
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Offline and Online Optimization with Applications in Online Advertising

Permalink
https://escholarship.org/uc/item/9pc6s4kk

Author
Lobos Ruiz, Alfonso Andres

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9pc6s4kk
https://escholarship.org
http://www.cdlib.org/

Offline and Online Optimization with Applications in Online Advertising

by

Alfonso Andres Lobos Ruiz

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Paul Grigas, Chair
Professor Ilan Adler

Professor Rajan Udwani
Professor Laurent El Ghaoui

Spring 2021

Offline and Online Optimization with Applications in Online Advertising

Copyright 2021
by

Alfonso Andres Lobos Ruiz

1

Abstract

Offline and Online Optimization with Applications in Online Advertising

by

Alfonso Andres Lobos Ruiz

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Paul Grigas, Chair

In the last couple of decades, focus on speed and personalization has been a topic of major
importance for optimization systems. The internet and big data have made users expect
results immediately or with an unperceivable delay. For example, in online advertising a
user is shown an ad a few milliseconds after entering a website, app, or other media. This
new online environment has force optimization systems to evolve from operating in an offline
fashion, i.e., assuming all the information is available a priori, to an online one. In an online
setting, information arrives sequentially, and systems need to make decisions as information
arrives. This thesis is composed of three main chapters. The first studies an online advertising
problem that serves as a motivation for the thesis as a whole. Though motivated by the
leading online advertising problem, the second and third chapters make broad contributions
to optimization theory and machine learning, respectively.

In the first chapter of this thesis, we develop an optimization model and corresponding
algorithm to manage a demand-side platform (DSP), whereby the DSP acquires valuable ad
space for its advertiser clients in a real-time bidding environment. In particular, we focus on
how a DSP should bid in real-time auctions to acquire valuable ad space to allocate between
its advertiser’s clients. We propose a highly flexible model for the DSP to maximize its profit
while maintaining acceptable budget spending levels for its advertisers’ clients. We prove
that a dual formulation attains a zero-duality gap under practical settings for DSPs. Using
a primal-dual scheme, we derive a bidding and allocation policy that DSPs can apply in
practice.

In the second chapter of this thesis, we propose a joint online optimization and learning
algorithm through dual mirror descent. Part of the motivation for this topic comes from
developing an online solution/policy to solve the DSP problem mentioned above. An online
policy in the sense that it gets updated using simple steps after each user arrival. We achieved
this goal for DSPs who buy ad space in real-time bidding environments which use second-price
auction mechanisms. No complicated optimization problem needs to be solved in advance.

2

The contribution of this chapter of the thesis extends broadly beyond its original motivation
on online advertising, making contributions in the online optimization field. In particular, we
propose a new algorithm that mixes an online dual mirror descent scheme with a generic
parameter learning process and a novel offline benchmark for this setup. Bounds on regret
and worst possible constraints violation are studied.

In the third chapter of this thesis, we propose training neural networks jointly using
subgradient-descent, Frank-Wolfe, and Frank-Wolfe variants called in-face directions. An im-
portant motivation for this chapter is how to add structure to neural networks in a principled
manner. In particular, if we can promote sparsity in some layers of a neural network, we can
make the overall inference step faster/cheaper. The latter is a major concern in production
systems in online advertising in which the inference step of a neural network may be called
billions of times per day.

i

To my parents and sister, for their unconditional love and support.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Optimization Issues of Interest . 2
1.2 Main Actors in Online Advertising . 5
1.3 Summary of Contributions . 6
1.4 Common Notation . 9

2 Optimal Bidding, Allocation, and Budget Spending for a Demand-Side
Platform with Generic Auctions 10
2.1 Model Preliminaries and High-Level Overview 15
2.2 Optimization Formulation: Primal and Dual Problems 20
2.3 Zero Duality Gap Results . 29
2.4 Numerical Experiments . 33
2.5 Conclusion . 41

3 Joint Online Learning and Decision-making via Dual Mirror Descent 42
3.1 Preliminaries and Algorithm . 45
3.2 Regret Bound and Related Results . 50
3.3 Experiments . 52

4 Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization
and Sparse Neural Network Training 57
4.1 Stochastic Frank-Wolfe steepest descent method with in-face directions . . . 60
4.2 Block coordinate extension . 65
4.3 Numerical Experiments . 66

A Optimal Bidding, Allocation, and Budget Spending for a Demand-Side
Platform with Generic Auctions 69

iii

A.1 Summary of Notation . 69
A.2 Omitted Proofs . 69
A.3 Examples and Derivations . 78
A.4 Additional Experimental Details . 83

B Joint Online Learning and Decision-making via Dual Mirror Descent 93
B.1 Additional Theoretical Results and Examples 93
B.2 Proofs . 98
B.3 Extra Experimental Details and Results . 107

C Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization
and Sparse Neural Network Training 117
C.1 Proofs in Section 4.1 . 117
C.2 Example of In-Face Direction Computation 123
C.3 Proofs in Section 4.2 . 123
C.4 Additional Numerical Results on Synthetic Data 127

Bibliography 133

iv

List of Figures

1.1 Modified figure from [129]. 5

2.1 Plots showing the observed profit and budget utilizations of our proposed formu-
lations, relative to the standard greedy heuristic (Policy 4 with γ = 1), versus the
target budget values. The first row shows results assuming first-price auctions,
and the second row shows results assuming second-price auctions. 36

2.2 Profit and budget utilization as we change the penalization parameter τ of UF
4 and UF 5, and the scaling parameter γ of Policy 4. The dots in the graph
represent UF 3, which has no parameters, and Policy 4 without scaling (γ = 1). 38

2.3 Profit and budget utilization as we change the penalization parameter τ of UF
4 and UF 5, and the scaling parameter γ of Policy 4. The dots in the graph
represent UF 3, which has no parameters, and Policy 4 without scaling (γ = 1). 40

3.1 Box plots of the total profit obtained, and average budget utilization and budget
depletion iteration per advertiser over 100 simulations. Budget utilization cor-
responds to the percentage of the total budget that an advertiser spent. If an
advertiser never depleted its budget, its depletion time equals the simulation length. 54

A.1 Sensitivity to budget experiment using synthetic data. The upper and lower curves
represent the minimum and maximum relative profit or budget utilization of 100
simulations depending on the graph. The x-axis represent the budgets levels used. 84

A.2 Pareto curve experiment using synthetic data. The upper and lower curves repre-
sent the minimum and maximum profit or budget utilization of 100 simulations
depending on the graph. The x-axis represents the parameters used for each
methodology. 85

A.3 Pareto curve experiment using the Criteo data. The upper and lower curves
represent the minimum and maximum profit or budget utilization, depending on
the graph, of 100 simulations using a given method and parameters as shown in
the x-axis. 86

A.4 Number of leaves, validation accuracy and Gini coefficient for different complexity
parameter levels. The dot in the curves correspond to the complexity parameter
chosen for the experiments. 90

v

B.1 The x-axis in the figure shows the proportion of an advertiser budget w.r.t. the
highest budget between all advertisers (shown on a logarithmic scale). 109

B.2 Moving average revenue for windows of 250 iterations against the proportional
best average revenue possible using d = 5, n = 10. 112

B.3 Moving average revenue for windows of 250 iterations against the proportional
best average revenue possible using d = 50, n = 50. 113

C.1 Results using sigmoid activation function . 129
C.2 Results using ReLU activiation function . 130
C.3 Modified Frank-Wolfe gap vs. iterations for SFW and SFW-IF, on an instance

from a network generated using the sigmoid activation function with m = 10
non-zeros and SNR = 10. 131

C.4 Average number of non-zeros (NNZ) per layer for SFW and SFW-IF, on an
instance from a network generated using the sigmoid activation function with
m = 10 non-zeros and SNR = 10. 132

vi

List of Tables

3.1 The results shown are the average revenue over 100 simulations relative to
the best value possible. A column label, such as (0.5, 0.1) indicates that a
Uniform(−0.5, 0.5) is added to the observed revenue and that i.i.d.Uniform(−0.1, 0.1)
elements were added to each coordinate of W t for each t ∈ [T]. 56

4.1 Comparison in terms of accuracy and percentage of non-zero terms between our
proposed Stochastic Frank-Wolfe (SFW) method both with and without In-Face
directions (IF) with respect to a traditional subgradient descent approach using
the MNIST and CIFAR-10 datasets. 68

A.1 List of sets, parameters, and variables. 91
A.2 Optimal bidding forms for first and second-price auctions under different bid

landscapes. 92

B.1 All percentages shown are the average revenue over 100 simulations divided by
the best average revenue achievable (OPT(P)). 114

B.2 All percentages shown are the average revenue over 100 simulations divided by
the best average revenue achievable (OPT(P)). 115

B.3 All percentages shown are the average revenue over 100 simulations divided by
the best average revenue achievable (OPT(P)). 116

vii

Acknowledgments

This thesis and associated research would not have been possible without the help and support
of my family, friends, advisor, and great people who guide me during these years.

I start by thanking my parents, Julio and Veronica, and my sister, Daniela, for their
support. I started my PhD odyssey in 2015, and my family has always been there to support
me. I hope that once this pandemic has settled, we can celebrate the closure of this step
together.

I would also like to thank Paul Grigas, my advisor, for this process that we have experienced
together. Through Paul, I have learned many exciting problems in optimization, machine
learning, and many other areas. Also, as his first student ever, we have learned together about
many different topics both inside and outside academia. I hope we can continue collaborating
or sharing experiences in years to come.

I want to thank my bosses, mentors, and collaborators I have enjoyed interacting with
during these years. From Yahoo, I would like to thank Aaron Flores and Kuang-Chih Lee
for introducing me to the world of online advertising and many work and non-work related
topics. Also, I would like to thank professor Jose Blanchet for the great conversations and
how you have advised me when I have felt lost. Finally, I can not forget my friends, mentors,
and collaborators Junwei Pan and Zheng Wen. With both of you, I have been fortunate to
share friendship, work, and academia.

From professors and staff from IEOR, I would like to thank Ilan Adler for allowing me to be
his GSI twice and for the great discussions we had about optimization and academia in general.
I want to thank professor Lee Fleming for allowing me to help him in his entrepreneurial
endeavours. And want to thank professor Dorit Hochbaum who join me in her research group
when I started my PhD. Finally, I want to thank the great IEOR staff who helped me on
many occasions Anayancy, Keith, Heather, Diana, and Rebecca. It has been countless times
in which I have relied on you.

Finally, I want to thank my friends from life as well. My amazing DAFTS group Daniel,
Felipe, Tomas, Sofia, and “Lab Mala Ondi” including Nicolas, Pascal, Jorge, Rene T., Rene
M., Claudio, Mario, Yoram (and Fernando). “Los Hey Para” Pablo, Emilio, Parli, Alvaro,
Rucio, Kani, Ignacio, Parra and other friends from high school Alexis A., Gerald F., Jose
H. Good friends from undergrad Sebastian E., Patricio N., Matias V., Matias L., Cesar H.,
Lopy, Carlos M., Rodrigo B., Ernesto S., Felipe C., Jose T., my neighbours Rodrigo and
Jaime C., and many friends from life Katy W., Martin M., Steph S., Cyril T., Anna M., Tina
A., Camila F. and others that I may be forgetting. My housemates, through these years
Vivek A., Chao Ju, Matt T., Clark S., Cristian D., Dietrich D., Alex K., Paty H., Katya C.,
Jacob F., Galia M. and others. Finally, I would like to thank my friends from Berkeley and
IEOR Salar F., Pedro H., Dean G., Cristobal P., Han F., Mark V., Erik B., Junyu C., Carlos
D., Haoyang C., Xu R., Matt O., Georgios P., Yonatan M., Pelaggie U., Quico S., Jiung
L., Kevin L., Yuhao D., Cedric J., Arman J., Igor M., Sang W., Jose L., Valeri V. Special
shoutout to the musketeers Nishant L. and Kilian S. Kilian, you left early, but I hope we can
meet again when the time is due.

1

Chapter 1

Introduction

In the last couple of decades, focus on speed and personalization has been a major topic for
optimization systems. The internet and big data have made users expect results immediately
or with an unperceivable delay. For example, when a user enters an app or website, the
website layout or app visuals may need to adapt depending on user characteristics. From
an optimization point of view, we think of scenarios in which orders/requests/users arrive
sequentially, and the system needs to respond in a few milliseconds. Of particular importance
for this thesis is the case of online advertising. In the latter case, an ad is shown to a user a
few milliseconds after the user enters a website, start using an app, etc. The information of a
user arrival to a website or app is sold in a real-time auction in which different companies
called Demand-Side Platforms (DSPs) participates. How a DSP should bid in these real-
time auctions to later allocate the obtained ad space between its advertisers’ clients is the
motivating problem for this thesis.

This thesis makes contributions in the areas of optimization theory, machine learning, and
online advertising. The general outline of how the different chapters and contributions are
related is as follows. Chapter 2 studies in detail the bidding and allocation problem for a DSP.
Using a primal-dual scheme, we prove that our methodology is the best possible in a strong
sense for many practical settings, in our case, auction types used in practice. Also, we derive
a policy for DSPs that links our theoretical results to practical implementation. Feedback
both from industry and academia taught us that some parameters we assumed known could
be not. Either a DSP may not have good estimates of these parameters or these parameters
may be observed only in a real-time fashion. For example, an adequate way to classify or
partition users depending on their information, e.g., cookie history, may not be available.
Also, a DSP may not have a good forecast of the expected number of users with different
characteristics that will arrive in a given period. The latter issues motivate Chapter 3, where
we study an online revenue maximization problem over a finite time horizon subject to lower
and upper bounds on cost. At each period, an agent receives a context vector sampled i.i.d.
from an unknown distribution and needs to make a decision adaptively. In terms of the
motivating DSP problem, users entering to websites, using apps, etc. are represented as
sequential context vector arrivals. As an application of the mathematics used and studied

CHAPTER 1. INTRODUCTION 2

on Chapter 3, we were able to derive an online optimization policy when real-time auctions
use second-price auction mechanisms. The latter meaning that no offline problem needs to
be solved in advance. The derived bidding and allocation policy is updated as users arrive
without the need to have estimates of future user arrivals types and other quantities.

Chapter 4 was motivated by a somehow tangential topic to the DSP problem. A key input
for the DSP problem and in general for the online advertising field is the probability of a user
converting after being shown an ad, i.e., making an action such as a click, purchase a product,
fill a form, etc. Neural networks are typically to obtain estimates of conversions probabilities.
Using user characteristics and other attributes as inputs for a pre-trained neural network,
the neural network’s output would be the probability of a user converting. In practice, a
DSP would need to run the inference step of a neural network to estimate the likelihood of
conversion for an incoming user. A DSP may need these probabilities in real-time for each ad
that it wants to show to an incoming user. (The thesis author has collaborated on a couple
of papers on neural networks architectures for conversion prediction [98, 99].) Since a DSP
may need to estimate conversion probabilities up to hundreds of billions of times per day,
these neural networks can not have expensive inference calls. In Chapter 4 we explore how to
train neural networks promoting sparsity and potentially making inference calls cheaper to
run. We propose training neural networks jointly using subgradient-descent, Frank-Wolfe,
and Frank-Wolfe variants called in-face directions. The layers of a neural network that we
would like to sparsify are trained using Frank-Wolf schemes. We can also use the hybrid
training scheme mentioned above to promote other structural properties on a neural network
layer, such as low-rank.

For the rest of this chapter, we first provide an overview of the optimization issues
of interest in this thesis. Second, we comment on the actors of importance in the online
advertising field. We make emphasis on the most relevant actors for the bidding and allocation
problem faced by DSPs. Third, we provide a summary of the contributions of the chapters
with links to the relevant papers. Finally, we provide a common notation for all chapters,
though specific chapter notation is defined in each chapter too.

1.1 Optimization Issues of Interest
Calling R the set of real numbers, the optimization problems studied in this thesis are of the
form:

P(θ) :=min
x∈Rn

f(x; θ)

subject to x ∈ X , (1.1)

where x is the decision variable which belongs to a domain X ⊆ Rn and θ represents problem
parameters which may not be known a priori. The objective is to minimize the function
f(·) : Rn → R ∪ {∞} over the feasible space X . The set X is typically defined by a set of
constraints. Depending on the problem structure, we may need to content ourselves with

CHAPTER 1. INTRODUCTION 3

finding a local minimum or stationary point instead of a global optimum. Hidden in Problem
(1.1) is the case when decisions need to be taken sequentially as information gets observed.
In the latter case, we care about the difference between the value obtained by an adaptive
algorithm with respect to a setting in which all information is observed from the beginning
(this difference is called the regret of an algorithm). Issues of interest for this work are:

- Size of the optimization problem. Many problems of interest today are too big to be
fully stored in memory. Even if they could be stored, many global solution techniques do
not scale adequately for huge datasets. For example, to solve semi-definite programming
problems [119] is common to use Newton type of methods which require inverting a
Hessian matrix. Inverting a Hessian matrix scales cubically on the size of the variables
(there is a plethora of methods on how to make this matrix inversion step less expensive
[85, 48]). Methods particularly well suited for high dimensional problems are first-order
methods. These methods require only a gradient or subgradient estimate per algorithm
iteration to work [114], and they are typically used for neural network training and
other machine learning problems [22]. The three main chapters of this thesis utilize
first-order methods.

- Structure of the optimization problem. Some algorithms work only for certain problem
structures. For example, the famous Simplex method, which is said to have started
the Operations Research field in the 1940’s [35], assumes f(·; θ) to be a linear function
and X to be composed only of linear constraints. Also, an algorithm performance
may heavily depend, at least on theory, on the underlying problem structure. In the
case of first-order methods, theoretical guarantees vary if a problem is convex or not.
For convex problems, best possible worst-convergence rates has been achieved under
different assumptions, such as differentiability, strong convexity, and others [114, 17].
For non-convex problems, except on known good cases [45, 44, 71], only convergence to
a stationary point can be proven (though, some recent works argue that non-convexity
may not be so bad [70]). In Chapters 2, 3, 4 we tackle complicated non-convex problems
using a methodology which involves using first-order methods. In the case of Chapters
2 and 3, to solve a complicated non-convex optimization problem we used a simpler
convex problem called the dual. A main task on these chapters was to prove that by
“operating” on the dual problem we could obtain good performance guarantees and
solutions for the original optimization problem.

- Stochasticity. Many optimization problems have an inherent stochastic nature, for
example, a production problem may depend on future demand for which only estimates
may be available. In other cases, stochasticity occurs by algorithm design. The best
example of the latter occurs in machine learning, where typically only a batch of rows
from a huge dataset are used at each iteration on training time. In the machine learning
case the stochasticity appears because of the solution technique, while in the production
example stochasticity appears as we can not “observe” the future. Even though different
on nature, both of these cases can be thought as having f(x; θ) = Ew∼W [f(x; θ, w)],

CHAPTER 1. INTRODUCTION 4

i.e., the value of f(x; θ) is an expectation over a distribution which may not be known.
(Here we simplify the analysis assuming that only the objective function may be subject
to random quantities, but in a general case they may affect the constraints as well.)
In Chapters 2 and 4 stochasticity appears as the first-order methods tried use batches
of information to solve static optimization problems. There is no a priori limit on
how many times we can sample batches of data to solve the optimization problems
therein. Differently, Chapter 3 assumes that an agent receives information sequentially
for T > 0 periods. At each period, a context vector is sampled i.i.d. from a possibly
unknown distribution and the agent needs to take a decision adaptively. This sequential
environment motivates the next topic.

- Static or sequential decision-making setup. As written, to solve Problem (1.1) we need
to find only one decision variable ‘x’ regardless if a stochastic setting is used or not.
Different is the case in which an agent receives objective functions in a sequential
manner and needs to take decisions sequentially as well (we assume an unconstrained
setup for now). In terms of Problem (1.1), we can represent the sequential setting
mentioned above as having f(x; θ) =

∑T
t=1 f

t(xt; θ) and x = (x1, . . . , xT) where T > 0
represents a total number of periods. A function f t(·; θ) is received on period t ≤ T and
a decision xt needs to be taken before observing f t+1(·; θ). In this setup an agent tries to
derive an adaptive decision-making policy, i.e., how to decide or choose xt+1 in function
of its previous decisions {xs}ts=1 and the set {f s(xs; θ)}ts=1. This type of problems are
studied in the online optimization literature [59] under different assumptions over the
nature and type of the objective function arrivals. The problem becomes harder when
the constraints are also observed in a sequential manner. For example, the case when
X equals

∑T
t=1 c

t(xt) ≤ a in which ct(·) and f t(·; θ) are observed together and a is a
known number or vector (more complicated forms for X could be used). Then, any
adaptive algorithm needs also to consider if it will produce a feasible solution, i.e., one
that satisfies

∑T
t=1 c

t(xt; θ) ≤ a, or how bad the worst constraint violation can be. An
online optimization setting with both lower and upper constraints is studied in Chapter
3.

- Observability of problem parameters. It can be the case that there is a vector θ∗ ∈ Θ
representing certain parameters of Problem (1.1), but θ∗ may not be known a priori.
Then, an agent may need to learn θ∗ in a sequential manner as it takes decisions and
observes new information. A trade-off between exploration and exploitation appears
naturally. At iteration t ∈ [T], the agent can either take a decision that would minimize
Problem (1.1) with respect to what is learned/observed of θ∗ so far, or take a decision
that would help to better identify θ∗. These type of problems and trade-offs are core
in the bandits literature, with methods such as Thompson-Sampling [112], Upper-
Confidence Bound [6], or other simpler methods, such as epsilon-greedy approaches [78].
In the case of this thesis, we study a joint online learning and sequential decision-making
setup in Chapter 3.

CHAPTER 1. INTRODUCTION 5

1.2 Main Actors in Online Advertising
Here we offer a simplified view of the main players in the online advertising market, with an
emphasis towards those of interest for this thesis. A more complete overview of the field is
done in [31]. The main players in online advertising are publishers, Supply-Side Platforms
(SSPs), Demand-Side Platforms (DSPs), ad-exchanges, and users. Publishers generate content
through their websites, apps, etc. Through this content publishers also generate inventory
where ads can be shown (e.g., banners, seconds on a video, etc.). A publisher’s inventory is
typically managed by an SSP. Ad-exchanges are in charge of performing real-time auctions
to sell these inventories, a.k.a. ad spaces, to DSPs (and few big-enough advertisers which
we ignore here). It can be the case that one entity/corporation may act as several roles.
Alphabet is the most extreme example of the latter as it acts as an ad-exchange, a DSP, a
SSP, and as a regulatory entity [125].

The entities of main interest for this thesis are DSPs. A DSP manages the budgets of
hundreds to thousands of advertisers who set campaigns with it. Each advertiser precises a
target audience, campaign’s length, budget to spend and spending pacing, payment scheme,
etc. Important DSPs are Criteo, MediaMath, Jampp, Verizon Media, and Amazon Ads (the
latter has considerably bigger revenue than the rest, but many of their ads are shown in
websites and properties owned by Amazon). Figure 1.1 shows a simplified scheme of how a
DSP operates in the online advertising environment.

Figure 1.1: Modified figure from [129].

Following Figure 1.1, take the case in which a user enters a website, e.g., www.wired.com
which is owned by the Publisher Condé Nast. The website (or a SSP), informs an ad-exchange
of the user arrival and the ad inventory. The ad-exchange then sets a real-time auction,
informing all its DSP clients about the user arrival. DSPs call the latter event a ‘bid request’;
a bid request contains information about the user, website, and the type and characteristics of
the real-time auction to be executed. Each DSP may submit at most one bid to the auction.
Once the ad-exchange receives the bids, it executes the auction and the winner DSP, if any,
shows an ad to the incoming user. The whole process from the time when the user arrives to
an ad being shown takes, typically, 100 milliseconds or less. A medium DSP may receive
hundreds of billions of bid requests per day.

www.wired.com

CHAPTER 1. INTRODUCTION 6

Advertisers use conversions as their performance metric when setting a campaign with a
DSP. Loosely speaking, conversions are actions an advertiser desires a user to perform after
observing an ad. Examples are filling a form, making a click, buying a product, entering a
website, or watching a video for a certain amount of seconds. Chapter 2 assumes a Cost-Per
Action (CPA) payment scheme. In this scheme, an advertiser pays the DSP only when a
conversion occurs. This makes the DSP, not the advertiser, to be the one leveraging the risk,
as the DSP pays to ad-exchanges for each bid request it wins, regardless if conversions later
occur or not.

Chapter 2 allows ad-exchanges to use arbitrary auction types, while in practice ad-
exchanges today use either first or second-price auctions. In both first and second-price
auctions, the winner of the auction is the highest bidder. The payment in first and second-price
auctions is the highest and second-highest submitted bid, respectively. Second-price auctions
generally were the only auction mechanism used by ad-exchanges until 2018 approximately.
Today, both first and second-price auctions are used, with fast adoption of first-price auctions
in the latter years. Both first and second-price auctions generate a censored data problem
from a DSP point of view. A DSP observes the winning bid and the amount charged by
ad-exchanges only for the auctions it won. When a DSP loses an auction, it only observes
that its bid was smaller than the highest submitted bid.

1.3 Summary of Contributions
Here we divide the contributions of Chapters 2, 3, and 4 between “Bidding and Allocation
for Demand-Side Platforms” and “Optimization Theory and Machine Learning”. Chapter 2
makes contributions mostly on the former topic and Chapters 3 and 4 on the latter.

Bidding and Allocation for Demand-Side Platforms

• Chapter 2: Online advertising is an industry with an estimated $125 billion in global
revenue in 2019 [102]. The online advertising environment offers advertising sellers the
unique capability to deliver ads targeted to specific customer segments. A demand-
side platform (DSP) serves as a type of intermediary between buyers and sellers of
advertising inventory within targeted online advertising. A DSP typically manages
the marketing campaigns of hundreds or thousands of advertisers. A campaign can be
thought as of a plan for delivering advertisements, which defines a budget, pacing details,
a target audience, and the ad to be shown. DSPs can charge its advertisers’ clients
using different schemes. Usual payment schemes are Cost-Per Mille/Clicks/Actions
(CPM/CPC/CPA) in which advertisers are charged per thousands of ads shown to
users or per clicks or actions. These clicks or actions are only counted as valid if users
execute them after observing an advertiser’s ad.

We propose a static optimization model which tries to maximize the profit for a
DSP while promoting an adequate budget spending for its advertisers clients in a

CHAPTER 1. INTRODUCTION 7

CPM/CPC/CPA scheme. The trade-off between maximizing the DSP profit and the
budget spending is obtained by using a utility function on the budgets spending which
offers a high degree of flexibility on how this trade-off is performed. Our model applies
to any auction type by relying on machine learning techniques to predict conversions
rates and auction outcomes. Our non-convex model is solved using a convex dual model
used inside a primal-dual scheme. We show several no duality gap and convergence
results of our primal-dual algorithm. Our no duality gap results show that the optimal
bidding price to be submitted is the maximizer of a dual profit expression, which extend
known results for second-price auctions. We show how to derive a policy that can be
used by a DSP in a real operation from the solution of our optimization problem.

Optimization And Machine Learning Theory

• Chapter 3: Systems in which information arrives in a sequential manner and decisions
need to be taken with slight delay are innocuous today. Examples of this are common in
revenue management, such as pricing problems for airlines or hotels in which customers
arrive sequentially or in online resource allocation problems. They also occur in online
advertising as in the bidding and allocation problem for DSPs studied in Chapter 2.
These general type of problems can be analyzed through the lens of online optimization.
At each iteration or period, an agent observes a set of revenue and cost functions
and needs to take a decision adaptively. The agent operates over a certain amount of
periods, and the cost constraints may need to hold at the end of all periods (or their
violation be bounded). Also, some problem parameters may need to be learned as the
agent takes decisions and time progresses.

We consider an online revenue maximization problem over a finite time horizon subject
to lower and upper bounds on cost. At each period, an agent receives a context vector
sampled i.i.d. from an unknown distribution and needs to make a decision adaptively.
The revenue and cost functions depend on the context vector as well as some fixed but
possibly unknown parameter vector to be learned. We propose a novel offline benchmark
and a new algorithm that mixes an online dual mirror descent scheme with a generic
parameter learning process. When the parameter vector is known, we demonstrate
an O(

√
T) regret result as well an O(

√
T) bound on the possible constraint violations.

When the parameter is not known and must be learned, we demonstrate that the regret
and constraint violations are the sums of the previous O(

√
T) terms plus terms that

directly depend on the convergence of the learning process.

• Chapter 4 When training neural networks, statistics like accuracy, f1-score, and Area
Under the Curve (AUC) may not be adequate for all business needs. Depending on the
use of a neural network, we may care about memory used to store it (think on mobile
applications), training time, or resources needed to make predictions (inferencing). An
example for the latter case occurs in conversion/click prediction in online advertising.
An already trained neural network is used to predict if a user will click or perform an

CHAPTER 1. INTRODUCTION 8

action of interest after observing an ad. The pre-trained neural network may make
predictions up to hundreds of billions of times per day. Then, server costs become a
concern. One way to reduce server costs is to add structure to the neural network such
that making predictions, i.e., running its inference step, consume fewer resources.

The Frank-Wolfe method and its extensions are well-suited for delivering solutions with
desirable structural properties, such as sparsity or low-rank structure. We introduce a
new variant of the Frank-Wolfe method that combines Frank-Wolfe steps and steepest
descent steps, as well as a novel modification of the “Frank-Wolfe gap” to measure
convergence in the non-convex case. We further extend this method to incorporate
in-face directions for preserving structured solutions as well as block coordinate steps,
and we demonstrate computational guarantees in terms of the modified Frank-Wolfe
gap for all of these variants. We are particularly motivated by the application of
this methodology to the training of neural networks with sparse properties, and we
apply our block coordinate method to the problem of `1 regularized neural network
training. We present the results of several numerical experiments on both artificial and
real datasets demonstrating significant improvements of our method in training sparse
neural networks.

Related Publications

• Chapter 2
Main paper:

1. Paul Grigas, Alfonso Lobos, Zheng Wen and Kuang-chih Lee, “Optimal Bidding,
Allocation, and Budget Spending for a Demand-Side Platform with Generic
Auctions”, submitted to Operations Research, 2021

Related papers:

2. Alfonso Lobos, Paul Grigas, Zheng Wen and Kuang-chih Lee, “Optimal Bidding,
Allocation and Budget Spending for a Demand Side Platform Under Many Auction
Types”, AdKDD & TargetAd workshop of the conference Knowledge Data Discovery
(KDD), 2018. Best student paper award.

3. Paul Grigas, Alfonso Lobos, Zheng Wen and Kuang-chih Lee, “Profit Maximization
for online advertising Demand-Side Platforms”, AdKDD & TargetAd workshop of
the conference Knowledge Data Discovery (KDD), 2017.

• Chapter 3
Main paper:

1. Alfonso Lobos, Paul Grigas, Zheng Wen, “Joint Online Learning and Decision-
making via Dual Mirror Descent”, International Conference on Machine Learning
(ICML), 2021

CHAPTER 1. INTRODUCTION 9

• Chapter 4
Main paper:

1. Paul Grigas, Alfonso Lobos, Nathan Vermeersch, “Stochastic in-face frank-wolfe
methods for non-convex optimization and sparse neural network training” [50].

1.4 Common Notation
The notation below is common for all chapters of this thesis. Chapters 2, 3, and 4 also use
unique notations defined in each respective chapter.

For any n integer number we define Rn, Rn
+, and Rn

− as the sets of real, real non-negative,
and real non-positive numbers of dimension n, respectively. For any two vectors x ∈ Rn and
y ∈ Rn, the usual dot product between vectors is defined as xTy :=

∑N
i=1 xiyi. We use calli-

graphic capital letters to denote sets. For any x ∈ Rn, [x]+ := (max{x1, 0}, . . . ,max{xN , 0})
and use ‖·‖ to represent a norm operator. In particular, for any x ∈ Rn we use ‖x‖1 :=∑n

i=1|xi|, ‖x‖2 :=
√∑n

i=1 x
2
i , and ‖x‖∞ = maxi∈{1,} |xi|. We use E[·] and E[·|·] to denote the

mathematical expectations and conditional mathematical expectation operators. When not
clear from the context, we use E·∼·[·] and E·∼·[·|·] to indicate the random variable used to
take the expectation and conditional expectation operators, respectively.

For a given set S and function f(·) : S → R, let arg maxx∈S f(x) denote the (possibly
empty) set of maximizers of the function f(·) over the set S; likewise arg minx∈S f(x) is
defined similarly. If f(·) : Rn → R ∪ {−∞,+∞} is an extended real valued function,
then we let dom(f(·)) := {x ∈ Rn : f(x) is finite} denote its domain. Note that when
f(·) is convex then dom(f(·)) := {x ∈ Rn : f(x) < +∞}, and when f(·) is concave then
dom(f(·)) := {x ∈ Rn : f(x) > −∞}. Furthermore when f(·) is convex, for a given
x ∈ dom(f(·)), ∂f(x) denotes the set of subgradients of f(·) at x, i.e., the set of vectors g
such that f(y) ≥ f(x) + g>(y − x) for all y ∈ dom(f(·)).

10

Chapter 2

Optimal Bidding, Allocation, and
Budget Spending for a Demand-Side
Platform with Generic Auctions

Due to the tremendous growth of the internet and various digital mediums, online advertising
is now a substantially sized industry, with an estimated $125 billion in global revenue in 2019
[102]. The online advertising environment offers advertising sellers the unique capability to
deliver ads that are directly targeted to specific customer segments. Within targeted online
advertising, a demand-side platform (DSP) serves as a type of intermediary between buyers
and sellers of advertising inventory. A DSP typically manages the marketing campaigns of
hundreds or thousands of advertisers, each of which simultaneously runs multiple campaigns.
A campaign can be thought as of a plan for delivering advertisements, which defines a budget,
pacing details, a target audience, and the ad to be shown. For example, Nike might run a
campaign at half a million dollars per month that targets males between 18 and 35 years old
who reside in California and visit sports websites. Advertisers measure the success of their
campaigns in terms of the rate at which one or more desired actions occur, such as a click,
conversion, or product purchase. In the CPA pricing model considered herein, advertisers
pay the DSP only when this desired action occurs. This paper is primarily concerned with
the problem of optimally managing a portfolio of campaigns, under a CPA pricing model,
across multiple advertisers within a demand-side platform.

While demand-side platforms interact with and manage the campaigns of advertisers
interested in buying advertising inventory, those publishers interested in selling typically
utilize a supply-side platform (SSP) to manage the sales of their inventory. An ad exchange
then serves as a connection between DSPs and SSPs responsible for allocating impressions
supplied by SSPs to campaigns managed by DSPs. An impression constitutes a single
instance in which an ad is served – for example a particular user browsing the homepage
of ESPN – and contains information about the user as well as the publisher or domain
in which the advertisement is to be shown. Once an ad exchange receives an impression
opportunity, it initiates a real-time auction and all interested parties submit a single bid for

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 11

the opportunity. Then, depending on the particular auction mechanism, the ad exchanges
allocates the impression opportunity to a winner who is charged some amount possibly
depending on all of the bids. This process is truly “real-time" and typically occurs in 100
milliseconds or less on average. Moreover, a large DSP may participate in hundreds of billions
of auctions for different impressions opportunities per day.

As mentioned previously, when advertisers run campaigns they specify a budget that they
desire to spend over a certain time horizon. In reality, a campaign will never exactly spend
its budget amount and may underspend or overspend. Most existing algorithms in online
advertising optimization, either through the use of budget constraints or heuristic approaches,
heavily penalize overspending and place essentially zero penalty on underspending. In reality,
underspending may be as undesirable or even more undesirable than overspending, and in
this paper we consider a highly flexible utility function framework that allows campaigns to
have greater control over their budget spending preferences.

Historically ad exchanges have usually used second-price auctions, also called Vickrey
auctions, in which the highest bidder wins the auction and pays the amount of the second-
highest bid submitted. Second-price auctions are truth revealing [77], i.e., is optimal for
a bidder to bid their truthful valuation, although this property does not hold in the case
of repeated auctions or when bidders have limited budgets [53, 13]. As of 2020, many
ad exchanges including DoubleClick (Google), AppNexus, Rubicon, OpenX, Rubicon have
increasingly used first-price auctions to sell impression opportunities. In any case, whenever
an incoming impression opportunity arrives, a DSP is tasked with determining how much to
bid in the corresponding auction, and traditional approaches either bid truthfully or otherwise
make an assumption that the auction is second-price. In contrast, in this paper we directly
model the interactions with ad exchanges and thus we can accommodate arbitrary auction
types.

In this paper, we develop an optimization model and corresponding efficient algorithm to
guide a DSP in determining how to bid for impressions and subsequently how to allocate
acquired impressions to its portfolio of campaigns. Henceforth, we refer to “the DSP"
as a generic demand-side platform implementing our proposed algorithm. We propose a
formulation for the DSP to maximize its profit while ensuring that its advertisers are satisfied
with the levels of budget spending across their campaigns. Due to the joint optimization over
both bid price and impression allocation decisions, our model is non-convex. Nevertheless, we
propose a dual formulation which is convex and can be efficiently solved with any subgradient
based algorithm, and has strong theoretical guarantees and empirical performance.

Our contributions may be summarized as follows:

1. We propose a fixed time horizon optimization model for simultaneously determining
both bid price and impression allocation decisions. Our model assumes a CPA pricing
model, and its objective function allows the DSP to trade-off between maximizing its
profit and maintaining acceptable levels of budget spending for its advertisers.

2. We propose the use of generic concave utility function over budget spending levels,
such that the objective function of our optimization model is a combination of the

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 12

profit of the DSP and the total budget spending utility of its advertisers. This budget
utility approach is highly flexible, includes standard budget constraints as a special
case, and allows each advertiser to specify their preferences on how both underspending
and overspending should be penalized.

3. We directly model the (stochastic) dynamics of how the DSP interacts with the ad
exchanges. Such bid landscape models can be estimated directly from historical data
(e.g., using machine learning), and as a consequence our modeling approach and results
apply to arbitrary auction mechanisms (including, e.g., both first and second-price
auctions).

4. Our optimization model is non-convex due to the joint optimization over both bidding
and allocation decisions. Using Fenchel duality theory (see, e.g., [24]), we obtain a
convex dual problem that can be efficiently solved with subgradient based algorithms –
methods whose convergence rates and properties have been heavily studied (see, e.g.,
[95, 100] and the references therein). We also show how to efficiently obtain a primal
solution and a corresponding real-time policy for the DSP directly from the dual solution.
Our overall primal-dual algorithm is very general, and makes no assumptions about the
specific functional form of the utility function over budget spending levels or the bid
landscape models.

5. Under an intuitive “increasing marginal cost" condition, as well as under a more general
condition concerning the uniqueness of bid prices, we demonstrate that there is zero
duality gap in our formulation. We also extend this result, under the same conditions,
to show convergence of our primal-dual algorithm to an optimal solution of the original
primal problem.

6. We experimentally test our methodology on synthetic as well as a dataset from Criteo
[39] (a real DSP). Our experimental results demonstrate that our methodology allows
the DSP to effectively manage the trade off between maximizing its profit and satisfying
the budget spending preferences of its advertisers. The synthetic data experiment
employs both first and second-price auctions, while the dataset from Criteo assumes
that second-price auctions are used. We show that our methodology dominates a greedy
heuristic that is popular in practice (and is optimal in the case of infinite budgets).

Related Literature

Several prior works have considered topics related to optimization for a DSP although, to
the best of our knowledge, none have proposed a model as general, flexible, and theoretically
sound as ours. The works of [129] and [107] propose a Lagrangian relaxation approach to
choose an adequate bidding strategy to maximize the profit of a DSP. Importantly, these
works do not consider the simultaneous optimization of an allocation strategy as we do herein.
Furthermore, they focus only on budget constraints, second-price auctions, and compared to

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 13

our approach they either lack generic computational tractability (without strong assumptions)
and/or strong theoretical guarantees (i.e., our zero duality gap results).

Assuming second-price auctions, the works of [14] and [10] study the special case of
how to optimally bid on behalf of only a single advertiser. [10] obtain regret bounds under
certain assumptions, and [14] show Nash equilibrium results. [8] study a different but related
problem of determining how a single advertiser should target portfolios of impressions; they
cast this problem as a multi-armed bandit problem with periodic budgets and propose an
optimistic-robust learning algorithm. Returning to the problem of optimization for a DSP,
and again assuming second-price auctions, [51] as well as [86] propose primal-dual schemes
to find allocation and bidding strategies for a DSP. In addition to assuming second-price
auctions, both papers rely on applying Lagrangian duality to budget constraints to formulate
their dual problems. Thus, our model is more general in that we can accommodate arbitrary
auction types as well as a more flexible utility function framework for accommodating the
budget spending preferences of the advertisers. Note that our utility function framework
generalizes budgets constraints, which have been considered in many prior works including
[129, 51, 13, 14, 10] and [107], for example. Moreover, the model in our earlier paper [51]
is an exact special case of the model we consider herein. There are no strong theoretical
guarantees in [51], but it is important to note that the guarantees developed herein apply to
that model. The model in [86] is substantially different from the model considered herein and
can be regarded as a type of multidimensional knapsack problem; the authors prove a zero
duality gap result and their proof is highly specialized to the particular structure of their
multidimensional knapsack problem. [87] is an unpublished preliminary version of this paper.

Key inputs to our optimization model include forecasts of conversion rate and bid landscape
information. Estimating the click through rate (CTR) or more generally the conversion
through rate (CVR) is a central topic in online advertising, as advertisers typically see the
amount of conversions as a key performance metric. Logistic regression is widely used to
estimate CTR and CVR rates [27, 109], but many other methodologies have been used such as
boosted trees [62], and Bayesian probit regression [49]. More recently, factorization machines
[108] and derived methods [73] have gained popularity and importance and, for example,
have been used by the winning teams on important CTR prediction challenges [7, 33] and in
industry [72, 127, 54, 98]. Bid landscape forecasting refers to the estimation of the probability
of winning an auction given that a bid was submitted [34], and the expected charge in case
the auction is won. For both first and second-price auctions, estimating the bid landscape
functions translate to estimating the cumulative distribution function (c.d.f.) of the highest
competing bid [34, 129], a quantity that is also referred to as the market price. For DSPs, the
estimation of bid landscapes is a biased or censored problem as a DSP observes the market
price only when it wins an auction, i.e., only when its bid is higher than the market price
[126, 130, 122]. Bid landscape forecasting is also essential for ad exchanges as it is typically
used both for auction design and reserve price estimation [15, 28].

Optimization for a DSP – which involves jointly optimizing over both bidding and
allocation decisions – is closely related to pure ad allocation problems, which have been
primarily studied in the contexts of guaranteed contracts for display advertising and in the

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 14

search space. In the guaranteed contracts setting, a publisher who owns inventory (e.g., a
website) directly enters into contracts with advertisers. Each contract stipulates that the
publisher will show a minimum amount of ads of a given advertiser to incoming impressions
satisfying certain targeting constraints. The seminal work of [118] proposes a general model
for guaranteed target display advertising as a quadratic network flow problem (see also the
references therein for earlier approaches to ad allocation). [64] presents a more recent approach
in the guaranteed contracts setting that also considers reach and frequency requirements. In
the search space, Adwords is a preeminent problem in which a search provider has to allocate
incoming search queries to advertisers who previously set budgets for different query types [92,
37]. The problem that a DSP faces and studied herein may be considered an extension of an
ad allocation problem in which bidding strategies should also be derived. Recent extensions
of ad allocation problems have considered other objectives/settings besides profitability
and guaranteed contracts. For example, [16] propose a dynamic resource allocation scheme
that emphasizes optimizing for allocation fairness, fully extracts the advertisers’ budgets,
and has strong performance guarantees. On the supply side, [15] and [28] studied how
to optimally allocate impressions between guaranteed contracts and those to be sold in a
real-time bidding environment. Appearing after our preliminary paper [87], [11] study a
regularization approach to address fairness and under-delivery concerns in pure ad allocation
problems. Their approach is similar in spirit to our utility function approach for promoting
adequate budget spending. Finally, we refer readers to [31] for a more complete literature
review of general topics in online advertising.

The problem of ad allocation may be considered as a special case of the broader topic
of online resource allocation studied in the revenue management literature. Online resource
allocation problems have been studied and applied in industries such as airlines, hotels,
car rentals, and others [20, 23, 116]. Online resource allocation problems (and the closely
related network revenue management problem) are commonly solved by searching for a
policy maximizing the ex-ante expected revenue, which may be obtained using dynamic
programming (e.g. [20, 23, 116]). Dynamic programming formulations tend to suffer from the
“curse of dimensionality,” and therefore approximations need to be done. Among others, [90]
and [121] and the references therein present recent approaches based on approximate dynamic
programming ideas. More closely related to this paper is the idea of formulating and solving
a deterministic optimization problem that replaces random quantities with their expected
values and then using the result of this optimization to determine an online policy. This idea
at least dates to [113] and [124]. In the case of pure allocation problems, the deterministic
optimization problem is simply a linear program and dual solutions can be used to derive
bid price control techniques with theoretical guarantees [115, 116]. The effect of resolving
such deterministic linear programs and using the resolves to update a policy, e.g., with model
predictive control ideas has been studied theoretically as well [67, 32]. The main optimization
problem proposed in this paper is also based on the idea of deterministic approximation, but
it is important to emphasize that we obtain a much more difficult (non-convex) and general
deterministic optimization problem due to the difficulites that arise from optimizing for both
allocation and bidding decisions as well as the flexibility of our modeling framework. A key

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 15

contribution of this paper is that we demonstrate how to efficiently solve this more general
and complex deterministic optimization problem.

In the context of pure allocation problems in online advertising, it has been shown that
seminal algorithms for the Adwords and online bipartite matching problems [92, 74] can be
seen as solutions of randomized primal-dual schemes based on a deterministic optimization
problem [37]. Here a bid price-price control technique assigns an opportunity cost to allocate
an extra impression to an advertiser. This opportunity cost is usually related to the amount
of inventory used by an advertiser. Examples of this occur in [92] for the Adwords problem,
but also when deriving reserve prices for ad exchanges [15]. In the case of DSPs with budget
constraints and second-price auctions, the dual variables change how valuable or costly
bidding on behalf of an advertiser is [129, 51, 86, 107]. An intuition gained in this work is
that when arbitrary auctions are used, the DSP’s perception of the revenue value coming
from different advertisers is linearly modified by the dual variables. These modified revenues
help to derive the bidding prices used in this work, which are the maximizers of a well-defined
profit function. In the case of the heavily studied second-price auctions, this profit function
can be ignored as bidding truthfully is optimal [120].

2.1 Model Preliminaries and High-Level Overview
In this section, we first describe the basic assumptions and notation of our model. Then we
discuss how the output of our optimization model (and, moreover, any feasible solution) may
be used to derive an online/real-time bidding and allocation policy for the DSP. At a high-
level, our general algorithm consists of the three parts: (i) parameter estimation/prediction,
(ii) an offline optimization model, and (iii) an online policy that possibly incorporates model
predictive control. We highlight these three aspects of our algorithm throughout this section.

Model Notation and Parameters

The set of campaigns managed by the DSP is denoted by K, and the set of possible impression
types is denoted by I. For a given campaign k ∈ K, the set of impression types that campaign
k has elected to target is denoted by Ik. Let E ⊆ I × K denote the edges of an undirected
bipartite graph between I and K, whereby there is an edge e = (i, k) ∈ E whenever campaign
k targets impression type i, i.e, E := {(i, k) : k ∈ K, i ∈ Ik}. Let Ki := {k ∈ K : (i, k) ∈ E}
denote the set of campaigns that are interested in impressions of type i. We sometimes
slightly abuse the notation by referring to the kth campaign (resp. the ith impression type),
whereby we implicitly assume a one-to-one correspondence between K and {1, . . . , |K|}.

Our optimization model depends on several different sets of parameters. Some of these
parameters are completely known to the DSP (such as the budget of each campaign), whereas
others (such as the probability of winning an auction) must be estimated based on historical
data or by other means. We first describe the parameters that are known and then describe
those which must be estimated.

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 16

Known Parameters:

• b̄i = the maximum allowed bid for an impression of type i

• mk = the target spending level (or budget) of campaign k

• `k = the amount campaign k is charged each time an action of interest occurs

Note that b̄i is an upper limit on the allowable bid amount set either by the ad-exchange
or the DSP, mk is a target spending level set by the advertiser corresponding to campaign k,
and `k is a price per action negotiated between the DSP and the corresponding advertiser.
Estimated Parameters and Functions:

• si = the expected number of arrivals of impressions of type i during the planning
horizon

• θik = the probability that an action of interest occurs when an ad of campaign k is
shown to an impression of type i

• rik := `kθik = the expected revenue the DSP earns each time an ad of campaign k is
shown to an impression of type i

• ρi(b) = the probability of winning an impression of type i with a bid amount of b ∈ [0, b̄i]

• βi(b) = the expected amount that the DSP pays the ad exchange whenever the DSP
wins an auction for an impression of type i with a submitted bid of b ∈ [0, b̄i].

For each i ∈ I, the functions ρi(·) : [0, b̄i]→ [0, 1] and βi(·) : [0, b̄i]→ [0,∞) encompass
all of the information needed for our model regarding the auctions for impressions of type i.
Note that ρi(·) takes as input a possible bid amount and returns a probability value, and βi(·)
takes as input a possible bid amount and returns a nonnegative expected payment amount.
The functions ρi(·) and βi(·) represent the DSP’s forecast regarding the bid landscape for
impression type i (see, e.g., [34]) and we refer to these functions as the bid landscape functions.
Note that it is possible to have ρi(0) > 0 and/or ρi(b̄i) < 1. Although ρi(0) > 0 does not
make much sense in practice, ρi(b̄i) < 1 allows for the possibility that the DSP may lose the
auction even if they bid the maximum amount b̄i.

For convenience, we list all of the previously defined sets and parameters, as well as
the decision variables that we discuss in Section 2.1, in Table A.1 that can be found in the
Appendix.

Parameter Estimation Procedures

As mentioned, there are three types of parameters that the DSP needs to be estimate: (i)
si, the expected number of impressions of type i, (ii) θik, the conversion rate or action
probability for each pair (i, k) ∈ E , and (iii) the bid landscape functions ρi(·) and βi(·). The

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 17

si parameters are relatively simple to estimate based on historical data as well as timing
information such as whether the planning horizon intersects with a weekend or holiday. As
mentioned in Section 2, estimating the conversion rate parameters θik is usually done with
machine learning models such as logistic regression or factorization machines (see, e.g., [27,
109, 73]), and a considerable amount of engineering effort is usually employed to develop high
quality models. Estimation of the bid landscape functions ρi(·) and βi(·) (such as in [34])
usually involves some combination of using knowledge of the structure of the specific auction
as well as learning from historical data (which is typically censored). Examples 2.1.1 and
2.1.2 below discuss how two widely popular auction types – first and second-price auctions –
affect the structure and estimation of the bid landscape functions.

Example 2.1.1 (First-Price Auction). In a first-price auction, the winner is the bidder who
placed the highest bid and the winner is required to pay the bid that they submitted. This
implies that the amount that the DSP is required to pay the ad exchange whenever the DSP
wins an auction for an impression of type i is deterministically equal to the amount that they
bid, i.e., βi(b) = b. Moreover, whether the DSP wins the auction is completely determined
by the highest competing bid, which we can model as a non-negative random variable Ci.
Using this notation, we have that ρi(b) = P(Ci < b). (In the case of a tie, we assume that
no one wins the auction). Note that, in the case of a first-price auction, there is no need to
estimate βi(·) as this function is completely determined and estimation of ρi(·) reduces to
the problem of estimating the CDF of Ci. We can also naturally extend this case to the case
of a scaled first-price auction, whereby βi(b) = αb for some α ∈ (0, 1]. In the last two years,
first-price auctions have gained importance in practice as several prominent ad-exchanges
including Google’s DoubleClick, OpenX, AppNexus, and Rubicon have officially transitioned
from second to first-price auctions.

Example 2.1.2 (Second-Price Auction). In a second-price auction, the winner is again the
bidder who placed the highest bid, however now the winner is required to pay an amount
equal to the bid of the second highest bidder. Again if Ci is a random variable representing
the highest competing bid, then we have that ρi(b) = P(Ci < b). Now the amount that the
DSP is required to pay the ad exchange whenever the DSP wins an auction for an impression
of type i is a random variable with mean βi(b) = E[Ci | Ci < b]. Note that if Ci is a continuous
random variable with density fCi(·), then it holds that βi(b) = 1

ρi(b)

∫ b
0
zfCi(z)dz. In the

case of a second-price auction, the DSP needs to estimate both ρi(·) and βi(·), which both
reduce to estimating properties of the distribution of Ci. Second-price auctions are a common
assumption in the literature on optimization related to DSPs and ad-exchanges, such as in
[129] and [109], as they were the industry standard until 2017 when several ad-exchanges
started to transition from second to first-price auctions. Second-price auctions have the
desirable truth-revealing property which makes it optimal for advertisers to bid their real
valuations. However, it is important to emphasize that this truth revealing property is no
longer valid when bidders have budget constraints and/or in the case of repeated auctions.

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 18

Decision Variables and Real Time Dynamics

In this section, we describe the decision variables of our model and discuss how a feasible
solution of our model leads to a real-time bidding and allocation policy for the DSP. Let
us first review the basic flow of events in the model. When an impression of type i ∈ I
is submitted to the ad exchange, a real-time auction is held for which the DSP has an
opportunity to bid. Thus the DSP has an opportunity to make two operational decisions
related to each real-time auction: (i) how to select a campaign k ∈ K to bid on behalf of
in the auction, and (ii) how to set the corresponding bid amount bik. If the DSP wins the
auction on behalf of campaign k, then the DSP must pay a certain amount to the ad-exchange
and an ad from campaign k is displayed. Finally, the advertiser corresponding to campaign
k is charged only if an action of interest occurs, such as when a user clicks on the ad. We
define decision variable to model these two operational decisions as follows.
Decision Variables:

• xik = the probability of bidding on behalf of campaign k when an impression of type i
arrives

• bik = the corresponding bid amount to be submitted for an impression of type i on
behalf of campaign k

Interpreted differently, xik represents a proportional allocation, i.e., the long run average
fraction of impressions of type i that are allocated to campaign k. In this application domain,
proportional allocation variables are a reasonable modeling decision, as opposed to integer
variables, due to the vast number of impressions that arrive during the planning horizon.
Note that bik represents the bid that the DSP submits to an auction for impression type
i conditional on the fact that the DSP has selected campaign k for the auction. Related
approaches (e.g., as in [30]) also use bids to rank advertisers – in our approach, the selection
of which campaign to bid on behalf of is completely captured by the xik decision variables and
thus the bik decision variables only determine the actual bid price decisions. Let x,b ∈ R|E|
denote vectors of these quantities, which will represent decision variables in our model. We
defer the discussion of the offline optimization problem (2.1) used to solve for x and b to
Section 2.2, as developing and studying the properties of problem (2.1) constitutes a major
part of our contribution.

Policy 1 below summarizes the real-time bidding and allocation policy defined by a
particular specification of the allocation and bidding variables (x,b), and we now describe
the flow of events in more detail. Each time an impression of type i ∈ I arrives, the DSP
first decides if it will bid or not. If the DSP decides to bid, then the campaign for which the
DSP will bid on behalf of needs to be determined. In our model, both of these decisions are
determined jointly in a randomized fashion based on the vector of allocation probabilities x,
whereby campaign k ∈ Ki is selected with probability xik and the option of not bidding at
all is selected with probability 1−

∑
k∈Ki xik. Given the selection of campaign k, the DSP

then enters a bid amount equal to bik and wins the auction with probability ρi(bik). If the

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 19

DSP wins the auction, then the impression is acquired and the DSP pays the ad-exchange a
certain amount that is modeled as a random variable equal to βi(bik) in expectation. Finally,
the advertisement of campaign k is shown and if the action of interest occurs, which happens
with probability θik, then campaign k is charged an amount `k by the DSP, which results in
the budget of campaign k being depleted by `k while the DSP earns a revenue of `k.

Policy 1 Online Policy Implied by (x,b)

Input: Allocation and bidding variables (x,b) and a new impression arrival of type i ∈ I.

1. Sample a campaign k̃ ∈ Ki according to the probabilities xik, where 1 −
∑

k∈Ki xik
captures the probability of not participating in the auction.
2. Enter bid price bik̃. If the auction is won, then pay the ad exchange an amount equal to
βi(bik̃) in expectation. If the auction is not won, then break.
3. Show an ad for campaign k̃. If an action of interest happens, then deduct `k̃ from the
budget of campaign k̃ and earn revenue `k̃.

As mentioned previously, our overall algorithm consists of three major components:
parameter estimation as discussed in Section 2.1, offline optimization with problem (2.1), and
the online Policy 1 applied with an optimal solution of (2.1). It is important to emphasize
that these three components of our proposed algorithm can all be wrapped inside a model
predictive control (MPC) framework. The simplest way to use an MPC scheme in our setting
is to fix a certain time interval, e.g., one hour. At each passing of this time interval, the
DSP should first re-estimate the relevant parameters based on the addition of new data that
has been collected. Then, the DSP should re-solve the optimization problem (2.1) with the
updated parameters and correspondingly update the bidding and allocation variables used in
Policy 1. Moreover, the DSP should also employ this re-estimation and re-solve procedure
whenever an important change in the state of the system occurs, such as when a campaign
completely depletes its budget, or new advertisers begin working with the DSP, etc. This
MPC scheme can be viewed as a heuristic for the complex control problem that the DSP
faces. As our primary contributions concern the offline optimization model used in this MPC
scheme, further investigation of the theoretical and/or practical performance of this MPC
scheme in a control context is left for future work.

Additional Notation and Quantities of Interest

Given values of xik and bik, recall that xik is the probability that a new impression of type i
is allocated to campaign k ∈ Ki, ρi(bik) is the probability that the auction is won, and rik is
expected amount that campaign k spends in the event that the auction is won. Therefore,
for all (i, k) ∈ E , we define vik(xik, bik) := rikρi(bik)sixik, which may be interpreted as the
expected amount that campaign k spends on impressions of type i during the time horizon
as a function of xik and bik. Furthermore, in the event that the auction is won, βi(bik) is
the expected amount that the DSP pays to the ad exchange. Therefore, for all (i, k) ∈ E ,

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 20

we similarly define πik(xik, bik) := [rik − βi(bik)]ρi(bik)sixik, which may be interpreted as the
expected profit that the DSP earns from campaign k for impressions of type i. Indeed, note
that [rik − βi(bik)]ρi(bik) is the expected profit the DSP earns when the DSP bids an amount
bik for an impression of type i on behalf of campaign k. Presuming that the amount that
the DSP earns per bid is independent of the number of bids, Wald’s equation implies that
the the total expected profit that the DSP earns from campaign k for impressions of type
i is [rik − βi(bik)]ρi(bik)sixik. A similar argument verifies the validity of the definition of
vik(xik, bik).

To further simplify notation, define xi ∈ R|Ki| and bi ∈ R|Ki| as subvectors of the allocation
vector x ∈ R|E| and the bidding vector b ∈ R|E|, respectively, consisting of the variables
associated with impression type i ∈ I. Let vi(xi,bi) ∈ R|K| denote a vector of the expected
spending values associated with impression type i, whereby the kth component of vi(xi,bi)
is equal to vik(xik, bik) if (i, k) ∈ E and 0 otherwise. Also, let v(x,b) ∈ R|K| denote a
vector of expected total spending values, whereby v(x,b) :=

∑
i∈I vi(xi,bi). Likewise, let

πi(xi,bi) :=
∑

k∈Ki πik(xik, bik) denote the total expected profit earned from impressions of
type i and let π(x,b) :=

∑
i∈I πi(xi,bi) denote the overall total expected profit.

We use boldfaced font, e.g., x, λ, and 0 (which denotes the vector of all 0s) to denote
vectors, regular font, e.g., xik and λk to denote components of vectors, and calligraphic font,
e.g., K and S, to denote sets. For a given set S and function f(·) : S → R, let arg maxx∈S f(x)
denote the (possibly empty) set of maximizers of the function f(·) over the set S; likewise
arg minx∈S f(x) is defined similarly. If f(·) : Rn → R∪{−∞,+∞} is an extended real valued
function, then we let dom(f(·)) := {x ∈ Rn : f(x) is finite} denote its domain. Note that
when f(·) is convex then dom(f(·)) := {x ∈ Rn : f(x) < +∞}, and when f(·) is concave
then dom(f(·)) := {x ∈ Rn : f(x) > −∞}. Furthermore when f(·) is convex, for a given
x ∈ dom(f(·)), ∂f(x) denotes the set of subgradients of f(·) at x, i.e., the set of vectors g such
that f(y) ≥ f(x) +g>(y−x) for all y ∈ dom(f(·)). For any function f(·) : Rn → R∪{+∞},
the convex conjugate of f(·), denoted by f ∗(·), is defined by f ∗(λ) := supx∈Rn

{
λ>x− f(x)

}
.

For a given finite set S, let |S| denote its cardinality. For a given set S ⊆ Rn, let int(S)
denote its interior, let conv(S) denote the closure of the convex hull of S. For a ∈ R define
[a]+ := max{a, 0}, and for a, b, c ∈ R with b ≤ c define clip(a; [b, c]) := min {max{a, b}, c}.
Finally, we use ′ to denote a scalar derivative in the right context.

2.2 Optimization Formulation: Primal and Dual
Problems

We now introduce our main optimization problem of interest, which models the DSP’s goal of
maximizing profit while maintaining a desired spending level of its advertisers’ budgets, as well
as our corresponding two phase primal-dual procedure. A central ingredient of our proposed
formulation is the use of a “utility" function to model the budget spending preferences of
the advertisers. Formally, the budget spending utility function u(·) : R|K| → R ∪ {−∞} is an

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 21

extended real valued concave function that receives the vector of the expected spending of the
campaigns v(x,b) as its input and outputs a value quantifying how satisfied the advertisers
are with the spending levels v(x,b). In addition to concavity, we also make a few mild
technical assumptions about the budget spending utility function, which are summarized
below in Assumption 2.2.1.

Assumption 2.2.1. The advertisers’ budget spending utility function u(·) : R|K| → R∪{−∞}
is a concave function satisfying:

(i) dom(u(·)) = {v ∈ R|K| : u(v) > −∞} is a non-empty closed set, and

(ii) u(·) is continuous on dom(u(·)).

Notice that part (i) of Assumption 2.2.1 implies that that u(·) is proper (meaning that
u(v) > −∞ for at least one vector v ∈ R|K|) and closed (meaning that the hypograph of
u(·) is a closed set). In addition, throughout the rest of the paper we assume that the bid
landscape functions are also continuous, which is formalized below in Assumption 2.2.2.

Assumption 2.2.2. For each i ∈ I, the bid landscape functions ρi(·) : [0, b̄i] → [0, 1] and
βi(·) : [0, b̄i]→ [0,∞) are continuous on [0, b̄i].

Notice that Assumption 2.2.2 implies that v(x,b) and π(x,b) are continuous in (x,b) on
the feasible domain of (x,b). Strictly speaking, Assumption 2.2.2 is not needed to develop
the primal-dual procedure in this section. However, Assumption 2.2.2 simplifies the discussion
and is also necessary for the theoretical results that we later develop in Section 2.3.

Problem (2.1) presented below is our main optimization problem of interest, which
maximizes the sum of the total expected profit of the DSP and the total utility of the
advertisers, subject to feasibility constraints on the allocation variables x and the bidding
variables b. Thus problem (2.1) directly trades-off between profitability for the DSP and
the budget spending preferences of the advertisers, and in Section 2.2 we present several

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 22

examples of utility functions u(·) that highlight the modeling flexibility of our framework.

F ∗ := maximize
x,b

∑
(i,k)∈E

[rik − βi(bik)]ρi(bik)sixik + u





∑
i∈I1

ri1ρi(bi1)sixi1

...∑
i∈I|K|

ri|K|ρi(bi|K|)sixi|K|




subject to

∑
k∈Ki

xik ≤ 1 for all i ∈ I

0 ≤ bik ≤ b̄i for all (i, k) ∈ E

xik ≥ 0 for all (i, k) ∈ E

(2.1)
Our high level approach for solving problem (2.1) is based on a two phase procedure.

In the first phase, we construct a suitable dual of (2.1), which turns out to be a convex
optimization problem that can be efficiently solved with subgradient based algorithms. A
solution of the dual problem naturally suggests a way to set the bid prices b. In the second
phase, we set the bid prices using the previously computed dual solution and then we solve
a convex optimization problem that results when b is fixed in order to recover allocation
probabilities x.

Towards developing our two phase procedure, let us start by deriving the dual problem
of (2.1). For each i ∈ I, define the feasible set of xi by Xi := {xi ∈ R|Ki| :

∑
k∈Ki

xik ≤

1, and xik ≥ 0 for all k ∈ Ki}, the feasible set of bi by Bi := [0, b̄i]
|Ki|, and the feasible set

of (xi,bi) by Si := Xi × Bi. Then the feasible region of (2.1), denoted by S, decomposes as
S = X × B, where X := X1 × · · · × X|I| is the feasible set of x and B := B1 × · · · × B|I| is
the feasible set of b. In a slight abuse of notation, we may also remark that S decomposes
across the impression types as S = S1 × · · · × S|I|. Using the notation defined in Section 2.1,
in particular the definition of the total profit π(x,b) and the vector of expected spending
values v(x,b), we can more compactly write problem (2.1) as:

F ∗ = max
(x,b)∈S

{F (x,b) := π(x,b) + u (v(x,b))} . (2.2)

Let V := {v(x,b) : (x,b) ∈ S} denote the set of feasible expected spending values, and note
that V is a compact set since S is compact and v(·, ·) is a continuous function. We say that
problem (2.2) is feasible whenever dom(u(·)) ∩ V is non-empty. Proposition 2.2.1 justifies
the use of the max (instead of sup) in (2.2) above by demonstrating that F ∗ is finite and
attained whenever problem (2.2) is feasible.

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 23

Proposition 2.2.1. Suppose that problem (2.2) is feasible, i.e., it holds that dom(u(·))∩V 6= ∅.
Then, the optimal value F ∗ of (2.2) is finite and attained.

The proof of Proposition 2.2.1 as well as all omitted proofs for this section are contained
in Appendix A.2. Notice that problem (2.1) is quite general and possibly non-convex due
to the generic form of ρi(·) and βi(·) as well as the multiplications of these functions with
the allocation variables x. On the other hand, as we now demonstrate, the concavity of
the utility function u(·) enables us to construct a dual problem that is always convex and
amenable to efficient solution methods. Since −u(·) is a convex function, it is useful to
consider its convex conjugate p(·) := (−u(·))∗. Recall that p(·) : R|K| → R∪ {+∞} is defined
by p(λ) := supv∈R|K|

{
λ>v + u(v)

}
for any λ ∈ R|K|. Since −u(·) is a proper and closed

convex function, the Fenchel-Moreau Theorem (see, e.g., [24] p. 91) ensures that −u(·) = p(·)∗
and hence

u(v) = inf
λ∈R|K|

{
−λ>v + p(λ)

}
for all v ∈ R|K| .

Now we can simply substitute the above equality into (2.2) to obtain:

F ∗ = max
(x,b)∈S

{
π(x,b) + inf

λ∈R|K|

{
−λ>v(x,b) + p(λ)

}}
. (2.3)

Let us define the function q(·) : R|K| → R by:

q(λ) := max
(x,b)∈S

{
π(x,b)− λ>v(x,b)

}
. (2.4)

The Weierstrass Theorem ensures that dom(q(·)) = R|K| and that the maximum is attained
above. Note also that q(·) is a convex function since it is a maximum of linear functions
of λ. Furthermore, q(·) is non-negative everywhere since (0,0) ∈ S, and π(0,0) = 0 and
v(0,0) = 0. Recalling the notation defined in Section 2.1, for each i ∈ I, let us also define the
function qi(·) : R|K| → R by qi(λ) := max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
, and likewise

note that dom(qi(·)) = R|K|, qi(·) is convex, and qi(·) ≥ 0. Then it holds that:

q(λ) = max
(x,b)∈S1×···×S|I|

{∑
i∈I

[πi(xi,bi)− λ>vi(xi,bi)]

}
=
∑
i∈I

qi(λ) , (2.5)

hence q(·) is decomposable across the impression types.
Furthermore, let Q(·) := q(·) + p(·) denote the dual function, which is also convex. Then

the dual problem of (2.1), which is obtained by exchanging the supremum and infimum in
(2.3), is

Q∗ := minimize
λ

Q(λ)

subject to λ ∈ R|K| ,
(2.6)

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 24

which is a convex optimization problem. Notice that the dual objective function decomposes
as the sum of two terms: (i) q(·) which depends on the particular form of the functions
ρi(·), βi(·) and other problem parameters but does not depend on the utility function u(·),
and (ii) p(·) which directly depends on the utility function u(·) as it is the convex conjugate
of −u(·). Recall the definition of the primal function F (x,b) := π(x,b) + u (v(x,b)). Basic
weak duality immediately yields:

Q(λ) ≥ Q∗ ≥ F ∗ ≥ F (x,b) for all λ ∈ R|K| and (x,b) ∈ S .

Also, since u(·) is proper by Assumption 2.2.1, we have that p(·) is proper (i.e., dom(p(·))
is non-empty) and therefore Q∗ is finite (although possibly not attained) whenever (2.1) is
feasible. Later, in Section 2.3, we study conditions under which there is zero duality gap
above, i.e., it holds that Q∗ = F ∗.

Examples of Utility Functions.

Let us now give several examples of utility functions to demonstrate the modeling flexibility of
our approach. For each example, we define the utility function u(·) and discuss the conjugate
function p(·) that appears in the dual problem (2.6). All of our examples are separable across
the different campaigns, i.e., it holds that u(v) =

∑
k∈K uk(vk) where, for each campaign

k ∈ K, uk(·) : R→ R ∪ {−∞} is a scalar concave function (that also satisfies Assumption
2.2.1) representing the utility of campaign k as a function of its expected spending level vk.
This separable structure is quite natural as we do not expect the spending of other advertisers
to affect a given advertiser’s utility and it allows each campaign to use their own preferred
type of utility function. However, this is not a requirement as it is also possible for our
framework to accommodate more general concave utility functions u(·) that do incorporate
such interactions. Note that the separable structure of u(·) also implies that p(·) is similarly
separable, i.e., it holds that p(λ) =

∑
k∈K pk(λk) where pk(·) : R→ R ∪ {+∞} is the convex

conjugate of −uk(·). In the remainder of this section, we present examples of scalar utility
functions uk(·), as well as each corresponding conjugate function pk(·). The derivations of
the corresponding conjugate functions pk(·) may be found in Appendix A.3.

Example 2.2.1 (Budget Constraint). Consider the case where campaign k is only concerned
with ensuring that its expected spending level does not exceed the budget value mk. This is
the well-studied case of a budget constraint, which has been examined in several different
contexts in the advertising optimization literature including, for example, in [30, 15, 129, 83],
as well as [51]. In this case, the utility and conjugate function pair is given by:

uk(vk) =

{
0 if vk ≤ mk

−∞ o/w
, pk(λk) =

{
mkλk if λk ≥ 0

+∞ o/w
.

Example 2.2.2 (Target Spending). Notice that the previous example does not directly encour-
age the DSP to spend the budget of campaign k and may in fact lead to budget spending

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 25

values that are considerably smaller than the target budget value mk. As mentioned pre-
viously, poor or insufficient budget spending may motivate advertising companies to stop
working with the DSP and thus hurt the DSP’s business in the long run. We can address this
issue in our model by considering a utility function that directly encourages the expected
spending level of campaign k to be close to the target budget value mk. One such utility and
conjugate function pair that uses a squared quadratic penalty, for a given parameter τk > 0,
is:

uk(vk) = −τk
2

(mk − vk)2 , pk(λk) = mkλk +
1

2τk
λ2
k .

Example 2.2.3 (Budget Constraint and Target Spending). We can combine Examples 2.2.1
and 2.2.2 in order to encourage spending at, but not more than, the target value mk:

uk(vk) =

{
− τk

2
(mk − vk)2 if vk ≤ mk

−∞ o/w
, pk(λk) =

{
mkλk if λk ≥ 0

mkλk + 1
2τk
λ2
k o/w

.

Example 2.2.4 (Budget Constraint and Hard Minimum Spending). A stricter way to guarantee
a minimum budget spending is to require that campaign k ∈ K spends at least a fixed
percentage of, and no more than, its target value mk. In this case, for a given parameter
αk ∈ [0, 1], the utility and conjugate function pair is:

uk(vk) =

{
0 if vk ∈ [αkmk,mk]

−∞ o/w
, pk(λk) =

{
mkλk if λk ≥ 0

αkmkλk o/w
.

Note that pk(·) can be equivalently expressed as pk(λk) = mk[λk]+ − αkmk[−λk]+.
If the utility functions for each campaign k ∈ K are constructed from Examples 2.2.1,

2.2.2, or 2.2.3, then problem (2.1) is guaranteed to be feasible since v(0, 0) ∈ dom(u(·)). On
the other hand, if Example 2.2.4 is used for one of the campaigns, then problem (2.1) may or
may not be feasible depending on the choices of mk and αk.

Further Properties of the Dual Function

Let us now describe some additional properties of the dual function q(·) that provide further
intuition and will also be useful in our two phase primal-dual procedure described in Section
2.2. Herein we demonstrate how to efficiently compute the function value q(λ) as well as
a subgradient of q(·) at any given λ ∈ R|K|. It turns out that these computations rely on
the ability to solve a simple one dimensional optimization problem to obtain the bidding
variables, which we formalize below as an assumption.

Assumption 2.2.3. For each i ∈ I, define hi(b; r) := [r − βi(b)]ρi(b), which represents
the expected profit that the DSP earns each time it bids an amount b for an impression of
type i, given that the expected revenue earned whenever the corresponding ad is displayed is
equal to r. Then, for all values of r ∈ R, we can efficiently compute an optimal bid price
b∗i (r) ∈ arg maxb∈[0,b̄i]

hi(b; r).

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 26

Assumption 2.2.3 is not very restrictive as, under mild conditions, we can efficiently
compute b∗i (r) ∈ arg maxb∈[0,b̄i]

hi(b; r) (at least approximately) using bisection or other
methods. However, as is often the case, if the structure of the auction is well understood
then b∗i ∈ arg maxb∈[0,b̄i]

hi(b; r) can be simply determined in closed form, as demonstrated
by the following two examples. Formal derivations of b∗i (r) for these as well as additional
examples are included in Appendix A.3.

Example 2.2.5 (Second-Price Auction cont.). Consider the case of a second-price auction for
impressions of type i ∈ I, as in Example 2.1.2. It is well known that bidding truthfully is
optimal for second-price auctions [120]. In our context, truthful bidding implies that, for any
r ∈ R, b∗i (r) = clip(r; [0, b̄i]), where recall that clip(r; [0, b̄i]) := min

{
max{r, 0}, b̄i

}
. Note

importantly that this simple expression for b∗i (r) does not depend on the specific forms of
ρi(·) or βi(·) due to the special properties of second-price auctions.

Example 2.2.6 (First-Price Auction cont.). Consider the case of a first-price auction for
impressions of type i ∈ I, as in Example 2.1.1. In this case, we have βi(b) = b and b∗i (r) will
depend on the functional form of ρi(·). As a simple example, consider the case where the
highest competing bid Ci is equal to the maximum of n i.i.d. random variables uniformly
distributed on [0, b̄i]. Then, it holds that b∗i (r) = clip(nr

n+1
; [0, b̄i]).

Given the separability property (2.5) of q(·), whereby q(·) =
∑

i∈I qi(·), in order to
compute q(λ) and a subgradient of q(·) at any given λ ∈ R|K|, by additivity of subgradients
it suffices to demonstrate that we can efficiently compute qi(λ) as well as a subgradient of
each of the individual functions qi(·) at λ (which may be done in parallel). Recall that qi(·)
is defined by a certain maximization problem with respect to the variables (xi,bi), whereby
qi(λ) := max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
. Hence, in order to compute a subgradient

of qi(·) at λ, it suffices to solve this maximization problem, which we now equivalently rewrite
using the collection of functions hi(b; r) := [r − βi(b)]ρi(b) parameterized by r defined in
Assumption 2.2.3. Indeed, observe that:

qi(λ) = max
(xi,bi)∈Si

{∑
k∈Ki

[rik − βi(bik)]ρi(bik)sixik −
∑
k∈Ki

λkrikρi(bik)sixik

}
(2.7)

= max
(xi,bi)∈Si

{∑
k∈Ki

[rik(1− λk)− βi(bik)]ρi(bik)sixik

}

= max
(xi,bi)∈Si

{∑
k∈Ki

hi(bik; rik(1− λk))sixik

}
.

The above demonstrates that, for any given dual vector λ, computing qi(λ) is equivalent
to finding the allocation and bidding vectors (xi,bi) for impression type i that maximize
the profit of the DSP, but where the expected revenue quantities rik are each scaled by
(1− λk). Hence, the dual variables λ provide a natural mechanism to account for the budget
spending preferences of the campaigns within the dual functions qi(·), whereby there is “extra

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 27

spending" on campaign k if λk < 0, “normal spending" if λk = 0, “reduced spending" if
λk ∈ (0, 1), and “no spending" if λk ≥ 1. The derivation in (2.7) also suggests a natural
algorithm to compute qi(λ) and a corresponding subgradient: first maximize the scalar
function hi(bik; rik(1 − λk)) with respect to bik for each k ∈ Ki, then chose the campaign
k∗i ∈ Ki with the largest corresponding optimal value. Algorithm 2 below formalizes this
algorithm for computing (x∗i (λ),b∗i (λ)) solving the maximization problem in (2.7) as well as
the corresponding subgradient gi ∈ ∂qi(λ). Proposition 2.2.2 formally demonstrates that the
output of Algorithm 2 is valid. Note that the computational complexity of Algorithm 2 is
O(|K|) if one presumes that the bid prices b∗ik(λ) in Step (1.) can be computed in O(1) time.

Algorithm 2 Computing (x∗i (λ),b∗i (λ)) and a subgradient gi ∈ ∂qi(λ)

Input: λ ∈ R|K|.
1. For each k ∈ Ki, define:

b∗ik(λ) := b∗i (rik(1− λk)) ∈ arg max
b∈[0,b̄i]

hi(b; rik(1− λk)), π̃ik(λ) := hi(b
∗
ik(λ); rik(1− λk))

2. Choose k∗i ∈ arg maxk∈Ki π̃ik(λ) arbitrarily and define:

x∗ik∗i (λ) :=

{
1 if π̃ik∗i (λ) > 0

0 o/w
, x∗ik(λ) := 0 for all k ∈ Ki, k 6= k∗i .

3. Set gi := −vi(x∗i (λ),b∗i (λ))
Output: (x∗i (λ),b∗i (λ)) and gi.

Proposition 2.2.2. For each i ∈ I and for all λ ∈ R|K|, the output (x∗i (λ),b∗i (λ)) and
gi of Algorithm 2 satisfies (x∗i (λ),b∗i (λ)) ∈ arg max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
and

gi ∈ ∂qi(λ).

Two-Phase Primal-Dual Procedure

We now describe in detail the two phase primal-dual procedure, in which we first solve the
dual problem (2.6) to near optimality, and then use the dual variables to recover the allocation
and bidding variables by solving an auxiliary convex optimization problem. Specifically, we
first solve for (near) optimal dual variables λ̂, use these dual variables to construct biding
variables b̂ via Assumption 2.2.3, and then solve for the allocation variables x̂ by solving a
restricted version of problem (2.1) that results after fixing the bidding variables at b̂. For a
given fixed vector b, this restricted problem that maximizes the objective function of (2.1)

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 28

with respect to the allocation variables x is presented below in (2.8).

F ∗(b) := maximize
x

π(x,b) + u (v(x,b))

subject to
∑
k∈Ki

xik ≤ 1 for all i ∈ I

xik ≥ 0 for all (i, k) ∈ E

(2.8)

Note that (2.8) is a concave maximization problem (hence a convex optimization problem)
since, for fixed b, π(·,b) and v(·,b) are both linear functions in x (which implies that
u(v(·,b)) is a concave function). Let X denote the set of feasible allocation vectors x in (2.8)
and let V(b) := {v(x,b) : x ∈ X} denote the set of possible expected spending values given
b. The following proposition demonstrates that if problem (2.8) is feasible, then it is also
finite and attained.

Proposition 2.2.3. Suppose that problem (2.8) is feasible, i.e., it holds that dom(u(·)) ∩
V(b) 6= ∅. Then, the optimal value F ∗(b) of (2.8) is finite and attained at some x∗(b) ∈ X .

The proof of Proposition 2.2.3 exactly follows that of Proposition 2.2.1 and is omitted for
brevity. Note that for many choices of utility functions, such as Examples 2.2.1, 2.2.2, and
2.2.3 from Section 2.2, the feasibility condition is guaranteed to hold for all b since, in these
examples, we have that 0 ∈ dom(u(·)) ∩ V(b) for all b.

Algorithm 3 below formally presents our two-phase primal-dual solution procedure. Note
that both phases involve solving a particular convex optimization problem. Phase 1 involves
solving the dual problem (2.6). Due to the generic form of the bid landscape functions and
other problem parameters, we generally need to treat the dual problem in a black-box format
that can be tackled efficiently with subgradient based algorithms, the simplest of which is
the projected subgradient descent method (see Section 2.4 for details), using Algorithm 2
as a subroutine to compute subgradients of q(·). On the other hand, problem (2.8), which
is solved in Phase 2, is often highly structured depending on the choice of utility function.
For example, any combination of the four examples given in Section 2.2 results in a convex
problem with a quadratic objective and linear constraints (and a possibly a linear objective
if only Examples 2.2.1 and 2.2.4 are used), which is a highly structured problem that can be
tackled with commercial solvers such as Gurobi [55].

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 29

Algorithm 3 Two-Phase Primal-Dual Procedure
Phase 1: Solve the Dual Problem
Solve the dual problem (2.6), obtaining (approximately) optimal dual variables λ̂ and

dual
objective function value Q(λ̂).

Phase 2: Primal Recovery
1. For all (i, k) ∈ E , set b̂ik = b∗i (rik(1− λ̂k)) ∈ arg maxb∈[0,b̄i] hi(b; rik(1− λ̂k)).
2. Fixing b̂ as computed previously, solve the restricted primal problem (2.8) to obtain

the
allocation variables x̂ and primal objective function value F (x̂, b̂).

Output: Feasible primal solution (x̂, b̂) and suboptimality bound Q(λ̂)− F (x̂, b̂).

2.3 Zero Duality Gap Results
In Section 2.2, we introduced our primal optimization problem of interest (2.1) that balances
profitability for the DSP with satisfying the advertisers’ budget spending goals, its dual
problem (2.6), as well as a two-phase primal-dual approach for solving (2.1), Algorithm 3.
Despite the non-convexity of problem (2.1), we demonstrate herein that certain conditions
on the problem parameters (all defined in Section 2.1) imply that: (i) there is zero duality
gap between the primal problem (2.1) and its dual (2.6), and (ii) Algorithm 3 recovers an
optimal solution of the primal problem (2.1). In particular, we define a type of “increasing
marginal cost" condition on the bid landscape functions ρi(·) and βi(·) that, when satisfied
by all impression types i ∈ I, provides a sufficient condition for the zero duality gap result.
This condition is formally defined below in Definition 2.3.1.

Definition 2.3.1 (Increasing Marginal Cost (IMC) Condition). Impression type i ∈ I satisfies
the increasing marginal cost (IMC) condition if the bid landscape functions ρi(·) : [0, b̄i]→ [0, 1]
and βi(·) : [0, b̄i]→ [0,∞) are differentiable on (0, b̄i) and satisfy:

1. ρ′i(b) > 0 for all b ∈ (0, b̄i).

2. gi(b) :=
c′i(b)

ρ′i(b)
is strictly increasing on the interval b ∈ (0, b̄i), where ci(b) := ρi(b)βi(b) is

the expected cost associated with impression type i.

The function value gi(b) =
c′i(b)

ρ′i(b)
, defined as part of Definition 2.3.1, may be interpreted

as the “expected marginal cost" of winning another auction for impressions of type i when
bidding an amount b. Indeed, c′i(b) represents the rate of change of the expected cost function
ci(·) at b, whereas ρ′i(b), which is assumed positive, represents the rate of change of the
probability of winning the auction ρi(·) at b. Hence, the ratio gi(b) :=

c′i(b)

ρ′i(b)
may be interpreted

as the “change in expected cost per bid" divided by the “change in quantity of auctions
won per bid," i.e., the marginal cost of winning another auction. The IMC Condition then

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 30

simply states that this “expected marginal cost" function gi(·) is increasing. In Section 2.3,
we discuss several examples of popular and important cases, including first and second-price
auctions, that satisfy the IMC condition. It also turns out that the IMC Condition is a special
case of a more general condition which states that, for all values of the expected revenue
term r, there is a unique optimal bid price that maximizes the expected profit function
hi(b; r) = [r−βi(b)]ρi(b). This condition also implies the zero duality gap result, and is stated
formally in Definition 2.3.2 below (Lemma A.2.2 in the appendix proves that condition IMC
is a special case of condition UBP defined below).

Definition 2.3.2 (Unique Bid Price (UBP) Condition). Impression type i ∈ I satis-
fies the unique bid price (UBP) condition if, for all r ∈ R, the expected profit func-
tion hi(b; r) := [r − βi(b)]ρi(b) has a unique maximizer b∗i (r) on [0, b̄i], i.e., it holds that
b∗i (r) = arg maxb∈[0,b̄i]

hi(b; r).

Theorem 2.3.1 below presents our main zero duality gap result under either the IMC
or UBC Conditions. Recall that we defined feasibility of problem (2.1) by the condition
dom(u(·)) ∩ V 6= ∅, where V = {v(x,b) : (x,b) ∈ S} is the set of feasible expected spending
values. The statement of Theorem 2.3.1 strengthens this feasibility condition to a version of
Slater’s condition for our problem, which states that int(dom(u(·))) ∩ V 6= ∅ and ensures the
existence of a dual optimal solution λ∗. Indeed, this condition is correctly interpreted as a
version of Slater’s condition since int(dom(u(·))) ∩ V 6= ∅ is equivalent to the existence of a
feasible point (x,b) ∈ S such that v(x,b) ∈ int(dom(u(·))). Note that Slater’s Condition
always holds for the utility functions in Examples 2.2.1, 2.2.2, and 2.2.3 from Section 2.2
since in all three cases we have v(0,0) = 0 ∈ int(dom(u(·))). For Example 2.2.4, Slater’s
Condition may not always hold but such cases are inherently degenerate.

Theorem 2.3.1. Suppose that problem (2.1) satisfies Slater’s Condition int(dom(u(·)))∩V 6=
∅ and that, for all impression types i ∈ I, either the IMC Condition (Definition 2.3.1) or the
more general UBP Condition (Definition 2.3.2) holds. Then, the following statements hold:

1. There exists an optimal solution λ∗ of the dual problem (2.6).

2. There is zero duality gap between the primal problem (2.1) and its dual (2.6), i.e., it
holds that Q∗ = F ∗.

3. When both the Phase 1 and Phase 2 subproblems of Algorithm 3 are solved to exact
optimality, then Algorithm 3 returns an optimal solution (x∗,b∗) of the primal problem
(2.1).

The proof of Theorem 2.3.1 is contained in Section A.2 of the Appendix. Appendix A.3
also contains examples showing that the conclusions of Theorem 2.3.1 may not hold if one or
more of the assumptions are violated. Notice that the IMC and UBP Conditions depend on
each impression type i ∈ I independently; in particular they only depend on the properties
of the bid landscape functions ρi(·), βi(·) on the interval [0, b̄i]. Thus, Theorem 2.3.1 may

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 31

hold even in cases when different auction types and/or structurally different bid landscape
functions are used for different impression types. Under the stated conditions, in addition
to demonstrating the existence of a dual optimal solution λ∗ as well as zero duality gap,
Theorem 2.3.1 demonstrates that an optimal solution of the original problem of interest
(2.1) may be efficiently computed using Algorithm 3. In particular, as long as the stated
conditions of Theorem 2.3.1 hold and as long as the optimization problems in the two phases
of the algorithm are solved to exact optimality, then Algorithm 3 returns an optimal solution
(x∗,b∗) of the primal problem (2.1). It is worth pointing out that the proof of Theorem
2.3.1 reveals that, under the stated conditions, there also exists a particular optimal solution
(x∗,b∗) with the property that (x∗i (λ),b∗i (λ)) ∈ arg max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
for all i ∈ I. Although this is the same computation that is performed by Algorithm 2 when
given input λ∗, note that the output of Algorithm 2 is not in general unique. Therefore,
Algorithm 2 with input λ∗ is not guaranteed to return a primal optimal solution and the
primal recovery phase of Algorithm 3 is necessary. In Section 2.3, we extend item (3.) of
Theorem 2.3.1 to demonstrate that Algorithm 3 returns an approximately optimal primal
solution when the optimization problems in the two phases of the algorithm are solved only
to approximate optimality.

Examples Satisfying the IMC Condition

In this Section, we give several examples of bid landscape functions, arising from auction types
that are widely used in practice, that satisfy the IMC Condition. Hence, if any combination
of these bid landscape functions are used, and if the mild Slater’s Condition holds, then
Theorem 2.3.1 may be applied. The proofs of Propositions 2.3.1 and 2.3.2 are contained in
Appendix A.2.

Proposition 2.3.1 (Second-Price Auction cont.). Suppose that impression type i ∈ I
corresponds to a second-price auction, as in Examples 2.1.2 and 2.2.5, and let Ci be a non-
negative random variable representing the highest competing bid. If Ci is a continuous random
variable with probability density function fCi(·) satisfying fCi(b) > 0 for all b ∈ [0, b̄i], then
ρi(b) = P(Ci < b) and βi(b) = E[Ci | Ci < b] satisfy the IMC Condition.

Proposition 2.3.2 (First-Price Auction cont.). Suppose that impression type i ∈ I corre-
sponds to a first-price auction, as in Examples 2.1.1 and 2.2.6, with βi(b) = b for all b ∈ [0, b̄i].
If ρi(·) is differentiable, strictly increasing, and concave on (0, b̄i), then ρi(·) and βi(·) satisfy
the IMC condition. (Several examples of functional forms of ρi(·) satisfying the previous
conditions are given in Appendix A.3.) Alternatively, if ρi(·) is the CDF of the maximum
of n i.i.d. uniform random variables on the interval [0, c̄i] with c̄i ≥ b̄i, then ρi(·) and βi(·)
satisfy the IMC condition.

It is worth mentioning that the IMC Condition, as well as results relying on the IMC
condition such as Propositions 2.3.1 and 2.3.2, may be readily extended to allow for the
possibility a fixed and known reserve price bi ≥ 0. In such a case, a bid in an auction for

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 32

impression type i is only considered valid if it is above bi and the DSP has complete knowledge
of the value bi. With a reserve price, the rules corresponding to first and second-price auctions
remain the same but only valid bids above bi are considered. For simplicity, we assume that
bi = 0 in this Definition 2.3.1 and Propositions 2.3.1 and 2.3.2, but these results may be
easily modified to allow for the case of bi > 0.

Algorithmic Convergence

In this section, we establish continuity results in order to demonstrate that, in the limit,
Algorithm 3 returns an approximately optimal primal solution when the optimization problems
in the two phases of the algorithm are solved only to approximate optimality. We assume
throughout that the UBP Condition holds for all impression types i ∈ I, which, as formalized
in Lemma A.2.2 of the Appendix, is a more general condition than the IMC Condition.
For any i ∈ I and λ ∈ R|K| we use the notation b∗i (λ) to denote the vector in Bi :=
[0, b̄i]

|Ki| ⊆ R|Ki| whose component corresponding to campaign k ∈ Ki is equal to b∗ik(λ) =
arg maxb∈[0,b̄i]

hi(b; rik(1 − λk)), the unique maximizer of the profit expression hi(b; rik(1 −
λk)) = [rik(1 − λk) − βi(b)]ρi(b) on [0, b̄i]. We also use the notation b∗(λ) ∈ B ⊆ R|E| to
denote the enlarged vector of all of the b∗i (λ) subvectors concatenated together. Recall also
that V(b) := {v(x,b) : x ∈ X} denotes the set of possible expected spending values given b.

Recall that Phase 1 of Algorithm 3 returns an approximately optimal vector of dual
variables λ̂, which is then used to determine the vector of associated bid prices b∗(λ̂) in
Phase 2. The second part of Phase 2 then involves solving the restricted primal problem (2.8)
given b∗(λ̂) with optimal value F ∗(b∗(λ̂)). Thus, in order to properly consider the effect
of only approximately solving problems (2.6) and (2.8), we must first establish some basic
continuity properties of b∗(·) and F ∗(·). Proposition 2.3.3 below first establishes that b∗i (·) is
continuous if impression type i satisfies the UBP Condition.

Proposition 2.3.3. If impression type i ∈ I satisfies the UBP Condition, then b∗i (·) is a
continuous function on R|K|.

Note that a simple consequence of Proposition 2.3.3 is that b∗(·) is continuous if all
impression types i ∈ I satisfy the UBP Condition. Now, in order to demonstrate continuity of
F ∗(·), we need a slightly stronger variant of Slater’s Condition. In particular, Proposition 2.3.4
below states that F ∗(·) is continuous at b̄ ∈ B whenever it holds that int(dom(u(·)))∩V(b̄) 6= ∅.
Note that for many choices of utility functions, such as Examples 2.2.1, 2.2.2, and 2.2.3 from
Section 2.2, we have that 0 ∈ int(dom(u(·))) ∩ V(b̄) for all b̄ ∈ B; hence in these cases F ∗(·)
is continuous on B.

Proposition 2.3.4. Let b̄ ∈ B be given and suppose it holds that int(dom(u(·)))∩ V(b̄) 6= ∅.
Then, F ∗(·) : B → R ∪ {−∞} defined in (2.8) is continuous at b̄.

We are now ready to state the following result, which uses the previous continuity results
to establish an “approximate version" of Theorem 2.3.1. That is, suppose that, in Phase

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 33

1 of Algorithm 3, we apply an algorithm that converges to a dual optimal solution. Then,
Theorem 2.3.2 states that the corresponding sequence of primal solutions obtained in Phase
2 of Algorithm 3 also converges (in objective function values) to a primal optimal solution.

Theorem 2.3.2. Suppose that problem (2.1) satisfies the following stronger variant of
Slater’s Condition: int(dom(u(·))) ∩ V(b) 6= ∅ for all b ∈ B. Furthermore, suppose that for
all impression types i ∈ I, either the IMC Condition (Definition 2.3.1) or the more general
UBP Condition (Definition 2.3.2) holds. Let {λt} be a sequence of dual variables (i.e., the
iterates of an algorithm) converging to a dual optimal solution λ∗, i.e., λt → λ∗. Then, in
addition to statements (1.)-(3.) of Theorem 2.3.1, the following statement holds:

1. The corresponding sequence of restricted primal values {F ∗(b∗(λt))} converges to the
optimal primal value F ∗ of (2.1), i.e., F ∗(b∗(λt))→ F ∗.

The proof of Theorem 2.3.2, as well as the proofs of Propositions 2.3.3 and 2.3.4, are
included in Section A.2 of the appendix.

2.4 Numerical Experiments
In this section, we present results wherein we applied Algorithm 3 (our two-phase solution
procedure) on both synthetic and real data examples. For the real data case, we used
bidding logs from Criteo ([39]). Our synthetic experiments simulate scenarios using first
and second-price auctions, while the Criteo experiment assumes that impressions are sold
using second-price auctions. Our experiments demonstrate the following results. First, we
can obtain a family of solutions that trade off DSP profitability for higher budget spending
rates for the DSP campaigns. This trade-off is obtained by using different utility functions
with different parameters. Second, our methodology outperforms a natural baseline that is
optimal when budgets go to infinity as well as a natural modification of this baseline that
also trades off between profitability and budget spending rates in a more heuristic manner.

The remainder of this section is organized as follows. We first describe the implementation
details and the evaluation procedure for our experiments. Then, we describe the experimental
settings and results for the synthetic and real data experiments. In our experiments we use
the utility functions described in Examples 2.2.1, 2.2.2, and 2.2.3. For ease of exposition, we
will refer to them as UF 3, UF 4, and UF 5, respectively, in this section. Finally, please refer
to Appendix A.4 for additional results for both the synthetic and real data based experiments.

Experimental Setup

At a high level, we first run Algorithm 3 during a training phase and then Policy 1 in a
testing phase. To find an approximately optimal dual solution for Phase 1 of Algorithm
3 we use the basic projected subgradient descent method, which has the form λt+1 :=
Πdom(p(·))(λ

t−αtgt) , where gt ∈ ∂Q(λt) and Πdom(p(·))(·) is the Euclidean projection operator

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 34

to the domain of p(·). This projection operator can be removed for UF 4 and UF 5, while
for UF 3 the operator function is simply Πdom(p(·))(λ) = [λ]+, the element-wise maximum
between the vector λ and zero. We use step sizes of the form αt = C/

√
t where the constant

C was selected by running Algorithm 3 for 5000 iterations using C = 102,...,−6 and selecting
the one with highest primal value F

(
b∗
(

1
2500
·
∑5000

i=2501 λ
t
))
. The candidate dual solution in

Algoritm 3 is taken as λ̂ :=
∑5000

i=2501 λ
t.

The testing phase consists of evaluating the performance of one or more bidding and
allocation policies by simulating the dynamics described in Section 2.1. In particular, we are
primarily interested in evaluating the performance of Policy 1 with input (x̂, b̂) generated by
Algorithm 3 during the training phase. Notice that the dynamics described in Section 2.1 and
Policy 1 depend on the parameters described in Section 2.1. Since some of these parameters
need to be estimated, as described in Section 2.1, it is possible that there are errors in the
estimation procedures that lead to a discrepancy between the parameters used in the training
and testing phases. Additionally, the order in which different impression types arrive in
the testing phase is not known during the training phase. In our synthetic experiments, we
assume that there are no errors in parameter estimation, i.e., all of the parameters are the
same in both the training and testing phases. In the real data experiments, the conversion
probabilities θik may be different in the training and testing phases, but all other parameters
are the same. Full details of our simulation and testing procedures are given in Appendix
A.4.

A major characteristic of our proposed methodology is that it efficiently and effectively
trades off between profitability for the DSP and the level of budget spending for its campaigns.
Thus, we present empirical results that explore this trade off. In particular, we consider two
performance metrics herein: (i) total profit, and (ii) budget utilization. The total profit is
simply the sum of all profits earned by the DSP over the entire course of the simulation. Budget
utilization is defined as the ratio of the total amount spent by all campaigns (empirically
observed at the end of the simulation) divided by

∑
kKmk, the sum of all target budget

values. For both synthetic and real data-based experiments, we present “Pareto frontier-like"
graphs that show achievable ranges for these two performance metrics. In particular, for UF
4 and 5, we obtain non-trivial graphs by varying the penalization parameter τ parameter
used in the definition of these utility functions. We compare different configurations of our
algorithm, i.e., different utility function choices and varying values of τ , against a family
of baseline policies referred to as the generalized greedy policy shown in Policy 4. For all
policies considered, we run 100 simulations to achieve better statistical significance. To make
the results more comparable, on a particular experiment, each of the 100 runs use the same
data and random number seeds for all policies (i.e., all configurations of our algorithm and of
Policy 4) considered.

Policy 4 is optimal in the case of γ = 1 with infinite budgets (in the model with budget
constraints, i.e., UF 3) since it chooses the campaign and bid that maximizes the expected
profit for each impression. Put another way, Policy 4 with γ = 1 is optimal when u(·) = 0. In
general, the “pure" greedy policy, i.e., Policy 4 with γ = 1, may not lead to adequate spending

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 35

Policy 4 Generalized Greedy Policy
Input: Fixed scaling parameter γ > 0 and a new impression arrival of type i ∈ I.
1. Choose a campaign k̃ ∈ Ki among those campaigns whose budget is not currently depleted
and that maximizes hi(rik; b∗i (rik)), with b∗i (rik) ∈ arg max

b∈[0,b̄i]
hi(rik; b) = (rik − βi(b)) ρi(b).

2. Bid γ · b∗i (rik) on behalf of the chosen campaign.

levels for the campaigns. The parameter γ therefore provides a simple mechanism to promote
alternative rates of spending. In particular, choices of γ ∈ (0, 1) represent a simple and naive
way of promoting under-spending and choices of γ > 1 represent a simple and naive way
to spend aggressively. As we vary the γ parameter we also obtain non-trivial graphs in the
space of observed total profit and budget utilization values, just as we do when we vary the
penalization parameter τ for UF 4 and UF 5.

Before presenting our results, let us make a few more remarks with respect to Policies 1
and 4 and our general experimental scheme. First, in all of our experiments we assume that
each campaign k ∈ K can not spend more than its target budget mk. A campaign will stop
spending once its remaining budget is less than `k (the price it would pay for the next click or
action of interest). Second, in practice a DSP would run Algorithm 3 inside a model predictive
control (MPC) or resolving scheme. In this scheme, Algorithm 3 would be re-run as the
campaigns spend their budgets (or under other events). Here we run Algorithm 3 once and
then consider the allocation and bidding vectors (x̂, b̂) as fixed for our simulations. Generally
speaking, an MPC version of any configuration of our algorithm is expected to perform
better than the fixed policy version. Thus, the results presented herein are a conservative
lower bound on the performance of an MPC scheme. Finally, Policy 4 adjusts its strategy as
campaigns completely deplete their budgets, which suggests it may have a possible advantage
over our methodology which does not. Policy 1 can be easily adapted to adjust its strategy
in the same way. However, in order to be more faithful to the original interpretation of the
variables (x̂, b̂), we do not perform this adjustment in Policy 1. We again expect this type of
adjustment to only improve the performance of our methodology, and therefore the results
presented herein again represent a conservative lower bound on the performance of a more
practical version of Policy 1.

Synthetic Experiments

In this section, we discuss the results of two synthetic experiments. In the first experiment, we
test how our proposed methodology performs when we fix all parameters, except for the target
budget values mk. In the second experiment, we consider the trade off between profitability
and budget utilization by fixing all parameters except for the penalization parameter τ in UF
4 and UF 5 as well as the parameter γ in Policy 4. Both experiments use |K| = |I| = 50 with
si = 1000 for all i ∈ I and `k = 1 for all k ∈ K. Each of the of the 100 runs per configuration
is composed of

∑
i∈I si = 50000 impression arrivals, and the type of each impression arrival

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 36

Second−Price

Relative Budget Utilization

Second−Price

Relative Profit

First−Price

Relative Budget Utilization

First−Price

Relative Profit

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300

1.0

1.5

2.0

1.0

1.5

2.0

2.5

0.9

1.0

1.1

1.2

0.9

1.0

1.1

Budget per Campaign

R
e
la

ti
ve

 t
o
 G

e
n
e
ra

liz
e
d
 G

re
e
d
y
 P

o
lic

y
 U

s
in

g
 γ

=
1

Utility Function

Budget Constraints
(UF. 3)

Target Spending (UF.
4)

Budget Constraints
and Target Spending
(UF. 5)

Figure 2.1: Plots showing the observed profit and budget utilizations of our proposed
formulations, relative to the standard greedy heuristic (Policy 4 with γ = 1), versus the target
budget values. The first row shows results assuming first-price auctions, and the second row
shows results assuming second-price auctions.

is obtained by sampling uniformly from the set {1, . . . , |I|}. The highest competing bid
for each impression arrival of type i is obtained by sampling from a maximum of advi i.i.d.
Uniform[0, 1] random variables, where advi is a random integer value defined in Appendix
A.4. Note that, given the value of advi, in the cases of both first and second-price auctions
we obtain closed formulas for the bid landscape functions and the optimal bidding function
b∗i (·) as described in Appendix A.3. For brevity, we defer the remainder of the discussion of
how the impression-campaign graph, the bid landscapes, the conversion probabilities, and
the revenue terms are generated to Appendix A.4.

Sensitivity With Respect to Budgets

In this experiment we assume that every campaign has an identical target budget value mk

and we vary these values in the range mk ∈ {10, . . . , 300}. We compare our methodology
using UF 3, UF 4, and UF 5 against the “standard" greedy heuristic, i.e., Policy 4 with γ = 1.
We used τk = 1/mk as the penalization parameters in UF 4, and 5 for all k ∈ K. Any choice
of τk could have been used, but the choice of τk = 1/mk places the utility function term in
the objective on roughly the same scale as the DSP’s profit term.

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 37

Figure 2.1 shows the observed relative profit and budget utilization values of our method-
ology as compared to the standard greedy heuristic for both first and second-price auctions.
In other words, these plots show the observed budget utilization and total profit values of
our policies divided by their respective values for the standard greedy policy with γ = 1. The
plots in Figure 2.1 demonstrate that, for small budget values, our methodology more than
doubles the profit of the standard greedy heuristic without losing much in budget utilization.
In fact, for second-price auctions UF 4 strictly dominates the greedy heuristic (UF 4 has both
larger budget utilization and larger profit than the greedy heuristic), and UF 5 does as well
for budget values above 100 or so. In the case of first-price auctions, UF 4 and 5 dominate
the greedy heuristic for small to medium size budget values, while for high budget values
they trade profitability for higher budget utilization. UF 3 consistently obtains more profit
than the greedy heuristic, but sacrifices budget utilization. Generally speaking, the budget
utilization of the greedy heuristic and UF 4 are the same for small budget values as they
spend the advertisers’ budgets entirely. UF 5 in general is not able to spend the advertisers
budgets fully since using mk as hard a constraint does not give enough slack to account for
the randomness of the actual impression arrivals.

As we increase the target budget values mk, the relative profit decreases faster for first-
price auctions in comparison to second-price auctions. This makes sense as the cost that the
DSP pays for each impression is higher for first-price auctions. Also, notice that – again in
the first-price case – for high budget values UF 4 and UF 5 obtain worse profitability than
the standard greedy heuristic, but better budget utilization. This occurs since, when we
increase the budget, the `2 penalization part in the objective function of problem 2.2 becomes
more important, which leads to the DSP bidding higher overall. In the case of first-price
auctions, the cost of bidding higher is immediately reflected in all auctions won by the DSP.
For second-price auctions, the cost of bidding higher is reflected only in those auctions with
high market price which were won given the increase in the bid values.

Pareto Frontier-like Analysis

In this experiment we fixed the budgets to be mk = 100 for all k ∈ K, but changed the `2

penalization parameter τ (τ = τk for all k ∈ K) used in UF 4 and UF 5. For each penalization
parameter value, we recorded the total profit and budget utilization during the testing phase
for each of the 100 runs. The same was done for multiple values of γ in Policy 4. UF 3 was
also run, but there is no analogous parameter needed to be explored.

Figure 2.2 shows the results of this experiment and demonstrates that by changing the
penalization parameter τ of UF 4 and 5 we can obtain better profit and budget utilization
than Policy 4. In fact, the performance of our methodology almost always dominates Policy
4 except for a few values of τ in UF 4 in the first-price case. Figure 2.2 highlights a central
premise of this work – our framework offers flexibility for a DSP to tune its desired budget
utilization level for their advertisers in a smart way in multiple auction environments. Notice
that for the same level of budget utilization, the average total profit is lower in first-price
auctions compared to second-price auctions. This is expected since the probability of winning

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 38

First−Price Second−Price

50% 60% 70% 80% 90% 80% 90% 100%

1200

1600

2000

2400

1250

1500

1750

Budget Utilization

P
ro

fi
t

Method

Budget Constraints
(UF. 3)

Budget Constraints
and Target Spending
(UF. 5)

Generalized Greedy
Policy

Target Spending (UF.
4)

Figure 2.2: Profit and budget utilization as we change the penalization parameter τ of UF 4
and UF 5, and the scaling parameter γ of Policy 4. The dots in the graph represent UF 3,
which has no parameters, and Policy 4 without scaling (γ = 1).

an auction is the same under both auction types. Furthermore, under the same highest
competing bid, the price paid by the winning DSP is always lower in a second-price auction
compared to a first-price (we used the same highest competing bid structure for both auction
mechanisms).

Let us compare the performance of UF 4 versus UF 5. In the first-price case, UF 5 is able
to total profit greater than or equal to that of UF 4 for the same level of budget utilization.
In the second-price case, UF 4 does a better job at fully utilizing the budget, while 5 trades
off a slightly lower budget utilization for more total profit. The latter makes sense as UF 4 is
naive in the sense that it does not consider that once a campaign depletes its budget, the DSP
does not continue bidding for it. The latter also explains why UF 4 shows a somehow erratic
behaviour. On the other hand, very high budget utilization levels near 100 percent are not
achievable for UF 5. The mismatch between impressions received at “real-time” and expected
impressions when running Algorithm 3 does not match well with having the exact target
budgets as upper bounds in its budget spending constraints. In comparison, UF 4 suffers less
of this mismatch as it allows overspending. A helpful trick to improve the behaviour of UF 5
under high budget utilization levels would be to use a slightly higher target budget value mk

in the constraints than the corresponding value used in the `2 term when running Algorithm
3.

Real Data Experiments

In this subsection, we present results of an experiment based on a real world dataset from
the DSP Criteo [39]. The dataset was generated during one month of Criteo’s operation, and
is composed of 16.5M impression logs in which Criteo bid on behalf of 700 advertisers. This
dataset was released to address the problem of conversion attribution modelling, while here

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 39

adapt it for our purposes. In particular, we consider the “action of interest" in our model to
be a click and ignore columns in the data corresponding to conversions. Criteo was bidding
in a second-price market and the 16.5M logs are all logs in which Criteo won the auction.
Importantly, each impression log records the market price for that impression (the highest
competing bid), nine categorical features of that impression, which campaign showed an ad,
and if a click occurred or not. An ideal DSP dataset should also include the impressions lost
by the DSP, but unfortunately a DSP has no access to the market price for those impressions.
As is often standard in the literature (see [129] and others such as [107]), we assume that
the distribution of winning logs is reasonably representative of the overall distribution of
impression logs. In other words, we ignore the censored data problem. As long as Criteo’s
bidding algorithm did a reasonably good job at acquiring impressions – which we believe it
did – then the censored data problem is not a major issue for our purposes since our main
interest is in showing the benefits of our framework for better trading off between profitability
and budget utilization. Put another way, if we can demonstrate benefits of our methodology
on Criteo’s winning logs, then such results provide evidence that our methodology would
lead to similar benefits in a real operational environment for Criteo.

Let us now describe how we constructed the problem instance from the dataset. We split
the data so that the first three weeks of data are used for training and the last week for testing.
The (impression type, campaign) graph E was constructed by first creating the impression
types, then selecting the campaigns, and finally choosing the edges. To create impression
types, we used the CART algorithm [25] with user clicks as labels and the Gini index as the
impurity function. CART allows us to map each combination of the nine categorical features
to a leaf in the CART tree, and each leaf corresponds to an impression type. Thus, CART
provides a data-driven way to identify impression types such that impressions are grouped
together in these impression types according to their click-through rates. Running CART
requires tuning a “complexity parameter” which impacts the number of leaves of the tree. We
used cross-validation to search for a complexity parameter with nearly optimal validation
error while also producing a computationally treatable number of impression types (more
about how CART was run in Appendix A.4). We then filtered the campaigns to those that
appeared in at least two hundred impressions logs in both the train and test logs. We added
an edge (i, k) to E only if there were at least thirty logs in which a selected campaign k bid
for an impression of type i ∈ I. Following the procedure described above, the constructed
graph has 84 impression types, 649 campaigns, and 9903 edges. We leave the details on how
to obtain the campaigns’ budgets, bid landscapes, price paid per click, click-through rates
and other parameters to Appendix A.4. In Appendix A.4 we also explain how the simulator
scheme shown in Appendix A.4 was implemented for this experiment.

We run three experiments, each comparing our methodology with UF 3, UF 4 and UF
5 to the generalized greedy policy described in Policy 4. In order to test robustness of our
methodology, we tried three configurations for the price paid per click values `k. In the first
experiment, for each campaign we multiplied the original values of `k by 0.5, in the second
by 0.75, and in the third by 1.0. In all cases we use the same budget values mk. Changing
the price paid per click affects the spending of campaigns, thereby Algorithm 3 needs to

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 40

1.0 * Payment Per Click

0.5 * Payment Per Click 0.75 * Payment Per Click

94% 96% 98% 100%

66% 68% 70% 72% 74% 76% 88% 90% 92% 94%
66000

69000

72000

75000

52000

54000

56000

75000

80000

85000

Budget Utilization

P
ro

fi
t

Method

Budget Constraints
(UF. 3)

Budget Constraints
and Target Spending
(UF. 5)

Generalized Greedy
Policy

Target Spending (UF.
4)

Figure 2.3: Profit and budget utilization as we change the penalization parameter τ of UF 4
and UF 5, and the scaling parameter γ of Policy 4. The dots in the graph represent UF 3,
which has no parameters, and Policy 4 without scaling (γ = 1).

re-calculate the allocation and bid vector (x,b) to achieve desired trade off between profit and
budget utilization. To obtain the curves shown in Figure 2.3 we tried different τ parameter
values for UF 4, UF 5 and different γ values for Policy 4. Appendix A.4 shows confidence
band plots showing results for all parameters tried.

Figure 2.3 again plots the total profit versus budget utilization for the four different
methods. Figure 2.3 shows that UF 4 and UF 5 strictly dominate Policy 4 by achieving
a higher profit at any budget utilization level. Furthermore, we see that this relationship
holds across different budget utilization levels in the three plots. A primary reason why our
methodology can dominate the generalized greedy policy is that it allows campaigns to wait
for more favourable impressions types. The latter is especially important for campaigns with
relative high rik revenue terms. When an impression arrives, our methodology can decide
to allocate the impression to campaigns which do not maximize the profit of it, saving the
budget of “better” of campaigns for future opportunities.

As in the synthetic case, UF 4 and UF 5 perform differently from each other. Since
UF 4 only considers the target budget as a penalization term, it performs poorly for small
penalization levels, which correspond to the left side of the curves for UF 4 in the first two
panels of Figure 2.3. In this case, the implied policies for UF 4 overspend heavily for some
campaigns, while insufficiently spending for many others. These policies obtain both low

CHAPTER 2. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR A
DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 41

profit and low budget utilization levels as campaigns are not allowed to bid more than their
target budgets. As the penalization value increases, UF 4 improves in terms of both budget
utilization and profit until the profit begins to go down, at which point the objective is simply
placing too much weight on the `2 penalty term. On the other hand, for small penalization
values, UF 5 behaves similarly to UF 3 (they match when no penalization is present), and
a clear trade off between profitability and budget utilization. Comparing UF 4 and UF 5
directly to each other, we see in the first two graphs that 5 is better at lower budget utilization
levels and 4 is better at higher budget utilization levels. The fact that UF 5 does not allow
overspending, while UF 4 does is the reason why the latter tends to work better for higher
budget utilization levels. As in the synthetic case, employing different target budget values
mk in the constraints than those used in the `2 term in the objective should improve the
performance of UF 5.

2.5 Conclusion
We proposed an optimization formulation for the joint bidding and allocation problem faced
by a demand-side platform. Our approach allows the DSP to efficiently and effectively trade
off between profitability and budget utilization for its advertisers and works for arbitrary
auction types. Our optimization formulation is non-convex, but we employ a dual approach
that leads to an efficient two phase algorithm. We study general conditions under which
there is zero duality gap and the two phase algorithm converges to an optimal solution of
the non-convex problem. Experimentally, we observe that our methodology allows a DSP
to better trade off profitability and budget spending on both synthetic problems and on a
problem using data from a real DSP.

Our paper focuses heavily on the properties of a static optimization model, and we provide
a provably efficient algorithm for solving this model. A clear and important extension is to
study the theoretical properties (e.g., a regret bound type of analysis) of employing such a
model in an online, real-time environment. Another related and important extension is to
consider the effect of parameter learning during the real-time decision making process, and
to develop an algorithm that balances exploitation (e.g, via our optimization model) with
exploration.

42

Chapter 3

Joint Online Learning and
Decision-making via Dual Mirror
Descent

We consider an online revenue maximization problem over a finite time horizon, subject to
multiple lower and upper bound cost constraints. At each time period, an agent receives a
context vector and needs to make a real-time decision. After making a decision, the agent
earns some revenue and also incurs multiple costs, which may alternatively be interpreted as
the consumption of multiple resources. Unlike the typical situation in online optimization and
learning (see, e.g., [59]), the agent has estimates of the revenue and cost functions available
before making a decision. These estimates are updated sequentially via an exogenous learning
process. Thus, there are three major challenges in this online learning and decision-making
environment: (i) balancing the trade-off between revenue earned today and ensuring that we
do not incur too many costs too early, (ii) ensuring that enough costs are incurred to meet
the lower bound constraints over the full time horizon, and (iii) understanding the effects of
the parameter learning process.

Examples of this online learning and decision-making setup occur in revenue management,
online advertising, and online recommendation. In revenue management, pricing and allocation
decisions for goods and services with a limited supply need to be made in real-time as customer
arrivals occur [20, 23]. This setup is also prevalent in online advertising, for example, in the
case of a budget-constrained advertiser who bids in real-time auctions in order to acquire
valuable impressions. Importantly, each arrival typically has associated a feature vector to it,
for example, the cookie history of a user to which an ad can be shown. How that feature
may relate to useful quantities, e.g., the probability of a user clicking an ad, may need to
be learned. Finally, our setting considers lower bounds on cost since in many industries
minimum production or marketing goals are desired.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 43

Contributions

Our contributions may be summarized as follows:

1. We propose a novel family of algorithms to tackle a joint online learning and decision
making problem. Our setting considers both lower and upper bound constraints on
cost functions and does not require strong assumptions over the revenue and cost
functions used, such as convexity. Our work can be understood as an extension of an
online optimization problem in which we may also need to learn a generic parameter.
Furthermore, our work can be considered as in a 1-lookup ahead setting as the agent
can observe the current context vector before taking a decision.

2. We propose a novel benchmark to compare the regret of our algorithm. Our benchmark
is considerably stricter in comparison to the expected best optimal solution in hindsight.
Our benchmark is specially well suited to handle settings with “infeasible sequence of
context vector arrivals" for which it is impossible to satisfy the cost constraints. We
construct a dual problem which upper bounds the benchmark and we demonstrate how
to efficiently obtain stochastic subgradients for it.

3. In the case when no “generic parameter learning” is needed, we prove that the regret
of our algorithm is upper bounded by O(

√
T) under a Slater condition. Given the

generic setup of our problem, this is a contribution on the field of online optimization.
In the general case, our regret decomposes between terms upper bounded by O(

√
T)

and terms coming from the convergence of the generic parameter learning.

4. We prove that the solution given by our algorithm may violate any given lower bound
constraint by at most O(

√
T) in the online optimization case, while upper bounds are

always satisfied by construction. Therefore, our methodology is asymptotically feasible
in the online optimization case [84].

5. We demonstrate that our algorithm is effective and robust as compared to a heuristic
approach in a bidding and allocation problem with no generic parameter learning in
online advertising. Additionally, we study the effects of different generic parameter
learning strategies in a linear contextual bandits problem with bounds on the number
of actions taken.

Related Work

The problem of online revenue maximization under feasibility constraints has been mostly
studied under the lens of online convex optimization [59]. While first studied on resource
allocation problems under linear constraints [92, 38], arbitrary convex revenue and cost
functions are used today. Of major importance is the nature of the data arrivals. Typically,
data has been assumed to be received in an adversarial [38, 29] or an i.i.d. manner [123, 10],
with the data being sampled from an unknown distribution in the latter case. Subgradient

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 44

methods based on primal-dual schemes have gained attraction [38, 68, 29, 128] as they avoid
taking expensive projection iterations by penalizing the constraints through duality (either
Lagrangian or Fenchel). Consequently, it is important to study both regret and the worst
possible constraint violation level.

In the adversarial setting, regret is typically measured against the best-static decision in
hindsight and algorithms achieving O(

√
T) regret, which is optimal in the adversarial setting,

and different level of constraint violations levels have been achieved [91, 68, 29, 128]. On
the i.i.d. setting and under linear constraints, [10] obtains an O(

√
T) regret bound and no

constraint violation by algorithm construction (since they consider linear constraints with
no lower bounds). Since they consider a 1-lookup ahead setting with i.i.d. arrivals, [10] use
the best dynamic solution in hindsight as a benchmark, which is a considerably stricter
benchmark than the commonly used best static solution. Our joint online learning and
optimization model and algorithmic strategy builds upon the online optimization model and
dual Mirror Descent approach for resource allocation presented by [10]. Note that our first
contribution, the incorporation of arbitrary revenue and cost functions, was simultaneously
obtained by the same set of authors on [12].

A stream of literature studying a similar problem to ours is “Bandits with Knapsacks”
(BwK) and extensions of it. In BwK, an agent operates over T periods of time. At each
period, the agent chooses an action, also known as an arm, from a finite set of possible action
and observes a reward and a cost vector. As us, the agent would like to satisfy global cost
constraints. BwK is studied both in an adversarial and i.i.d. settings, but here we only
emphasize on the latter (see [65] for the adversarial case). Assuming concave reward functions,
[3] proposes an Upper-Confidence Bound type of algorithms which achieves sublinear rates
of regret and constraint violations. [9] proposes a primal-dual algorithm to solve BwK with
has a sublinear regret. By problem construction, their cost constraints are satisfied. Our job
extends on this literature stream in the following ways. 1. We allow an arbitrary action space
and reward and cost functions. 2. Our proposed benchmark is stricter than the best expected
dynamic policy. 3. The novel joint learning and decision-making setting proposed here.

Notation

We use RN
+ := {x ≥ 0 : x ∈ RN}, RN

− := {x ≤ 0 : x ∈ RN}, and [N] := {1, . . . , N}
with N being any integer. For any x ∈ RN and y ∈ RN , x � y := (x1y1, . . . , xNyN) and
xTy :=

∑n
i=1 xiyi representing the element-wise and dot products between vectors of same

dimension. We use x ∈ A to represent that x belongs to set A, and (x1, . . . , xN) ∈ A1×· · ·×AN
represents xi ∈ Ai for all i ∈ [n]. We reserve capital calligraphic letters to denote sets. For
any x ∈ RN , [x]+ := (max{x1, 0}, . . . ,max{xN , 0}) and 1(x ∈ A) := 1 if x ∈ A and 0
otherwise. We use ‖·‖ to represent a norm operator, and in particular, for any x ∈ RN we use

‖x‖1 :=
∑N

i=1|xi|, ‖x‖2 :=
√∑N

i=1 x
2
i , and ‖x‖∞ = maxi∈[N] |xi|. For any real-valued convex

function f : X → R, we say that g is a subgradient of f(·) at x ∈ X if f(y) ≥ f(x)+gT (y−x)
holds for all y ∈ X , and use ∂f(x) to denote the set of subgradients of f(·) at x.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 45

3.1 Preliminaries and Algorithm
We are interested in a real-time decision-making problem over a time horizon of length T
involving three objects: (i) zt ∈ Z ⊆ Rd, the decision to be made at time t, (ii) θ∗ ∈ Θ ⊆ Rp,
a possibly unknown parameter vector describing the revenue and cost functions that may
need to be learned, and (iii) wt ∈ W ⊆ Rm, a context vector received at prior to making
a decision at time t. These three objects describe the revenue and cost functions that are
central to the online decision-making problem. In particular, let f(·; ·, ·) : Z ×Θ×W → R
denote the revenue function and let c(·; ·, ·) : Z × Θ ×W → RK denote the collection of
K different cost functions. We assume that these functions are bounded, namely for the
true revenue function it holds that supz∈Z,w∈W f(z; θ∗, w) ≤ f̄ with f̄ > 0 and for the cost
functions it holds that supz∈Z,θ∈Θ,w∈W‖c(z; θ, w)‖∞ ≤ C̄ with C̄ > 0.

At each time period t, first wt is revealed to the decision maker and is assumed to be
drawn i.i.d from an unknown distribution P over W. For example, if W is a finite set,
then wt could represent the scenario being revealed at time t. We assume that once the
decision maker observes a context vector wt ∈ W, then it also observes or otherwise have
knowledge of the parametric forms of revenue and cost functions f(·; ·, wt) : Z × Θ → R
and c(·; ·, wt) : Z × Θ → RK . Although the true parameter θ∗ may be unknown to the
decision maker at time t, whenever a decision zt ∈ Z is made the revenue earned is equal to
f(zt, θ∗, wt) and the vector of cost values incurred is equal to c(zt, θ∗, wt).

In an ideal but unrealistic situation, the decision planner would be able to observe the
sequence (w1, . . . , wT) of future context vector arrivals and would set the decision sequence
(z1, . . . , zT) by solving the full observability (or hindsight) problem:

(O) : max
(z1,...,zT)∈ZT

T∑
t=1

f(zt; θ∗, wt)

s.t. Tα� b ≤
T∑
t=1

c(zt; θ∗, wt) ≤ Tb (3.1)

where b ∈ RK
++, and α ∈ [−1, 1)K ∪ {−∞} with αk = −∞ meaning that no lower bounds

are present for coordinate k. Define b := mink∈[K] bk and b̄ := maxk∈[K] bk, and we assume
that b > 0. The vector b can be thought as a resource or budget vector proportional to
each period. Then, (3.1) is a revenue maximization problem over the time horizon T with
lower and upper cost constraints. Setting −1 as the lower bound for αk for all k ∈ [K] is an
arbitrary choice only affecting some of the constants in the regret bounds we prove.

Before providing more details on the dynamics of the problem and our proposed algorithm,
we introduce a novel benchmark to evaluate the performance/regret of our algorithm. The
primary need for a new benchmark in our context is that the generality of our problem leads
to feasibility issues. Indeed, for some combinations of context vector arrivals, problem (3.1)
may be infeasible due the presence of both lower and upper bound constraints as well as
the fact that the costs functions are generic. We now define an offline benchmark as follows.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 46

A natural benchmark to consider is the expected optimal value of (3.1). However, as long
as there is any positive probability of (3.1) being infeasible, then this benchmark will be
−∞, which will lead to trivial regret bounds. Thus, to avoid such trivialities, we consider a
benchmark that interpolates between the expected optimal value of (3.1) and a deterministic
problem that replaces the random revenue and cost functions with their expected values. In
particular, let γ ∈ [0, 1] denote this interpolation parameter. For any z ∈ Z, θ ∈ Θ, w′ ∈ W ,
w ∼ P , and γ ∈ [0, 1] we define:

rev(z; θ, w′, γ) := (1− γ)f(z; θ, w′) + γEP [f(z; θ, w)]

cost(z; θ, w′, γ) := (1− γ)c(z; θ, w′) + γEP [c(z; θ, w)].

Let PT := P × · · · × P denote a product distribution of length T , i.e., the distribution of
(w1, . . . , wT). Now, for any γ ∈ [0, 1], let us define

OPT(P , γ) := EPT

[
max

zt∈Z:t∈[T]

∑T
t=1 rev(zt; θ∗, wt, γ)

s.t. Tα� b ≤
∑T

t=1 cost(zt; θ∗, wt, γ) ≤ Tb

]

and let us further define
OPT(P) := max

γ∈[0,1]
OPT(P , γ). (3.2)

Note that OPT(P , 0) is exactly the expected optimal value of the hindsight problem (3.1). On
the other hand, OPT(P , 1) corresponds to a deterministic approximation of (3.1) that replaces
all random quantities with their expectations and is typically a feasible problem. Then, we
can understand γ ∈ [0, 1] as an interpolation parameter between the more difficult hindsight
problem OPT(P , 0) and the expectation problem OPT(P , 1). Importantly, the benchmark
we consider is OPT(P), which considers the worst case between these two extremes. It is
possible to have OPT(P) = OPT(P , 0), OPT(P) = OPT(P , 1), OPT(P) = OPT(P , γ) for
some γ ∈ (0, 1), and OPT(P) = −∞. It is also possible to have a unique γ that maximizes
OPT(P , γ) as well as infinitely many such maximizers. Examples of all of these possibilities
are included in the supplementary materials.

Joint Learning and Decision-making Dynamics and Regret
Definition

Now we describe the dynamics of our joint online learning and decision-making problem as well
as a generic “algorithmic scheme.” In Section 3.1, we give a complete algorithm after building
up the machinery of dual mirror descent. Let It := (zt, θt, wt, f t(zt; θ∗, wt), c(zt; θ∗, wt))
denote the information obtained during period t, and let Ht := (I1, . . . , It) denote the
complete history up until the end of period t. Note that it is assumed that the decision
planner observes the exact incurred cost value vector c(zt; θ∗, wt), but there is a possibility of
including additional randomness in the observed revenue. In particular, the observed revenue

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 47

f t(zt; θ∗, wt) satisfies f t(zt; θ∗, wt) = f(zt; θ∗, wt) + ξt where ξt is a mean zero random variable
that is allowed to depend on wt but is independent of everything else.

Let Aθ refer to a generic learning algorithm and let Az refer to a generic decision-making
algorithm. Then, at any time period t, the decision planner sets

θt = Aθ
(
Ht−1

)
,

zt = Az
(
f(·; θt, wt), c(·; θt, wt),Ht−1

)
(3.3)

We refer to (Az, Aθ) as A when no confusion is possible. Note that an important special case
is when Aθ outputs θ∗ for all inputs, which is the case where θ∗ is known. Algorithm 5, which
alternates between an online learning step using Aθ and an online decision-making step using
Az, specifies the precise sequence of events when using the generic algorithm A. Recall that
C̄ := sup(z,θ,w)∈Z×Θ×W ‖c(z; θ, w)‖∞, which is a constant that we will use as the minimum
allowable remaining cost budget. For simplicity we assume that the constant C̄ is available
although we can easily replace it with an available upper bound.

Algorithm 5 Generic Online Learning and Decision-making Algorithmic Scheme
Input: Initial estimate θ1 ∈ Θ, and remaining cost budget vector b1 ← Tb.
for t = 1, . . . , T do
1. Update θt ← Aθ (Ht−1).
2. Receive wt ∈ W , which is assumed to be drawn from an unknown distribution P and
is independent of Ht−1.
3. Set zt ← Az (f(·; θt, wt), c(·; θt, wt),Ht−1).
4. Update remaining cost budget bt+1 ← bt− c(zt; θ∗, wt), and earn revenue f t(zt; θ∗, wt).

5. If bt+1
k < C̄ for any k ∈ [K], break.

end for

Note that Steps 4. and 5. of Algorithm 5 ensure that the total cost incurred is always
less than or equal to bT , which ensures that the upper bound constraints in (3.1) are always
satisfied, while there is a chance that some lower bound constraints may not be satisfied.
These steps make our later theoretical analysis simpler, but less conservative approaches can
be used, for example allowing the algorithm to exceed bT once.

Define R(A|P) = EPT
[∑T

t=1 f(zt; θ∗, wt)
]
as the expected revenue of algorithm A over

distribution PT , where zt is computed as in (3.3). We define the regret of algorithm A as
Regret(A|P) := OPT(P)−R(A|P). Since the probability distribution P is unknown to the
decision maker, our goal is to design an algorithm A that works well for any distribution P .
That is, we would like to obtain a good distribution free regret bound.

Dual Problem and Dual Mirror Descent Algorithm

We now consider a Lagrangian dual approach that will naturally lead to a dual mirror
descent algorithm. Let λ ∈ RK denote a vector of dual variables, and we define the set of

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 48

feasible dual variables as Λ := {λ ∈ RK : λk ≥ 0 for all k with αk = −∞}. For any triplet
(λ, θ, w) ∈ Λ×Θ×W define

ϕ(λ; θ, w) := max
z∈Z

f(z; θ, w)− λT c(z; θ, w)

z(λ; θ, w) :∈ arg max
z∈Z

f(z; θ, w)− λT c(z; θ, w),

and for any (λ, θ) ∈ Λ×Θ define

p(λ) :=
∑
k∈[K]

bk([λk]+ − αk[−λk]+)

D(λ; θ) := EP [ϕ(λ; θ, w)] + p(λ).

This works assumes that z(λ; θ, w) exists and can be efficiently computed for any (λ, θ, w) ∈
(Λ,Θ,W). Furthermore, in case there are multiple optimal solutions corresponding to
ϕ(λ; θ, w) we assume that the subroutine for computing z(λ; θ, w) breaks ties in a deterministic
manner. We call D(·; θ) the dual function given parameters θ, which is a key component of
the analysis and algorithms proposed in this work. In particular, we first demonstrate in
Proposition 3.1.1 that D(·; θ∗) can be used to obtain an upper bound on OPT(P).

Proposition 3.1.1. For any λ ∈ Λ, it holds that OPT(P) ≤ TD(λ; θ∗).

Next, Proposition 3.1.2 demonstrates that a stochastic estimate of a subgradient of D(·; θ)
can be easily obtained during the sequence of events described in Algorithm 5.

Proposition 3.1.2. Let λ ∈ Λ, θ ∈ Θ, and w ∈ W be given. Define g̃(λ; θ, w) ∈ RK by
g̃k(λ; θ, w) := −ck(z(λ; θ, w); θ, w) + bk (1(λk ≥ 0) + αk1(λk < 0)) for all k ∈ [K]. Then,
if w ∼ P, it holds that g̃(λ; θ, w) is a stochastic subgradient estimate of D(·; θ) at λ, i.e.,
EP [g̃(λ; θ, w)] ∈ ∂λD(λ; θ).

We are now ready to describe our dual mirror descent algorithm. Let h(·) : Λ→ R be the
reference function for mirror descent, which we assume is σ1-strongly convex in the `1-norm,
i.e., for some σ1 > 0 it holds that h(λ) ≥ h(λ′) + 〈∇h(λ′), λ− λ′〉 + σ1

2
‖λ− λ′‖2

1 for any λ, λ′
in Λ. Also, we assume that h(·) is a separable function across components, i.e., it satisfies
h(λ) =

∑K
k=1 hk(λk) where hk(·) : R → R is a convex univariate function for all k ∈ [K].

Define Vh(λ, λ′) := h(λ)− h(λ′)−∇h(λ′)T (λ− λ′), the Bregman divergence using h(·) as the
reference function.

Algorithm 6 presents the main algorithm of this work. Algorithm 6 is a specific instance
of the more general algorithmic scheme, presented in Algorithm 5, where we fill in the generic
decision making subroutine Az with a dual stochastic mirror descent [59, 18] step with
respect to the current estimate of the dual problem minλ∈Λ D(λ; θt). Note that the learning
subroutine Aθ is left as a generic subroutine; the regret bounds that we prove in Section 3.2
hold for any learning algorithm Aθ and naturally get better when Aθ has better convergence
properties.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 49

Algorithm 6 Online Learning and Decision-making via Dual Mirror Descent
Input: Initial estimate θ1 ∈ Θ, remaining cost budget vector b1 = Tb, and initial dual
solution λ1.
for t = 1, . . . , T do
1. Update θt ← Aθ (Ht−1).
2. Receive wt ∈ W , which is assumed to be drawn from an unknown distribution P and
is independent of Ht−1.
3. Make primal decision zt ← z(λt; θt, wt), i.e.,

zt ∈ arg max
z∈Z

f(z; θt, wt)− (λt)T c(z; θt, wt).

4. Update remaining cost budget bt+1 ← bt− c(zt; θ∗, wt), and earn revenue f t(zt; θ∗, wt).

5. If bt+1
k < C̄ for any k ∈ [K], break.

6. Obtain dual stochastic subgradient g̃t where g̃tk ← −ck(zt; θt, wt) +
bk (1(λk ≥ 0) + αk1(λk < 0)) for all k ∈ [K].
7. Choose “step-size" ηt and take dual mirror descent step

λt+1 ← arg min
λ∈Λ

λT g̃t + 1
ηt
Vh(λ, λ

t).

end for

Note that Proposition 3.1.2 ensures that g̃t from Step 6. of Algorithm 6 is a stochastic
subgradient of D(·; θt) at λt. The specific form of the mirror descent step in Step 7. depends
on the reference function h(·) that is used. A standard example is the Euclidean reference
function, i.e., h(·) := 1

2
‖·‖2

2, in which case Step 7. is a projected stochastic subgradient descent
step. Namely, λt+1

k ← [λtk − ηg̃tk]+ for all k ∈ [K] with αk = −∞ and λt+1
k ← λtk − ηg̃tk

otherwise. A simple extension of this example is h(λ) := λTQλ for some positive definite
matrix Q. When no lower bounds are present, i.e., αk = −∞ for all k ∈ [K], we can use
an entropy-like reference function h(λ) :=

∑
k∈[K] λk log(λk) wherein Step 7. becomes a

multiplicative weight update λtk ← λt exp(−ηtg̃tk) [5]. Finally, note that since the reference
function is component wise separable, one may use a different type of univariate reference
function for different components.

While Algorithm 6 fills in the gap for Az using mirror descent, the learning algorithm
Aθ in Step 1. is still left as generic and there are a range of possibilities that one might
consider depending on the specific problem being addressed. For example, considering only
the revenue function for simplicity, suppose that there is a feature map f ′ : Z×W → Rp such
that f(z; θ, w) = f ′(z;w)T θ for (z, θ, w) ∈ Z ×Θ×W and we observe both f(zt; θ∗, wt) and
f ′(zt;wt) at time t. Then, one could use (f s(zs; θ∗, ws), f ′(zs;ws))t−1

s=1 to fit a linear model
(possibly with regularization) for implementing Aθ at time t. Depending on the underlying

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 50

structure of the problem and randomness of the data arrivals, the previous methods may not
converge to θ∗. Different ways of applying Step 1. are shown for a linear contextual bandits
problem in Section 3.3. The performance of the different implementations vary drastically
depending on the underlying randomness of the data arrivals.

3.2 Regret Bound and Related Results
In this section, we present our main theoretical result, Theorem 3.2.1, which shows regret
bounds for Algorithm 6. In particular, the regret of Algorithm 6 can be decomposed as the
summation of two parts: (i) the terms that appear when θ∗ is known, which emerge from the
properties of the Mirror Descent algorithm and can be bounded sublinearly as O(

√
T), and

(ii) terms that naturally depend on the convergence of the learning process towards θ∗. We
also discuss the proof strategy for Theorem 3.2.1. Finally, for each lower bound constraint
in (3.1), we prove that our algorithm may violate this lower bound by at most O(

√
T) plus

terms that depend on how θt converges to θ∗.

Regret Bound

Before presenting our main theorem, we need to establish a few more ingredients of the
regret bound. First, we present Assumption 3.2.1, which can be thought of as a boundedness
assumption on the dual iterates.

Assumption 3.2.1 (Bounded Dual Iterates). There is an absolute constant Ch > 0 such
that the dual iterates {λt} of Algorithm 6 satisfy E [‖∇h(λt)‖∞] ≤ Ch for all t ∈ [T].

Note that, in the Euclidean case where h(λ) = 1
2
‖λ‖2

2, we have ∇h(λ) = λ and therefore
Assumption 3.2.1 may be thought of as a type of boundedness condition. After stating our
regret bound, we present a sufficient condition for Assumption 3.2.1, which involves only the
properties of the problem and not the iterate sequence of the algorithm.

Now, recall that Ht can be understood as all the information obtained by Algorithm 6 up
to period t. Then, Step 4. of Algorithm 6 is intrinsically related to the following stopping
time with respect to Ht−1.

Definition 3.2.1 (Stopping time). Define τA as the minimum between T and the smallest
time t such that there exists k ∈ [K] with

∑τA
t=1 ck(z

t; θ∗, wt) + C̄ > bkT .

Finally, recall that we defined constants f̄ > 0, C̄ > 0, b > 0 and b̄ > 0 such that
supz∈Z,w∈W f(z; θ∗, w) ≤ f̄ , supz∈Z,θ∈Θ,w∈W‖c(z; θ, w)‖∞ ≤ C̄, b := mink∈[K] bk and b̄ :=
maxk∈[K] bk. Also, σ1 refers to the strong convexity constant of h(·). We are now ready to
state Theorem 3.2.1, which presents our main regret bound.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 51

Theorem 3.2.1. Let A denote Algorithm 6 with a constant “step-size” rule ηt ← η for all
t ≥ 1 where η > 0. Suppose that Assumption 3.2.1 holds. Then, for any distribution P over
w ∈ W, it holds that Regret(A|P) ≤ ∆DM + ∆Learn where

∆DM :=
2(C̄2 + b̄2)

σ1

ηE[τA] +
1

η
Vh(0, λ

1) +
f̄

b

(
C̄ +

Ch + ‖∇h(λ1)‖∞
η

)
∆Learn := E

[
τA∑
t=1

(c(zt; θ∗, wt)− c(zt; θt, wt))Tλt
]

+
f̄

b

∥∥∥∥∥E
[
τA∑
t=1

c(zt; θ∗, wt)− c(zt; θt, wt)

]∥∥∥∥∥
∞

.

Theorem 3.2.1 states that the regret of Algorithm 6 can be upper bounded by the sum of
two terms: (i) a quantity ∆DM that relates to the properties of the decision-making algorithm,
dual mirror descent, and (ii) a quantity ∆Learn that relates to the convergence of the learning
algorithm Aθ. It is straightforward to see that setting η ← γ/

√
T for some constant parameter

γ > 0 implies that ∆DM is O(
√
T). In the pure online optimization case, θ∗ is known and

hence θt = θ∗ for all t ∈ [T] yielding ∆Learn = 0. Thus, using η ← γ/
√
T in the pure

online optimization case yields Regret(A|P) ≤ O(
√
T) and extends results presented by [10].

More generally, ∆Learn depends on the convergence of θt to θ∗. Under a stricter version of
Assumption 3.2.1 and assuming the cost functions are Lipschitz in θ, we demonstrate in the
supplementary materials that ∆Learn is O(E [

∑τA
t=1‖θt − θ∗‖θ]).

Let us now return to Assumption 3.2.1 and present a sufficient condition for this assumption
that depends only on the structural properties of the problem and not directly on the iterations
of the algorithm. The type of sufficient condition we consider is an extended Slater condition
that requires both lower and upper bound cost constraints to be satisfied in expectation with
positive slack for all θ ∈ Θ. Let us first define precisely what the average slack is for a given
θ ∈ Θ.

Definition 3.2.2. For a given θ ∈ Θ, define its slack δθ ∈ R as δθ := EP [maxz∈Z res(z; θ, w)]
with res(z; θ, w) := min{‖Tbk− ck(z; θ, w)‖∞, ‖ck(z; θ, w)−Tαkbk‖∞} for all (z, w) ∈ Z×W.

The following proposition uses the average slack to upper bound Ch in Assumption 3.2.1.

Proposition 3.2.1. Assume that there exists δ > 0 such that δθ ≥ δ for all θ ∈ Θ, and let
CB := 2(η (C̄2+b̄2)

σ1
+ f̄). Suppose that we use the Euclidean reference function h(·) := 1

2
‖ · ‖2

2,
which corresponds to the traditional projected stochastic subgradient method. Then, it holds
that Ch ≤ max{‖λ1‖∞,

√
2
√

0.5(CB/δ)2 + ηCB}.

Proof Sketch and Cost Feasibility

The proof sketch for Theorem 3.2.1 is informative of how the algorithm works and therefore
we outline it here. At a high level the proof consists of two major steps. First, we prove that

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 52

the E[τA] is close to T for the pure online optimization case. In the general case additional
terms depending on how θt converges to θ∗ appear. Second, we bound the expected regret
up to period τA. In particular, we prove E[τAD(

∑τA
t=1

1
τA
λt; θ∗) −

∑τA
t=1 f(zt; θ∗, wt)] upper

bounds the regret and is O(
√
T) in the pure online optimization case. Finally, the expected

regret up to period T is bounded by the sum of the expected regret up to period τA plus the
trivial bound f̄E[T − τA]. (Note that the two major steps of our proof mimic those of [10]
but the generality of our setting as well as the presence of parameter learning leads to new
complications.)

A key element of the proof is that if we violate the upper cost constraints this occurs near
the final period T (as long as we ‘properly’ learn θ∗). A solution obtained using Algorithm
6 can not overspend, but may underspend. Proposition 3.2.2 shows that the amount of
underspending can again be bounded by the sum of terms that arise from the decision-making
algorithm (mirror descent) and terms that depend on the convergence of the learning process.
In the pure online optimization case, these lower constraint violations are bounded by O(

√
T)

if we use η = γ/
√
T with γ > 0 arbitrary. To put this result in context, even if constraint

violations can occur their growth is considerably smaller than T , which is the rate at which
the scale of the constraints in (3.1) grow. In the general case, terms depending on how θt

converges to θ∗ again appear, analogously to Theorem 3.2.1.

Proposition 3.2.2. Assume we run Algorithm 6 under Assumption 3.2.1 using ηt = η for
all t ≥ 1. For any k ∈ [K] with αk 6= −∞ it holds:

Tαkbk − E[

τA∑
t=1

ck(z
t; θ∗, wt)] ≤

(
‖∇h(λ1)‖∞ + Ch

η

)
b+ αkbk

b
+
αkbkC̄

b

+
αkbk‖E[

∑τA
t=1 c(z

t; θ∗, wt)− c(zt; θt, wt)]‖∞
b

+ E[

τA∑
t=1

ck(z
t; θt, wt)− ck(zt; θ∗, wt)].

3.3 Experiments
This section describes the two experiments performed. The first models the problem of a
centralized bidder entity bidding on behalf of several clients. Each client has both lower
and upper bounds on their desired spending. This experiment uses data from the online
advertising company Criteo [39]. The results show that our methodology spends the clients
budgets (mostly) in their desired range, depleting their budgets close to the last period
(T), and obtaining a higher profit than a highly used heuristic. The second experiment is a
linear contextual bandits problem with lower and upper bounds on the number of actions
that can be taken. This experiment is illustrative of how different schemes to learn θ∗, i.e.,
implementations of Step 1. of Algorithm 6, may be more or less effective depending on the
inherent randomness of the data arrivals.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 53

Centralized repeated bidding with budgets

Consider a centralized bidding entity, which we here call the bidder, who bids on behalf of
K ≥ 1 clients. The bidder can participate in at most T ≥ 1 auctions which are assumed to
use a second-price mechanism. In the case of winning an auction, the bidder can only assign
the reward of the auction to at most one client at a time. At the beginning of each auction,
the bidder observes a vector w ∈ W of features and a vector r(w) ∈ RK

+ . Each coordinate of
r(w) represents the monetary amount the kth client offers the bidder for the auction reward.
For each auction t ∈ [T], call ‘mpt’ to the highest bid from the other bidders. The goal of the
bidder is to maximize its profit while satisfying its clients lower and upper spending bounds.
Defining X := {x ∈ RK

+ :
∑K

i=1 xi ≤ 1}, the problem the bidder would like to solve is (special
case of Problem (3.1)):

max
(zt,xt)∈R+×X :t∈[T]

T∑
t=1

K∑
k=1

(rk(w
t)−mpt)xtk1(zt ≥ mpt)

s.t. Tα� b ≤
T∑
t=1

r(wt)� xt1(zt ≥ mpt) ≤ Tb.

where Tb represent the maximum the clients would like to spent, and α ∈ [0, 1)K the minimum
percentage to be spent. The pair (zt, xt) ∈ R+ ×∆ represents the submitted bid and the
probabilistic allocation of the reward chosen by the bidder at period t (we later show that our
algorithm uses a binary allocation policy). We use 1{zt ≥ mpt} to indicate that the bidder
wins the auction t ∈ [T] only if its bid is higher than mpt. Here we assume r(·) :W → RK

+

as known, but the extension to the case when we need to learn it is natural.
An important property of this problem is that we can implement our methodology without

learning the distribution of mp , making this experiment fall in the pure online optimization
case. The latter occurs as ϕ(λ; (w,mp)) = max

(z,x)∈R+×X

∑K
k=1(rk(w)(1−λk)−mp)xk1{z ≥ mp}

can be solved as Algorithm 7 shows.

Algorithm 7 Solving ϕ(·; ·, ·)
Input: Pair (λ,w) ∈ RK ×W , and reward vector r(w).
1. Select k∗ ∈ arg max

k∈[K]
rk(w)(1− λk).

2. If rk∗(w)(1− λk∗) ≥ 0 set z = rk∗(w)(1− λk∗), xk∗ = 1 and xk = 0 for all k ∈ [K] 6= k∗,
otherwise choose z = xk = 0 for all k ∈ [K].
Output: (z, x) optimal solution for ϕ(λ; (w,mp)).

Experiment Details. This experiment is based on data from Criteo [39]. Criteo is a
Demand-Side Platform (DSP), which are entities who bid on behalf of hundreds or thousands
of advertisers which set campaigns with them. The dataset contains millions of bidding
logs during one month of Criteo’s operation. In all these logs, Criteo successfully acquired

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 54

Figure 3.1: Box plots of the total profit obtained, and average budget utilization and budget
depletion iteration per advertiser over 100 simulations. Budget utilization corresponds to the
percentage of the total budget that an advertiser spent. If an advertiser never depleted its
budget, its depletion time equals the simulation length.

ad-space for its clients through real-time second-price auctions (each log represents a different
auction and ad-space). Each log contains information about the ad-space and user to which
it was shown, the advertiser who created the ad, the price paid by Criteo for the ad-space,
and if a conversion occurred or not (besides from other unused columns). The logs from the
first three weeks were used as training data, the next two days as validation, and the last
week as test.

The experiment was performed as follows. The user’s information and advertiser ids from
the train data were used to train the neural network for conversion prediction from [98]. This
prediction model was validated using the validation data. Once selected and saved the set of
parameters with highest validation AUC, we use the predictions coming from this architecture
as if they were the truthful probabilities of conversion. From the test data, we obtained total
budgets to spend for each advertiser, assuming that all advertisers expect their budget to
be spent at least by 95% (αk = 0.95 for all k ∈ [K]). To simulate a real operation, we read
the test logs in order using batches of 128 logs (as updating a system at every arrival is not
realistic). We use 100 simulations for statistical significance and use traditional subgradient
descent on Step 7. of Algorithm 6 (more experimental details in the supplement).

Figure 3.1 shows that our methodology obtains a higher profit in comparison to the
baseline. Also, almost all advertisers got their total spending on the feasible range (above
95% of their total target budget). In addition, advertisers tend to deplete their budgets close
to the end of the simulations. Observe that few advertisers spent their budgets in average
closer to the beginning rather than the simulations end. We found that those advertisers had
relatively small budgets. We saw that as budgets increased, advertisers average depletion
time steadily approached the simulation end.

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 55

Linear contextual bandits with bounds over the number of actions.

At each period t ∈ [T], an agent observes a matrix W t ∈ Rd × Rn and can decide between
playing an action or not. If it plays an action, it incurs a cost of ρ and selects a coordinate
i(t) ∈ [d]. It then observes a reward rt with mean E[rt] = (W t

i(t))
T θ∗, where W t

i(t) is the i(t)
th

row of W t and θ∗ is an unknown parameter. We assume that rt = (W t
i(t))

T θ∗ + ε with ε
being a zero-mean noise independent of the algorithm history. If the agent does not play
an action it incurs no cost. The agent operates at most for T periods, requiring its total
cost to be lower than T and higher than 0.5T . The agent does not know the distribution
W over which W t is sampled (but knows that they are sampled i.i.d.). We can model this
problem as having Z = {z ∈ RK

+ :
∑T

i=1 zi ≤ 1}, W being the set of possible matrix arrivals,
f(z; θ,W t) = ((W t

1)T θ, . . . , (W t
d)
T θ)T z, and c(z; θ,W t) = (ρ, . . . , ρ)� z. Even when Z allows

probabilistic allocations, there is always a solution of Step 3. of Algorithm 6 which takes at
most one action per period.

Experiment Details. We tried eight combinations of d × n, run Algorithm 6 using
T = 1000, 5000, 10000, use ρ = 4, and run 100 simulations of each experiment setting.
Each simulation uses a unique seed to create θ∗ and the mean matrix W by sampling i.i.d.
Uniform(−0.5, 0.5) random variables. Both θ∗ andW are then normalized to satisfy ‖θ∗‖2 = 1
and ‖Wd′‖2 = 1 for all d′ ∈ [d].

Besides the eight d× n configurations and three possible T values, we tried six ways of
obtaining the revenue terms (making a total of 144 experiment configurations). First, to
create W t we either use W t = W for all t ∈ [T], i.e. no randomness, or W t = W + ξt with ξt
a random matrix with each element being sampled i.i.d. from a Uniform(−0.1, 0.1) random
variable. Also, given a selected action i(t) ∈ [d] on period t ∈ [T], the observed revenue is
either W T

i(t)θ
∗ or W T

i(t)θ
∗ plus either a Uniform(−0.1, 0.1) or Uniform(−0.5, 0.5) random term.

We run Step 7. of algorithm 6 using subgradient descent.
We implemented Step 1. of Algorithm 6 in the following ways. 1. Gaussian Thompson-

Sampling as in [4]. 2. Least-squares estimation. 3. Ridge regression estimation. 4. Ridge
regression estimation plus a decaying randomized perturbation. 5. ‘Known θ∗’. The
last method represents the case of a pure online optimization problem. We also solve
(3.1) optimally for each combination of experiment setting and simulation. In this case
OPT(P) = OPT(P , 0), and each optimization problem inside OPT(P , 0) is a bag problem.
Please refer to the supplement for detailed descriptions of the methods, more experimental
details, and the proof that OPT(P) = OPT(P , 0).

Table 3.1 shows the percentage of the average revenue obtained against the best possible
revenue achievable over the 100 simulations when using (d× n) equal to (50, 50). A column
label, such as (0.5, 0.1) indicates that a Uniform(−0.5, 0.5) is added to the observed revenue
and that i.i.d. Uniform(−0.1, 0.1) elements were added element-wise to W t for each t ∈ [T].
‘0.0’ indicates that no randomness was added either to the revenue or W t matrices depending
on the case. (When W has no randomness, the ‘Known θ∗’ method matches OPT(P) as the
optimal action is always the same.)

Table 3.1 shows interesting patterns. First, Thompson Sampling implemented as in [4]

CHAPTER 3. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 56

T = 10000, (d × n) =
(50,50)

(0.0,0.0) (0.1,0.0) (0.5,0.0) (0.0,0.1) (0.1,0.1) (0.5,0.1)

Least Squares 43.2 51.2 59.5 91.4 91.5 85.8
Thompson Sampling 98.1 13.2 2.3 93.1 19.7 3.5
Ridge Reg. 44.9 52.9 65.0 95.6 94.5 84.9
Ridge Reg. + Perturbation 59.3 63.2 67.7 95.5 94.4 85.2
Known θ∗ 100 100 99.9 96.7 96.7 96.8

Table 3.1: The results shown are the average revenue over 100 simulations relative to the
best value possible. A column label, such as (0.5, 0.1) indicates that a Uniform(−0.5, 0.5)
is added to the observed revenue and that i.i.d. Uniform(−0.1, 0.1) elements were added to
each coordinate of W t for each t ∈ [T].

was the best performing ‘learning’ method when no randomness was added, but performs
terribly when the revenue had added randomness. Differently, the Least Squares and the
Ridge Regression methods increased their relative performance greatly when randomness
was added to the revenue term. Interestingly, adding uncertainty to ridge regression was
a clear improvement when W t = W , but it did not help when W t had randomness. These
results show that how to apply Step 1. of Algorithm 6 should depend on the application and
randomness. Finally, the results shown in Table 3.1 should be considered just as illustrative
as the methods’ parameters were not tuned carefully, and neither the method’s particular
implementation as in the case of Thompson Sampling.

57

Chapter 4

Stochastic In-Face Frank-Wolfe Methods
for Non-Convex Optimization and
Sparse Neural Network Training

The Frank-Wolfe method (also called the conditional gradient method) and its extensions
are often especially applicable in several areas of machine learning due to their low iteration
costs and convenient structural properties. The Frank-Wolfe method has classically been
applied and analyzed in the setting of smooth, constrained convex optimization problems; for
a partial list of references in this setting, see [41, 36, 40] for older references and see [66, 57, 42,
43] and the references therein for more recent work. At each iteration, the basic Frank-Wolfe
method relies only on a single gradient evaluation and a single call to a linear optimization
subroutine, wherein the method computes a minimizer of the linear approximation of the
objective function over the feasible region and then updates the next iterate as a convex
combination of this minimizer and the current iterate.

In this paper, we consider variants of the Frank-Wolfe method for non-convex stochastic
optimization problems with mixed constrained and unconstrained variables. Our problem of
interest is:

F ∗ := min
x,y

F (x, y) := Ez∼D[f(x, y, z)]

s.t. x ∈ S, y ∈ Rq ,
(4.1)

where S ⊆ Rp is a compact and convex set, z is a random variable in a probability space Z
with (possibly unknown) distribution D, and f(·, ·, ·) : S × Rq ×Z → R is differentiable in
(x, y) for each fixed z ∈ Z. Note that we allow for the possibility of either p = 0 or q = 0, in
which case only one of the two sets of variables x and y would be present in (4.1). Herein,
we develop and analyze several stochastic gradient algorithms that utilize Frank-Wolfe “style”
steps in the x variables and standard steepest descent steps in the y variables.

In many core machine learning methodologies, such as the setting of training neural
networks, non-convexity is ubiquitous. Moreover, due to large training set sizes, stochastic
algorithms (or related strategies) are also a necessity. For several reasons, including increased

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 58

interpretability, memory efficiency, and improved computation at prediction/inference time,
structured models (such as sparse networks, low-rank models, etc.) are often highly desirable.
In order to induce a structured model, one might consider a strategy such as pruning [1, 93,
56] that modifies the model after the training procedure or one might consider a strategy
that induces structured models throughout the training procedure. In this paper, we consider
a method that falls into the latter approach based on extending the Frank-Wolfe method to
problem (4.1). The Frank-Wolfe method, which falls into the more general class of “structure-
enhancing” algorithms, is particularly attractive because the dynamics of the algorithm
directly helps to promote near-optimal well-structured (e.g, sparse, low-rank) solutions. In
some optimization formulations, such well-structured solutions also lie on low-dimensional
faces of the feasible region, which was a key motivation for the development of “in-face”
directions (also referred to as alternative directions herein), including away steps [52, 80],
and the in-face extended Frank-Wolfe method developed in [43] for the case of deterministic,
smooth convex optimization and particularly matrix completion.

In this paper, we extend the methodology of the Frank-Wolfe method with in-face
directions to the setting of stochastic non-convex optimization, and we also allow for the
possibility of mixed structured and unstructured variables. In other words, the x variables in
(4.1) represent the variables that we would like to be well-structured (e.g., sparse edges in a
neural network) and the y variables are completely “free.” In Section 4.1, we develop a “hybrid”
Frank-Wolfe steepest descent (FW-SD) method with alternative in-face direction steps that
promote structured solutions in the x variables. Although we refer to this as a single method,
we prove computational guarantees for two versions: the simple version without alternative
direction steps, and the version with alternative direction steps. In the non-convex setting,
the “Frank-Wolfe gap” function is often used to measure convergence (see, e.g., [79, 106]). We
introduce a novel modification of the Frank-Wolfe gap that accounts for the mixed constrained
and unconstrained variable structure, and all of our theoretical computational guarantees
are stated in terms of the modified Frank-Wolfe gap. In particular, if K denotes the total
number of iterations and when the number of samples per iteration is O(K), we demonstrate
O(1/K) convergence in terms of the expected squared modified Frank-Wolfe gap (i.e., its
second moment) for the methods developed herein. In Section 4.2, we extend our method
to problems with block coordinate structure. The computational guarantees for the block
version is in the worst-case the same as the guarantee for the non-block method, however in
practice the block method is effective due to its ability to use different step-sizes for each
block. Section 4.3 presents the results of some numerical experiments on the MNIST and
CIFAR-10 datasets demonstrating the viability of our algorithm.

Stochastic gradient methods (also stochastic approximation) dates back to [110]. For
recent works related to stochastic gradient descent and its variants see, e.g., [94], [21], [82],
[22], and the references therein. Mostly closely related to our work, at least in terms of the
theoretical computational guarantees developed herein, is perhaps [106] who study stochastic
Frank-Wolfe methods with and without variance reduction in the non-convex setting. In
Section 4.1 we comment on how our results relate to [106]. [46] also studies Frank-Wolfe type
methods for stochastic non-convex problems with a composite structure. [61] also studies, in

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 59

the case of convex and related variational inequality problems, Frank-Wolfe type methods
with a related “semi-proximal” decomposable structure. Block coordinate Frank-Wolfe type
methods have been studied in several contexts beginning with [81]. Some other related
references examining variants and extensions of Frank-Wolfe method in the deterministic
setting are [79, 69, 76, 96, 105, 80], and in the stochastic convex setting are [60, 47, 89].

Illustrative application: sparse neural network training. Let us conclude the
introduction by describing an illustrative application to sparse neural network training. In
general, it has been observed that structured neural networks are practically advantageous
for several reasons. Networks with desirable structural properties, that are often tailored to
the application in mind, are more efficient – both computationally and statistically – than
general purpose feedforward networks. A general approach for conceptualizing and training
well-structured networks is through edge weight sparsity. Indeed, a feedforward network
with sparse edges offers a number of benefits including increased interpretability, reduced
memory footprint, and reduced computation at prediction/inference time. In fact, in practical
applications, inference time and memory footprint are sometimes major bottlenecks that are
often overlooked during the training/designing of deep neural networks [26]. Finally, sparse
networks offer a conceptual advantage in that they encompass several popular representations,
such as the widely popular convolutional layers. For more discussion on the benefits of sparse
networks and approaches for constructing them, see [117, 88], for example.

The formulation for training a sparse neural network considered herein is based on `1

regularization, which is a natural and widely popular idea for promoting sparsity as well as
other benefits of regularization [58]. For simplicity, let us consider training a fully connected
feedforward network in the general setting of supervised learning. (This model can easily be
extended to an arbitrary directed acylic graph.) We consider a per-node regularization model
where including an `1 regularization constraint is optional for each node, hence we define
the set NR := {(t, i) : node i in layer t imposes a regularization constraint} and we let δt,i
denote the corresponding regularization parameter. The optimization model we consider is:

min
w

1

n

n∑
i=1

`(ŷw(xi), yi) , s.t. ‖wt−1
i ‖1 ≤ δi,t for all (t, i) ∈ NR , (4.2)

where (x1, y1), . . . , (xn, yn) is the training data (in this section only we use x and y to refer
to data, in later sections they refer to the optimization variables), ŷw(·) : Rd → Rl denotes
the prediction function of the model parameterized by the collection of weights w, and
`(·, ·) : Rl ×Rl → R is a differentiable loss function. Here wt−1

i is the vector of incoming edge
weights at node i in layer t.

We note that a very closely related model, albeit with less flexibility, has been studied
in the improper learning setting by [131]. Let us now point out a few salient features of
the optimization model (4.2). First, note that the variables of (4.2) can be partitioned into
constrained variables and unconstrained variables, corresponding to x and y in (4.1), respec-
tively. Furthermore, the constrained variables in (4.2) have a block coordinate decomposable
structure, wherein each vector wt−1,i for (t, i) ∈ NR is constrained only to lie in its own

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 60

`1 ball of radius δi,t. This type of block coordinate decomposable structure is considered
herein in Section 4.2. Note that the `1 ball constraints are intended to promote sparsity, and
therefore algorithmic schemes that also promote sparsity, such as in-face directions, are highly
desirable in this context. It is possible to also model additional types of network structures
with different types of convex constraints that are amenable to the Frank-Wolfe method and
its extensions. For example, node level sparsity can be modeled with group `1 constraints
and low-rank weight matrices between can be modeled with nuclear norm constraints.

4.1 Stochastic Frank-Wolfe steepest descent method
with in-face directions

Let us now return to studying the generic non-convex stochastic optimization problem (4.1)
where x is constrained to lie in a compact and convex set S and y is unconstrained. As
mentioned, our algorithm is based on using Frank-Wolfe steps in the x variables and steepest
descent steps in the y variables (both with stochastic versions of the partial gradients). Let
us first review some useful notation.

Notation. Let ‖ · ‖X be a given norm on the variables x ∈ Rp, and let ‖ · ‖Y be a
given norm on the variables y ∈ Rq. The diameter of S is diam(S) := maxx,x̄∈S ‖x − x̄‖X ,
and recall that diam(S) < +∞ since S is bounded. The dual norms associated with ‖ · ‖X
and ‖ · ‖Y are denoted by ‖ · ‖X∗ and ‖ · ‖Y ∗, respectively. Recall that ‖ · ‖X∗ is defined by
‖s‖X∗ := maxx:‖x‖≤1 s

Tx and ‖ · ‖Y ∗ is defined analogously. We also use ‖ · ‖ to denote the
“Euclidean combination” of the two norms ‖ · ‖X and ‖ · ‖Y as the norm on (x, y) ∈ Rp × Rq,
whereby ‖(x, y)‖ :=

√
‖x‖2

X + ‖y‖2
Y . Note that the dual norm of ‖ · ‖ is also the “Euclidean

combination” of ‖ · ‖X∗ and ‖ · ‖Y ∗, whereby ‖(s, t)‖∗ =
√
‖s‖2

X∗ + ‖t‖2
Y ∗. The standard

inner product between s ∈ Rp and x ∈ Rp is denoted by sTx, and that the inner product on
Rp × Rq is the sum of the inner products on the two spaces, i.e, (s, t)T (x, y) := sTx + tTy.
The notation ∇ refers to gradients with respect to (x, y), and ∇x and ∇y refers to partial
gradients with respect to x and y, respectively. For a scalar α, sgn(α) is the sign of α, which
is equal to −1 if α < 0, +1 if α > 0 and 0 if α = 0. The notation “ ṽ ← arg maxv∈S{f(v)}”
denotes assigning ṽ to be an arbitrary optimal solution of the problem maxv∈S{f(v)}.

Assumptions. Note that the choice of the norm ‖ · ‖Y directly affects the form of the
steepest descent step. For example, if ‖ · ‖Y is the `2 norm then the steepest descent step
becomes a standard stochastic gradient step. Another relevant example is when ‖ · ‖Y is the
`1 norm, in which case the steepest descent step becomes a stochastic variant of a greedy
coordinate descent step (see, e.g., [97]). On the other hand, the choice of the norm ‖ · ‖X
does not affect the direction of the Frank-Wolfe step in the x variables but it does affect the
step-size strategy employed herein.

We make the following assumptions regarding problem (4.1):

(A1) The objective function F (·, ·) is smooth, i.e., there is a constant L∇ > 0 such that
‖∇F (x, y)−∇F (x̄, ȳ)‖∗ ≤ L∇‖(x, y)− (x̄, ȳ)‖ for all x, x̄ ∈ S and y, ȳ ∈ Rq.

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 61

(A2) The partial gradient with respect to x is uniformly bounded, i.e., there is a constant
Lf > 0 such that ‖∇xf(x, y, z)‖X∗ ≤ Lf for all x ∈ S, y ∈ Rq, and z ∈ Z.

(A3) The stochastic gradient has bounded variance, i.e., there is a constant σ ≥ 0 such that
Ez∼D [‖∇f(x, y, z)−∇F (x, y)‖2

∗] ≤ σ2 for all x ∈ S and y ∈ Rq.

(A4) We have knowledge of the constant L∇ as well as a constant C̄ > 0 satisfying C̄ ≥
max {2L∇ · diam(S)2, Lf · diam(S)}.

Modified Frank-Wolfe gap. Since (4.1) is generally a non-convex problem, we measure
convergence in terms of a modified version of the “Frank-Wolfe” gap function. Let us first
define the function G̃(·, ·) : S × Rq → R+ by G̃(x̄, ȳ) := maxx∈S

{
∇xF (x̄, ȳ)T (x̄− x)

}
. Note

that when the y variables are not present, this is exactly the definition of the “gap function”
due to [63] and studied in the recent literature on Frank-Wolfe. Definition 4.1.1 presents our
modified gap function that accounts for both the x and y variables.

Definition 4.1.1. The modified Frank-Wolfe gap function G(·, ·) : S × Rq → R+ is the
function given by

G(x̄, ȳ) := G̃(x̄, ȳ)

√
2L∇
C̄

+ ‖∇yF (x̄, ȳ)‖Y ∗ ,

where G̃(x̄, ȳ) := maxx∈S
{
∇xF (x̄, ȳ)T (x̄− x)

}
.

Note that Definition 4.1.1 depends on the particular specification of the parameters L∇ and
C̄, which is a slightly undesirable property. However, in the case when C̄ = 2L∇ · diam(S)2,
then we have that

√
2L∇
C̄

= 1
diam(S)

, which is a natural way to normalize the function G̃(·, ·).
Note again that when the y variables are not present then the modified Frank-Wolfe gap
reduces to a scaled version of the standard Frank-Wolfe gap, and when the x variables are
not present then it reduces to the norm of the gradient (which is also a standard metric in
unconstrained non-convex optimization). The use of the modified Frank-Wolfe gap is justified
by Proposition 4.1.1 below, which states that G(x̄, ȳ) = 0 is a necessary condition for any
locally optimal solution (x̄, ȳ).

Proposition 4.1.1. Suppose that (x̄, ȳ) is a locally optimal solution of problem (4.1). Then,
it holds that G(x̄, ȳ) = 0.

The proof of Proposition 4.1.1, as well as all other omitted proofs, is included in the
supplementary materials. In the convex case, we can also use the modified Frank-Wolfe gap
to bound the objective function value optimality gap, as demonstrated by Proposition 4.1.2
below.

Proposition 4.1.2. Suppose that F (·, ·) is convex on S × Rq, and let (x∗, y∗) denote an
optimal solution of (4.1). Consider a given feasible solution (x̄, ȳ) ∈ S × Rq, and let R ≥ 0
be a constant such that ‖ȳ − y∗‖Y ≤ R. Then, it holds that:

F (x̄, ȳ)− F ∗ ≤ max

{√
C̄

2L∇
, R

}
·G(x̄, ȳ) .

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 62

Note that Proposition 4.1.2 requires existence of a constant R ≥ 0 such that ‖ȳ−y∗‖Y ≤ R.
In the case that (x̄, ȳ) corresponds to the iterate of some algorithm that is guaranteed to lie
in a bounded initial level set of the function F (·, ·), then this constant R is guaranteed to
exist. For example, this is always the case for deterministic steepest descent. This level set
condition is not guaranteed to hold for the stochastic algorithms that we study herein but
we would expect this condition to hold in practice (with high probability) after sufficiently
many iterations. We also utilize Lemma 4.1.1 below, which relates a stochastic estimate of
the modified gap function to the above definition.

Lemma 4.1.1. Let (x̄, ȳ) ∈ S × Rq be given and let (ĝ, ĥ) denote an unbiased stochastic
estimate of ∇F (x̄, ȳ) such that E[ĝ] = ∇xF (x̄, ȳ) and E[ĥ] = ∇yF (x̄, ȳ). Define the random
variables:

G̃ := max
x∈S

{
ĝT (x̄− x)

}
, and Ĝ := G̃

√
2L∇
C̄

+ ‖ĥ‖Y ∗ .

Then, it holds that E[Ĝ] ≥ G(x̄, ȳ).

Stochastic Frank-Wolfe steepest descent (FW-SD) method with
in-face directions

We are now ready to present our stochastic Frank-Wolfe steepest descent method for problem
(4.1), which possibly incorporates “alternative directions” and is formally presented below
in Algorithm 8. Algorithm 8 includes a true/false variable, called AlternativeDirections,
which indicates whether to use the alternative direction step in the x variables or not. Each
iteration of Algorithm first uses a stochastic estimate of the gradient ∇F (xk, yk) based on bk
i.i.d. samples to perform standard Frank-Wolfe and steepest descent steps in the variables
x and y, respectively. Note that the step-sizes ᾱk and αk are dynamic random variables
depending on the stochastic gradients ĝk and ĥk, which is in contrast to the step-sizes (such
as constant step-sizes in [106]) that have been previously considered in the literature on
stochastic Frank-Wolfe methods in the non-convex setting. The dynamic step-sizes employed
by Algorithm 8 are more “adaptive” than constant step-sizes and hence can have better
practical performance. If alternative directions are not used, then xk+1 is simply determined
by the stochastic Frank-Wolfe step. Otherwise, for the version with alternative directions,
Step (4.) is the computation of the stochastic alternative direction step, which is based on a
fresh stochastic gradient estimate in Step (4a.). Then, Step (4b.) represents the computation
of a generic alternative direction dk and the corresponding step, which we elaborate on further
below. Finally, note that the output of Algorithm 8 is chosen uniformly at random from all
past iterates, which is also equivalent to randomly sampling the total number of iterations
prior to starting the algorithm.

Theorem 4.1.1 below presents our main computational guarantee for the stochastic Frank-
Wolfe steepest descent method for the non-convex optimization problem (4.1). The statement
of the theorem involves the maximum ratios between the Euclidean norm ‖ · ‖2 and the given

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 63

Algorithm 8 Stochastic Frank-Wolfe steepest descent (FW-SD) Method with alternative
directions
Initialize at x0 ∈ S, y0 ∈ Rq k ← 0, set AlternativeDirections ∈ {TRUE,FALSE}.

At iteration k:
1. Choose number of samples bk, sample zk,1, . . . , zk,bk i.i.d. from D and compute:

ĝk ← 1
bk

∑bk
i=1∇xf(xk, yk, zk,i)

ĥk ← 1
bk

∑bk
i=1∇yf(xk, yk, zk,i)

2. Do Stochastic Frank-Wolfe Step:
x̃k ← arg min

x∈S
{ĝTk x}

G̃k ← ĝTk (xk − x̃k)

x̄k ← xk + ᾱk(x̃k − xk) where ᾱk := G̃k/C̄

If AlternativeDirections = FALSE, then set xk+1 ← x̄k

3. Do Stochastic steepest descent Step:
ỹk ← arg max

y∈Rq
{ĥTk y : ‖y‖Y ≤ 1}

yk+1 ← yk − αkỹk where αk := ‖ĥk‖Y ∗/2L∇

4. If AlternativeDirections = TRUE, then do Stochastic Alternative Direction Step:

4a. Sample žk,1, . . . , žk,bk i.i.d. from D and compute

ǧk ← 1
bk

∑bk
i=1∇xf(x̄k, yk+1, žk,i)

4b. Compute a stochastic alternative direction dk (formally a measurable function of
ǧk)

satisfying ǧTk dk < 0 and ‖dk‖X ≤ diam(S), and set:
Ak := −ǧTk dk

αstop
k := arg max

α≥0
{α : x̄k + αdk ∈ S}

xk+1 ← x̄k + β̄kdk where β̄k := min
{
Ak/C̄, α

stop
k

}
After K total iterations:
Output: (x̂k, ŷk) chosen uniformly at random from (x0, y0), . . . , (xK , yK)

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 64

norm ‖ · ‖, defined by:

κ1 := max
(x,y)6=0

‖(x, y)‖2/‖(x, y)‖ , κ2 := max
(x,y) 6=0

‖(x, y)‖/‖(x, y)‖2 .

(Note that ‖(x, y)‖2 is simply defined by ‖(x, y)‖2 :=
√
‖x‖2

2 + ‖y‖2
2.) Let us also define

κ := κ1κ2. Note that norm equivalence on finite dimensional vector spaces ensures that
κ is finite, and in the case that ‖ · ‖X and ‖ · ‖Y are both the `2 norm then κ = 1. We
also define a constant αAD that is useful in the statement of the theorem as well as later
results. Specifically, we define αAD := 1 if AlternativeDirections = FALSE and αAD := 2 if
AlternativeDirections = TRUE.

Theorem 4.1.1. Consider the Stochastic FW-SD Method, possibly with alternative directions
(Algorithm 8). Under assumptions (A1)-(A4), it holds for all K ≥ 0 that:

E[G(x̂K , ŷK)2] ≤ 8L∇(F (x0, y0)− F ∗)
K + 1

+
4αADκ

2σ2

K + 1

K∑
k=0

1

bk
.

Based on Theorem 4.1.1, setting bk = K at each iteration of Algorithm 8 leads to an
O(1/K) convergence bound whereas setting bk = k would lead to an O(ln(K)/K) bound.
Note that, as compared to previous related results for the Frank-Wolfe method in the
non-convex case developed in [106], Theorem 4.1.1 obtains a similar bound but has a few
differences. In addition to the novel extensions herein of including steepest descent steps
in the y variables and possibly incorporating alternative direction steps in x variables, note
that Theorem 4.1.1 holds for the dynamic step-size rule of Algorithm 8 whereas [106] studies
a constant step-size rule. Also note that Theorem 4.1.1 bounds the second moment of the
modified Frank-Wolfe gap whereas [106] bounds the first moment of the Frank-Wolfe gap.
The proof of Theorem 4.1.1 is included in the supplement.

Examples of alternative “in-face” directions. Step (4b.) of Algorithm 8 is written in
a purposefully generic way that does not specify precisely how to compute the alternative direc-
tion dk so that we may consider a wide framework that accommodates several computationally
advantageous choices. At the same time, the intuitive idea of the role of alternative directions
in the convergence analysis of Algorithm 8 is that alternative directions should do no harm
in terms of the modified Frank-Wolfe gap convergence. Let us now present several concrete
examples of alternative directions, which all have the property of also being in-face directions.
Given any feasible x ∈ S, we denote FS(x) as the minimal face of S that contains the point x.
Given x̄k computed in Step (2.) of Algorithm 8, dk is an in-face direction if x̄k +αdk ∈ FS(x̄k)
for all α ∈ [0, αstop

k]. One possible in-face direction is the “away step” direction introduced in
[52] obtained by choosing dk ← xk − x̌k , where x̌k ← arg maxx∈FS(x̄k){ǧTk x}. Due to the
facial structure of S, in-face directions often preserve certain types of solution structures. For
example, when S is an `1 ball, then an in-face step preserves sparsity so that xk+1 has the the
same signed sparsity pattern as x̄k. In-face directions, including away steps, are also often as
simple to compute or even simpler to compute than the Frank-Wolfe directions. Another

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 65

example of an in-face directions pertinent to the non-convex setting include a regular Frank-
Wolfe direction inside FS(x̄k). Additional discussion of how to compute in-face directions in
the case where S is an `1 ball is included in the supplementary materials.

4.2 Block coordinate extension
In this section, we extend the previously developed stochastic FW-SD method with alternative
directions to the block coordinate setting. We consider an extension of problem (4.1) where
the variables x as well as the feasible region S for x have a block coordinate structure.
Specifically, we presume that x ∈ S ⊆ Rp has a decomposable block coordinate structure
across N ≥ 1 total blocks, whereby x = (x(1), . . . , x(N)), S = S1 × · · · × SN , and each
x(i) ∈ Si ⊆ Rpi where Si is a compact and convex set and with

∑N
i=1 pi = p. For each

i ∈ {1, . . . , N}, let ‖ · ‖X,i denote the given norm on the space of variables x(i) ∈ Rpi with
dual norm denoted by ‖ · ‖X∗,i. The norm ‖ · ‖X on the overall space of x = (x(1), . . . , x(N))
variables is now taken to be the Euclidean combination of all of the block norms, i.e.,
we define ‖x‖X :=

√∑N
i=1 ‖x(i)‖2

X,i. Note that the overall norm on the entire space of

variables (x, y) is the same as before, i.e., ‖(x, y)‖ :=
√
‖x‖2

X + ‖y‖2
Y . Furthermore, recall

that diam(Si) := maxx(i),x̄(i)∈S ‖x(i) − x̄(i)‖X,i. We use the notation ∇(i)
x to refer to partial

gradients with respect to x(i) for each i ∈ {1, . . . , N}.
In this block coordinate setting, we retain the earlier assumptions (A1) and (A3) and

modify assumptions (A2) and (A4) as follows:

(A2- B) For each block i ∈ {1, . . . , N}, the partial gradient with respect to x(i) is uniformly
bounded, i.e., there is a constant Lf,i > 0 such that ‖∇(i)

x f(x, y, z)‖X∗,i ≤ Lf,i for all
x ∈ S, y ∈ Rq, and z ∈ Z.

(A4- B) We have knowledge of the constant L∇ as well as constants C̄i > 0 satisfying
C̄i ≥ max {2L∇ · diam(Si)

2, Lf,i · diam(Si)} for each block i ∈ {1, . . . , N}.

Notice that the decomposable structure of S, i.e., S = S1×· · ·×SN implies that linear opti-
mization problems are completely separable across theN different blocks and that the modified
Frank-Wolfe gap also has a similar decomposable structure. For each block i ∈ {1, . . . , N},
let us define G̃i(·, ·) : S × Rq → R+ by G̃i(x̄, ȳ) := maxx(i)∈Si

{
∇(i)
x F (x̄, ȳ)T (x̄(i) − x(i))

}
.

Then, the function G̃(·, ·) defined in Section 4.1 satisfies G̃(x̄, ȳ) =
∑N

i=1 G̃i(x̄, ȳ) for all
x ∈ S and y ∈ Rq. Moreover, in light of Assumption (A4B), we have that

∑N
i=1 C̄i ≥

2L∇
∑N

i=1 diam(S)2
i = 2L∇diam(S)2. Hence, we define C̄ :=

∑N
i=1 C̄i, which is needed to

specify the modified Frank-Wolfe gap function.
The main idea of the block coordinate version of Algorithm 8 is to replace the stochastic

Frank-Wolfe step in Step (2.) and the alternative direction step in Step (4.) with block
coordinate versions that use different step-sizes in each of the different blocks. Subroutines 9
and 10 below precisely describe how the block variants of these two steps work.

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 66

Subroutine 9 Block Coordinate Stochastic Frank-Wolfe Step
For each i = 1, . . . , N , set:

x̃
(i)
k ← arg min

x(i)∈Si
{(ĝ(i)

k)Tx(i)}

G̃i
k ← (g̃

(i)
k)T (x

(i)
k − x̃

(i)
k)

x̄
(i)
k ← x

(i)
k + ᾱik(x̃

(i)
k − x

(i)
k) where ᾱik := G̃i

k/C̄i.

Subroutine 10 Block Coordinate Stochastic Alternative Direction Step
4a. Sample žk,1, . . . , žk,bk i.i.d. from D and compute

ǧk ← 1
bk

∑bk
i=1∇xf(x̄k, yk+1, žk,i)

4b. Compute a stochastic alternative direction dk (formally a measurable function of
ǧk) satisfying (ǧ

(i)
k)Td

(i)
k < 0 and ‖d(i)

k ‖X,i ≤ diam(Si) for all i ∈ {1, . . . , N}. For each
i ∈ {1, . . . , N}, set:

Aik := −(ǧ
(i)
k)Td

(i)
k

αstop,i
k := arg max

α≥0
{α : x̄

(i)
k + αd

(i)
k ∈ Si}

x
(i)
k+1 ← x̄

(i)
k + β̄ikd

(i)
k , β̄ik := min

{
Aik/C̄i, α

stop,i
k

}

Theorem 4.2.1. Consider the Block Coordinate Stochastic FW-SD Method, possibly with
alternative directions, i.e., Algorithm 8 with Step (2.) replaced with Subroutine 9 and Step
(4.) replaced with Subroutine 10. Under assumptions (A1), (A2B), (A3), and (A4B), it holds
for all K ≥ 0 that:

E[G(x̂K , ŷK)2] ≤ 8L∇(F (x0, y0)− F ∗)
K + 1

+
4αADκ

2σ2

K + 1

K∑
k=0

1

bk
,

where the modified Frank-Wolfe gap G(·, ·) (Definition 4.1.1) is defined using C̄ :=
∑N

i=1 C̄i.

4.3 Numerical Experiments
Let us now discuss our illustrative numerical experiments wherein we applied the block
coordinate version Algorithm 8 studied in Section 4.2 to the `1 regularized neural network
training problem (4.2) on both synthetic and real datasets. We used PyTorch [101] to write
an optimizer that partitions the layers into: (i) Frank-Wolfe layers whose weights correspond

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 67

to the x variables in (4.1), and (ii) SGD layers whose weights correspond to the y variables
in (4.1) and with the `2 norm used for the steepest descent steps. For the type of in-face
direction in the Frank-Wolfe layers, we used away steps on the `1 ball as described earlier
and elaborated on further in the supplementary materials. We initialize the weights of the
Frank-Wolfe layers in such a way that each node has at least one non-zero edge coming in
and another coming out. Since the Lipschitz constant may not be known in practice, we used
cross validation on a held out validation set to tune the parameter L∇ over the range L∇ = 4i

with i ∈ {−1, 0, . . . , 6}. Finally, since our method is not much more complex than SGD
and is supported by rigorous computational guarantees, our experiments are intended to be
illustrative. In particular, we would like to illustrate the potential advantages of incorporating
Frank-Wolfe layers on top of layers that use standard SGD or SGD variants (e.g., momentum).
Therefore, we only perform comparisons with the basic SGD method which uses the standard
PyTorch initialization. We also try both variants of the block coordinate version of Algorithm
8, referred to as SFW (Stochastic Frank-Wolfe Steepest Descent without alternative in-face
directions) and SFW-IF (Stochastic Frank-Wolfe Steepest Descent with alternative in-face
directions) herein. (Note that, out of fairness with respect to the number of stochastic
gradient calls, we allow SFW to have twice as many iterations as SFW-IF by counting each
iteration of Algorithm 8 as two iterations in the case when AlternativeDirections = TRUE.)
Finally, note that all methods were run for 25 epochs using a batch size of 250 data points.

We experimented with a multilayer perceptron and a convolutional network for MNIST
and a convolutional network for CIFAR-10. The convolutional networks for MNIST and
CIFAR-10 were taken from PyTorch tutorials [104, 103], while the multilayer perceptron is
simply a three layer network taken from a Keras tutorial [75]. For the multilayer perceptron
MNIST example, we treat the first two layers as Frank-Wolfe layers. For the convolutional
CIFAR-10 and MNIST examples, we treated the convolutional layers as SGD layers and the
next two dense layers after the convolutional layers as Frank-Wolfe layers. The bias terms
are always incorporated into the SGD variables. For SFW and SFW-IF, we cross validated δ
separately for each layer on a grid of values {1, 5, 10, 50, 100}. Each of the examples has two
Frank-Wolfe layers, and for each of these layers we report the average percent of non-zero
edges going into each node (we consider any value less than 0.001 to be 0) of the solutions
returned after 25 epochs by the three methods. For the same solutions returned by the three
methods, we examined how the test accuracy is affected when we do hard thresholding to
retain only the top θ% of largest magnitude edges in the Frank-Wolfe layers. The results are
displayed in Table 4.1, which shows that SFW-IF and SFW outperform SGD in these two
metrics. All experiments show that SFW and SFW-IF are more robust to hard-thresholding
than SGD. For example, when we zero out 95% of the entries in MNIST-MLP the solution
found by SFW-IF only losses 0.4% of accuracy, while SGD loses more than 17%. Interestingly,
on the convolutional networks, SFW can be more robust than SFW-IF for very small values
of the hard-thresholding parameter θ. Also, the results show that both SFW and SFW-IF
find solutions in which most of the weight entries have very small values (< 0.001), while SGD
simply does not promote this behaviour. We also performed experiments on synthetically
generated data which are described in detail in the supplementary materials.

CHAPTER 4. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 68

MNIST and CIFAR-10 Results

MNIST-MLP MNIST-Conv CIFAR-10

Metric SFW-IF SFW SGD SFW-IF SFW SGD SFW-IF SFW SGD

Layer 1 Avg. NNZ (%) 10.05 7.26 97.28 9.71 1.69 97.23 29.27 15.12 98.08
Layer 2 Avg. NNZ (%) 1.55 0.73 97.79 27.34 13.08 98.78 7.27 13.26 98.90

Accuracy (%) w/ Top 100% 96.88 96.49 98.25 98.79 98.50 99.11 54.72 53.12 57.76
Accuracy (%) w/ Top 50% 96.88 96.49 98.12 98.79 98.50 99.07 54.71 53.12 55.69
Accuracy (%) w/ Top 25% 96.88 96.46 97.73 98.82 98.50 98.63 54.33 53.12 49.04
Accuracy (%) w/ Top 10% 96.73 96.22 96.80 98.58 98.49 96.44 44.82 52.57 37.08
Accuracy (%) w/ Top 5% 96.49 94.52 81.12 90.8 98.06 84.38 32.68 49.5 23.63

Table 4.1: Comparison in terms of accuracy and percentage of non-zero terms between our
proposed Stochastic Frank-Wolfe (SFW) method both with and without In-Face directions (IF)
with respect to a traditional subgradient descent approach using the MNIST and CIFAR-10
datasets.

69

Appendix A

Optimal Bidding, Allocation, and
Budget Spending for a Demand-Side
Platform with Generic Auctions

A.1 Summary of Notation
Table A.1 provides a summary of the notation used herein.

A.2 Omitted Proofs

Proofs for Section 2.2

Proof of Proposition 2.2.1:

Proof. Let P := {(x,b) ∈ S : u(v(x,b)) > −∞}. By the assumption that dom(u(·))∩V 6= ∅,
we have that P 6= ∅ as well. Note also that we have P = {(x,b) ∈ S : v(x,b) ∈ dom(u(·))},
which is the inverse image of a closed set dom(u(·)) (by part (i) of Assumption 2.2.1) under a
continuous function v(·, ·). By a standard result in real analysis this implies that P is closed,
and hence compact since S is bounded. Note also that u(v(·, ·)) is continuous on P by part
(ii) of Assumption 2.2.1. Now, we have that:

F ∗ = sup
(x,b)∈S

{π(x,b) + u (v(x,b))} = sup
(x,b)∈P

{π(x,b) + u (v(x,b))} .

By the previous discussion, the expression on the right side of the above is a supremum of a
continuous function over a compact set and therefore the Weierstrass Theorem ensures that
F ∗ is finite and attained.

Proof of Proposition 2.2.2:

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 70

Proof. Let i ∈ I and λ ∈ R|K| be given. For ease of notation, define the function φi(·, ·;λ) :
Xi × Bi → R by φi(xi,bi;λ) := πi(xi,bi)− λ>vi(xi,bi). By the reasoning in (2.7), we have
that

φi(xi,bi;λ) =
∑
k∈Ki

hi(bik; rik(1− λk))sixik for all xi ∈ Xi and bi ∈ Bi . (A.1)

By the definition of b∗i (·) in Assumption 2.2.3, we have that

π̃ik(λ) = hi(b
∗
ik(λ); rik(1−λk)) = hi(b

∗
i (rik(1−λk)); rik(1−λk)) ≥ hi(bik; rik(1−λk)) for all bik ∈ [0, b̄i] .

Let us now fix xi ∈ Xi arbitrarily. Since xik ≥ 0 for all k ∈ Ki and since si ≥ 0, the
above inequality implies that that π̃ik(λ)sixik ≥ hi(bik; rik(1 − λk))sixik for all bik ∈ [0, b̄i];
summing these inequalities over k ∈ Ki and using (A.1) as well as the fact that xi was selected
arbitrarily yields:

φi(xi,b
∗
i (λ);λ) =

∑
k∈Ki

π̃ik(λ)sixik ≥ φi(xi,bi;λ) for all xi ∈ Xi and bi ∈ Bi . (A.2)

It is straightforward to see that the greedy selection in Step (2.) of Algorithm 2 leads to an
optimal solution of the corresponding linear optimization problem over the simplex-like set
Xi with coefficients π̃ik(λ)sixik, i.e., it holds that x∗i (λ) ∈ arg maxxi∈Xi

{∑
k∈Ki π̃ik(λ)sixik

}
.

Therefore (A.2) implies that

φi(x
∗
i (λ),b∗i (λ);λ) ≥ φi(xi,b

∗
i (λ);λ) ≥ φi(xi,bi;λ) for all xi ∈ Xi and bi ∈ Bi , (A.3)

from which we conclude that (x∗i (λ),b∗i (λ)) ∈ arg max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
.

Finally, to see that gi := −vi(x∗i (λ),b∗i (λ)) ∈ ∂qi(λ), let λ̄ ∈ R|K| be given and note that:

qi(λ̄) = max
(xi,bi)∈Si

{
πi(xi,bi)− λ̄>vi(xi,bi)

}
≥ πi(x

∗
i (λ),b∗i (λ))− λ̄>vi(x

∗
i (λ),b∗i (λ))

= πi(x
∗
i (λ),b∗i (λ))− λ>vi(x

∗
i (λ),b∗i (λ)) + (λ− λ̄)>vi(x

∗
i (λ),b∗i (λ))

= qi(λ) + g>i (λ̄− λ) .

Proof of Theorem 2.3.1

The proof of Theorem 2.3.1 involves several intermediate results. Recall the notation
V = {v(x,b) : (x,b) ∈ S} and dom(u(·)) = {v ∈ R|K| : u(v) > −∞}. We start with
Lemma A.2.1, which demonstrates that Slater’s Condition, int(dom(u(·))) ∩ V 6= ∅, is a
sufficient condition to guarantee the existence of a dual optimal solution λ∗. Throughout
this subsection, ‖ · ‖ denotes the `2-norm ‖ · ‖2.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 71

Lemma A.2.1. Suppose that problem (2.1) satisfies Slater’s Condition, int(dom(u(·)))∩V 6=
∅. Then, the dual objective function Q(·) = q(·) + p(·) has compact level sets and there exists
an optimal solution λ∗ of the dual problem (2.6).

Proof. Let us first argue that Q(·) = q(·) + p(·) is a proper, lower semi-continuous, convex
function. Equivalently, this means that Q(·) is a proper and closed convex function. Recall
that q(·) is defined by q(λ) := max(x,b)∈S

{
π(x,b)− λ>v(x,b)

}
for any λ ∈ R|K|. It follows

that q(·) is convex and dom(q(·)) = R|K|, hence q(·) is globally continuous. Moreover p(·),
defined by p(λ) := supv∈R|K|

{
λ>v + u(v)

}
for any λ ∈ R|K|, is the convex conjugate of

−u(·) and as such is lower semi-continuous. Additionally, by part (i) of Assumption 2.2.1,
we have that dom(u(·)) is non-empty and therefore it must be the case that dom(p(·)) is
non-empty as well. Therefore, we have that Q(·) = q(·) + p(·) is lower semi-continuous and
dom(Q(·)) = dom(p(·)) is non-empty, which means that Q(·) is also proper.

Now let α ∈ R be given and consider the level set Lα := {λ : Q(λ) ≤ α}. Since, as
argued above, Q(·) is a closed convex function, we have that Lα is a closed set. It remains to
demonstrate that Lα is also bounded. By way of contradiction, suppose that there exists
a sequence {λt}∞t=0 such that λt ∈ Lα for all t ≥ 0 and ‖λt‖ → ∞. By Slater’s Condition,
int(dom(u(·))) ∩ V 6= ∅, we have that there exists (x̄, b̄) ∈ S and ε > 0 such that, for all
v ∈ R|K|, it holds that:

‖v − v(x̄, b̄)‖ < ε ⇒ u(v) > −∞ . (A.4)

Let us define vt := v(x̄, b̄) + (ε/2)λt

‖λt‖ for all t ≥ 0. Then, by (A.4), we have that u(vt) > −∞.
Additionally, we have that:

π(x̄, b̄) + u(vt) ≤ π(x̄, b̄)− λt
>
vt + p(λt)

= π(x̄, b̄)− λt
>
v(x̄, b̄)− λt

>
(

(ε/2)λt

‖λt‖

)
+ p(λt)

= π(x̄, b̄)− λt
>
v(x̄, b̄) + p(λt)− (ε/2)‖λt‖

≤ q(λt) + p(λt)− (ε/2)‖λt‖
= Q(λt)− (ε/2)‖λt‖
≤ α− (ε/2)‖λt‖ ,

where the first inequality uses u(vt) = infλ∈R|K|
{
−λ>vt + p(λ)

}
, the second inequality

uses q(λt) = max(x,b)∈S

{
π(x,b)− λt

>
v(x,b)

}
, and the third inequality uses λt ∈ Lα.

In particular, since ‖λt‖ → ∞, the above chain of inequalities implies that {u(vt)}∞i=0 is
unbounded below.

Now, note that ‖vt − v(x̄, b̄)‖ = ε/2 for all t ≥ 0. Hence, by the Bolzano-Weierstrass
Theorem, we assume without loss of generality that there exists ṽ ∈ R|K| with ‖ṽ−v(x̄, b̄)‖ =
ε/2 such that vt → ṽ. Then, (A.4) implies that u(ṽ) > −∞. Moreover, by the continuity
of u(·) on dom(u(·)) stated in Assumption 2.2.1, we have that u(vt) → u(ṽ). However,

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 72

u(vt) → u(ṽ) contradicts the previous conclusion that {u(vt)}∞i=0 is unbounded below.
Therefore, it must be the case that Lα is a bounded set.

Finally, letting λ̄ ∈ dom(Q(·)) be given, we have that the level set LQ(λ̄) is a non-empty
and compact set. By the extension of the Weierstrass Extreme Value Theorem to lower
semi-continuous functions, we have that Q(·) attains its minimum value on LQ(λ̄) at some
λ∗ ∈ LQ(λ̄). By the definition of LQ(λ̄), λ∗ must also then be the global minimizer of Q(·)
and hence is an optimal solution of the dual problem (2.6).

The next lemma demonstrates that the IMC Condition (Definition 2.3.1) is a special case
of the UBP Condition (Definition 2.3.2).

Lemma A.2.2. Suppose that impression type i ∈ I satisfies the Increasing Marginal Cost
(IMC) Condition. Then, impression type i also satisfies the Unique Bid Price (UBP) Condi-
tion.

Proof. Let r ∈ R be given and recall the definition of the expected profit function is given by
hi(b; r) := [r − βi(b)]ρi(b) = rρi(b)− ci(b), where ci(b) = ρi(b)βi(b). By Assumption 2.2.2 we
have that hi(b; r) is continuous in b on [0, b̄i], and by the IMC Condition we have that hi(b; r) is
differentiable on (0, b̄i). Taking the derivative with respect to b yields h′i(b; r) = ρ′i(b)(r−gi(b))
for all b ∈ (0, b̄i), where recall that gi(b) :=

c′i(b)

ρ′i(b)
. The second part of the IMC Condition states

that gi(b) is strictly increasing on (0, b̄i), which implies that r− gi(b) is strictly decreasing on
(0, b̄i). Moreover, the first part of IMC Condition states that ρ′i(b) > 0 on (0, b̄i). Thus, these
two properties imply that h′i(b; r) must satisfy exactly one of the following three possibilities:
(i) h′i(b; r) > 0 for all b ∈ (0, b̄i), (ii) h′i(b; r) < 0 for all b ∈ (0, b̄i), or (iii) there exists b̂ ∈ (0, b̄i)
such that h′i(b; r) > 0 for all b ∈ (0, b̂), h′i(b̂; r) = 0, and h′i(b; r) < 0 for all b ∈ (b̂, b̄i). By
continuity of hi(b; r) on [0, b̄i], case (i) implies that b̄i is the unique maximizer of hi(b; r) on
[0, b̄i], while case (ii) implies that 0 is the unique such maximizer. Finally, in case (iii) it is
clear that b̂ is the unique such maximizer. In all cases, there is a unique maximizer of hi(b; r)
on [0, b̄i] and thus the UBP condition is satisfied.

Recall that the part of the dual function associated with impression type i ∈ I is qi(·) :
R|K| → R, which is defined by qi(λ) := max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
, where we

also define Xi := {xi ∈ R|Ki| :
∑
k∈Ki

xik ≤ 1, and xik ≥ 0 for all k ∈ Ki}, Bi := [0, b̄i]
|Ki|, and

Si := Xi×Bi. Let us additionally define S∗i (λ) := arg max(xi,bi)∈Si

{
πi(xi,bi)− λ>vi(xi,bi)

}
.

The next lemma is simply a statement of Danskin’s Theorem [19, p. 737] as well as the
subdifferential sum rule [111, p. 223] in our setting.

Lemma A.2.3. For any i ∈ I and λ ∈ R|K|, it holds that:

∂qi(λ) = conv
{
−vi(x̃i, b̃i) : (x̃i, b̃i) ∈ S∗i (λ)

}
. (A.5)

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 73

Note that ∂qi(λ) is non-empty for all i ∈ I and λ ∈ R|K|. Moreover, for any λ ∈ R|K|, it
holds that ∂Q(λ) is non-empty if and only if ∂p(λ) is non-empty and:

∂Q(λ) =
∑
i∈I

∂qi(λ) + ∂p(λ) . (A.6)

Proof. For ease of notation, recall the function φi(·, ·, ·) : Xi × Bi × R|K| → R defined by
φi(xi,bi,λ) := πi(xi,bi)−λ>vi(xi,bi), and note that S∗i (λ) := arg max(xi,bi)∈Si {φi(xi,bi;λ)}.
Observe that φi(·, ·, ·) is jointly continuous in all of its arguments by Assumption 2.2.2,
and is linear (hence convex and differentiable) in λ for any fixed (xi,bi). Moreover,
∇λφi(xi,bi,λ) = −vi(xi,bi) is also continuous in (xi,bi) by Assumption 2.2.2. Thus,
the conditions of Danskin’s Theorem [19, p. 737] are satisfied and we may conclude that
(A.5) holds.

The fact that ∂qi(λ) is non-empty follows form continuity of φi(·, ·, ·) and compactness
of Si. Since dom(p(·)) is guaranteed to be non-empty and dom(qi(·)) = R|K| for all i ∈ I,
we may apply Theorem 23.8 of [111, p. 223] to conclude that (A.6) holds for any λ ∈ R|K|.
Thus, it must be the case that ∂Q(λ) is non-empty if and only if ∂p(λ) is non-empty.

We will now strengthen the above lemma when the UBP Condition holds. As defined in
Section 2.3, recall that whenever the UBP Condition holds we use the notation b∗i (λ) to denote
the vector in R|Ki| whose kth component is equal to b∗i (rik(1−λk)) = arg maxb∈[0,b̄i]

hi(b; rik(1−
λk)), the unique maximizer of the profit expression hi(b; rik(1−λk)) = [rik(1−λk)−βi(b)]ρi(b)
on [0, b̄i]. Let us also define X ∗i (λ;bi) := arg maxxi∈Xi

{
πi(xi,bi)− λ>vi(xi,bi)

}
as the

maximizing set of allocation variables xi in the definition of qi(λ) given that the bid price
variables are fixed at bi. The following lemma provides a more precise characterization of
∂qi(λ) under the UBP Condition.

Lemma A.2.4. Suppose that impression type i ∈ I satisfies the Unique Bid Price (UBP)
Condition. Then, for any λ ∈ R|K|, it holds that:

∂qi(λ) = {−vi(x̌i,b∗i (λ)) : x̌i ∈ X ∗i (λ;b∗i (λ))} . (A.7)

Furthermore, for any x̌i ∈ X ∗i (λ;b∗i (λ)), it holds that (x̌i,b
∗
i (λ)) ∈ S∗i (λ).

Proof. Let us define two sets of interest: V̌i(λ) := {−vi(x̌i,b∗i (λ)) : x̌i ∈ X ∗i (λ;b∗i (λ))},
which appears on the right-hand side of (A.7), and Ṽi(λ) :=

{
−vi(x̃i, b̃i) : (x̃i, b̃i) ∈ S∗i (λ)

}
,

which appears inside the convex hull operation on the right-hand side of (A.5). We will now
show that, under the UBP Condition, we have V̌i(λ) = Ṽi(λ). First, let x̌i ∈ X ∗i (λ;b∗i (λ)) be
given. Regardless of the whether the UBP Condition holds or not, following exactly the same
logic as in the proof of Proposition 2.2.2, particularly (A.3), yields that (x̌i,b

∗
i (λ)) ∈ S∗i (λ).

Notice that this then implies that V̌i(λ) ⊆ Ṽi(λ).
To see that Ṽi(λ) ⊆ V̌i(λ), let (x̃i, b̃i) ∈ S∗i (λ) be given. By the reasoning in (2.7), we

have that
πi(x̃i, b̃i)− λ>vi(x̃i, b̃i) =

∑
k∈Ki

hi(b̃ik; rik(1− λk))six̃ik . (A.8)

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 74

Let k ∈ Ki be given and let us consider two possible cases: (i) x̃ik > 0 and (ii) x̃ik = 0. In
case (i), since (x̃i, b̃i) maximizes the expression in (A.8) and since si > 0 by assumption, it
must be the case that b̃ik ∈ arg maxb∈[0,b̄i]

hi(b; rik(1− λk)). Since the UBP Condition holds,
this implies that b̃ik = b∗ik(λ), where b∗ik(λ) denotes the kth component of b∗i (λ). Moreover,
we therefore conclude that vik(x̃ik, b̃ik) = vik(x̃ik, b

∗
ik(λ)) for all k ∈ Ki such that x̃ik > 0.

Furthermore, from (A.8), we then have:

πi(x̃i, b̃i)− λ>vi(x̃i, b̃i) = πi(x̃i,b
∗
i (λ))− λ>vi(x̃i,b

∗
i (λ)) ,

which also implies that x̃i ∈ X ∗i (λ;b∗i (λ)) since (x̃i, b̃i) ∈ S∗i (λ). In case (ii), since x̃ik = 0
we have that vik(x̃ik, b̃ik) = rikρi(b̃ik)six̃ik = 0 = vik(x̃ik, b

∗
ik(λ)). Also, whenever k 6∈ Ki,

we have that vik(x̃ik, b̃ik) = 0 = vik(x̃ik, b
∗
ik(λ)) by definition. Thus, we conclude that

vi(x̃i, b̃i) = vi(x̃i,b
∗
i (λ)). Since we have already argued that x̃i ∈ X ∗i (λ;b∗i (λ)), this implies

that −vi(x̃i, b̃i) = −vi(x̃i,b∗i (λ)) ∈ V̌i(λ).
Now, since the expression πi(xi,bi) − λ>vi(xi,bi) is linear in xi given fixed values of

bi and λ and since Xi is a polytope, we have that X ∗i (λ;b∗i (λ)) is a polytope (hence
convex). Moreover since vi(xi,bi) is a linear map in xi given fixed values of bi, we have that
V̌i(λ) := {−vi(x̌i,b∗i (λ)) : x̌i ∈ X ∗i (λ;b∗i (λ))} is a polytope and therefore convex as well.
Thus, since V̌i(λ) = Ṽi(λ) and by (A.5) we have that ∂qi(λ) = conv(V̌i(λ)) = V̌i(λ), which
is exactly what is stated in (A.7).

We are now ready to complete the proof of Theorem 2.3.1.
Proof of Theorem 2.3.1:

Proof. By Lemma A.2.1, there exists an optimal solution λ∗ of the dual problem (2.6) and,
by the general optimality conditions for convex problems, we have that 0 ∈ ∂Q(λ∗). Since
Lemma A.2.2 implies that the UBP Condition is guaranteed to hold for all impression
types i ∈ I, we can apply Lemma A.2.4. In particular, by (A.6) and (A.7), there exist
x̌i ∈ X ∗i (λ∗;b∗i (λ

∗)) for each i ∈ I and y ∈ ∂p(λ∗) such that:

0 =
∑
i∈I

−vi(x̌i,b∗i (λ∗)) + y .

Let x̌ ∈ R|E| and b∗(λ∗) ∈ R|E| denote enlarged vectors of all of the x̌i and b∗i (λ
∗) subvectors,

respectively. Then by definition we have that v(x̌,b∗(λ∗)) =
∑

i∈I vi(x̌i,b
∗
i (λ

∗)), and the
above equality implies that v(x̌,b∗(λ∗)) ∈ ∂p(λ∗). The subgradient inequality then states
that:

p(λ) ≥ p(λ∗) + v(x̌,b∗(λ∗))>(λ− λ∗) for all λ ∈ R|K| .

Rearranging the above inequality and using the conjugate representation of u(·) given by the
Fenchel-Moreau Theorem yields:

u(v(x̌,b∗(λ∗))) = inf
λ∈R|K|

{
−λ>v(x̌,b∗(λ∗)) + p(λ)

}
= − (λ∗)>v(x̌,b∗(λ∗)) + p(λ∗) .

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 75

Adding π(x̌,b∗(λ∗)) to both sides of the above and using (x̌i,b
∗
i (λ)) ∈ S∗i (λ) from Lemma

A.2.4 yields:

F (x̌,b∗(λ∗)) = π(x̌,b∗(λ∗)) + u(v(x̌,b∗(λ∗)))

= π(x̌,b∗(λ∗))− (λ∗)>v(x̌,b∗(λ∗)) + p(λ∗)

= q(λ∗) + p(λ∗)

= Q(λ∗) .

Therefore, we have shown that F (x̌,b∗(λ∗)) = Q(λ∗) = Q∗, which, by weak duality, implies
that (x̌,b∗(λ∗)) is an optimal solution of the primal problem (2.1) and that we have F ∗ = Q∗,
i.e., there is zero duality gap.

Notice that that above reasoning applies to any given dual optimal solution λ∗. In
particular, suppose that λ∗ has been computed by solving the dual problem (2.6) to exact
optimality during Phase 1 of Algorithm 3. Let x∗ denote the allocation vector computed during
Phase 2 of Algorithm 3. Then, presuming that we solve the restricted primal problem (2.8)
given b∗(λ∗) to exact optimality, we have by definition that F (x∗,b∗(λ∗)) ≥ F (x̌,b∗(λ∗)) =
F ∗, which verifies that Algorithm 3 computes an optimal solution (x∗,b∗(λ∗)) of the primal
problem (2.1).

Proofs for Section 2.3

Proof of Proposition 2.3.1:

Proof. Without loss of generality, we presume throughout this proof that b̄i > 0. By
assumption Ci is a continuous random variable with CDF ρi(·), hence ρ′i(b) = fCi(b) for all
b ∈ (0, b̄i). Thus, the assumption that fCi(b) > 0 for all b ∈ [0, b̄i] implies that item (1.)
of the IMC Condition holds. To demonstrate that item (2.) of the IMC Condition holds,
notice that for any b ∈ (0, b̄i) we have that βi(b) = E[Ci | Ci < b] = 1

ρi(b)

∫ b
0
xfCi(x)dx, hence

ci(b) =
∫ b

0
xfCi(x)dx and

gi(b) =
c′i(b)

ρ′i(b)
=
bfCi(b)

fCi(b)
= b .

Hence, gi(·) is strictly increasing on (0, b̄i).

Proof of Proposition 2.3.2:

Proof. Without loss of generality, we presume throughout this proof that b̄i > 0. Let us first
consider the case where ρi(·) is differentiable, strictly increasing, and concave on (0, b̄i). Since
ρi(·) is differentiable and strictly increasing, we immediately have that item (1.) of the IMC
Condition holds. To demonstrate that item (2.) of the IMC Condition holds, recall that
βi(b) = b for all b ∈ [0, b̄i] and hence, for any b ∈ (0, b̄i), the product rule yields

gi(b) =
c′i(b)

ρ′i(b)
=

(ρi(b)b)
′

ρ′i(b)
=
ρ′i(b)b+ ρi(b)

ρ′i(b)
= b+

ρi(b)

ρ′i(b)
. (A.9)

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 76

Now since ρi(·) is concave and strictly increasing on (0, b̄i) we have that ρ′i(·) is non-increasing
on (0, b̄i), therefore gi(·) is strictly increasing on (0, b̄i).

Let us now consider the case where ρi(·) is the CDF of the maximum of n ≥ 1 i.i.d.
uniform random variables on the interval [0, c̄i] with c̄i ≥ b̄i > 0. A quick calculation yields
that ρi(b) =

(
b
c̄i

)n
for b ∈ [0, b̄i]. Hence, we have that ρ′i(b) = nbn−1

c̄ni
> 0 for b ∈ (0, b̄i), which

proves that item (1.) of the IMC Condition holds. To demonstrate that item (2.) of the IMC
Condition holds note that, by equation (A.9), gi(b) = b(1 + 1/n) which is strictly increasing
on (0, b̄i).

Proofs for Section 2.3

Proof of Proposition 2.3.3:

Proof. Recall that b∗i (λ) ∈ Bi := [0, b̄i]
|Ki| ⊆ R|Ki| is defined component-wise for each

campaign k ∈ Ki by b∗ik(λ) := b∗i (rik(1− λk)) = arg maxb∈[0,b̄i]
hi(b; rik(1− λk)), which is the

unique maximizer of the profit expression hi(b; rik(1−λk)) = [rik(1−λk)−βi(b)]ρi(b) on [0, b̄i]
under the assumed UBP condition. Thus, it suffices to demonstrate that b∗i (·) is continuous
in its argument r ∈ R, from which continuity of b∗i (·) on R|K| directly follows.

Let r̄ ∈ R be given and let {rt}∞t=0 be a sequence satisfying rt → r̄ as j →∞. We wish
to demonstrate that b∗i (rt) → b∗i (r̄) as j → ∞. Since b∗i (rt) ∈ [0, b̄i], which is a compact
set, a standard result in real analysis states that b∗i (rt)→ b∗i (r̄) if and only if all convergent
subsequences of the sequence {b∗i (rt)}∞j=0 converge to the (identical) value of b∗i (r̄). Therefore,
without loss of generality, we assume that b∗i (rt) → b̃ for some b̃ ∈ [0, b̄i], and we wish to
demonstrate that b̃ = b∗i (r̄). Let us first demonstrate that hi(b̃; r̄) = hi(b

∗
i (r̄); r̄). By the

definition of b∗i (r̄), we clearly have that hi(b̃; r̄) ≤ hi(b
∗
i (r̄); r̄). Now, suppose by way of

contradiction that hi(b̃; r̄) < hi(b
∗
i (r̄); r̄). Since hi(b; r) := [r− βi(b)]ρi(b) is jointly continuous

in r ∈ R and b ∈ [0, b̄i] and since rt → r̄ and b∗i (rt)→ b̃, we have that there exists δ > 0 such
that:

hi(b
∗
i (r

t); rt) ≤ hi(b
∗
i (r̄); r̄)− δ for all t sufficiently large.

Combining the above with the definition of b∗i (rt) yields:

hi(b
∗
i (r̄); r

t) ≤ hi(b
∗
i (r

t), rt) ≤ hi(b
∗
i (r̄); r̄)− δ for all t sufficiently large.

Now, taking the limit of the left side of the above as t→∞ yields hi(b∗i (r̄); r̄) ≤ hi(b
∗
i (r̄); r̄)−δ,

which is a contradiction. Therefore, we conclude that hi(b̃; r̄) = hi(b
∗
i (r̄); r̄). Finally, by the

UBP condition, it must be the case that b̃ = b∗i (r̄).

Proof of Proposition 2.3.4:

Proof. Let b̄ ∈ B be given satisfying int(dom(u(·)))∩V(b̄) 6= ∅, and let {bt}∞t=0 be a sequence,
with bt ∈ B for all t ≥ 0, such that bt → b̄. We wish to demonstrate that F ∗(bt)→ F ∗(b̄).

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 77

The condition int(dom(u(·))) ∩ V(b̄) 6= ∅ means that there exists x̂ ∈ X and ε > 0 such
that v(x̂, b̄) ∈ int(dom(u(·))), i.e., for all v ∈ R|K|, it holds that:

‖v − v(x̂, b̄)‖ < ε ⇒ u(v) > −∞ . (A.10)

By the continuity of v(x̂, ·) and without loss of generality, we assume that ‖v(x̂,bt) −
v(x̂, b̄)‖ < ε for all t ≥ 0. Thus, by (A.10), we have that v(x̂,bt) ∈ dom(u(·)), which means
that problem (2.8) given bt is feasible, i.e., we have dom(u(·)) ∩ V(bt) 6= ∅. Therefore, by
Proposition 2.2.3, F ∗(bt) is finite and there exists xt ∈ X such that:

F ∗(bt) = π(xt,bt) + u(v(xt,bt)) for all t ≥ 0 . (A.11)

Additionally, there exists x̄ ∈ X such that:

F ∗(b̄) = π(x̄, b̄) + u(v(x̄, b̄)) . (A.12)

Let us now demonstrate that all of the F ∗(bt) values are bounded on an interval. Define the
set P := {(x,b) ∈ S : u(v(x,b)) > −∞}. As previously argued in the proof of Proposition
2.2.1, P is a compact set and the objective function π(·, ·) + u(v(·, ·)) is continuous on P.
Therefore, the Weierstrass extreme value theorem implies that there exists finite values F∗
and F ∗ such that π(x,b) + u(v(x,b)) ∈ [F∗, F

∗] for all (x,b) ∈ P. Finally, note that we
clearly have (xt,bt) ∈ P , hence by (A.11) we have that F ∗(bt) ∈ [F∗, F

∗] for all t ≥ 0.
Now, since we have demonstrated that the F ∗(bt) values are bounded on a compact

interval [F∗, F
∗], a standard result from real analysis states that F ∗(bt) → F ∗(b̄) if and

only if all convergent subsequences of the sequence {F ∗(bt)} converge to the (identical)
value of F ∗(b̄). Thus, let {F ∗(bj)} denote a convergent subsequence of {F ∗(bt)}, whereby
F ∗(bj) = F ∗(bt(j)) for all j ≥ 0 and F ∗(bj)→ F̃ as j →∞. Consider the subsequence {xj}
from (A.11) corresponding to the {F ∗(bj)} subsequence. Then, since xj ∈ X , which is a
compact set, there is another subsequence of {xj} converging to some x̃ ∈ X . By considering
convergence along this additional subsequence, as well as by the correspondence in (A.11)
and the continuity of π(·, ·) + u(v(·, ·)) on P, it holds that F̃ = π(x̃, b̄) + u(v(x̃, b̄)). Thus,
we clearly have that F̃ ≤ F ∗(b̄).

Suppose now that F̃ < F ∗(b̄). Then, since F ∗(bj)→ F̃ and by (A.11) and (A.12), there
exists δ > 0 such that:

π(xj,bj) + u(v(xj,bj)) ≤ π(x̄, b̄) + u(v(x̄, b̄))− δ for all j sufficiently large. (A.13)

Consider an arbitrary γ ∈ [0, 1] and let x(γ) := (1−γ)x̄+γx̂. Then, by the linearity of v(·, b̄)
in the first argument given fixed b̄, we have that v(x(γ), b̄) = (1 − γ)v(x̄, b̄) + γv(x̂, b̄).
Then, by the convexity of dom(u(·)), note that v(x(γ), b̄) ∈ int(dom(u(·))) for all γ > 0.
Additionally, by continuity and (A.13), there is a sufficiently small γ̌ > 0 such that:

π(xj,bj) + u(v(xj,bj)) ≤ π(x(γ̌), b̄) + u(v(x(γ̌), b̄))− δ/2 for all j sufficiently large.
(A.14)

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 78

Now, since v(x(γ̌), b̄) ∈ int(dom(u(·))) and bj → b̄, for sufficiently large j we have that
v(x(γ̌),bj) ∈ int(dom(u(·))), hence by (A.11) we have that:

−∞ < π(x(γ̌),bj) + u(v(x(γ̌),bj)) ≤ π(xj,bj) + u(v(xj,bj)) for all j sufficiently large.

Combining the above with (A.14) and taking the limit of the left side as j →∞ yields:

π(x(γ̌), b̄) + u(v(x(γ̌), b̄)) ≤ π(x(γ̌), b̄) + u(v(x(γ̌), b̄))− δ/2 ,

which is a contradiction. Thus, we have that F̃ = F ∗(b̄), which completes the proof.

Proof of Theorem 2.3.2:

Proof. First, note that statements (1.)-(3.) of Theorem 2.3.1 are immediate. Indeed, V(b) ⊆ V
for all b ∈ B implies that the the condition int(dom(u(·)))∩V(b) 6= ∅ for all b ∈ B is stronger
than int(dom(u(·))) ∩ V 6= ∅. Then, statements (1.)-(3.) of Theorem 2.3.1 hold immediately
as the rest of the assumptions of Theorem 2.3.1 also hold for Theorem 2.3.2.

Statement (1.) of Theorem 2.3.2 follows from Propositions 2.3.3 and 2.3.4. In particular,
we have that F (b∗(·)) is a continuous function at λ∗. Indeed, since all impression types satisfy
either the IMC Condition or the more general UBP Condition, Proposition 2.3.3 implies that
b∗(·) is continuous. Thus, λt → λ∗ implies that b∗(λt) → b∗(λ∗). Now, by our stronger
assumption, we have that int(dom(u(·))) ∩ V(b∗(λ∗)) 6= ∅, and thus Proposition 2.3.4 yields
that F ∗(·) is continuous at b∗(λ∗). Therefore, it holds that F ∗(b∗(λt))→ F ∗(b∗(λ∗)). Finally,
by statement (3.) of Theorem 2.3.1, it holds that F ∗ = F ∗(b∗(λ∗)), hence F ∗(b∗(λt))→ F ∗.
(Note that the formula for the last row, the exponential case, is not easy to state but can be
solved numerically.)

A.3 Examples and Derivations

Convex Conjugate Examples

Here we show how to obtain the convex conjugates pk(·) of the utility functions −uk(·)
considered in Section 2.2. Before doing so, let us first prove that a utility function being
separable on its campaigns, i.e., u(v) =

∑
k∈K uk(vk), implies that p(·) is similarly separable.

Define pk(·) : R → R ∪ {+∞} as the convex conjugate of −uk(·), then for any λ ∈ R|K| it
holds that:

p(λ) = sup
v∈R|K|

{
λ>v + u(v)

}
= sup

v∈R|K|

{
λ>v +

∑
k∈K

uk(vk)

}
=
∑
k∈K

sup
vk∈R
{λkvk + uk(vk)}

=
∑
k∈K

pk(λk) .

All the results use k ∈ K as an arbitrarily chosen campaign.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 79

• Derivation for Example 2.2.1. For uk(vk) equal to 0 if vk ≤ mk and −∞ o.w. we have

pk(λk) = sup
vk∈R

{λkvk + uk(vk)} = sup
vk≤mk

λkvk

Then, pk(·) takes the value λkmk if λk ≥ 0 and +∞ otherwise.

• Derivation for Example 2.2.2. For uk(vk) = − τk
2

(mk − vk)2 we have

pk(λk) = sup
vk∈R

{
λkvk −

τk
2

(mk − vk)2
}

Then, for a fixed λk we have that pk(λk) is the supremum of a quadratic function with
negative second derivative, then the first order optimality conditions (derivative equal
to zero) finds an optimal solution which is obtained at v∗k = λk

τk
+mk. Plugging v∗k in

pk(λk) we obtain pk(λk) = mkλk + 1
2τk
λ2
k.

• Derivation for Example 2.2.3. For uk(vk) = − τk
2

(mk − vk)2 if vk ≤ mk and −∞ o.w. we
have

pk(λk) = sup
vk≤mk

{
λkvk −

τk
2

(mk − vk)2
}

If λ ≥ 0 an optimal solution for pk(λk) is v∗k = mk as the term − τk
2

(mk − vk)
2 is

non-positive, with which we obtain pk(λk) = λkmk. If λk < 0, then the optimal solution
of the previous example, v∗k = λk

τk
+mk, is feasible and obtains the same objective value

as in the previous example. An unconstrained problem can only have a higher optimal
solution than a constrained one. Then, we have shown pk(λk) = mkλk if λk ≥ 0 and
pk(λk) = mkλk + 1

2τk
λ2
k o.w.

• Derivation for Example 2.2.4. For αk ∈ [0, 1] let uk(vk) equal to 0 if vk ∈ [αkmk,mk]
and −∞ o.w and we have

pk(λk) = sup
vk∈[αkmk,mk]

{λkmk}

Then, an optimal v∗k is mk when λk ≥ 0 and αkmk when λk < 0, thus obtaining
pk(λk) = λkmk if λk ≥ 0 and pk(λk) = αkλkmk o.w.

Optimal Bidding Forms

Let i ∈ I be an arbitrary impression type and let b∗i (r) ∈ arg max
b∈[0,b̄i]

hi(b; r) (defined in

Assumption 2.2.3). In this section, we calculate b∗i (r) for first and second-price auctions for
some forms of ρi(·), and mention when b∗i (r) is the unique maximum of arg max

b∈[0,b̄i]
hi(r; b).

Our results are summarized in Table A.2. Recall that ρi(·) is defined on [0, b̄i] in Section
2.1. Herein we extend the definition of ρi(·) to an interval [0, ci] where ci ≥ b̄i and we may

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 80

possibly have ci = +∞. Note again that ρi(b̄i) < 1 allows for the possibility that the DSP
may lose the auction even if they bid the maximum amount b̄i.

We only need to directly derive the optimal bidding form for the example in the first row
of Table A.2. The proofs of the uniqueness and the optimal bidding forms of the last five
rows can be considered simultaneously as they all follow from the Increasing Marginal Cost
(IMC) condition (Definition 2.3.1). Finally, note that the examples of ρi(·) for the first-price
case correspond, in order, to the following: (i) the c.d.f. of n ≥ 1 i.i.d. Uniform(0, ci) random
variables with ci ≥ b̄i, (ii) a form used in [129], (iii) a square root function, (iv) the c.d.f. of
an Exponential(λ) random variable. For the first of these four examples ci is finite, and for
the last three examples we have that ci = +∞.
First Row of Table A.2: Let r ∈ R be given. We will show that for arbitrary second-price
auctions it holds that b∗i (r) = clip(r; [0, b̄i]). Let Ci be a non-negative random variable
denoting the maximum competing bid for an impression of type i. Also, denote 1·∈A as
the indicator function that takes the value of 1 if the input belongs to a set A or satisfies
a given condition, and 0 otherwise. Given that this is a second-price auction, we have
that ρi(b) = P(Ci < b) and βi(b) = E[Ci|Ci < b]. Note that the derivation to be done
here does not necessarily assume that ρi(·) is a continuous function as in Assumption 2.2.2.
Notice that we have βi(b) = E[Ci|Ci < b] =

E[Ci1Ci<b]

P(Ci<b)
=

E[Ci1Ci<b]

ρi(b)
whenever ρi(b) > 0. Let

b̌ := sup{b : ρi(b) = 0}. Then, b̌ is finite and ρi(b) = 0 for all b ≤ b̌ and ρi(b) > 0 for all b > b̌.
Then, we have that hi(r; b) := (r − βi(b)) ρi(b) satisfies

hi(r; b) =

{
0 if b ≤ b̌

rP(Ci < b)− E[Ci1Ci<b] if b ≥ b̌
(A.15)

Clearly then, for any r ≤ b̌ we have clip(r; [0, b̄i]) ∈ arg max
b∈[0,b̄i]

hi(b; r).

Suppose now that r > b̌. We will prove that the function hi(r; ·) is monotone increasing on
[0, r] and monotone decreasing on [r,∞). Subsequently, we have that clip(r; [0, b̄i]) ∈ arg max

b∈[0,b̄i]

hi(b; r).
Let b ≥ b̌ and δ ≥ 0 such that b+ δ ≤ r be given. Then, by (A.15) we have that

hi(r; b+ δ)− hi(r; b) = r (P(Ci < b+ δ)− P(Ci < b))− (E[Ci1Ci<b+δ]− E[Ci1Ci<b])

= rP(b ≤ Ci < b+ δ)− E[Ci1b≤Ci<b+δ]

≥ rP(b ≤ Ci < b+ δ)− (b+ δ)P(b ≤ Ci < b+ δ) ≥ 0,

hence hi(r; ·) is monotone increasing on [0, r].
Now let b ≥ r and δ ≥ 0 be given. Then, again by (A.15) we have that

hi(r; b)− hi(r; b+ δ) = E[Ci1b≤Ci<b+δ]− rP(b ≤ Ci < b+ δ)

≥ bP(b ≤ Ci < b+ δ)− rP(b ≤ Ci < b+ δ) ≥ 0,

hence hi(r; ·) is monotone decreasing on [r,∞).

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 81

Last Five Rows of Table A.2: By Proposition 2.3.1 the second row satisfies the IMC
Condition (Definition 2.3.1), and by Proposition 2.3.2 the last four rows satisfy IMC too.
Lemma A.2.2 shows that the IMC condition implies the UBP condition (Definition 2.3.2)
which proves the uniqueness of the last five rows of Table A.2. We are only left to verify that
the optimal bidding forms b∗i (r) for the last four rows of Table A.2 are correct (the second
row of TableA.2 is a particular case of the first row). This can be easily done by following
the proof of Lemma A.2.2. In the proof we use the function gi(b) = (ρi(b)βi(b))

′

ρ′i(b)
defined for

b ∈ [0, b̄i]. In particular, in each case we need to calculate b̂ such that gi(b̂) = r and then take
b∗i (r) = clip(b̂, [0, b̄i]). Using the particular formulas for ρi(·) and βi(b) = b, the formulas for
b∗i (r) in Table A.2 then follow easily.

Examples Concerning Theorem 2.3.1

We present two examples that demonstrate that the conclusions of Theorem 2.3.1 may not
hold if one or more of the assumptions are violated. We first examine a case where Slater’s
Condition does not hold and then a case where the UBP Condition does not hold.

Slater’s Condition Does Not Hold.

This example shows a case of dual non-attainment. In this example, there is zero duality
gap between problems (2.1) and (2.6) – conclusion (2.) of Theorem 2.3.1 holds – but the
dual optimal value is only approached asymptotically. Therefore there is no dual optimal
solution and conclusion (1.) of Theorem 2.3.1 does not hold. Take |I| = |K| = 1 allowing
us to drop the sub-indices i and k from all parameters and variables. Assume s = 1, r = 0,
b̄ = 1, and ρ(b) = b and β(b) = 0.5b for all b ∈ [0, 1.0]. These bid landscape functions can be
understood as a second-price mechanism where the highest competing bid is a Uniform(0, 1)
random variable. Here we use the utility function u(v) =

√
v for v ≥ 0 and u(v) = −∞ for

v < 0. For this utility function it can be easily verified that p(λ) = +∞ when λ ≥ 0 and
p(λ) = −0.25λ−1 when λ < 0. Problem (2.1) corresponds to

max
b∈[0,1],x∈[0,1]

(0− 0.5b) bx+
√

0 · bx

s.t. 0 ≤ 0 · bx (A.16)

(For this example, the campaign spending is the expression 0 · bx which is not meaningful from
a practical perspective, but nevertheless satisfies our assumptions.) Notice that the Slater
condition int(dom(u(·))) ∩ V 6= ∅ does not hold as int(dom(u(·))) = R+/{0} and V = {0}.
All other conditions of Theorem 2.3.1 holds including the IMC Condition (Definition 2.3.1) by
Proposition 2.3.1. The optimal value of the problem shown above is 0 with optimal solution
(x∗, b∗) = (0, 0). The dual function of problem (A.16) is

Q(λ) = max
b∈[0,1],x∈[0,1]

− 0.5b2x− 0.25λ−1

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 82

for λ < 0, and Q(λ) = +∞ whenever λ > 0. Assuming λ < 0, notice that (0, 0) is an optimal
solution of the inner problem for Q(λ) yielding Q(λ) = −0.25λ−1. Notice that Q(λ) > 0 for
any λ < 0 and that Q(λ)→ 0 as λ→ −∞. Then, the primal and dual problems match only
in the limit as λ→ −∞.

UBP Condition Does Not Hold.

This example shows a case of non-zero duality gap when the UBP Condition (Definition
2.3.2) does not hold. Take |I| = |K| = 1 allowing us to drop the sub-indexes i and k from
all parameters and variables. Assume that r = 1, s = 10, b̄ = 1, m = 10, that the budget
constraint and hard minimum spending utility function (Example 2.2.4) is used with lower
and upper bounds equal to 5.5 and 10.0 respectively, and that ρ(·) is defined as

ρ(b) =


5b if b ∈ [0, 0.1]

0.5 if b ∈ [0.1, 0.9]

−4 + 5b if b ∈ [0.9, 1.0]

Assuming first-price auctions (β(b) = b), problem (2.1) for this case corresponds to:

max
b∈[0,1],x∈[0,1]

10(1− b)ρ(b)x

s.t. 5.5 ≤ 10ρ(b)x ≤ 10 (A.17)

Notice that problem (A.17) satisfies Slater’s Condition from Theorem 2.3.1 since int(dom(u(·)))∩
V = (5.5, 10), and Assumptions 2.2.1 and 2.2.2 also hold. Below we show that the optimal
value of problem (A.17) is smaller than the optimal value of its dual problem (0.495 vs 4.05
respectively). This gap does not contradict Theorem 2.3.1 as the UBP condition (Definition
2.3.2) does not hold for this example, a fact that is also proven below. Recall that the IMC
(Definition 2.3.1) condition is a particular case of the UBP Condition by Lemma A.2.2. Never-
theless, it can be immediately observed that IMC does not hold as ρ(·) is not a differentiable
function.

Primal Problem. We argue that x∗ = 1 and b∗ = 0.91 is an optimal solution of
problem (A.17) with an optimal objective value of 0.495. First note that we can fix x = 1
as (1− b)ρ(b) ≥ 0 for all b ∈ [0, 1]. Subsequently, only the segment b ∈ [0.91, 1.0] is feasible
as 5.5 > 10ρ(b) for all b ∈ [0, 0.91). For any b ∈ (0.91, 1.0) the derivative of the objective
function is negative as ((1− b)ρ(b))′ = (1− b)ρ′(b)− ρ(b) < (0.09)5− 0.55 = −0.1, therefore
proving that b∗ = 0.91 is optimal.

Dual Problem. Let us first formulate the dual of problem (A.17). Recalling the notation
h(r; b) = (r − b)ρ(b) for any r ∈ R, [a]+ = max{a, 0} the dual function is

Q(λ) = max
b∈[0,1],x∈[0,1]

10 · h ((1− λ), b)x+ 10 · [λ]+ − 5.5[−λ]+,

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 83

and as usual, the dual problem is min
λ∈R

Q(λ). The goal of this part is to show that min
λ∈R

Q(λ) =

Q(−0.9) = 4.05, and that the UBP condition does not hold. It is straightforward to calculate:

arg max
b∈[0,1]

h(r; b) =



{0} if r ∈ (−∞, 0]

{0.5r} if r ∈ (0, 0.2]

{0.1} if r ∈ (0.2, 1.9)

{0.1, 1.0} if r = 1.9

{1.0} if r ∈ (1.9,∞)

Is immediate to see that UBP Condition does not hold as, for r = 1.9, both b = 0.1 and
b = 1.0 are maximizers of the profit expression. We now prove that Q(λ) > Q(−0.9) = 4.05
for all λ 6= −0.9 by first showing that this is the case for any λ > 0, and then for any λ < 0,
λ 6= −0.9. For any λ > 0 we have Q(λ) > 4.5 as

Q(λ)− 4.5 = max
b∈[0,1],x∈[0,1]

10h ((1− λ); b)x+ 10λ− 4.5

≥ 10((1− λ)− 0.1)0.5 + 10λ− 4.5 = 5λ > 0,

where the inequality is obtained by using b = 0.1 and x = 1 in the maximum. Finally, let us
prove that 4.05 = Q(−0.9) < Q(λ) for all λ < 0, λ 6= −0.9 by parts. First, for any a < 0 we
have Q(−0.9 +a) = 4.05− 4.5a using that 1.0 ∈ arg max

b∈[0,1]
h(r, b) for any r ∈ (1.9,∞). Finally,

for any a ∈ (0, 0.9] we have Q(−0.9 + a) = 4.05 + 0.5a using that 0.1 ∈ arg max
b∈[0,1]

h(r, b) for

any r ∈ (0.2, 1.9).

A.4 Additional Experimental Details

Additional Experimental Results

Herein we present additional experimental results that demonstrate the robustness of the
results presented in Section 2.4.

To show the dispersion of our results we use confidence band plots. In this type of plots,
the y-axis has a band in which the upper and lower lines show the maximum and minimum
obtained for a given quantity of interest on the 100 simulations tried. The line on the center
represents the mean value. We preferred this type of plots over box plots as the number of
parameters used made box-plots unreadable. Importantly, we tried more γ parameters for
Policy 4 and τ parameters for Utility Functions 2.2.2 and 2.2.3 than those shown in the plots
on the paper.

For the synthetic experiment, Figure A.1 has confidence bands for the sensitivity to
budget experiment. Figure A.2 shows how the γ parameter in the Generalized Greedy
heuristic (Policy 4) and the τ parameter in Utility Functions 2.2.2 and 2.2.3 affect the Budget

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 84

Figure A.1: Sensitivity to budget experiment using synthetic data. The upper and lower
curves represent the minimum and maximum relative profit or budget utilization of 100
simulations depending on the graph. The x-axis represent the budgets levels used.

Utilization and Profit of the different methods. Figure A.3 is an equivalent of Figure A.2
for the Criteo experiment. In Figure A.3 we analyze the results depending on the multiplier
used for `k terms. Notice that both Figures A.2 and A.3 show the non-relative profit and
budget utilization obtained by the different methods, while Figure A.1 shows results relative
to the the Generalized Greedy Policy using γ = 1.

Simulator Scheme

Here we describe in further detail how we simulate the performance of an allocation and
bidding vector (x,b) on a “real” DSP operation. The simulation uses the following parameters.
1. imptest: Vector containing in sequential order the type of each impression to be received
in testing time. 2. mptest: Vector containing in sequential order the highest competing bid
associated to each impression (this quantity is also called market price and therefore the ‘mp’
in its name). 3. θtestik for (i, k) ∈ E : Probability of conversion when an ad of campaign ‘k’ is
shown to an impression of type ‘i’ in testing time. For the synthetic experiment the latter
values coincide with those used to run Algorithm 3, i.e. θtestik = θik for all (i, k) ∈ E , while for
the real-based experiment these values can differ significantly. The latter occurs as we use

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 85

Figure A.2: Pareto curve experiment using synthetic data. The upper and lower curves
represent the minimum and maximum profit or budget utilization of 100 simulations depending
on the graph. The x-axis represents the parameters used for each methodology.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 86

Figure A.3: Pareto curve experiment using the Criteo data. The upper and lower curves
represent the minimum and maximum profit or budget utilization, depending on the graph,
of 100 simulations using a given method and parameters as shown in the x-axis.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 87

empirical click-through rates in the train and test sets to create the parameters θik and θtestik

for all (i, k) ∈ E respectively. Procedure 11 shows the mechanism used to simulate how a pair
(x,b) would perform in a “real” DSP operation for both first and second-price auctions.

Procedure 11 Implementation of Policy 1 given (x,b)

Input: Allocation and bidding variables (x,b) and vectors imptest, mptest, and parameter
θtestik for all (i, k) ∈ E .

1. For each pair of impression type ĩ and highest competing bid m̃p from vectors imptest

and mptest do (the pairs of impression types and highest competing bids are read in strict
order as they appear in their vectors):
2. Sample u ∼ Uniform(0, 1) and remember that Kĩ = {k ∈ K : (̃i, k) ∈ E}. If
u ≤ 1 −

∑
k∈Kĩ

xĩk, or if the remaining budget for all campaigns k ∈ Kĩ is smaller than
`k, the DSP does not bid and return to Step 1. Otherwise, the DSP bids on behalf of a
campaign k̃ ∈ Kĩ with probability proportional to its xĩk̃ value. Only campaigns with a
remaining budget higher or equal to `k̃ can be selected.
3. If bĩk̃ ≥ m̃p, then the DSP wins the auction and pays to the ad-exchange, i.e. gets its
profit discounted, the amount bĩk̃ (m̃p) if first (second) price auctions are used. If bĩk̃ < m̃p
go to Step 1 and the DSP incurs in no cost.
4. Sample u ∼ Uniform(0, 1). If u > θtest

ĩk̃
return to Step 1. If u ≤ θtest

ĩk̃
then we assume a

conversion of interest occur for campaign k̃. In this case add `k̃ as profit for the DSP, and
discount `k̃ from campaign’s k̃ budget. Return to Step 1.

Additional Details for the Synthetic Experiments

Here we describe how the impression-campaign graph, the bid landscapes, the conversion
probabilities, and the revenue terms were generated for the synthetic experiments. To each
impression type i and campaign k we associate a quality score number QSi and QSk respec-
tively, which are independently sampled Uniform(0, 1). The number of campaigns interested
in impressions of type i is taken as max{Binomial(|K|,QSi), 1} where Binomial(|K|,QSi)
represents a binomial random variable with |K| tries and probability of success QSi. To
select the particular campaigns interested in an impression type we sample uniformly without
replacement from the set K until the total number of interested campaigns is reached.

We assume that each impression type i ∈ I has a number advi of other DSPs interested on
it who bid i.i.d. Uniform(0, 1) for each impression of type i (these other DSPs are adversaries
from a DSP point of view and therefore the name advi). The latter implies ρi(b) = badvi for
all b ∈ [0, 1] and i ∈ I. advi is sampled from max{Binomial(4,QSi), 1} for each i ∈ I. The
probability that an impression of type i converts when an ad of campaign k is shown to it is
θik = 0.5 · (QSi +QSk) for all valid pairs (i, k) ∈ E . We use Bi = [0, 1] for all i ∈ I.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 88

Additional Details for the Criteo Experiment

Here we give further details on how we obtained and created the parameters for the Criteo
experiments, and how these experiments were run. As mentioned in Section 2.4, once we
clean the data and run the CART methodology, we can associate each of the Criteo’s bidding
logs to an impression type (further details on how we run CART are in Appendix A.4). Each
of Criteo’s bidding logs has its market price, i.e., the highest bid between the other DSPs that
competed with Criteo for that impression. Given that Criteo bid in second-price auctions,
and that all impression logs are from impressions that Criteo acquired, the market price in
each log corresponds to how much Criteo paid for that impression.
Parameters

• ρi(·) and βi(·). To create ρi(·) and βi(·) for an impression type i ∈ I, we first obtained
the market price of all bidding logs containing impressions of type i (we removed
the 2.5% lowest and highest of them). For a fixed b ∈ Bi, we calculate ρi(b) as the
percentage of the market price values that are below b. To make the calculation
computationally efficient, we saved the 300 values which leaves (x/300) ∗ 100% of the
data below them for x ∈ {0, 1, . . . , 299}. Then, a simple bisection method is an efficient
way of approximating the ρi(·) function. For b ∈ Bi, we obtain βi(b) by taking the
average between the 300 values mentioned before that are smaller than b (in practice,
for βi(·) we stored only 100 values and use interpolation).

• Bi. For each i ∈ I, we defined Bi = [0, b̄i] with b̄i being the maximum of the 300 values
used for calculating ρi(·) parameter (mentioned above).

• mk. The train (test) budget for a campaign k ∈ K was taken as the sum of all the
market prices in the train (test) logs in which Criteo bid on behalf of campaign k.

• `k. We obtained `k for each k ∈ K in two steps. First, we divided the train budget
of campaign k by the number of clicks associated to campaign k in the train logs.
Second, we multiplied the previous number by a Uniform(0.5, 1.5) random variable.
The random value per campaign remains constant for all simulations.

• si. For each impression type i ∈ I, si equals the number of bidding logs containing
impressions of type i in the test set.

• θik. The train (test) click-through rate for an impression-campaign pair (i, k) was taken
as the empirical click-through rate of this pair in the train (test) logs. In other words,
for a pair (i, k) we counted the number of times Criteo bid on impressions of type i on
behalf of campaign k, and divide this number by the number of clicks in those bidding
logs.

Notice that our construction of the ρi(·) and βi(·) parameter functions imply that they
are not differentiable and therefore we do not satisfy the IMC condition (Definition 2.3.1).
In practice, we did notice a small duality gap rates in our experiment once we run our

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 89

primal-dual scheme (the duality gap increased as we used higher penalization values). A
way of satisfying the IMC condition would be to fit a continuous differentiable function
for each impression type. This would require us to call at least 9903 times the cumulative
distributive function of the distributions to obtain ρi(bik) for all (i, k) ∈ E at each iteration
of the subgradient step. We found that this amount of computation was prohibitively slow
for our experimentation purposes.
Comments about the implementation of the Simulation Scheme 11.

• We run our primal-dual scheme using the si parameters obtained using the test set.
DSPs usually have decently accurate forecast of the number of future impression
opportunities, making this assumption acceptable.

• We read the impression logs in the order they appear in the test set, and used the test
budgets both to simulate and to train. There is no error in the latter as a DSP knows
the target budget that each campaign wants to spend.

• The randomness in each simulation comes from the probabilistic allocation procedure
derived from a solution (x,b), and the randomness on the the click events in Procedure
11. This randomness explains why we use 100 runs for each pair of experiment and
parameter configuration.

Creating Impression Types for Criteo

Criteo’s data has nine anonymized categorical columns that we used for creating impression
types. Our goal was to find a method that systematically could. 1) Partition the nine
categorical columns in a way that each impression log could be associated with one and
only one impression type. 2) That different impression types had distinctly different click-
through rate probabilities. 3) That the different impression types would each be composed
of a significant amount of logs. We achieved these three goals by using Classification and
Regression Trees (CART). If an impression was click or not was used as the labels for CART.
The impurity coefficient used was Gini, and each leaf in a tree represents an impression type.
The number of leaves obtained when running CART depends on the complexity parameter
used. An adequate amount of leaves is one that is computationally tractable, while also
obtaining good validation accuracy and Gini coefficient. To create a validation set, we split
the training logs in the first 3/4 of them as a ‘small’ train set, and the last 1/4 of them
as the validation set. Then, to search for an adequate complexity parameter, we only used
the ‘small’ training set to run CART and the validation set to validate. Figure A.4 shows
the number of leaves, validation accuracy, and Gini coefficient under different complexity
parameters.

In Figure A.4, we highlighted with a dot the complexity parameter used in our experiments.
The complexity parameter chosen created a tree with 96 leaves (impression types) which was
computationally tractable. Also, it obtained a lower Gini coefficient than other complexity
parameters that would lead to trees with almost ten times the number of leaves. As a final

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 90

1e+01

1e+02

1e+03

1e+04

1e+05

1e−07 1e−05 1e−03

(Log) Complexity Parameter

(L
o
g
)

N
u
m

b
e
r

o
f
L
e
a
ve

s

0.82

0.84

0.86

1e−07 1e−05 1e−03

(Log) Complexity Parameter

V
a
lid

a
ti
o
n
 G

in
i

0.6700

0.6725

0.6750

0.6775

1e−07 1e−05 1e−03

(Log) Complexity Parameter

V
a
lid

a
ti
o
n
 A

c
c
u
ra

c
y

Figure A.4: Number of leaves, validation accuracy and Gini coefficient for different complexity
parameter levels. The dot in the curves correspond to the complexity parameter chosen for
the experiments.

remark, once we chose the complexity parameter, we re-run CART using the whole dataset,
i.e., including the validation set. By doing this, we obtained 84 leaves and not the 96 shown
in the figure.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 91

Sets
I Impression types.
K Campaigns.
Ik Impression types that can be shown an ad of campaign k ∈ K.
Ki Campaigns interested in impressions of type i ∈ I.
E Graph of (impression type, campaign) pairs.

Known Parameters
b̄i Maximum allowed bid for an impression of type i.
mk Target spending level (or budget) of campaign k.
`k Amount campaign k is charged each time an action of interest

occurs.

Estimated Parameters
si Expected number of arrivals of impressions of type i.
θik Probability that an action of interest occurs when an ad of campaign

k is shown to an impression of type i.
rik Expected revenue the DSP earns each time an ad of campaign k is

shown to an impression of type i, i.e., rik := `kθik.
ρi(b) Probability of winning an impression of type i with a bid b ∈ [0, b̄i].
βi(b) Expected amount that the DSP pays the ad exchange whenever it

wins an auction for an impression of type i with a submitted bid
b ∈ [0, b̄i].

Variables and Expressions
xik Probability of bidding on behalf of campaign k when an impression

of type i arrives.
bik Bid to be submitted for an impression of type i on behalf of campaign

k.
vi(xi,bi) Vector in R|K| of expected spending values associated with impression

type i. Its components are rikρi(bik)sixik for k ∈ Ki and 0 for k 6∈ Ki.
πi(xi,bi) Total expected profit earned from impression of type i, i.e.,

πi(xi,bi) :=
∑

k∈Ki [rik − βi(bik)]ρi(bik)sixik.
hi(b; r) Expected profit that the DSP earns each time it bids an amount b

for an impression of type i, given that the expected revenue earned
whenever the corresponding ad is displayed is equal to r. That is,
hi(b; r) := [r − βi(b)]ρi(b).

Table A.1: List of sets, parameters, and variables.

APPENDIX A. OPTIMAL BIDDING, ALLOCATION, AND BUDGET SPENDING FOR
A DEMAND-SIDE PLATFORM WITH GENERIC AUCTIONS 92

Auction Type Condition/form of ρi(·) b∗i (r) Unique
Second-Price No condition clip(r; [0, b̄i]) No
Second-Price ρi(·) strictly increasing in (0, b̄i) clip(r; [0, b̄i]) Yes
First-Price ρi(b) =

(
b
ci

)n
, n ∈ {1, 2, . . . }, ci ≥ b̄i clip(n

n+1
r; [0, b̄i]) Yes

First-Price ρi(b) =
(

b
c+b

)
, c > 0 clip(−c+

√
c2 + rc; [0, b̄i]) Yes

First-Price ρi(b) =
√

b
c+b̄i

, c > 0 clip(r
3
; [0, b̄i]) Yes

First-Price ρi(b) = 1− exp(−λb), λ > 0 See Derivation Yes

Table A.2: Optimal bidding forms for first and second-price auctions under different bid
landscapes.

93

Appendix B

Joint Online Learning and
Decision-making via Dual Mirror
Descent

B.1 Additional Theoretical Results and Examples

Different Cases for arg maxγ∈[0,1] OPT(P , γ)

Take the case of T = 1, Z = {[0, 1]}, W = {w1, w2} with equal probability of occurring,
b = 1, and α = 0.5. Call Π(· ∈ A) to the function that takes the value of 0 if condition A
holds and −∞ otherwise. We show examples in which arg maxγ∈[0,1] OPT(P , γ) match the
different cases mentioned in the paper. In most of the examples below the upper bound cost
constraint hold trivially, reason why we do not “enforce” it using Π(· ≤ 1), with the only
exception on the γ = 1

2
example.

Infinite solutions. f(z; θ∗, w1) = z, c(z; θ∗, w1) = z, f(z; θ∗, w2) = z, c(z; θ∗, w2) = z.
In this case E[f(z; θ∗, w)] = z and E[c(z; θ∗, w)] = z. Then, for any γ ∈ [0, 1] we have

OPT(P , γ) =
1

2

(
max
z∈[0,1]

{
z + Π(1

2
≤ z)

}
+ max

z∈[0,1]

{
z + Π(1

2
≤ z)

})
The equality comes directly from the definition of OPT(P , γ). Is direct to see that z = 1
maximizes both optimization problems and that OPT(P) = OPT(P , γ) for all γ ∈ [0, 1].

No solution. f(z; θ∗, w1) = z, c(z; θ∗, w1) = 0, f(z; θ∗, w2) = 0, c(z; θ∗, w2) = 0. Since
the cost terms are always zero, the cost lower bound 0.5 is never achieved and no feasible
solution exist.

γ = 1
2
as unique solution. f(z; θ∗, w1) = z, c(z; θ∗, w1) = 0, f(z; θ∗, w2) = −z,

c(z; θ∗, w2) = 2z. In this case E[f(z; θ∗, w)] = 0 and E[c(z; θ∗, w)] = z. Then, for any

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 94

γ ∈ [0, 1] we have

OPT(P , γ) =
1

2

(
max
z∈[0,1]

{
(1− γ)z + Π(1

2
≤ γz)

}
+ max
z∈[0,1]

{
−(1− γ)z + Π(1

2
≤ (2− γ)z) + Π((2− γ)z ≤ 1)

})
=

1

2

(
(1− γ) + Π(1

2
≤ γ)

+ max
z∈[0,1]

{
−(1− γ)z + Π(1

2
≤ (2− γ)z) + Π((2− γ)z ≤ 1)

})
The second equality uses that the first optimization problem has z = 1 as its unique optimal
solution whenever γ 6= 1 and that 0 = OPT(P , 1) < OPT(P , 0.5) = 1

6
. Is direct from the

result above that OPT(P , γ) = −∞ for any γ < 0.5. Then, we have:

OPT(P) =
1

2

(
max

z∈[0,1],γ∈[0.5,1)
(1− γ)− (1− γ)z + Π(1

2
≤ (2− γ)z) + Π((2− γ)z ≤ 1)

)
=

1

2

(
max

γ∈[0.5,1)
(1− γ)− 1−γ

2(2−γ)

)
The first equality uses the definition of OPT(P) and that we have restricted γ to be in [0.5, 1).
The second equality uses that for any γ ∈ [0.5, 1) the unique optimal is z(γ) = 1

2(2−γ)
as it

maximizes the term −(1− γ)z by taking the smallest feasible z value that satisfies the cost
lower bound. Finally, the function ξ(γ) := (1− γ)− 1−γ

2(2−γ)
is differentiable on γ ∈ [0.5, 1] and

has strictly negative derivative on γ ∈ [0.5, 1], which implies ξ(0.5) > ξ(γ) for any γ ∈ [0.5, 1],
proving that γ = 0.5 is the unique optimal solution.

γ = 0 as unique solution. f(z; θ∗, w1) = z2, c(z; θ∗, w1) = z, f(z; θ∗, w2) = −z,
c(z; θ∗, w2) = 1− z. In this case E[f(z; θ∗, w)] = 0.5(z2 − z) and E[c(z; θ∗, w)] = 0.5. Then,
for any γ ∈ [0, 1] we have

OPT(P , γ) =
1

2

(
max
z∈[0,1]

{
z2(1− γ

2
)− z γ

2
+ Π(1

2
≤ (1− γ)z + γ

2
)
}

+ max
z∈[0,1]

{
γ
2
z2 − z(1− γ

2
) + Π(1

2
≤ (1− γ)(1− z) + γ

2
)
})

To understand why γ = 0 is the unique solution let us analyze both maximization problems
separately. The expression γ

2
z2− z(1− γ

2
) in the second maximization problem is non-positive

in (z, γ) ∈ [0, 1]2 as we can write it as (γ
2
z2 − 1

2
z)− z(1

2
− γ

2
) where each term is non-positive.

Then, an optimal solution for it is (z, γ) = (0, 0) which also satisfies the lower cost constraints.
Similarly, the expression z2(1− γ

2
)− z γ

2
in (z, γ) ∈ [0, 1]2 of the first maximization problem

has a maximum in (z, γ) = (1, 0), optimal pair which also satisfies the lower cost constraints.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 95

γ = 1 as unique solution. f(z; θ∗, w1) = z, c(z; θ∗, w1) = 0, f(z; θ∗, w2) = z,
c(z; θ∗, w2) = z. In this case E[f(z; θ∗, w)] = z and E[c(z; θ∗, w)] = 0.5z. Then, for any
γ ∈ [0, 1] we have

OPT(P , γ) =
1

2

(
max
z∈[0,1]

{
z + Π(1

2
≤ γ

2
z)
}

+ max
z∈[0,1]

{
z + Π(1

2
≤ (1− γ

2
)z)
})

The result is direct as (z, γ) = (1, 1) is the only pair in [0, 1]2 which makes the first optimization
problem feasible.

Bound on ∆Learn

Before stating this subsection result, we define an stricter version of Assumption 3.2.1

Assumption B.1.1 ((Stricter) Bounded Dual Iterates). There is an absolute constant C ′h > 0
such that ‖λt‖1 ≤ C ′h for all t ∈ [T] almost surely.

Proposition B.1.1. Run Algorithm 6 with a constant “step-size” rule ηt ← η for all t ≥ 1
where η > 0. Suppose that Assumption B.1.1 holds and that c(·; ·, ·) is Lipschitz on its θ
argument, in particular, that it exists Lc > 0, such that ‖c(z; θ, w)−c(z; θ′, w)‖∞ ≤ Lc‖θ−θ′‖θ
for any (z, w, θ, θ′) ∈ Z ×W ×Θ×Θ. Then, for any distribution P over w ∈ W, it holds
that

∆Learn ≤ Lc (1 + C ′h)E

[
τA∑
t=1

‖θ∗ − θt‖θ

]
.

Proof. The proof is obtained directly by bounding each term of ∆Learn separately. First,

E

[
τA∑
t=1

c(zt; θ∗, wt)− c(zt; θt, wt)

]
≤E

[
τA∑
t=1

‖c(zt; θ∗, wt)− c(zt; θt, wt))‖∞

]

≤LcE

[
τA∑
t=1

‖θ∗ − θt‖θ

]
,

where we have used above that c(·; ·, ·) its Lipschitz on its θ argument. Now, for any pair x, y
of real vectors of same dimension it holds |xTy| ≤ ‖x‖∞‖y‖1. Using the latter fact and again

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 96

that c(·; ·, ·) is Lipschitz on its θ argument, we have

E

[
τA∑
t=1

(c(zt; θ∗, wt)− c(zt; θt, wt))Tλt
]
≤E

[
τA∑
t=1

|(c(zt; θ∗, wt)− c(zt; θt, wt))Tλt|

]

≤E

[
τA∑
t=1

‖c(zt; θ∗, wt)− c(zt; θt, wt))‖∞‖λt‖1

]

≤LcE

[
τA∑
t=1

‖λt‖1‖θ∗ − θt‖θ

]

≤LcC ′hE

[
τA∑
t=1

‖θ∗ − θt‖θ

]
.

Proof That OPT(P) = OPT(P , 0) in the Linear Contextual Bandits
Experiment and Solving it Efficiently.

This appendix subsection shows the following three results. 1. That for any ρ ≥ 0.5 we have
OPT(P , γ) > −∞ for all γ ∈ [0, 1]. 2. That OPT(P , γ) ≤ OPT(P , 0) for all γ ∈ (0, 1]. 3.
How to efficiently solve OPT(P , 0). Take Z = {z ∈ RK

+ :
∑K

i=1 zi ≤ 1} and γ ∈ [0, 1] arbitrary.
As notation, here we use superscripts to denote time (but also use ·T to denote dot operation
between vectors when need), use subscripts to denote row indexes, and use W , W ′, W t, W ′t

to represent matrices of size d×n. Also, to shorten notation, we write W to define a sequence
{W 1, . . . ,W T} of W t matrices (analogous for W′). The traditional multiplication between
a matrix A of size d × n and a vector x of size n is written as Ax = ((A1)

Tx, . . . , (Ad)
Tx).

The term inside the outer expectation of OPT(P , γ) corresponds to (for γ = 1 the outer
expectation can be removed)

O(W, γ) := max
zt∈Z:t∈[T]

(1− γ)
T∑
t=1

(W tθ∗)T zt + γEW ′∼P [(W ′θ∗)T zt]

s.t. 0.5 ∗ T ≤ ρ

T∑
t=1

d∑
i=1

zti ≤ T.

Notice that a solution z = {z1, . . . , zT} is either feasible or infeasible independently of the
context vector arrivals W = {W 1, . . . ,W T} and γ. For any ρ ≥ 0.5 and γ ∈ [0, 1], it holds
OPT(P , γ) > −∞ as we can choose z satisfying

∑d
i=1 z

t
i = 0.5/ρ for all t ∈ [T] (our problem

setup uses ρ = 4). A direct application of Jensen inequality shows OPT(P , 1) ≤ OPT(P , 0),
so let us take γ ∈ (0, 1) arbitrary. For any sequence W, let zγ(W) be an optimal solution of
O(W, γ), we have

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 97

OPT(P , γ) = EW∼PT

[
(1− γ)

T∑
t=1

(W tθ∗)T ztγ(W) + γEW ′∼P
[
(W ′θ∗)T ztγ(W)

]]

= EW∼PT

[
(1− γ)

T∑
t=1

(W tθ∗)T ztγ(W)

]
+ EW∼PT

[
γ

T∑
t=1

EW ′∼P [(W ′θ∗)T ztγ(W)]

]

= EW∼PT

[
(1− γ)

T∑
t=1

(W tθ∗)T ztγ(W)

]
+ EW∼PT

[
EW′∼PT

[
γ

T∑
t=1

(W ′tθ∗)T ztγ(W)

]]

= EW∼PT

[
(1− γ)

T∑
t=1

(W tθ∗)T ztγ(W)

]
+ EW∼PT ,W′∼PT

[
γ

T∑
t=1

((W t)T θ∗)T ztγ(W
′)

]

= EW∼PT

[
T∑
t=1

(W tθ∗)T
(
(1− γ)ztγ(W) + γEW′∼PT [ztγ(W

′)]
)]

≤ EW∼PT

[
T∑
t=1

(W tθ∗)T zt0(W)

]
= OPT(P , 0).

The second equality uses the linearity of the expectation operator, the third uses that
each W ′t is sampled i.i.d. from P, the fourth that W and W′ are i.i.d. and can be
exchanged, the fifth uses the linearity of the expectation operator again, and the final
inequality uses the definition of z0(W). In particular, the last inequality uses that (1 −
γ)zγ(W) + γEW′∼PT [zγ(W

′)] is a feasible solution of O(W, 0). Finally, notice that for any
given W solving O(W, 0) is equivalent to solving the following knapsack problem

O(W, 0) = max
yt∈[0,1]:t∈T

T∑
t=1

(
max
i∈[d]

(W t
i)
T θ∗
)
yt

s.t. 0.5 ∗ T ≤ ρ
T∑
t=1

yt ≤ T.

Let {m1, . . . ,mT} represent the sequence {maxi∈[d] (W t
i)
T θ∗}Tt=1 ordered from biggest to

smallest value. Then, is not hard to see that

O(W, 0) = max
imax∈

[⌈
T
2ρ

⌉
,

⌊
T
ρ

⌋]
imax∑
i=1

mi,

where d·e and b·c are the traditional ceiling and floor integer functions respectively.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 98

B.2 Proofs

Proof of Proposition 3.1.1

Proof. Let PT be the distribution from which the (w1, . . . , wT) vectors are sampled, with
each wt being sampled i.i.d. from P . For any γ ∈ [0, 1]

OPT(P , γ)

= EPT

[
max

zt∈Z:t∈[T]

∑T
t=1(1− γ)f(zt; θ∗, wt) + γEP [f(zt; θ∗, w)]

s.t. Tαkbk ≤
∑T

t=1(1− γ)ck(z
t; θ∗, wt) + γEP [ck(z

t; θ∗, w)] ≤ Tbk for all k ∈ [K]

]

≤ EPT

[
max

zt∈Z:t∈[T]

{
T∑
t=1

(1− γ)
(
f(zt; θ∗, wt)− λT c(zt; θ∗, wt)

)
+ γEP [f(zt; θ∗, w)− λT c(zt; θ∗, w)]

}
+ Tp(λ)

]

= EPT

[
T∑
t=1

max
zt∈Z:t∈T

(1− γ)
(
f(zt; θ∗, wt)− λT c(zt; θ∗, wt)

)
+ γEP [f(zt; θ∗, w)− λT c(zt; θ∗, w)]

]
+ Tp(λ)

≤ (1− γ)EPT

[
T∑
t=1

max
zt∈Z:t∈T

f(zt; θ∗, wt)− λT c(zt; θ∗, wt)

]

+ γEPT

[
T∑
t=1

max
zt∈Z:t∈T

EP [f(zt; θ∗, w)− λT c(zt; θ∗, w)]

]
+ Tp(λ)

≤ (1− γ)TEP
[
max
z∈Z

f(z; θ∗, w)− λT c(z; θ∗, w)

]
+ γT max

z∈Z
EP
[
f(z; θ∗, w)− λT c(z; θ∗, w)

]
+ Tp(λ)

≤ (1− γ)TEP [ϕ(λ; θ∗, w)] + γTEP
[
max
z∈Z

f(z; θ∗, w)− λT c(z; θ∗, w)

]
+ Tp(λ)

= TEP [ϕ(λ; θ∗, w)] + Tp(λ)

= TD(λ; θ∗)

The first equality is the definition of OPT(P , γ), the first inequality uses Lagrangian
duality for both the lower and upper bounds constraints, the second equality uses that p(λ)
can be moved outside the expectation and that the sum can be changed with the maximization
operator as there is no constraint linking the zt variables. The second inequality uses that for
any a(·) and b(·) real valued functions we havemaxz∈Z {a(z)+b(z)} ≤maxz∈Z a(z) + maxz∈Z
b(z), the third inequality uses that all wt are i.i.d sampled, that all maximization problems are
the same in the first term, and that the outer expectation can be removed from the second term.
The fourth inequality uses the definition of ϕ(·; ·, ·) and that maxz∈Z EP [·] ≤ EP [maxz∈Z ·].
Finally, we use the definition of ϕ(·; ·, ·) again and the fact that γ + (1− γ) = 1.

Proof of Proposition 3.1.2

Proof. First note that the p(·) function used inside D(·; ·) is convex since b ≥ 0 and α ∈
[−1, 1)K . We need to prove that D(λ; θ) + EP [g̃(λ; θ, w)]T (λ′ − λ) ≤ D(λ′; θ) for any λ ∈ Λ

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 99

and λ′ ∈ Λ. Let p′ be any member of ∂p(λ), we have

D(λ; θ) + EP [g̃(λ; θ, w)]T (λ′ − λ) =EP [ϕ(λ; θ, w) + p(λ) + g̃(λ; θ, w)T (λ′ − λ)]

=EP [f(z(λ; θ, w); θ, w)− (λ′)T c(z(λ; θ, w); θ, w)

+p(λ) + p′
T

(λ′ − λ)]

≤EP [f(z(λ; θ, w); θ, w)− (λ′)T c(z(λ; θ, w); θ, w) + p(λ′)]

≤D(λ′; θ).

The first equality uses the definition of D(λ; θ), the second equality uses the definition of
g̃(λ; θ, w), the first inequality uses the subgradient inequlity for p(·), and the second inequality
uses the definition of D(λ′; θ).

Intermediate Results

The following propositions were not mentioned in the paper. Proposition B.2.1 shows an
inequality that holds for Step 7. of Algorithm 6 under the conditions given for Λ and h(·)
on the paper. Propositions B.2.2 and B.2.3 are intermediate steps to prove Theorem 3.2.1.
Proposition B.2.2 bounds T − τA in expectation. Proposition B.2.3 shows an upper bound
for the regret that Algorithm 6 up to period τA. Proposition B.2.4 is the key result needed to
prove Proposition 3.2.1.

Proposition B.2.1. Let Λ ⊆ RK be a set which can be defined separately for each dimension
k ∈ [K], either being Λk = R or Λk = R+. Let h(·) : Λ→ R be a function that satisfies h(λ) =∑K

k=1 hk(λk), with hk(·) being a strongly convex univariate differentiable function for all
k ∈ [K]. Given arbitrary λ′ ∈ Λ, g̃ ∈ RK , and η > 0 define λ+ = arg minλ∈Λ λT g̃t+ 1

η
Vh(λ, λ′).

Then, for all k ∈ [K] it holds

1. If Λk = R, then ḣk(λ+
k) = ḣk(λ

′
k)− ηg̃k.

2. If Λk = R+, then ḣk(λ+
k) = ḣk(λ

′
k)− ηg̃k if λ+

k > 0 or ḣk(λ+
k) ≥ ḣk(λ

′
k)− ηg̃k if λ+

k = 0.

Therefore, proving that ∇h(λ+) ≥ ∇h(λ′)− ηg̃.

Proof. Notice that minλ∈Λ λT g̃t + 1
η
Vh(λ, λ

′) =
∑

k∈[K] minλk∈Λk φk(λk;λ
′
k, g̃k) with

φk(λk;λ
′
k, g̃k) := g̃kλk + 1

η
(hk(λk) − hk(λ′k) − ḣk(λ′k)(λk − λ′k)) for all k ∈ [K]. Then, inde-

pendently per coordinate we minimize a strongly convex function under a non-empty closed
convex set, which shows that λ+

k exists for each k ∈ [K]. Also, λ+
k can be found using first

order necessary optimality conditions for each k ∈ [K]. Taking k ∈ [K] arbitrary, we split
the proof in two cases.

Λk = R. By first order optimality conditions we immediately obtain ḣk(λ+
k) = ḣ(λ′k)−ηg̃k.

Λk = R+. Define Π+(·) : R→ {0} ∪ {∞} as the convex function that takes the value of 0
if its input is non-negative and ∞ otherwise. Then, the minimization problem for dimension
k can be re-written as minλk∈Λk φk(λk;λ

′
k, g̃k) + Π+(λk). First order necessary optimality

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 100

conditions imply 0 ∈ ∂(φk(λ
+
k ;λ′k, g̃k) + Π+(λ+

k)). Then, there exists y ∈ ∂(Π+(λ+
k)), such

that ḣk(λ+
k) = ḣ(λ′k)− ηg̃k− ηy. The result is obtained directly using that ∂(Π+(λk)) is equal

to {0} when λk > 0 and equal to R− when λk = 0.

Proposition B.2.2. Run Algorithm 6 with a constant “step-size” rule ηt ← η for all t ≥ 1
where η > 0. Suppose that Assumption B.1.1 holds and take τA as in Definition 3.2.1. Then,

E [T − τA] ≤ C̄

b
+
Ch + ‖∇h(λ1)‖∞

ηb
+
‖E[
∑τA

t=1 c(z
t; θ∗, wt)− c(zt; θt, wt)]‖∞

b
.

Proof. Let k′ ∈ [K] be the index of the first violated upper cost bound, i.e. the index
which activates the stop time τA. Here we assume that some upper cost bound constraint
is violated, i.e. that τA < T , if not the result is trivial. Step 6. of Algorithm 6 defines
g̃tk′ = −ck′(zt; θt, wt) + bk′ (1(λk′ ≥ 0) + αk′1(λk′ < 0)), which can be upper bounded by
g̃tk′ ≤ −ck′(zt; θt, wt) + bk′ . Using the definition of τA and g̃tk′ we have

τA∑
t=1

g̃tk′ ≤bk′τA −
τA∑
t=1

ck′(z
t; θ∗, wt) +

(
τA∑
t=1

(ck′(z
t; θ∗, wt)− ck′(zt; θt, wt))

)

≤bk′τA − bk′T + C̄ +

(
τA∑
t=1

(ck′(z
t; θ∗, wt)− ck′(zt; θt, wt))

)

⇒ T − τA ≤
1

bk′

(
C̄ −

τA∑
t=1

g̃tk′

)
+

1

bk′

(
τA∑
t=1

(ck′(z
t; θ∗, wt)− ck′(zt; θt, wt))

)
.

Using that our update rule satisfies ḣk′(λt+1
k′) ≥ ḣk′(λ

t
k′)−ηg̃tk′ for all t ≤ τA and the definitions

of b and Ch, we get

−
τA∑
t=1

g̃tk′ ≤
1

η

(
ḣk′(λ

τA+1
k′)− ḣk′(λ1

k′)
)

⇒ T − τA ≤
C̄

bk′
+
ḣk′(λ

τA+1
k′)− ḣk′(λ1

k′)

ηbk′
+

(∑τA
t=1(ck′(z

t; θ∗, wt)− ck′(zt; θt, wt))
bk′

)
⇒ E [T − τA] ≤ C̄

b
+
Ch + ‖∇h(λ1)‖∞

ηb
+

(
‖E[
∑τA

t=1 c(z
t; θ∗, wt)− c(zt; θt, wt)]‖∞

b

)

Proposition B.2.3. Run Algorithm 6 with a constant “step-size” rule ηt ← η for all t ≥ 1

where η > 0. Denote λ̄τA =
∑τA
t=1 λ

t

τA
(τA as in Definition 3.2.1). It holds

E

[
τAD(λ̄τA ; θ∗)−

τA∑
t=1

f(zt; θt, wt)

]
≤2(C̄2 + b̄2)

σ1

ηE[τA] +
1

η
Vh(λ, λ

1)

+E

[
τA∑
t=1

(c(zt; θ∗, wt)− c(zt; θt, wt))Tλt
]
.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 101

Proof. For clarity, we sometimes use Ew[·], Ewt [·], or EHt−1 [·] to indicate the random variable
over which the expectation is taken. Using E[·] indicates that the expectation is taken over
the “whole” randomness of Algorithm 6. Call g̃t the vector obtained in Step 6. and define
E[g̃t] = gt. The proof is composed of three steps. 1. Bounding g̃t. 2. Upper bounding
E
[∑τA

s=1(gs)T (λs − λ)
]
. 3. Lower bounding E

[∑τA
s=1(gs)T (λs − λ)〉

]
. The upper and lower

bounds match the left and right hand side of the terms in Proposition B.2.3.
Step 1. Upper bound for E[‖g̃t‖2

∞].

E[‖g̃t‖2
∞] ≤ E[(‖c(zt; θt, wt)‖∞ + ‖b‖∞)2] ≤ 2E[‖c(zt; θt, wt)‖2

∞ + ‖b‖2
∞] ≤ 2(C̄2 + b̄2)

Step 2. Upper bound for E
[∑τA

s=1(gs)T (λs − λ)
]
. Notice

Ewt [(g̃t)T (λt − λ)|λt, θt]

≤Ewt
[
(g̃t)T (λt − λt+1) +

1

η
Vh(λ, λ

t)− 1

η
Vh(λ, λ

t+1)− 1

η
Vh(λ

t+1, λt)
∣∣λt, θt]

≤Ewt
[
(g̃t)T (λt − λt+1) +

1

η
Vh(λ, λ

t)− 1

η
Vh(λ, λ

t+1)− σ1

2η
‖λt+1 − λt‖2

1

∣∣λt, θt]
≤Ewt

[
η

σ1

‖g̃t‖2
∞ +

1

η
Vh(λ, λ

t)− 1

η
Vh(λ, λ

t+1)
∣∣λt, θt]

≤2η

σ1

(C̄2 + b̄2) +
1

η
Vh(λ, λ

t)− Ewt
[

1

η
Vh(λ, λ

t+1)
∣∣λt, θt] , (B.1)

where the first inequality is due to the three point property (Lemma 4.1 of [18]), the second
uses Vh(λt+1, λt) ≥ σ1

2
‖λt+1 − λt‖2

1 given that h(·) is σ1-strongly convex with respect to the
‖·‖1 norm, the third uses that for any two vectors a1 and a2 of same dimension it holds
(a1)Ta2 + 0.5‖a1‖2

∞ ≥ −0.5‖a2‖2
1, and the final inequality is just understanding which terms

are constant under the conditional expectation. Taking EHt−1 [·] over both sides of equation
(B.1) and using the law of total expectation we get

E[η(gt)T (λt − λ)] ≤ 2(C̄2 + b̄2)

σ1

η2 + E
[
Vh(λ, λ

t)
]
− E

[
Vh(λ, λ

t+1)
]
, (B.2)

since the pair (λt, θt) is completely determined by Ht−1 ∪ {wt} and that wt is independent of
Ht−1. Then, regardless of the value of τA, using the telescopic property and that Vh(·, ·) is
non-negative we obtain

E

[
τA∑
s=1

(gs)T (λs − λ)

]
≤ 2(C̄2 + b̄2)

σ1

ηE[τA] +
Vh(λ, λ

1)

η
.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 102

Step 3. Lower bounds for E
[∑τA

s=1(gs)T (λs − λ)
]
. By definition of gt, using the subgradient

inequality we get

(gt)T (λt − λ) ≥ D(λt; θt)−D(λ; θt)

≥ D(λt; θt)−

Ew[ϕ(λ; θt, w)] +
∑
k∈[K]

bk([λk]+ − αk[−λk]+)

 .

For any w ∈ W we have f(z(λt; θt, w); θt, w) − λT c(z(λt; θt, w); θt, w) ≤ ϕ(λ; θt, w) as by
definition z(λt; θt, w) is an optimal solution of ϕ(λt; θt, w) not of ϕ(λ; θt, w). Defining λ̄τA :=
1
τA

∑τA
t=1 λ

t, taking λ = (0, 0, . . . , 0), and summing from one to τA we get
τA∑
t=1

(gt)T (λt − 0)

≥
τA∑
t=1

D(λt; θt)− Ew[f(z(λt; θt, w); θt, w)]

≥
τA∑
t=1

(
D(λt; θ∗)− Ew[f(z(λt; θt, w); θ∗, w)]

)
+

τA∑
t=1

(
D(λt; θt)−D(λt; θ∗)

)
+

τA∑
t=1

(
Ew[f(z(λt; θt, w); θ∗, w)− f(z(λt; θt, w); θt, w)]

)
≥

(
τAD(λ̄τA ; θ∗)−

τA∑
t=1

Ew[f(z(λt; θ∗, w); θ∗, w)]

)
+

τA∑
t=1

(
D(λt; θt)−D(λt; θ∗)

)
+

τA∑
t=1

(
Ew[f(z(λt; θt, w); θ∗, w)− f(z(λt; θt, w); θt, w)]

)
. (B.3)

Taking expectation over (B.3) and using the results from Step 2. we get

E

[
τAD(λ̄τA ; θ∗)−

τA∑
t=1

Ew
[
f(z(λt; θt, w); θ∗, w)

]]
≤ 2(C̄2 + b̄2)

σ1

ηE[τA] +
1

η
Vh(0, λ

1)

+E

[
τA∑
t=1

Ew[c(z(λt; θt, w); θt, w)]Tλt

]
− E

[
τA∑
t=1

Ew[c(z(λt; θt, w); θ∗, w)]Tλt

]
, (B.4)

where we have used the definition of D(·, ·) to reduce the second line of (B.4) to use only the
cost functions. Equation (B.4) almost matches the conclusion of Theorem 3.2.1 except that
(B.4) uses a E[

∑τA
t=1 Ew[·]] term, while the theorem uses E[

∑τA
t=1 ·]. The previous issue is solved

using the Optional Stopping Theorem. We prove now that E [
∑τA

t=1 f(z(λt; θt, wt); θ∗, wt)]
equals E [

∑τA
t=1 Ew [f(z(λt; θt, w); θ∗, w)]] (the analysis for the cost terms appearing in the

second line of (B.4) is analogous). First notice

Ew
[
f(z(λ; θ, w); θ∗, w)|λ = λt, θ = θt

]
= Ew

[
f(z(λt; θt, w); θ∗, w)|Ht−1

]
.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 103

Define the martingale M t =
∑t

s=1 f(z(λs; θs, ws); θ∗, ws) − Ew[f(z(λs; θs, w); θ∗, w)|Hs−1] for
all t ≤ T . Using that τA is a stop time w.r.t. to the filtration Ht, the Optional Stopping
Time ensures E[M τA] = E[M1] = 0, therefore:

E

[
τA∑
t=1

Ew
[
f(z(λt; θt, w); θ∗, w)|Ht−1

]]
= E

[
τA∑
t=1

f(z(λt; θt, wt); θ∗, wt)

]

concluding the proof.

Proposition B.2.4. Run Algorithm 6 with a constant “step-size” rule ηt ← η for all t ≥ 1
where η > 0. Using δθ as in Definition 3.2.2, for each t ∈ [T − 1] it holds (here we use 0 to
refer to the zero-vector (0, . . . , 0) of dimension K):

E
[
Vh(0, λ

t+1)
∣∣λt, θt] ≤ η

(
2η

σ1

(C̄2 + b̄2) + 2f̄ − δθt‖λt‖1

)
+ Vh(0, λ

t).

Proof. Let g̃t be the λt stochastic subgradient obtained in Step 6. of Algorithm 6. Here we
abuse notation and use, e.g., E[g̃t|λt, θt] to represent that g̃t is a random variable on w given
a fixed pair (λt, θt) ∈ (Λ×Θ). The following bound holds

EP [‖g̃t‖2
∞] ≤ E[(‖c(zt; θt, wt)‖∞ + ‖b‖∞)2] ≤ 2E[‖c(zt; θt, wt)‖2

∞ + ‖b‖2
∞] ≤ 2(C̄2 + b̄2).

For any λ ∈ Λ we have

E[g̃t|λt, θt]T (λt − λ)

=E[(g̃t)T (λt − λ)|λt, θt]

≤E
[
(g̃t)T (λt − λt+1) +

1

η
Vh(λ, λ

t)− 1

η
Vh(λ, λ

t+1)− 1

η
Vh(λ

t+1, λt)
∣∣λt, θt]

≤E
[
(g̃t)T (λt − λt+1) +

1

η
Vh(λ, λ

t)− 1

η
Vh(λ, λ

t+1)− σ1

2η
‖λt+1 − λt‖2

1

∣∣λt, θt]
≤E

[
η

σ1

‖g̃t‖2
∞ +

1

η
Vh(λ, λ

t)− 1

η
Vh(λ, λ

t+1)
∣∣λt, θt]

≤2η

σ1

(C̄2 + b̄2) +
1

η
Vh(λ, λ

t)− E
[

1

η
Vh(λ, λ

t+1)
∣∣λt, θt] ,

where we have used linearity of the expectation, the three point property, that Vh(·, ·) is
σ1 strongly convex on with respect to the ‖·‖1 norm, Cauchy-Schwartz, and the bound
for E[‖g̃t‖2

∞] obtained before (same steps as in Step 1. and 2. of Proof B.2.3). Choosing
λ = (0, . . . , 0) we get

E
[
Vh(0, λ

t+1)
∣∣λt, θt] ≤ η

(
2η

σ1

(C̄2 + b̄2)− E[g̃t|λt, θt]Tλt
)

+ Vh(0, λ
t).

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 104

To finish the proof we now show that E[g̃t|λt, θt]Tλt ≥ ‖λt‖1δθt − 2f̄ . Notice first that for
any (λt, θt) ∈ (Λ×Θ) we have E[g̃t(w)]Tλt = −E[c(z(λt; θt, w); θt, w)]Tλt + p(λt) using that
by definition p(λ) =

∑
k∈[K] bk([λk]+ − αk[−λk]+). Let {z(w)}w∈W be a series that satisfies

δθt = EP [min{‖Tbk − ck(z(w); θt, w)‖∞, ‖ck(z(w); θt, w)− Tαkbk‖∞}]. Then,

E[g̃t|λt, θt]Tλt

= D(λt; θt)− EP [f(z(λt; θt, w); θt, w)]

≥ EP [max
z∈Z

f(z; θt, w) +
∑
k∈[K]

(
[λtk]+(bk − EP [ck(z; θt, w)]) + [−λtk]+(EP [ck(z; θt, w)]− αkbk)

)
]− f̄

≥ EP [f(z(w); θt, w) +
∑
k∈[K]

(
[λtk]+(bk − EP [ck(z(w); θt, w)]) + [−λtk]+(EP [ck(z(w); θt, w)]− αkbk)

)
]− f̄

≥ EP [
∑
k∈[K]

[λtk]+(bk − EP [ck(z(w); θt, w)]) + [−λtk]+(EP [ck(z(w); θt, w)]− αkbk)]− 2f̄

≥ ‖λt‖1δθt − 2f̄ ,

where we have used that ‖λt‖1 =
∑

k∈[K] ([λtk]+ + [−λtk]+) and the definition of D(λt; θt), f̄ ,
and δθt .

Proof of Theorem 3.2.1

Proof. For any distribution P over W and for any t′ ∈ [T] we have

OPT (P) ≤ t′

T
OPT (P) +

T − t′

T
OPT (P)

≤ t′D(λ̄t
′
; θ∗) + (T − t′)f̄ ,

where we have used Proposition 3.1.1 and that a loose upper bound for OPT (P) is T f̄ .
Therefore,

Regret(A|P)

=OPT (P)−R(A|P)

≤E

[
τAD(λ̄τA ; θ∗) + (T − τA)f̄ −

τA∑
t=1

f(zt; θ∗, wt)

]

=E

[
τAD(λ̄τA ; θ∗)−

τA∑
t=1

f(zt; θ∗, wt)

]
+ E[T − τA]f̄

≤2(C̄2 + b̄2)

σ1

ηE[τA] +
1

η
Vh(0, λ

1) +
f̄

b

(
C̄ +

Ch + ‖∇h(λ1)‖∞
η

)
+E

[
τA∑
t=1

(c(zt; θ∗, wt)− c(zt; θt, wt))Tλt
]

+
f̄

b

∥∥∥∥∥E
[
τA∑
t=1

c(zt; θ∗, wt)− c(zt; θt, wt)

]∥∥∥∥∥
∞

,

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 105

where in the first inequality we have used the definition of R(A|P) and the fact that Algorithm
6 runs for τA periods. The second inequality is obtained directly from Propositions B.2.2 and
B.2.3.

Proof of Proposition 3.2.1

Proof. A direct application of Proposition B.2.4 shows that whenever ‖λt‖1 ≥ CB/δ we have
E[Vh(0, λ

t+1)|(λt, θt)] ≤ Vh(0, λ
t). Then, for any (λt, θt) ∈ Λ×Θ we have

E[Vh(0, λ
t+1)|(λt, θt)] ≤ max

{
max

‖λ‖1≤δ−1CB
Vh(0, λ) + ηCB, Vh(0, λ

1)
}

⇒E[Vh(0, λ
t+1)] ≤ max

{
max

‖λ‖1≤δ−1CB
Vh(0, λ) + ηCB, Vh(0, λ

1)
}

Take now h(·) = 1
2
‖·‖2

2, then for any λ ∈ Λ we have ∇h(λ) = λ and Vh(0, λ) = 1
2
‖λ‖2

2,
therefore max‖λ‖1≤δ−1CB 0.5‖λ‖2

2 = 0.5(CB/δ)2. Using Jensen inequality and previous results
we get

E[‖λt+1‖2] ≤ max
{√

(CB/δ)2 + 2ηCB, ‖λ1‖2

}
Finally, since ‖λ‖∞ ≤ ‖λ‖2 for any λ ∈ Λ we conclude the proof as for any t ∈ [T] we have
E[‖λt‖∞] ≤ max

{√
(CB/δ)2 + 2ηCB, ‖λ1‖∞

}
.

Proof of Proposition 3.2.2

Proof. Since αk 6= −∞ by statement, Proposition B.2.1 shows ḣk(λt+1) = ḣk(λ
t)− ηg̃tk for

any t ∈ [T], which implies that ḣk(λτA+1)− ḣk(λ1) = −η
∑τA

t=1 g̃
t
k regardless of the τA value.

Then, using the definition of g̃t we get

τA∑
t=1

(
bk(1(λk ≥ 0) + αk1(λk < 0))− ck(zt; θt, wt)

)
=
ḣk(λ

1)− ḣk(λτA+1)

η

⇒
τA∑
t=1

(
bk(1(λk ≥ 0) + αk1(λk < 0))− ck(zt; θ∗, wt)

)
=
ḣk(λ

1)− ḣk(λτA+1)

η
+

τA∑
t=1

ck(z
t; θt, wt)− ck(zt; θ∗, wt).

Now, given that (1(λ′ ≥ 0) +αk1(λ′ < 0)) ≥ αk for any λ′ ∈ R and that τA ≤ T by definition,
we have

τA∑
t=1

(bk(1(λk ≥ 0) + αk1(λk < 0))) + (T − τA)αkbk ≥ Tαkbk.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 106

Combining the previous results and taking expectation we get

Tαkbk − E[

τA∑
t=1

ck(z
t; θ∗, wt)] ≤ ḣk(λ

1)− E[ḣk(λ
τA+1)]

η
+ E[T − τA]αkbk

+ E

[
τA∑
t=1

ck(z
t; θt, wt)− ck(zt; θ∗, wt)

]
.

Finally, we conclude the proof by using Proposition B.2.2 and the definition of Ch.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 107

B.3 Extra Experimental Details and Results

Bidding Experiment

This experiment is based on data from Criteo [39]. Criteo is a Demand-Side Platform (DSP),
which are entities which bid on behalf of hundreds or thousands of advertisers which set
campaigns with them. The dataset from [39] contains millions of bidding logs during one
month of Criteo’s operation. These bidding logs are all logs in which Criteo successfully
acquired ad space for its advertising clients through real-time second-price auctions (each
log represents a different auction and ad space). Each of these auctions occur when a user
arrives to a website, app, etc., and each user is shown one ad few millisecond after its
“arrival”. Each bidding log contains. 1. Nine anonymized categorical columns containing
characteristics of the ad space and (possibly) about the user who has just “arrived”. 2. The
price Criteo paid for the ad space, which corresponds to the second highest bid submitted
to each auction. 3. The day of the auction and the advertiser whose ad was shown in
the ad space (the day is not included directly in the dataset, but appears in a Jupyter
Notebook inside the compressed file that contains the dataset). 4. If a conversion occur
after the ad was shown, i.e., if the corresponding user performed an action of interest for
the advertiser after watching the advertiser’s ad. The dataset can be downloaded from
https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset.

The experiment was performed as follows. We used the first 21 days of data as training,
the next two days as validation, and the remaining seven days as test. The training data was
used only to train a neural network to predict the probability of a conversion occurring. The
model architecture was taken from [98] and uses as features the nine anonymized categorical
columns, the day of the week, and an advertiser id to make a prediction if a conversion would
occur or not. Parameters to be tuned for the neural network were the step-size for the Adam
solver, embedding sizes, and other two specific network attributes (in total we tried 120
configurations). Once found the trained model with highest validation AUC (Area Under the
Curve), we took this model predictions as if they were the real probabilities of a conversion
occurring for unseen data. By having the advertiser id as an input on the model, we can
get conversion probability estimates for all advertisers even when Criteo bid on behalf of
only one advertiser per bidding log. The advertisers pay the DSP, in our context the bidder,
each time the DSP bids on behalf of them. The payment corresponds to the probability of
conversion times a known fixed value. The general simulator scheme for this experiment is
shown in Algorithm 12.

Algorithm 6 can be naturally incorporated in the simulator scheme by using the online
optimization component of it to obtain (zt, kt) of Step 3. of the simulator. We only need the
online optimization component of Algorithm 6, as we do not need to learn the distribution of
the highest competing (mp) to solve Step 3. of Algorithm 6 (shown in Algorithm 7). We
compare the performance of Algorithm 6 to using the Greedy Heuristic 13. When γ = 1,
Algorithm 13 bids ‘truthfully’ on behalf of the advertiser with the highest valuation. This
would be the optimal strategy if the advertisers had ‘infinite’ budgets and no lower bound

https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 108

Algorithm 12 Simulator Scheme
Input: Trained conversion prediction model σ, the set of all test bidding logs Xtest, T the
number of test bidding logs, q ∈ RK

+ the vector of payment per conversion values for the
advertisers, {mpt}Tt=1 the price Criteo paid for each ad spot in the test set in order.
for t = 1, . . . , T do
1. Read the t bidding test log and mpt.
2. Use model σ to obtain estimated conversion probabilities conv_prob. Take rtk =
conv_probk · qk for all k ∈ K.
3. Using vector rt and previous history, obtain (zt, kt) a pair of submitted bid and
advertiser to bid on behalf of.
4. If zt ≥ mpt then the auction is won, advertiser kt pays rtkt to the bidder (the DSP),
the bidder pays mpt for the ad spot and obtains rtkt −mpt as profit.

end for

requirements. Then, we can think of γ as a way to increase/decrease the bids in order to
take the budgets into account. (For this example, we can think of Algorithm 6 as an online
algorithm for obtaining γ variables per advertiser.)

Algorithm 13 Greedy Heuristic(γ)
Input: Vector r ∈ RK

+ and γ > 0.
Let K′ be the set of advertisers with non depleted budgets. If K′ = ∅ do not bid, otherwise
bid on behalf of k∗ ∈ arg maxk∈K′ rk the amount γrk∗ .

Our test set contains 21073 iterations and 130 advertisers. (The original dataset had 700
advertisers but we removed all advertisers who appeared in less than 10,000 logs in either the
training or validation plus test data.) Each iteration of the simulator scheme uses a batch
of 128 test logs. The total budget of an advertiser is the total amount Criteo spent bidding
on behalf of that advertiser in the test logs multiplied by 100. We run Algorithm 6 using
traditional subgradient descent trying the fixed step sizes {1 ∗ 10−i}3

i=0 ∪ {0.5 ∗ 10−i}3
i=0 and

{0.25 + 0.05 ∗ i}25
i=0 as γ parameters for the Greedy Heuristic 13. We run 100 simulations

for each parameter and method pair. Each simulation is defined by the price advertisers
would pay per conversion, which is the q vector in Algorithm 12. We sample qk i.i.d. from
Uniform(0.5, 1.5) for all k ∈ [K]. We relaxed the ending condition of Algorithm 6 by allowing
advertisers to overspend at most on one iteration. After that iteration, we consider an
advertiser’s budget as depleted and do not bid on behalf of it until the simulation’s end. The
final parameters chosen for Algorithms 6 and 13 were those that achieved the highest average
profit.

An advertiser’s budget depletion time correlates with its relative total maximum budget,
fact that is shown in Figure B.1. The x-axis is in logarithmic scale and shows the proportion
of an advertiser budget w.r.t. the highest budget between all advertisers. Observe that as

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 109

Figure B.1: The x-axis in the figure shows the proportion of an advertiser budget w.r.t. the
highest budget between all advertisers (shown on a logarithmic scale).

the relative budget increases, the average depletion time gets closer to the simulation end
(T = 21073).

Finally, we run this experiment using a SLURM managed Linux cluster. We tried 120
parameters combinations for the conversion prediction architecture, running each parameter
configuration for 25 epochs. Each parameter configuration took approximately 40 min to run
using a Nvidia K80 GPU plus two Intel Xeon 4-core 3.0 Ghz (we used eight GPUs in parallel
having a total run time of approximately 12 hours). For the experiment itself, we tried nine
different step-sizes to run the subgradient descent step using Algorithm 6 and 26 γ values for
13, each configuration running 100 simulations. We used several cluster nodes each having
64GB of RAM and two Xeon 12-core Haswell with 2.3 Ghz per core. If we had used just one
node it would have taken approximately 160 hours to run all required configurations.

Linear Contextual Bandits Experiment

We now describe in detail the methods used to implement Step 1. of Algorithm 6. First,
let yt be the variable that takes the value of one if an action is taken at period t and zero
otherwise. Also, remember that i(t) ∈ [d] is the action taken at period t (if any), and rt the
revenue observed at period t. We implemented Step 1. of Algorithm 6 in the following ways.

1. Gaussian Thompson Sampling as in [4]. Define B(1) = Id with Id the identity matrix
of size d, and θ̂1 = (1/

√
d, . . . , 1/

√
d). The Thompson Sampling procedure is composed

of two steps which are updating a prior and sampling from a Gaussian posterior. We
update the prior as follows. If yt = 1, make B(t+ 1) = Id+

∑
s∈[t]:ys=1 W

s
i(s)(W

s
i(s))

T and

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 110

θ̂t+1 = B(t+ 1)−1(
∑

s∈[t]:ys=1W
s
i(s)r

t), otherwise B(t+ 1) = B(t) and θ̂t+1 = θ̂t. After
the prior update, we sample θt from N (θ̂t, ν2B(t)−1) where N (·, ·) represents a normal
distribution defined by its mean and covariance matrix, and ν > 0 a constant chosen as
follows. When no randomness was added to the observed revenue term, we used ν = 0.1
(remember that we could add randomness to both the matrices W t and the observed
revenue separately). When randomness was added to the observed revenue, we used
ν = rev_err

10
∗
√

log T ∗ n with rev_err = 0.1 or 0.5 depending if a Uniform(−0.1, 0.1)
or Uniform(−0.5, 0.5) is added to the observed revenue term respectively. (The latter
form of choosing ν was inspired on [4] which uses ν = R

√
9n log T to prove a regret

bound for Thompson Sampling for linear contextual bandits without constraints.)

2. Least squares. Same as Thompson Sampling as described above, but Step 1. of
Algorithm 6 uses θt = θ̂t. (This update is a core element of many learning approaches
for linear contextual bandits [4, 2] and can be understood as a Least Squares step).

3. Ridge regression. We use the Least Squares procedure as defined above for the first
√
T/2

actions, and then solve a ridge regression problem. We solve a ridge regression problem
at Step 1. of iteration t using the set {W s

i(s), r
s}s∈[t−1]:ys=1 with an `2 penalization

parameter of α = 0.001.

4. Ridge regression plus error. Same method as above but adds noise to the θt obtained
from the ridge regression problem. We add an i.i.d. Uniform(−0.3, 0.3)/

√∑t
s=1 y

s

term to each coordinate of θt.

5. Known θ∗. Algorithm 6 using θt = θ∗ for all t ∈ [T].

Figures B.2 and B.3 show how the different methods perform for (d × n) being (5, 10)
and (50, 50) when T = 10, 000, respectively. Each element of the x-axis represents a moving
window composed of 250 iterations. The x-axis is composed of 9751 ticks . The y-axis shows
the average relative revenue obtained in a window with respect to the proportional best
revenue that could have been obtained (OPT(P) · 250

10000
). Importantly, the number of actions

a method takes can vary between windows, which explains the following two facts. First, an
initial revenue spike as many actions are taken when a simulation starts. The latter occurs as
we took λ1 = 0 which makes the cost component in Step 3. of Algorithm 6 zero. Second, a
method may obtain a higher average revenue on a window than OPT(P) · 250

10000
if more than

’average’ actions are taken on that window.
Tables B.1, B.2, B.3 show the average total relative revenue obtained for the different

combinations of d× n and uncertainty used with respect to OPT(P). In general, as long as
the budget is spent properly, the revenue obtained by the ‘Known θ∗’ method when W t = W
for all t ∈ [T] should match OPT(P). The latter as the best action to take is always the
same. In the case when we still have W t = W for all t ∈ [T], but the observed revenue has
randomness, the ‘Known θ∗’ method may obtain a higher total revenue than OPT(P).

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 111

Finally, we run this experiment using a SLURM managed Linux cluster. We used four
nodes each having 64 GB of RAM and 20 cores of 2.5Ghz. We parallelized the code to
run each combination of experiment setting and simulation number as a different run (the
run-time was mostly spent on sampling from a Gaussian distribution for Thompson Sampling
and solving Ridge Regression problems with thousands of points). The total running time
was 12 hours. Processing the results was done in a local computer (Mac Book Pro 2015
version), spending around 30 minutes to aggregate the results obtained from the cluster.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 112

Figure B.2: Moving average revenue for windows of 250 iterations against the proportional
best average revenue possible using d = 5, n = 10.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 113

Figure B.3: Moving average revenue for windows of 250 iterations against the proportional
best average revenue possible using d = 50, n = 50.

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 114

T = 1, 000 d× n (0.0, 0.0) (0.1, 0.0) (0.5, 0.0) (0.0, 0.1) (0.1, 0.1) (0.5, 0.1)

Least Squares 5 × 5 76.2% 77.6% 84.2% 78.9% 79.4% 79.3%
Thompson Sampling 5 × 5 95.2% 74.2% 21.9% 85.4% 65.4% 19.0%
Ridge Regression 5 × 5 77.6% 79.0% 85.4% 90.4% 89.8% 83.5%
Ridge Reg. + Perturbation 5 × 5 80.8% 80.9% 86.0% 90.3% 89.6% 83.5%
Known Parameter 5 × 5 99.9% 100.1% 100.8% 92.4% 92.4% 92.2%
Least Squares 5 × 10 60.9% 63.2% 73.4% 80.1% 80.5% 82.6%
Thompson Sampling 5 × 10 94.2% 90.3% 51.2% 89.4% 85.9% 48.3%
Ridge Regression 5 × 10 64.5% 67.3% 76.5% 93.0% 92.8% 90.0%
Ridge Reg. + Perturbation 5 × 10 73.9% 73.9% 81.1% 92.8% 92.6% 90.2%
Known Parameter 5 × 10 100.0% 100.0% 99.9% 95.5% 95.5% 95.4%
Least Squares 10 × 5 70.9% 74.6% 78.1% 83.7% 84.0% 82.9%
Thompson Sampling 10 × 5 94.5% 91.0% 50.6% 89.0% 84.6% 47.6%
Ridge Regression 10 × 5 71.0% 75.2% 78.8% 92.5% 92.5% 89.0%
Ridge Reg. + Perturbation 10 × 5 82.0% 84.3% 84.7% 92.3% 92.3% 89.7%
Known Parameter 10 × 5 99.9% 99.9% 99.7% 94.5% 94.4% 94.2%
Least Squares 10 × 10 58.5% 62.5% 72.0% 75.7% 75.3% 76.7%
Thompson Sampling 10 × 10 92.2% 66.6% 14.7% 86.1% 62.4% 15.1%
Ridge Regression 10 × 10 59.0% 63.4% 72.4% 91.2% 90.4% 84.0%
Ridge Reg. + Perturbation 10 × 10 72.3% 73.6% 77.2% 90.9% 90.2% 84.1%
Known Parameter 10 × 10 100.0% 99.9% 99.7% 93.9% 93.9% 93.9%
Least Squares 25 × 25 44.0% 49.7% 54.0% 64.5% 66.0% 58.9%
Thompson Sampling 25 × 25 89.1% 5.4% 0.3% 74.4% 6.1% 0.7%
Ridge Regression 25 × 25 44.1% 50.6% 56.0% 86.1% 78.4% 46.8%
Ridge Reg. + Perturbation 25 × 25 69.5% 66.7% 61.4% 85.4% 78.0% 46.3%
Known Parameter 25 × 25 100.0% 100.0% 99.7% 90.7% 90.8% 91.3%
Least Squares 25 × 50 41.4% 48.1% 56.1% 64.7% 65.1% 68.1%
Thompson Sampling 25 × 50 89.0% 19.6% 3.3% 82.4% 20.5% 3.7%
Ridge Regression 25 × 50 43.3% 50.3% 62.7% 90.0% 85.8% 69.7%
Ridge Reg. + Perturbation 25 × 50 62.8% 64.0% 68.8% 89.5% 85.5% 69.1%
Known Parameter 25 × 50 100.0% 100.1% 100.3% 93.7% 93.8% 94.1%
Least Squares 50 × 25 49.1% 53.7% 59.1% 67.7% 68.1% 68.3%
Thompson Sampling 50 × 25 92.2% 18.3% 2.6% 82.7% 19.5% 2.8%
Ridge Regression 50 × 25 51.9% 55.9% 64.6% 89.4% 85.3% 67.7%
Ridge Reg. + Perturbation 50 × 25 70.8% 69.7% 71.8% 89.1% 85.2% 67.6%
Known Parameter 50 × 25 100.0% 100.0% 100.0% 92.9% 92.9% 92.6%
Least Squares 50 × 50 42.0% 52.2% 55.7% 62.3% 63.7% 58.7%
Thompson Sampling 50 × 50 87.5% 5.4% 1.5% 76.0% 6.7% 1.5%
Ridge Regression 50 × 50 43.6% 54.5% 62.1% 86.8% 76.8% 47.7%
Ridge Reg. + Perturbation 50 × 50 67.2% 68.8% 66.7% 86.0% 76.6% 47.2%
Known Parameter 50 × 50 100.0% 100.0% 100.0% 92.0% 91.9% 91.6%

Table B.1: All percentages shown are the average revenue over 100 simulations divided by
the best average revenue achievable (OPT(P)).

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 115

T = 5, 000 d× n (0.0, 0.0) (0.1, 0.0) (0.5, 0.0) (0.0, 0.1) (0.1, 0.1) (0.5, 0.1)

Least Squares 5 × 5 76.7% 79.4% 87.1% 91.6% 91.5% 90.5%
Thompson Sampling 5 × 5 98.7% 88.6% 42.6% 93.2% 80.9% 36.7%
Ridge Regression 5 × 5 78.1% 79.4% 86.5% 95.1% 94.9% 92.4%
Ridge Reg. + Perturbation 5 × 5 80.0% 79.7% 87.2% 94.9% 94.8% 92.3%
Known Parameter 5 × 5 100.0% 100.0% 99.9% 95.9% 95.9% 96.0%
Least Squares 5 × 10 61.2% 63.5% 75.3% 93.1% 93.3% 92.6%
Thompson Sampling 5 × 10 97.3% 96.0% 71.7% 95.8% 93.0% 68.6%
Ridge Regression 5 × 10 64.9% 67.9% 79.6% 96.5% 96.5% 95.5%
Ridge Reg. + Perturbation 5 × 10 71.0% 71.9% 80.4% 96.4% 96.4% 95.3%
Known Parameter 5 × 10 100.0% 100.0% 100.0% 97.5% 97.5% 97.4%
Least Squares 10 × 5 71.3% 72.3% 80.9% 93.6% 93.4% 93.4%
Thompson Sampling 10 × 5 96.0% 96.4% 70.4% 95.2% 92.1% 67.1%
Ridge Regression 10 × 5 71.5% 73.7% 81.5% 96.3% 96.2% 95.5%
Ridge Reg. + Perturbation 10 × 5 77.0% 80.1% 83.0% 96.2% 96.1% 95.3%
Known Parameter 10 × 5 100.0% 100.0% 100.1% 97.0% 97.0% 97.0%
Least Squares 10 × 10 58.9% 63.3% 70.0% 91.0% 90.9% 91.3%
Thompson Sampling 10 × 10 96.2% 83.9% 29.5% 94.2% 80.7% 30.8%
Ridge Regression 10 × 10 59.4% 63.7% 70.4% 95.6% 95.4% 93.3%
Ridge Reg. + Perturbation 10 × 10 69.2% 69.8% 74.1% 95.5% 95.4% 93.1%
Known Parameter 10 × 10 100.0% 100.0% 100.1% 96.7% 96.6% 96.5%
Least Squares 25 × 25 44.6% 54.0% 58.6% 85.6% 85.6% 78.3%
Thompson Sampling 25 × 25 97.2% 12.6% 1.2% 88.6% 15.0% 1.9%
Ridge Regression 25 × 25 44.8% 54.7% 60.4% 93.4% 91.1% 76.4%
Ridge Reg. + Perturbation 25 × 25 64.9% 64.0% 66.2% 93.2% 90.9% 76.5%
Known Parameter 25 × 25 100.0% 100.1% 100.4% 95.0% 94.9% 94.7%
Least Squares 25 × 50 41.5% 48.1% 57.5% 87.7% 87.4% 84.4%
Thompson Sampling 25 × 50 94.6% 36.2% 7.3% 93.0% 39.9% 8.6%
Ridge Regression 25 × 50 43.5% 49.9% 68.0% 95.0% 94.2% 87.8%
Ridge Reg. + Perturbation 25 × 50 55.7% 58.0% 74.1% 94.9% 94.1% 87.0%
Known Parameter 25 × 50 100.0% 99.9% 99.6% 96.5% 96.5% 96.5%
Least Squares 50 × 25 49.3% 53.0% 57.8% 87.6% 87.9% 85.3%
Thompson Sampling 50 × 25 97.8% 34.3% 5.5% 92.3% 38.9% 7.1%
Ridge Regression 50 × 25 52.2% 55.3% 58.4% 94.6% 93.9% 86.8%
Ridge Reg. + Perturbation 50 × 25 66.0% 65.7% 67.8% 94.4% 93.7% 87.1%
Known Parameter 50 × 25 100.0% 100.0% 100.1% 96.0% 96.0% 96.0%
Least Squares 50 × 50 41.9% 52.7% 60.4% 85.8% 86.2% 79.6%
Thompson Sampling 50 × 50 96.4% 10.0% 1.8% 89.7% 14.3% 2.7%
Ridge Regression 50 × 50 43.6% 53.2% 68.2% 94.0% 91.5% 77.9%
Ridge Reg. + Perturbation 50 × 50 59.9% 61.3% 71.8% 93.7% 91.4% 77.8%
Known Parameter 50 × 50 100.0% 100.0% 100.2% 95.5% 95.5% 95.5%

Table B.2: All percentages shown are the average revenue over 100 simulations divided by
the best average revenue achievable (OPT(P)).

APPENDIX B. JOINT ONLINE LEARNING AND DECISION-MAKING VIA DUAL
MIRROR DESCENT 116

T = 10, 000 d× n (0.0, 0.0) (0.1, 0.0) (0.5, 0.0) (0.0, 0.1) (0.1, 0.1) (0.5, 0.1)

Least Squares 5 × 5 76.8% 79.7% 85.4% 94.7% 94.6% 93.7%
Thompson Sampling 5 × 5 98.8% 92.4% 52.8% 95.4% 85.8% 47.0%
Ridge Regression 5 × 5 78.2% 79.7% 87.0% 96.5% 96.4% 95.0%
Ridge Reg. + Perturbation 5 × 5 80.1% 80.0% 88.6% 96.4% 96.4% 95.0%
Known Parameter 5 × 5 100.0% 100.0% 100.2% 97.0% 97.0% 97.1%
Least Squares 5 × 10 61.2% 63.5% 75.8% 95.9% 95.9% 95.4%
Thompson Sampling 5 × 10 96.8% 97.3% 79.0% 97.2% 95.1% 76.1%
Ridge Regression 5 × 10 65.0% 67.8% 76.8% 97.5% 97.5% 97.0%
Ridge Reg. + Perturbation 5 × 10 70.4% 71.7% 81.0% 97.5% 97.5% 97.0%
Known Parameter 5 × 10 100.0% 100.0% 100.1% 98.2% 98.2% 98.2%
Least Squares 10 × 5 71.4% 73.1% 81.7% 95.9% 95.9% 95.4%
Thompson Sampling 10 × 5 96.7% 97.7% 77.7% 96.8% 94.3% 74.6%
Ridge Regression 10 × 5 71.6% 75.0% 82.4% 97.3% 97.3% 96.8%
Ridge Reg. + Perturbation 10 × 5 76.4% 80.2% 83.3% 97.3% 97.3% 96.6%
Known Parameter 10 × 5 100.0% 100.0% 100.0% 97.8% 97.8% 97.8%
Least Squares 10 × 10 59.0% 64.5% 71.0% 94.5% 94.2% 93.5%
Thompson Sampling 10 × 10 96.4% 89.0% 38.8% 96.0% 86.3% 40.5%
Ridge Regression 10 × 10 59.4% 65.2% 71.8% 96.8% 96.7% 95.2%
Ridge Reg. + Perturbation 10 × 10 68.9% 70.4% 73.0% 96.7% 96.6% 95.0%
Known Parameter 10 × 10 100.0% 100.0% 100.1% 97.5% 97.5% 97.5%
Least Squares 25 × 25 44.5% 53.7% 67.1% 91.4% 91.2% 84.7%
Thompson Sampling 25 × 25 98.4% 18.5% 1.8% 92.3% 21.2% 2.7%
Ridge Regression 25 × 25 44.7% 54.7% 65.8% 95.3% 94.0% 83.4%
Ridge Reg. + Perturbation 25 × 25 65.8% 63.9% 69.6% 95.1% 94.0% 83.6%
Known Parameter 25 × 25 100.0% 100.0% 100.0% 96.2% 96.2% 95.9%
Least Squares 25 × 50 41.6% 48.0% 58.0% 92.7% 92.7% 90.4%
Thompson Sampling 25 × 50 97.8% 46.3% 10.4% 95.4% 50.8% 11.8%
Ridge Regression 25 × 50 43.6% 49.5% 67.1% 96.4% 96.0% 91.1%
Ridge Reg. + Perturbation 25 × 50 57.7% 59.2% 71.3% 96.3% 96.0% 91.2%
Known Parameter 25 × 50 100.0% 100.0% 100.0% 97.4% 97.4% 97.4%
Least Squares 50 × 25 49.3% 53.6% 58.8% 92.5% 92.8% 90.5%
Thompson Sampling 50 × 25 98.6% 44.8% 7.9% 94.8% 50.2% 10.3%
Ridge Regression 50 × 25 52.3% 55.1% 65.1% 96.1% 95.7% 91.3%
Ridge Reg. + Perturbation 50 × 25 63.9% 62.6% 69.9% 96.0% 95.7% 91.1%
Known Parameter 50 × 25 100.0% 100.0% 100.0% 97.0% 97.0% 97.1%
Least Squares 50 × 50 43.2% 51.2% 59.5% 91.4% 91.5% 85.8%
Thompson Sampling 50 × 50 98.1% 13.2% 2.3% 93.1% 19.7% 3.5%
Ridge Regression 50 × 50 44.9% 52.9% 65.0% 95.6% 94.5% 84.9%
Ridge Reg. + Perturbation 50 × 50 59.3% 63.2% 67.7% 95.5% 94.4% 85.2%
Known Parameter 50 × 50 100.0% 100.0% 99.9% 96.7% 96.7% 96.8%

Table B.3: All percentages shown are the average revenue over 100 simulations divided by
the best average revenue achievable (OPT(P)).

117

Appendix C

Stochastic In-Face Frank-Wolfe Methods
for Non-Convex Optimization and
Sparse Neural Network Training

C.1 Proofs in Section 4.1

Proof of Proposition 4.1.1

Proof. It is easily verified that G̃(x̄, ȳ) ≥ 0 and hence G(x̄, ȳ) ≥ 0 for all (x̄, ȳ) ∈ S × Rq.
Now suppose that G(x̄, ȳ) > 0. Then, either G̃(x̄, ȳ) > 0 or ‖∇yF (x̄, ȳ)‖Y ∗ > 0. In the case
that G̃(x̄, ȳ) > 0, let x̃ ∈ arg maxx∈S

{
∇xF (x̄, ȳ)T (x̄− x)

}
and define a direction d ∈ Rp×Rq

by d := (x̃− x̄, 0). Then, d is a feasible descent direction for (1) and therefore (x̄, ȳ) is not
locally optimal. Likewise, if ‖∇yF (x̄, ȳ)‖Y ∗ > 0, let ỹ ∈ arg max

y∈Rq
{∇yF (x̄, ȳ)Ty : ‖y‖Y ≤ 1}

and define d := (0,−ỹ). Then d is also a descent direction and therefore (x̄, ȳ) is not locally
optimal.

Proof of Proposition 4.1.2

Proof. By the gradient inequality for differentiable convex functions, it holds that:

F (x̄, ȳ)− F ∗ ≤ ∇xF (x̄, ȳ)T (x̄− x∗) +∇yF (x̄, ȳ)T (ȳ − y∗)
≤ G̃(x̄, ȳ) + ‖∇yF (x̄, ȳ)‖Y ∗‖ȳ − y∗‖Y

≤
√

C̄
2L∇
· G̃(x̄, ȳ)

√
¯2L∇
C̄

+R‖∇yF (x̄, ȳ)‖Y ∗

≤ max

{√
C̄

2L∇
, R

}
·G(x̄, ȳ) ,

where the second inequality uses the definition of G̃(x̄, ȳ) as well as Hölder’s inequality.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 118

Proof of Lemma 4.1.1

Proof. Let σS(·) denote the support function of the set S, i.e., σS(g) = maxx∈S
{
gTx

}
. Con-

sider the function ψ(·, ·) : Rp×Rq → R defined by ψ(g, h) := (gT x̄+σS(−g))
√

2L∇
C̄

+ ‖h‖Y ∗,
which is a convex function of (g, h). Note that G(x̄, ȳ) = ψ(∇xF (x̄, ȳ),∇yF (x̄, ȳ)). Finally,
Jensen’s inequality yields:

E[Ĝ] = E[ψ(ĝ, ĥ)] ≥ ψ(∇xF (x̄, ȳ),∇yF (x̄, ȳ)) = G(x̄, ȳ) .

Useful Lemmas

We use the following Lemma to prove the results in this section.

Lemma C.1.1. Suppose that (g1, h1), . . . , (gb, hb) are i.i.d. random vectors in Rp × Rq with
mean 0 and satisfying E[‖(gi, hi)‖2

∗] ≤ σ2 for all i = 1, . . . , b. Define ĝ := 1
b

∑b
i=1 gi and

ĥ = 1
b

∑b
i=1 hi. Then, it holds that:

E[‖(ĝ, ĥ)‖2
∗] ≤

κ2σ2

b
.

Proof. Recall that κ1 := max(x,y)6=0 ‖(x, y)‖2/‖(x, y)‖ = max(s,t)6=0 ‖(s, t)‖∗/‖(s, t)‖2 as well
as κ2 := max(x,y)6=0 ‖(x, y)‖/‖(x, y)‖2 = max(s,t)6=0 ‖(s, t)‖2/‖(s, t)‖∗. Hence, for any (s, t) ∈
Rp × Rq, it holds that:

‖(s, t)‖∗ ≤ κ1‖(s, t)‖2 ≤ κ1κ2‖(s, t)‖∗ = κ‖(s, t)‖∗ .

Now we have that:

E[‖(ĝ, ĥ)‖2
∗] ≤ κ2

1 · E[‖(ĝ, ĥ)‖2
2] =

κ2
1

b
· E[‖(g1, h1)‖2

2] ≤ κ2

b
· E[‖(g1, h1)‖2

∗] ≤
κ2σ2

b
,

where the equality in the above chain uses the fact that (g1, h1), . . . , (gb, hb) are i.i.d. with
mean 0.

The proof of Theorem 2.1 is based on the following key lemma that bounds the expected
progress per iteration.

Lemma C.1.2. For each k ≥ 0, let Fk denote the σ-field of all information gathered after
completing iteration k − 1 of Algorithm 1, i.e., right before starting iteration k, and define
∆k := 8L∇(F (xk, yk)− F (xk+1, yk+1)). Then, at every iteration k ≥ 0, it holds that:

E[∆k | Fk] ≥ G(xk, yk)
2 − 4αADκ

2σ2

bk
.

Proof.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 119

Case 1: AlternativeDirections = FALSE. Let us first consider the case of not using
alternative directions, i.e., AlternativeDirections = FALSE. By Assumption (A1), it is well-
known and follows easily from the fundamental theorem of calculus that:

F (x, y) ≤ F (x̄, ȳ)+∇F (x̄, ȳ)T ((x, y)−(x̄, ȳ))+L∇
2
‖(x, y)−(x̄, ȳ)‖2 for all (x, y), (x̄, ȳ) ∈ S×Rq .

(C.1)
In the case of AlternativeDirections = FALSE, we have that xk+1 = x̄k = xk + ᾱk(x̃k − xk).
Applying the above inequality to the iterates of Algorithm 1 yields deterministically:

F (xk+1, yk+1) ≤ F (xk, yk) +∇F (xk, yk)
T ((xk+1, yk+1)− (xk, yk))

+ L∇
2
‖(xk+1, yk+1)− (xk, yk)‖2

= F (xk, yk) +∇xF (xk, yk)
T (xk+1 − xk) + L∇

2
‖xk+1 − xk‖2

X

+∇yF (xk, yk)
T (yk+1 − yk) + L∇

2
‖yk+1 − yk‖2

Y

= F (xk, yk) + ᾱk∇xF (xk, yk)
T (x̃k − xk) +

L∇ᾱ
2
k

2
‖x̃k − xk‖2

X

− αk∇yF (xk, yk)
T ỹk +

L∇α
2
k

2
‖ỹk‖2

Y

≤ F (xk, yk) + ᾱk∇xF (xk, yk)
T (x̃k − xk) +

L∇diam(S)2ᾱ2
k

2

− αk∇yF (xk, yk)
T ỹk +

L∇α
2
k

2

= F (xk, yk) + ᾱkĝ
T
k (x̃k − xk) + ᾱk(∇xF (xk, yk)− ĝk)T (x̃k − xk)

+
L∇diam(S)2ᾱ2

k

2
− αkĥTk ỹk + αk(ĥk −∇yF (xk, yk))

T ỹk +
L∇α

2
k

2

= F (xk, yk)− ᾱkG̃k + ᾱk(∇xF (xk, yk)− ĝk)T (x̃k − xk) +
L∇diam(S)2ᾱ2

k

2

− αk‖ĥk‖Y ∗ + αk(ĥk −∇yF (xk, yk))
T ỹk +

L∇α
2
k

2
.

Recall that for any γ > 0 and vectors s, x ∈ Rp, it holds that sTx ≤ 1
2γ
‖s‖2

X∗ + γ
2
‖x‖2

X .
Applying this inequality with γ ← L∇, s← ∇xF (xk, yk)− ĝk and x← ᾱk(x̃k − xk) yields:

F (xk+1, yk+1) ≤ F (xk, yk)− ᾱkG̃k + 1
2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗ +
L∇ᾱ

2
k

2
‖x̃k − xk‖2

X

+
L∇diam(S)2ᾱ2

k

2
− αk‖ĥk‖Y ∗ + αk(ĥk −∇yF (xk, yk))

T ỹk +
L∇α

2
k

2

≤ F (xk, yk)− ᾱkG̃k + 1
2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗ +
C̄ᾱ2

k

2

− αk‖ĥk‖Y ∗ + αk(ĥk −∇yF (xk, yk))
T ỹk +

L∇α
2
k

2
,

where the second inequality uses C̄ ≥ 2L∇ · diam(S)2. Applying the same reasoning on the
space of y variables with norms ‖ · ‖Y and ‖ · ‖Y ∗ yields:

F (xk+1, yk+1) ≤ F (xk, yk)− ᾱkG̃k + 1
2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗ +
C̄ᾱ2

k

2

− αk‖ĥk‖Y ∗ + 1
2L∇
‖∇yF (xk, yk)− ĥk‖2

Y ∗ +
L∇α

2
k

2
‖ỹk‖2

Y +
L∇α

2
k

2

F (xk+1, yk+1) ≤ F (xk, yk)− ᾱkG̃k + 1
2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗ +
C̄ᾱ2

k

2

− αk‖ĥk‖Y ∗ + 1
2L∇
‖∇yF (xk, yk)− ĥk‖2

Y ∗ + L∇α
2
k ,

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 120

where the second inequality uses ‖ỹk‖Y ≤ 1. Using ᾱk = G̃k/C̄, and αk = ‖ĥk‖Y ∗/2L∇ yields:

F (xk+1, yk+1) ≤ F (xk, yk)−
G̃2
k

2C̄
− ‖ĥk‖

2
Y ∗

4L∇
+

1

2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗

+
1

2L∇
‖∇yF (xk, yk)− ĥk‖2

Y ∗

Multiplying the above inequality by 8L∇ and rearranging terms yields:

∆k ≥
4L∇G̃

2
k

C̄
+ 2‖ĥk‖2

Y ∗ − 4‖∇xF (xk, yk)− ĝk‖2
X∗ − 4‖∇yF (xk, yk)− ĥk‖2

Y ∗

=
4L∇G̃

2
k

C̄
+ 2‖ĥk‖2

Y ∗ − 4‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2
∗

≥

(
G̃k

√
2L∇
C̄

+ ‖ĥ‖Y ∗

)2

− 4‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2
∗ ,

where the second inequality uses (a+ b)2 ≤ 2(a2 + b2). By combining assumption (A3) with
Lemma C.1.1, we have that

E
[
‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2

∗ | Fk
]
≤ κ2σ2

bk
.

Furthermore, by combining Lemma 2.1 with Jensen’s inequality on t 7→ t2 we have:

G(xk, yk)
2 ≤

(
E
[
G̃k

√
2L∇
C̄

+ ‖ĥ‖Y ∗ | Fk
])2

≤ E

[(
G̃k

√
2L∇
C̄

+ ‖ĥ‖Y ∗
)2

| Fk

]
.

Combining the previous inequalities together yields:

E[∆k | Fk] ≥ G(xk, yk)
2 − 4κ2σ2

bk
,

which proves the result for Case 1.

Case 2: AlternativeDirections = TRUE. First notice that we can decompose ∆k as:

∆k = 8L∇(F (xk, yk)− F (x̄k, yk+1)) + 8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)) . (C.2)

By the exact same reasoning as above, we have that

E[8L∇(F (xk, yk)− F (x̄k, yk+1)) | Fk] ≥ G(xk, yk)
2 − 4κ2σ2

bk
. (C.3)

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 121

Let Gk denote the σ-field of all information gathered after completing Step (3.) of iteration
k of Algorithm 2, i.e., right before starting Step (4.) (the alternative direction step). Note
that Fk ⊂ Gk. Applying (C.1) at Step (4.) of Algorithm 2, we have deterministically:

F (xk+1, yk+1) ≤ F (x̄k, yk+1) +∇F (x̄k, yk+1)T ((xk+1, yk+1)− (x̄k, yk+1))

+ L∇
2
‖(xk+1, yk+1)− (x̄k, yk+1)‖2

= F (x̄k, yk+1) +∇xF (x̄k, yk+1)T (xk+1 − x̄k) + L∇
2
‖xk+1 − x̄k‖2

X

= F (x̄k, yk+1) + β̄k∇xF (x̄k, yk+1)Tdk +
L∇β̄

2
k

2
‖dk‖2

X

≤ F (x̄k, yk+1) + β̄k∇xF (x̄k, yk+1)Tdk +
L∇diam(S)2β̄2

k

2

= F (x̄k, yk+1) + β̄kǧ
T
k dk + β̄k(∇xF (x̄k, yk+1)− ǧk)Tdk +

L∇diam(S)2β̄2
k

2

= F (x̄k, yk+1)− β̄kAk + β̄k(∇xF (x̄k, yk+1)− ǧk)Tdk +
L∇diam(S)2β̄2

k

2

Applying the inequality sTx ≤ 1
2γ
‖s‖2

X∗ + γ
2
‖x‖2

X with γ ← L∇, s← ∇xF (x̄k, yk+1)− ǧk and
x← β̄kdk yields:

F (xk+1, yk+1) ≤ F (x̄k, yk+1)− β̄kAk + 1
2L∇
‖∇xF (x̄k, yk+1)− ǧk‖2

X∗

+
L∇β̄

2
k

2
‖dk‖2

X +
L∇diam(S)2β̄2

k

2

≤ F (x̄k, yk+1)− β̄kAk + 1
2L∇
‖∇xF (x̄k, yk+1)− ǧk‖2

X∗ +
C̄β̄2

k

2
,

where the second inequality uses C̄ ≥ 2L∇ · diam(S)2. Notice that β̄k = min
{
Ak/C̄, α

stop
k

}
minimizes the quadratic function β 7→ −βAk + C̄β2

2
on the interval [0, αstop

k]. Hence, in
particular we have that −β̄kAk +

C̄β̄2
k

2
≤ 0 and therefore:

F (xk+1, yk+1) ≤ F (x̄k, yk+1) + 1
2L∇
‖∇xF (x̄k, yk+1)− ǧk‖2

X∗ . (C.4)

Multiplying the above inequality by 8L∇ and rearranging terms yields:

− 4‖∇xF (x̄k, yk+1)− ǧk‖2
X∗ ≤ 8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)), and by definition:

− 4‖∇xF (x̄k, yk+1)− ǧk‖2
X∗ = −4‖(∇xF (x̄k, yk+1),∇yF (x̄k, yk+1))− (ǧk,∇yF (x̄k, yk+1))‖2

∗ .

Using the definition of the dual norm ‖ · ‖∗ as well as assumption (A3), we have for all
(x, y) ∈ S × Rq that:

Ez∼D
[
‖(∇xf(x, y, z),∇yF (x, y))− (∇xF (x, y),∇yF (x, y))‖2

∗
]

=

Ez∼D
[
‖(∇xf(x, y, z)−∇xF (x, y)‖2

X∗ + ‖0‖2
Y ∗
]
≤

Ez∼D
[
‖(∇xf(x, y, z)−∇xF (x, y)‖2

X∗ + ‖∇yf(x, y, z)−∇yF (x, y)‖2
Y ∗
]

=

Ez∼D
[
‖∇f(x, y, z)−∇F (x, y)‖2

∗
]
≤ σ2

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 122

Hence, by combining the above with Lemma C.1.1, we have that

E
[
‖(∇xF (x̄k, yk+1),∇yF (x̄k, yk+1))− (ǧk,∇yF (x̄k, yk+1))‖2

∗ | Gk
]
≤ κ2σ2

bk
.

Combining the previous inequalities together yields:

E[8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)) | Gk] ≥ − 4κ2σ2

bk
.

Using the tower property of conditional expectation we have that

E[8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)) | Fk] = E [E[8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)) | Gk] | Fk]

≥ − 4κ2σ2

bk
.

Finally combining the above with (C.3) and and (C.2) yields:

E[∆k | Fk] ≥ G(xk, yk)
2 − 8κ2σ2

bk
,

which proves the result in Case 2.

Proof of Theorem 4.1.1

By combining Lemma C.1.2 with the law of iterated expectations, it holds for each k ∈
{0, . . . , K} that:

E[∆k] = E [E[∆k | Fk]] ≥ E[G(xk, yk)
2]− 4αADκ

2σ2

bk
.

Recalling that E[∆k] = 8L∇E[F (xk, yk)] − 8L∇E[F (xk+1, yk+1)] and summing the above
inequality over all k ∈ {0, . . . , K} yields:

K∑
k=0

E[G(xk, yk)
2] ≤ 8L∇(F (x0, y0)− E[F (xK+1, yK+1)]) + 4αADκ

2σ2

K∑
k=0

1

bk
.

Then, using F ∗ ≤ E[F (xK+1, yK+1)] and dividing by K + 1 yields:

1

K + 1

K∑
k=0

E[G(xk, yk)
2] ≤ 8L∇(F (x0, y0)− F ∗)

K + 1
+

4αADκ
2σ2

K + 1

K∑
k=0

1

bk
.

Finally, since (x̂k, ŷk) is chosen uniformly at random from (x0, y0), . . . , (xK , yK), another
iterated expectations argument implies that E[G(x̂K , ŷK)2] = 1

K+1

∑K
k=0 E[G(xk, yk)

2], from
which the desired result follows.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 123

C.2 Example of In-Face Direction Computation
In this section, we briefly describe how to compute an in-face direction in the case where
S = {x : ‖x‖1 ≤ δ} is an `1-ball. Let x̄ ∈ S be a given point representing our current
iterate. In particular, let us discuss the complexity of a solving a linear optimization problem
minx∈F(x̄) c

Tx over the minimal face F(x̄) containing x̄ for some given c ∈ Rp, which is
required in the “away step" direction (3), for example.

Let us consider two cases: (i) x̄ ∈ int(S) and (ii) x̄ ∈ ∂S, where ∂S represents the
boundary of S. In case (i), we simply have that F(x̄) = S and the linear optimization
problem is simply that of minimizing cTx over S, which is the same subproblem as the Frank-
Wolfe step as is equivalent to computing ‖c‖∞ = maxj=1,...,p |cj|. Otherwise, if x̄ ∈ ∂S, then we
have that ‖x̄‖1 = δ and let J+(x̄) = {j : x̄j > 0}, J−(x̄) = {j : x̄j < 0}, J0(x̄) = {j : x̄j = 0}.
Then, it is straightforward to see that

F(x̄) = {x : xj > 0 if j ∈ J+(x̄),

xj < 0 if j ∈ J−(x̄),

xj = 0 if j ∈ J0(x̄),∑
j∈J+(x̄)

xj −
∑

j∈J−(x̄)

xj = δ} .

(Note that we clearly have ‖x‖1 =
∑

j∈J+(x̄) xj −
∑

j∈J−(x̄) xj in the above.) Then, in order to
solve minx∈F(x̄) c

Tx, we can simply follow an argument that enumerates the extreme points
of the above polytope, from which we obtain that:

j∗ ∈ arg min
j∈J+(x̄)∪J−(x̄)

sgn(x̄j)cj =⇒ sgn(x̄j∗)δej∗ ∈ arg min
x∈F(x̄)

cTx .

Thus, as in the case when x̄ ∈ int(S), we can solve minx∈F(x̄) c
Tx efficiently in time that is

linear in p.

C.3 Proofs in Section 4.2
Let us first state and prove the following lemma, which is the “block coordinate” version of
Lemma C.1.2 and will be critical proving Theorem 3.1.

Lemma C.3.1. For each k ≥ 0, let Fk denote the σ-field of all information gathered after
completing iteration k − 1 of the Block Coordinate variant of Algorithm 1, i.e., right before
starting iteration k, and define ∆k := 8L∇(F (xk, yk)−F (xk+1, yk+1)). Then, at every iteration
k ≥ 0, it holds that:

E[∆k | Fk] ≥ G(xk, yk)
2 − 4αADκ

2σ2

bk
.

where the modified Frank-Wolfe gap G(·, ·) (Definition 2.1) is defined using C̄ :=
∑N

i=1 C̄i.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 124

Proof. Case 1: AlternativeDirections = FALSE. Let us define Θk := 8L∇(F (xk, yk)−
F (x̄k, yk+1)). We first bound Θk following the same general structure as in the proof of
Lemma C.1.2 in Section C.1.

Applying (C.1) at Steps (2.)/(3.) of the block coordinate version of Algorithm 2, we have
deterministically:

F (x̄k, yk+1) ≤ F (xk, yk) +∇F (xk, yk)
T ((x̄k, yk+1)− (xk, yk)) + L∇

2
‖(x̄k, yk+1)− (xk, yk)‖2

= F (xk, yk) +∇xF (xk, yk)
T (x̄k − xk) + L∇

2
‖x̄k − xk‖2

X (C.5)
+∇yF (xk, yk)

T (yk+1 − yk) + L∇
2
‖yk+1 − yk‖2

Y

For ease of notation, define Γk := ∇xF (xk, yk)
T (x̄k−xk) + L∇

2
‖x̄k−xk‖2

X . Utilizing the block
coordinate structure, we have that:

Γk = ∇xF (xk, yk)
T (x̄k − xk) + L∇

2
‖x̄k − xk‖2

X

=
N∑
i=1

∇(i)
x F (xk, yk)

T (x̄
(i)
k − x

(i)
k) + L∇

2

N∑
i=1

‖x̄(i)
k − x

(i)
k ‖

2
X,i

=
N∑
i=1

[
∇(i)
x F (xk, yk)

T (x̄
(i)
k − x

(i)
k) + L∇

2
‖x̄(i)

k − x
(i)
k ‖

2
X,i

]
=

N∑
i=1

[
ᾱik∇(i)

x F (xk, yk)
T (x̃

(i)
k − x

(i)
k) +

L∇(ᾱik)2

2
‖x̃(i)

k − x
(i)
k ‖

2
X,i

]
≤

N∑
i=1

[
ᾱik∇(i)

x F (xk, yk)
T (x̃

(i)
k − x

(i)
k) +

L∇diam(Si)
2(ᾱik)2

2

]
=

N∑
i=1

[
ᾱik(ĝ

(i)
k)T (x̃

(i)
k − x

(i)
k) + ᾱik(∇(i)

x F (xk, yk)− ĝ(i)
k)T (x̃

(i)
k − x

(i)
k) +

L∇diam(Si)
2(ᾱik)2

2

]
=

N∑
i=1

[
−ᾱikG̃i

k + ᾱik(∇(i)
x F (xk, yk)− ĝ(i)

k)T (x̃
(i)
k − x

(i)
k) +

L∇diam(Si)
2(ᾱik)2

2

]
≤

N∑
i=1

[
−ᾱikG̃i

k + 1
2L∇
‖∇(i)

x F (xk, yk)− ĝ(i)
k ‖

2
X∗,i +

L∇(ᾱik)2

2
‖x̃(i)

k − x
(i)
k ‖

2
X,i +

L∇diam(Si)
2(ᾱik)2

2

]
≤

N∑
i=1

[
−ᾱikG̃i

k + 1
2L∇
‖∇(i)

x F (xk, yk)− ĝ(i)
k ‖

2
X∗,i +

C̄i(ᾱ
i
k)2

2

]
=

N∑
i=1

[
−ᾱikG̃i

k +
C̄i(ᾱ

i
k)2

2

]
+ + 1

2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗ .

The second as well as the final equality above uses the Euclidean structure of ‖ · ‖X and
‖ · ‖X∗, namely ‖x‖2

X :=
∑N

i=1 ‖x(i)‖2
X,i and ‖s‖2

X∗ :=
∑N

i=1 ‖s(i)‖2
X∗,i. The second inequality

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 125

uses (s(i))Tx(i) ≤ 1
2γ
‖s(i)‖2

X∗,i + γ
2
‖x(i)‖2

X,i with γ ← L∇, s ← ∇(i)
x F (xk, yk) − ĝ(i)

k and x ←
ᾱik(x̃

(i)
k −x

(i)
k) for each i ∈ {1, . . . , N}, and the third inequality uses C̄i ≥ 2L∇diam(Si)

2. Now,
combining (C.5) with the above as well as the same reasoning on the space of y variables
that was used in the proof of Lemma 2.2 yields:

F (x̄k, yk+1) ≤ F (xk, yk) +
N∑
i=1

[
−ᾱikG̃i

k +
C̄i(ᾱ

i
k)2

2

]
+ 1

2L∇
‖∇xF (xk, yk)− ĝk‖2

X∗

− αk‖ĥk‖Y ∗ + 1
2L∇
‖∇yF (xk, yk)− ĥk‖2

Y ∗ + L∇α
2
k .

Using ᾱik = G̃i
k/C̄i, and αk = ‖ĥk‖Y ∗/2L∇ yields:

F (x̄k, yk+1) ≤ F (xk, yk)

−
N∑
i=1

(G̃i
k)

2

2C̄i
− ‖ĥk‖

2
Y ∗

4L∇
+

1

2L∇

(
‖∇xF (xk, yk)− ĝk‖2

X∗ + ‖∇yF (xk, yk)− ĥk‖2
Y ∗

)
= F (xk, yk)

−
N∑
i=1

(G̃i
k)

2

2C̄i
− ‖ĥk‖

2
Y ∗

4L∇
+

1

2L∇
‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2

∗ .

Letting Θk := 8L∇(F (xk, yk) − F (x̄k, yk+1)) and multiplying the above inequality by 8L∇
and rearranging terms yields:

Θk ≥ 4L∇

N∑
i=1

(G̃i
k)

2

C̄i
+ 2‖ĥk‖2

Y ∗ − 4‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2
∗ . (C.6)

Recall that for any two sequences {gi}Ni=1 and {ci}Ni=1 with gi ≥ 0 and ci > 0, Cauchy-Schwartz
yields: (

N∑
i=1

gi

)2

=

(
N∑
i=1

gi
√
ci√
ci

)2

≤

(
N∑
i=1

g2
i

ci

)(
N∑
i=1

ci

)
.

Recall that C̄ =
∑N

i=1 C̄i and let us define G̃k :=
∑N

i=1 G̃
i
k. Then, applying the above to (C.6)

with gi ← G̃i
k and ci ← C̄i yields:

Θk ≥
4L∇G̃

2
k

C̄
+ 2‖ĥk‖2

Y ∗ − 4‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2
∗

≥

(
G̃k

√
2L∇
C̄

+ ‖ĥk‖Y ∗

)2

− 4‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2
∗ ,

where the second inequality uses (a+ b)2 ≤ 2(a2 + b2). By combining assumption (A3) with
Lemma C.1.1, we have that

E
[
‖(∇xF (xk, yk),∇yF (xk, yk))− (ĝk, ĥk)‖2

∗ | Fk
]
≤ κ2σ2

bk
.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 126

Furthermore, note that the decomposable structure of S implies that G̃k = maxx∈S
{
ĝTk (x̄− x)

}
.

Therefore, we may apply Lemma 2.1 along with Jensen’s inequality on t 7→ t2 to yield:

G(xk, yk)
2 ≤

(
E
[
G̃k

√
2L∇
C̄

+ ‖ĥ‖Y ∗ | Fk
])2

≤ E

[(
G̃k

√
2L∇
C̄

+ ‖ĥ‖Y ∗
)2

| Fk

]
.

Combining the previous inequalities together yields:

E[Θk | Fk] ≥ G(xk, yk)
2 − 4κ2σ2

bk
,

which proves the result in Case 1 since xk+1 = x̄k in that case.
Case 2: AlternativeDirections = TRUE. Now notice that we can decompose ∆k as:

∆k = 8L∇(F (xk, yk)− F (x̄k, yk+1)) + 8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)) . (C.7)

Let us define Λk := 8L∇(F (x̄k, yk+1)− F (xk+1, yk+1)) so that ∆k = Θk + Λk.
Let us now work on bounding Λk using the same general structure as that of Case 2 of

Lemma C.1.2 in Section C.1. Let Gk denote the σ-field of all information gathered after
completing Step (3.) of iteration k of the block coordinate version of Algorithm 2, i.e., right
before starting Step (4.) (the alternative direction step). Note that Fk ⊂ Gk. Applying (C.1)
at Step (4.), we have deterministically:

F (xk+1, yk+1) ≤ F (x̄k, yk+1) +∇F (x̄k, yk+1)T ((xk+1, yk+1)− (x̄k, yk+1))

+ L∇
2
‖(xk+1, yk+1)− (x̄k, yk+1)‖2

= F (x̄k, yk+1) +∇xF (x̄k, yk+1)T (xk+1 − x̄k) + L∇
2
‖xk+1 − x̄k‖2

X

= F (x̄k, yk+1) +
N∑
i=1

[
∇(i)
x F (x̄k, yk+1)T (x

(i)
k+1 − x̄

(i)
k) + L∇

2
‖x(i)

k+1 − x̄
(i)
k ‖

2
X,i

]
= F (x̄k, yk+1) +

N∑
i=1

[
β̄ik∇(i)

x F (x̄k, yk+1)Td
(i)
k +

L∇(β̄ik)2

2
‖d(i)

k ‖
2
X,i

]
≤ F (x̄k, yk+1) +

N∑
i=1

[
β̄ik∇(i)

x F (x̄k, yk+1)Td
(i)
k +

L∇diam(Si)
2(β̄ik)2

2

]
= F (x̄k, yk+1) +

N∑
i=1

[
β̄ik(ǧ

(i)
k)Td

(i)
k + β̄ik(∇(i)

x F (x̄k, yk+1)− ǧ(i)
k)Td

(i)
k +

L∇diam(Si)
2(β̄ik)2

2

]
= F (x̄k, yk+1) +

N∑
i=1

[
−β̄ikAik + β̄ik(∇(i)

x F (x̄k, yk+1)− ǧ(i)
k)Td

(i)
k +

L∇diam(Si)
2(β̄ik)2

2

]
Applying the inequality (s(i))Tx(i) ≤ 1

2γ
‖s(i)‖2

X∗,i + γ
2
‖x(i)‖2

X,i with γ ← L∇, s ←
∇(i)
x F (x̄k, yk+1)− ǧ(i)

k and x← β̄ikd
(i)
k yields:

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 127

F (xk+1, yk+1) ≤ F (x̄k, yk+1)

+
N∑
i=1

[
−β̄ikAik + 1

2L∇
‖∇(i)

x F (x̄k, yk+1)− ǧ(i)
k ‖

2
X∗,i +

L∇(β̄ik)2

2
‖d(i)

k ‖
2
X,i +

L∇diam(Si)
2(β̄ik)2

2

]
≤ F (x̄k, yk+1) +

N∑
i=1

[
−β̄ikAik + 1

2L∇
‖∇(i)

x F (x̄k, yk+1)− ǧ(i)
k ‖

2
X∗,i +

C̄i(β̄
i
k)2

2

]
= F (x̄k, yk+1) +

N∑
i=1

[
−β̄ikAik +

C̄i(β̄
i
k)2

2

]
+ 1

2L∇
‖∇xF (x̄k, yk+1)− ǧk‖2

X∗ ,

where the second inequality uses ‖d(i)
k ‖X,i ≤ diam(Si) and C̄i ≥ 2L∇ · diam(Si)

2.
Notice that β̄ik = min

{
Aik/C̄i, α

stop,i
k

}
minimizes the quadratic function β 7→ −βAik + C̄iβ

2

2

on the interval [0, αstop,i
k]. Hence, in particular we have that −β̄ikAik+

C̄i(β̄
i
k)2

2
≤ 0 and therefore:

F (xk+1, yk+1) ≤ F (x̄k, yk+1) + 1
2L∇
‖∇xF (x̄k, yk+1)− ǧk‖2

X∗ .

The remainder of the proof is now exactly the same as that of Lemma C.1.2 starting at
(C.4).

Proof of Theorem 4.2.1

Given Lemma C.3.1, the proof of Theorem 3.1 follows the exact same logic as that of Theorem
2.1 in Section C.1.

C.4 Additional Numerical Results on Synthetic Data
In this set of experiments, we generated artificial data from a model that is described by
an artificially generated sparse network. In particular, the network is composed of three
layers of sizes 50× 50, 50× 50 and 50× 1, and the activation functions are either ReLU or
sigmoid (notice that sigmoid is smooth, but ReLU is not). We did not add bias terms for
this experiment. For the first two layers of the true network, we randomly generated m edges
going into each node where m ∈ {5, 10, 15} and the weight on each randomly sampled edge is
either -1 or 1 with equal probability. All edges that are not selected have their weight equal
to 0, and the last layer is fully connected. We treated this as a regression problem with mean
squared error loss, the feature matrix is composed of elements that are sampled i.i.d. from a
standard Gaussian distribution, and the dependent variable values y are chosen in a way to
control the signal to noise ratio (SNR) in the set SNR ∈ {1, 5, 10}. Our train, validation,
and test sets are composed of 100,000, 20,000, and 100,000 data points, respectively. For
SFW and SFW-IF, the first two layers are treated as Frank-Wolfe layers and the last layer is
fully dense and treated as an SGD layer.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 128

For each combination of m ∈ {5, 10, 15} and SNR ∈ {1, 5, 10}, we ran 30 trials over
randomly generated true networks and datasets as described above. Figures 1 and 2 show
box plots over these 30 trials, with three performance metrics of interest: average number of
non-zero edges (here average number of non-zeros per edge can be at most 50) going into
each node in layers 1 and 2 (every value below 0.001 is considered to be 0), and the test
set mean squared error. All Figures show that SFW and SFW-IF recover solutions that
are sparser than SGD, which does not not promote this behaviour. SFW-IF is also able to
consistently recover a solution that is sparser than SFW due to the incorporation of in-face
directions (except for layer 2 using ReLU). Interestingly, using the sigmoid activation, the gap
between the sparsity of SFW-IF and SFW is larger for layer 2 than layer 1; however, using
the ReLU activation, this pattern is reversed. Also, SFW-IF and SFW have comparable test
set MSE to SGD, and for the sigmoid experiment they even have lower test MSE for the case
of m ∈ {10, 15}. Figures 3 and 4 also consider a single instance with m = 10 and SNR = 10,
using the sigmoid activiation, and display the evolution of the per layer average non-zeros
and also the modified Frank-Wolfe gap. (Since we are only able to compute a stochastic
estimate of the modified Frank-Wofle gap, we also display a smoothed version of this plot.)
Notice that, throughout all iterations, SFW-IF consistently maintains a sparser solution than
SFW. Interestingly, it appears that SFW-IF is also able to reduce the modified Frank-Wolfe
gap faster than SFW.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 129

Figure C.1: Results using sigmoid activation function

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 130

Figure C.2: Results using ReLU activiation function

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 131

Figure C.3: Modified Frank-Wolfe gap vs. iterations for SFW and SFW-IF, on an instance
from a network generated using the sigmoid activation function with m = 10 non-zeros and
SNR = 10.

APPENDIX C. STOCHASTIC IN-FACE FRANK-WOLFE METHODS FOR
NON-CONVEX OPTIMIZATION AND SPARSE NEURAL NETWORK TRAINING 132

Figure C.4: Average number of non-zeros (NNZ) per layer for SFW and SFW-IF, on an
instance from a network generated using the sigmoid activation function with m = 10
non-zeros and SNR = 10.

133

Bibliography

[1] Alireza Aghasi et al. “Net-trim: Convex pruning of deep neural networks with per-
formance guarantee”. In: Advances in Neural Information Processing Systems. 2017,
pp. 3177–3186.

[2] Shipra Agrawal and Nikhil Devanur. “Linear contextual bandits with knapsacks”. In:
Advances in Neural Information Processing Systems. 2016, pp. 3450–3458.

[3] Shipra Agrawal and Nikhil R Devanur. “Bandits with concave rewards and convex knap-
sacks”. In: Proceedings of the fifteenth ACM conference on Economics and computation.
2014, pp. 989–1006.

[4] Shipra Agrawal and Navin Goyal. “Thompson sampling for contextual bandits with
linear payoffs”. In: International Conference on Machine Learning. 2013, pp. 127–135.

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The multiplicative weights update
method: a meta-algorithm and applications”. In: Theory of Computing 8.1 (2012),
pp. 121–164.

[6] Peter Auer and Ronald Ortner. “UCB revisited: Improved regret bounds for the
stochastic multi-armed bandit problem”. In: Periodica Mathematica Hungarica 61.1-2
(2010), pp. 55–65.

[7] Avazu. Click-Through Rate Prediction: Predict whether a mobile ad will be clicked.
(Contest on Kaggle.) https://www.kaggle.com/c/avazu-ctr-prediction. Nov.
2014.

[8] Lennart Baardman et al. “Learning Optimal Online Advertising Portfolios with Periodic
Budgets”. In: Available at SSRN 3346642 (2019).

[9] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. “Bandits
with knapsacks”. In: Journal of the ACM (JACM) 65.3 (2018), pp. 1–55.

[10] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. “Dual Mirror Descent for Online
Allocation Problems”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 613–628.

[11] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. “Regularized Online Allocation
Problems: Fairness and Beyond”. In: arXiv preprint arXiv:2007.00514 (2020).

https://www.kaggle.com/c/avazu-ctr-prediction

BIBLIOGRAPHY 134

[12] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. “The Best of Many Worlds: Dual
Mirror Descent for Online Allocation Problems”. In: arXiv preprint arXiv:2011.10124
(2020).

[13] Santiago R Balseiro, Omar Besbes, and Gabriel Y Weintraub. “Repeated auctions
with budgets in ad exchanges: Approximations and design”. In: Management Science
61.4 (2015), pp. 864–884.

[14] Santiago R Balseiro and Yonatan Gur. “Learning in repeated auctions with budgets:
Regret minimization and equilibrium”. In: Management Science 65.9 (2019), pp. 3952–
3968.

[15] Santiago R Balseiro et al. “Yield optimization of display advertising with ad exchange”.
In: Management Science 60.12 (2014), pp. 2886–2907.

[16] Mohammad Hossein Bateni et al. “Fair resource allocation in a volatile marketplace”.
In: Proceedings of the 2016 ACM Conference on Economics and Computation. 2016,
pp. 819–819.

[17] Amir Beck. First-order methods in optimization. SIAM, 2017.

[18] Amir Beck and Marc Teboulle. “Mirror descent and nonlinear projected subgradient
methods for convex optimization”. In: Operations Research Letters 31.3 (2003), pp. 167–
175.

[19] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[20] Dimitris Bertsimas and Ioana Popescu. “Revenue management in a dynamic network
environment”. In: Transportation science 37.3 (2003), pp. 257–277.

[21] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[22] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization methods for large-scale
machine learning”. In: Siam Review 60.2 (2018), pp. 223–311.

[23] E Andrew Boyd and Ioana C Bilegan. “Revenue management and e-commerce”. In:
Management science 49.10 (2003), pp. 1363–1386.

[24] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[25] Leo Breiman et al. Classification and regression trees. CRC press, 1984.

[26] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. “An analysis of deep neural
network models for practical applications”. In: arXiv preprint arXiv:1605.07678 (2016).

[27] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. “Simple and scalable response
prediction for display advertising”. In: ACM Transactions on Intelligent Systems and
Technology (TIST) 5.4 (2015), p. 61.

BIBLIOGRAPHY 135

[28] Bowei Chen, Shuai Yuan, and Jun Wang. “A dynamic pricing model for unifying
programmatic guarantee and real-time bidding in display advertising”. In: Proceedings
of the Eighth International Workshop on Data Mining for Online Advertising. 2014,
pp. 1–9.

[29] Tianyi Chen, Qing Ling, and Georgios B Giannakis. “An online convex optimization
approach to proactive network resource allocation”. In: IEEE Transactions on Signal
Processing 65.24 (2017), pp. 6350–6364.

[30] Ye Chen et al. “Real-time bidding algorithms for performance-based display ad al-
location”. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2011, pp. 1307–1315.

[31] Hana Choi et al. “Online display advertising markets: A literature review and future
directions”. In: Information Systems Research (2020).

[32] Dragos Florin Ciocan and Vivek Farias. “Model predictive control for dynamic resource
allocation”. In: Mathematics of Operations Research 37.3 (2012), pp. 501–525.

[33] Criteo. Display Advertising Challenge: Predict click-through rates on display ads.
(Contest on Kaggle.) https://www.kaggle.com/c/criteo-display-ad-challenge.
June 2014.

[34] Ying Cui et al. “Bid landscape forecasting in online ad exchange marketplace”. In:
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2011, pp. 265–273.

[35] George B Dantzig. “Linear programming”. In: Operations research 50.1 (2002), pp. 42–
47.

[36] V. Demyanov and A. Rubinov. Approximate Methods in Optimization Problems. New
York: American Elsevier Publishing Co., 1970.

[37] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. “Randomized primal-dual
analysis of ranking for online bipartite matching”. In: Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms. SIAM. 2013, pp. 101–107.

[38] Nikhil R Devanur et al. “Near optimal online algorithms and fast approximation algo-
rithms for resource allocation problems”. In: Proceedings of the 12th ACM conference
on Electronic commerce. 2011, pp. 29–38.

[39] Eustache Diemert et al. “Attribution modeling increases efficiency of bidding in display
advertising”. In: arXiv preprint arXiv:1707.06409 (2017).

[40] J. Dunn and S. Harshbarger. “Conditional gradient algorithms with open loop step size
rules”. In: Journal of Mathematical Analysis and Applications 62 (1978), pp. 432–444.

[41] M. Frank and P. Wolfe. “An algorithm for quadratic programming”. In: Naval Research
Logistics Quarterly 3 (1956), pp. 95–110.

[42] Robert M Freund and Paul Grigas. “New analysis and results for the Frank–Wolfe
method”. In: Mathematical Programming 155.1-2 (2016), pp. 199–230.

https://www.kaggle.com/c/criteo-display-ad-challenge

BIBLIOGRAPHY 136

[43] Robert M Freund, Paul Grigas, and Rahul Mazumder. “An Extended Frank–Wolfe
Method with “In-Face” Directions, and Its Application to Low-Rank Matrix Comple-
tion”. In: SIAM Journal on optimization 27.1 (2017), pp. 319–346.

[44] Rong Ge, Chi Jin, and Yi Zheng. “No spurious local minima in nonconvex low rank
problems: A unified geometric analysis”. In: arXiv preprint arXiv:1704.00708 (2017).

[45] Rong Ge, Jason D Lee, and Tengyu Ma. “Matrix completion has no spurious local
minimum”. In: Advances in Neural Information Processing Systems. 2016, pp. 2973–
2981.

[46] Saeed Ghadimi. “Conditional gradient type methods for composite nonlinear and
stochastic optimization”. In: Mathematical Programming (2016), pp. 1–34.

[47] Donald Goldfarb, Garud Iyengar, and Chaoxu Zhou. “Linear convergence of stochastic
frank wolfe variants”. In: arXiv preprint arXiv:1703.07269 (2017).

[48] Robert M Gower and Peter Richtárik. “Randomized quasi-Newton updates are linearly
convergent matrix inversion algorithms”. In: SIAM Journal on Matrix Analysis and
Applications 38.4 (2017), pp. 1380–1409.

[49] Thore Graepel et al. “Web-scale bayesian click-through rate prediction for sponsored
search advertising in microsoft’s bing search engine”. In: Omnipress. 2010.

[50] Paul Grigas, Alfonso Lobos, and Nathan Vermeersch. “Stochastic in-face frank-wolfe
methods for non-convex optimization and sparse neural network training”. In: arXiv
preprint arXiv:1906.03580 (2019).

[51] Paul Grigas et al. “Profit maximization for online advertising demand-side platforms”.
In: Proceedings of the ADKDD’17. 2017, pp. 1–7.

[52] J. Guélat and P. Marcotte. “Some comments on Wolfe’s ‘away step’”. In: Mathematical
Programming 35 (1986), pp. 110–119.

[53] Ramakrishna Gummadi, Peter Key, and Alexandre Proutiere. “Repeated auctions
under budget constraints: Optimal bidding strategies and equilibria”. In: the Eighth
Ad Auction Workshop. Citeseer. 2012.

[54] Huifeng Guo et al. “DeepFM: a factorization-machine based neural network for CTR
prediction”. In: arXiv preprint arXiv:1703.04247 (2017).

[55] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. url: http:
//www.gurobi.com.

[56] Song Han et al. “Learning both weights and connections for efficient neural network”.
In: Advances in neural information processing systems. 2015, pp. 1135–1143.

[57] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional Gradient Algorithms for
Norm-Regularized Smooth Convex Optimization. Technical Report. 2013.

[58] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with
sparsity: the lasso and generalizations. CRC press, 2015.

http://www.gurobi.com
http://www.gurobi.com

BIBLIOGRAPHY 137

[59] Elad Hazan. “Introduction to online convex optimization”. In: arXiv preprint arXiv:1909.05207
(2019).

[60] Elad Hazan and Haipeng Luo. “Variance-reduced and projection-free stochastic opti-
mization”. In: International Conference on Machine Learning. 2016, pp. 1263–1271.

[61] Niao He and Zaid Harchaoui. “Semi-proximal mirror-prox for nonsmooth composite
minimization”. In: Advances in Neural Information Processing Systems. 2015, pp. 3411–
3419.

[62] Xinran He et al. “Practical lessons from predicting clicks on ads at facebook”. In: Pro-
ceedings of the Eighth International Workshop on Data Mining for Online Advertising.
ACM. 2014, pp. 1–9.

[63] Donald W Hearn. “The gap function of a convex program”. In: Operations Research
Letters 1.2 (1982), pp. 67–71.

[64] Ali Hojjat et al. “A unified framework for the scheduling of guaranteed targeted display
advertising under reach and frequency requirements”. In: Operations Research 65.2
(2017), pp. 289–313.

[65] Nicole Immorlica et al. “Adversarial bandits with knapsacks”. In: 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2019, pp. 202–
219.

[66] Martin Jaggi. “Revisiting Frank-Wolfe: Projection-free sparse convex optimization”. In:
Proceedings of the 30th international conference on machine learning. CONF. 2013,
pp. 427–435.

[67] Stefanus Jasin and Sunil Kumar. “A re-solving heuristic with bounded revenue loss for
network revenue management with customer choice”. In: Mathematics of Operations
Research 37.2 (2012), pp. 313–345.

[68] Rodolphe Jenatton, Jim Huang, and Cédric Archambeau. “Adaptive algorithms for
online convex optimization with long-term constraints”. In: International Conference
on Machine Learning. PMLR. 2016, pp. 402–411.

[69] Bo Jiang et al. “Structured nonconvex and nonsmooth optimization: algorithms and
iteration complexity analysis”. In: arXiv preprint arXiv:1605.02408 (2016).

[70] Chi Jin et al. “How to escape saddle points efficiently”. In: International Conference
on Machine Learning. PMLR. 2017, pp. 1724–1732.

[71] Cedric Josz et al. “A theory on the absence of spurious solutions for nonconvex and
nonsmooth optimization”. In: Advances in neural information processing systems. 2018,
pp. 2441–2449.

[72] Yuchin Juan, Damien Lefortier, and Olivier Chapelle. “Field-aware factorization
machines in a real-world online advertising system”. In: Proceedings of the 26th
International Conference on World Wide Web Companion. International World Wide
Web Conferences Steering Committee. 2017, pp. 680–688.

BIBLIOGRAPHY 138

[73] Yuchin Juan et al. “Field-aware factorization machines for CTR prediction”. In: Pro-
ceedings of the 10th ACM Conference on Recommender Systems. ACM. 2016, pp. 43–
50.

[74] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. “An optimal algorithm
for on-line bipartite matching”. In: Proceedings of the twenty-second annual ACM
symposium on Theory of computing. 1990, pp. 352–358.

[75] Keras MNIST Tutorial. https://github.com/keras-team/keras/blob/master/
examples/mnist_mlp.py. Accessed: 2019-05-22.

[76] Koulik Khamaru and Martin J Wainwright. “Convergence guarantees for a class of non-
convex and non-smooth optimization problems”. In: arXiv preprint arXiv:1804.09629
(2018).

[77] Paul Klemperer. “Auction theory: A guide to the literature”. In: Journal of economic
surveys 13.3 (1999), pp. 227–286.

[78] Volodymyr Kuleshov and Doina Precup. “Algorithms for multi-armed bandit problems”.
In: arXiv preprint arXiv:1402.6028 (2014).

[79] Simon Lacoste-Julien. “Convergence rate of frank-wolfe for non-convex objectives”. In:
arXiv preprint arXiv:1607.00345 (2016).

[80] Simon Lacoste-Julien and Martin Jaggi. “On the global linear convergence of Frank-
Wolfe optimization variants”. In: Advances in neural information processing systems.
2015, pp. 496–504.

[81] Simon Lacoste-Julien et al. “Block-coordinate Frank-Wolfe optimization for structural
SVMs”. In: arXiv preprint arXiv:1207.4747 (2012).

[82] Guanghui Lan. “An optimal method for stochastic composite optimization”. In: Math-
ematical Programming 133.1-2 (2012), pp. 365–397.

[83] Kuang-Chih Lee, Ali Jalali, and Ali Dasdan. “Real time bid optimization with smooth
budget delivery in online advertising”. In: Proceedings of the Seventh International
Workshop on Data Mining for Online Advertising. ACM. 2013, p. 1.

[84] Nikolaos Liakopoulos et al. “Cautious regret minimization: Online optimization with
long-term budget constraints”. In: International Conference on Machine Learning.
2019, pp. 3944–3952.

[85] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large scale
optimization”. In: Mathematical programming 45.1 (1989), pp. 503–528.

[86] Huahui Liu et al. “Dual Based DSP Bidding Strategy and its Application”. In: arXiv
preprint arXiv:1705.09416 (2017).

[87] Alfonso Lobos et al. “Optimal bidding, allocation and budget spending for a demand
side platform under many auction types”. In: arXiv preprint arXiv:1805.11645 (2018).

https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py

BIBLIOGRAPHY 139

[88] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neural
Networks through L_0 Regularization”. In: arXiv preprint arXiv:1712.01312 (2017).

[89] Haihao Lu and Robert M Freund. “Generalized Stochastic Frank-Wolfe Algorithm
with Stochastic" Substitute”Gradient for Structured Convex Optimization”. In: arXiv
preprint arXiv:1807.07680 (2018).

[90] Yuhang Ma et al. “An approximation algorithm for network revenue management
under nonstationary arrivals”. In: Operations Research 68.3 (2020), pp. 834–855.

[91] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. “Trading regret for efficiency: online
convex optimization with long term constraints”. In: The Journal of Machine Learning
Research 13.1 (2012), pp. 2503–2528.

[92] Aranyak Mehta et al. “Adwords and generalized online matching”. In: Journal of the
ACM (JACM) 54.5 (2007), p. 22.

[93] Pavlo Molchanov et al. “Pruning convolutional neural networks for resource efficient
inference”. In: arXiv preprint arXiv:1611.06440 (2016).

[94] Arkadi Nemirovski et al. “Robust stochastic approximation approach to stochastic
programming”. In: SIAM Journal on optimization 19.4 (2009), pp. 1574–1609.

[95] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87.
Springer Science & Business Media, 2013.

[96] Maher Nouiehed, Jason D Lee, and Meisam Razaviyayn. “Convergence to Second-
Order Stationarity for Constrained Non-Convex Optimization”. In: arXiv preprint
arXiv:1810.02024 (2018).

[97] Julie Nutini et al. “Coordinate descent converges faster with the Gauss-Southwell
rule than random selection”. In: International Conference on Machine Learning. 2015,
pp. 1632–1641.

[98] Junwei Pan et al. “Field-weighted Factorization Machines for Click-Through Rate
Prediction in Display Advertising”. In: Proceedings of the 2018 World Wide Web
Conference on World Wide Web. International World Wide Web Conferences Steering
Committee. 2018, pp. 1349–1357.

[99] Junwei Pan et al. “Predicting different types of conversions with multi-task learning in
online advertising”. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2019, pp. 2689–2697.

[100] Neal Parikh, Stephen Boyd, et al. “Proximal algorithms”. In: Foundations and Trends®
in Optimization 1.3 (2014), pp. 127–239.

[101] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

[102] PricewaterhouseCoopers. IAB internet advertising revenue report. Tech. rep. 2020.

[103] Pytorch CIFAR-10 Tutorial. https://github.com/pytorch/tutorials/blob/
master/beginner_source/blitz/cifar10_tutorial.py. Accessed: 2019-05-22.

https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py
https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py

BIBLIOGRAPHY 140

[104] Pytorch MNIST Tutorial. https://github.com/pytorch/examples/tree/master/
mnist. Accessed: 2019-05-22.

[105] Nikhil Rao, Parikshit Shah, and StephenWright. “Forward–backward greedy algorithms
for atomic norm regularization”. In: IEEE Transactions on Signal Processing 63.21
(2015), pp. 5798–5811.

[106] Sashank J Reddi et al. “Stochastic frank-wolfe methods for nonconvex optimization”. In:
2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton). IEEE. 2016, pp. 1244–1251.

[107] Kan Ren et al. “Bidding Machine: Learning to Bid for Directly Optimizing Profits
in Display Advertising”. In: IEEE Transactions on Knowledge and Data Engineering
30.4 (2018), pp. 645–659.

[108] Steffen Rendle. “Factorization machines”. In: Data Mining (ICDM), 2010 IEEE 10th
International Conference on. IEEE. 2010, pp. 995–1000.

[109] Matthew Richardson, Ewa Dominowska, and Robert Ragno. “Predicting clicks: esti-
mating the click-through rate for new ads”. In: Proceedings of the 16th international
conference on World Wide Web. ACM. 2007, pp. 521–530.

[110] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: Ann.
Math. Statist. 22.3 (Sept. 1951), pp. 400–407. doi: 10.1214/aoms/1177729586. url:
https://doi.org/10.1214/aoms/1177729586.

[111] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

[112] Daniel J Russo et al. “A tutorial on thompson sampling”. In: Foundations and Trends®
in Machine Learning 11.1 (2018), pp. 1–96.

[113] Robert Warren Simpson. Using network flow techniques to find shadow prices for
market demands and seat inventory control. MIT, Department of Aeronautics and
Astronautics, Flight Transportation . . ., 1989.

[114] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine
learning. Mit Press, 2012.

[115] Kalyan Talluri and Garrett Van Ryzin. “An analysis of bid-price controls for network
revenue management”. In: Management science 44.11-part-1 (1998), pp. 1577–1593.

[116] Kalyan Talluri and Garrett Van Ryzin. “Revenue management under a general discrete
choice model of consumer behavior”. In: Management Science 50.1 (2004), pp. 15–33.

[117] Markus Thom and Günther Palm. “Sparse activity and sparse connectivity in supervised
learning”. In: Journal of Machine Learning Research 14.Apr (2013), pp. 1091–1143.

[118] John Turner. “The planning of guaranteed targeted display advertising”. In: Operations
research 60.1 (2012), pp. 18–33.

[119] Lieven Vandenberghe and Stephen Boyd. “Semidefinite programming”. In: SIAM review
38.1 (1996), pp. 49–95.

https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/mnist
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

BIBLIOGRAPHY 141

[120] William Vickrey. “Counterspeculation, auctions, and competitive sealed tenders”. In:
The Journal of finance 16.1 (1961), pp. 8–37.

[121] Thomas WM Vossen and Dan Zhang. “Reductions of approximate linear programs for
network revenue management”. In: Operations Research 63.6 (2015), pp. 1352–1371.

[122] Yuchen Wang et al. “Functional bid landscape forecasting for display advertising”.
In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer. 2016, pp. 115–131.

[123] Xiaohan Wei, Hao Yu, and Michael J Neely. “Online primal-dual mirror descent under
stochastic constraints”. In: Abstracts of the 2020 SIGMETRICS/Performance Joint
International Conference on Measurement and Modeling of Computer Systems. 2020,
pp. 3–4.

[124] Elizabeth Louise Williamson. “Airline network seat inventory control: Methodologies
and revenue impacts”. PhD thesis. Massachusetts Institute of Technology, 1992.

[125] Wired Google Roadmap. https : / / www . wired . com / story / antitrust - case -
against-google-roadmap-paper/. Accessed: 07-16-2020.

[126] Wush Chi-Hsuan Wu, Mi-Yen Yeh, and Ming-Syan Chen. “Predicting winning price
in real time bidding with censored data”. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM. 2015,
pp. 1305–1314.

[127] Jun Xiao et al. “Attentional factorization machines: Learning the weight of feature
interactions via attention networks”. In: arXiv preprint arXiv:1708.04617 (2017).

[128] Jianjun Yuan and Andrew Lamperski. “Online convex optimization for cumulative
constraints”. In: Advances in Neural Information Processing Systems. 2018, pp. 6137–
6146.

[129] Weinan Zhang, Shuai Yuan, and Jun Wang. “Optimal real-time bidding for display
advertising”. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2014, pp. 1077–1086.

[130] Weinan Zhang et al. “Bid-aware gradient descent for unbiased learning with censored
data in display advertising”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM. 2016, pp. 665–674.

[131] Yuchen Zhang, Jason D Lee, and Michael I Jordan. “l1-regularized neural networks are
improperly learnable in polynomial time”. In: International Conference on Machine
Learning. 2016, pp. 993–1001.

https://www.wired.com/story/antitrust-case-against-google-roadmap-paper/
https://www.wired.com/story/antitrust-case-against-google-roadmap-paper/

	Contents
	List of Figures
	List of Tables
	Introduction
	Optimization Issues of Interest
	Main Actors in Online Advertising
	Summary of Contributions
	Common Notation

	Optimal Bidding, Allocation, and Budget Spending for a Demand-Side Platform with Generic Auctions
	Model Preliminaries and High-Level Overview
	Optimization Formulation: Primal and Dual Problems
	Zero Duality Gap Results
	Numerical Experiments
	Conclusion

	Joint Online Learning and Decision-making via Dual Mirror Descent
	Preliminaries and Algorithm
	Regret Bound and Related Results
	Experiments

	Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization and Sparse Neural Network Training
	Stochastic Frank-Wolfe steepest descent method with in-face directions
	Block coordinate extension
	Numerical Experiments

	Optimal Bidding, Allocation, and Budget Spending for a Demand-Side Platform with Generic Auctions
	Summary of Notation
	Omitted Proofs
	Examples and Derivations
	Additional Experimental Details

	Joint Online Learning and Decision-making via Dual Mirror Descent
	Additional Theoretical Results and Examples
	Proofs
	Extra Experimental Details and Results

	Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization and Sparse Neural Network Training
	Proofs in Section 4.1
	Example of In-Face Direction Computation
	Proofs in Section 4.2
	Additional Numerical Results on Synthetic Data

	Bibliography

