generalized advantage estimation which measures how better off the agent is taking 

each particular action when in a certain state. Previous history of states and rewards informs the 

estimate of which action will lead to higher reward.  

Multi-agent reinforcement learning is a challenging area with algorithms that are often 

highly unstable and not guaranteed to converge. By creating scenarios where agents can learn to 

cooperate, that can lead to more successful outcomes. A method known as Proximal Policy 

Optimization has been shown to perform surprisingly well in multi-agent scenarios when agents 

have cooperative or aligning reward functions (Yu et al, 2021). Proximal policy optimization 

(PPO) is a popular on-policy reinforcement learning algorithm. PPO is a stochastic policy 

gradient method that, while sample inefficient, tends to explore the state space sufficiently to 

eventually converge upon a near optimal solution. Policy gradient methods do not require a 

model of the environment but instead only models the value of particular states and operates on 

the policy directly.  This method uses stochastic gradient descent across the policy gradient to 

maximize expected return.  
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Methods 

PiRat Gym Environment 

The GUI and tracker are limited to real-time operation so to enable faster than real-time 

simulation, the dynamic equations from the GUI were put inside an OpenAI Gym environment 

to allow for rapid training. Like the PiRat GUI, the PiRat Gym environment keeps track of agent 

position, velocity and orientation. The PiRat Gym environment simulates real-time operation of 

the GUI by updating 30 times within a simulated second, this process can be sped up 

significantly faster. The action space was discretized into four possible discrete actions: go, stop, 

turn left and turn right. See Figure 6.4 for a diagram of the multi-agent actor-critic scenario in the 

PiRat environment.  

 

Figure 6.4: A diagram of a simulated multi-agent PPO scenario in the PiRat environment. Two 

actor critic agents receive observations and rewards from the environment. Value is estimated 

regarding the advantage of each action and the actor selects the next discrete action which runs 

through the environment.  
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Implementation Details 

Deep reinforcement learning methods are sensitive to parameters and implementation 

details, so this implementation has integrated lessons from previous work for improving 

performance (Engstrom et al, 2020). PPO was implemented using PyTorch and was based on 

implementations by Phil Tabor . Adam optimizer was used to perform stochastic gradient ascent 

on parameters. Following recommendations, networks used fully connected linear layers and 

Tanh activation functions. The actor uses a softmax layer to select a discrete action, while the 

critic uses a linear layer which projects down to one value for the estimation of the value. To test 

the effectiveness of multi-agent PPO in the Pirat environment, a simple reward function was 

chosen to minimize inter-agent distance. Rewards were normalized to values between -.5 and 2. 

The observation is relative x and y which was normalized to -1 and 1, and relative orientation to 

the other agent was normalized between 0 and 2π. See Table 6.2 for the parameters used for the 

proof of concept multi-agent scenario.  

Table 6.3. PPO parameters and their respective values for the proof of concept.  

                 Parameters     Value 

Batch Size 256 

Learning Rate Alpha .0001 

Hidden Layer Size 256x256 

Gamma .9 

GAE Lambda .9 

Policy Clip .1 
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Proof of Concept - Multi-Agent PPO with PiRat  

 

Figure 6.5: Sample relative trajectories for an episode before (blue arrows) and after (black 

arrows) learning. Mean reward per episode plotted in black with standard deviation in gray. 

 

The sample trajectories in Figure 6.5 show both of the agents in an early learning episode 

exploring the state space and eventually tending towards each other in a very suboptimal fashion. 

After learning, in a later episode the two agents approach each other in a more optimal fashion.  

Future Directions  

Artificial curiosity is an area of reinforcement learning which seeks to model the intrinsic 

motivation an animal has to acquire information from the environment for learning (Gordon, 

2018). Put more simply means that animals are internally rewarded for exploring new things. 

Embodied curiosity involves the use of curiosity-based computational models with an embodied, 

physical agent. Gordon (2019) suggests that social behavior is an emergent property of embodied 

curiosity. The goal of curious embodied agents is to learn as much as it can about itself and the 

environment, emphasizing the tight interactions between the model, body, sensors, motors, and 

situated embedded interactions (Gordon, 2018).   
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Presented in Figure 6.6 is a design for a policy selection mechanism for the PiRat based 

on Gordon’s novelty management unit which will be utilized in future experiments. Novelty of 

the state space will decay upon each visit to those coordinates and orientation values, the novelty 

of the agent will decrease upon each subsequent approach within some distance threshold.  

 

Figure 6.6: A diagram of a novelty management system for the PiRat which will use a policy 

selection mechanism based on the novelty of the current state.  

 

Future directions for this system involve running optimal simulation parameters on the 

physical embodied PiRat system. Before embodying in the robot, a systematic search of the 

parameter space will be performed to identify optimal training parameters. The algorithm may be 

used twofold, one to control the robot that mimics naturalistic behavior and two to act as a model 
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of the rat so the robot can account for their exploration-regulation based interaction dynamics. It 

is important to note that the stability of the state space differs between rat and robot. Based on 

the rats behavioral response. A control barrier function, also known as safety certificates, have 

been shown to increase the stability of control algorithms in a variety of robotic applications and 

multi-agent systems (Marvi & Kiumarsi, 2021). This will enforce a safer environment for the rat 

because it will eliminate the algorithm from entering that state. The next step after verifying that 

the multi-agent scenario is feasible and safe using artificial agents, then a living agent can be 

introduced. We suggest that in this case the intrinsic reward function is not simply based on 

interagent distance, but instead maximizes how often the rat approaches the robot. Curiosity may 

also be a prerequisite for play (Gordon, 2019). Perhaps for robotic systems to be perceived as 

being truly cooperative and prosocial, they may require capabilities like curiosity to allow for 

play. 

The general notion of maintenance involves keeping parts or systems in functional and 

operating order. Kirsh’s notion of “routine maintenance” shapes the environment to help a 

creature circumvent performance-limiting situations and increase average yield on future actions 

(Kirsh, 1996). In this sense, self-grooming behaviors deform the topology of state space, 

possibly rendering more aversive behaviors. Rather than making progress on the task itself, it 

acts as a regulator of the affective variables that may increase the difficulty of the task. Situated 

cognition in cognitive science includes many actions as serving a type of “cognitive scaffolding” 

which was often left out of the story of optimal and sequential advancement to the goal. Kirsh 

argues that these actions which are less immediate to the goal that still serve to improve the 

animals performance on a task are “superoptimal.” 
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While on-policy algorithms are useful for fully exploring the space, for future directions 

it may be more reasonable to use offline algorithms to ensure more stability for the learning 

process when interacting with a real rat. Methods like advantage weighted actor-critics and 

advantage weighted regression may allow for an algorithm to learn from previous empirical data 

in order to better account for the nonstationary nature of living systems. Future directions will 

explore other methods for ensuring the stability of the reinforcement learning process, such as 

the use of a KL constraint rather than the simple policy clipping method to create a “trust region” 

of the state space to explore. Lyapunov-based actor-critics are a method for guaranteeing 

stability for a critic which creates stability certification and returns to a safe part of the state 

space during exploration. Future models may also seek to incorporate a model of the rat into the 

actor-critic architecture to identify the rodent's home base and estimating the probability of 

future states.  
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CONCLUSION 

This dissertation has been an attempt to ground the 4E approach to social cognition in the 

biophysics of brain and body coupling by introducing interactive neurorobotics. We have 

examined how the bodies of multiple artificial and biological agents coordinate with each other 

at the level of behavior, as well as how brain regions couple with each other at the level of neural 

population and autonomic nervous system dynamics.  This dissertation has provided a novel 

methodology, Convergent Cross Sorting, for improving the reliability of coupling estimates 

expanding to a wider variety of applicable systems. Future directions will seek to use these 

validated methods to quantify interactions at multiple temporal and spatial scales in an effort to 

examine how social cognition emerges from brain-body-world coupling within and between 

agents.  

This dissertation has shown that biological agents behave quite differently from their 

artificial counterparts in how they explore the world and regulate their bodily states. The brain 

data shows sophisticated frequency, amplitude and phase encoding mechanisms supporting the 

exploration of other agents and self-regulatory behaviors. A lesson from these data is that new 

technologies are stressful and often induce de-arousal behaviors. This should be a greater area of 

inquiry for human-computer interaction research. Much like math and coding anxiety, our data 

suggests that learning how to coexist with new technologies is not an implicitly pleasant 

experience but one that requires a significant amount of self-regulation. This dissertation has also 

demonstrated how taking a closer look at behavior and the brain can benefit the design 

motivation-based autonomous systems, and that robotic systems may benefit from their own 

forms of self-regulation of learning mechanisms. Future directions will seek to develop 
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regulatory self-grooming-like behaviors for artificial systems to serve the function of promoting 

stability in learning dynamics during exploration of a state space.  

While animat approaches can provide information that may be relevant to animals, it is 

important not to confuse them with the animals themselves (Bullock, 2009). While animat 

literature often advocates for the anti-representational point of view Mandik (2002) points out 

that animats in synthetic neuroethology are strongly representational in nature. They are often 

written explicitly as programs or algorithms in the form of the symbolic representations that are 

explicitly written code that implement control systems. While focusing on situatedness and 

embeddedness may de-emphasize the role of symbolic representation, it is still an inevitability 

when creating machines that use digital processors and algorithms to implement control 

commands (Mandik, 2002). However, these often impoverished representational systems in 

animat systems fail to live up to the complexity of brain and body coupling demonstrated by the 

evidence provided in this dissertation. Representations are above all tools that scientists use to 

better understand and model target systems of interest. This is a key insight of the role of 

reflexivity in philosophy of science, which includes the role of the observer and the theorist 

themselves in the explanation of the target system. It is critical to note that while cognitive 

scientists often assume living creatures have internal symbolic representations like our animats, 

we must resist the temptation to assume the mind as a computer metaphor without justification. 

External representations can serve as valuable tools for scientific inquiry, but the existence of 

internal symbolic representations in animals and humans is still an open question which should 

be subject to rigorous debate. Some have argued that coupling between brain and body can serve 

as a deflationary account of representation performing similar explanatory work by implicitly 

tracking the state of the external world and its inhabitants (Orlandi, 2014).  
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This dissertation has provided a framework for extending Saygin’s “Neural Turing Test” 

to rodent animal models allowing for increased temporal and spatial resolution of neural 

measurements. It appears, similarly to findings in human fMRI and EEG, that some social brain 

circuitry, this time at the level of the intracranial local field potential, is able to differentiate 

between other rats and robotic agents while other parts of these circuits do not (Urgen, Kutas, & 

Saygin, 2018). While this question is not definitively answered by this work, a significant 

amount of evidence has been provided in search of an answer. It is also important to note the 

limitations of imposing human points of view onto animals and that anthropocentrism is of key 

concern in animal model paradigms. The use of WoZ control in early chapters of the dissertation 

is easily subject to the critique from the point of anthropomorphism, but even autonomous 

systems are not free of the human point of view, after all humans are the ones constructing these 

systems in the first place. I have argued elsewhere that it is critical to question our human 

assumptions and attempt to dig deeper into the phenomenology of an animal’s sensorimotor life 

to really begin to address concerns related to anthropomorphism (Leonardis, Semenuks, and 

Coulson, 2021).   

Saygin’s “Neural Turing Test” in humans has implications for ethical concerns about 

how humans interact with robotic technology, especially androids that have human-likeness. We 

have suggested that, as humanoid robots more closely resemble humans, they can lead to 

widespread unconscious processes such as priming, and through associative learning and neural 

plasticity, can lead to changes in our brains, and in turn, contribute to unintended sociocultural 

effects (Leonardis & Saygin, 2015). A majority of humanoid robots are highly gendered and 

modeled after young women and middle aged men with Caucasian and Asian appearance (Riek 

& Howard, 2014). “During an ethnographic study at a humanoid robotics lab, Saygin recorded a 
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video of a young male researcher, who during a lab tour, walked up to an android robot with 

gendered female appearance, slapped its face, and said ‘sometimes it is therapeutic to hit the 

android’” (Leonardis & Saygin, 2015, p. 1). Even with knowledge that no physical harm against 

a human has occurred, this video is visually and emotionally confusing (Leonardis and Saygin, 

2015). Anecdotally, given the extremely humanlike qualities and physical presence of this robot, 

it becomes difficult to “unsee” this event as an act of violence. The possibility and ubiquity of 

this transference in the context of robotics still remains an open question, but it will likely have 

undesirable consequences, and the responsibility to speak out falls on the shoulders of the 

designers (Whitby, 2008). This ethnography provided further evidence that humanoid robots are 

often constructed and controlled by the male gaze. By constructing humanoid robot bodies and 

introducing them into everyday human life, designers actively project their own vision of what 

bodies ‘should be like’ thus implicitly regulating and enforcing the designers' own cultural 

biases. Rather than being a revolutionary technology with endless possibilities, robotics often 

reinforces a very narrow and patriarchal view of gender and society.  

      It is important to promote the interdisciplinary ethical discourse that has recently 

emerged regarding the future of social robot construction (Riek and Howard, 2014). At The 

Emerging Policy and Ethics of Human-Robot Interaction (HRI) Workshop, groups of lawyers, 

policy makers, ethicists, scientists and engineers have gathered together to discuss and debate 

ethical problems and potential solutions in social, assistive and autonomous robotics. In recent 

years, conferences like NeurIPS are requiring that authors submit ethical considerations and list 

potential negative outcomes of their neural network algorithms. Accompanied by the We Robot 

Conference on Legal Policy Issues Relating To Robotics, the robotics community has begun to 

create ethical discourse that will be invaluable for the ethical regulation of a complicated and 
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nuanced technology. However, this must increasingly include scholars from Science and 

Technology Studies with experience in anthropology, philosophy and history to adequately 

assess the ethical nature of autonomous systems. Within the framework of research ethics, 

despite creating an “autonomous” robot the responsibility still falls on the shoulders of the 

experimenter. If the experimenter subjects an  animal or humans to unnecessary harm using an 

autonomous system, that explicitly does not absolve them of the blame. Why should ethical 

responsibility of the deployment of autonomous systems out into the world be any different? The 

ethical status of interactive neurorobotics depends on institutional review boards, which may 

benefit from using the criteria outlined in Chapter 6 for building robots safe for interaction with 

animals.  

This dissertation also outlines a methodology for using computational reinforcement 

learning for use in adaptive autonomous robots using an exploration-regulation strategy. Rather 

than purposefully developing “greedy” reinforcement learning algorithms we ought to imbue 

them with regulators which keep that greed in check in the interest of stability. Another 

alternative is to include safety and risk in the reward function itself to regulate the robot’s 

decision making. Autonomy is a carefully negotiated category where institutions have sought to 

create a diffusion of responsibility. Suchman has pointed out that humans are still heavily 

involved in scaffolding situations where autonomous robots are deployed and can never truly be 

“out of the loop” (Suchman and Weber, 2016). While the authors of the articles making up this 

dissertation are seeking to design prosocial and cooperative robots, that is not always and 

perhaps not usually the case. There have also been recent efforts to use autonomous robot bees, 

fish, and plants for the purpose of promoting the survival of at-risk animal populations and 

sustainability in ecosystems (Schmickl et al, 2021). Pro-social and pro-environmental uses of 
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autonomous technologies are possible, but not without significant amounts of testing, 

deliberation, and regulation. The author emphasizes that human-robot interaction as a field is 

socially responsible for the agents they construct and their potential influence on society. 
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