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Quantum Simulations of Radiation Damage in a Molecular
Polyethylene Analog

Nathaniel Troup, Matthew P. Kroonblawd, Davide Donadio,* and Nir Goldman*

An atomic-level understanding of radiation-induced damage in simple
polymers like polyethylene is essential for determining how these chemical
changes can alter the physical and mechanical properties of important
technological materials such as plastics. Ensembles of quantum simulations
of radiation damage in a polyethylene analog are performed using the Density
Functional Tight Binding method to help bind its radiolysis and subsequent
degradation as a function of radiation dose. Chemical degradation products
are categorized with a graph theory approach, and occurrence rates of
unsaturated carbon bond formation, crosslinking, cycle formation, chain
scission reactions, and out-gassing products are computed. Statistical
correlations between product pairs show significant correlations between
chain scission reactions, unsaturated carbon bond formation, and out-gassing
products, though these correlations decrease with increasing atom recoil
energy. The results present relatively simple chemical descriptors as possible
indications of network rearrangements in the middle range of excitation
energies. Ultimately, the work provides a computational framework for
determining the coupling between nonequilibrium chemistry in polymers and
potential changes to macro-scale properties that can aid in the interpretation
of future radiation damage experiments on plastic materials.
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1. Introduction

Polyolefins (i.e., thermoplastics derived
from alkenes) have wide-scale industrial
and commercial use in lightweight plastic
products due to their inexpensive starting
materials as well as their ease of synthesis.
Polyethylene, (PE; [C2H4]n), in particular
accounts for 36% of the total plastics mar-
ket, with uses in packaging film, trash and
grocery bags, wire and cable insulation,
squeeze bottles, toys, and housewares.[1]

Its mechanical properties can be controlled
by changes in the polymer’s structure,
such as varying the hydrocarbon chain
length, molecular weight distribution,
degree of crosslinking (inter-chain bond-
ing), and overall structure due to thermal
annealing.[2–4] Ionizing radiation is an
established environmental stressor that
can have a large effect on polymers’ phys-
ical and chemical properties. In this case,
some form of high-energy radiation, e.g.,
gamma radiation, x-rays, or electron beam,
is applied to the polymer and ultimately

alters its structure through the creation of crosslinks, chain scis-
sions, graft copolymerization, oxidation and/or compatibiliza-
tion, and/or morphology stabilization.[2] This can have a dras-
tic effect on material properties, allowing for great tunability for
specific application needs, such as hardening for upcycling pur-
poses (e.g., for use in building materials),[5] the manufacturing of
nanogels for controlled drug delivery,[6] and creation of artificial
muscles.[7] Ionizing radiation is known to degrade polymer insu-
lated cables in nuclear power plants,[8] though it can be used as
a reliable means of sterilization of medical devices[9,10] and food
packaging,[11] as well as degradation of plastic packaging for re-
cycling purposes.[2,12] However, the spectrum of energy absorp-
tion and loss as a function of radiation fluence is not fully charac-
terized for many polymers,[13–15] and fundamental aspects of the
material response to radiation remain poorly quantified.

Experimental radiation damage studies tend to rely on acceler-
ated aging studies,[16,17] where samples are exposed to high dose
rates (e.g., tens of kGy over days) as well as elevated tempera-
tures. Highly empirical theories (e.g., constitutive models)[18] in
turn are used to extrapolate experimental results out to actual ser-
vice conditions (e.g., decades), where models are largely untested
due to a dearth of experimental data. Physical and chemical ef-
fects in these cases are generally integrated responses, where
ionization and heating occur simultaneously and over relatively
short timescales.[19–21] This coupling poses difficulty in terms
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of unambiguously correlating radiation with specific changes in
properties of interest, such as viscosity, gelation, stress-strain re-
sponses, or out-gassing products.[20,22–26] Hence, predictions of
polymer-radiation interactions require a thorough understand-
ing of the evolution of the polymer functional properties in the
presence of environmental stressors. Elucidation of these effects
would place confidence intervals on current aging studies and
could accelerate material/upcycling design.

In this regard, quantum simulations are a powerful tool for
understanding the chemical processes that occur within poly-
mers by modeling local chemical changes as a function of ra-
diation dose. Density Functional Tight Binding (DFTB) is a
semi-empirical quantum method that holds promise as a sim-
ulation approach that can have comparable accuracy to higher-
order methods (such as Kohn–Sham Density Functional The-
ory) while yielding substantial improvements in computational
efficiency. Briefly, the DFTB total energy expression is derived
directly from Kohn–Sham DFT assuming spherically symmet-
ric charge distributions about neutral atoms and expanding the
Kohn–Sham DFT Hamiltonian to the second or third order in
charge fluctuations.[27,28] This yields the following total energy
expression:

EDFTB = EBS+ECoul+ERep (1)

Here, EBS corresponds to the band structure energy (from the
approximate Kohn-Sham eigenstates) computed with a mini-
mal basis set, and ECoul is the Columbic term and accounts for
charge transfer. ERep is the so-called “repulsive energy”, which
corresponds to ion-ion repulsions, as well as the Hartree and
exchange-correlation double counting terms found in the DFT
total energy expression. ERep generally is short-ranged and empir-
ically fit, which allows for tuning the transferability and accuracy
for specific applications as needed.[29–32] DFTB calculations scale
as 

(
N3

)
due to the solution for the approximate Kohn–Sham

eigenvalues (similar to the underlying DFT method) which lim-
its its accessible length scales. Regardless, the combination of ap-
proximate quantum mechanics and short-ranged empirical func-
tions allows DFTB to retain most of the accuracy of Kohn–Sham
DFT while achieving 102 − 103 times improvement in computa-
tional efficiency.

In this work, we use amorphous decane (AD) as a model sys-
tem for polyethylene in order to help shed light on the effects of
radiation damage in a non-crystalline system, given that simula-
tions of actual polymeric systems would require system sizes of
thousands of atoms or greater,[13] which is cost-prohibitive with
quantum simulation approaches. In addition, a decane molecule
is a reasonable surrogate for modeling local chemistry given that
its equilibrium end-to-end chain length (12.53 Å) is similar to
the Kuhn length of PE (≈12 Å), i.e., the length at which poly-
mer segments can be considered freely jointed or uncorrelated.
We note that molecular dynamics (MD) simulations of radiation
damage in polyethylene have been performed with an empiri-
cal reactive force field model,[14] though these simulations fo-
cused exclusively on crystalline polymers at low temperatures.
We simulate the irradiation process through the Primary Knock-
on Atom (PKA) method (e.g., ref. [33]), where a randomly se-
lected atom is imparted with a recoil velocity over the range of
10 – 70 eV. We then categorize the resulting complex chemistry

using our previously established graph theoretical approach.[34]

Finally, we compute the conditional probabilities and statistical
correlations between chemical events such as the out-gassing
of small molecules with network rearrangement reactions. Ulti-
mately, our work serves to place a bound on the possible damage
modes due to PE radiolysis as well as the possible ramifications
for mechanical and strength properties, which can help guide fu-
ture simulation model development and experimental efforts.

2. Computational Methods

2.1. Generation of Initial Simulation Configurations

An initial decane molecule was created using the
MOLTEMPLATE[35] tool. A condensed phase system was
then established by periodically replicating the chain to form a
low-density supercell of 0.01 g mL−1 with 11 decane molecules
(352 atoms) in total. An initial disordered configuration was cre-
ated by simulation at 600 K for 5 nanoseconds with a time step
of 0.5 fs, using an Optimized Potential for Liquid Simulations
(OPLS) force field,[36] with constant temperature (NVT) using
Nosé–Hoover chain thermostats.[37] Subsequently, a two-stage
equilibration process was utilized to reduce the temperature to
300 K and increase the density to 0.73 g mL−1, similar to that
of amorphous PE. The system temperature was first decreased
to 400 K by using a temperature ramp for 5 ns, followed by
an MD simulation at 400 K for an additional 5 ns. This was
succeeded by constant pressure (NPT) simulation at 400 K and
1 atm for another 5 ns to increase the system’s density using
the Nosé–Hoover thermostat and barostat scheme.[38] Next,
this sequence of NVT/NPT simulations was repeated, gradually
lowering the system’s temperature in 20 K increments of 1 ns
until reaching our desired conditions. A concluding set of NPT
simulations confirmed that the decane molecules had become
non-diffusive. The resulting supercell had a cubic dimension
of 15.32 Å. This allows for a large enough system to observe
condensed-phase chemical reactivity while remaining tractable
with quantum calculations. These simulations were performed
using LAMMPS[39] (version 29-Oct2020).

The final frame from this simulation was then used to seed
the subsequent DFTB simulations using the DFTB+ code (ver.
19.1).[40] For this work, we have used the pbc-0-3 parameter
set,[41] though several exist that have sufficient accuracy for C-
H-containing materials. The inclusion of spin-polarization[42,43]

yielded no differences in product formations and hence was not
used in our study. An initial NVT equilibration simulation was
run for 5 ps at 300 K using a time step of 0.2 fs, with Fermi-Dirac
smearing[44] of 300 K, SCC convergence of 10−6 au, and sampling
of the Γ-point, only. Previous works showed that including spin-
polarization has minor effects on the chemistry of alkane degra-
dation, hence we do not consider it in our calculations.

2.2. Primary Knock-on Atom Simulations

Primary Knock-on Atom simulations were conducted with a sim-
ilar procedure to previous efforts.[34,45] Here, a reaction cascade is
induced by imparting a high-energy velocity with a random direc-
tion to a randomly selected carbon or hydrogen atom. These ki-
netic energies in general are taken to be significantly larger than
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Figure 1. a) Heat map of the C–C radial distribution function (RDF) of a single 70 eV PKA simulation as a function of time. The backbone chemistry
reaches a steady state within several hundred fs. b) C–C RDF plots for the non-irradiated system and for systems equilibrated after PKA excitations at
different energies. Higher excitation energies result in a monotonic increase of unsaturated carbon bonds.

typical bond energies (e.g., tens of eV) which then induce rapid
bond breaking in the system. In doing so, we can then place an
upper bound on the expected radiation-induced degradation in
our system.

The subsequent reaction cascades were sampled through en-
sembles of statistically independent constant energy (NVE) sim-
ulations that were 20 ps in length. Each PKA simulation in-
cluded a short-timescale ballistic period on the order of one ps,
followed by forming a chemical steady state at elevated temper-
ature. Thermal relaxation is known to take tens of picoseconds
or longer in soft organic materials subjected to sudden increases
in temperature.[46] We have used a time step of 0.20 fs for the
duration of the simulation. The electron Fermi–Dirac smearing
temperature was set to 2000 K to account for the elevated ionic
kinetic energy.

The ensembles of PKA simulations were created by assigning
target recoil velocities separately to hydrogen or carbon with en-
ergies of 10, 20, 30, 50, or 70 eV. The 10 and 20 eV PKA sets
consisted of 100 total simulations, while the remaining sets each
consisted of 200 total simulations to better sample the more com-
plex chemical pathways that ensued. The hydrogen PKA simula-
tions tended to yield smaller amounts of chemical reactivity, pos-
sibly due to smaller ion size and lighter mass. In addition, carbon
atoms have a higher absorption cross-section and thus are more
likely to serve as an initial point for chemical degradation in PE
experiments. Hence, our discussion for the remainder of the pa-
per focuses on the carbon PKA simulations, only. This consists
of a total of 800 statistically independent simulations across all
PKA excitation energies, or 2 ns of total simulation time for the
10 and 20 eV events, and 4 ns total simulation time for 30, 50,
and 70 eV events.

3. Results and Discussions

3.1. Initial Chemical Analysis and Nomenclature of Products

The C–C radial distribution functions (RDF) indicate that the
PKA simulations achieve a chemical steady state within one pi-
cosecond of simulation time (Figure 1a). In the 70 eV case, dou-
ble and triple bonds (1.3–1.4 Å) generally form within the first

300 fs after the PKA event and remain throughout the simula-
tion. At this PKA energy, we observe a steady state temperature
of 800 K after the excitation, leading to the thermal broadening
of the RDF peaks with respect to ambient conditions. C–C RDFs
for all excitation energies were calculated by averaging over the
final 50 fs of each simulation and compared to the RDF of the
system before PKA (Figure 1b). Our results show that increasing
energy excitation leads to an increase in carbon double and triple
bonds, and a concurrent decrease of the nearest-neighbor peak
at ≈1.5 Å. Our results also indicate the presence of a diversity of
carbon compounds at each PKA energy.

We have created a general picture of the carbon backbone
reactivity by computing the probability of a chain scission or
backbone-growing reaction occurring in our simulations as a
function of PKA energy. Here, a simulation is counted as hav-
ing either a scission or condensing reaction based on a single
occurrence within that simulation. We use the well-established
bonding criteria of the first minimum of the corresponding
RDF (e.g., ref. [47]), yielding values of rCC = 1.9 Å, rHH =
1.1 Å, and rCH = 1.5 Å. We note that there exists the pos-
sibility of a single simulation exhibiting both scission and
growing reactions.

Overall, we observe a monotonic increase in chain scission
and backbone growth as a function of increasing PKA energy
(Figure 2). In particular, the 10 eV simulation set exhibited rel-
atively little reactivity, with scission events occurring in only
≈3.0% of the simulations, and the remaining 97.0% exhibiting
intact decane molecules without any growing reactions. In con-
trast, the 70 eV simulation set yielded a ≈76.8% chance of exhibit-
ing scission reactions and 11.6% growing reactions, with the re-
maining 11.6% yielding no net reactivity. Backbone growing re-
actions were significantly less probable in all of our simulation
sets, with the 20 eV set yielding a probability of 5.0%, the 30 eV
set yielding a probability of 3.9%, and the 50 eV set yielding a
probability of 11.1%, similar to the 70 eV set. The predominance
of chain scission reactions in model polymeric systems like these
is consistent with previous results for PKA simulations of soft
materials.[34,45] Chain scission is a predominant radiolysis prod-
uct in ultra-high molar mass polyethylene,[48] although PE can
favor crosslinking overall.[2]
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Figure 2. Distribution of chain reactions following excitation. The graph
illustrates the probabilistic outcomes of an excited polymer chain, catego-
rized into chain scission (CS), cross-linking (CL), and no change (NC), as
a function of excitation energy (eV). For each excitation energy level, the
sum of CS, CL, and NC probabilities totals 100%, representing the com-
prehensive breakdown of possible chain reactions.

Similar to our previous work, a graph theory analysis was
used to distinguish between the broad range of unique chemical
species with degenerate chemical formulae and bonding arrange-
ments that can occur upon degradation.[34,45,49,50] Briefly, in our
approach hydrogen atoms are first removed from the all-atom tra-
jectory and covalent connectivity is assessed using our predefined
bonding distance criteria. The open-source graph analysis soft-
ware NetworkX[51] was then used to create an all-inclusive library
of isomorphically distinct structures using the VF2 algorithm.[52]

Backbone structures from our library were then flattened for
easier visual inspection using a damped MD approach.[34] The
library was then classified and analyzed in our statistical ap-
proaches.

Our isomorphic chemical library could be sorted into broad
categories for various common degradation products (Figure 3,
with abbreviations listed in Table 1). Our results suggest that
a reactive event that increases the number of decane backbone
atoms by a single carbon atom is relatively frequent. To better
focus our analysis on the formation of larger products, we thus
choose a chain length of 11 carbon atoms as the threshold be-
tween short and long carbon chains. Subsequently, we define
“Y-links” (YL) species as those with a small carbon side-group
(typically 1-2 carbon atoms) and where the longest carbon-chain
segment ranges from three to 11 atoms. “Crosslinked” species
(CL) refers to longer Y-linked chains where the longest segment
contains 12 carbon atoms or more. Cyclic groups (CYCL) include
both in-chain (backbiting) and free cyclic groups, such as methyl-

Figure 3. Categories of chemical products found in our PKA simulations,
with carbon atoms colored in teal and hydrogen atoms in white.

Table 1. List of abbreviations for radiolysis product categories.

Feature Abbreviation

Cross-linked CL

Cyclization CYCL

Y-links YL

Longer linear chains LL

Chain scission CS

Hydrogen gas H2

methane/ethane C-Gas

Unsaturated C–C bonds DB

cyclopentane. The most frequent CYCL products involved three
and four-member rings connected to a longer aliphatic chain.
Longer linear chains (LL) correspond to linear carbon chains
with more than 12 atoms. Chain scission (CS) refers to com-
pounds with linear carbon backbones of length eight or less.
Reaction products containing unsaturated carbon bonds (DB)
largely consisted of double bonds with smaller amounts of C─C
triple bonds. These were identified based on visualization of the
molecules and the numbers of carbon and hydrogen atoms in
the compound. It is important to note that individual molecules
could exhibit multiple chemical features. For example, a large
molecule might be classified as both CL and CYCL, depending
on the final product.

Finally, the label “C-Gas” encompasses any carbon chain with a
backbone length of two or fewer atoms, such as methane, ethane,
ethene, and ethyne. Larger carbon gas molecules were generated
at higher PKA excitations (i.e., propane and butane), albeit in
trace amounts, and were classified as chain-scission or CS prod-
ucts. The designation “H2” refers to molecular hydrogen forma-
tion within the system.

3.2. Chemical Statistics and Correlations

We now analyze the statistical properties of the radiolytic chem-
istry in terms of our predefined chemical groups. We first tally
the total number of occurrences of each product type per simu-
lation, with 95% confidence intervals determined via bootstrap-
ping with 10 000 resamplings of each PKA ensemble (Figure 4).
We find that most product types show a monotonic increase in
the rate of occurrence as a function of PKA energy. This in-
cludes the formation of CYCL groups, DB groups, C-Gas species,
and H2 molecules. In general, chemical reactivity in our 10 eV
ensemble is uncommon, with occurrence rates of 0.05 or less
for all observed products. DB formation is the most common
reaction product overall, exhibiting 0.62 occurrences per simu-
lation in the 20 eV ensemble, and increasing to ≈2.60 in the
70 eV ensemble. CS production exhibits the second-highest oc-
currence rate, increasing from 0.30 at 20 eV to a little more than
1.70 at 70 eV. C-Gas exhibits a slightly higher occurrence rate
at 20 eV relative to CS, though the rate at 70 eV is smaller, at
a bit above 1.0. By comparison, the H2 occurrence rate exhibits
a larger upward gradient, with only a single occurrence in our
20 eV ensemble, which increases to ≈1.63 at 70 eV. Our observed
production of H2 gas is consistent with previous experimental
results.[53]
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Figure 4. Histogram of the average rate of occurrence of each product class per simulation as a function of PKA energy. Error bars were calculated using
the bootstrap method and represent a 95% confidence interval.

In contrast, the formation of CYCL species remains rela-
tively rare for our entire simulation set, with the occurrence
rate increasing to an average of approximately one out of five
(0.2/simulation) in the 70 eV ensemble. CYCL groups were
formed either through a single-chain backbiting mechanism,
where the PKA-damaged chain folded over and bonded to it-
self or by a methyl ion reaction with a nearby decane chain
to form a four-carbon ring within the middle of the backbone.
We observe similarly low occurrence rates for YL, CL, and LL
groups, with all four groups yielding values of less than 0.5
per simulation across the PKA energies in our study. The rela-
tively high C-Gas production combined with the relatively low
YL and CL production is consistent with the idea that PKA
events in PE are conducive to chain scission reactions and less to
cross-linking.[14]

We now analyze the conditional probabilities and their statis-
tical correlation with a similar approach to our previous work.[45]

Error bars correspond to the 95% confidence interval, as de-
termined again by bootstrapping with 10 000 resamplings. We
first define the unconditional probability P(A) of a single reactive
event A occurring in a PKA simulation of a given energy as:

P(A) = 1
Nsim

∑
Esim

A (2)

Here, Esim
A is equal to a value of one if at least a single instance

of a given product is detected in a simulation and zero otherwise,
and Nsim is the number of simulations in that particular PKA set.

We can then define the joint unconditional probability P(A and
B) for two events A and B as:

P(A and B) = 1
Nsim

∑
Esim

A+B (3)

This corresponds to the probability that both A and B simul-
taneously have occurred in a simulation, without taking into ac-
count any notion of correlation or causation.

We can then use Equations (2) and (3) to compute the condi-
tional probability P(B|A) as follows:

P(B|A) =
P(A and B)

P(A)
(4)

In this case, P(B|A) determines the probability that B occurs
given that A has been detected in a simulation. The statistical
correlation 𝜌(A, B) between A and B can then be determined by
the following equation:

𝜌(A, B) =
P(A and B) − P(A)P(B)√

P(A)[1 − P(A)]P(B)[1 − P(B)]
(5)

Equation (5) yields values of 𝜌(A, B) ranging from [− 1: 1], and
is an indication of the degree of statistical coupling between two
reactive events, or the extent to which two events are linearly re-
lated.

This analysis allows us to determine the strength of causality
between chemical products. The conditional probability allows
for a first pass in our chemical analysis, where we can deter-
mine which pairs of products have connected probabilities above
a chosen threshold to warrant further investigation. This is es-
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Figure 5. Highest conditional probabilities among the products of 30 eV
PKA excitations. Pairs of products for which both P(A|B) and P(B|A) are
high are shown.

pecially useful in our study, given that our eight chemical cat-
egories yield 56 possible conditional probabilities, and that in
general P(B|A) ≠ P(A|B). We can then use the correlation coef-
ficient to determine the statistical link between product pairs.
In doing so, we can help determine possible proxies for chem-
ical events in polymer radiolysis that can be difficult to quantify,
e.g., using carbon gas formation as an estimator for the degree of
chain scissions.

We have computed full conditional probability matrices for
all product pairs in all of our PKA simulation sets (Support-
ing Information), however, here we focus on a subset of the
30 eV excitation runs (Figure 5). The highest conditional proba-
bilities observed in this case are between DB/H2, DB/CS, DB/C-
gas, CS/H2, and CS/C-gas pairs. Several values of P(B|A) (the
probability of event B given the occurrence of event A) exceed
80%, where B corresponds to a DB group, and A corresponds
to either H2, C-Gas, or CS. We observe a value above 60% for
B = CS and A = C-Gas, and a value close to 50% for B = CS
and A = H2. Several of these high values are chemically intu-
itive, as one would expect double bond formation to evolve hy-
drogen gas, and a chain scission reaction in our simulations
would likely evolve carbon gas. The opposite values of P(A|B)
were smaller in most cases, due to the H2 and C-Gas groups
having higher numbers of formation pathways and consequently
substantial correlations with several different chemical groups.
Other conditional probabilities, such as P(DB|CS) and P(DB|C-
gas) are less chemically intuitive and depend on the position of
the excited carbon atom within the decane chain. For example,
the excitation of a carbon atom in the middle of the chain can
result in the formation of three fragments: a chain of length
four (C4), one of length five (C5), and a CH2 moiety. The C4
and C5 groups can often form double bonds, releasing hydro-
gen atoms that can eventually form H2 molecules. Separately,
the CH2 group can react with hydrogen to form methane gas
(CH4).

Conditional probabilities from the 10 and 20 eV sets had sub-
stantially less product formation leading to large error bars. In

Figure 6. Correlation coefficients for 30, 50, and 70 eV simulation for a
subset of product pairs with high conditional probabilities.

contrast, results from the 50 and 70 eV sets exhibit larger values,
though these are higher for all product pairs in our investigation.
This is indicative of a higher degree of complexity between prod-
uct correlations.

Given our identification of these five high-probability product
pairs, we have computed their correlation coefficients for the 30,
50, and 70 eV simulation sets from Equation (5) (see Support-
ing Information for full results). Error bars are computed with
bootstrap sampling, as before. The pairs from the 30 eV set that
yielded the highest coefficient values are 𝜌(CS, H2), 𝜌(CS, C-Gas),
and 𝜌(CS, DB) (Figure 6). In all three cases, a potentially easier-
to-measure result (H2, C-Gas, DB) is coupled with a potentially
harder-to-measure result (CS). We observe relatively strong cor-
relations at 30 eV between all three pairs, with values of 0.43
for 𝜌(DB, CS), 0.46 for 𝜌(DB, C-Gas), and 0.36 for 𝜌(CS, C-Gas).
We note that the 𝜌(DB, H2) correlation is computed to be rel-
atively low, with a value of 0.15. In this case, the joint proba-
bility of P(DB and H2) is similar in magnitude to the product
P(DB)P(H2), yielding a small value in the numerator of Equa-
tion (5). This is indicative of the fact that while DB formation
tends to yield H2 synthesis, H2 synthesis itself is produced from
more than one reaction type and is a common product in all of
our simulations. This is in contrast to our previous study regard-
ing the creation of excited electronic states due to Møller scatter-
ing, where H2 synthesis was a largely direct result of double bond
formation, only.[50] Comparing and contrasting chemical prod-
ucts due to these different scattering processes is the subject of
future work.

We observe that the higher energy PKA sets yield monotoni-
cally decreasing correlation coefficient values. For the 50 eV set,
𝜌(DB, CS) has decreased to 0.11, 𝜌(DB, C-Gas) to 0.07, and 𝜌(CS,
C-Gas) to 0.22. These decrease further for the 70 eV set, with cor-
relation coefficients of zero (within the 95% confidence interval)
for 𝜌(DB, CS) and 𝜌(DB, C-Gas), and a value of 0.17 for CS/C-Gas.
This trend is likely due in part to the higher degree of chemical
reactivity and diversity of products at these elevated PKA ener-
gies. For example, the 30 eV yielded 100 simulations contain-
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ing at least one DB event and 142 simulations with C-Gas. In
contrast, the 70 eV set yielded 199 DB occurrences and 139 of
carbon-gas. In addition, the 70 eV set yields higher occurrence
rates of CYCL, YP, LL, and CL relative to the 30 eV set. The PKA
energies explored in our work are high compared to the typical ex-
perimental scattering energies in polyethylene[50] and our results
thus represent an upper limit in terms of what to expect from our
statistical analysis.

4. Conclusion

In this work, we have used quantum Density Functional Tight
Binding simulations to help quantify the degradation chemistry
in polyethylene due to incident radiation. Our study has lever-
aged simulation cells consisting of disordered decane molecules
held at a similar density to low-density polyethylene. Decane rep-
resents a sensible choice for our simulations given that its end-to-
end length is very close to the persistent length commonly mea-
sured in polyethylene, while it is still small enough to be tractable
with quantum simulation approaches. We then simulated the ir-
radiation process through the Primary Knock-on Atom method,
using excitation energies of 10, 20 30, 50, and 70 eV. The compu-
tational efficiency of our method allowed for 100–200 simulations
per excitation energy, allowing for accurate statistical sampling of
possible reaction pathways.

Our simulation results were then analyzed via a graph theory
analysis toolkit to distinguish between different carbon backbone
isomers and other structures as specifically as possible. Our re-
sults indicate that chain scission and H2 out-gassing are amongst
the most probable reactions, with significantly lower occurrences
of backbones with higher carbon content. These results are in
contrast to previous studies that observed that crosslinking could
be more prevalent in systems with lower energy excitations such
as those involving electronic excited states. We also observe the
formation of double and triple carbon bonds, and methane and
ethane out-gassing at excitations at 20 eV and above, with these
species generally having the highest rates of occurrence in the
70 eV set.

We then used a statistical analysis to determine conditional
probabilities and statistical correlation coefficients between dif-
ferent product groups for each set of PKA excitation energies.
Our 30 eV simulation yields the richest results, where correla-
tions between chain scission reactions and hydrogen and carbon
gas production are relatively high. These results indicate the pos-
sibility of using the partial pressure of out-gassing species as a
proxy measurement for the degree of change in chain scission
in a polyethylene-containing system. Correlations between chain
scission reactions and saturated carbon bond formation are also
high within the 30 eV set due to a multi-step reaction mecha-
nism, indicative of a second possible probe for chain scission
reactions. These correlations are strongly diminished for the 50
and 70 eV sets, though, due to the increased chemical reactivity
in those simulations as well as the larger degree of complexity of
the chemical products.

Our work has focused on a “bottom-up” computational ap-
proach for understanding radiolysis and network rearrange-
ments in polyethylene as a function of radiation dose. In partic-
ular, our quantum simulations and subsequent analysis can pro-
vide chemistry-based descriptors to help interpret polymer aging

experiments, that can ultimately be used to create radiation-aware
models for materials under a range of service or production con-
ditions. Our calculations will have a significant impact on these
types of studies, where the effects of heat and/or incident radia-
tion on network rearrangements and subsequent changes in ma-
terial strength and compressive properties are difficult to eluci-
date from experiments alone.
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