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ABSTRACT OF THE DISSERTATION

Prescribed-Time, Decentralized and Delay-Adaptive Control Strategies for Robot Manipulators:
Design and Experiments

by

Alexander Bertino

Doctor of Philosophy in Engineering Sciences (Mechanical and Aerospace Engineering)

University of California San Diego, 2022
San Diego State University, 2022

Professor Peiman Naseradinmousavi, Co-Chair
Professor Miroslav Krstić, Co-Chair

In this manuscript, we formulate and experimentally verify four state-of-the-art control

strategies on Baxter, a 7-DOF redundant robot manipulator. The control strategies examined

in this manuscript are the subject of active research in the field of non-linear control, and have

the potential to significantly improve the performance of robot manipulators when they operate

in unstructured environments. The first control strategy we investigate in this manuscript is

model-free decentralized-adaptive control. The purpose of this control strategy is to achieve

consistent performance across a wide range of joint configurations and end-effector inertias,

while having a similar computational efficiency as PID approaches. The second control strategy

we investigate in this manuscript is delay-adaptive control. The purpose of this control strategy

xv



is to simultaneously estimate and compensate for an unknown long actuator delay. The third

control strategy we investigate in this manuscript is prescribed-time control. A key feature of

this control strategy is that the settling time is explicitly assigned by the control designer to

a value desired, or “prescribed” by the user, and that the settling time is independent of the

initial conditions and of the reference signal. The fourth control strategy we investigate in this

manuscript is the prescribed-time safety filter. This formation yields a filter that is capable of

avoiding multiple obstacles in a minimally invasive manner with bounded joint torques, while

simultaneously allowing a nominal controller to converge to positions located on the boundary

of the safe set by the end of a fixed-duration task. Through the formulation and experimental

verification of each control strategy we present in this manuscript, we demonstrate that our

proposed methods perform well in both theory and in practice.
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Chapter 1

Introduction

When it comes to performing manual tasks, robot manipulators have many advantages

over humans. They are stronger, faster, and more precise than even the most capable of humans.

They are able to perform repetitive tasks with remarkable consistency, and are able to maintain

this efficiency and reliability over many hours without a degradation in performance. Furthermore,

they are able to safely operate in environments that are hazardous to humans, removing the need

to put human operators in dangerous environments. Due to these strengths, robot manipulators

have seen widespread use in industrial applications during the past century.

The potential applications of robot manipulators are not limited to just industrial purposes.

There is active research towards the use of robot manipulators in numerous applications, some

examples being interactive robots, rescue operations, medical robots, and space robots. However,

in order for robot manipulators to successfully operate in these environments, there are many

structural obstacles that must be overcome when compared to their historical use in industrial

applications. Broadly speaking, these challenges derive from the manipulator’s environment

being less consistent and structured when compared to an ideal industrial environment. A

common difficulty present in many of these potential applications is uncertainty in the dynamics

of the system. When operating in interactive environments, a robot manipulator would be rea-

sonably expected to manipulate a variety of objects with different inertial properties, effectively

changing the dynamics of the robot manipulator plus holding object system in a way that can
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not be determined a priori since the held object can be effectively arbitrary. Additionally, the

manipulator may be subjected to external disturbances which create additional uncertainty in the

system dynamics. Furthermore, in cases such as the control of space robots, there can be a long,

unknown delay between when a torque signal is generated versus when the robot applies this

requested torque, which can significantly alter the dynamics of the resulting system.

Another common difficulty present in many of these potential applications is that the

robot manipulator is expected to perform a wide variety of possible tasks, rather than a single

repetitive task. As such, the performance of the robot manipulator is much more difficult to

verify, as a large amount of experiments with different initial conditions and reference trajectories

need to be performed in order to make a reasonable assumption of the performance of the robot

manipulator in a general case. Furthermore, due to the non-linear dynamics of robot manipulators,

the dynamics of the robot manipulator, including the manipulator’s effective inertia, can vary

widely based on the current configuration of the robot manipulator. Thus, while a PID controller

is capable of globally stabilizing a robot manipulator, a single set of PID gains will only be

optimal for a specific joint configuration. In order to maintain acceptable performance across a

larger range of joint configurations, one might consider utilizing a gain scheduling PID controller,

in which PID gains are determined at multiple configurations based on a linearization of the

manipulator dynamics at each of these configurations. However, while this approach is feasible

to perform at several points along a single reference trajectory, for a high-DOF manipulator

tracking an arbitrary trajectory, the number of such linearizations required is too large to be

practical.

An important difficulty present in many of these potential applications is the assurance

of safety during the operation of a robot manipulator. In an unstructured environment, there

will likely be numerous obstacles that a robot manipulator needs to avoid collision with while

performing its required tasks. Furthermore, for applications such as interactive robots, the robot

manipulator must also avoid harmful collisions with humans, which can be reasonably expected

to be in the robot manipulator’s environment. As collision between a robot manipulator and a
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human can be fatal due to the robot manipulator’s large inertia, avoiding dangerous collisions

is a necessity for robot manipulators used in such applications. Thus, in order to operate robot

manipulators in uncertain environments, the development of sophisticated nonlinear control

strategies is necessary.

In this manuscript, we formulate and experimentally verify four state-of-the-art control

strategies on Baxter, a 7-DOF redundant robot manipulator. The control strategies examined

in this manuscript are the subject of active research in the field of non-linear control, and

have the potential to significantly improve the performance of robot manipulators when they

operate in unstructured environments. It is important to note that in most research manuscripts

concerning the control of robot manipulators, only simulations are present with no experimental

verification. In manuscripts that do contain experimental verification, it is typically performed

on robot manipulators with relatively low degrees of freedom, or which several joints remain

fixed for the duration of the experiment to achieve a similar outcome. Through experimental

verification, factors that are not present in experiments such as measurement noise, external

disturbances, potential modeling inaccuracies due to effects such as friction, and time delays

caused by computation of the control law can all affect the performance of a given control

strategy, and thus a control method that appears to work on paper may fail when implemented on

a real system. Additionally, robot manipulators with a high-DOF have much more complicated

dynamics than low-DOF manipulators, increasing the computational burden of computing their

dynamics. This additional computational burden can cause control strategies that are effective

for low-DOF robot manipulators to be infeasible to implement on high-DOF manipulators at the

necessary control frequency. Thus, through the experimental verification of each control strategy

we present in this manuscript, we demonstrate that our proposed methods perform well in both

theory and in practice.

3



1.1 Overview of Proposed Methods

The first control strategy we investigate in this manuscript is model-free decentralized-

adaptive control. The purpose of this control strategy is to achieve consistent performance

across a wide range of joint configurations and end-effector inertias, while having a similar

computational efficiency as PID approaches. It is important to note that this method is based

only on the tracking errors experienced during operation of the manipulator, and thus does not

require a precise dynamic model in order to achieve desirable performance.

The second control strategy we investigate in this manuscript is delay-adaptive control.

The purpose of this control strategy is to simultaneously estimate and compensate for an unknown

long actuator delay. Through simulations and experiments, we demonstrate that the proposed

controller is capable of tracking the desired trajectory with desirable performance despite a large

initial delay mismatch, which would cause non-adaptive prediction-based controllers to become

unstable.

The third control strategy we investigate in this manuscript is prescribed-time control. A

key feature of this control strategy is that the settling time is explicitly assigned by the control

designer to a value desired, or “prescribed” by the user, and that the settling time is independent

of the initial conditions and of the reference signal. Through both simulation and experiment,

we demonstrate that the proposed controller is capable of converging to the desired trajectory

within the prescribed time, in spite of large initial tracking errors, and in spite of a sinusoidal

disturbance being applied in each joint.

The fourth control strategy we investigate in this manuscript is the prescribed-time safety

filter. This formation yields a filter that is capable of avoiding multiple obstacles in a minimally

invasive manner with bounded joint torques, while simultaneously allowing a nominal controller

to converge to positions located on the boundary of the safe set by the end of a fixed-duration task.

The results of our simulations and experiments demonstrated the ability of the prescribed-time

safety filter to enforce safety throughout the six second task, while allowing the robot manipulator
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to make contact with the boundary and arrive at the desired goal position by the end of the task.

1.2 Organization

The organization of this manuscript is as follows. In Chapter 2, we present a brief

overview of the dynamics of Baxter’s right manipulator, as well as the design of the reference

trajectory utilized for the verification of each presented control strategy. In Chapters 3-6,

we formulate and verify through simulation and experiment the performance of the model-

free decentralized-adaptive approach, delay-adaptive approach, prescribed-time approach, and

prescribed-time safety filter approach respectively.
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Chapter 2

Mathematical Modeling

The redundant manipulator, which is being studied here, has 7-DOF as shown in Figure

2.1. The Baxter manipulator’s Denavit-Hartenberg parameters are shown in Table 2.1 provided

by the manufacturer. The Euler-Lagrange formulation leads to a set of 7 coupled nonlinear

second-order ordinary differential equations:

M(q)q̈+C(q, q̇)q̇+G(q)+F(q̇) = τ (2.1)

where, q, q̇, q̈ ∈ R7 are angles, angular velocities and angular accelerations of joints, respectively,

and τ ∈ R7 indicates the vector of joints’ driving torques. Also, M(q) ∈ R7×7 is a symmetric

mass-inertia matrix, C(q, q̇) ∈ R7×7 is a matrix of Coriolis coefficients, G(q) ∈ R7 is a vector of

gravitational loading, and F(q̇) ∈ R7 represents a vector of frictional torques.

Table 2.1. Baxter’s Denavit-Hartenberg Parameters

Link ai di αi qi
1 0.069 0.27035 −π/2 q1
2 0 0 π/2 q2 +π/2
3 0.069 0.36435 −π/2 q3
4 0 0 π/2 q4
5 0.010 0.37429 −π/2 q5
6 0 0 π/2 q6
7 0 0.3945 0 q7
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Figure 2.1. The 7-DOF Baxter’s arm at DSCL

q
4

q
6

q
2

(a)

q
1

q
5

q
3

q
7

(b)

Figure 2.2. The joints’ configuration: (a) sagittal view; (b) top view
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Our verified coupled nonlinear dynamic model of the robot [1–13] is used as the basis of

each control strategy investigated in this manuscript.

2.1 Design of Reference Trajectory

For each of the four control methods present in this manuscript, we evaluate their

performance on the same reference trajectory. This six second reference trajectory is a parabolic

curve that passes through the points p0 = (x0,y0,z0), p1 = (x0,y0,z0+∆z), p2 = (x0,y0+∆y,z0),

and is designed to mimic the common pick-and-place task of robot manipulators. To generate

the parabolic curve, we employ the following quartic spline method:

pr(t) =


a0 +a1t +a2t2 +a3t3 +a4t4, if t ≤ 3

a5 +a6t +a7t2 +a8t3 +a9t4, if t > 3
(2.2)

where a0,a1, ...,a9 ∈ R3 are constants to be determined by applying the necessary boundary

conditions. These conditions are as follows:

pr(0) = p0, pr(3) = p1, pr(6) = p2, ṗr(0) = 0, ṗr(6) = 0

p̈r(0) = 0, p̈r(6) = 0, lim
t→3+

pr(t) = p1, lim
t→3+

ṗr(t) = ṗr(3), lim
t→3+

p̈r(t) = p̈r(3)
(2.3)

Once we have determined the desired trajectory in Cartesian coordinates, we proceed

to convert this trajectory into individual joint trajectories qr(t) via integration of the following

ODE from t = 0 to t = 6:

q̇r(t) = J+
(
qr(t)

)
ṗr(t) (2.4)

where J(q) ∈ R6×7 is the manipulator jacobian, and J+(q) ∈ R7×6 is its Moore-Penrose pseu-

doinverse. This method is the well-known least squares method, and yields the minimum joint

velocities necessary for Baxter’s end-effector to follow the reference trajectory.
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Chapter 3

Model-Free Decentralized-Adaptive Con-
trol

In this chapter, we present a model-free decentralized adaptive control strategy for

the tracking control of the manipulator. The problem formulation and experimental results

demonstrate the computational efficiency and simplicity of the proposed method. The results

presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy

of the adaptive decentralized controller is demonstrated experimentally by using the Baxter

robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the

versatility, tracking performance, and computational efficiency of this method.

3.1 Background

As the global trend is towards increased automation, robot manipulators have seen

widespread use in many industrial applications. While the research in adaptive and nonlinear

control has seen significant advances, most robot manipulators utilized in industry are driven by

simple decentralized PID controllers due to their simplicity in their design and implementation

[14, 15]. While these controllers are effective at driving robot manipulators to specific set points,

they have difficulty in tracking an arbitrary desired trajectory. Furthermore, due to the strong

interconnected nonlinearities inherently present in the dynamic model of such systems, a given

set of PID gains will only work well for a specific joint configuration and end-effector mass.
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While many pick-and-place type operations in industry not needing navigation through obstacles

can be performed effectively using PID type controllers, the tasks requiring sophisticated path

planning and tracking need advanced controls. In order to maintain acceptable performance

across a larger range of joint configurations, one might consider utilizing a gain scheduling

PID controller, such as presented in [16, 17]. While these controllers can theoretically achieve

desirable performance under such circumstances, most implementations of these controllers

will require determining acceptable PID gains for a multitude of linearized models at different

operating conditions. For a 7-DOF manipulator tracking an arbitrary trajectory, the number of

such linearizations required will be too large and cumbersome. Additionally, such a method

would not account for an unknown end-effector mass. As society looks towards the use of robot

manipulators that can interact with humans in social settings, rescue operations, and potential

medical applications, the requirement that such manipulators must adhere to an arbitrary desired

trajectory during motion becomes an important task. The decentralized adaptive control approach

presented here provides one effective control strategy for high performance robot operations for

which PID control might not give desirable performance. Such an approach retains much of the

simplicity and computational efficiency of the decentralized PID approach, while offering a wide

range of applicability with extended joint configuration space and variability of end-effector

masses.

Due to the strength of the dynamic interconnection between joints, a model-based

approach in which the system is split into a set of decoupled systems is not feasible for robot

manipulators. Instead, there are several different methods designed to work around this constraint

to achieve desirable performance. First, neural network based methods [18, 19], as well as the

disturbance observer method by Yang et al. [20], and model-reference method such as by

Sundareshan and Koenig [21], attempt to obtain a model of certain system behaviors during

the operation of the robot manipulator. Such adaptive-model based methods do not suffer from

unmodeled system dynamics, and are well suited for tasks in which the joint dynamics change

during the operation of a task. Another popular approach to the decentralized adaptive control
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of robot manipulators is the model-free approach [22–25], in which the adaptive control law

is governed purely from the performance of the manipulator in the tracking task. Model-free

approaches, such as that by Seraji [22], can bear strong similarity to the decentralized PID

approach. In such approaches, the static gains associated with the PID approach are replaced

with adaptive gains, that change during the execution of the task to better track the desired

trajectory. Other research efforts for decentralized control of various systems can be found

in [26–42].

The goal of this chapter is to develop a control formulation and conduct an experimental

verification of the model-free decentralized adaptive method using Baxter, a 7-DOF redundant

robot manipulator. This work is novel in that the experimental verification of a decentralized

adaptive controller for a 7-DOF manipulator is not currently addressed in literature. The

decentralized adaptive control of such a manipulator is an important and challenging task.

The increased degrees of freedom of the robot manipulator leads to an increased dynamic

interconnection between joints, which is a challenge for decentralized approaches. Also, the

Baxter arm configuration is a more likely choice for the complex tasks to be performed in

an industrial setting. Through the analytical formulation and experimental verification of the

decentralized adaptive approach, we seek to demonstrate the feasibility and computational

effectiveness of said approach, in order to facilitate its adoption into industry practices. For this

purpose, the model-free decentralized adaptive approach examined in this paper is an effective

choice, as its structure is similar to the decentralized PID controllers currently utilized in industry.

It is important to mention the existence of a similar model-free decentralized approach,

known as Model-Free Control (MFC). MFC is a decentralized method developed in order to

compensate for uncertainties in nonlinear systems, and has been shown to be effective in the

control of many uncertain dynamical systems, including robot manipulators [43–45]. In order

to compensate for these uncertainties, such as changes in the inertia matrix during the motion

of the robot manipulator, the uncertainties are estimated directly utilizing the torque and state

information from the previous timestep. In addition to this compensation, a decentralized PID
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controller is typically employed to drive the robot manipulator towards the desired trajectory.

Thus, this method is capable of adjusting to a wide range of operating conditions without

needing to tune adaptive gains during the procedure. However, despite the simplicity and

effectiveness of this method, it has a few important drawbacks, especially when considering its

possible implementation on Baxter. First, in order to estimate the nonlinear uncertainties of a

robot manipulator with the MFC approach, it is necessary to numerically calculate the angular

acceleration of each joint. This numerical approximation of the second derivative is highly

susceptible to noise, as it amplifies the noise already encountered when calculating the angular

velocity of each joint. Thus, the uncertainty compensation employed by MFC is succeptible to

noise when implemented on a robot manipulator. Second, calculating the system uncertainties

based on data from the previous timestep introduces bias into the uncertainty estimate. This

bias can be large when the system dynamics change quickly, such as changes in frictional terms

when the angular velocity of a joint changes sign. Additionally, the controller timestep must

be sufficiently small in order to make the bias negligible. As Baxter is typically sampled at

100 Hz, this sampling rate may not be fast enough to ensure a low enough bias. This bias

introduces a disturbance in the manipulator error dynamics that can lead to imperfect tracking of

the desired trajectory. Due to these potential drawbacks of the MFC method when applied to

robot manipulators, the authors believe the model-free decentralized adaptive approach studied

here to be the more promising method for the decentralized control of Baxter.

The rest of this chapter is organized as follows. In Section 3.2, we present a decentralized

model of Baxter’s joint dynamics, as well as the structure of the model-free decentralized

adaptive approach. In Section 3.3, we utilize Lyapunov’s method to derive the update law for

the adaptive gains of the controller, demonstrating asymptomatic stability in the process. In

Section 3.4, we demonstrate and analyze the performance of the decentralized adaptive approach

on a simulation of Baxter executing the desired trajectory, paying close attention to tracking

performance, controller effort, and selection of adaptive gains. In Section 3.5, we repeat the

same procedure on the Baxter robot in practice, and thoroughly compare the experimental
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performance to that derived from the simulation. Finally, in Section 3.6, we present the case that

the decentralized adaptive method is computationally efficient, simple to implement, effective at

tracking a desired trajectory, and is a desirable alternative to both decentralized PID controllers

and centralized controllers for robot manipulators.

3.2 Decentralized Model Formulation

In order to derive the decentralized adaptive controller, it is necessary to model the

dynamics of a single joint, rather than the system as a whole. Rewriting (2.1) as series of 7

differential equations yields:

mii(q)q̈i +

 n

∑
i=1, j ̸=i

mi j(q)q̈ j

+ ci(q, q̇)q̇+gi(q)+Fi(q̇) = Ti(t) (3.1)

where mi j is the element in the mass matrix located at (i, j), ci(q, q̇) is the ith row of the Coriolis

matrix, gi(q) is the ith element of the gravity vector, Ti(t) is the input torque at joint i, and Fi(q̇)

is the frictional torque at joint i. Note that this equation represents the angular acceleration at

joint i as a function of the input torque only at joint i, and the dynamics of each link q, q̇, q̈. Thus,

(2.1) can be reduced to a series of 7 dynamically interconnected SISO systems. In order to

further express this concept, we rewrite (3.1) as:

mii(q)q̈i +di(q, q̇, q̈) = Ti(t) (3.2)

where di(q, q̇, q̈) =
[

∑
n
i=1, j ̸=i mi j(q)q̈ j

]
+ ci(q, q̇)q̇+gi(q)+Fi(q̇) represents the dynamic inter-

connection between joints.

13



3.3 Decentralized Adaptive Controller

In order to track an arbitrary desired trajectory, we employ the following decentralized

adaptive control structure:

Ti(t) = fi(t)+ ki1(t)ei(t)+ ki2(t)ėi(t)+ zi1(t)q̇ri(t)+ zi2(t)q̈ri(t) (3.3)

where qri(t) is the desired reference trajectory, ei(t) = qri(t)− qi(t) is the tracking error, and

fi(t),ki1(t),ki2(t),zi1(t),zi2(t) are adaptive control signals to be determined through the applica-

tion of Lyapunov methods. In this formulation, fi(t) is termed the auxiliary signal, and is the

primary driver of the system state qi, q̇i towards the desired trajectory. ki1(t),ki2(t) are adaptive

PD gains intended to account for current error in the tracking performance, adjusting to the

dynamics of the current joint configuration. Similarly, zi1(t),zi2(t) are adaptive feedforward

velocity and acceleration gains, intended to ensure that the joint stays on the desired trajectory.

3.3.1 Derivation of Update Law

In order to derive the equations of the adaptive control signals, we first make the following

assumption:

Assumption 3.1. The mass element mii, and the dynamic interconnection between the joints

di(q, q̇, q̈), are slowly time varying with respect to the desired trajectory qri(t). That is, ṁii ≈ 0

and ḋi ≈ 0.

Utilizing this assumption, the decentralized model (3.2), and the controller law (3.3), we

can express the model plus controller dynamics as:

mq̈+d = f + k1e+ k2ė+ z1q̇r + z2q̈r (3.4)

Note that the ith subscript, as well as notations indicating functions of time and joint configuration
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(t,q, q̇, q̈), have been removed for the sake of notational simplicity. This equation can be

rearranged to obtain:

më+ k2ė+ k1e = d − f − z1q̇r +(m− z2)q̈r (3.5)

Furthermore, defining the error state vector as X = [e, ė]T , (3.5) can be rewritten in state-space

form to obtain:

Ẋ =

 0 1

−k1
m

−k2
m

X +

 0

d− f
m

+
 0

−z1
m

 q̇r +

 0

m−z2
m

 q̈r (3.6)

In order to ensure that the robot manipulator follows the desired trajectory, we define the

desired performance of the tracking error es(t), which we define with the following 2nd order

homogeneous differential equation:

ës +2ξ ωnės +ω
2
n es = 0 (3.7)

where ωn is the natural frequency of the desired performance and ξ is the damping ratio. Similarly

to (3.5), we define the reference state vector Xs = [es, ės]
T , and rewrite (3.7) in state space form

to obtain:

Ẋs =

 0 1

−ω2
n −2ξ ωn

Xs = AXs (3.8)

Next, we use the following theorem to prove a crucial property of the reference model (3.8).

Theorem 3.1. Consider the linear state-space model ẋ = Ax. The equilibrium x = 0 is globally

asymptotically stable if and only if ∃P = PT > 0, ∃Q = QT > 0 such that the following Lyapunov

equation holds:

PA+AT P =−Q (3.9)
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Since we are free to define ξ and ωn in such a manner as to ensure (3.8) is globally asymptotically

stable, then by Theorem 1 there exists a unique symmetric positive definite matrix P that solves

(3.9) for the linear system (3.8). We denote the elements in P:

P =

P1 P2

P2 P3

 (3.10)

Next, we define E = Xs −X , and combine (3.6) and (3.8) to obtain the tracking error state-space

model:

Ė =

 0 1

−ω2
n −2ξ ωn

E +

 0 1

k1
m −ω2

n
k2
m −2ξ ωn

X +

 0

f−d
m

+
 0

z1
m

 q̇r +

 0

z2−m
m

 q̈r (3.11)

In order to determine the stability properties of (3.11), it is first necessary to define a Lyapunov

function for the system. For this system, we define the following Lyapunov function:

V = ET PE +Q0(
f −d

m
− f ∗)2 +Q1(

k1

m
−ω

2
n − k∗1)

2 +Q2(
k2

m
−2ωnξ − k∗2)

2

+Q3(
z1

m
− z∗1)

2 +Q4(
z2 −m

m
− z∗2)

2 (3.12)

where Q0, ...,Q4 are positive scalars, and f ∗,k∗1,k
∗
2,z

∗
1,z

∗
2 are functions of time to be determined

later. Differentiating (3.12) with respect to time and applying Assumption 3.1 yields:

V̇ =−ET QE +2
(

f −d
m

)[
Q0(

ḟ
m
− ḟ ∗)− r

]
−2Q0 f ∗

(
ḟ
m
− ḟ ∗

)
+2
(

k1

m
−ω

2
n

)[
Q1(

k̇1

m
− k̇∗1)− re

]
−2Q1k∗1

(
k̇1

m
− k̇1

∗
)

+2
(

k2

m
−2ξ ωn

)[
Q2(

k̇2

m
− k̇∗2)− rė

]
−2Q2k∗2

(
k̇2

m
− k̇2

∗
)

+2
(

z1

m

)[
Q3(

ż1

m
− ż∗1)− rq̇r

]
−2Q3z∗1

(
ż1

m
− ż1

∗
)

+2
(

z2 −m
m

)[
Q4(

ż2

m
− ż∗2)− rq̈r

]
−2Q4z∗2

(
ż2

m
− ż2

∗
)

(3.13)
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where r = P2e+P3ė is the weighted error. Before continuing the derivation, we make note of the

following theorem:

Theorem 3.2. Let X ∈Rn = 0 be an equilibrium point of the system ẋ= f (x), and let V :Rn →R:

1. If V (0) = 0, V (X)> 0 ∀X ̸= 0, V̇ ≤ 0 ∀X ̸= 0, then X = 0 is globally stable

2. If V (X)→ ∞ as || X ||→ ∞, then V (X) is radially unbounded

3. If X = 0 is stable, V (X) is radially unbounded, and V̇ < 0 ∀X ̸= 0, then X = 0 is globally

asymptotically stable

We first note that per our definition of V in (3.12), V is both positive when E ̸= 0

and radially unbounded. Thus, we seek to derive adaptation parameters f ,k1,k2,z1,z2, and

undetermined parameters f ∗,k∗1,k
∗
2,z

∗
1,z

∗
2 such that V̇ is negative definite, and thus E = 0 is

globally asymptotically stable. First, we set the following terms in (3.13) to 0:

Q0(
ḟ
m
− ḟ ∗)− r = 0, Q1(

k̇1

m
− k̇∗1)− re = 0, Q2(

k̇2

m
− k̇∗2)− rė = 0

Q3(
ż1

m
− ż∗1)− rq̇r = 0, Q4(

ż2

m
− ż∗2)− rq̈r = 0

(3.14)

Substituting (3.14) into (3.13) yields the following equation:

V̇ =−ET QE −2 f ∗r−2k∗1re−2k∗2rė−2z∗1rq̇r −2z∗2rq̈r (3.15)

We then define the following terms:

f ∗ = Q∗
0r, k∗1 = Q∗

1re, k∗2 = Q∗
2rė, z∗1 = Q∗

3rq̇r, z∗2 = Q∗
4rq̈r (3.16)

where Q∗
0, ...,Q

∗
4 are positive scalars. Substituting (3.16) into (3.15) yields:

V̇ =−ET QE −2Q∗
0r2 −2Q∗

1r2e2 −2Q∗
2r2ė2 −2Q∗

3r2q̇2
r −2Q∗

4r2q̈2
r (3.17)
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which is negative for all E ̸= 0, thus Theorem 2 is satisfied and E = 0 is globally asymptotically

stable. However, we must now determine the values of the parameters f ,k1,k2,z1,z2 to satisfy

(3.14), which are as follows:

ḟ = mQ∗
0ṙ+

m
Q0

r

k̇1 = mQ∗
1

d
dt
(re)+

m
Q1

re

k̇2 = mQ∗
2

d
dt
(rė)+

m
Q2

rė

ż1 = mQ∗
3

d
dt
(rq̇r)+

m
Q3

rq̇r

ż2 = mQ∗
4

d
dt
(rq̈r)+

m
Q4

rq̈r

(3.18)

We then define the following terms so that (3.18) is independent of m:

Q∗
0 =

ρ

m
, Q0 =

m
δ
, Q∗

1 =
β1

m
, Q1 =

m
α1

Q∗
2 =

β2

m
, Q2 =

m
α2

, Q∗
3 =

λ1

m
, Q3 =

m
γ1

Q∗
4 =

λ2

m
, Q4 =

m
γ2

(3.19)

Substituting (3.19) into (3.18) and integrating with respect to time yields the following equations

for the decentralized adaptive parameters:

f (t) = f (0)+δ

∫ t

0
r(t)dt +ρr(t)

k1(t) = k1(0)+α1

∫ t

0
r(t)e(t)dt +β1r(t)e(t)

k2(t) = k2(0)+α2

∫ t

0
r(t)ė(t)dt +β2r(t)ė(t)

z1(t) = z1(0)+ γ1

∫ t

0
r(t)q̇r(t)dt +λ1r(t)q̇r(t)

z2(t) = z2(0)+ γ2

∫ t

0
r(t)q̈r(t)dt +λ2r(t)q̈r(t)

(3.20)

Now that we have successfully derived the decentralized adaptive gains, we make the following

18



notes of its structure. First, the auxiliary signal can be interpreted as a decentralized PID signal,

acting to guide the system towards the desired trajectory in a generalized approach. Second,

each adaptive gain is updated based on the performance of the signal it multiplies in (3.3), as

well as the weighted error. This update law is purely performance based, and does not rely on a

model of the system. Finally, the update of each parameter is a simple computation, where a

trapezoidal approximation can be used to estimate the value of the integral at each time step.

3.4 Simulation Results

In order to assess the performance of this decentralized adaptive controller, we first

apply the control law described in Section 3.3 to Baxter’s dynamic model (2.1). We apply our

control methodology to a tracking problem where the desired tracking trajectories are specified in

Chapter 2. In this simulation, we introduce a sampling rate of 100 Hz in order to effectively model

the effect of discrete sampling on the continuous-time controller. Furthermore, the controller

parameters we used during this simulation, can be observed in Table 3.1.

In order to determine the controller parameters to implement, the following general

procedure can be performed:

1. Initialize all controller parameters to 0.

2. Choose parameters p2, p3,δ ,ρ of the auxiliary signal f (t) such that the controller ade-

quately tracks the desired trajectory across multiple different joint configurations, ensuring

satisfactory general performance. It is important to note that the auxiliary signal is equiva-

lent to a PID controller with the following gains:

KP = δ p3 +ρ p2

KI = δ p2

KD = ρ p3

(3.21)

19



Table 3.1. Controller Parameters for Simulation and Experiment

Joint 1 2 3 4 5 6 7
pi2 1 1 1 1 1 1 1
pi3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
δi 30 60 40 30 7 40 2
ρi 30 60 40 30 7 6 2
αi1 6000 6000 6000 6000 10200 102000 1200
βi1 600 600 600 600 1020 10200 120
αi2 6 6 6 6 6 6 6
βi2 0.6 0.6 0.6 0.6 0.6 0.6 0.6
γi1 60 60 60 60 60 60 60
λi1 6 6 6 6 6 6 6
γi2 60 60 60 60 60 60 60
λi2 6 6 6 6 6 6 6

Thus, traditional techniques used to tune the decentralized PID controllers can be used in

order to determine the parameters of the auxiliary signal.

3. Choose the minimum values of the parameters α1,β1 of the adaptive proportional gain

k1(t) that reduce tracking error in the angular position signal during motion of the robot

manipulator to a desired amount. At this stage, choose the same parameters for each joint,

and set β1 = α1/10.

4. Adjust αi1,βi1 of each joint individually if a specific joint updates too slowly or too quickly.

5. Repeat steps 3-4 on the parameters α2,β2 of the adaptive derivative gain k2(t) in order

to reduce the tracking error in the angular velocity signal during motion to a desirable

amount.
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6. Repeat steps 3-4 on the parameters γ1,λ1 of the adaptive feedforward velocity gain z1(t)

in order to adequately counteract the effect of friction in the beginning of motion.

7. Repeat steps 3-4 on the parameters γ2,λ2 of the adaptive feedforward acceleration gain

z2(t) in order to adequately overcome the robot manipulator’s inertia in the regions that

the desired acceleration is large.

The simulated joint trajectories, along with the desired joint trajectories can be observed

in Figure 3.1. From these graphs, it can be seen that the decentralized adaptive controller achieves

close tracking of the desired trajectories. Although the effects of the simulated frictional torque

and gravity negligibly impact the tracking performance during the beginning of motion, as can

be seen in the performance of joints 3, 5, and 6, these effects are quickly accounted for by the

adaptive controller. Furthermore, despite large changes in the joint configuration throughout the

course of the operation, the performance based control scheme remains effective at consistently

driving each joint towards the desired trajectory. These behaviors can also be observed in Figure

3.6, as the tracking error remains less than 1.5 degrees for all joints after 1.5 seconds of operation.

The torques generated by the decentralized adaptive controller can be observed in Figure

3.2. It is important to note that these torques are significantly lower than the maximum torque

output of Baxter’s joints, which are 50 Nm for joints 1-4, and 15 Nm for joints 5-7, meaning

that saturation of torque is not an issue for this decentralized adaptive scheme. Furthermore, this

demonstrates energy efficiency of this control scheme, as the torques generated are consistently

small in magnitude. Additionally, it can be observed that the torques generated are smooth

throughout the operation, which is potentially beneficial to the motors that are used to generate

these torques in practice.

Finally, we observe the tuning of adaptive gains k1, z1, and z2 throughout the simulation,

as seen in Figures 3.3, 3.4, and 3.5, respectively. Each of these gains appear to adjust in 2 stages

(0s < t < 3s and 3s < t < 6s). These phases correspond to the picking up and placing down

motion of the end manipulator, signifying that a different set of gains is necessary for each task.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.1. The experimental (blue line), simulated (green line), and desired (red dashed line)
joint trajectories of Baxter
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.2. The experimental (blue line) and simulated (red dashed line) joint torques of Baxter
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.3. The tuning of adaptive gain k1 during experimentation (blue line) and simulation
(red dashed line) of Baxter
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.4. The tuning of adaptive gain z1 during experimentation (blue line) and simulation
(red dashed line) of Baxter
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.5. The tuning of adaptive gain z2 during experimentation (blue line) and simulation
(red dashed line) of Baxter
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(a) (b)

Figure 3.6. The simulated (a) and experimental (b) joint tracking errors of Baxter

Thus, the tuning of these parameters coincide with our expectations of their performance. It

is also important to note that these gains are of a significant magnitude when compared to the

auxiliary parameters δi and ρi, meaning that tunings were necessary in order to achieve the

desired tracking performance. Furthermore, the joints 3, 5, and 6 with significantly tuned gains

experienced the largest frictional torques and gravitational load. These results demonstrate the

ability of the decentralized adaptive controller to adjust to different operating conditions. This

beneficial quality of this scheme is of key importance when the robot manipulator is expected to

reliably perform in a changing environment. From these results, it is evident that the decentralized

adaptive controller is effective in simulation.

3.5 Experimental Results

Due to promising results during simulation, we now implement the control law described

in Section 3.3 to Baxter in an experimental study. We utilize the same desired trajectories as in

Section 3.4 with the same 100 Hz sampling rate. Note that several differences remain between

the simulated and experimental study, which include measurement noise in the joint positions

and velocities, differences between the idealistic Coulomb Friction model and the actual friction

dynamics, small potential inaccuracies in model parameters, and the actuator dynamics of each

joint. These factors can lead to results slightly different than those experienced in simulation.

27



For the experimental pick-and-place task, the controller parameters we used are the same as that

of the simulation, and can be observed in Table 3.1.

From Figure 3.7(a), it can be observed that the decentralized adaptive controller is

successful at executing the pick-and-place task in practice. The experimental joint trajectories,

along with the desired joint trajectories can be observed in Figure 3.1. From these graphs, it can

be seen that the decentralized adaptive controller exhibits close tracking of the desired trajectory,

that is almost identical to that experienced during simulation. Similar to the Experiment, it can

be observed from the graphs that errors experienced in the beginning of the operation are quickly

accounted for, and the controller returns to near perfect tracking. This behavior can also be

observed in Figure 3.6, as the tracking error remains less than 1.5 degrees after 1.5 seconds of

operation.

The torques generated by the decentralized adaptive controller can be observed in Figure

3.2. While the presence of noise in measurements has caused similar variations in the joint

torques, the torques still exhibit moderate continuity, as well as a magnitude much lower than

the saturation torque of each joint. It can be seen from these graphs that the overall shape and

magnitude of the experimental torque of each joint matches closely to that of the corresponding

simulated torques. Thus, the differences in system dynamics between the simulation and

experiment do not significantly affect the performance of the decentralized control algorithm.

Finally, we observe the tuning of the adaptive gains k1i, z1i, and z2i throughout the

experiment, as seen in Figures 3.3, 3.4, and 3.5, respectively. The behavior of these graphs is

similar to that of the simulation in regards to both the stages of tuning, as well as the magnitude of

the gains. Slight differences can be observed between the evolution of the gains in the simulation

and experiment, which can reasonably be attributed to the small differences in dynamics between

the simulated and actual system, such as the difference between the idealistic Coulomb Friction

model from the friction experienced in the real system. While these differences lead to the

selection of different gains from simulation, the overall performance of the decentralized adaptive

controller is not significantly affected by this difference in dynamics, as can be seen in Figures
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DSCL

Figure 3.7. Baxter tracking a desired trajectory under (a) the decentralized adaptive and (b)
model-based centralized adaptive control schemes at Dynamic Systems and Control Laboratory
(DSCL); see peimannm.sdsu.edu
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3.1 and 3.2. Thus, these adaptive gains are effective at maintaining desirable performance outside

of the conditions in which the decentralized adaptive controller was designed. From these results,

it is evident that the decentralized adaptive scheme performs well in experiments as well as in

simulation.

Another crucial point to consider is the computational efficiency of the decentralized

adaptive scheme compared to centralized ones. We previously carried out experimental work

for a simple centralized model-based adaptive scheme to carry an unknown mass avoiding an

obstacle, shown in Fig. 3.7(b). The mass of the end-effector was the only unknown parameter to

be estimated and we again employed the Damped Least Squares method to calculate desirable

joint-space trajectories. The immediate challenge was the computation time of the control

scheme in each loop, even when dealing with only one uncertainty, which was incompatible

with the minimum time step (∆tb = 0.001s or fb = 1kHz) of Baxter. The computation time

of the centralized model-based adaptive scheme was in the range of 0.005s ≤ tc ≤ 0.007s

leading to the time delay in each control loop. Therefore, we had to address a critical trade-off

between the accuracy required and computational cost. To resolve this problem, we increased

the Baxter’s time step to ∆tb = 0.01s or fb = 0.1kHz, along with the sleep command of Python,

in order to avoid such a time delay by sacrificing the accuracy needed. Shown in Fig. 3.7(b)

is the experimental implementation of the centralized adaptive control of Baxter carried out

at the DSC laboratory. We noticed that the estimation of even one uncertainty, without any

external disturbance, caused at least three small operational interruptions. Please check the

DSCL YouTube Channel, at https://youtu.be/4XWldAXpJ2I, for the AVI file. Note that the

decentralized adaptive scheme examined here reveals a significantly lower computation time of

∆tb = 1.02 ms compared to the centralized one. Therefore, we did not observe the operational

interruptions discussed for the centralized method whereas the decentralized scheme is at least

five times faster than the centralized one. This would be highly beneficial for when we intend to

control large-scale (high-DOF) systems.
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3.6 Conclusion

In this chapter, we investigated the performance of a model-free decentralized adaptive

controller on a 7-DOF redundant manipulator. We first formulated the theory behind the

controller, demonstrating the global asymptotic stability of each local controller, as well as

revealing the computationally efficient method of adapting each control parameter. Then,

through the results of both our simulation and experiment of the decentralized adaptive controller

implemented on Baxter, we demonstrated the following beneficial properties of the control

scheme:

1. The algorithm is highly computationally efficient and at least five times faster than the

centralized adaptive method examined here.

2. Close tracking of the desired trajectory is achieved throughout operation.

3. Large changes in the joint configuration throughout the procedure do not significantly

affect the operation.

4. The generated torques are energy efficient, and do not pose the risk of torque saturation.

5. The control scheme can adapt to, and is effective outside of the conditions in which it was

designed for.

Thus, we verified the effectiveness of the model-free decentralized adaptive control scheme, and

noted its promising potential for a wide variety of applications.
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Chapter 4

Delay-Adaptive Control

We present an analytical design and experimental verification of trajectory-tracking con-

trol of a 7-DOF robot manipulator with an unknown long actuator delay. In order to compensate

for this unknown delay, we formulate a delay-adaptive prediction-based control strategy in order

to simultaneously estimate the unknown delay while driving the robot manipulator towards the

desired trajectory. To the best of the authors’ knowledge, this chapter is the first to present

a delay-adaptive approach for a nonlinear system with multiple inputs. Through Lyapunov

analysis, we first establish local input-to-state stability with respect to temporal derivatives of

the reference trajectory, along with regulation of the tracking errors when the reference tra-

jectory approaches a stationary configuration. Then, through both simulation and experiment,

we demonstrate that the proposed controller is capable of tracking the desired trajectory with

desirable performance despite a large initial delay mismatch, which would cause non-adaptive

prediction-based controllers to become unstable.

4.1 Background

In this chapter, we pursue an experimental verification of an analytically designed control

of a 7-DOF robot manipulator subjected to an unknown constant input delay. Such delays

are frequently observed in the control of remote manipulators [46–50], where a long, slowly

time-varying (often assumed to be constant) communication delay is likely present. While
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input delays can potentially be beneficial in certain special cases, such as in the research of

Ulsoy [51], they are typically severely detrimental to the stability of closed-loop systems. In

order to account for a known delay, a variety of predictor-based and sliding mode approaches

have been developed for linear systems [52–61], nonlinear systems [6, 9, 62–64], as well as

systems with a time-varying delay [65–69]. Although such techniques notably improve the

transient performance of a controller in the presence of a known delay, they are also well-known

to be sensitive to delay mismatch. In the case where a long, slowly time-varying communication

delay is difficult to accurately predict or measure, a delay-adaptive control approach has the

potential to significantly increase the transient performance of the robot manipulator, through the

compensation of the delay mismatch.

In recent papers [70–78], adaptive control strategies were developed in order to estimate

an unknown delay while simultaneously compensating for this delay with a predictor-based

approach. In order to achieve this, most of these papers represent the constant delay at the input

of an Ordinary Differential Equation (ODE) as a transport Partial Differential Equation (PDE)

whose convective speed is inversely proportional to the unknown delay. This approach introduces

the delay parameter into the model in a linear manner and is, therefore, suitable for adaptive

design. In the paper [78] by Bresch-Pietri and Krstić, this strategy was extended to nonlinear

dynamics subjected to a constant input delay. The authors examined the case of a measured

distributed input, in which a global delay-adaptive stability result is achieved, as well as the more

realistic case of an unmeasured distributed input, in which a local delay-adaptive stability result

is achieved.

In this chapter, we formulate the local technique developed by Bresch-Pietri and Krstić

[78] for an unmeasured distributed input, in order to handle the case of trajectory tracking

with multiple actuators. This formulation yields local input-to-state stability with respect to

temporal derivatives of the reference trajectory, as well as regulation of tracking errors when the

reference trajectory approaches a stationary configuration. Furthermore, through the experimental

verification of this delay-adaptive control strategy on Baxter, we demonstrate desirable controller
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performance even in the presence of a significant delay mismatch. Two cases are studied

here, an underestimation of 0.9 seconds (0s initial prediction, 0.9s actual delay), as well as an

overestimation of 0.5 seconds (0.9s initial prediction, 0.4s actual delay). Thus, the delay-adaptive

control strategy is both theoretically sound and effective in practice, significantly improving the

tracking performance of the predictor-based approach when the delay is unknown.

The organization of this chapter is as follows. In Section 4.2, we formulate the delay

adaptation task in mathematical terms, as well as state several assumptions on the system

dynamics, feedback law, and desired trajectories that are utilized in the Lyapunov analysis

of the delay-adaptive method. In Sections 4.3-4.5, we present the delay-adaptation approach,

and demonstrate the local delay-adaptive stability of the method through a Lyapunov analysis

utilizing the L1 norm. In Section 4.6, we present the simulation and experimental results of

the proposed method implemented on Baxter’s right manipulator, accounting for a large delay

mismatch both in the case of delay underestimation and overestimation. Finally, in Section 4.7,

we present the case that the proposed delay-adaptive method has the potential to significantly

increase the transient performance of a robot manipulator subjected to an unknown delay, through

the compensation of an initial delay mismatch.

Notations: In the following, we use the common definitions of class K and K∞ given

in [79]. |·| and |·|1 refers to the Euclidean and L1 norms respectively, the matrix norm is defined

accordingly, for M ∈ Mℓ(R)(ℓ ∈ N∗), as |M|= sup
|x|≤1

|Mx| and the spatial L1 norm is defined as

follows:

∥∥u(t)
∥∥

1 =
∫ 1

0

∣∣u(x, t)∣∣1dx

For (a,b) ∈ R2 such that a < b, we define the standard projection operator on the interval [a,b]

as a function of two scalar arguments f (denoting the parameter being updated) and g (denoting
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the nominal update law) in the following manner:

Proj[a,b]( f ,g) = g


0 if f = a and g < 0

0 if f = b and g > 0

1 otherwise

For a distributed function of (x, t) or (y, t), a lowercase subscript indicates differentiation by the

corresponding parameter. For example:

fxt(x, t) =
∂ 2 f (x, t)

∂x∂ t

4.2 Problem Statement

The multi-input nonlinear system (2.1) can be written as 14th-order system of ODEs

with the following general state-space form:

Ẋ = f0(X ,U) =

 q̇

−M(q)−1N(q, q̇)

+
 0

M(q)−1

U (4.1)

X = [q1, · · · ,q7, q̇1, · · · , q̇7]
T (4.2)

N(q, q̇) =C(q, q̇)q̇+G(q)+F(q̇) (4.3)

where X ∈ R14 is the 14-dimensional vector of states, and U = τ ∈ R7 represents the input

torques to the system (4.1).

In order to track a desired trajectory, we reformulate (4.1) in terms of the error dynamics:

Ż = f (Z,U,XR) =

 ż

−M(z+qR)
−1N(z+qR, ż+ q̇R)− q̈R

+
 0

M(z+qR)
−1

U (4.4)

XR = [qT
R , q̇

T
R , q̈

T
R ]

T (4.5)
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Z = [zT , żT ]T (4.6)

z = q−qR (4.7)

where XR ∈ R21 is the state reference trajectory, Z ∈ R14 is the state error vector, z ∈ R7 is the

positional error of the robot manipulator, and qR ∈ R7 are the reference joint trajectories to track.

Furthermore, we make the following assumption regarding the reference joint trajectories:

Assumption 4.1. The desired joint trajectories qR(t) ∈ R7 are class C 5 functions and XR(t),

ẊR(t), and ẌR(t) are uniformly bounded for all t ≥ 0.

Consider the following nonlinear plant:

Ż(t) = f (Z(t),U(t −D),XR(t)) (4.8)

in which D is an unknown delay introduced to the error dynamic model of the Baxter manipulator

(4.4), belonging to the interval [D,D], with D > 0. The objective of the delay-adaptive approach

is to stabilize the error dynamics with input delay (4.8), despite the length of the delay being

initially unknown. In order to assist the Lyapunov stability analysis in the next section, the

following assumptions are made regarding the nonlinear plant (4.8) the corresponding feedback

law, and the state reference trajectory XR(t).

Assumption 4.2. The plant (4.4) is forward complete.

Assumption 4.3. There exists a C 2 feedback law U = κ(Z,XR) such that the closed-loop delay-

free plant (4.4) is globally exponentially stable, i.e. there exist λ > 0 and a class C 1 radially

unbounded positive definite function V such that for all Z ∈ R14

∂V
∂Z

(Z) f (Z,κ(Z,XR),XR)≤−λV (Z) (4.9)

|Z|2 ≤V (Z)≤ c1|Z|2 (4.10)
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∣∣∣∣∂V
∂Z

(Z)
∣∣∣∣≤ c2|Z| (4.11)

Assumption 4.4. Values for the state reference trajectory XR(t) are known at least D seconds in

advance.

Assumption 4.2 assures that (4.8) does not escape in finite time. This assumption is

necessary to ensure that the system does not escape before the input U(t −D) reaches the system,

and has been proven to hold for robot manipulators [6, 9]. Assumption 4.3 is a stronger than

necessary condition used in order to prove the local stability of the delay-adaptive approach.

Assumption 4.4 ensures that the state error vector Z(t) can be predicted up to D seconds in

advance. This is a necessary assumption for any predictor-based control strategy involving

trajectory tracking since if Z(t +D) can not be predicted, U(t) can not be chosen to compensate

for the delay present in the system. While such a control strategy is technically non-causal

with respect to the state reference XR(t), this is not a concern in practice since XR(t) is a user-

defined signal that is independent of the current joint state X(t) and input U(t), and thus can be

determined an arbitrary time in advance.

To analyze the closed-loop stability despite delay uncertainties, we use the systematic

Lyapunov tools introduced in [62] and first reformulate plant (4.8) in the form:

Ż(t) = f (Z(t),u(0, t),XR(t)) (4.12)

Dut(x, t) = ux(x, t) (4.13)

u(1, t) =U(t) (4.14)

by introducing the following distributed input:

u(x, t) =U(t +D(x−1)), x ∈ [0,1] (4.15)
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Thus, the input delay is now represented as a coupling with a transport PDE driven by an input

with unknown convection speed 1/D.

4.3 Delay-Adaptive Control Design

Due to the fact that the distributed input is unmeasured, we introduce an estimate of the

distributed input:

û(x, t) =U(t + D̂(t)(x−1)), x ∈ [0,1] (4.16)

where D̂(t) is the current estimate of the input delay. In order to stabilize (4.12)-(4.14), we must

first predict the state of the system (4.12)-(4.14) once the delayed input reaches the system. In

order to achieve this, we introduce a distributed predictor estimate:

p̂(x, t) = Z(t + D̂(t)x) = Z(t)+ D̂(t)
∫ x

0
f (p̂(y, t), û(y, t), r̂(y, t))dy (4.17)

in which

r̂(x, t) = XR(t + D̂(t)x) (4.18)

is the distributed trajectory estimate. If the input delay was known, the control law U(t) =

κ(Z(t +D),XR(t +D)) could be used to stabilize the system, exactly compensating for the delay

present in the system. Therefore, by the certainty equivalence principle, we choose the control

law as:

U(t) = κ

(
Z(t + D̂(t)),XR(t + D̂(t))

)
= κ

(
p̂(1, t), r̂(1, t)

)
(4.19)

In order to derive an adaptation update law for the estimated delay, we define and utilize

at time t a prediction of the current system state X(t), starting from a recent previous state
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X(t −β ) with β > 0, and assuming the correct value of the input delay is D̂(t):

XP(x, t, D̂) = [qP(x, t, D̂)T , q̇P(x, t, D̂)T ]T = X(t −β )+β

∫ x

0
f0 (XP,UP)dy (4.20)

where

UP(x, t, D̂) =U(t − D̂+β (x−1)), x ∈ [0,1] (4.21)

Note that in this section, notations indicating nested functions of (y, t, D̂) have been

removed for the sake of brevity. An important property of this prediction is the following:

XP(x, t,D) = X(t +β (x−1)) (4.22)

XP(1, t,D) = X(t) (4.23)

and thus if the estimated value of the delay D̂(t) equals the true value of the delay D, then our

prediction of the current system state XP(1, t, D̂) is equivalent to the current system state X(t).

Leveraging this useful property, we can utilize the mean square error between the predicted

system state XP(1, t, D̂) and the current system state X(t) through a gradient descent algorithm,

updating the estimate of the delay D̂(t) in order to minimize this prediction error. For this

purpose, we utilize the following instantaneous cost function, initially proposed in [75] for a

linear plant:

J : (t, D̂) ∈
[

t0,∞
[
→ 1

2

∣∣∣XP(1, t, D̂)−X(t)
∣∣∣2 (4.24)

In order to obtain the gradient of this cost function with respect to the estimated delay D̂,

it is first necessary to determine the partial derivative of XP with respect to D̂:

∂XP

∂ D̂
(x, t, D̂) = β

∫ x

0

 ∂ f0

∂XP
(XP,UP)

∂XP

∂ D̂
(y, t, D̂)+

∂ f0

∂UP
(XP,UP)

∂UP

∂ D̂
(y, t, D̂)

dy
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= β

∫ x

0

 ∂ f0

∂XP
(XP,UP)

∂XP

∂ D̂
(y, t, D̂)−

 0

M(qP)
−1

U̇P(y, t, D̂)

dy (4.25)

By taking the derivative of this equation with respect to x, it can be seen that ∂ 2XP
∂ D̂∂x

satisfies

the following ODE:

∂ 2XP

∂ D̂∂x
(x, t, D̂) = β

 ∂ f0

∂XP
(XP,UP)

∂XP

∂ D̂
(x, t, D̂)−

 0

M(qP)
−1

U̇P(x, t, D̂)

 (4.26)

∂XP

∂ D̂
(0, t, D̂) = 0 (4.27)

By defining the transition matrix Φ0 associated to the corresponding homogeneous

equation, one solves (4.26-4.27) to obtain:

∂XP

∂ D̂
(x, t, D̂) =−β

∫ x

0
Φ0(x,y, t, D̂)

 0

M(qP)
−1

U̇P(y, t, D̂)dy (4.28)

where Φ0(x,y, t, D̂) is the solution to the following homogeneous ODE:

∂Φ0

∂x
(x,y, t, D̂) = β

∂ f0

∂XP
(XP,UP)Φ0(x,y, t, D̂) (4.29)

Φ0(y,y, t, D̂) = I y ∈ [0,1],x ∈ [y,1] (4.30)

Taking the gradient of the instantaneous cost function (4.24), the following equation is

obtained:
∂J
∂ D̂

(t, D̂) =

(
XP(1, t, D̂)−X(t)

)T
∂XP

∂ D̂
(1, t, D̂) (4.31)
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Utilizing this computed gradient, the rate of change of the delay estimate is designed as:

˙̂D(t) = γProj[D,D]

{
D̂(t),ρD(t)

}
(4.32)

where

ρD(t) =
− ∂J

∂ D̂
(t, D̂(t))

1+
∣∣∣∂XP

∂ D̂
(1, t, D̂(t))

∣∣∣2 (4.33)

and γ > 0 is the adaptation rate of the delay estimate. The projection operator is utilized in order

to ensure that the delay estimate remains in the interval [D,D]. Note that normalization by the

regressor is employed in the adaptation of the delay estimate (4.33) in order to reduce the speed

of adaptation when there are large changes in the input.

In order to analyze the properties of (4.33), it is first necessary to introduce the following

technical lemma:

Lemma 4.1. The transition matrix Φ(x,y,•) associated with the space-varying homogeneous

equation ∂φ

∂x (x,•) = A(x,•)φ(x,•) with y ∈ [0,1] and x ∈ [y,1] satisfies the following property:

∣∣Φ(x,y,•)
∣∣≤ exp

{
max

x∈[0,1]

∣∣A(x,•)∣∣} (4.34)

Furthermore, there exists a class K∞ function α1 such that for all y ∈ [0,1], x ∈ [y,1]:

∣∣Φ(x,y,•)
∣∣≤ 1+α1(

∥∥A(•)
∥∥

1) (4.35)

Proof. By definition, for a given y ∈ [0,1] and t ≥ 0, Φ satisfies the following differential

equation in x:

∂Φ

∂x
(x,y,•) = A(x,•)Φ(x,y,•) x ∈ [y,1] (4.36)
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Φ(y,y,•) = I (4.37)

Therefore, its norm satisfies for any x ∈ [y,1]:

∂ |Φ|
∂x

(x,y,•)≤
∣∣∣∣∂Φ

∂x
(x,y,•)

∣∣∣∣
≤
∣∣A(x,•)∣∣∣∣Φ(x,y,•)

∣∣ (4.38)

with
∣∣Φ(y,y,•)

∣∣= 1. Therefore, there exists a K∞ function α1 such as introduced in this lemma.

Furthermore, through taking the maximum of
∣∣A(x,•)∣∣ with respect to x and applying separation

of variables, one obtains the upper bound (4.34) stated in this lemma.

By utilizing a steepest descent argument [80] along with the application of Lemma 4.1

and an appropriate bounding of terms, one obtains the following properties of (4.33), provided

that the initial delay estimate is close enough to the true value of the delay:

Lemma 4.2. There exist positive parameters H > 0 and D̃max > 0 such that, if
∣∣D̃(0)

∣∣< D̃max,

and X(t), U(t), and U̇(t) are uniformly bounded:

D̃(t)ρD(t)≥ 0 (4.39)∣∣ρD(t)
∣∣≤ H (4.40)

where D̃(t) = D− D̂(t) is the current estimation error of the delay.

Proof. By utilizing a steepest descent argument [80], one obtains the property D̃(t)ρD(t)≥ 0. In

order to obtain the property
∣∣ρD(t)

∣∣≤ H, it is necessary to establish the uniform boundedness of

XP and ∂XP
∂ D̂

in (4.33). Due to the forward completeness property of f0, the uniform boundedness

of X and U , and the fixed integration distance in (4.20), one obtains the uniform boundedness

of XP. To establish a bound for ∂XP
∂ D̂

, Lemma 4.1 is used to prove the uniformn boundedness

of Φ0. Due to the uniform boundedness of Φ0, XP, U , and U̇ , along with the fact that f0 is a
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class C2 function, one obtains the uniform boudedness of ∂XP
∂ D̂

from (4.28). Applying the uniform

boudedness of XP and ∂XP
∂ D̂

to (4.33), one obtains the property
∣∣ρD(t)

∣∣≤ H.

In order to predict the input delay of the robot manipulator, we employ a gradient-based

method minimizing the difference between the current system state, and a prediction of what the

system state should be if the currently estimated delay is equal to the true value of the delay. It is

important to note that contrary to the implementation of the current state predictor XP in previous

works by Bresch-Pietri et al. [75, 78] , in which the current state is estimated by simulating from

the initial condition X(t0), the predictor method present in this chapter estimates the current state

by simulating from the more recent state X(t −β ). This modification to the predictor-based

update law ensures that the computational cost of performing this method remains consistent due

to the fixed bounds of the integral in (4.20), as well as serving to bound the maximum growth

of the state transition matrix Φ0(x,y, t, D̂) and prediction error XP(1, t, D̂)−X(t). In essence,

this cost function is a simulated replay (4.20) of the last β seconds of the robot manipulator

motion, and the update of the delay estimate aims to match this simulated replay to the observed

value of the system state during this period. If the estimate of the delay is correct, the simulated

replay should match perfectly with the motion of the robot manipulator during the most recent β

seconds of motion.

Due to the fact that the properties stated in Lemma 4.2 hold for any β > 0, the selection

of the replay length β is motivated primarily by practical considerations. If β is chosen to be

too small, measurement noise and external disturbances will make up a large portion of the

difference between the predicted and actual current system state, meaning that the update of the

estimated delay will be susceptible to high-frequency noise. If β is too large, the accuracy of the

simulated replay will suffer due to accumulated inaccuracies, such as small inconsistencies in

the robot manipulator model, as well as accumulated error from the numerical methods used

in the simulation. Additionally, a larger β increases the computational cost of the method, as

a longer simulation will need to be performed. Thus, the selection of β is a balance between
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susceptibility to high-frequency noise with a small β , and susceptibility to low-frequency noise

and increased computational burden with a large β . Through simulations and experiments, we

have found that selecting β to be roughly an order of magnitude smaller than the settling time of

the control law κ(Z,XR) is a suitable choice.

Utilizing the delay estimate update law (4.32), as well as the control law (4.19), we are

now ready to present the stability theorem for the delay-adaptive controller operating on a robot

manipulator with unknown input delay.

Theorem 4.1. Consider the closed-loop system consisting of the error dynamics of the robot

manipulator (4.4), control law (4.19), delay estimate update law (4.32), and desired joint

trajectories qR(t) satisfying Assumptions 4.1-4.4. Define the following functionals:

Γ(t) =
∣∣Z(t)∣∣+∥∥ũ(t)

∥∥
1 +

∫ 1

0

∣∣û(x, t)− ûR(x, t)
∣∣
1dx+

∫ 1

0

∣∣ûx(x, t)− ûR,x(x, t)
∣∣
1dx (4.41)

ΓR(t) =
∣∣r̂x(1, t)

∣∣
1 +
∥∥r̂x(t)

∥∥
1 +
∥∥r̂xx(t)

∥∥
1 (4.42)

in which r̂ is defined in (4.18),

ûR(x, t) = κ(p̂(x, t), r̂(x, t)) (4.43)

is the predicted distributed input reference, and

ũ(x, t) = u(x, t)− û(x, t) (4.44)

is the distributed input estimation error. Then, there exist R∗, Γ∗, δ ∗, γ∗, c3, c4 > 0, and a class

K∞ function α∗ such that, if XR(t), ẊR(t), and ẌR(t) are uniformly bounded by R∗, Γ(0)≤ Γ∗,∣∣D̃(0)
∣∣< δ ∗, and γ < γ∗ then

Γ(t)≤ c3Γ(0)e−c4t +α
∗

(
sup

s∈[0,t]
{ΓR(s)}

)
, ∀t ≥ 0 (4.45)
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Furthermore, if ẊR(t)→ 0 as t → ∞, then

Z(t) →
t→∞

0 (4.46)

4.4 Lyapunov Analysis

In this section, the proof of Theorem 4.1 resembles the proof of Theorem 3 in [78], since

the delay-adaptive control approach in this chapter is an extension of their approach. However,

significant changes to this proof were necessary in order to adapt it to a trajectory tracking task

utilizing a robot manipulator. In the original backstepping transformation utilized by Bresch-

Pietri and Krstic in [78], the nonlinear plant f and the corresponding control law κ are assumed

to be autonomous. As both f and κ are non-autonomous when tracking a time-varying reference

trajectory XR(t), it was necessary to reformulate the backstepping transformation to handle

the non-autonomous case. This reformulation of the backstepping transformation introduces

new terms in the Lyapunov analysis, which need to be carefully bounded. In order to bound

these terms, it is necessary to do so in terms of the current tracking errors, the distributed input

torques, as well as the temporal derivatives of the reference trajectory. As a result of terms being

bound by the temporal derivatives of the reference trajectory, local input-to-state stability is

established with respect to these derivatives, with regulation of the tracking errors when the

reference trajectory approaches a stationary configuration. Thus, the analysis presented here

extends upon the stability results of [78] when there is a time-varying reference to track, while

preserving the original local asymptotic stability result of [78] when the reference is stationary.

Additionally, due to the control affine nature of robot manipulators, the application of the mean

value theorem is not necessary in order to bound terms such as fũ appearing in this section. This

key property of robot manipulators allows for a large reduction in the number of terms that are

necessary for the Lyapunov analysis presented in this section when compared to that of [78].

It is important to note that both the original method presented in [78] and the method
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we present here utilize the L1 norm rather than the L2 norm as is typical when performing

Lyapunov analysis. For an additional reference in the use of L1 norms in Lyapunov analysis, the

interested reader can refer to [81].

In order to perform the Lyapunov stability analysis, a backstepping transformation is first

used in order to reformulate (4.12)-(4.14).

Lemma 4.3. The backstepping transformation of the distributed input estimates (4.16)

ŵ(x, t) = û(x, t)−κ(p̂(x, t), r̂(x, t)) (4.47)

in which the distributed predictor estimate is defined in (4.17), together with the control law

(4.19), transforms plant (4.12)-(4.14) into:

Ż(t) = f (Z(t),κ(Z(t), r̂(0, t))+ ŵ(0, t)+ ũ(0, t), r̂(0, t)) (4.48)

Dũt(x, t) = ũx(x, t)− D̃(t)g1(x, t)− ˙̂D(t)g2(x, t) (4.49)

ũ(1, t) = 0 (4.50)

D̂(t)ŵt(x, t) = ŵx(x, t)+ ˙̂D(t)h1(x, t)−h2(x, t) fũ(t) (4.51)

ŵ(1, t) = 0 (4.52)

Additionally, the spatial derivative of the backstepping transformation (4.47) satisfies the follow-

ing PDE:

D̂(t)ŵxt(x, t) = ŵxx(x, t)+ ˙̂D(t)h3(x, t)−h4(x, t) fũ(t) (4.53)

ŵx(1, t) =− ˙̂D(t)h1(1, t)+h2(1, t) fũ(t) (4.54)

The expressions for the terms g1, g2, h1, h2, h3, h4, and fũ are as follows, noting that notations
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indicating distributed functions of (x, t) and (y, t) have been removed for the sake of brevity:

g1 =
1

D̂(t)
ûx (4.55)

g2 =
D

D̂(t)
(x−1)ûx (4.56)

h1 = (x−1)ûx − D̂(t)
∂κ

∂ p̂
(p̂, r̂)

∫ x

0
Φ(x,y, t)ψdy− x

∂κ

∂ r̂
(p̂, r̂)r̂x (4.57)

h2 = D̂(t)
∂κ

∂ p̂
(p̂, r̂)Φ(x,0, t) (4.58)

h3 = ûx +(x−1)ûxx −
d
dx

[
D̂(t)

∂κ

∂ p̂
(p̂, r̂)

∫ x

0
Φ(x,y, t)ψdy− x

∂κ

∂ r̂
(p̂, r̂)r̂x

]
(4.59)

h4 = D̂(t)
d
dx

[
∂κ

∂ p̂
(p̂, r̂)

]
Φ(x,0, t)+ D̂(t)2 ∂κ

∂ p̂
(p̂, r̂)

∂ f
∂ p̂

(p̂, û, r̂)Φ(x,0, t) (4.60)

fũ(t) = f (p̂(0, t),u(0, t), r̂(0, t))− f (p̂(0, t), û(0, t), r̂(0, t))

=

 0

M(q(t))−1

 ũ(0, t) (4.61)

where

ψ = f (p̂, û, r̂)+(x−1)
∂ f
∂ û

(p̂, û, r̂)ûx + x
∂ f
∂ r̂

(p̂, û, r̂)r̂x (4.62)

û = ŵ+κ(p̂, r̂) (4.63)

ûx = ŵx +
d
dx

[
κ(p̂, r̂)

]
(4.64)

ûxx = ŵxx +
d2

dx2

[
κ(p̂, r̂)

]
(4.65)

and Φ(x,y, t) is the solution to the following homogeneous ODE:

∂Φ

∂x
(x,y, t) = D̂(t)

∂ f
∂ p̂

(p̂, û, r̂)Φ(x,y, t) (4.66)

Φ(y,y, t) = I (4.67)
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Proof. Note that in this proof, notations indicating distributed functions of (x, t) and (y, t) have

been removed for the sake of brevity.

First, (4.48) is obtained from applying equations (4.47) and (4.44) to that of the nonlinear

plant (4.12)-(4.14). Next, by examining the spatial and temporal derivatives of the distributed

input estimate (4.16) and distributed trajectory estimate (4.18), the following relationships are

obtained:

D̂(t)ût = ûx +
˙̂D(t)(x−1)ûx (4.68)

û(1, t) =U(t) (4.69)

D̂(t)r̂t = r̂x +
˙̂D(t)xr̂x (4.70)

r̂(0, t) = XR(t) (4.71)

By combining (4.68) with that of the relationship between the spatial and temporal

derivatives of the input (4.13)-(4.14), and applying the backstepping transformation (4.47),

(4.49)-(4.50) are obtained.

In order to obtain the governing equation for ŵ, we first substitute (4.47) and (4.70) into

(4.68) to obtain the following expression:

D̂(t)ŵt = ŵx −
∂κ

∂ p̂
(p̂, r̂)(D̂(t)p̂t − p̂x)+

˙̂D(t)(x−1)ûx − ˙̂D(t)x
∂κ

∂ r̂
(p̂, r̂)r̂x (4.72)

In order to obtain (4.51)-(4.52) from (4.72), it is necessary to study the behavior of the

temporal and spatial derivatives of the distributed predictor. By taking the temporal and spatial

derivatives of p̂ and substituting in (4.68) and (4.70), the following relationships are obtained:

p̂t = f (p̂(0, t),u(0, t), r̂(0, t))+
∫ x

0

∂ f
∂ p̂

(p̂, û, r̂)D̂(t)p̂t +
∂ f
∂ û

(p̂, û, r̂)
[
ûy +

˙̂D(t)(y−1)ûy

]
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+
∂ f
∂ r̂

[
r̂y +

˙̂D(t)yr̂y

]dy+ ˙̂D(t)
∫ x

0
f (p̂, û, r̂)dy (4.73)

p̂x = D̂(t) f (p̂, û, r̂) = D̂(t) f (p̂(0, t), û(0, t), r̂(0, t))

+D̂(t)
∫ x

0

∂ f
∂ p̂

(p̂, û, r̂)p̂y +
∂ f
∂ û

(p̂, û, r̂)ûy +
∂ f
∂ r̂

(p̂, û, r̂)r̂y

dy (4.74)

Then, we define φ = D̂(t)p̂t − p̂x. It is observed from substitution of (4.73) and (4.74)

into this definition that φ satisfies the following equation in x, parametrized in t:

∂φ

∂x
= D̂(t)

∂ f
∂ p̂

(p̂, û, r̂)φ + ˙̂D(t)D̂(t)ψ (4.75)

φ(0, t) = D̂(t) fũ(t) (4.76)

where fũ(t) and ψ are defined in (4.61) and (4.62) respectively.

By defining the transition matrix Φ associated to the corresponding homogeneous equa-

tion, one solves this equation to obtain:

D̂(t)p̂t − p̂x =
˙̂D(t)D̂(t)

∫ x

0
Φ(x,y, t)ψdy+Φ(x,0, t)D̂(t) fũ(t) (4.77)

Substituting this equation along with the backstepping transformation (4.47) into (4.72)

yields (4.51)-(4.52).

By taking the spatial derivative of (4.51), one obtains the governing equation (4.53).

Additionally, the boundary condition (4.54) is directly obtained by rearranging the governing

equation (4.51), along with the knowledge that ŵt(1, t) = 0 due to taking the time derivative of

the boundary condition (4.52).

For the purpose of the Lyapunov analysis, we consider the following Lyapunov-
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Krasovskii functional candidate:

W (t) =V0(Z(t))+b0D
∫ 1

0
(1+ x)

∣∣ũ(x, t)∣∣1dx+b1D̂(t)
∫ 1

0
(1+ x)

∣∣ŵ(x, t)∣∣1dx

+b2D̂(t)
∫ 1

0
(1+ x)

∣∣ŵx(x, t)
∣∣
1dx (4.78)

in which V0 =
√

V , which was previously defined in Assumption 4.3. This functional measures

the current tracking errors of the robot manipulator, as well as the difference between the

distributed input and the desired distributed input. Utilizing the properties of Assumption 4.3,

along with the state space model of the robot manipulator (4.4), the following inequality is

obtained:

V̇0(t)≤−λ

2

∣∣Z(t)∣∣+ c2

2

∣∣∣M(q)−1
∣∣∣∣∣ũ(0, t)+ ŵ(0, t)

∣∣
1 ≤−λ

2

∣∣Z(t)∣∣+M1
∣∣ũ(0, t)+ ŵ(0, t)

∣∣
1

(4.79)

where

M1 = max
q∈[0,2π)

c2

2

∣∣∣M(q)−1
∣∣∣ (4.80)

By utilizing (4.53), the temporal derivative of the fourth term of W (t) can be bounded as

follows:

d
dt

[
b2D̂(t)

∫ 1

0
(1+ x)

∣∣ŵx(x, t)
∣∣
1dx

]

= b2D̂(t)
∫ 1

0
(1+ x)ŵxt(x, t) · sign(ŵx(x, t))dx+b2

˙̂D(t)
∫ 1

0
(1+ x)

∣∣ŵx(x, t)
∣∣
1dx

≤ b2

∫ 1

0
(1+ x)ŵxx(x, t) · sign(ŵx(x, t))dx+b2

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(1+ x)

∣∣h3(x, t)
∣∣
1dx

+b2

∫ 1

0
(1+ x)

∣∣h4(x, t) fũ(t)
∣∣
1dx+b2

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(x+1)

∣∣ŵx(x, t)
∣∣
1dx (4.81)
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Using integration by parts, the first term in this inequality can be simplified as follows:

b2

∫ 1

0
(1+ x)ŵxx(x, t) · sign(ŵx(x, t))dx = (1+ x)

∣∣ŵx(x, t)]
∣∣
1

∣∣∣1
0
−
∫ 1

0

∣∣ŵx(x, t)
∣∣
1dx

= 2b2
∣∣ŵx(1, t)

∣∣
1 −b2

∣∣ŵx(0, t)
∣∣
1 −b2

∥∥ŵx(t)
∥∥

1 (4.82)

By utilizing the same method for the terms containing ŵ and ũ within (4.78), the inequality

(4.79), and applying the boundary conditions (4.50) and (4.52), the following inequality is

obtained:

Ẇ (t)≤−λ

2

∣∣Z(t)∣∣+M1
∣∣ũ(0, t)+ ŵ(0, t)

∣∣
1 −b0

∥∥ũ(t)
∥∥

1 −b0
∣∣ũ(0, t)∣∣1 −b1

∥∥ŵ(t)
∥∥

1

−b1
∣∣ŵ(0, t)∣∣1 −b2

∥∥ŵx(t)
∥∥

1 +2b2
∣∣ŵx(1, t)

∣∣
1 −b2

∣∣ŵx(0, t)
∣∣
1

+b0
∣∣D̃(t)

∣∣∫ 1

0
(x+1)

∣∣g1(x, t)
∣∣
1dx+b0

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(x+1)

∣∣g2(x, t)
∣∣
1dx

+b1

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(x+1)

∣∣h1(x, t)
∣∣
1dx+b1

∫ 1

0
(x+1)

∣∣h2(x, t) fũ(t)
∣∣
1dx

+b2

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(1+ x)

∣∣h3(x, t)
∣∣
1dx+b2

∫ 1

0
(x+1)

∣∣h4(x, t) fũ(t)
∣∣
1dx

+b1

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(x+1)

∣∣ŵ(x, t)∣∣1dx+b2

∣∣∣ ˙̂D(t)
∣∣∣∫ 1

0
(x+1)

∣∣ŵx(x, t)
∣∣
1dx (4.83)

In order to bound the positive terms in the previous expression, we define the following

combined functional:

S(t) =
1
2
(
W (t)+ΓR(t)

)
(4.84)

where ΓR(t) is defined in (4.42). This functional measures the current tracking errors of the robot

manipulator, the difference between the distributed input and the desired distributed input, and

the magnitude of temporal derivatives of the desired trajectory.

Through the application of Assumption 4.3, it is found that
∣∣Z(t)∣∣ satisfies the following
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inequality:

λ

2

∣∣Z(t)∣∣≥ λ

2
√

c1
V0(Z(t)) (4.85)

Furthermore, the term b2
∥∥ŵx(t)

∥∥
1 satisfies the following inequality:

b2
∥∥wx(t)

∥∥
1 ≥

1
2

b2

∫ 1

0
(1+ x)

∣∣ŵx(x, t)
∣∣
1dx ≥ 1

2D
b2D̂(t)

∫ 1

0
(1+ x)

∣∣ŵx(x, t)
∣∣
1dx (4.86)

Similar inequalities can be formulated for the terms b0
∥∥ũ(t)

∥∥
1 and b1

∥∥ŵ(t)
∥∥

1 appearing

in (4.83). In order to bound further terms present in (4.83), it is first necessary to introduce

several technical lemmas:

Lemma 4.4. There exists a class K∞ function α2 such that for all x ∈ [0,1]:

∣∣p̂(x, t)∣∣≤ α2

(
|Z|+

∥∥ŵ(t)
∥∥

1

)
(4.87)

Proof. The distributed predictor satisfies the following spatial ODE:

p̂x(x, t) = D̂(t) f (p̂(x, t), ŵ(x, t)+κ(p̂(x, t), r̂(x, t)), r̂(x, t)) (4.88)

p̂(0, t) = Z(t) (4.89)

Therefore, as D̂(t) ∈ [D,D], f is continuous, the plant (4.12)-(4.14) is forward complete,

f (0,κ(0, r̂), r̂) = 0, and r̂ is uniformly bounded, there exists a K∞ function α2 such as introduced

in this lemma.

Lemma 4.5. There exist class K∞ functions α3 and α4 such that for all x ∈ [0,1]:

∣∣p̂x(x, t)
∣∣≤ α3

(∣∣p̂(x, t)∣∣1 + ∣∣ŵ(x, t)∣∣1) (4.90)
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∣∣p̂xx(x, t)
∣∣≤ α4

(∣∣p̂(x, t)∣∣1 + ∣∣ŵ(x, t)∣∣1 + ∣∣ŵx(x, t)
∣∣
1 +
∣∣r̂x(x, t)

∣∣
1

)
(4.91)

Proof. Note that in this proof, notations indicating distributed functions of (x, t) have been

removed for the sake of brevity.

The quantity p̂x is equivalent to the following expression:

p̂x = D̂(t) f (p̂, û, r̂) = D̂(t) f (p̂, ŵ+κ(p̂, r̂), r̂) (4.92)

Therefore, as D̂(t) ∈ [D,D], f (0,κ(0, r̂), r̂) = 0, and r̂ is uniformly bounded, there exists a K∞

function α3 such as introduced in this lemma.

By taking the spatial derivative of p̂x, the following expression for p̂xx is obtained:

p̂xx = D̂(t)
[

∂ f
∂ p̂

(p̂, û, r̂)p̂x +
∂ f
∂ û

(p̂, û, r̂)ûx +
∂ f
∂ r̂

(p̂, û, r̂)r̂x

]
(4.93)

For a given D̂ and r̂, this expression can be bounded by the terms p̂, û, p̂x, ûx, and r̂x. û can be

bounded by p̂ and ŵ, and p̂x can be bounded by α2. Through the investigation of (4.64), it can be

seen that ûx can be bounded by ŵx, p̂, p̂x, and r̂x, with ûx = 0 if ŵx = p̂x = r̂x = 0. Furthermore,

pxx = 0 if ûx = p̂x = r̂x = 0. Therefore, as D̂(t) ∈ [D,D] and r̂ is uniformly bounded, there exists

a K∞ function α4 such as introduced in this lemma.

Lemma 4.6. There exist class K∞ functions αi, with i = 5, ...,13 and constants M2,M3,M4 > 0

such that:

∫ 1

0
(x+1)

∣∣g1(x, t)
∣∣
1dx ≤ α5(|Z|+

∥∥ŵ(t)
∥∥

1 +
∥∥ŵx(t)

∥∥
1 +
∥∥r̂x(t)

∥∥
1)≤ α6(S(t)) (4.94)∫ 1

0
(x+1)

∣∣g2(x, t)
∣∣
1dx ≤ α7(S(t)) (4.95)∫ 1

0
(x+1)

∣∣h1(x, t)
∣∣
1dx ≤ α8(S(t)) (4.96)
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∫ 1

0
(1+ x)

∣∣h3(x, t)
∣∣
1dx ≤

∣∣ŵx(0, t)
∣∣
1 +α9(S(t)) (4.97)∫ 1

0
(x+1)

∣∣h2(x, t) fũ(t)
∣∣
1dx ≤

(
M2 +α10(S(t))

)∣∣ũ(0, t)∣∣1 (4.98)∫ 1

0
(x+1)

∣∣h4(x, t) fũ(t)
∣∣
1 ≤

(
M3 +α11(S(t))

)∣∣ũ(0, t)∣∣1 (4.99)∣∣ŵx(1, t)
∣∣
1 ≤

∣∣∣ ˙̂D(t)
∣∣∣α12(S(t))+

(
M4 +α13(S(t))

)∣∣ũ(0, t)∣∣1 (4.100)

Proof. By the application of Lemma 4.4, Lemma 4.5, and Assumption 4.1, along with the fact

that f and κ are class C2 functions, one obtains the existence of α5 as stated in this lemma. Then,

through the application of the following inequality:

(∣∣Z(t)∣∣+∥∥ũ(t)
∥∥

1 +
∥∥ŵ(t)

∥∥
1 +
∥∥ŵx(t)

∥∥
1 +
∣∣r̂x(1, t)

∣∣
1 +
∥∥r̂x(t)

∥∥
1 +
∥∥r̂xx(t)

∥∥
1

)
≤ 2max

{
1,

1
b0D

,
1

b1D
,

1
b2D

}
S(t) (4.101)

the existence of α6 as stated in this lemma is obtained. Applying these same considerations, the

existence of α7 as stated in this lemma is also obtained.

In order to bound the higher order spatial derivative term in h3, integration by parts may

be used to bound this term as a function of wx:

∫ 1

0
(x2 −1)

∣∣ŵxx(x, t)
∣∣
1dx ≤

∣∣ŵx(0, t)
∣∣
1 +

∫ 1

0
2x
∣∣ŵx(x, t)

∣∣
1dx (4.102)

Applying this bound, along with the previously stated considerations and Lemma 4.1, the

existence of α8 and α9 as stated in this lemma are obtained.

To bound further terms present in this lemma, additional considerations must be made.

First, due to the control affine property of robot manipulators, the term fũ can be bounded as
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follows:

fũ(t)≤ max
q∈[0,2π)

∣∣∣M(q)−1
∣∣∣∣∣ũ(0, t)∣∣1 (4.103)

Second, utilizing previous considerations, the terms h2 and h4 can be bounded in terms of S as

follows:

∣∣h2(x, t)
∣∣
1 ≤Ch2 +αh2(S(t)) (4.104)∣∣h4(x, t)
∣∣
1 ≤Ch4 +αh4(S(t)) (4.105)

where Ch2,Ch4 ≥ 0 and αh2,αh4 are class K∞ functions. Note that constants Ch2 and Ch4 are

necessary since we do not have h2 = h4 = 0 when S = 0. Applying all previously stated

considerations, the existence of class K∞ functions α10, α11, α12, α13 and constants M2, M3,

and M4 as stated in this lemma are obtained.

Thus, by applying Lemma 4.6 located in the Appendix, and introducing

η = (1/2)min{λ/
√

c1,1/D}, one bounds (4.83) in terms of class K∞ functions αi(S(t)) with

i = 5, ...,13 of (4.84) and constants M2,M3,M4 > 0:

Ẇ (t)≤−

ηW (t)−
∣∣∣ ˙̂D(t)

∣∣∣(b0α7(S(t))+b1α8(S(t))+b2α9(S(t))+2b2α12(S(t))

+
2
D
(b1 +b2)S(t)

)
−
∣∣D̃(t)

∣∣b0α6(S(t))

−
∣∣ũ(0, t)∣∣1(b0 −b1α10(S(t))

−b2α11(S(t))−2b2α13(S(t))−M1 −b1M2 −b2(M3 +2M4)

)
−
∣∣ŵ(0, t)∣∣1(b1 −M1

)
−
∣∣ŵx(0, t)

∣∣
1b2

(
1−
∣∣∣ ˙̂D(t)

∣∣∣) (4.106)

In order to ensure that the terms corresponding to
∣∣ũ(0, t)∣∣1 and

∣∣ŵ(0, t)∣∣1 in (4.106) are
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negative ∀t ≥ 0, we define the following constant parameters:

W ∗ > 0, Γ
∗
R > 0, S∗ =

W ∗+Γ∗
R

2
(4.107)

Furthermore, we choose the constant parameters of the functional W (t) such that:

b0 > b1α10(S∗)+b2α11(S∗)+2b2α13(S∗)+M1 +b1M2 +b2(M3 +2M4) (4.108)

b1 > M1, (4.109)

To further reduce (4.106), we apply Lemma 4.2 and introduce the following functions:

α
∗
1 (S(t)) = b0α7(S(t))+b1α8(S(t))+b2α9(S(t))+2b2α12(S(t))+

2
D
(b1 +b2)S(t) (4.110)

α
∗
2 (S(t)) = b0α6(S(t)) (4.111)

For W (t)≤W ∗ and ΓR(t)≤ Γ∗
R, (4.106) reduces to:

Ẇ (t)≤−
(

ηW (t)− γHα
∗
1 (W (t))− γHα

∗
1 (ΓR(t))−

∣∣D̃(t)
∣∣α∗

2 (W (t))−
∣∣D̃(t)

∣∣α∗
2 (ΓR(t))

)
−b2(1− γH)

∣∣ŵx(0, t)
∣∣
1 (4.112)

Noting that ΓR(t) is uniformly bounded due to Assumption 4.1, by choosing for a given

ν ∈ (0,1):

γ <
1
H

min

1,
(1−ν)η

2 max
x∈[0,W ∗]

α∗′
1 (x)

,
(1−ν)νηW ∗

2α∗
1 (Γ

∗
R)

 (4.113)

∣∣D̃(0)
∣∣< min

D̃max,
(1−ν)η

2 max
x∈[0,W ∗]

α∗′
2 (x)

,
(1−ν)νηW ∗

2α∗
2 (Γ

∗
R)

 (4.114)

W (0)≤W ∗ (4.115)
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ΓR(t)≤ Γ
∗
R, ∀t ≥ 0 (4.116)

one ensures that:

Ẇ (t)≤−ν
2
ηW (t), for W (t)≥ α

∗
3 (ΓR(t)) (4.117)

W (t)≤W ∗, ∀t ≥ 0 (4.118)

where

α
∗
3 (ΓR(t)) =

γHα∗
1 (ΓR(t))+

∣∣D̃(t)
∣∣α∗

2 (ΓR(t))
(1−ν)νη

(4.119)

Through careful examination of (4.117), the following inequality is obtained:

W (t)≤W (0)e−ν2ηt +α
∗
3

(
sup

s∈[0,t]
{ΓR(s)}

)
(4.120)

In order to provide a stability result in terms of Γ and ΓR, Assumption 4.3 is used to prove the

existence of two constants c∗1, c∗2 > 0 such that c∗1Γ(t) ≤ W (t) ≤ c∗2Γ(t). By combining this

inequality with (4.120), the property (4.45) stated in Theorem 4.1 is obtained, with c3 = c∗2/c∗1,

c4 = ν2η , and α∗(ΓR(s)) = α∗
3 (ΓR(s))/c∗1.

In order to prove convergence when ẊR(t)→ 0 as t → ∞, we first analyze the convergence

properties of α∗
3 (ΓR(t)). As qR ∈ C 5 due to Assumption 4.1, it can be observed that ΓR(t) and

consequently α∗
3 (ΓR(t)) converge to 0 as t → ∞. Thus, ∀ε > 0, ∃T1 > 0 such that:

α
∗
3 (ΓR(t))≤ ε, ∀t ≥ T1 (4.121)

and thus consequently:

Ẇ (t)≤−ν
2
ηW (t), for W (t)≥ ε,∀t ≥ T1 (4.122)
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Integrating this inequality from T1 to t, it can be observed that ∀ε > 0, ∃T2 > 0 such that:

W (t)≤ ε, ∀t ≥ T2 (4.123)

and thus we conclude:

lim
t→∞

W (t) = lim
t→∞

Z(t) = 0 (4.124)

Last, we verify the assumed uniform boundedness of X(t), U(t) and their derivatives in

Lemma 4.2. From the relationship (4.118), it can be observed that W (t), and thus S(t) and Z(t)

are uniformly bounded. As both Z(t) and XR(t) are uniformly bounded, X(t) is consequently

uniformly bounded. Additionally, through the application of Lemma 4.4 and Assumption 4.1 to

(4.19), U(t) can be bounded in terms of W (t) and is consequently uniformly bounded.

To obtain a bound for U̇(t), (4.16) is substituted into (4.47). Taking the partial derivative

of this result with respect to x yields:

D̂(t)U̇(t + D̂(t)(x−1)) = ŵx(x, t)+
∂κ

∂ p̂
(p̂(x, t), r̂(x, t))p̂x(x, t)+

∂κ

∂ r̂
(p̂(x, t), r̂(x, t))r̂x(x, t)

(4.125)

Evaluating this equation at x = 1 yields:

D̂(t)U̇(t) = ŵx(1, t)+
∂κ

∂ p̂
(p̂(1, t), r̂(1, t))p̂x(1, t)+

∂κ

∂ r̂
(p̂(1, t), r̂(1, t))r̂x(1, t) (4.126)

Through the application of Lemma 4.4 to bound p̂(1, t), Lemma 4.5 to bound p̂x(1, t), Lemma

4.6 and Lemma 4.2 to bound ŵx(1, t), noting that
∣∣ũ(0, t)∣∣1 is uniformly bounded due to the

uniform boundedness of U(t), and the fact that D̂(t) ∈ [D,D], U̇(t) can be bounded in terms of

S(t) and U(t) and is consequently uniformly bounded.
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4.5 Remarks on Delay-Adaptive Control Law

In this research effort, our proposed delay-adaptive control law for a high-DOF robot

manipulator consists of a predictor (4.17) of the system state after the delayed input reaches

the system, a globally exponentially stable controller (4.19) for the delay-free system, and a

gradient-based estimator of the input delay (4.32). It should be noted that this structure of the

delay-adaptive control law allows for a wide selection of possible controllers for the delay-free

system. One such permissible controller with (global) exponential stability is the feedback

linearization based controller, a popular control strategy for nonlinear systems that we have

previously utilized in a prediction-based control law for a known input delay [6, 9]. Compared to

our previous work, this research effort possesses the following key differences:

• In our previous work, the input delay was a known constant parameter. In this research

effort, it is an unknown constant parameter.

• In our previous work, a predictor was employed without delay adaptation to compensate

for a known delay. In this research effort, we perform both prediction (4.17) and delay

adaptation (4.32) in order to compensate for an unknown delay.

• In our previous work, we compared the performance of a control law with prediction to

a control law without prediction in simulations and experiments. In this research effort,

we compare the performance of a control law with prediction and delay adaptation to a

control law with prediction, but without delay adaptation, in simulations and experiments.

It is important to note that the properties of the delay estimator (4.32) stated in Lemma

4.2 are contingent on the initial delay estimation error
∣∣D̃(0)

∣∣ being less than a critical value

D̃max. Due to the strongly nonlinear relation between the estimated delay D̂ and the gradient

of XP given by (4.28), obtaining even a conservative mathematical expression for D̃max is a

difficult task [82]. As a mathematical expression for D̃max is not currently known, and
∣∣D̃(0)

∣∣ is

initially unknown, the necessary conditions for Lemma 4.2 may seem restrictive. However, it is
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still possible to determine an estimate for D̃max through repeated simulations and experiments.

As we demonstrate in the next section through both simulations and experiments, the delay

estimator (4.32) is capable of correcting a significant initial delay mismatch, both in cases of

overestimation and underestimation. Thus, when a reasonable initial estimate of the delay is

available, and thus we can upper bound
∣∣D̃(0)

∣∣, the properties stated in Lemma 4.2 can safely be

assumed to hold.

In order to implement the proposed delay-adaptive control strategy we have proposed,

several numerical approximations are necessary. The governing equation (4.17) for p̂, and the

governing equation (4.20) for XP are both ODEs, and thus can be numerically solved by a variety

of different methods, such as Euler’s method, Heun’s method, and RK4. In simulations as well

as experiments, we have observed that utilizing Euler’s method provides sufficient accuracy in

the estimation of p̂ and XP at the least computational burden out of the tested methods. Once XP

is determined, ∂XP
∂ D̂

can be determined through a trapezoidal Reimann sum, as (4.28) is a definite

integral. However, solving for ∂XP
∂ D̂

is complicated by the presence of Φ0, which is governed

by the ODE given in (4.29) with initial condition (4.30). While this ODE can technically be

evaluated in the same manner as p̂ and XP, it is infeasible to compute in practice due to the

function ∂ f0
∂XP

present in the ODE containing computationally expensive terms to calculate such as

∂C
∂XP

, which is a 7 x 7 x 14 tensor. However, for a sufficiently small value of β , ∂Φ0
∂XP

≈ 0 and thus

Φ0 can be approximated as the identity matrix. Alternatively, it is possible to avoid calculation

of the integral equation (4.28) through the use of finite difference methods:

∂XP

∂ D̂
(1, t, D̂)≈ XP(1, t, D̂+h)−XP(1, t, D̂)

h
(4.127)

where h is the timestep of the controller. In this method, XP(1, t, D̂+ h) is determined in the

same manner as XP(1, t, D̂), and thus involves the solution of an additional ODE. In practice,

approximating Φ0 as the identity matrix and utilizing the presented finite difference method have

yielded near identical results. In simulations and experiments, we have opted to approximate Φ0
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as the identity matrix.

4.6 Simulation and Experimental Results

In order to assess the performance of the delay-adaptive approach, we perform both

a series of simulations using ODE methods on Baxter’s dynamic equation (2.1), as well as

several corresponding experiments. In each simulation and experiment, Baxter must track the six

second trajectory specified in Chapter 2, while initially suffering from a large delay mismatch.

Two cases are studied here, an underestimation of 0.9 seconds (0s initial prediction, 0.9s actual

delay), as well as an overestimation of 0.5 seconds (0.9s initial prediction, 0.4s actual delay).

These large delay mismatches are intentionally chosen in order to demonstrate the ability of

the delay-adaptive approach to achieve stability under conditions that would cause a purely

predictor-based approach to fail. In each simulation and experiment, the robot manipulator is

commanded to remain stationary for a length of time equal to the initial estimated delay, then

follow the 6 second pick and place trajectory described previously. This initial stationary period

was chosen so that if the initial estimated delay were in fact equal to the actual input delay, the

robot manipulator would be able to perfectly track the desired trajectory.

In both the simulation and experiment, we utilized an adaptation rate of γ = 40 and a

replay length of β = 0.1s. For the control law for the delay free system described in Assumption

4.3, we utilized the following feedback linearization based controller proposed in [6, 9]:

κ(Z,XR) = M(z+qR)[q̈R − k1k2z− (k1 + k2)ż]+N(z+qR, ż+ q̇R) (4.128)

with k1 = k2 = 5.

4.6.1 Trajectory Tracking without Delay Adaptation when the Delay is
Underestimated

In order to compare the performance of the delay-adaptive approach studied in this

research effort to a predictive approach without delay adaptation, we first performed several
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simulations in which the input delay is underestimated. Simulations are performed at an estimated

delay of 0.9 seconds, 0.85 seconds, 0.8 seconds, and 0.78 seconds in order to examine the

destabilizing effect of several magnitudes of delay mismatch.

The simulated and desired joint trajectories of Baxter can be seen in Fig. 4.1 (a-g).

When the estimated delay is 0.85 seconds, the predictive approach without delay adaptation still

manages to closely track the desired trajectory. This indicates that even without delay adaptation,

the predictive approach has a small degree of robustness to a mismatch in delay. However, when

the estimated delay is 0.8 seconds, the trajectory tracking appears to become worse throughout

the procedure, with several large oscillations observed in the last second of the simulation. At

a slightly larger delay mismatch when the estimated delay is 0.78 seconds, oscillations are

observed throughout the procedure, with a large divergence from the desired trajectory at the end

of the simulation. Thus, without delay adaptation, the tracking performance of the predictive

approach is significantly reduced in the presence of a delay mismatch.

The simulated joint torque input signals can be seen in Fig. 4.1 (h-n). Significant issues

can be observed in the behavior of these torque signals. When the estimated delay is 0.85

seconds, several large oscillations can be observed in the torque input signal, which are not

present when the estimated delay is equivalent to the true input delay. This indicates that even a

relatively small delay mismatch can noticeably impact the predictive approach without delay

adaptation. Observing the behavior of the 0.8 seconds estimated delay, as well as that of the

0.78 seconds estimated delay, it is clear that both torque signals are unstable. In particular,

at an estimated delay of 0.78 seconds, the input torque signal rapidly oscillates between the

minimum and maximum torque output of Baxter during the last second of the procedure. Such a

torque signal would be likely to damage the actuators of the robot manipulator, and demonstrates

dangerous behavior by a control scheme.
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(a) (b)

(c) (d)

(e) (f)

(g)

(h) (i)

(j) (k)

(l) (m)

(n)

Figure 4.1. The simulated trajectories (a-g) and joint torque input signals (h-n) of Baxter per-
forming a pick and place task without delay adaptation, with an input delay of 0.9s. Simulations
are performed at an estimated delay of 0.9s (red dashed line), 0.85s (blue line), 0.8s (yellow line),
and 0.78s (green line).
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4.6.2 Trajectory Tracking when the Delay is Underestimated

The experimental, simulated, and desired joint trajectories of Baxter can be seen in Fig.

4.2 (a-g). Despite the large initial delay mismatch, the delay-adaptive approach is effective at

driving the robot manipulator towards the desired trajectory. After the initial 0.9 seconds of

operation, in which the robot manipulator was expectedly stationary due to the input delay, the

robot manipulator quickly corrects itself towards the desired trajectory. This behavior can also

be observed in Fig. 4.3, as both the simulated and experimental joint tracking errors decrease

rapidly after around 1 second of operation. Furthermore, both the experimental and simulated

trajectories appear to be smooth, indicating that changes to the estimated delay during adaptation

did not cause disturbances in the tracking performance of the manipulator. Thus, as the delay

adaptive approach studied here is capable of handling an initial delay mismatch of 0.9 seconds in

the case of underestimation, it is capable of handling a much larger delay mismatch than without

delay adaptation, which could only safely handle a mismatch of 0.05 seconds.

The experimental and simulated joint torque input signals can be seen in Fig. 4.2 (h-n).

It is important to note that these torques are significantly lower than the maximum torque output

of Baxter’s joints, which are 50 Nm for joints 1-4, and 15 Nm for joints 5-7. Thus, the delay-

adaptive approach is able to compensate for a large delay underestimation without producing

excessive joint torques. In the simulation and experiment, slight chattering can be observed in

the input joint torque signal. This chattering, which is most prominent during the 1st 2 seconds

of the simulation, is caused by large changes in the estimated delay in the beginning of the

simulation. This behavior is not of concern however, as the chattering is of a small amplitude,

and is mostly eliminated after 2 seconds.

The adaptation of the estimated delay in the experiment and simulation can be seen in Fig.

4.4. In both the experiment and simulation, the estimated delay quickly converges to the actual

delay. Furthermore, the following important observations can be made regarding the behavior of

the adaptation. First of all, the rate of change of the adaptation appears to be constant during the
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(j) (k)
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(n)

Figure 4.2. The experimental (blue line), simulated (green line), and desired (red dashed line)
joint trajectories (a-g) of Baxter, as well as the experimental (blue line) and simulated (red
dashed line) joint torque input signals (h-n) of Baxter. The input delay of the system is initially
underestimated (0s initial prediction, 0.9s actual delay).
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(a) (b)

Figure 4.3. The simulated (a) and experimental (b) joint tracking errors of Baxter. The input
delay of the system is initially underestimated (0s initial prediction, 0.9s actual delay).

Figure 4.4. The adaptation of the estimated delay in experiment (blue line) and simulation
(green line), compared to the actual input delay (red dashed line). The input delay of the system
is initially underestimated (0s initial prediction, 0.9s actual delay).
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1st 0.9 seconds of the simulation and experiment, until the estimated delay coincides with the

actual delay. Due to the initial state of the robot manipulator being at rest, delays longer than

the elapsed time t are indistinguishable from a delay of t seconds. Thus, as a consequence of

the properties stated in Lemma 4.2, the estimated delay is upper bounded by the elapsed time

in the simulation and experiment. Second of all, we observe that the estimation of the delay in

simulation and experiment follow a nearly identical curve. This indicates that the delay-adaptive

procedure does not suffer significantly from factors such as measurement noise of joint states

which are present in the experiment but not in the simulation. Finally, it can be seen that there is

slight overshoot in the estimated delay during the experiment. Although this behavior technically

violates Lemma 4.2, it can reasonably be attributed to discretization of the control law.

4.6.3 Trajectory Tracking when the Delay is Overestimated

The experimental, simulated, and desired joint trajectories of Baxter can be seen in Fig.

4.5 (a-g). As was the case for an underestimated delay, the delay-adaptive approach is effective

at driving the robot manipulator towards the desired trajectory. After the initial 0.4 seconds of

operation, the manipulator starts following the curve of the desired trajectory. However, the

manipulator was intended to remain stationary for 0.9 seconds, and thus has begun to accumulate

error. After 1.5 seconds of operation, a shift in the manipulator behavior is observed, as the robot

manipulator quickly moves to align to the desired trajectory. After 2 seconds have elapsed, the

manipulator achieves near-perfect tracking of the desired trajectory for the remainder of the task.

This behavior can also be observed in Fig. 4.6, as the errors increase after 0.4 seconds, reach a

maximum at 1.5 seconds, and taper off after 2 seconds. As was the case for the underestimated

delay, both the simulated and experimental trajectories appear to be smooth, indicating that

changes to the estimated delay during adaptation did not cause disturbances in the tracking

performance of the manipulator.

The experimental and simulated joint torque input signals can be seen in Fig. 4.5 (h-n).

As was the case with underestimation of the delay, the generated input torques are significantly
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Figure 4.5. The experimental (blue line), simulated (green line), and desired (red dashed line)
joint trajectories (a-g) of Baxter, as well as the experimental (blue line) and simulated (red
dashed line) joint torque input signals (h-n) of Baxter. The input delay of the system is initially
overestimated (0.9s initial prediction, 0.4s actual delay).
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(a) (b)

Figure 4.6. The simulated (a) and experimental (b) joint tracking errors of Baxter. The input
delay of the system is initially overestimated (0.9s initial prediction, 0.4s actual delay).

Figure 4.7. The adaptation of the estimated delay in experiment (blue line) and simulation
(green line), compared to the actual input delay (red dashed line). The input delay of the system
is initially overestimated (0.9s initial prediction, 0.4s actual delay).
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lower than the maximum torque output of Baxter’s joints. Thus, the delay-adaptive approach is

able to compensate for a large delay overestimation without producing excessive joint torques.

Compared to the case of underestimated delay, there does not appear to be chattering in the

torque input signal. However, several joints exhibit a large spike in the torque input signal

at around 1 second of operation, with smaller spikes at 0.4 seconds and 1.5 seconds. These

torque spikes are likely due to the initial unexpected robot manipulator motion, the start of delay

adaptation, and the convergence of delay adaptation respectively. Thus, qualitatively distinct

behavior is observed between an underestimation and an overestimation of the delay, although

the robot manipulator displays near perfect tracking throughout the majority of the procedure in

both cases.

The adaptation of the estimated delay in the experiment and simulation can be seen in Fig.

4.7. Several important observations can be made regarding the behavior of the adaptation. During

the 1st 0.9 seconds of operation, no changes are visible in the estimated delay. This behavior is

due to the local nature of the gradient-based delay estimate approach. As previously described

while examining the behavior of the delay adaptation when the delay was underestimated, delays

longer than the elapsed time t are indistinguishable from a delay of t seconds. Thus, the gradient

is 0 around the estimated delay of 0.9 seconds, until at least 0.9 seconds have elapsed in the

procedure. After the operation time reaches 0.9 seconds, the estimated delay quickly converges to

the actual delay. It is important to note that the behavior of the adaptation matches the observed

behavior in the joint positions and torques. The estimated delay starts adapting at 0.9 seconds

and finishes adapting around 1.5 seconds, which aligns with the spikes observed in the torque

profiles, as well as changes in the joint error signals.

4.7 Conclusion

In this chapter, we investigated the analytical and experimental trajectory-tracking control

of a 7-DOF robot manipulator with an unknown long actuator delay. In order to compensate for
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this unknown delay, we formulated a delay-adaptive prediction-based control strategy in order

to simultaneously estimate the unknown delay while driving the robot manipulator towards the

desired trajectory. To the best of the authors’ knowledge, this chapter is the first to present a

delay-adaptive approach for a nonlinear system with multiple inputs. Through Lyapunov analysis

utilizing the L1 norm, we obtained a local asymptotic stability result of the proposed controller.

Then, we demonstrated through both simulation and experiment that the proposed controller

is capable of achieving desirable trajectory tracking performance, even in the case of a large

initial delay mismatch. As shown in Fig. 4.8, the delay-adaptive approach significantly improves

the tracking performance of the Robot Manipulator when there is a delay mismatch, without

sacrificing performance when the delay is properly identified. This research represents a large

improvement upon the predictor-based approach in the case of an unknown delay, and thus has

promising potential for use cases in which the delay is difficult to accurately predict or measure

directly.

DSCL

(a)

Figure 4.8. Baxter performing a pick and place task while subjected to an input delay of 0.9
seconds (0s initial delay estimate).
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Chapter 5

Prescribed-Time Control

We present an analytical design and experimental verification of trajectory tracking

control of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to

the origin within a finite terminal time, also referred as the “settling time.” A key feature of

this control strategy is that the settling time is explicitly assigned by the control designer to

a value desired, or “prescribed” by the user, and that the settling time is independent of the

initial conditions and of the reference signal. In order to achieve this beneficial property with

the controller, a scaling of the state by a function of time that grows unbounded towards the

terminal time is employed. Through Lyapunov analysis, we first demonstrate that the proposed

controller achieves regulation of all tracking errors within the prescribed time as well as the

uniform boundedness of the joint torques, even in the presence of a matched, non-vanishing

disturbance. Then, through both simulation and experiment, we demonstrate that the proposed

controller is capable of converging to the desired trajectory within the prescribed time, despite

large distance between the initial conditions and the reference trajectory, i.e., in spite of large

initial tracking errors, and in spite of a sinusoidal disturbance being applied in each joint.

5.1 Background

In many applications where robot manipulators are utilized, the convergence time of the

underlying controller plays a crucial role. In many tasks there are strict requirements on the
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maximum duration of convergence, and thus a failure to achieve convergence by the required

time could lead to the inability of the robot manipulator to perform its task. Convergence time

also plays a role in the planning and reliability of robot manipulators. For example, if an accurate

estimate of the convergence time is known for a certain task, an accurate and reliable estimate on

the productivity of the robot manipulator can be made. Expanding on this point, when multiple

robot manipulators are used cooperatively, such as in an assembly line in industrial applications,

having reliable estimates of the completion time of each individual task is crucial in order to

effectively plan the operation of each manipulator. A considerable amount of research has

been devoted towards the development of control methods for robot manipulators which are

capable of guaranteeing an upper bound on the convergence time (potentially dependent on

initial conditions), achieving convergence to zero within a finite period of time.

The literature on finite-time convergence methods concerning robot manipulators can be

broadly organized into three distinct categories: the finite-time methods [83–87], the fixed-time

methods [88–94], and the prescribed-time methods [95–107].

Finite-time methods are characterized by a finite convergence time that is bounded by

the norm of the initial condition, as well as a function of the controller parameters. While these

methods are useful in order to obtain more consistent convergence results, obtaining a specific

desired convergence time requires determining the maximum initial conditions of the task to be

completed, then tuning the controller parameters based on this value. Thus, in order to complete

a larger set of tasks, with different initial conditions and maximum allowable operation times,

separate controller parameters must be determined for each task.

Fixed-time methods are characterized by a finite convergence time that is bounded by a

function of the controller parameters which is independent of the initial conditions. Thus, the

process for tuning the controller parameters for a specific task is considerably simplified, as

one no longer needs to consider the maximum expected initial conditions of the task, only the

maximum required completion time. However, it is important to note that this upper bound of the

convergence time is typically conservative, and thus the robot manipulator will usually complete
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the task well before the required completion time is exceeded. Additionally, depending on the

implementation of the fixed-time controller, the upper bound of the finite convergence time may

not be able to be arbitrarily set, meaning that certain maximum completion times may be too

stringent for the controller to effectively handle.

Prescribed-time methods are characterized by a finite convergence time that is explicitly

prescribed as a controller parameter. This desirable property of prescribed-time methods enables

the same set of controller parameters to be utilized for a wide variety of tasks with different

required completion times. Due to this desirable property, the development of prescribed-time

methods has become an active research topic in recent years.

The first design of a prescribed-time stabilizing (and disturbance rejecting) controller was

introduced by Song et al. [95], who employed a scaling of the state of a normal-form nonlinear

system by a function of time that grows unbounded towards the terminal time. By stabilizing

the system in the scaled representation, regulation in prescribed finite time is achieved for the

original state, along with a smooth, uniformly bounded control input and the rejection of a

matched non-vanishing disturbance. Another important class of prescribed-time controllers for

robot manipulators, introduced by Becerra et al. [97] and improved upon by Obregón-Flores

et al. [98], utilizes time base generators, which are state trajectories designed such that the

system state smoothly converges to zero at the prescribed terminal time. A key feature, and

arguably a disadvantage, of this control method is the explicit use of the initial conditions in the

controller structure as a feedforward term, along with a sliding-mode control scheme to correct

for a uniformly bounded matched uncertainty. Notably, this scheme exhibits prescribed-time

convergence in the ideal case of no matched uncertainty, and finite-time convergence when

uncertainties are present. In a separate approach, Cao et al. [102] utilizes a scaling system

transformation technique to transform the Euler-Lagrange system considered into a new set

of variables, in which the boundedness of the variables ensures that both partial and full state

constraints will not be violated. In addition, this transformation also ensures that for any time

greater than the prescribed convergence time, the remaining tracking errors will be less than a
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prescribed value. This approach is notable in that the scaling transformation utilized does not

approach infinity as the terminal time is approached, and thus numerical difficulties caused by

an unbounded gain are avoided in this method. However, a potential drawback to using this

method is that the controller does not allow for separate control gains for each joint, meaning

that aggressive torques are likely applied to certain joints of the robot manipulator when there

is a large difference in inertia between joints, which is typically the case for high-DOF robot

manipulators. In another approach, Garg and Panagou [94] utilize the concept of robust fixed-

time control Lyapunov functions as well as control barrier functions to provide a framework for

ensuring robustness to disturbances with fixed-time convergence to a user-defined goal set, along

with ensuring the system state remains in a user-specified safe set throughout the operation.

In this effort, we reformulate the prescribed-time controller initially developed by Song

et al. [95] in order to handle the case of trajectory tracking with a robot manipulator. This

formulation yields convergence of the tracking errors to the origin within the prescribed terminal

time, even in the presence of model uncertainties and a non-vanishing matched disturbance.

Furthermore, in order to address the practical issues that can arise when employing an unbounded

scaling of the state, due to factors such as measurement noise, numerical issues when applying

a large scaling to small errors, and a finite controller frequency, we employ a gain-clipping

strategy in order to limit the scaling of the state to a sufficiently high value. Through the

experimental verification of this prescribed-time control strategy with gain clipping on Baxter,

a 7-DOF redundant robot manipulator, we demonstrate convergence of the tracking errors to a

small neighborhood of zero by the prescribed terminal time, despite a significant initial angular

position tracking error of 20 degrees on each joint, as well as a sinusoidal torque disturbance of

0.1sin5t applied to each joint. Thus the prescribed-time control strategy studied here is both

theoretically sound and effective in practice.

The organization of the rest of this chapter is as follows. In Section 5.2, we present the

design of the prescribed-time trajectory-tracking controller. In Section 5.3, we demonstrate the

prescribed-time regulation of the robot manipulator tracking errors through Lyapunov Analysis.
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In Section 5.4, we briefly discuss the practical implementation of the proposed control law.

In Section 5.5, we present the simulation and experimental results of the proposed method

implemented on Baxter’s right manipulator, achieving convergence of the tracking errors to a

small neighborhood of zero by the prescribed terminal time despite large initial tracking errors

and a non-vanishing matched disturbance. Finally, in Section 5.6, we present the case that the

proposed method is theoretically sound, straightforward to implement in a real system, and

ultimately effective in practice.

Notations: In the following, we use the common definitions of class K and K L

given in [79]. |·| refers to the Euclidean norm, the matrix norm is defined accordingly, for

M ∈ Mℓ(R)(ℓ ∈ N∗), as |M|= sup
|x|≤1

|Mx| and the spatial norm is defined as follows:

∥ f∥[a,b] = sup
t∈[a,b]

∣∣ f (t)∣∣
5.2 Prescribed-Time Tracking for Robot Manipulators

In order to formulate a controller that is robust to modeling uncertainty, the values of the

mass matrix, gravity vector, and frictional torques derived from our dynamic model of Baxter are

treated as estimates, and are denoted as M̂(q), Ĝ(q), F̂(q̇), respectively. We make the following

assumptions concerning the difference between our dynamic model and the true dynamics of

Baxter:

Assumption 5.1. The true and estimated values of the mass matrix, Coriolis matrix, gravity

vector, frictional torques, and the disturbance torques satisfy the following inequalities:

∣∣∣M−1(q)M̂(q)− I
∣∣∣≤ c1 (5.1)∣∣∣M−1(q)C(q, q̇)q̇
∣∣∣≤ c2|q̇|2 (5.2)∣∣∣M−1(q)(Ĝ(q)−G(q))
∣∣∣≤ c3 (5.3)
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∣∣∣M−1(q)(F̂(q̇)−F(q̇))
∣∣∣≤ c4|q̇| (5.4)∣∣∣M−1(q)D(t)
∣∣∣≤ c5

∣∣D(t)
∣∣ (5.5)

Assumption 5.2. The true mass matrix M(q), and the estimated mass matrix M̂(q) are symmetric

and positive definite.

Furthermore, we make the following assumption regarding the reference joint trajectories:

Assumption 5.3. The desired joint trajectories are designed such that qr(t), q̇r(t), and q̈r(t)∈R7

exist and are uniformly bounded for all t ∈ [0,T ], where T > 0 is the prescribed terminal time.

We consider the following trajectory tracking system:

Ė =

 Ė1

Ė2

=

 E2

M−1(τ −Cq̇−G−F −D)− q̈r

 (5.6)

E =

 ε

ε̇

=

 E1

E2

=

 q−qr

q̇− q̇r

 (5.7)

where E ∈R14 is the state error vector, and ε ∈R7 is the vector of joint angular position tracking

errors.

In order to regulate this system in prescribed-time, we first introduce the following

monotonically increasing scaling function, as well as it’s inverse:

µ1(t) =
T

T − t
, t ∈ [0,T ) (5.8)

ν1(t) =
1

µ(t)1
=

T − t
T

, t ∈ [0,T ) (5.9)

where T > 0 is the prescribed terminal time, with the properties µ(0) = 1, µ(T ) =+∞, ν(0) = 1

and ν(T ) = 0. To achieve prescribed-time regulation of the tracking errors, we introduce the
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following change of coordinates:

w(t) = µ(t)ε(t) (5.10)

z(t) = ẇ(t)+αw(t) (5.11)

where

µ(t) = µ1(t)2 =
1

ν2
1

(5.12)

and α > 0. This change of coordinates results in the following forward and inverse scaling

transforms:

Z =

 w

z

= µ

 I 0

(α +µ1
2
T )I I

E = P(µ1)E (5.13)

E = ν1

 ν1I 0

(−ν1α − 2
T )I ν1I

Z = Q(ν1)Z (5.14)

where I ∈ R7×7 is the identity matrix, P(µ1) ∈ R7×7 is the forward scaling transform, Q(ν1) ∈

R7×7 is the inverse scaling transform, and Z ∈ R14 is the scaled state error vector. By taking the

time derivative of (5.13) and substituting the inverse transformation (5.14), the dynamics of the

scaled state error vector are obtained:

ẇ = z−αw (5.15)

ż = µ

[
ε̈ −
(

α
2
ν

2
1 +αν1

4
T
+

2
T 2

)
w+

(
ν1

4
T
+αν

2
1

)
z

]
(5.16)

where

ε̈ = M−1(τ −Cq̇−G−F −D)− q̈r (5.17)

Before presenting the design of the prescribed-time control law, it is first necessary to
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present several definitions concerning notions of stability within a finite prescribed interval of

time.

Definition 5.1 (FT-ISS [95]). The system ẋ = f (x, t,d) (of arbitrary dimensions of x and d) is

said to be fixed-time input-to-state stable in time T (FT-ISS) if there exists a class K L function

β and a class K function γ , such that, for all t ∈ [0,T ):

∣∣x(t)∣∣≤ β
(
|x0|,µ1(t)−1

)
+ γ

(
∥d∥[0,t]

)
(5.18)

Definition 5.2 (FT-ISS+C [95]). The system ẋ = f (x, t,d) (of arbitrary dimensions of x and d) is

said to be fixed-time input-to-state stable in time T and convergent to zero (FT-ISS+C) if there

exist class K L functions β and β f , and a class K function γ , such that, for all t ∈ [0,T ):

∣∣x(t)∣∣≤ β f

(
β
(
|x0|,µ1(t)−1

)
+ γ

(
∥d∥[0,t]

)
,µ1(t)−1

)
(5.19)

As the function µ1(t)−1 starts at zero and grows monotonically to infinity as t → T , a

system that is FT-ISS is also ISS, with the additional property that in the absence of a disturbance

d, it is fixed-time globally asymptotically stable in time T . Additionally, a system that is FT-

ISS+C is also FT-ISS, with the additional property that the state converges to zero even in the

presence of a disturbance.

Now, we present the design of the prescribed-time control law.

Theorem 5.1. Under Assumptions 5.1-5.3, consider the system (5.6) with the controller:

τ(t) =−M̂(q)
[
(k+θ +ηψ(q̇)2)z(t)+ q̈r(t)

]
+ Ĝ(q)+ F̂(q̇) (5.20)

where

ψ(q̇) = |q̇|2 + |q̇|+1 (5.21)
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If the controller gains are chosen such that ρ,k,η > 0,

ρkα
2 >

1
4λ 2

M
, (5.22)

and

θ ≥ 1
λM

(
α +

4
T

)
+ρ

(
α

2 +α
4
T
+

2
T 2

)2

(5.23)

where

λM = min
q∈[0,2π)

λmin

(
M−1(q)M̂(q)+ M̂(q)M−1(q)

2

)
(5.24)

then the closed loop system (5.6) with (5.20) is FT-ISS+C and the joint torques τ remain bounded

over [0,T ).

5.3 Lyapunov Analysis

For the purpose of the Lyapunov analysis, we propose the following Lyapunov function:

V =
1
2
|z|2 (5.25)

Taking the derivative of this function yields:

V̇ = µzT
[
−M−1M̂(k+θ +ηψ

2)z+(M−1M̂− I)q̈r +M−1
(

Ĝ−G+ F̂ −F −Cq̇−D
)

−
(

α
2
ν

2
1 +αν1

4
T
+

2
T 2

)
w+

(
4
T

ν1 +αν
2
1

)
z
]

(5.26)

First, we seek to obtain an upper bound for the 1st term of V̇ . Utilizing the positive

definite symmetric property of the mass matrices as stated in Assumption 5.2, we obtain the

following inequality:

zT M−1M̂z = zT

(
M−1M̂+ M̂M−1

2

)
z ≥ λM|z|2 (5.27)
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where λM is first defined in (5.24).

Next, we examine the second and third terms of V̇ . Through the application of Assump-

tions 5.1 and 5.3, the following inequality can be obtained:

(M−1M̂− I)q̈r +M−1
(

Ĝ−G+ F̂ −F −Cq̇−D
)
≤ ψd (5.28)

where

d(t) = max
{

c1∥q̈r∥[0,t]+ c3 + c5∥D∥[0,t],c2,c4

}
(5.29)

Applying (5.27) and (5.28) to (5.26), along with Young’s inequality yields the following

inequality:

V̇ ≤−µλM|z|2(k+θ +ηψ
2)+µηλMψ

2|z|2 + µ

4ηλM
d2 +µρλM|z|2

(
α

2
ν

2
1 +αν1

4
T
+

2
T 2

)
+

µ

4ρλM
|w|2 +µ|z|2

(
4
T

ν1 +αν
2
1

)
(5.30)

Through the application of (5.23), this inequality can be further reduced:

V̇ ≤−2µλMkV +
µ

4ηλM
d2 +

µ

4ρλM
|w|2 (5.31)

In order to proceed with the Lyapunov analysis, it is necessary to introduce a technical

lemma from the work of Song et al. [95].

Lemma 5.1. If a continuously differentiable function V : [0,T )→ [0,+∞) satisfies:

V̇ (t)≤−2kµ(t)V (t)+
µ(t)
4λ

d(t)2 (5.32)

for positive constants k,λ , where µ(t) is defined in (5.8), then:

V (t)≤ ξ (t)2kV (0)+
∥d∥2

[0,t]

8kλ
, ∀t ∈ [0,T ) (5.33)

83



where ξ is the monotonically decreasing function:

ξ (t) = eT (1−µ1(t)) (5.34)

with the properties that ξ (0) = 1 and ξ (T ) = 0.

Through the application of this lemma to (5.31), it can be seen that:

∣∣z(t)∣∣≤ ξ (t)λMk|z0|+
1

2λM
√

k

(
∥w∥[0,t]√

ρ
+

∥d∥[0,t]√
η

)
(5.35)

and thus the z-system is FT-ISS w.r.t. the w-input with a gain of 1
2λM

√
kρ

and is also FT-ISS w.r.t

the d-input. In order to obtain the behavior of the w-system, one can rearrange (5.11) to obtain

ẇ(t) =−αw(t)+ z(t). From this point, it is straightforward to obtain a bound on w:

∣∣w(t)∣∣≤ |w0|e−αt +
1
α
∥z∥[0,t] (5.36)

and thus the w-system is ISS w.r.t the z-input with a gain of 1
α

. Thus by the small-gain theorem,

if condition (5.22) is satisfied, then the combined system Z is ISS w.r.t. d and thus there exist

constants Γ,δ ,γ > 0 such that:

∣∣Z(t)∣∣≤ Γ|Z0|e−δ t + γ∥d∥[0,t] (5.37)

Through the substitution of the scaling transformation (5.13) into the right side of (5.37),

followed by the substitution of the resulting inequality into the right side of the inverse scaling

transformation (5.14), the following inequality is obtained:

∣∣E(t)∣∣≤ ν1(t)
[

Γ̆|E0|e−δ t + γ̆∥d∥[0,t]
]

(5.38)
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where

Γ̆ = Γ
∣∣P(1)∣∣ max

ν1∈[0,1]

∣∣Q(ν1)
∣∣ (5.39)

γ̆ = γ max
ν1∈[0,1]

∣∣Q(ν1)
∣∣ (5.40)

Due to the fact that ν1(T ) = 0, this inequality establishes that the closed loop system (5.6)

with (5.20) is FT-ISS+C. Due to the boundedness of Z(t) established in (5.37), the boundedness

of E(t) established in (5.38), and the boundedness of qr, q̇r, and q̈r established in Assumption

5.3, the uniform boundedness of the input τ is established from (5.20).

5.4 Remarks on Prescribed-Time Control Law

Through the substitution of the scaling transform (5.13) to the control law (5.20), it is

possible to obtain an expression for the control law in terms of the joint angular position and

velocity errors ε, ε̇ rather than the scaled state z:

τ =−µ
2
1 M̂

(k+θ +ηψ
2)

((
α +µ1

2
T

)
ε + ε̇

)
+ q̈r

+ Ĝ+ F̂ (5.41)

From this representation, the role of the controller parameters k, θ , η , and α can be

observed. The sum k+θ is a scaled PD gain, and thus is the primary driver of the error signal

to zero, η is the gain of the nonlinear damping term ψ , which aims to attenuate the effects of

uncertainties on the control law, and α is a weighting factor which determines the ratio between

the proportional and derivative gains of the control law. Thus, implementing the proposed

prescribed-time control law control law requires the tuning of just three parameters (treating

k+θ as one parameter), whose effect on the control law is readily observed. Furthermore, due

to the direct dependence of the control law on the prescribed final time T , these three controller

parameters need only be determined once for a given robot manipulator, regardless of the specific
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tasks the manipulator needs to perform. Thus, the proposed control law can be readily applied to

a wide variety of tasks with different convergence time constraints.

A potential barrier to the practical application of this proposed method is the consequences

of employing an unbounded gain µ1(t). While the proposed control law guarantees boundedness

of the control torques τ(t) even in the presence of non-vanishing uncertainties, problems may

still arise due to measurement noise, numerical issues when multiplying large gains with small

errors, and a finite controller frequency. In order to combat these practical issues, one effective

strategy that can be employed is gain clipping. Using this strategy, we define the constants

ζ = 1−ν1 =
1− µ̄1

µ̄1
∈ (0,1) (5.42)

ν1 =
1
µ̄1

= 1−ζ ∈ (0,1) (5.43)

µ̄1 =
1

ν1
=

1
1−ζ

∈ (1,+∞) (5.44)

and redefine µ1(t) in (5.41) as:

µ1(t) = min
{

µ1(t), µ̄1
}

=
1

max{ν1(t),ν1(t)}

=
T

T −min{t,ζ T}
(5.45)

This redefinition of (5.8) upper bounds the scaling gain µ1 by the value µ̄1 = 1
1−ζ

,

ensuring that the controller gains do not grow past the point where the previously mentioned

issues begin to noticeably affect the closed-loop system. A consequence of this modification is

that the regulation of the tracking errors is to a small neighborhood of zero, rather than exactly

zero as when utilizing an unbounded gain. Employing a ζ that is sufficiently close to 1 can

ensure that this neighborhood is negligible, achieving performance that is qualitatively similar to

that of utilizing an unbounded gain.
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5.5 Simulation and Experimental Results

In order to assess the performance of the proposed prescribed-time approach, we perform

both a simulation using ODE methods on Baxter’s dynamic equation (2.1), as well as an

experiment. In both the simulation and experiment, Baxter must track the six second trajectory

specified in Chapter 2, while under the influence of a torque disturbance of D(t) = 0.1sin(5t)

applied to each joint. In addition, this task is purposely started from a large initial angular

position error of 20 degrees for each joint. Thus, this simulation and experiment demonstrates the

ability of the proposed method to converge from a large initial condition to the desired trajectory

within the prescribed finite time, while rejecting a large torque disturbance. The controller

parameters used in both the simulation and experiment are T = 6, k+θ = 5, η = 0.005, α = 2,

and ζ = 0.4. Note that µ̄2
1 , which is employed in lieu of µ2

1 in (5.41), which would without

clipping go to infinity, is as low as 2.78.

From Figure 5.3 it can be observed that the prescribed-time controller is successful at

executing the pick-and-place task in practice. Comparing the reference trajectory, highlighted

by the green circles in the figure, to the initial position of Baxter’s right end effector located at

the bottom of the figure, it can be seen that an angular position error of 20 degrees in each joint

corresponds to a large error in Cartesian coordinates. Despite this large initial tracking error, the

prescribed-time controller is shown to be effective at quickly attenuating this tracking error, and

achieving close tracking of the desired trajectory for the remainder of the operation. After only 1

second of operation, the distance between the desired trajectory and Baxter’s right end effector is

significantly reduced, and after 3 seconds of operation, Baxter’s right end effector appears to

coincide exactly with the desired trajectory.

The experimental, simulated, and desired joint trajectories can be seen in Figure 5.1.

Despite the large initial joint tracking errors, as well as the large sinusoidal disturbance applied

to the system, negligible tracking errors are achieved after around 2.5 seconds of operation.

Throughout the procedure, oscillations in the joint angular positions can not be observed from
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.1. The experimental (blue line), simulated (green line), and desired (red dashed line)
joint trajectories of Baxter
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.2. The experimental (blue line) and simulated (red dashed line) joint torque input
signals of Baxter
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Figure 5.3. Baxter tracking a desired trajectory under the prescribed-time control scheme,
correcting for a large initial tracking error of 20 degrees in each joint and attenuating a sinusoidal
torque disturbance of D(t) = 0.1sin(5t). The green circles represent the reference trajectory to
be tracked, and are spaced at approximately 1 second intervals.

this figure, indicating that the nonlinear-damping method employed was effective at absorbing

the effect of the sinusoidal disturbance. Furthermore, minimal overshoot is observed during

the 1st 2.5 seconds of operation, indicating that the proposed control law is acting neither too

aggressively or too leniently in the beginning of the task. Observing Figure 5.4, it is possible

to see the convergence behavior of the proposed method in more detail. After 2.5 seconds of

operation, roughly coinciding to the time of ζ T = 2.4 seconds where the gain multiplier µ1 stops

increasing, the majority of the tracking errors have already been significantly attenuated. From

2.5 seconds onward, the residual tracking errors, mostly resulting from the sinusoidal torque

disturbance, are attenuated to an acceptably small value of less than 0.2 degrees.

The experimental and simulated joint toque input signals can be seen in Figure 5.2. It is

important to note that these torques are significantly lower than the maximum torque output of

Baxter’s joints, which are 50 Nm for joints 1-4, and 15 Nm for joints 5-7. Thus, the prescribed-
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(a) (b)

Figure 5.4. The simulated (a) and experimental (b) joint tracking errors of Baxter, with D(t) =
0.1sin(5t)

(a) (b)

Figure 5.5. The simulated (a) and experimental (b) joint tracking errors of Baxter, when subjected
to a disturbance with non-zero mean D(t) = 0.1sin(5t)+0.05

time approach is able to correct for a large initial error without producing excessive joint torques.

Additionally, the simulated torques remain smooth throughout the procedure and do not display

chattering, which can negatively affect the lifespan of the actuators used to control the robot

manipulator. Furthermore, while the presence of noise in angular velocity measurements has

caused similar variations in the experimental joint torques, these torques still exhibit moderate

continuity, and do not appear to be affected by chattering. An important observation regarding

both the simulated and experimental joint torques is that oscillation can be observed throughout

the procedure, which is most noticeable in joint 7. Both the peak-to-peak difference in this

observed oscillation, as well as its frequency closely match that of the applied torque disturbance

D(t) = 0.1sin(5t), indicating that the proposed controller is able to ”absorb” the disturbance as

the prescribed final time of 6 seconds is reached.
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In order to verify the ability of the proposed method to reject a torque disturbance with a

non-zero mean, an additional simulation and experiment was performed with a torque disturbance

of D(t) = 0.1sin(5t)+0.05. In the interest of brevity, we present only the convergence of the

joint tracking errors, which can be seen in Figure 5.5. It can be observed from this figure that

both the simulated and experimental tracking errors display nearly identical behavior to Figure

5.4, demonstrating that the convergence of the proposed method is not negatively effected by a

disturbance torque with a non-zero mean.

5.6 Conclusion

In this research effort, we formulated and experimentally verified the prescribed-time

trajectory tracking control of a 7-DOF robot manipulator. In order to ensure regulation of the

tracking errors by the prescribed final time, we employed a scaling of the state by a function

of time that grows unbounded towards the terminal time. Through Lyapunov analysis, we

demonstrated that the proposed controller achieves regulation of all tracking errors within the

prescribed time with a torque that is uniformly bounded, even in the presence of a matched

non-vanishing disturbance. Through inspection of the control law, we demonstrated that the

choice of parameters for the proposed control law is intuitive and straightforward, and that the

controller could be implemented in a practical system with minimal modifications. Then, through

both simulation and experiment, we demonstrated that the proposed controller is capable of

converging to the desired trajectory within the prescribed time, despite large initial conditions of

the tracking errors and a sinusoidal disturbance being applied in each joint.
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Chapter 6

Prescribed-Time Safety Filter

In this chapter, we formulate a prescribed-time safety filter for the case of a redundant

manipulator performing a fixed-duration task. This formation, which is based on a quadratic

programming approach, yields a filter that is capable of avoiding multiple obstacles in a mini-

mally invasive manner with bounded joint torques, while simultaneously allowing the nominal

controller to converge to positions located on the boundary of the safe set by the end of the

fixed-duration task. In order to demonstrate the efficacy of the proposed method, we performed

a series of simulations and experiments on Baxter, a 7-DOF collaborative robot manipulator.

In these simulations and experiments, Baxter must follow a six second parabolic trajectory as

closely as possible while navigating around a large spherical obstacle blocking its path, and place

an object precisely on the surface of a table without overshoot by the end of the six seconds.

The results of our simulations and experiments demonstrated the ability of the PTSf to enforce

safety throughout the six second task, while allowing the robot manipulator to make contact with

the table and thus achieve the desired goal position by the end of the task. Furthermore, when

compared to the exponential safety filter, which is the state-of-the-art in current literature, our

proposed method yielded consistently lower joint jerks. Thus, for tasks with a fixed duration,

the proposed PTSf offers performance benefits over the exponential filters currently present in

literature.
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6.1 Background

As the usage of robot manipulators in collaborative environments has dramatically risen

in recent years, ensuring that a robot manipulator is able to operate safely has become an

important goal for modern control systems [108–112]. In this context, safety refers to the ability

of a robot manipulator to avoid dangerous collisions, both with humans as well as other potential

obstacles. In order to ensure safety during the operation of a collaborative robot manipulator,

safety must be considered at every level of the design and operation of the manipulator. From a

mechanical perspective, collaborative robot manipulators should be designed to be compliant, so

that potential collisions are less damaging. From a planning perspective, the reference trajectories

generated for collaborative robot manipulators should be designed in order to avoid collisions

with obstacles. From a controls perspective, preventative torques should be applied to the

manipulator whenever necessary in order to avoid collisions with obstacles. We focus our efforts

towards this controls perspective, and thus on the design of control torques that ensure the robot

manipulator remains within a user-defined safe set.

In the past several years, a large amount of research has been devoted towards the design

of control barrier functions (CBFs) for robot manipulators [113–129]. CBFs function as a safety

filter for a potentially unsafe nominal controller, overriding the nominal control torques when

the boundary of the safe set is approached faster than a designed convergence rate. Typically,

this override torque is determined via a quadratic program minimizing the difference between

the nominal and override torque, and thus CBFs can be characterized as minimally invasive. The

majority of CBFs formulated for robot manipulators are based on the concept of exponential

safety filters (ESfs), which were first introduced by Nguyen and Sreenath [130]. Using this

method, the maximum rate of convergence to the boundary of the safe set is limited to be

exponential, and consequently the robot manipulator can approach but will never reach the

boundary of the safe set.

While ESfs are designed to be minimally invasive, their presence can interfere with the
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operation of set-duration tasks when the goal position of the end-effector is located near the

boundary of the safe set. For an example of such a scenario, one could consider a robot that

brings a glass of water to a patient’s mouth without risking the injury of the patient’s teeth.

Under ideal conditions such as zero initial tracking error, a trajectory-tracking nominal controller

operating in such a scenario would converge to the desired goal position within a fixed time that

is governed by the design of the trajectory. However, when an ESf is applied to this nominal

controller, the rate of approach to the goal position, which lies on the boundary of the safe set, is

limited to be exponential. Thus, the manipulator will not reach the desired goal position by the

fixed time, and will instead be located near the desired goal position. After an additional period

of time governed by the conservativeness of the ESf, the tracking error will become negligible.

Thus, in this circumstance, the ESf has destroyed the prescribed-time convergence property

of the nominal controller, and introduced uncertainty into the system as to when the tracking

error will become negligible. In circumstances such as the provided example, the additional

duration of the task may not be a significant detriment, as the delay in the patient receiving water

is unlikely to be life-threatening. However, there are numerous cases in which both safety and

timing are critical factors, and thus the limiting behavior of the ESf is undesirable. Consider

instead a robot manipulator that is assisting with the surgery of a patient. In this case, safety

is desired in order to not further injure the patient or doctors, but timeliness is also critical in

order to preserve the life of the patient. In order to address the time-critical aspect of scenarios

such as these, a considerable amount of research has been devoted towards the development of

control methods for robot manipulators which are capable of guaranteeing an upper bound on

the convergence time, achieving convergence of tracking errors to zero within a finite period

of time [83–107]. When the nominal controller is capable of ensuring convergence within a

finite-time, enforcing a condition of exponential convergence to the boundary of the safe set is

counterproductive.

Utilizing concepts from prescribed-time stabilization [95], in which convergence to the

desired setpoint is achieved in a time explicitly prescribed as a controller parameter, Abel et
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al. [131] have recently developed a prescribed time safety filter (PTSf) for a chain of integrators.

Rather than enforcing safety for an indefinite period of time, the PTSf enforces safety only for a

finite period of time that is explicitly set as a filter parameter T . Notably, this procedure allows

the nominal controller to reach the boundary of the safe set by the end of the prescribed duration

T . If the boundary of the safe set is approached in this manner, all temporal derivatives of the

system state will approach 0 as t → T , meaning the convergence to the barrier will be infinitely

soft. In order to achieve this beneficial property, a scaling of the filter gains by a function of time

that grows unbounded towards the terminal time is employed. This approach can be interpreted

as a safety filter that becomes less strict as the terminal time is approached, allowing the nominal

controller to converge to states that are nearby or even located on the boundary of the safe set.

In this chapter, we reformulate the PTSf initially proposed by Abel et al. [131] for the

case of a redundant manipulator performing a fixed-duration task. This formation yields a filter

that is capable of avoiding multiple obstacles in a minimally invasive manner with bounded joint

torques, while simultaneously allowing the nominal controller to converge to positions located

on the boundary of the safe set by the end of the fixed-duration task. In order to demonstrate

the efficacy of the proposed method, we perform a series of simulations and experiments on

Baxter, a 7-DOF collaborative robot manipulator. In these simulations and experiments, Baxter

must follow a six second parabolic trajectory as closely as possible while navigating around a

large spherical obstacle blocking its path, and place an object precisely on the surface of a table

without overshoot by the end of the six seconds. To highlight the ability of this method to allow

convergence to the barrier within a finite period of time, the nominal controller utilized in both

simulation and experiment is the prescribed-time controller which we previously formulated

in Chapter 5. The results of our simulations and experiments demonstrate the ability of the

PTSf to enforce safety throughout the six second task, while allowing the robot manipulator to

make contact with the table and thus achieve the desired goal position by the end of the task.

Furthermore, we compare the performance of the PTSf method presented here to an ESf with a

high gain, as well as an ESf with a low gain. When performed on the same task, the ESf with a
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high gain is able to make contact with the table within the six second task, but exhibits a much

higher jerk in the joint torques than the PTSf in the beginning of the task. Conversely, the ESf

with a low gain exhibits similar jerk values to the PTSf in the beginning of the task, but is not

able to make contact with the table within the six second task. Thus, the PTSf proposed here

outperforms the ESf when applied to fixed-duration tasks.

The organization of this chapter is as follows. In Section 6.2, we present the design

of the PTSf. In Section 6.3, we mathematically verify the ability of the PTSf to enforce the

invariance of the safe set, as well as the feasibility of the proposed filter and boundedness of the

filter torques when safety is enforced. In Section 6.4, we present the results of the simulations

and experiments performed on Baxter. Finally, in Section 6.5, we present the case that for tasks

with a fixed duration, the proposed PTSf offers performance benefits over the exponential filters

currently present in literature.

6.2 Prescribed-Time Safety Filter for Robot Manipulators

We consider the following state space representation of (2.1):

Q̇ =

 Q̇1

Q̇2

=

 Q2

ν(t)

 (6.1)

in which we define:

Q(t) =

 Q1(t)

Q2(t)

=

 q(t)

q̇(t)

 (6.2)

ν(t) = q̈(t) = M−1(q)(τ(t)−C(q, q̇)q̇(t)−G(q)−F(q̇)) (6.3)
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The purpose of the proposed PTSF is to ensure that Baxter’s end-effector remains within the

following user-defined safe set for the duration of the task:

Hp = {p ∈ R3|hi(p)≥ 0, i = 1, ...,m} (6.4)

where
∂ 2hi

∂ p2 ≥ 0, ∀p ∈ R3, i = 1, ...,m (6.5)

and p(q) ∈ R3 is the position of the end-effector in Cartesian coordinates, which is a function of

the joint angles q. Thus, we can redefine this safe set in terms of Baxter’s joint angles:

H = {q ∈ R7|hi(p(q))≥ 0, i = 1, ...,m} (6.6)

In this formulation, the robot manipulator must prevent collision between m obstacles, which

each has a corresponding CBF hi. This barrier is positive when there is no collision, 0 when the

robot manipulator and the obstacle make contact, and negative when the robot manipulator is

within the barrier. Thus, ensuring the joint positions of Baxter are kept within the defined safe

set (6.6) is equivalent to preventing a collision between the end-effector and an obstacle. The

goal of the PTSf is formally defined as follows:

q(t) ∈ H ∀t ∈ [0,T ) (6.7)

where T > 0 is the user-defined duration of the prescribed-time task, as well as the duration of

enforcement of the PTSf.

In order to allow the robot manipulator to make contact with the barrier at time T , we

employ a scaling of the PTSf gains by a function of time that grows unbounded towards the time
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T :

µk(t) =
(

T
T − t

)k

, t ∈ [0,T ), k ∈ N (6.8)

Note that the temporal derivative of this function can be computed as:

µ̇k(t) =
k
T

µk+1(t), t ∈ [0,T ), k ∈ N (6.9)

Due to the relative degree of the CBFs hi being greater than 1, it is necessary to pursue a

backstepping design in order to enforce the invariance of (6.7). To this end, we formulate the

following output functions:

yi1(t) = hi(p(q(t))) (6.10)

yi2(t) =
∂yi1(q(t))

∂q
q̇(t)+ cµ2(t)yi1(t) (6.11)

where yi1(t),yi2(t) ∈ R and c ∈ R is a design parameter to be determined. In this formulation,

if we ensure that yi1 and yi2 are initially positive and remain positive for the duration of the

prescribed-time task, the condition (6.7) will also be satisfied. In order for yi1(0)> 0, the system

must initially be safe. In order for yi2(0)> 0, we must choose:

c > max

0,−
∂yi1(0)

∂q q̇(0)

yi1(0)

 (6.12)

In order to ensure that yi1 and yi2 remain positive in the interval t ∈ [0,T ), it is necessary

to examine their underlying dynamics:

ẏi1 =−cµ2yi1 + yi2 (6.13)

ẏi2 =
2
T

cµ3yi1 + cµ2
∂yi1

∂q
q̇+ q̇⊤

∂ 2yi1

∂q2 q̇+
∂yi1

∂q
ν (6.14)
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where (6.13) is obtained from rearranging (6.11), and (6.14) is obtained from taking the temporal

derivative of (6.11) and applying (6.9). In order to enforce the positivity of h1 and h2 for t ∈ [0,T ),

we permit only ν(t) such that the following condition is satisfied:

ẏi2 + cµ2yi2 ≥ 0, i = 1, ...,m (6.15)

In the next section, we will show that this is a sufficient condition for the positivity of hi over the

duration t ∈ [0,T ).

Before presenting the design of the PTSf, we first reformulate (6.15) in terms of the

CBFs hi, as well as the joint angles q and joint velocities q̇. To this end, we first obtain several

derivatives of the CBFs with respect to the joint angles:

∂hi

∂q
=

∂hi

∂ p
J(q) (6.16)

q̇⊤
∂ 2hi

∂q2 q̇ = q̇⊤J⊤(q)
∂ 2hi

∂ p2 J(q)q̇+
∂hi

∂ p
J̇(q)q̇ (6.17)

in which

J(q) =
∂ p(q)

∂q
(6.18)

J̇(q) =
7

∑
i=1

∂J(q)
∂qi

q̇i (6.19)

where J(q) ∈ R3×7 is the jacobian of the end-effector. We make the following assumption of its

structure:

Assumption 6.1. There exists a positive constant σlb > 0 such that the minimum singular value

of the end-effector jacobian J(q(t)) satisfies the following inequality:

σmin
(
J(q(t))

)
≥ σlb, ∀t ∈ [0,T ) (6.20)
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Then, we substitute (6.10), (6.11), (6.14), and (6.16)-(6.18) into (6.15) to obtain:

b⊤i ν ≥ ai, i = 1, ...,m (6.21)

where

ai =−q̇⊤J⊤(q)
∂ 2hi

∂ p2 J(q)q̇− ∂hi

∂ p
J̇(q)q̇

−cµ3

(
2
T
+ cµ1

)
hi −2cµ2

∂hi

∂ p
J(q)q̇ (6.22)

b⊤i =
∂hi

∂ p
J(q) (6.23)

In order to enforce safety for the prescribed duration T in a minimally invasive manner,

we apply quadratic programming minimizing the difference in joint acceleration caused by the

filtered and nominal control torque:

νsafe = argmin
w∈R7

∥w−νnom∥2 (6.24)

s.t. b⊤i w ≥ ai, i = 1, ...,m (6.25)

where

νnom = M−1(q)(τnom −C(q, q̇)q̇(t)−G(q)−F(q̇)) (6.26)

and τnom is the nominal control torque. The filtered control torque can then be determined as:

τsafe = M(q)νsafe +C(q, q̇)q̇(t)+G(q)+F(q̇) (6.27)

We can now state our main result.

Theorem 6.1. If q(0) ∈ H , and the controller parameter c is chosen such that (6.12) is

satisfied, then the filtered controller (6.22)-(6.27) applied to the system (2.1) ensures that
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q(t) ∈ H ,∀t ∈ [0,T ). Furthermore, the filtered torque τsafe is uniformly bounded provided that

the nominal torque τnom is continuous in t and Lipschitz in Q.

6.3 Proof of Theorem 6.1

In order to prove the invariance of the set H during the interval t ∈ [0,T ), it is first

necessary to show that the linear inequalities (6.25) always have a jointly feasible solution. To

this end, we construct the following feasible solution:

νfeasible =−2cµ2q̇− J+(q)J̇(q)q̇ (6.28)

where J+(q) is the Moore-Penrose pseudoinverse of J(q). Note that due to Assumption 6.1, J(q)

is non-singular and thus J(q)J+(q) = I. Substituting (6.28) into the condition (6.25) yields:

0 ≥−q̇⊤J⊤(q)
∂ 2hi

∂ p2 J(q)q̇− cµ3

(
2
T
+ cµ1

)
hi (6.29)

Utilizing the property (6.5), we can further simplify this inequality:

0 ≥−cµ3

(
2
T
+ cµ1

)
hi (6.30)

and thus we determine that for q(t) ∈ H , (6.25) has a jointly feasible solution.

Next, we show that q(0)∈H ensures that q(t)∈H ,∀t ∈ [0,T ). Through the application

of the Comparison Lemma to (6.14), we obtain the following inequality:

yi2(t)≥ yi2(0)ecT (1−µ1(t)) > 0, ∀t ∈ [0,T ) (6.31)
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Integrating (6.13) from 0 to t, and substituting this inequality yields:

yi1(t) = yi1(0)ecT (1−µ1(t))+
∫ t

0
ecT (µ1(s)−µ1(t))yi2(s)ds > yi1(0)ecT (1−µ1(t)) > 0, ∀t ∈ [0,T )

(6.32)

Through applying the relationship (6.10), we obtain:

hi(t)> 0, ∀t ∈ [0,T ) (6.33)

and thus q(t) ∈ H ,∀t ∈ [0,T ).

We now pursue the uniform boundedness of the filtered control law (6.22)-(6.27). We

partition the time horizon [0,T ) into separate intervals based on which CBFs hi are active at time

t. To this end, we define at time t the set of active constraints A (t) as:

A (t) = {i ∈ 1, ...,m|b⊤i (t)νsafe(t) = ai(t)} (6.34)

where ai(t) and b⊤i (t) are defined in (6.22) and (6.23) respectively. Then, we define the partition

times tk:

tk :=


min{tk−1 < t ≤ T : A (tk) ̸= A (tk−1)}, if it exists

T, otherwise
(6.35)

for k ∈ N with t0 = 0 where

[0,T ) =
⋃

k∈N∪{0}
tk+1≤T

[tk, tk+1) (6.36)

We have constructed this partition such that the filtered control law (6.22)-(6.27) remains

continuous at tk, precluding Zeno behavior of the closed-loop system.

We now examine the behavior of νsafe in the partition [tk, tk+1). If we have the condition

A (tk) = /0, then no constraints are active during this interval, and thus we have νsafe(t) = νnom(t)
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which is uniformly bounded.

If we have the condition A (tk) ̸= /0, then at least one constraint is active during the

interval [tk, tk+1) and we do not necessarily have νsafe = νnom. In order to determine a bound for

νsafe in this case, we first investigate the boundedness of the active CBFs hi where i ∈ A (tk). For

each active barrier function, the output functions yi1(t) and yi2(t) satisfy the following differential

equations:

ẏi1(t) =−cµ2(t)yi1(t)+ yi2(t) (6.37)

ẏi2(t) =−cµ2(t)yi2(t) (6.38)

Integrating these equations from tk to tk+1 yields:

yi1(t) =
(
yi2(tk)+ tyi2(tk)

)
ecT (µ1(tk)−µ1(t)) (6.39)

yi2(t) = yi2(tk)ecT (µ1(tk)−µ1(t)) (6.40)

Then, (6.39) can be substituted into (6.10) to obtain an expression for hi(t), and can be differenti-

ated with respect to t to obtain an expression for ḣi(t):

hi(t) =
(
yi2(tk)+ tyi2(tk)

)
ecT (µ1(tk)−µ1(t)) (6.41)

ḣi(t) =−cµ2(t)
(
yi2(tk)+ tyi2(tk)

)
ecT (µ1(tk)−µ1(t))+ yi2(tk)ecT (µ1(tk)−µ1(t)) (6.42)

Due to the negative dominating behavior of the exponentials in (6.41) and (6.42), it can be seen

that hi(t) and ḣi(t) remain bounded within the interval [tk, tk+1). Furthermore, if tk+1 = T , we

can utilize l’Hôpital’s rule to determine the behavior of the active CBFs as the terminal time is

approached:

lim
t→T−

hi(t) = lim
t→T−

ḣi(t) = 0, ∀i ∈ A (tk) (6.43)

Thus, the active CBFs remain bounded in the interval [tk, tk+1), and approach 0 if tk+1 = T .
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Utilizing the boundedness of ḣi(t), we now investigate the boundedness of q and q̇ within

the interval [tk, tk+1). Differentiating the expression hi(p(q(t))) yields:

ḣi =
∂q
∂ p

J(q)q̇ = b⊤i q̇ (6.44)

where b⊤i is initially defined in (6.23). Thus, the component of q̇ that is parallel to b⊤i is bounded,

and approaches 0 if tk+1 = T . As this property holds for each b⊤i where i ∈ A (tk), we deduce

the following properties of q̇:

|Bq̇|< ∞, ∀t ∈ [tk, tk+1) (6.45)

lim
t→T−

Bq̇ = 0, if tk+1 = T (6.46)

where B is a projection matrix to the minimum subspace spanned by the vectors b⊤i where

i ∈ A (tk). Using this projection matrix, we separate q̇ into the components that lie within and

outside of this minimum subspace:

q̇ = q̇∥+ q̇⊥ (6.47)

where

q̇∥ = Bq̇ (6.48)

q̇⊥ = (I −B)q̇ (6.49)

From integrating q̇∥, we can additionally obtain the boundedness of q∥ = Bq.

Next, we obtain the boundedness of q⊥ and q̇⊥. We make use of the fact that since νsafe

is obtained via quadratic programming, the difference between the safe and nominal control

νsafe −νnom lies in the subspace spanned by B, and thus we have νsafe,⊥ = νnom,⊥. This property

can be verified by contradiction, as for every feasible solution where this property does not hold,

a feasible solution with a lower value of the objective function ∥w−νnom∥2 can be obtained via
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eliminating the perpendicular component of w−νnom. Thus, q⊥ and q̇⊥ satisfy the following

differential equations:

q̇⊥ = q⊥ (6.50)

q̈⊥ = νnom,⊥ (6.51)

As νnom is continuous in t and Lipschitz in Q, and q∥ and q̇∥ are bounded, these differential

equations can be integrated from tk to tk+1 to simultaneously obtain the boundedness of νnom, q⊥

and q̇⊥, and consequently q and q̇.

In order to determine a bound for νsafe, we first investigate the boundedness of the

following feasible solution:

νalt =−2cµ2q̇∥− J+(q)J̇(q)q̇ (6.52)

in which we have replaced q̇ in the 1st term of (6.28) with q̇∥, noting that this does not alter the

feasibility of the solution. Through the application of Assumption 6.1, it can be observed that

the second term in (6.52) is bounded in the interval [tk, tk+1). To bound the 1st term in (6.52), we

utilize l’Hôpital’s rule to obtain the following limit:

lim
t→T−

µ2(t)ḣi(t) = 0, ∀i ∈ A (tk) (6.53)

Applying this limit and (6.44) to the 1st term in (6.52), it can be observed that this term and

consequently νalt are bounded within the interval [tk, tk+1).Then, it can be seen from (6.24) that

we must also have:

νsafe ≤ ∥νalt −νnom∥2 (6.54)

and thus νsafe is bounded in the interval [tk, tk+1). As we have determined that νsafe is bounded

in each interval [tk, tk+1), we conclude that νsafe and consequently τsafe are uniformly bound in
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the interval [0,T ).

6.4 Simulated and Experimental Results

In order to assess the performance of the proposed PTSf approach, we perform both

simulations using ODE methods on Baxter’s dynamic equation (2.1), as well as experiments.

In both the simulation and experiment, Baxter must track the six second trajectory specified

in Chapter 2, while simultaneously avoiding collision with a large spherical obstacle blocking

the trajectory, and placing its held object precisely on the surface of a table. To highlight the

ability of this method to allow convergence to the barrier within a finite period of time, the

nominal controller utilized in both simulations and experiments is a prescribed-time controller

which we previously formulated in Chapter 5. As we demonstrated in the previous chapter, this

prescribed-time nominal controller is capable of achieving zero tracking errors by the end of the

six second desired trajectory. Thus, our simulations and experiments will serve to demonstrate

the ability of the proposed PTSf method to allow convergence to the barrier within a finite period

of time. Furthermore, we compare the performance of the PTSf method presented here to an ESf

with a high gain, as well as an ESf with a low gain to highlight the strengths of the proposed

method.

In the simulations and experiments, the CBF preventing collision with the spherical

obstacle is formulated as:

h1(p(q)) =
∥∥p(q)− psphere

∥∥2
2 −R2

sphere (6.55)

where psphere ∈ R3 is the position of the sphere, and Rsphere ∈ R is the minimum safe distance

between the robot manipulator and the center of the obstacle. We formulate the CBF preventing

collision with the table as:

h2(p(q)) = p(q) · (0,0,1)− ztable (6.56)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1. Simulations (left column) and experiments (right column) of Baxter following a
pick-and-place trajectory while avoiding multiple obstacles, using a prescribed-time safety filter
(a, b), an exponential safety filter with a high gain of ρ = 4 (c, d), and an exponential safety filter
with a low gain of ρ = 1.5 (e, f). At t = 3s, the end-effector trajectory takes a major turn from
moving up to moving below the spherical obstacle.
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where ztable ∈ R is the height of the table. For the PTSf, we set the controller parameter as

c = 1.2. In order to prevent numerical issues arising from employing an unbounded scaling of

the gain µ2, we clip this scaling at a maximum value µ2,max = 6.25. For our six second task, this

maximum is reached after 3.6 seconds of operation. For the nominal controller, we utilize the

same controller parameters as in [132], so that the interested reader can compare the performance

of the PTSf + nominal controller to that of the nominal controller alone.

In order to convert our formulation of a PTSf to that of an ESf, the following expression

can be utilized in substitute of (6.22):

ai,esf =−q̇⊤J⊤(q)
∂ 2hi

∂ p2 J(q)q̇− ∂hi

∂ p
J̇(q)q̇−2ρ

2hi −3ρ
∂hi

∂ p
J(q)q̇ (6.57)

with ρ > 0. For our high gain ESf, we set ρ = 4 so that the high gain ESf + nominal controller

can achieve negligible tracking error at the end of the six second task. For our low gain ESf, we

instead set ρ = 1.5 so that the low gain ESf begins to take evasive action at the same instance of

time as the proposed PTSf.

(a) (b)

Figure 6.2. The simulated (a) and experimental (b) distance between the robot manipulator and
the nearest obstacle.

From Figure 6.1 it can be observed that the proposed PTSf successfully avoids the

spherical obstacle in both simulation and experiment, while simultaneously placing the held
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(a) (b)

Figure 6.3. The magnitude of the difference between the nominal and filtered joint torques in
simulation (a) and experiment (b).

object precisely on the table at the end of the six second task. Please check the DSCL YouTube

Channel, at https://youtu.be/yRr6D2oFSeQ, for the video of Baxter performing the experiment.

Furthermore, the magnitude of the torque applied by the PTSf gradually increases as the spherical

obstacle is approached, indicating that the control action is smooth and that the magnitude of the

joint jerks of Baxter are not large. In comparison, the ESf with a high gain is also successful

at placing the held object precisely on the table. However, the magnitude of the torque applied

by the PTSf increases much more rapidly as the obstacle is approached, indicating a sharper

discontinuity in the control action as well as higher joint jerks. Conversely, the ESf with a low

gain appears to have joint jerks with a similar magnitude as that of the proposed PTSf, but is

unable to achieve zero tracking error by the end of the six second task. Unlike both the PTSf

as well as the ESf with a high gain, the ESf with a low gain becomes active towards the end of

the task, limiting the rate of approach of the table to a slow exponential approach, rather than

the prescribed-time approach governed by the nominal controller. The distance between the

end-effector and the nearest obstacle in both simulation and experiment can be more closely

observed in Figure 6.2. While the PTSf and high gain ESf both are able to place the held object

precisely on the table, the low gain ESf instead holds the object roughly 1 cm above the table

by the end of the six second task. Additionally, it is notable to mention that the ESf with a low
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gain appears to behave much more conservatively in experiment than in simulation, maintaining

a large distance between the end-effector and the spherical obstacle. This is likely due to a

discrepancy between the modeled and actual friction in each joint of Baxter, and is more apparent

when the filter gains are not large enough to counteract their contribution.

In Figure 6.3, the magnitude of the difference between the nominal and filtered joint

torques, ∥τsafe − τnom∥2, can be seen. It can be observed from this figure that the PTSf and the

low gain ESf both become active after around one second of operation, whereas the high gain

ESf becomes active after around two seconds of operation. In order to avoid collision with the

spherical obstacle while reacting at a later time, the high gain ESf ramps up in magnitude much

faster than the PTSf and low gain ESf, indicating larger joint jerks during the operation of the

robot manipulator at this time. After around four seconds of operation, each safety filter rapidly

drops in magnitude. This period in time corresponds with the end-effector quickly passing under

the spherical obstacle, meaning that the obstacle is no longer blocking the end-effector from

approaching the reference trajectory. Thus, this large change in magnitude of each safety filter is

primarily due to the shape of the obstacle CBF, as well as the nominal controller rather than the

convergence properties of the utilized safety filter. It is important to mention that at this instant,

the safety filter with the highest experienced joint jerks is the low gain ESf. This is due to the

conservative low gains of the ESf keeping the end-effector further from the reference trajectory

in the beginning of the task, resulting in a larger nominal control torque to drive the system back

towards the reference trajectory. During the last 2 seconds of the task, the low gain ESf maintains

operation with a small magnitude, while both the high gain ESf and the PTSf do not noticably

interfere with the motion of the end-effector at this time.

The experimental, simulated, and desired joint trajectories of Baxter can be seen in Figure

6.4. In order to avoid the large spherical obstacle, joints 1 and 3 experience large deviations from

the desired trajectory, with the low gain ESf experiencing the largest tracking errors. After this

large deviation, the joint trajectories smoothly converge back to the desired trajectory. Observing

Figure 6.7, it is possible to see the convergence behavior of each method in more detail. While
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(a) (b)

(c) (d)

(e) (f)

(g)

(h) (i)

(j) (k)

(l) (m)

(n)

Figure 6.4. The simulated (a-g) and experimental (h-n) joint trajectories of Baxter. At t = 3s,
the end-effector trajectory takes a major turn from moving up to moving below the spherical
obstacle.
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(a) (b)

(c) (d)

(e) (f)

(g)

(h) (i)

(j) (k)

(l) (m)

(n)

Figure 6.5. The simulated (a-g) and experimental (h-n) joint torque input signals of Baxter.
At t = 3s, the end-effector trajectory takes a major turn from moving up to moving below the
spherical obstacle.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.6. The simulated joint jerks of Baxter, shown when the safety filter is active. At t = 3s,
the end-effector trajectory takes a major turn from moving up to moving below the spherical
obstacle.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7. Simulated (left column) and experimental (right column) tracking errors of Baxter
when using a prescribed-time safety filter (a, b), an exponential safety filter with a high gain of
ρ = 4 (c, d), and an exponential safety filter with a low gain of ρ = 1.5 (e, f).
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the tracking errors for the PTSf and high gain ESf reach negligible values, there is a residual

tracking error of roughly one degree on joint 2 for the low gain ESf. This joint is primarily

responsible for the height of the end-effector, and thus this tracking error is present due to the

low gain ESf limiting the rate of approach to the table.

The experimental and simulated joint toque input signals of Baxter can be seen in Figure

6.5. It is important to note that these torques are significantly lower than the maximum torque

output of Baxter’s joints, which are 50 Nm for joints 1-4, and 15 Nm for joints 5-7. Thus, none

of the tested methods pose the risk of torque saturation. Furthermore, while the presence of noise

in angular velocity measurements has caused similar variations in the experimental joint torques,

these torques still exhibit moderate continuity, and do not appear to be affected by chattering.

There does not appear to be a large difference between the tested methods in regards to their

susceptibility to noise, as each curve appears to have a similar degree of ”fuzziness”.

The simulated joint jerks of Baxter can be seen in Figure 6.6. In the beginning of the

task, the joint jerk from the high gain ESf is an order of magnitude larger than either the PTSf

or the low gain ESf. As the task progresses, the jerk from the high gain ESf becomes nearly

identical to that of the PTSf, due to the end-effector following along the surface of the spherical

obstacle. At the end of the task, both the PTSf and the high gain ESf have a negligible joint

jerk compared to the low gain ESf, which actively limits the rate of approach of the end-effector

to the surface of the table. Across the duration of the task, the PTSf consistently achieves the

smallest joint jerks out of the tested methods, only increasing in magnitude due to the influence

of the shape of the obstacle and the trajectory tracking task.

It is important to note that the path of the end-effector when utilizing a PTSf, as with

CBF approaches in general, depends on the structure of the barrier functions hi. For example in

Figure 6.8(a), lowering the center of the spherical obstacle by 120mm causes the end-effector

trajectory to go over the spherical obstacle rather than below it. Furthermore, as the quadratic

programming filter strategy (6.24), (6.25) is a local optimization scheme, it is possible for the

end-effector to get stuck on an obstacle even when there is a valid path back to the reference
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(a) (b)

Figure 6.8. Simulations of Baxter following a pick-and-place trajectory while avoiding multiple
obstacles, using a prescribed-time safety filter. In (a), the center of the spherical obstacle is
lowered 120mm, resulting in the end-effector going over the spherical obstacle. In (b), the center
of the spherical obstacle is lowered exactly 67 mm, resulting in the end-effector being unable to
reach its destination. Note that in this case, the end-effector still travels along the surface of the
spherical obstacle without exiting the safe set.

trajectory. In Figure 6.8(b), by lowering the spherical obstacle precisely 67 mm, the end-effector

is no longer able to return to the reference trajectory. Even in this case however, the end-effector

does not violate the safe set, and instead gently comes into contact with the spherical obstacle at

the end of the six second task. The primary purpose of our proposed PTSf, as well as ESfs and

other CBF based approaches is to ensure the system does not leave the safe set in a minimally

invasive manner. In the context of safety, these approaches should not be seen as a substitute for

path-planning, but instead as an additional layer of safety, ensuring the system remains safe even

when the system does not perfectly follow the reference trajectory, or if the reference trajectory

is not suitably designed to prevent collision with obstacles.

6.5 Conclusion

In this chapter, we reformulated the PTSf initially proposed by Abel et al. [131] for the

case of a redundant manipulator performing a fixed-duration task. This formation yields a filter
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that is capable of avoiding multiple obstacles in a minimally invasive manner with bounded joint

torques, while simultaneously allowing the nominal controller to converge to positions located

on the boundary of the safe set by the end of the fixed-duration task. In order to demonstrate

the efficacy of the proposed method, we performed a series of simulations and experiments on

Baxter, a 7-DOF collaborative robot manipulator. In these simulations and experiments, Baxter

must follow a six second parabolic trajectory as closely as possible while navigating around

a large spherical obstacle blocking its path, and place an object precisely on the surface of a

table without overshoot by the end of the six seconds. To highlight the ability of this method to

allow convergence to the barrier within a finite period of time, the nominal controller utilized in

both simulation and experiment is a prescribed-time controller which we previously formulated

in Chapter 5. The results of our simulations and experiments demonstrated the ability of the

PTSf to enforce safety throughout the six second task, while allowing the robot manipulator to

make contact with the table and thus achieve the desired goal position by the end of the task.

Furthermore, when compared to the ESf, which is the state-of-the-art in current literature, our

proposed method yielded consistently lower joint jerks. Thus, for tasks with a fixed duration,

the proposed PTSf offers performance benefits over the exponential filters currently present in

literature.
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