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On the Laws of Virus Spread through Cell Populations

Dominik Wodarz,a,b Chi N. Chan,c Benjamin Trinité,c Natalia L. Komarova,a,b David N. Levyc

Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USAa; Department of Mathematics, University of California, Irvine, California,
USAb; Department of Basic Science, New York University College of Dentistry, New York, New York, USAc

ABSTRACT

The dynamics of viral infections have been investigated extensively, often with a combination of experimental and mathematical
approaches. Mathematical descriptions of virus spread through cell populations are well established in the literature and have
yielded important insights, yet the formulation of certain fundamental aspects of virus dynamics models remains uncertain and
untested. Here, we investigate the process of infection and, in particular, the effect of varying the target cell population size on
the number of productively infected cells generated. Using an in vitro single-round HIV-1 infection system, we find that the es-
tablished modeling framework cannot accurately fit the data. If the model is fit to data with the lowest number of cells and is
used to predict data generated with larger cell populations, the model significantly overestimates the number of productively
infected cells generated. Interestingly, this deviation becomes stronger under experimental conditions that promote mixing of
cells and viruses. The reason for the deviation is that the standard model makes certain oversimplifying assumptions about the
fate of viruses that fail to find a cell in their immediate proximity. We derive from stochastic processes a different model that
assumes simultaneous access of the virus to multiple target cells. In this scenario, if no cell is available to the virus at its location,
it has a chance to interact with other cells, a process that can be promoted by mixing of the populations. This model can accu-
rately fit the experimental data and suggests a new interpretation of mass action in virus dynamics models.

IMPORTANCE

Understanding the principles of virus growth through cell populations is of fundamental importance to virology. It helps us
make informed decisions about intervention strategies aimed at preventing virus growth, such as drug treatment or vaccination
approaches, e.g., in HIV infection, yet considerable uncertainty remains in this respect. An important variable in this context is
the number of susceptible cells available for virus replication. How does the number of susceptible cells influence the growth
potential of the virus? Besides the importance of such information for clinical responses, a thorough understanding of this is
also important for the prediction of virus levels in patients and the estimation of crucial patient parameters through the use of
mathematical models. This paper investigates the relationship between target cell availability and the virus growth potential
with a combination of experimental and mathematical approaches and provides significant new insights.

Studying the dynamics of virus replication has generated im-
portant insights into several human infections, including

those caused by human immunodeficiency virus (HIV) as well as
hepatitis B and C viruses (1–6). Mathematical modeling of viral
dynamics has played a crucial role in this research, allowing the
estimation of critical replication parameters in order to obtain a
better understanding of viral evolution, the interactions between
viruses and the immune system, and the response of viral infec-
tions to antiviral drug therapy. The accuracy with which virus
dynamics are described and, more importantly, predicted de-
pends on various simplifying assumptions underlying the model;
these have been discussed, e.g., in reference 7. Here we investigate
the fundamental structure of the infection term, that is, the overall
rate at which target cells in a population become infected in the
presence of the virus. We specifically discover how the number of
target cells available to the virus influences the number of produc-
tively infected cells generated and examine how accurately this is
described with standard virus dynamics models.

Mathematical models of virus dynamics have been utilizing
different mathematical tools and approaches, depending on the
question under investigation and the biological complexity con-
sidered. Most models, however, are based on a common core of
ordinary differential equations (ODEs) (1–3). Denoting the num-
ber of susceptible, uninfected target cells by S, the number of pro-
ductively infected cells by I, and the virus population by V, this

core is given by the following set of ordinary differential equa-
tions, which describe the time evolution of these populations:

Ṡ � � � dS � �SV

İ � �SV � aI (1)

V̇ � kI � uV

Susceptible target cells are produced at rate �, die at rate d, and
upon contact with virus become productively infected at rate �.
The infected cells die at rate a and produce offspring virus at rate k.
Free virus decays at rate u. This model has been investigated in
much detail and has been reviewed in a number of publications;
e.g., see references 1, 2, 3, and 8.

The infection term, �SV, assumes that the rate at which new
productively infected cells are generated is proportional to the
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number of viruses and the number of target cells. Hence, the basic
reproductive ratio of the virus and the initial growth rate of the
virus are directly proportional to the number of available target
cells, S (1). This is thought to imply mass action, i.e., assuming that
viruses and cells mix perfectly. In such a setting, each virus particle
has a chance to interact with each cell in the system. This is the
simplest mathematical formulation of the infection process, al-
though it is not clear how realistic it is. Alternatives to this infec-
tion term involving saturation in the number of uninfected and/or
infected cells have been proposed (7, 9–11). An example is the
frequency-dependent infection term, given by �SV/(S � I), or a
term where the rate of infection saturates at higher target cell
densities, �SV/(S � ε), where ε is a saturation constant. These
approaches to model infection of cells are similar to those taken in
mathematical epidemiology in order to describe the spread of
pathogens in a host population (9). The mathematical laws ac-
cording to which infection of cells occurs, however, are not
known. At the same time, knowledge of the correct description is
important for the accurate prediction of viral dynamics and for
the successful application of mathematical models to experimen-
tal data.

This paper aims to examine more deeply the relationship be-
tween target cell availability and the rate at which cells become
infected. This is done with a combination of experimental and
mathematical approaches. Using a single-round HIV infection
system, we inoculated cell cultures that contained different num-
bers of target cells with different amounts of virus and recorded
the resulting numbers of productively infected cells. Infection was
performed with and without enhancement of infection by a cen-
trifugation-dependent method of deposition of virions onto cells
called spinoculation, thus varying the degree of mixing between
cells and viruses. We found that when the core model of virus
dynamics with the infection term �SV was fitted to data with low
target cell numbers, model predictions increasingly deviated in
the context of higher target cell numbers. Paradoxically, this effect
was more pronounced in experiments where the mixing of cells
and viruses was promoted through infection by spinoculation,
which the standard model is thought to describe the best. Here we
propose a generalization of the traditional model that can accu-
rately describe the experimental data. This work provides a new
understanding of the meaning of perfect mixing and mass action
in virus dynamics models and describes a modeling framework
that allows different degrees of mixing between cells and viruses to
be taken into account.

MATERIALS AND METHODS
Infection of cells and data collection. Jurkat T cells were maintained in
Gibco Advanced RPMI 1640 medium supplemented with 5% bovine
growth serum (Thermo Scientific), 1% penicillin, streptomycin, and L-
glutamine (Invitrogen), and 50 �M �-mercaptoethanol (Sigma). The
cells were plated into a 24-well plate at different levels of cell density as
indicated in the text below. Cells were infected in the indicated total vol-
ume (1 ml or 2 ml) with a 3-fold serial dilution of an equal mixture of
green fluorescent protein (GFP) and yellow fluorescent protein (YFP)
reporter HIV-1 strains (NLENG1-ES-IRES and NLENY1-ES-IRES, re-
spectively) pseudotyped with the HIV-1 NL4-3 envelope for single-round
infection (12, 13). The highest virus dose was 1.5 � 108 virions, as assessed
by real-time PCR for genomic RNA (14). Infections were either by spin-
oculation for 2 h at 1,200 � g and 37°C (14) or by overnight incubation
only, each in the presence of 10 �g/ml DEAE-dextran (Sigma). A 1 day
postinfection, one half of the total volume of each well was replaced with

fresh culture medium. Expression of GFP and YFP in cells was quantified
by flow cytometric analysis (with a BD FACSort cell sorter) at day 2
postinfection. Data are representative of those from 3 independent exper-
iments.

RESULTS
Varying target cell densities: experimental data. In cultures
characterized by the same volume, 6 different doses of a fluores-
cent reporter HIV strain were added to different numbers of the
Jurkat human CD4� T cell line. Four different target cell numbers
were used: 50,000, 100,000, 250,000, and 500,000 (Fig. 1). Infec-
tions were limited to a single round owing to a defect in the viral
envelope gene (see Materials and Methods). Two days after infec-
tion, which is the peak of viral expression in these cells, the cells
were analyzed by flow cytometry for fluorescent protein expres-
sion (productive infection) and viability. Assuming a division rate
(r) of 0.8 day�1 (consistent with a doubling time of Jurkat cells of
between 18 and 24 h [15]), the total number of productively in-
fected cells found in the culture after 2 days was estimated. The
measured percentage and the estimated total number of produc-
tively infected cells as a function of virus dose are shown for the
different target cell numbers in Fig. 1. Control experiments utiliz-
ing cell counting and eFluor670 dye dilution (14) demonstrated
that Jurkat cell proliferation over 2 days was unaffected by the
variable cell densities employed here (not shown).

Basic mathematical description of the experiments. Accord-
ing to traditional thinking, a mathematical model of the experi-
ments under a mass action assumption is formulated as follows.

Ṡ � rS � �SV

İ � �SV � aI (2)

V̇ � �uV � �SV

These equations are based on the core model, described in equa-
tion 1 in the introduction, and are adapted to describe a single-round
infection in vitro, where target cells can divide during the time frame
of the experiment. Thus, the susceptible target cells divide at rate r and
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FIG 1 Data showing the level of infected cells generated for different initial
virus inocula and target cell numbers. The percentage of productively infected
(fluorescent) cells was measured, and this was used to estimate the total num-
bers of productively infected cells, as explained in the text. The data were
generated with spinoculation (a) and without spinoculation (b).
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upon contact with virus become productively infected at rate �. In-
fected cells die at rate a but do not produce any infectious offspring
virus. Free virus decays at rate u and also disappears from the extra-
cellular environment due to infection. The last term is typically ig-
nored in virus dynamics models because it is thought to be negligible
compared to the decay rate of the virus and because it makes the
model analytically more tractable. Here, however, we include this
term because we are not concerned with analytical tractability and
because it has been suggested that such a formulation might fit exper-
imental data better in specific settings (16).

From the experiments, we know the initial number of target
cells and also the relative virus dose with which the cell culture was
infected. By simulating the model for a duration of 2 days, we can
predict the experimental curves that document the number of
productively infected cells generated as a function of the initial
virus inoculum for different target cell numbers. The model was fit
to the data that show the number of infected cells generated after
2 days for six different initial virus doses. The fitting was done for
the experiments performed with the lowest number of target cells,
i.e., 50,000 cells. The parameterized model was expected to then
predict the other experimental curves by adjusting the number of
available target cells in the model.

In reality, we observe quite a different outcome. The results of
the fits are shown for the scenarios with and without spinocula-
tion in Fig. 2a. In both cases, a similar pattern is observed. The
model predicts the data well for lower target cell numbers but
deviates visibly for higher target cell numbers. In particular, the
observed numbers of infected cells are lower than the predicted
numbers. This indicates that the rate at which infected cells are
generated is not directly proportional to the number of target
cells. As will be shown, the proportionality holds approximately
for lower target cell numbers, but for higher numbers of target
cells, the rate at which infected cells are generated becomes a sat-
urating function and reaches a plateau.

Further, we observe that the deviation of the simple model
from the data for high numbers of target cells is larger for the
experiments with spinoculation (at this point, this is just an ob-
servation, which will be quantified later). This is rather surprising,
given that we expect the traditional model to work best in the
context of a well-mixed system. We leave an explanation of this
phenomenon to the next section.

Before we set up to explain the observations and propose an
improved model which is more consistent with the data, we need
to provide some important details of the fitting procedure em-
ployed. In order to fit the model to the data, the simulation was
run repeatedly, and for each run, the parameters r, �, a, and u were
stochastically varied within specific ranges (with r, a, u, and log10 �
being distributed uniformly). For each randomly generated pa-
rameter combination, the percent error between observed and
predicted data points was determined. It turned out that many
different parameter combinations gave rise to similar fits with
similar errors. We applied the profile likelihood method to deter-
mine the identifiability of the different parameters (17), as illus-
trated in Fig. 3a and b for the data fitting with and without spin-
oculation. The 4-dimensional parameter space was projected onto
space (log10 �, a, u). The best-fitting parameter combination is
marked by a large black dot. The gray cloud of points around it
identifies a numerically found likelihood-based confidence inter-
val: a manifold of points whose mean square error differs from
that of the best-fitting parameter combination by less than a

threshold, �	, given by �	 
 �2(	, df). With 	 equal to 0.05, it is
the 5% quantile of the �2 distribution, and parameter df, which
defines the convergence type, is taken to be equal to 1 for a point-
wise confidence level of 0.05. In other words, the parameter com-
binations in the gray regions of Fig. 3 give equally good fits at the
0.05 confidence level. The presence of these regions that extend
out of the biologically relevant region of the parameter space (such
that a ¡ 0, u ¡ 0) indicates practical nonidentifiability of the
best-fitting point. Practically speaking, all points in the gray man-
ifold provide equally good fits.

The reason that the best fit cannot be determined in this system
can be understood intuitively. In the experiments, we concentrate
on the number of infected cells generated after a specific time
point (2 days), which can be the same for different parameter
combinations, even if the dynamics during other time points dif-
fer. Therefore, to perform further analysis, we did not use a unique
best fit but instead recorded the top 10% of the best-fitting param-
eter combinations. Because the error among all these fits was sim-
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FIG 2 Model fits to the data documenting the number of productively in-
fected cells generated for different initial virus inocula and target cell numbers.
Data are given by black lines and model fits are given by colored lines, as
indicated. Different models were fit. (a) The basic model, equation 2; (b) the
saturation model, equation 3; (c) the multiple-access model, equation 5. As
explained in the text, a collection of different parameter combinations de-
scribes the data with similar accuracy. The parameters chosen here for the
fits come from this set. They are given as follows. With spinoculation, r 

0.65, � 
 6.15 � 10�9, a 
 4.09 � 10�3, u 
 6.08 � 10�2, ε 
 8.0 � 105,
	 
 1.5 � 10�6. Without spinoculation, r 
 1.97; � 
 6.87 � 10�9, a 

5.86 � 10�4, u 
 2.61; ε 
 2 � 106, 	 
 6 � 10�7. Note that the exact
values of these parameters have no specific biological meaning. As ex-
plained in the text, an array of parameter combinations yields equally good
fits, and the quoted values represent an example of those.
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ilar, the quality of the fit was visually not significantly different
among these parameter combinations. In Fig. 2, we used one of
the parameter combinations that was obtained by this procedure.
All other parameter combinations result in visually indistinguish-
able graphs.

A model with target cell saturation. The results presented
above suggest that as the number of target cells is increased, the
number of infected cells generated depends to a lesser degree on
the size of the target cell population. The rate of infection seems to
saturate as the number of target cells rises. That is, it is propor-
tional to the target cell numbers if this population is relatively
small but does not significantly depend on the number of target
cells if this population is high. To explore this further, we fitted a
slightly different model to the data, assuming that the infection
term is a saturating function of the number of target cells (7, 18,
19). It is given by the following set of ordinary differential equa-
tions:

Ṡ � rS �
�SV�1 � ��

S � �

İ �
�SV�1 � ��

S � �
� aI (3)

V̇ � �uV �
�SV�1 � ��

S � �

The parameter ε is the saturation constant. It also appears in
the numerator, such that for high values of ε, the value of � does
not have to be rescaled to make up for the reduction in the value of
the infection term. Thus, for very large values of ε, the equations
converge to model 2 (equation 2) without saturation (i.e., �SV).
For very low values of ε, the infection term is independent of the
target cell number (i.e., it becomes �V).

Figure 2b shows the fits of model 3 (equation 3) to the data for
specific parameter combinations for the scenario with and with-
out spinoculation. We note that model 3 fits the data better than
model 2. We used statistical methods to assess whether the im-
provement in the fit is significant. First, we note that model 3
reduces to basic model 2 by setting ε equal to �, and the F test for
nested models can be applied (20). Model 2 has 4 fitted parame-
ters, and model 3 has 5; the total number of data points fitted is 29.
Applying the F-distribution for the statistics, we determine that
for the experiments with spinoculation, model 2 can be rejected
in favor of model 3, with the P value being 2.3 � 10�8, and in
the experiments without spinoculation, the P value is even
smaller (and equals 8.2 � 10�9). Further, we can use the Akaike
information criterion (AIC) (see, e.g., reference 21). Denoting
this statistic as AIC2 and AIC3 for models 2 and 3, respectively,
we obtain AIC2 � AIC3 
 2.7 in the experiments with spinocu-
lation, and this quantity is equal to 2.2 in the experiments
without spinocuation. AIC not only rewards goodness of fit but
also includes a penalty that is an increasing function of the
number of estimated parameters. Since the AIC for model 3 is
smaller, we can conclude that this is a better model, despite the
fact that it contains an extra parameter.

Further quantification of this effect was obtained by compiling
a comprehensive picture of all parameter combinations that fit the
data well. As mentioned at the end of the previous section, a mul-
titude of parameter sets (r, b, a, u) that fit the data equally well for
the case of 50,000 target cells can be found. We took the set of
parameter estimates that gave rise to the best fits of model 2, and
for each parameter combination, we determined the value of ε in
model 3 that leads to the best fit of the curves for all target cell
numbers. Thus, we obtained a distribution of best-fitting ε values
for the scenario with and without spinoculation, shown in Fig. 4a.

FIG 3 The profile likelihood analysis of the best-fitting parameter combination. The parameter space is projected onto (log10 �, a, u). The best-fitting parameter
combination is marked by a large black dot. The gray cloud of points around it identifies a confidence interval [a manifold of points whose mean square error
differs from that of the best-fitting parameter combination by less than �	 
 �2(0.05, 1), the 0.05 quantile of the �2 distribution]. (a) With spinoculation; (b)
without spinoculation.
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Interestingly, the best-fitting saturation constants for the spinocu-
lation scenario were significantly lower than those estimated for
the scenario without spinoculation (Fig. 4a). In other words, the
mass action model (model 2) deviates significantly more from the
data generated with spinoculation than from the data generated
without spinoculation. Hence, the mass action model describes
the data worse if cells and viruses are mixed to a larger extent. This
is a counterintuitive result that confirms our initial observation of
the fit in Fig. 2a and requires an explanation.

Agent-based modeling of infection. In order to gain further
insights into these results, we turn to an agent-based simulation of
the experiments. We start with assumptions that most closely
correspond to the simplest ODE model of the experiments, i.e.,
model 2.

(i) Basic agent-based model. Assume that a maximum of K
cells can exist in a system; i.e., the system contains K spots that can
either be filled by a cell or be empty. Into this system, N cells are
placed randomly, where N is �K. The cells are assumed not to die
for the duration of the experiment. We also assume that at the
beginning, there are M infectious virus particles. At each time step,

each virus particle has a chance to undergo two events. It can try to
infect a target cell with a probability Pinf, or it can die with a
probability Pdeath. (The parameters Pinf and Pdeath in this model are
related to the parameters � and u, respectively, in the ODEs pre-
sented above.) If a virus particle is chosen for infection, a ran-
domly chosen spot will be assigned to the virus (we can say, “a
virus lands on a spot”). If this spot contains a susceptible cell
(which can be either infected or uninfected), infection proceeds.
On the other hand, if the chosen spot is empty and contains no
cell, the state of the system does not change at this time step. If
infection or death occurs, the number of virus particles is reduced
by one. Infected cells are assumed not to die for the duration of the
simulation, which is a simplification that does not influence the
results that we are interested in. This algorithm is followed for a
defined number of time steps, after which the simulation stops
and the number of infected cells is determined. This computer
simulation was used to generate curves that document the num-
ber of infected cells generated during this time frame as a function
of the initial virus dose for four different target cell numbers. The
most basic ODE model (model 2) was fit to these data. In contrast
to the experimental data, model 2 could describe these computer-
generated data very well. This is shown in Fig. 5a. This is not
surprising, because model 2 is an ODE formulation of the agent-
based model described here.
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iments performed here were simulated with an agent-based model (see the
text) under the assumption that virus infection fails if the virus lands on an
empty spot. This is also the assumption underlying the ODE model 2, which
thus fits the data well. (b) The same simulation was performed assuming that
a virus has access to multiple target cells at once. Thus, even if the virus lands
on an empty spot, it can infect surrounding cells with a certain probability (see
the text for a detailed description). This simulation gives rise to a pattern that
is equivalent to that in the actual experiments: after fitting ODE model 2 to the
case with the lowest target cell numbers, it overestimates the number of in-
fected cells generated at higher target cell numbers. The models were fitted to
the computer-generated data in the same way as for the experimental data, as
described in the text. Parameters for the agent-based model were chosen as
follows: Pinf 
 10�5, Pdeath 
 0.05, m 
 3, where m is the maximum number of
infection attempts, and probabilities i 
 e�0.2(i � 1).
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In the experiments, processes must occur that are not taken
into account by the above-described model. While the model ex-
plored so far assumes that each virus has a chance to interact with
each target cell in the system, if a virus is placed on an empty spot,
no infection occurs. If a system is well mixed, however, it is pos-
sible that a virus in a given location not only has access to a cell that
is in this exact location but also has a chance to infect other cells
that are in the system. Hence, we modify the assumptions of the
basic agent-based model as follows.

(ii) Multiple-access agent-based model. The setup for the
multiple-access agent-based model is the same as that for the basic
model. The infection event, however, is modeled differently. As
the virus lands on a spot, the simulation checks whether a suscep-
tible cell is present at this spot. If it is, then this cell becomes
infected with certainty (probability 1, where 1 is equal to 1). If it
is not, however, the infection process is not aborted as described
above but another chance of infection is presented by choosing
another spot at random. If a susceptible cell is encountered, infec-
tion occurs with a probability 2, where 2 is �1; with a probabil-
ity of 1 � 2, infection is not successful. If infection does not
proceed, then another location is randomly chosen. If this spot
contains a susceptible cell, infection occurs with a probability 3,
which is �2, and so on. With increasing numbers of attempts, the
probability of infection is assumed to decline. The maximum
number of attempts of infection is given by parameter m.

We used the multiple-access agent-based model to produce
curves that document the number of infected cells as a function of
the initial amount of virus for four different target cell numbers.
Model 2 was again fit to these computer-generated data. This time,
the data produced by the agent-based model look similar to those
produced experimentally (Fig. 5b). Accordingly, model 2, fitted to
the data with the lowest target cell numbers, overpredicted the
number of infected cells for higher target cell numbers. On the
other hand, the saturation model, equation 3, fit the simulated
data well for all target cell numbers (not shown).

This analysis indicates that the core model of virus dynamics,
model 2, does not accurately describe mass action kinetics. Model
2 assumes that if a virus hits an empty spot, no infection occurs at
that time step. The multiple-access agent-based model, on the
other hand, assumes that due to mixing, the virus has more than
one opportunity to infect a cell, and hence, it is less likely that
infection is aborted due to a lack of target cells. In the following
section, we derive ODEs from this agent-based formulation and
apply them to the experimental data.

Derivation of ODEs for the multiple-access model. Here, we
formulate the multiple-access agent-based model in terms of
ODEs. Suppose that at each time step a number of viruses are
randomly applied to a set of cells randomly distributed on a grid.
At each attempt, a virus picks a randomly chosen spot, and if the
spot contains a cell (infected or uninfected), with probability i

(where i is the serial number of the attempt), the cell becomes
infected; otherwise, the next attempt follows. We set 1 
 1 	
2 	 3 . . . 	 m. A particular (exponential) example of a model
for the decay of infection probabilities is given by i 
 e��(i � 1),
where the parameter � measures the rate of decay and i ranges
from 1 to m. Large values of � correspond to effectively having
only very few attempts of infection per virus particle per update;
small values of � correspond to a large number of attempts with
similar probabilities of infection. As a result of this algorithm,
there are three possibilities: (i) the virus infects the target cell with

probability �; if the target cell is uninfected, it becomes infected,
and if it is infected, it is reinfected; (ii) the virus dies with proba-
bility u; or (iii) no change occurs. After all the existing viruses have
completed these steps, the update cycle is over. At the next update
cycle, the same algorithm is repeated for all the viruses that are still
in existence.

To derive equations for the mean numbers of uninfected and
infected cells and viruses, we note that for each virus, the proba-
bility that a target cell which is uninfected will be chosen (pS) is
given by

ps � �
i � 1

m

�
l � 1

i � 1 �1 �

l�x � y�

K �
ix

K

The probability that a target cell which is infected will be chosen
(pI) is given by

pI � �
i � 1

m

�
l � 1

i � 1 �1 �

l�x � y�

K �
iy

K

Finally, the probability that no target cell will be chosen (p0) is
given by 1 � pS � pI. If the number of viruses is v, assuming a
binomial distribution, we obtain the mean number of uninfected
cells that become infected after one update cycle, which is given by
�pSv; the mean number of infected cells that become reinfected is
given by �pIv; the expected number of viruses that either die or
infect a cell after one update cycle is given by �(pS � pI)v � uv.
Therefore, we can write the following ODEs describing the mean
dynamics of infection:

Ṡ � ��pSV

İ � �pSV � aI (4)

V̇ � �uV � ��pS � pI�V

There are several special cases worth noting.
(i) One attempt of infection (case a). In the conventional

model, each virus has only one attempt to infect. This corresponds
to � approaching �, such that 0 is equal to 1 and i is equal to 0 for
all i with a value of �0. In this case, the system in equation 4
(system 4) is reduced to the system in equation 2.

(ii) An infinite number of equally likely attempts of infection
(case b). If � is equal to 0 and m approaches �, we have i equal to
1 for all i. As a result, pS is equal to S/(S � I), pI is equal to I/(S �
I), and system 4 reduces to the conventional system of virus dy-
namics with a frequency-dependent infection term.

(iii) A small number of infected cells (case c). The regime
most relevant to the set of experiments described here is charac-
terized by intermediate values of � and a relatively small number
of infected cells. In this case, if we introduce the notation 	 

1/[K(1 � e��)], the following convenient approximation holds:
pS 
 1 � e�	S. The larger that the value of 	 is, the more cells that
a virus can access.

It is case c with system 4 that we will be using to fit the experi-
mental data.

Fitting the multiple-access model to the data. In order to fit
the multiple-access model to the data, we note that in the experi-
ments, the number of infected cells is small compared to the num-
ber of uninfected cells, and therefore, the assumptions of case c
presented in the previous section hold. Therefore, the infection
term can be approximated by �v(1 � e�	S). When the value of 	
changes, the rate of infection (�) needs to be rescaled in order to
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compare the effect of different values of 	 on the dynamics. Alter-
natively, to do this implicitly, we can rewrite the infection term as
(1 � 	)�v(1 � e�	S)/	 (which effectively amounts to the rescal-
ing of the parameter �). The resulting model reads

Ṡ � � �V
1 � �

�
�1 � e��S�

İ � �V
1 � �

�
�1 � e��S� � aI (5)

V̇ � �uV � �V
1 � �

�
�1 � e��S�

Under this parameterization, for small values of 	, the infec-
tion term converges to the standard expression �SV, and for large
values of 	, it converges to �V. We can now take the parameter
combinations for the set of best fits obtained for the standard
model, equation 2, and determine how the different values of 	
affect the fits for the scenarios with and without spinoculation. We
find that the new model improves the fits and can describe the
experimental data well (Fig. 2c). To quantify this improvement,
we note that the model in equation 5 reduces to basic model 2 by
setting 	 equal to 0, so the models are nested. Applying the F-test
for nested models (20), we determine that for the experiments
with spinoculation, model 2 can be rejected in favor of model 5
with a P value of 7.5 � 10�8, and in the experiments without
spinoculation, the P value is even smaller (and equals 2.1 � 10�9).
We can also use the Akaike information criterion (AIC) (see, e.g.,
reference 21). Denoting this statistic of model 5 as AIC5, we obtain
AIC2 � AIC5 
 2.5 in the experiment with spinoculation, and this
quantity is equal to 2.3 in the experiments without spinoculation.
Again, we can conclude that model 5 is a preferred model com-
pared with the basic model, according to the AIC. One advantage
of the AIC is that it can be applied to compare models that are
not nested. For models 3 and 5, the difference AIC3 � AIC5 is
given by �0.12 and �0.1, respectively, so with the data at hand, it
appears that the two models are approximately equally good.

Returning to the analysis of model 5, it is interesting to con-
sider the distribution of the best-fitting values of the parameter 	.
These values for the spinoculation scenario were found to be sig-
nificantly higher than those found for the scenario without spin-
oculation (Fig. 4b). This makes biological sense: it indicates that in
the spinoculation setting, each virus has access to a greater num-
ber of cells, due to the increased mixing that is brought about by
the spinoculation procedure.

The fitting results presented here suggest that both model 3 and
model 5 can explain the experimental data. Below we provide a
brief comparison of the properties of the two models.

In model 3, the infection term is given by �SV(1 � ε)/(S � ε),
and in model 5 it is given by �V(1 �e�	S)(1 � 	)/	. Let us con-
sider the two limits of the number of target cells, S. When S is very
small, models 3 and 5 show the following linear behavior of the
infection term: �SV[1 � (1/ε)] and �SV(1 � 	), respectively.
When S is very large, the two infection terms saturate at levels
�V(1 � ε) and �V[1 � (1/	)], respectively. It is easy to see that if
we formally set ε equal to 1/	, then the limiting behavior of the
two models is identical for both small and large values of S. The
two infection terms can be written as

�V
1 � �

�

S�

S� � 1
and �V

1 � �

�
�1 � e�S��

for models 3 and 5, respectively. A significant quantitative differ-
ence between models 3 and 5 is observed for intermediate values
of the target population size. Examine how quickly the infection
term reaches saturation as the target cell numbers increase. In
model 3, the approach to saturation is a power law. In the new,
empirically derived model 5, the approach is exponential; that is,
the saturation is reached significantly faster.

Density versus numbers. Throughout this analysis, we varied
the number of target cells and examined the number of infected
cells generated. While increasing the number of target cells in the
experiments, however, the volume of the culture was kept con-
stant. Hence, the density of the cells was increased. This is an
important point, and in the following we show that it is the target
cell density rather than absolute numbers that matters. The above-
described experiments were repeated. While the number of target
cells in the culture was increased, the culture volume was also
increased, thus keeping the target cell density constant. This was
done only for the experimental conditions that did not involve
spinoculation. We found that the number of infected cells gener-
ated was very similar when 50,000 target cells were infected in a
1-ml culture volume and when 100,000 target cells were infected
in double the culture volume (2 ml) (Fig. 6a). The same is ob-
served when comparing the infection of 250,000 target cells in a
1-ml culture volume with the infection of 500,000 target cells in a
2-ml culture volume (Fig. 6a). Hence, variation in the number of
target cells while keeping their density constant results in the same
number of infected cells generated.

We investigated this further with our agent-based model,
which can be easily adapted to describe this scenario. The results of
computer simulations are shown in Fig. 6b, and they yield the
same types of results as the experiments. Variation in the num-
ber of target cells while keeping their density constant did not
lead to significant differences in the number of infected cells
generated. The reason is as follows. The probability that a cell
will be infected is proportional to the probability that the virus
will come into contact with a susceptible cell. This probability
rises if the density of the target cells is increased. If the density
remains identical, however, this probability remains constant,
explaining why infection levels do not change as the target cell
numbers are altered. For some parameter regimes, however,
this does not apply. If all cells in the culture are very likely to
become infected, then higher target cell numbers will lead to
higher numbers of infected cells generated. This can occur if
the virus dose with which the cultures are inoculated is very
high, the infection probability B in the model is very high, or
the target cell density is relatively high. This is shown in the
inset of Fig. 6b. A scenario in which all cells are likely to become
infected is, however, biologically not very meaningful.

DISCUSSION

Our analysis has shown that standard mathematical models of
virus dynamics that were thought to capture mass action dy-
namics (i.e., the perfect mixing of cells and viruses) in fact do
not accurately do so. They overestimate the number of infected
cells generated as the target cell number is increased, and this is
more pronounced under experimental conditions where mix-
ing of cells and viruses is promoted. The reason for the discrep-
ancy between the predictions of the standard model and the
data are as follows. The standard model assumes that if a virus
lands in an empty space, no infection can proceed. This might
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be sufficiently accurate at relatively low target cell numbers
because the cells are likely to be sufficiently separated in space
in a well-mixed system. If the target cell density is higher, how-
ever, cells are closer to each other. If the virus lands on a spot
with no cell at exactly that location, the virus likely has a chance
to interact with other cells. This is more likely to be the case if
the system is characterized by a higher degree of mixing. Mix-
ing of cells and viruses is likely to be promoted in vivo by the
flow of fluids within tissues in which virus replication occurs,
with an example being HIV-1 infection. Therefore, capturing
this aspect of infection within the model should more closely
reflect how viruses such as HIV-1 truly operate in the host.

Based on these concepts and insights, we constructed a new
formulation of the infection term that includes these assumptions.
In contrast to the standard infection dynamics models, our new
model can fit the experimental data well, and the parameter esti-
mates make biological sense. Thus, according to the parameter
estimates, spinoculation significantly reduces the chances that a
virus will fail to infect due to failure to interact with target cells.
Hence, for the better-mixed spinoculation scenario, the new
model correctly predicts that the number of infected cells gener-
ated depends to a lesser degree on the target cell density. This
cannot be predicted by the standard models of virus dynamics.
Therefore, our analysis provides a new understanding of the con-
cept of mass action in the context of virus dynamics and also
supplies a new model that more accurately describes experimental
data.

Our model also offers a natural way to describe different de-
grees of mixing in a setting where cells and viruses are randomly
distributed across space. The new model contains a parameter, 	,

that quantifies the degree of mixing in the system: the higher that
the value of 	 is, the more extensive that the mixing is. These
considerations further highlight the fact that a distinction between
spatial dynamics and nonspatial mass action dynamics is too sim-
plistic. Even if no spatial structure exists in the population, differ-
ent degrees of mixing that lead to different types of dynamics can
occur, and this can be described by our model.

In a variety of published papers, authors have found it prob-
lematic to fit standard models of virus infections or variations
thereof to experimental data (7, 16, 18). In some cases, phenom-
enological modifications of the infection term that fit the data
more accurately, such as those presented in model 3, were pro-
vided. While this phenomenological approach fit the present data
well, the infection term in this model is an arbitrary expression
without an underlying biological mechanism. Our new model 5
presented here, however, can be derived from stochastic processes
that describe increased access to target cells through higher de-
grees of mixing and is thus based on a specific, assumed biological
process. It is important to note, however, that this is just one
specific mechanism that can explain the data and that, in princi-
ple, other underlying mechanisms might also be able to account
for the data. This will need to be investigated in future research,
and if this is the case, model selection criteria will need to be
applied to distinguish between hypotheses.
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(b) Computer simula�on 

(a) Experimental data 

FIG 6 Increasing the number of target cells while keeping the density of cells constant. (a) Experimental data. A doubling of the number of target cells was
accompanied by a doubling of the culture volume (from 1 ml to 2 ml). The number of infected cells generated was plotted for different viral inocula and different
target cell numbers. (b) Computer simulations based on the agent-based model. An increase in the number of target cells was accompanied by an equivalent
increase in the size of the system. The number of infected cells generated was plotted for different viral inocula and different target cell numbers. Parameters were
chosen as follows: Pinf 
 10�5, Pdeath 
 0.05, m 
 3, probabilities i 
 to e�0.2(i � 1), and K 
 200,000. (Inset) The same kind of simulation, but the total number
of cells in the system was smaller (K 
 25,000). In this case, most cells of the culture were likely infected at higher virus inocula, regardless of the target cell
numbers, explaining the divergence of the curves (see the text for details).
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