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Abstract
Visual working memory (WM) is a central cognitive ability but is capacity-limited due to competition between remem-
bered items. Understanding whether inter-item competition depends on the similarity of the features being remembered has 
important implications for determining if competition occurs in sensory or post-sensory stages of processing. Experiment 
1 compared the precision of WM across homogeneous displays, where items belonged to the same feature type (e.g., color-
ful circles), and heterogeneous displays (e.g., colorful circles and oriented bars). Performance was better for heterogeneous 
displays, suggesting a feature-specific component of interference. However, Experiment 2 used a retro-cueing task to isolate 
encoding from online maintenance and revealed that inter-item competition during storage was not feature-specific. The data 
support recent models of WM in which inter-item interference – and hence capacity limits in WM – occurs in higher-order 
structures that receive convergent input from a diverse array of feature-specific representations.

Keywords  Visual working memory · Working memory interference · Sensory recruitment hypothesis

Introduction

Visual WM, the ability to hold visual information “in mind,” 
mediates many behaviors and is often disrupted in develop-
mental and psychiatric disorders such as attention-deficit 

hyperactivity disorder (ADHD), Parkinson’s disease, depres-
sion, and schizophrenia (Gold & Luck, 2023; Schecklmann 
et al., 2011). A critical feature of visual WM is that it has 
limited capacity: most people cannot precisely remember 
details about more than three or four items (Adam et al., 
2017; Alvarez & Cavanagh, 2004; Cowan, 2001; Luck & 
Vogel, 1997; Ma et al., 2014). To date, these limitations can 
best be explained by inter-item interference, where multiple 
items in WM compete for limited resources (Bays, 2014; 
Lewis-Peacock & Norman, 2014; Oberauer & Lin, 2017). 
Indeed, there are often distortions of individual items in 
memory such that items are attracted towards or repelled 
from other items, highlighting the intermingling between 
representations (Bae & Luck, 2017; Chunharas et al., 2022; 
Lively et al., 2021; Scotti et al., 2021).

Many models of flexible information storage explicitly 
or implicitly suggest that inter-item interference arises due 
to competition between sensory representations, which is 
consistent with sensory recruitment, or a role for sensory 
neurons that encode specific features in supporting high-
fidelity WM for those features (Harrison & Tong, 2009; 
Serences et al., 2009; for reviews, see Adam et al., 2022; 
D’Esposito & Postle, 2015). Accordingly, behavioral 
studies generally suggest that competition is mediated by 

Statement of Relevance: As we navigate the world, there is 
more information than we are able to process. This limitation is 
partially due to how little we are able to hold in working memory 
(WM). Another feature of WM is that we can hold many types of 
information in mind, from a phone number, to a face, to the color 
of a swatch of paint. Typically, holding multiple items in WM leads 
to these items competing with each other for limited cognitive 
resources. Our study investigated the dynamics of this competition. 
Specifically, we tested whether competition is specific to the type 
of information being held (e.g., if colors only interfere with colors), 
or whether it is more general. Our results indicate that while 
competition in WM is not feature-specific, feature-specific factors 
are, nevertheless, relevant.
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feature similarity (Schurgin et al., 2020), in line with the 
idea that interference is at least partially due to compet-
ing populations of feature-selective neurons in early visual 
cortex.

Other sensory recruitment models, however, assume that 
memories are maintained in a sensory-like format, but that 
competition occurs in higher-order areas where projections 
from sensory areas converge (Bouchacourt & Buschman, 
2019; Swan & Wyble, 2014). For example, Bouchacourt and 
Buschman (2019) built a two-layer, feedforward spiking neu-
ral network where items were encoded in feature-selective 
sensory layers. These sensory neurons then sent converging 
random projections to a second layer, where neurons exhib-
ited high-dimensional tuning for multiple features. Critically, 
inter-item interference occurs in the second layer because 
converging inputs from multiple sensory networks create 
destructive interference when too many items are simultane-
ously stored. Thus, this class of model suggests that inter-
ference is feature-general rather than feature-specific (i.e., 
competition is only determined by overall memory load, not 
by inter-item similarity). These neural models are thus gen-
erally consistent with the object file hypothesis, where WM 
recruits an object-based, content-independent “pointer” to 
store and update information about an object held in mind 
(Pylyshyn, 1989). Empirical work using contralateral delay 
activity (Luria & Vogel, 2011), multivariate analysis of 
electroencephalogram (EEG) data (Thyer et al., 2022), and 
computational modeling of whole report WM tasks (Ngiam 
et al., 2024) supports the existence of such a feature-general 
system.

The question of feature-specific and feature-general inter-
ference has been addressed in work about memory for con-
junction objects. Some studies found that WM performance 
in a change-detection task is comparable when participants 
are holding in mind all features on an object compared to 
a single feature (Luck & Vogel, 1997), suggesting that the 
number of items – and not the specific visual features being 
stored – determines interference. However, work by Fougnie 
et  al. (2010) suggests that when high mnemonic preci-
sion was required of participants – through a continuous-
report task or a change-detection task with high target-lure 
similarity – adding features to objects resulted in reduced 
memory precision. Fougnie and Alvarez (2011) buttressed 
these findings when they used a continuous-report task with 
colorful, oriented objects and observed an independence of 
color and orientation report errors: one feature could be 
forgotten entirely, while the other was still recalled with 
relatively high precision. Critically, this independence was 
not observed for features that likely have highly overlapping 
neural codes, such as the length and width of objects. Taken 
together, these findings suggest that while there is an overall 
object-based benefit in visual WM, feature-specific content 
nevertheless influences performance (Fougnie et al., 2013).

In addition to objects composed of simple visual features 
like orientation and color, prior research using real-world 
objects has also found mixed-category benefits that are 
consistent with feature-specific interference in visual WM. 
Notably, Cohen et al. (2014) found that participants could 
remember more objects when they were from more than one 
category (e.g., faces and scenes) compared to when they 
were from one category (e.g., faces and faces). A follow-
up neuroimaging experiment revealed that the size of the 
mixed-category benefit on a given trial was predicted by the 
degree of neural separability between categories (e.g., faces 
and scenes are processed in different neural populations; 
therefore, there is less cross-category competition) (Avital-
Cohen & Gronau, 2021; Cohen et al., 2014; but see Jiang 
et al., 2016; Mruczek et al., 2019). The mixed-category ben-
efit overall has been replicated with simple visual features 
such as color, orientation, luminance, and motion (Cai et al., 
2022; Gosseries et al., 2018).

The goal of the current study was to evaluate interference 
within and between different feature spaces (i.e., feature-
general or feature-specific interference) during encoding 
and, importantly, during memory maintenance. In Experi-
ment 1, we compared performance on trials with homogene-
ous displays with the same types of features (e.g., a display 
of colorful circles) and heterogeneous displays with more 
than one type of feature (e.g., a display of colored circles 
and oriented bars). If inter-item interference is driven by a 
feature-specific component, memory precision for heteroge-
neous displays should be higher than memory precision for 
homogeneous displays. In contrast, if inter-item competition 
occurs in unspecialized networks during later stages of vis-
ual processing, then we should observe comparable memory 
performance when remembering heterogeneous displays and 
homogenous displays. In Experiment 2, we controlled for 
feature-similarity during encoding and used retro-cues to 
assess whether any feature-specific interference occurred 
during active, online maintenance of the memoranda. 
Together, the studies suggest that feature-specific interfer-
ence occurs during encoding but not during maintenance, 
consistent with models positing that interference in WM 
happens after item-specific sensory information converges 
in a common, more general purpose, processing mechanism 
(Bouchacourt & Buschman, 2019; Swan & Wyble, 2014).

Open practices statement

Experiments were preregistered on the Open Science Frame-
work (OSF) repository (https://​osf.​io/​h456p/). We prereg-
istered ten experiments for this project, but for clarity and 
conciseness, only the most relevant experiments are reported 
in the article body. Information about remaining experiments 
is available on the OSF. Table 1 lists studies in chronological 

https://osf.io/h456p/
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order, as well as OSF links and notes. All data and code are 
available on the OSF at https://​osf.​io/​h456p/.

Experiments shown in bold are included in the main arti-
cle body; all others can be found in the Online Supplemen-
tary Material.

Experiment 1a

Method

Participants

We collected data from 44 participants from the Univer-
sity of California, San Diego (UCSD) community who 
completed the study for pay at a rate of $15/h or for course 
credit. Four participants met our preregistered exclusion cri-
teria (see below), giving us a final total of 40 participants. 
Preregistered sample sizes for Experiment 1a, and all sub-
sequent experiments, were chosen based on existing work in 
the literature. All participants were at least 18 years old, had 
normal or corrected-to-normal color vision, and reported 
no neurological disorders. All procedures were approved by 
UCSD’s Institutional Review Board.

Stimuli

The stimuli and experimental procedure were programmed 
using MATLAB and Psychophysics Toolbox 3 (Kleiner 
et al., 2007). Participants sat approximately 40 cm away 
from the computer display during the task. A chinrest was 
not used during the experiment, so all of the following vis-
ual angles are approximate. Stimuli were presented against 
a gray background with a fixation point that subtended 1 
degree of visual angle. Color stimuli were circles 3○ in 
diameter, and on each trial colors were sampled uniformly 

from a 360° CIE L*a*b color space centered at L = 54, 
a = 18, and b = -8 (Adam et al., 2017). Monitors were not 
calibrated to render truly equiluminant colors, but as all 
manipulations were within-subjects, we do not believe that 
this produced systematic differences between experimental 
conditions. Oriented bars were dark rectangles 3○ in length 
and 1.05○ in width, and angles were sampled uniformly 
from a 180○ space.

On each trial, up to four stimuli were presented at four 
equidistant, fixed locations around the screen, each 6○ away 
from the fixation point (see Fig. 1). On each trial, a subset of 
these locations was randomly selected (depending on trial 
set size). Stimuli appeared for 750 ms, followed by a blank 
delay of 1,000 ms, after which two continuous-report wheels 
appeared at fixed locations around the entire screen. The 
outer wheel had an outer radius of 16○, and the inner wheel 
had an inner radius of 13.5○. Both wheels had an arc thick-
ness of 2○. Whether the color or orientation wheel appeared 
on the outside was randomly assigned to each subject. To 
be consistent with the orientation wheel, the position of 
each option on the color wheel remained constant across 
the experiment.

Procedure

The task (Fig. 1) was a continuous-report WM task (Wilken 
& Ma, 2004). At the start of each trial, one, two, or four 
items were presented on the screen. These items could be 
colors, oriented bars, or half colors and half oriented bars. 
Following the stimulus presentation and delay periods, one 
item from the display was probed for report by the item’s 
location on the screen, and participants had an unlimited 
amount of time to make a response. Participants made a 
response by clicking the location on the orientation or color 
wheel that matched the angle or color of the probed stimulus. 
Despite an orientation space of 180○, the orientation wheel 

Table 1   Chronological order of experiments

Title Open Science Framework (OSF) title and link N Format

Experiment 1a Does inter-item interference occur in feature-general or feature-specific codes? 
(https://​osf.​io/​tckms)

40 In-lab

S1 Retro-cue pilot (color) (https://​osf.​io/​vsrxc) 25 Online
S2a Retro-cue pilot (orientation) (https://​osf.​io/​s7qrm) 25 Online
S2b Retro-cue pilot (orientation) 2.0 (https://​osf.​io/​dy6nj) 25 Online
S3a Feature interference for shapes and colors (https://​osf.​io/​df4z9) 30 Online
S3b Feature interference for shapes and colors (https://​osf.​io/​5n8pm) 30 Online
Experiment 1b Feature interference for colors and orientations (https://​osf.​io/​53rj4) 30 Online
S4 Mixed-category benefit: during encoding or maintenance? (https://​osf.​io/​3efbq) 60 Online
S5 Mixed category benefit: pre-cue edition (https://​osf.​io/​q8shb) 60 Online
Experiment 2 Manipulating sensory encoding and memory contents simultaneously (https://​osf.​io/​

6pbhu)
40 Online

https://osf.io/h456p/
https://osf.io/tckms
https://osf.io/vsrxc
https://osf.io/s7qrm
https://osf.io/dy6nj
https://osf.io/df4z9
https://osf.io/5n8pm
https://osf.io/53rj4
https://osf.io/3efbq
https://osf.io/q8shb
https://osf.io/6pbhu
https://osf.io/6pbhu
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was a complete circle, and participants were instructed that 
they could click either end of the wheel.

Trial set size (1, 2, or 4), display condition (homogene-
ous, heterogeneous), and probe feature (color, orientation) 
were fully counterbalanced, with one small exception: set 
size 1 trials had an undefined display condition, as they 
are neither homogeneous nor heterogeneous. These trials 
were coded as “homogeneous” in the task script but were 
not considered homogeneous for analysis purposes. Partici-
pants completed 75 trials per condition for a total of 750 
trials across the ten conditions. These trials were spread out 
over 25 blocks of 30 trials each, and experimental condi-
tions were fully counterbalanced within a block. Following 
each block, participants were given their average recall (in 
degrees), as well as the number of trials in which the feature 
category was incorrectly reported (e.g., participants reported 
an orientation when the probed stimulus was a color). Prior 
to the task, participants completed a set of ten practice trials, 
or one trial per experimental condition, and they received 
feedback after each trial.

Exclusion criteria

Based on pre-registered criteria, participants were excluded 
from all analyses if more than 10% of total trials were fea-
ture-report errors, or if any given condition had more than 
20% feature errors (that is, reporting color when orientation 
was cued or vice versa). We preregistered these exclusion 
criteria to ensure that participants were attentive during the 
task and also to ensure that we obtained a sufficient number 
of usable trials, as we excluded all trials with feature report 
errors from our analyses. Previous work showing high accu-
racy in recalling feature categories (Awh et al., 2007; Sco-
lari et al., 2008) suggests that these limits were not overly 
stringent. We also excluded a participant from all analyses 
if we lost more than 10% of data due to technical issues that 

occurred during the session (e.g., computer crashes). We 
preregistered that we would collect data until we had usable 
datasets from 40 participants. In Experiment 1a, we reached 
our sample size of 40 but excluded four participants who met 
the above criteria, so we continued data collection until we 
reached 40 usable datasets. In addition to those four subjects, 
we excluded 313 individual trials with feature report errors 
(1.04% of total trials).

Data analysis

We conducted all analyses using R, version 4.3.1 (R Core 
Team, 2023) and tidyverse, version 2.0.0 (Wickham, 2023). 
Data visualizations were created with the ggplot2 package, 
version 3.4.3 (Wickham et al., 2023), as well as viridis, ver-
sion 0.6.4 (Garnier et al., 2023).

Our primary interest was testing how heterogeneous 
displays affected the precision of WM. Because color and 
orientation have differently sized feature spaces (360○ and 
180○, respectively), comparisons were conducted separately 
on each probed feature. For example, we compared trials 
with homogeneous orientation displays and trials with het-
erogeneous displays where an orientation was probed for 
report. Using the circular package, version 0.5–0 (Ago-
stinelli & Lund, 2023), we computed the circular mean 
and standard deviation for each participant and experimen-
tal condition. Because orientation has a 180° space, we 
computed the circular standard deviation by multiplying 
the report error (in radians) for each trial by two, comput-
ing the circular standard deviation by condition, and then 
dividing the resulting standard deviation by two. We then 
ran a Bayesian two-way, repeated-measures ANOVA on 
the set size 2 and 4 conditions using BayesFactor, version 
0.9.12–4.4 (Morey & Rouder, 2022) and default priors. We 
omitted the set size 1 conditions from this analysis because 
these conditions have an “undefined” display condition with 

Fig. 1   Procedure and conditions for Experiment 1a. Participants saw a display of objects, followed by a delay, and then an unspeeded report 
period (left). We used set sizes 1, 2, and 4, and set sizes 2 and 4 could be homogeneous or heterogeneous (right)
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respect to homogeneity of features, but we used these data 
in follow-up planned comparisons. To assess main effects 
of set size and display condition, we used Bayes factors to 
compare a full model with set size and display condition as 
fixed effects to reduced models with only one or the other. 
The Bayes factor ratio of the two competing models quanti-
fies support for one model over the other, with Bayes Factors 
greater than 1 indicating relative support for the alternative 
model and Bayes factors less than 1 indicating relative sup-
port for the null model.

Results

We found robust effects of set size and display condition but 
no interaction. Participants reported both colors and orienta-
tions with worse precision as set size increased, but preci-
sion was better for heterogeneous displays than homogene-
ous displays. Planned comparisons between our baseline set 
size 1 trials and higher set sizes revealed worse precision for 
heterogeneous and homogeneous display trials for both set 
size 2 and set size 4.

Supporting these conclusions, Bayes factor com-
parisons strongly preferred the expanded model 
over the model with display condition only (orienta-
tion: BF10 = 7.74 × 1028 ± 3.84%, �p

2 = 0.70; color: 
BF10 = 2.67 × 1030 ± 1.75%, �p

2 = 0.71). Set size 4 tri-
als had worse precision (therefore, a higher circular 
standard deviation) than set size 2 trials. The full model 
with display condition was also strongly favorable (ori-
entation: BF10 = 1.87 × 106 ± 3.82%, �p

2 = 0.25; color: 
BF10 = 5.95 × 1012 ± 3.62%, � p

2 = 0.43). Participants had 
worse precision in their report of homogeneous trials than 
heterogeneous trials. Finally, we compared a model with 

set size, display condition, and an interaction between the 
two against a reduced model without the interaction. We 
saw weak evidence against an interaction between set size 
and display condition for orientation and equivocal evi-
dence for color (orientation: BF10 = 0.25 ± 4.26%; color: 
BF10 = 0.51 ± 4.56%). A plot of the mean circular standard 
deviations is shown in Fig. 2.

Next, we conducted planned comparisons between our 
baseline set size 1 trials and higher set sizes. For color and 
orientation trials separately, we first compared the set size 1 
trials to the set size 2 homogeneous trials. We found a main 
effect of set size (orientation: BF10 = 3.14 × 1013 ± 1.14%; 
color: BF10 = 4.11 × 109 ± 2.98%). We also found a main 
effect of set size when we compared set size 1 and set size 2 
heterogeneous trials (orientation: BF10 = 2.54 × 105 ± 1.28%; 
color: BF10 = 4.76 × 104 ± 1.85%). We also found a main 
effect of set size when comparing set size 1 trials to set size 4 
homogeneous trials (orientation: BF10 = 2.57 × 1017 ± 1.36%; 
color: 2.13 × 1028 ± 0.88%) and heterogeneous trials (orienta-
tion: BF10 = 1.33 × 1015 ± 2.05%; color: 2.87 × 1016 ± 0.94%).

Post hoc swap analyses

Our manipulation of display homogeneity raises the ques-
tion of demands required to bind the properties of an object 
to its specific spatial or temporal context (Oberauer & Lin, 
2017). Previous work claims that homogeneous displays 
place stronger demands on context binding, leading to higher 
competition at the report stage and an increased likelihood 
of inter-item swaps (Cai et al., 2020, 2022). Thus, it is pos-
sible that our results are driven by context binding demands 
rather than feature-specific competition. Relatedly, displays 
with two colors, for example, may have lower precision than 

Fig. 2   Main results of Experiment 1a. Results are shown separately 
for trials where participants reported color (left) and orientation 
(right). Bar plots quantify the circular standard deviation of the error 

distribution for each set size and display condition, and error bars rep-
resent the standard error of the mean
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displays with one color and one orientation because partici-
pants are more likely to swap the two colors than they are the 
color and orientation (Awh et al., 2007). Thus, to evaluate 
the impact of within-category swap errors, we took all set 
size 2, homogeneous trials (e.g., trials with two colors or two 
orientations) and computed the response error with respect 
to the probed item (e.g., report error) and the response error 
with respect to the unprobed item. A low response error 
with respect to the unprobed item is associated with a higher 
likelihood that the participant swapped the two items (e.g., 
if error with respect to the unprobed item is close to zero, 
it is possible that participants instead reported the color or 
orientation of the unprobed item). This analysis was post hoc 
and, therefore, not pre-registered.

Figure  3 shows histograms of response errors with 
respect to the probed and unprobed items. We used an 
information theoretic approach to assess uniformity of the 
response distribution with respect to the unprobed items 
(Panichello et al., 2019). Shannon Entropy is maximized 
for uniform distributions, so we compared the entropy of 
response distributions with respect to the unprobed item to 
the distributions of the unprobed item angles, which were 
drawn from a circular uniform distribution. This infor-
mation-theoretic measure makes fewer assumptions than 
other models (e.g., approaches based on a mixture model 
or a signal detection model), as it simply assesses whether 
overall entropy is lower than might be expected from the 
actual distribution of feature values used in the experiment 
(i.e., whether there is clustering in the response error). We 
obtained by-participant differences in Shannon entropy for 
the observed and expected distributions and ran a Bayesian 
t-test to assess whether the mean difference is greater than 
zero. The test favored the null hypothesis of no mean dif-
ference in entropy (orientation: BF10 = 0.17 ± 0.05%; color: 

BF10 = 0.33 ± 0.04%). We also obtained posterior samples 
for the mean difference in entropy over 6,000 iterations 
and found that the 95% posterior density interval contained 
zero for color and orientation reports (orientation: [-0.0167, 
0.0168], color: [-0.00510, 0.0190]). These analyses suggest 
that the response distribution with respect to the unprobed 
item is relatively uniform and that context binding errors or 
swapping alone cannot explain our findings.

Experiment 1b

In Experiment 1b, we replicated the main finding of Experi-
ment 1a using a web-based study and a different group of 
participants.

Method

Participants

We used Prolific to recruit 40 participants living in the USA. 
All were at least 18 years old and had normal or corrected-
to-normal color vision with no color blindness. Prior to 
beginning the experiment, all participants gave informed 
consent. Procedures were approved by UCSD’s Institutional 
Review Board.

Stimuli

We used jsPsych, version 7 (de Leeuw & Gilbert, 2023) to 
create the stimuli and experimental procedure, and partici-
pant data were uploaded to a secure server as a JSON file. 
Participants were required to complete the experiment on a 

Fig. 3   Histograms of response errors for set size 2, homogeneous trials (Experiment 1a). Response error plotted with respect to the probed item 
and with respect to the unprobed item
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desktop computer (as opposed to a smartphone or tablet), but 
they sat at unknown distances from the display.

Colors and orientations were chosen randomly from 360○ 
and 180○ spaces, respectively, with the constraint that colors 
and orientations appearing in the same trial were at least 15○ 
apart in circular space, after Schurgin et al. (2020). Due to 
variation in luminance and display settings across personal 
computers, color stimuli may have varied across participants. 
While this produced a source of variance across participants, 
all experimental manipulations were within-subjects.

Procedure

A diagram of the trial structure is shown in Fig. 4. Par-
ticipants clicked a central fixation cross to begin the trial. 
Following each click, there was a 1,500-ms delay followed 
by the presentation of four stimuli for 750 ms. Experi-
mental conditions were balanced identically to set size 
4 trials in Experiment 1a. After the offset of the stimuli, 
there was a 1,000-ms delay, during which the placeholder 
circles were present but the screen was otherwise blank. 
At the onset of the report window, a color wheel and an 
orientation report wheel appeared around the placeholder 
circles, and the placeholder circle in the probed location 
had a darker border. Trials were counterbalanced so that 
when a heterogeneous display was shown, participants 
were probed to report a location with a color on half of tri-
als and a location with an orientation on the other half. As 
participants moved their cursor around the report wheels, 
the probed location filled in with the color or orientation 

corresponding to their cursor’s position on the wheel. 
Participants had unlimited time to click a location on the 
wheel, which locked in their response, concluding the trial. 
After every trial, participants were given feedback about 
their error in degrees, as well as feedback if they clicked 
the incorrect wheel.

There were 20 practice trials followed by 300 main task 
trials, giving 75 main task trials in each of the four experi-
mental conditions (homogeneous colors, homogeneous ori-
entations, heterogeneous display with a color report, hetero-
geneous display with an orientation report).

Exclusion criteria

Participants who clicked the incorrect report wheel on 
more than 20% of trials in any of the four conditions were 
excluded from all analyses, and for all participants we 
excluded individual trials with an incorrect feature report. 
No participants were excluded, but we removed 132 indi-
vidual trials where the incorrect feature wheel was clicked 
(1.1% of trials).

Data analysis

We parsed JSON files using the jsonlite package in R, ver-
sion 1.8.7 (Ooms, 2014), but data processing and aggre-
gating methods were the same as Experiment 1a. We also 
followed the same procedure for Bayesian inference.

Fig. 4   Procedure and conditions for Experiment 1b. Trial structure (left) and example displays for homogeneous colors (top), homogeneous ori-
entations (middle), and heterogeneous displays with two each of colors and orientations (bottom)
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Results

The results of Experiment 1b directly replicated Experiment 
1a at set size 4, with performance significantly better for het-
erogeneous displays than for homogeneous displays. Perfor-
mance in each condition is shown in Fig. 5. We ran a Bayes-
ian two-way, repeated-measures ANOVA on color probe and 
orientation probe trials separately, with display condition 
(homogeneous vs. heterogeneous) as the fixed effect and 
participant as the random effect. Bayes factor comparisons 
strongly preferred the model with display condition over 
the intercept-only model (orientation: BF10 = 19.6 ± 0.83%, 
Cohen’s d = 0.64; color: BF10 = 1.59 × 104 ± 0.94%, Cohen’s 
d = 0.99).

Discussion

In Experiment 1a, increasing set size impaired precision 
with both homogeneous and heterogeneous displays, in line 
with previous findings (Bays et al., 2009; Ma et al., 2014). 
However, performance was significantly better for hetero-
geneous displays than homogeneous displays, suggesting 
at least some role of feature-specific interference. We then 
performed an entropy-based swap analysis to assess the 
possibility that our results are driven instead by context-
binding demands as opposed to inter-item interference (Cai 
et al., 2022). In Experiment 1b, we used a web-based study 
to replicate Experiment 1a at set size 4, and precision was 
higher for heterogeneous displays than for homogeneous dis-
plays. The results add further evidence for feature-specific 
interference and validate the use of jsPsych and Prolific in 
Experiment 2.

Despite clear evidence that performance is better with 
heterogeneous displays, the mechanism of this benefit 
is unknown. While heterogeneous displays may reduce 

inter-item competition during maintenance, these data could 
also be explained by feature-similarity based competition 
during encoding. In Experiment 2, we used a retro-cue 
design (Nobre et al., 2004; Souza & Oberauer, 2016), which 
allowed us to manipulate the heterogeneity of the display 
(thereby assessing the role of similarity during encoding), 
as well as the heterogeneity of retro-cued items (thereby 
assessing the role of similarity during maintenance).

Experiment 2

Method

Participants

We used Prolific to recruit 44 participants living in the USA. 
Screening criteria and informed consent procedures were the 
same as in Experiment 1b. All participants completed both 
sessions of the experiment.

Stimuli

The stimuli were identical to those used in Experiment 1b 
except where noted below.

Procedure

A diagram of the trial structure and experimental conditions 
is given in Fig. 6. Clicking a central fixation cross initiated 
the start of the trial after a 1,500-ms delay. The displays 
consisted of four colors on 25% of trials, four orientations 
on 25% of trials, and two each of colors and orientations on 
50% of trials. The stimuli were present for 750 ms, followed 
by a 500-ms blank delay. Next, one or two of the placeholder 

Fig. 5   Main results for Experiment 1b. Results are shown separately for trials where participants reported orientation (left) and color (right)
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Fig. 6   Example displays for Experiment 2. This diagram omits conditions that differed only in the feature probed for report (e.g., heterogeneous 
displays where a color and orientation are retro-cued)
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circles had a darker border for 750 ms, indicating which 
item, or items, could be probed later. The retro-cue circles 
disappeared for 750 ms before the unspeeded report. At the 
onset of the report window, a color wheel and an orienta-
tion report wheel appeared, and the placeholder circle in the 
probed location had a darker border. Participants made only 
one report per trial, and the probed location was always one 
that was cued during the delay period.

Participants completed two sessions of equal length, and 
experimental conditions were counterbalanced within a 
session. We manipulated the display condition (homogene-
ous display, heterogeneous display), the feature ultimately 
probed for report (color, orientation), the retro-cue set size 
(one item, two items), and the retro-cue condition (homo-
geneous items retro-cued, heterogeneous items retro-cued). 
In total, this design produced ten experimental conditions. 
Experimental conditions occurred equally often over the 
course of the experiment, with the exception that partici-
pants completed twice as many trials with a homogeneous 
display of items and two items retro-cued. Although this 
created an imbalance in the number of trials per condition, 
it ensured equal numbers of trials with homogeneous and 
heterogeneous displays, and equal relative frequencies of 
retro-cue set sizes (one item cued vs. two items cued) across 
homogeneous and heterogeneous display conditions. Proce-
dures for reporting were identical to Experiment 1a.

Participants completed a set of 12 practice trials, and the 
frequency of experimental conditions mirrored those used in 
the main task. There were 360 main task trials per session, 
giving a total of 24 practice trials and 720 main task trials. 
The two conditions with a homogeneous display condition 
and two items retro-cued had twice as many trials as other 
conditions, giving 120 trials in each of those two conditions 
and 60 trials in each of the other conditions.

Exclusion criteria and sequential data collection

We preregistered a final sample size of 40 usable partici-
pants. Because the interpretability of our experiments rests 
on participants using the retro-cue as intended, we prereg-
istered a sequential data collection process to avoid wasting 
time and resources. The retro-cue effect is widely observed 
in cognitive psychology and neuroscience research (Souza 
& Oberauer, 2016), and the presence of a retro-cue effect 
in homogeneous display conditions served as a positive 
control. After 20 participants, we compared one-item and 
two-item retro-cue conditions for homogeneous trials and 
performed no additional analyses. After observing a numeri-
cal retro-cue effect for both color and orientation reports, we 
collected data from the remaining participants. Had we not 
observed a numerical effect, we would have discontinued 
data collection, adjusted experimental parameters, updated 
our preregistration, and started data collection over. Our 

exclusion criteria were the same as Experiment 1b. At the 
end of data collection, we excluded four participants from all 
analyses and 496 individual trials (or 1.7% of trials).

Data analysis

We processed, aggregated, and analyzed the data using the 
same methods as Experiment 1.

Results

Set size

Our first comparison of interest was to look at the effect of 
retro-cue set size (one item vs. two items retro-cued) as a 
positive control, as the interpretability of subsequent analy-
ses hinges on the assumption that participants were using 
the retro-cue as intended (i.e., that they were not simply 
holding all four items in mind on every trial). As hypothe-
sized, performance was better when one item was retro-cued 
than when two items were retro-cued. Thus, when compar-
ing trials across different retro-cue conditions, null effects 
are unlikely the result of non-compliance with experiment 
instructions. We filtered the data to include only homoge-
neous display trials and ran a two-way Bayesian repeated-
measures ANOVA with the retro-cue set size as a fixed effect 
and participant ID as a random effect. Model comparisons 
strongly preferred the full model over the intercept-only 
model (orientation: BF10 = 3.97 × 107 ± 1.07%, d = 1.37; 
color: BF10 = 2.39 × 107 ± 1.18%, d = 1.34). A plot of the 
circular standard deviations is shown in Fig. 7.

Mixed category benefit during encoding

The following analysis was mistakenly omitted from the 
preregistration document. To assess the mixed category 
benefit during encoding, we took trials with a homogene-
ous or SS1 retro-cue condition, or trials where one item was 
retro-cued or two items of the same feature were retro-cued. 
Using color trials as an example, the display condition was 
either four colors or two colors and two orientations, but 
we filtered data to include only trials with two colors retro-
cued. We then compared performance across set sizes and 
display conditions. Performance was better when one item 
was retro-cued compared to two items, and performance 
was better when the display condition was heterogeneous 
compared to homogeneous. In other words, even when par-
ticipants ultimately maintained homogeneous sets of items 
in WM, performance was better when the display condition 
was heterogeneous, replicating Experiments 1a and 1b. The 
results are plotted in Fig. 8. We performed these analyses 
with a two-way Bayesian repeated-measures ANOVA with 
display condition and set size as fixed effects and participant 
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ID as a random effect. For both color and orientation, Bayes 
factor comparisons strongly favored the full model with 
both set size and display condition. There was a strong main 
effect of set size (orientation: BF10 = 5.53 × 1016 ± 2.67%, �
p

2 = 0.51; color: BF10 = 3.10 × 1011 ± 4.00%, �p
2 = 0.40) and 

display condition (orientation: BF10 = 5.94 × 1019 ± 3.48%, �
p

2 = 0.57; color: BF10 = 4.75 × 1017 ± 4.09%, �p
2 = 0.53).

Mixed category benefit during maintenance

Our final analysis kept display (and, thus, encoding) condi-
tions constant and compared performance across different 
retro-cue conditions (see Fig. 9). We only analyzed trials 
with a retro-cue set size of 2 and a heterogeneous display 

condition, and we compared trials with homogeneous retro-
cues (i.e., two of the same feature) and heterogeneous retro-
cues (i.e., one color and one orientation). For color-report 
trials, performance was better for homogeneous retro-cues 
than for heterogeneous retro-cues. For orientation-report tri-
als, performance was numerically better for homogeneous 
retro-cues, but the Bayes factor comparison was equivocal. 
Regardless, performance differences in both color and orien-
tation trials provided no evidence for feature-specific inter-
ference when retro-cues were involved and the properties of 
the stimuli during encoding were controlled. For color-report 
trials, model comparisons favored the full model with retro-
cue condition as a fixed effect (BF10 = 2.70 × 103 ± 1.21%, 
d = 0.84), though performance was better for homogeneous 

Fig. 7   Results for Experiment 2 homogeneous trials. Results are shown separately for trials where participants reported orientation (left) and 
color (right)

Fig. 8   Results for Experiment 2 trials with set size 1 or homogeneous 
retro-cue conditions. In this visualization, we kept retro-cue condition 
constant (retro-cue only colors, or only orientations) and visualized 

display condition. Results are shown separately for trials where par-
ticipants reported orientation (left) and color (right)
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retro-cues. For orientation-report trials, Bayes factor com-
parisons also favored the full model with retro-cue condition 
as a fixed effect, albeit very weakly (BF10 = 3.58 ± 0.71%, 
d = 0.42).

Discussion

In Experiment 2, we observed feature-specific interference 
during encoding, consistent with Experiments 1a and 1b. 
However, the previously observed performance benefits for 
heterogeneous sets of items disappeared when these items 
were retro-cued. In other words, when participants encoded 
a heterogeneous display, and we compared performance 
when two colors or two orientations were retro-cued or one 
of each feature was retro-cued, performance was better for 
two colors. Further, the null findings were unlikely a result 
of non-compliance with experiment instructions, as perfor-
mance was better when one item was retro-cued than when 
two items were retro-cued.

General discussion

The goal of the present work was to manipulate display 
homogeneity to test feature-specific or feature-general 
sources of interference in WM (i.e., interference within 
and across feature spaces). In Experiment 1a, increasing 
the display set size produced a cost in mnemonic preci-
sion regardless of whether the displays were homogeneous 
or heterogeneous. However, when controlling for set size, 
mnemonic precision was better for heterogeneous displays 
compared to homogeneous displays. These findings repli-
cate and extend previous research on the mixed-category 

benefit (Avital-Cohen & Gronau, 2021; Cohen et  al., 
2014). More importantly, these results suggest that inter-
item competition occurs in both a feature-general manner 
as more items are remembered, and in a feature-specific 
manner that depends on item similarity. In Experiment 
1b, we replicated the findings of Experiment 1a at set size 
four and validated the use of online experiments for these 
studies more generally. Experiment 2 used a retro-cueing 
design and revealed that encoding a display of heterogene-
ous items is advantageous for mnemonic precision but that 
once a given set of items are encoded into WM, the fea-
ture-specific interference disappears and there is no ben-
efit associated with remembering heterogeneous sets (with 
mild evidence that homogeneous displays are remembered 
with higher precision). Thus, feature-specific interference 
likely arises during sensory encoding, but once encoded, 
there is no evidence for feature-specific competition dur-
ing maintenance in WM.

One key motivation for our experiment is that differ-
ent instantiations of sensory recruitment models of WM 
make qualitatively different predictions about the role of 
feature similarity in inter-item interference. For example, 
some models assume that inter-item competition occurs via 
competition in higher-order processing stages that aggre-
gate information from many feature-selective sensory neu-
rons tuned to different features in earlier processing stages 
(Bouchacourt & Buschman, 2019; Swan & Wyble, 2014). In 
terms of behavior, increasing the set size should reduce WM 
performance because of more convergent input to high-order 
areas, but the combinations of feature types should not mat-
ter. Overall, the results of Experiment 2 indicate that once 
items are encoded into WM, the nature of the inputs matters 
little – a finding consistent with this class of model.

Fig. 9   Results for Experiment 2 trials with heterogeneous displays. 
In this visualization, we kept display condition constant (two colors 
and two orientations) and visualized retro-cue condition. Results are 

shown separately for trials where participants reported color (left) 
and orientation (right)
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We were somewhat surprised to find that for Experiment 
2, retro-cued homogeneous items were remembered with 
numerically better precision than retro-cued heterogeneous 
items, though this effect was weak for reported orientations. 
Nevertheless, this finding is consistent with Bouchacourt 
and Buschman (2019), where increasing inter-item similarity 
increases lateral excitatory connections between like-tuned 
units in the sensory layers, improving the stability of repre-
sentations in WM. This dovetails with empirical work where 
increased similarity improved performance on a change-
detection task (Lin & Luck, 2009), as well as where inter-
item similarity facilitates internal selection (Kiyonaga & 
Egner, 2013). Perhaps selecting heterogeneous items inter-
nally from WM – as is required by a retro-cue task – comes 
at a higher cost than selecting more similar, homogeneous 
items. Nevertheless, further research should rigorously test 
a possible cause for this boost in performance.

Our experimental work supports the existence of coordi-
nated communication between highly specialized and highly 
flexible populations of neurons, a framework with strong 
connections to recent theoretical perspectives such as prior-
ity maps and object files. For example, the feature-general 
“random layer” of Bouchacourt and Buschman (2019) inte-
grates information from topographically organized layers 
that functionally resemble priority maps observed in early 
visual cortex (Mazer & Gallant, 2003; Treisman, 1986, 
1988; Treisman & Gelade, 1980) and in intraparietal sulcus 
(Bisley & Goldberg, 2003; Bisley & Mirpour, 2019; Ser-
ences & Yantis, 2006; Sprague & Serences, 2013; Sprague 
et al., 2018). In turn, neurons in the random-layer exhibit 
high-dimensional tuning functions consistent with flexibly 
tuned neurons such as those frequently observed in pre-
frontal cortex (Fusi et al., 2016; Mante et al., 2013; Rigotti 
et al., 2013). Relatedly, data from Experiment 2 are gener-
ally consistent with the idea that content-independent point-
ers support the maintenance of information in WM in the 
form of “object files” after these items are encoded (Luria 
& Vogel, 2011; Ngiam et al., 2024; Pylyshyn, 1989; Thyer 
et al., 2022).

The finding that memory representations are robust to 
feature-specific interference suggests a prominent role of 
higher-order regions in mediating inter-item competition. 
However, our data are agnostic about whether item-specific 
information is stored in a sensory-like code (Iamshchinina 
et al., 2021) or whether it is re-coded into a non-sensory 
format and stored in higher-order brain areas (Xu, 2020). 
For example, Bouchacourt and Buschman (2019) proposed 
that inter-item interference originates due to destructive 
interference in higher layers where units receive convergent 
inputs from many sensory neurons with different feature-
specific tuning functions (Swan & Wyble, 2014). However, 
the disruption of memory representations is realized via the 
backpropagation of signals from higher layers to the sensory 

layers where information about each remembered item is 
actually maintained. Thus our observation that competi-
tion does not have a strong feature-selective component is 
consistent with prior work demonstrating that high-fidelity 
mnemonic information is maintained in sensory cortices 
(Harrison & Tong, 2009; Rademaker et al., 2019; Serences 
et al., 2009). Equally, our results could be accommodated by 
models in which sensory regions are active during encod-
ing, but activity in higher-order areas forms the basis for 
maintaining active memory representations and behavioral 
read-out (Bettencourt & Xu, 2016; Xu, 2020). The behav-
ioral data presented here cannot adjudicate between these 
two models of storage without further constraints provided 
by neural data.

In sum, our data suggest that inter-item interference is 
feature-specific during sensory encoding but feature-general 
once items are in WM. These results are consistent with 
theoretical accounts of WM in which populations of unspe-
cialized neurons in higher-order brain regions aggregate 
information from sensory-tuned neural populations early 
in visual processing. More broadly, we provide empirical 
support for the hypothesis that coordinated communication 
between highly-specialized and highly-flexible neurons gives 
rise to WM’s flexible and adaptive nature.

Acknowledgements  We thank Kirsten Adam for input on experimental 
design and Grayson Emery and Aisha Hill for assistance with data 
collection.

Funding  This study was supported by RO1-EY025872 awarded to John 
T. Serences.

Data availability  All data are available on the Open Science Frame-
work (see Open Practices Statement in article).

Code availability  All code is available on the Open Science Framework 
(see Open Practices Statement in article).

Declarations 

Ethics approval  All studies were approved by the UCSD’s Institutional 
Review Board.

Consent to participate  All participants gave informed consent.

Consent for publication  Not applicable.

Conflicts of interest  The authors have no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 



1859Attention, Perception, & Psychophysics (2024) 86:1846–1860	

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adam, K. C. S., Rademaker, R. L., & Serences, J. T. (2022). Evidence 
for, and challenges to, sensory recruitment models of visual work-
ing memory. In Visual Memory (pp. 5–25). Routledge.

Adam, K. C. S., Vogel, E. K., & Awh, E. (2017). Clear evidence for 
item limits in visual working memory. Cognitive Psychology, 97, 
79–97.

Agostinelli, C., & Lund, U. (2023). R package circular: Circular 
Statistics (version 0.5–0).

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-
term memory is set both by visual information load and by 
number of objects. Psychological Science, 15(2), 106–111.

Avital-Cohen, R., & Gronau, N. (2021). The asymmetric mixed-
category advantage in visual working memory: An attentional, 
not perceptual (face-specific) account. Journal of Experimen-
tal Psychology. Human Perception and Performance, 47(6), 
852–868.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory 
represents a fixed number of items regardless of complexity. 
Psychological Science, 18(7), 622–628.

Bae, G.-Y., & Luck, S. J. (2017). Interactions between visual working 
memory representations. Attention, Perception & Psychophys-
ics, 79(8), 2376–2395.

Bays, P. M. (2014). Noise in neural populations accounts for errors 
in working memory. The Journal of Neuroscience: THe Official 
Journal of the Society for Neuroscience, 34(10), 3632–3645.

Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). he precision of 
visual working memory is set by allocation of a shared resource. 
Journal of Vision, 9(10), 7.1-11.

Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual 
short-term memory under distraction in occipital and parietal 
areas. Nature Neuroscience, 19(1), 150–157.

Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lat-
eral intraparietal area and spatial attention. Science, 299(5603), 
81–86.

Bisley, J. W., & Mirpour, K. (2019). The neural instantiation of a prior-
ity map. Current Opinion in Psychology, 29, 108–112.

Bouchacourt, F., & Buschman, T. J. (2019). A Flexible Model of Work-
ing Memory. Neuron, 103(1), 147-160.e8.

Cai, Y., Fulvio, J. M., Samaha, J., & Postle, B. R. (2022). Context 
Binding in Visual Working Memory Is Reflected in Bilateral 
Event-Related Potentials, But Not in Contralateral Delay Activ-
ity. eNeuro, 9(6). https://​doi.​org/​10.​1523/​ENEURO.​0207-​22.​2022

Cai, Y., Fulvio, J. M., Yu, Q., Sheldon, A. D., & Postle, B. R. (2020). 
The Role of Location-Context Binding in Nonspatial Visual Work-
ing Memory. eNeuro, 7(6). https://​doi.​org/​10.​1523/​ENEURO.​
0430-​20.​2020

Chunharas, C., Rademaker, R. L., Brady, T. F., & Serences, J. T. 
(2022). An adaptive perspective on visual working memory dis-
tortions. Journal of Experimental Psychology. General. https://​
doi.​org/​10.​1037/​xge00​01191

Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K., & Alvarez, G. A. 
(2014). Processing multiple visual objects is limited by overlap in 
neural channels. Proceedings of the National Academy of Sciences 
of the United States of America, 111(24), 8955–8960.

Cowan, N. (2001). The magical number 4 in short-term memory: a 
reconsideration of mental storage capacity. The Behavioral and 
Brain Sciences, 24(1), 87–114; discussion 114–185.

de Leeuw, J. R., & Gilbert, R. A. (2023). jsPsych: Enabling an Open-
Source Collaborative Ecosystem of Behavioral Experiments. 
Journal of Open Source. https://​doi.​org/​10.​21105/​joss.​05351.​pdf

D’Esposito, M., & Postle, B. R. (2015). The Cognitive Neuroscience of 
Working Memory. Annual Review of Psychology, 66(1), 115–142.

Fougnie, D., & Alvarez, G. A. (2011). Object features fail indepen-
dently in visual working memory: evidence for a probabilistic 
feature-store model. Journal of Vision, 11(12). https://​doi.​org/​10.​
1167/​11.​12.3

Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units 
of storage in visual working memory? Journal of Vision, 10(12), 
27–27.

Fougnie, D., Cormiea, S. M., & Alvarez, G. A. (2013). Object-based 
benefits without object-based representations. Journal of Experi-
mental Psychology. General, 142(3), 621–626.

Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: High 
dimensionality for higher cognition. Current Opinion in Neuro-
biology, 37, 66–74.

Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, Pedro, A., Sci-
aini, Marco, Scherer, & Cédric. (2023). viridis(Lite) - Colorblind-
Friendly Color Maps for R. https://​doi.​org/​10.​5281/​zenodo.​46794​
23

Gold, J. M., & Luck, S. J. (2023). Working Memory in People with 
Schizophrenia. Current Topics in Behavioral Neurosciences, 63, 
137–152.

Gosseries, O., Yu, Q., LaRocque, J. J., Starrett, M. J., Rose, N. S., 
Cowan, N., & Postle, B. R. (2018). Parietal-Occipital Interac-
tions Underlying Control- and Representation-Related Processes 
in Working Memory for Nonspatial Visual Features. The Journal 
of Neuroscience: THe Official Journal of the Society for Neurosci-
ence, 38(18), 4357–4366.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of 
visual working memory in early visual areas. Nature, 458(7238), 
632–635.

Iamshchinina, P., Christophel, T. B., Gayet, S., & Rademaker, R. L. 
(2021). Essential considerations for exploring visual working 
memory storage in the human brain. Visual Cognition, 29(7), 
425–436.

Jiang, Y. V., Remington, R. W., Asaad, A., Lee, H. J., & Mikkalson, 
T. C. (2016). Remembering faces and scenes: The mixed-cate-
gory advantage in visual working memory. Journal of Experi-
mental Psychology. Human Perception and Performance, 42(9), 
1399–1411.

Kiyonaga, A., & Egner, T. (2013). Working memory as internal atten-
tion: Toward an integrative account of internal and external selec-
tion processes. Psychonomic Bulletin & Review, 20(2), 228–242.

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtool-
box-3? https://​pure.​mpg.​de/​rest/​items/​item_​17903​32/​compo​nent/​
file_​31362​65/​conte​nt

Lewis-Peacock, J. A., & Norman, K. A. (2014). Competition between 
items in working memory leads to forgetting. Nature Communica-
tions, 5(1), 5768.

Lin, P.-H., & Luck, S. J. (2009). The Influence of Similarity on Vis-
ual Working Memory Representations. Visual Cognition, 17(3), 
356–372.

Lively, Z., Robinson, M. M., & Benjamin, A. S. (2021). Memory fidel-
ity reveals qualitative changes in interactions between items in vis-
ual working memory. Psychological Science, 32(9), 1426–1441.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual work-
ing memory for features and conjunctions. Nature, 390(6657), 
279–281.

Luria, R., & Vogel, E. K. (2011). Shape and color conjunction stimuli 
are represented as bound objects in visual working memory. Neu-
ropsychologia, 49(6), 1632–1639.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1523/ENEURO.0207-22.2022
https://doi.org/10.1523/ENEURO.0430-20.2020
https://doi.org/10.1523/ENEURO.0430-20.2020
https://doi.org/10.1037/xge0001191
https://doi.org/10.1037/xge0001191
https://doi.org/10.21105/joss.05351.pdf
https://doi.org/10.1167/11.12.3
https://doi.org/10.1167/11.12.3
https://doi.org/10.5281/zenodo.4679423
https://doi.org/10.5281/zenodo.4679423
https://pure.mpg.de/rest/items/item_1790332/component/file_3136265/content
https://pure.mpg.de/rest/items/item_1790332/component/file_3136265/content


1860	 Attention, Perception, & Psychophysics (2024) 86:1846–1860

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). 
Context-dependent computation by recurrent dynamics in pre-
frontal cortex. Nature, 503(7474), 78–84.

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of 
working memory. Nature Neuroscience, 17(3), 347–356.

Mazer, J. A., & Gallant, J. L. (2003). Goal-Related Activity in V4 dur-
ing Free Viewing Visual Search: Evidence for a Ventral Stream 
Visual Salience Map. Neuron, 40(6), 1241–1250.

Morey, R. D., & Rouder, J. N. (2022). BayesFactor: Computation of 
Bayes Factors for Common Designs. https://​richa​rddmo​rey.​github.​
io/​Bayes​Factor/

Mruczek, R. E. B., Killebrew, K. W., & Berryhill, M. E. (2019). Indi-
vidual differences reveal limited mixed-category effects during a 
visual working memory task. Neuropsychologia, 122, 1–10.

Ngiam, W. X. Q., Loetscher, K. B., & Awh, E. (2024). Object-based 
encoding constrains storage in visual working memory. Journal 
of Experimental Psychology. General, 153(1), 86–101.

Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., 
& Mesulam, M. M. (2004). Orienting attention to locations in 
perceptual versus mental representations. Journal of Cognitive 
Neuroscience, 16(3), 363–373.

Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual 
working memory. Psychological Review, 124(1), 21–59.

Ooms, J. (2014). The jsonlite Package: A Practical and Consistent 
Mapping Between JSON Data and R Objects. In arXiv:1403. 2805 
[stat. CO]. https://​arxiv.​org/​abs/​1403.​2805

Panichello, M. F., DePasquale, B., Pillow, J. W., & Buschman, T. J. 
(2019). Error-correcting dynamics in visual working memory. 
Nature Communications, 10(1), 3366.

Pylyshyn, Z. (1989). The role of location indexes in spatial perception: 
A sketch of the FINST spatial-index model. Cognition, 3, 65–97.

Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting 
representations of sensory and mnemonic information in human 
visual cortex. Nature Neuroscience, 22(8), 1336.

R Core Team. (2023). R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing. https://​
www.R-​proje​ct.​org/

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, 
E. K., & Fusi, S. (2013). The importance of mixed selectivity in 
complex cognitive tasks. Nature, 497(7451), 585–590.

Schecklmann, M., Dresler, T., Beck, S., Jay, J. T., Febres, R., Haeu-
sler, J., Jarczok, T. A., Reif, A., Plichta, M. M., Ehlis, A.-C., & 
Fallgatter, A. J. (2011). Reduced prefrontal oxygenation during 
object and spatial visual working memory in unpolar and bipolar 
depression. Psychiatry Research, 194(3), 378–384.

Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Publisher Cor-
rection: Psychophysical scaling reveals a unified theory of visual 
memory strength. Nature Human Behaviour. https://​doi.​org/​10.​
1038/​s41562-​020-​00993-7

Scolari, M., Vogel, E. K., & Awh, E. (2008). Perceptual expertise 
enhances the resolution but not the number of representations 

in working memory. Psychonomic Bulletin & Review, 15(1), 
215–222.

Scotti, P. S., Hong, Y., Leber, A. B., & Golomb, J. D. (2021). Visual 
working memory items drift apart due to active, not passive, main-
tenance. Journal of Experimental Psychology. General, 150(12), 
2506–2524.

Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-
Specific Delay Activity in Human Primary Visual Cortex. Psy-
chological Science, 20(2), 207–214.

Serences, J. T., & Yantis, S. (2006). Selective visual attention and per-
ceptual coherence. Trends in Cognitive Sciences, 10(1), 38–45.

Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention 
in working memory: 13 years of the retro-cue effect. Attention, 
Perception & Psychophysics, 78(7), 1839–1860.

Sprague, T. C., Itthipuripat, S., Vo, V. A., & Serences, J. T. (2018). 
Dissociable signatures of visual salience and behavioral relevance 
across attentional priority maps in human cortex. Journal of Neu-
rophysiology, 119(6), 2153–2165.

Sprague, T. C., & Serences, J. T. (2013). Attention modulates spatial 
priority maps in the human occipital, parietal and frontal cortices. 
Nature Neuroscience, 16(12), 1879–1887.

Swan, G., & Wyble, B. (2014). The binding pool: A model of shared 
neural resources for distinct items in visual working memory. 
Attention, Perception & Psychophysics, 76(7), 2136–2157.

Thyer, W., Adam, K. C. S., Diaz, G. K., Velázquez Sánchez, I. N., 
Vogel, E. K., & Awh, E. (2022). Storage in Visual Working Mem-
ory Recruits a Content-Independent Pointer System. Psychologi-
cal Science, 33(10), 1680–1694.

Treisman, A. (1986). Features and Objects in Visual Processing. Sci-
entific American, 13.

Treisman, A. (1988). Features and objects: the fourteenth Bartlett 
memorial lecture. The Quarterly Journal of Experimental Psy-
chology. A, Human Experimental Psychology, 40(2), 201–237.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of 
attention. Cognitive Psychology, 12(1), 97–136.

Wickham, H. (2023). tidyverse: Easily Install and Load the Tidyverse. 
https://​tidyv​erse.​tidyv​erse.​org

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, 
K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2023). 
ggplot2: Create Elegant Data Visualisations Using the Grammar 
of Graphics. https://​ggplo​t2.​tidyv​erse.​org

Wilken, P., & Ma, W. J. (2004). A detection theory account of change 
detection. Journal of Vision, 4(12), 1120–1135.

Xu, Y. (2020). Revisit once more the sensory storage account of visual 
working memory. Visual Cognition, 28(5–8), 433–446.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://richarddmorey.github.io/BayesFactor/
https://richarddmorey.github.io/BayesFactor/
https://arxiv.org/abs/1403.2805
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1038/s41562-020-00993-7
https://doi.org/10.1038/s41562-020-00993-7
https://tidyverse.tidyverse.org
https://ggplot2.tidyverse.org

	Mixing and mingling in visual working memory: Inter-item competition is feature-specific during encoding and feature-general during maintenance
	Abstract
	Introduction
	Open practices statement
	Experiment 1a
	Method
	Participants
	Stimuli
	Procedure
	Exclusion criteria
	Data analysis

	Results
	Post hoc swap analyses


	Experiment 1b
	Method
	Participants
	Stimuli
	Procedure
	Exclusion criteria
	Data analysis

	Results
	Discussion

	Experiment 2
	Method
	Participants
	Stimuli
	Procedure
	Exclusion criteria and sequential data collection
	Data analysis

	Results
	Set size
	Mixed category benefit during encoding
	Mixed category benefit during maintenance

	Discussion

	General discussion
	Acknowledgements 
	References




