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Abstract— In this paper, we address the tasks of de-
tecting, segmenting, parsing, and matching deformable
objects. We use a novel probabilistic object model that
we call a hierarchical deformable template (HDT). The
HDT represents the object by state variables defined over
a hierarchy (with typically 5 levels). The hierarchy is built
recursively by composing elementary structures to form
more complex structures. A probability distribution – a
parameterized exponential model – is defined over the hier-
archy to quantify the variability in shape and appearance
of the object at multiple scales. To perform inference –
to estimate the most probable states of the hierarchy for
an input image – we use a bottom-up algorithm called
compositional inference. This algorithm is an approximate
version of dynamic programming where approximations
are made (e.g., pruning) to ensure that the algorithm is
fast while maintaining high performance. We adapt the
structure-perceptron algorithm to estimate the parameters
of the HDT in a discriminative manner (simultaneously
estimating the appearance and shape parameters). More
precisely, we specify an exponential distribution for the
HDT using a dictionary of potentials which capture the ap-
pearance and shape cues. This dictionary can be large and
so does not require hand-crafting the potentials. Instead
structure-perceptron assigns weights to the potentials so
that less important potentials receive small weights (this is
like a “soft” form of feature selection). Finally, we provide
experimental evaluation of HDTs on different visual tasks
including detection, segmentation, matching (alignment)
and parsing. We show that HDTs achieve state of the
art performance for these different tasks when evaluated
on datasets with groundtruth (and when compared to
alternative algorithms which are typically specialized to
each task).

Index Terms— Hierarchy, Shape Representation, Ob-
ject Parsing, Segmentation, Shape Matching, Structured
Learning.

I. INTRODUCTION

COMPUTER vision methods are currently un-
able to reliably detect, segment, and parse

deformable objects in cluttered images. (By parsing,
we mean the ability to identify parts, subparts and
subsubparts of the object – which is useful for
applications such as matching/alignment). Although
there have been some partial successes – see [1], [2],
[3], [4], [5], [6] and others reviewed in section (II)
– none have reached the performance levels and
computational speed obtained for detecting faces
by using techniques such as AdaBoost [7], [8].
In our opinion, the main disadvantages of cur-
rent approaches is that they are based on limited
representations of deformable objects which only
use a small part of the appearance and geometric
information that is available. For example, current
techniques may rely only on a sparse set of image
cues (e.g. SIFT features or edgelets) and limited
“flat” representations of the spatial interactions be-
tween different parts of the object, see figure (1).
As theoretical studies have shown [9], the perfor-
mance of models degrade if the models fail to
represent (and hence exploit) all available infor-
mation. But improved representation of deformable
objects is only useful when it is accompanied by
efficient techniques for performing inference and
learning and, in practice, the representations used
in computer vision are closed tied to the inference
and learning algorithms that are available (e.g.,
the representations used in [1], [2] were chosen
because they were suitable for inference by dynamic
programming or belief propagation – with pruning).
Hence we argue that progress in this area requires us
to simultaneously develop more powerful represen-
tations together with efficient inference and learning
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algorithms.
In this paper, we propose a new class of object

models – hierarchical deformable templates (HDT).
The HDT is specified by a hierarchical graph where
nodes at different levels of the hierarchy represent
components of the object at different scales, with
the lowest level (leaf) nodes corresponding to the
object boundary – see figure (1, 2). Formally we
define state variables at every node of the graph
and the state of the HDT is specified by the state
of all the nodes. The state of a node is the position,
orientation, and scale of the corresponding compo-
nent of the object. The clique structure of the HDT
(i.e., the sets of nodes that are directly connected
to each other) model the spatial relations between
different components of the object. The HDT has
a rich representation of the object which enables it
to capture appearance and spatial information at a
range of different scales (e.g., figure (2) shows that
nodes at different levels use different appearance
cues). Moreover, the richness of this representation
implies that an HDT can be applied to a large range
of tasks (e.g., segmentation requires estimating the
states of the leaf nodes, detection requires estimat-
ing the root node, matching/alignment is performed
by estimating and matching all the nodes). The
HDT can be thought of as a hybrid discriminative-
generative model (e.g., see [10] which does not have
a hierarchy). The probability distribution specifying
it has terms that can be interpreted as a generative
prior for the configurations of the state variables but
the appearance terms that relate these variables to
the images are of discriminative form.

To ensure practicality of HDT, as discussed
above, it is necessary to specify efficient inference
and learning algorithms. We perform inference on
an HDT – i.e., estimate the most probable states of
the HDT for an input image – by compositional in-
ference [11], [12], which we show is both rapid and
effective. We perform partially-supervised learning
of the parameters of HDT (in a discriminative man-
ner) by extending the recent structure perceptron
learning algorithm [13]. The graph structure of the
HDT is learnt in an unsupervised manner by one-
example learning using a clustering algorithm.

Compositional inference is a bottom-up approx-
imate inference algorithm. The structure of HDTs
means that it is possible to perform exact inference
and estimate the best state by dynamic programming
(DP) in polynomial time in the number of nodes

of the hierarchy and the size of the state space.
Unfortunately the state space size is very large
since object components can occur anywhere in the
image (and the state space also includes orientation
and scale). Hence compositional inference is an
approximate version of DP where we represent the
state of each node by a set of proposals together
with their energies (the terminology is suggested
by the MCMC literature). Proposals for the states
of a parent node are constructed by composing the
proposals for its child nodes. These proposals are
pruned by a threshold – to remove configurations
whose energy is too large (e.g., when the proposals
of the child nodes poorly satisfy the spatial relations
required by the parent node) – and by surround sup-
pression which selects the locally maximal proposal
within a fixed window. The key idea is to keep the
number of proposals small enough to be tractable
but rich enough to yield good performance. Com-
positional inference was inspired by a compositional
algorithm [11] which was applied to a simple model
and was only tested on a small number of images.
The current version was first reported in [12] where
it was applied to AND/OR graphs. Since the HDT
only outputs a sparse set of points on the object
boundary (the states of the leaf nodes) we obtain a
complete contour by using grab-cut [14] initialized
by the connecting the estimate states of the leaf
nodes.

We learn the graph structure of the HDT by
one-example learning using a clustering algorithm
and make initial estimates of the parameters of
the HDT. Then we estimate the full parameters
of the HDT by adapting the structure-perceptron
algorithm [13] (note that structure perceptron does
not learn the graph structure). This enables us to
learn all the parameters globally in a consistent
manner (i.e., we learn the parameters at all levels
of the hierarchy simultaneously). As we will show,
structure-perceptron enables us to select different
shape and appearance features from a dictionary and
to determine ways to optimally weight them (like a
soft version of the selection and weighting strategy
used in AdaBoost [7], [8]). Structure-perceptron
learning is a discriminative approach that is com-
putationally simpler than standard methods such as
maximum likelihood estimation (since it avoids the
need to evaluate the normalization constant of the
distribution of the HDT). An additional advantage
to discriminative learning is that it focusses atten-
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... ... ...

Fig. 1. Two alternative representations for deformable objects. Left panel: standard models use “flat” Markov Random Field (MRF) models
relying on sparse cues and with limited spatial interactions [1], [2], [5], [6]. Middle panel: an HDT has a hierarchical representation with a
large variety of different images cues and spatial interactions at a range of scales. We can, in theory, obtain a flat model from an HDT by
integrating out all the state variables except those at the leaf nodes. This would give a flat model with extremely complicated connections
(all nodes would be connected to each other) which, in this form, would be intractable for learning and inference. Right panel: The points
along the object boundary correspond to the nodes in the “flat” MRF models or the leaf nodes of the HDT.

tion on estimating those parameters of the model
which are most relevant to task performance. We
first reported on the success of structure-perceptron
learning in [15].

We demonstrate the success and versatility of
HDTs by applying them to a range of visual tasks.
We show that they are very effective in terms of
performance and speed (roughly 20 seconds for
a typical 300 × 200 image – the speed increases
approximately linearly in the size of the image)
when evaluated on large datasets which include
horses [16] and cows [17]. In particular, to illustrate
versatility, we demonstrate state-of-the-art results
for different tasks such as object segmentation (eval-
uated on the Weizmann horse dataset [16]) and
matching/alignment (evaluated on the face dataset
– [18], [19]). The results on the alignment task on
the face dataset are particularly interesting because
we are comparing to results obtained by methods
such as Active Appearance Models [20] which are
specialized for faces and which have been developed
over a period of many years (while we spent one
week in total to run this application including the
time to obtain the dataset). Overall, we demonstrate
that HDTs can perform a large range of visual
tasks (due to its hierarchical representation) while
other computer vision methods typically restrict
themselves to single tasks.

We perform diagnostic analysis to quantify how
different components of the HDT contribute to over-
all performance and to the computational cost (e.g.,
speed). In particular, we compare how different
levels of the hierarchy contribute to the overall
performance. This type of diagnostic analysis, in
particular the trade-offs between performance and
computation, is necessary for developing principles

for the optimal design of complex computer vision
models like HDTs.

II. BACKGROUND

There is a vast literature on techniques for the
separate tasks of object detection, segmentation, and
parsing/aligning. But these tasks have typically been
studied separately and not addressed by a single
model as we do in this paper. We give a brief review
of the work that is the most relevant to our approach.
The techniques used are generally fairly different
although there are some similarities which we will
discuss.

There has been a range of attempts to model
deformable objects in order to detect, register, and
recognize them. Many of them can be formulated
as maximum a posteriori inference of the position,
or pose, states z of the object parts in terms of the
data I (i.e., an input image). Formally, they seek to
estimate

z∗ = arg max
z

p(z|I) = arg max
z

p(I|z)p(z), (1)

where p(I|z)p(z) = p(I, z) is of form:

p(I, z) =
1

Z
exp{

∑
i

αif(I(xi), zi)+
∑
i,j

βijg(zi, zj)}
(2)

where Z is the normalization constant, xi is image
position. The unary potentials f(I(xi), zi) model
how well the individual features match to the po-
sitions in the image. The binary potentials g(zi, zj)
impose (probabilistic) constraints about the spatial
relationships between feature points. Typically, z is
defined on a flat MRF model, see figure (1), and the
number of its nodes is small.
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Coughlan et al. [1] provided one of the first
models of this type, using a sparse representation of
the boundary of a hand, and showed that dynamic
programming (DP) could be used to detect the ob-
ject without needing initialization (but using pruning
to speed up the DP). This type of work was extended
by Felzenswalb [5] and by Coughlan who used a
pruned version of belief propagation (BP) [2]. The
main limitation of this class of model is that they
typically involve local pairwise interactions between
points/features (see the second term in equation (2)).
This restriction is mainly due to computational
reasons (i.e. the types of inference and learning
algorithms available) and not for modeling reasons.
There are no known algorithms for performing
inference/learning for densely connected flat models
– for example, the performance of BP is known to
degrade for representations with many closed loops.

Other classes of models are more suitable for
matching than detection [3], [2], [21]. Some of
these models [2], [21] do use longer range spa-
tial interactions, as encoded by shape context and
other features, and global transformations. But these
models are typically only rigorously evaluated on
matching tasks (i.e., in situations where the detec-
tion is trivial). They all need good initialization for
position, orientation, and scale if they are required
to detect objects in images with background clutter.

Recent work has introduced hierarchical models
to represent the structure of objects more accurately
(and enable shape regularities at multiple scales).
Shape-trees were presented [6] to model shape
deformations at more than one level. Other work
[22] [23] uses image features extracted at different
scales but does not formulate them within a hier-
archy. Alternative approaches [24] use hierarchies
but of very different types. The hierarchical repre-
sentations most similar to HDTs are the AND/OR
graph representations [25], [26], [12]. But there are
several differences: (i) these AND/OR models have
appearance (imaging) cues at the leaf nodes only,
(ii) they are only partially, if at all, learnt from the
data, (iii) the image cues and geometrical constraints
are mostly hand-specified. Our work has some simi-
larity to the hybrid discriminative/generative models
proposed by Tu [10] since HDTs combine discrimi-
native models for the object appearance with gener-
ative models for the geometric configuration of the
object (but Tu’s work does not involve hierarchies).

Object segmentation has usually been formulated

as a different task than object detection and has been
addressed by different techniques. It aims at finding
the boundary of the object and typically assumes
that the rough location is known and does not in-
volve recovering the pose (i.e. position, orientation,
and scale) of the object. Borenstein and Ullman [16]
provided a public horse dataset and studied the
problem of deformable object segmentation on this
dataset. Torr and his colleagues [27] developed
Object-Cut which locates the object via a pictorial
model learnt from motion cues and use the min-
cut algorithm to segment out the object of interest.
Ren et al. [28] addressed the segmentation problem
by combining low-, mid- and high-level cues in
Conditional Random Field (CRF). Similarly, Levin
and Weiss [29] used CRF to segment object but
assuming that the position of the object is roughly
given. In contrast to supervised learning, Locus [30]
explores a unsupervised learning approach to learn
a probabilistic object model. Recently, Cour and
Shi [31] currently achieve the best performance on
this horse dataset. Note that none of these methods
report performance on matching/alignment.

III. HIERARCHICAL DEFORMABLE TEMPLATES
(HDT)

This section describes the basic structure of
HDTs. Firstly we describe the graphical structure
in subsection (III-A). Secondly we specify the state
variables and the form of the probability distribution
in subsection (III-B). Thirdly, in subsection (III-
C), we describe the procedure used to learn the
graph structure from one example. The inference
and parameter learning algorithms will be described
in sections (IV) and (V) respectively.

A. The Graphical Structure of the HDT
We represent an object by a hierarchical graph

defined by parent-child relationships. The top node
of the hierarchy represents the pose (position, ori-
entation, and scale) of the center of the object. The
leaf nodes represent the poses of points on the object
boundary and the intermediate nodes represent the
poses of subparts of the object. This is illustrated in
figure (2).

Formally, an HDT is a graph G = (V, E) where
V is the set of nodes (vertices) and E is the set of
edges (i.e., nodes µ, ν ∈ V are connected if (µ, ν) ∈
E)). There is a parent-child structure so that ch(ν)
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denotes the children of node ν. We require that the
graph to be tree-like so that ch(ν)

⋂
ch(µ) = ∅ for

all ν, µ ∈ V . The edges are defined by the parent-
child relationships and by the requirement that all
the children of a node have an edge connecting
them. Hence (ν, µ) ∈ E provided either µ ∈ ch(ν),
ν ∈ ch(µ), or there exist ρ s.t. µ, ν ∈ ch(ρ). We
define µR to be the root node of the graph. We let
V LEAF denote the leaf nodes. For any node ν, we
define Vν to be the subtree formed by the set of
descendent node with ν as the root node. (We note
that all the nodes of the graph are connected to the
image data terms, see subsection (III-B).

B. The state variables and the potential functions

Each node µ ∈ V is assigned a state variable
zµ and we denote the state variables for the en-
tire graph by z = {zµ : µ ∈ V }. We denote
zch(µ) = {zν : ν ∈ ch(µ)} to be shorthand for the
states of the child nodes of µ. The state variable
indicates properties of the node and, in particular,
the subregion D(zµ) of the image domain D ⊂ R2

corresponding to the node. The state variable zµ of
node µ correspond to the position ~xµ, orientation
θµ, and scale sµ of a subpart of the object: hence
zµ = (~xµ, θµ, sµ) (and D(zµ) is calculated from
these). For example, the state of the top node for
an object model will correspond to the orientation,
scale, and center position of the object – while
the state of the leaf nodes will correspond to the
orientation and position of elements on the boundary
of the object. All these state variables are hidden
– i.e., not directly observable. Note that the state
variables take the same form at all levels of the
hierarchy (unlike other standard hierarchical rep-
resentations [32], [12]) which is important for the
inference and learning algorithms that we describe
in subsections (IV) and (V).

We now define probability distributions on the
state variables defined on the graph. These distri-
butions are of exponential form defined in terms
of potentials φ(.) which are weighted by parame-
ters α. They specify, for example, the probability
distributions for the relative states of the hidden
variables and the data terms. There are two types of
terms: (i) “prior potentials” defined over the cliques
of the graph ~φ(zµ, zch(µ)), for all µ ∈ V , which are
independent of the image I, (later we decompose the
“prior” terms into “vertical” and “horizontal” terms)

and (ii) “data potentials” of form ~φD(I, D(zµ)), for
all µ ∈ V , which depend on measurements of the
image I within the domain D(zµ). The potentials
will have coefficients ~αµ, ~α

D
µ respectively for all

µ ∈ V . We use α to denote {~αµ, ~α
D
µ }.

These probability distributions are specified as
a discriminative model which directly models the
posterior distribution P (z|I):

P (z|I) =
1

Z(α, I)
exp{−

∑
µ∈V

~αµ · ~φ(zµ, zch(µ))

−
∑
µ∈V

~αD
µ · ~φD

µ (I, D(zµ))}. (3)

It is important to realize that this discriminative
model includes an explicit prior on the state z given
by the

∑
µ∈V ~αµ · ~φ(zµ, zch(µ)) term in the exponent

in equation (3). This is obtained by applying Bayes
rule P (z|I) = P (I|z)P (z)/P (I) and identifying
the components of P (z|I) which depend on I as
P (I|z)/P (I) and those which depend only on z as
P (z) (up to an unknown normalization constant).
Hence an HDT has a prior distribution on the hid-
den states, specifying a distribution on the relative
geometry of the subparts, together with a discrimi-
native model for how the subparts interact with the
image (specified by the terms parameterized by the
αD). We use discriminative terms for how the HDT
interacts with the image for two main reasons: (i)
it is far easier to learn discriminative models for
intensities rather than generative ones (e.g. we can
use AdaBoost to discriminate between the interiors
and backgrounds of cows and horses, but there are
no generative models that can realistically synthe-
size the intensity properties of cows and horses
[33], (ii) it is easier to learn discriminative models
than generative ones (because of the difficulties of
dealing with the normalization factors).

We now describe the terms in more detail. The
data terms φD(I, D(zµ)) contain the appearance
terms which indicate how the HDT interacts with
the image. The prior terms φ(zµ, zch(µ)) are decom-
posed into vertical terms indicating how the state of
the parent node relates to its children and horizontal
terms defined on triplets of child nodes.

The data terms φD
µ (I, D(zµ)) are defined in

terms of a dictionary of potentials computed from
image features. More precisely, the potentials are
of form φD(I, D(zµ)) = log P (F (I,D(zµ))|object)

P (F (I,D(zµ))|background)

where F (I, D(zµ)) is the feature response
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Fig. 2. Left Panel: The hierarchical graph of the HDT is constructed by a hierarchical clustering algorithm (see text for details). Black dots
indicate the positions of the leaf nodes in the hierarchy. The arrows indicate how nodes at each level of the hierarchy are linked to their
parents nodes at higher levels – i.e., how groups of subparts are composed to form bigger subparts. Right Panel: the appearance and shape
deformation are modeled at all levels of the hierarchy and different appearance cues are used at different levels (e.g., mean and variance of
features at the mid-levels and edge features at the low-levels).

from the region in the image I specified by
D(zµ). The distributions P (F (I, D(zµ))|object)
and P (F (I, D(zµ))|background) are either
histogram distributions, or uni-variate Gaussians,
measured when zµ is in the correct location
(object) (P (.|object)) or on the background
(P (.|background)), see subsection (V) for more
details. We use different features dictionaries at
different levels of the hierarchy, see figure (2).
For leaf nodes, µ ∈ V LEAF the φD

µ (I, D(zµ)) are
specified by a dictionary of local image features
F (I, D(zµ)) computed by different operators –
there are 27 features in total including the intensity,
the intensity gradient, Canny edge detectors,
Difference of Offset Gaussian (DOOG) at different
scales (13 × 13 and 22 × 22) and orientations
(0, 1

6
π, 2

6
π, ...), and so on (see bottom row of

figure 2). For non-leaf nodes, µ ∈ V/V LEAF ,
the φD

µ (I, D(zµ)) are specified by a dictionary of
regional features (e.g. mean, variance, histogram of
image features) defined over the sub-regions D(zµ)
specified by the node state zν , see the second row
of the right panel of figure (2).

The prior terms φ(zµ, zch(µ)) are decomposed into
horizontal terms and vertical terms. The horizontal
terms are defined for each triplet of child nodes
of µ, see figure (3). I.e., for each triplet (ν, ρ, τ)
such that ν, ρ, τ ∈ ch(µ) we specify the invariant
triplet vector (ITV) [32] l(zµ, zρ, zτ ) and define
φH(zν , zρ, zτ ) to be the Gaussian potential (i.e., the

first and second order statistics). Recall that the
ITV [32] depends only on functions of zν , zρ, zτ ,
such as the internal angles, which are invariant to the
translation, rotation, and scaling of the triple. This
ensures that the potential is also invariant to these
transformations. The parameters of the Gaussian are
learnt from training data as described in section (V).
The vertical terms φV (zµ, zch(µ)) are used to hold
the structure together by relating the state of the
parent nodes to the state of their children. The
state of the parent node is determined precisely by
the states of the child nodes. This is defined by
φV (zµ, zch(µ)) = h(zµ, zch(µ)), where ch(µ) is the set
of child nodes of node µ, h(., .) = 0 if the average
orientations and positions of the child nodes are
equal to the orientation and position of the parent
node. If they are not consistent, then h(., .) = κ,
where κ is a large positive number.

In summary, the HDT models the appearance and
the shape (geometry) at multiple levels. Low-levels
of the hierarchy model short range shape constraints
and local appearance cues, see the third and fourth
rows of figure (2). At higher levels – the top and
second rows of figure (2) – longer range shape
constraints and large scale appearance cues are used.

C. Constructing the Hierarchy by One-example
Learning

In this paper, we learn the hierarchical graph from
a single example of the object. We call this “one-
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Fig. 3. Representation based on oriented triplet. This gives the
cliques for the four children of a node. In this example, four triplets
are computed. Each circle corresponds to one node in the hierarchy
which has a descriptor (indicated by blue line) of position, orientation
and scale. The potentials of the cliques are Gaussians defined over
features extracted from triple nodes, such as internal angles of the
triangle and relative angles between the feature orientation and the
orientations of the three edges of the triangle. These exacted features
are invariant to scale and rotation.

example learning”. The input is the set {(~xi, θi)} of
points on the object boundary curve together with
their orientation (i.e. the normal vector to the curve).
On this set we specify 24 points corresponding to
leaf nodes of the HDT spaced evenly along the
boundary (this specification will be used to deter-
mine ground-truth during for structure-perceptron
learning). The output is the graph structure with
initial values of the parameters α (with many set to
zero) which gives a default HDT that can be used
to initialize the structure perceptron learning.

We automatically construct the hierarchical graph
by a hierarchical aggregation algorithm which is
partially inspired by the “Segmentation by Weighted
Aggregation (SWA) ” algorithm [34]. The input is
a weighted graph G = {V, E, W} where V is the
vertex set (the 24 points on the boundary), E is the
edge set (the edges are defined by the neighboring
points on the contour), and W specifies the weights:
wi,j = exp{−β1dist(~xi, ~xj)+β2edge(~xi, ~xj)} where
~xi is the position of point i, dist(., .) is the distance
function and edge(., .) is an indicator function to
measure if point i, j are neighbors or not. β1 and
β2 are set to be 0.5 and 1 respectively (in all
experiments). The algorithm proceeds by iterating
through the vertex points and assigning them to
clusters based on affinity, so that a new cluster is
created if the affinity of the vertex to the current
clusters is below threshold. Affinities are computed
between the clusters and the procedure repeats using
the clusters as the new vertices. See [34] for details.

The output is a hierarchical graph structure (the
state variables of the example are thrown out), i.e.
a set of nodes and their vertical and horizontal con-
nections. Observe that the hierarchical graph gives

a natural parsing of the exemplar – see figure (2).
After one-example learning, we specify a default

HDT which will be used to initialize the parameter
learning in section (V). We set α = 0 for all data
terms except those at the leaf nodes. At the leaf
nodes we set α = 1 for the data terms corresponding
to the intensity gradients (we learn the distributions
P (.|object) and P (.|background) for the intensity
gradient from the responses on and off the object
boundary). We set α = 1 for the vertical and hori-
zontal terms. For the horizontal terms we set φH(y)
to be the Gaussian distribution of the invariant triplet
vector g(~l(zµ, zρ, zτ )) where the mean is measured
from the example and the covariance is set by hand
(to 0.12 times the identity matrix for all levels). This
is just the covariance for the default HDT used for
initialization. The covariance will be learnt by the
HDT by structure-perceptron.

IV. INFERENCE: PARSING THE MODEL

We now describe an inference algorithm suited
to the hierarchical structure of the HDT. Its goal
is to obtain the best state z∗ by estimating z∗ =
arg max P (z|I) which can be re-expressed in terms
of minimizing an energy function:

z∗ = arg min{
∑
µ∈V

~αµ · ~φ(zµ, zch(µ))

+
∑
µ∈V

~αD
µ · ~φD

µ (I, D(zµ))} (4)

To perform inference, we observe that the hierar-
chical structure of the HDT, and the lack of shared
parents (i.e., the independence of different parts of
the tree), means that we can express the energy
function recursively and hence find the optimum z
using dynamic programming in polynomial time in
the size of the graph G and the state space of the
{zµ}. But the state space of the {zµ} is very large
since every component of the object can occur in
any position of the image, at any orientation, and
any scale. Hence, as in other applications of DP or
BP to vision [1], [2] we need to perform pruning to
reduce the set of possible states.

The algorithm is called compositional inference
[11][12], see table (5). It is a pruned form of
dynamic programming (DP) that exploits the inde-
pendence structure of the graph model. It is run
bottom-up starting by estimating possible states for
the leaf nodes and proceeding to estimate possible
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states for the nodes higher up the tree (a top-
down stage is sometimes run as a variant). Although
DP is guaranteed to be polynomial in the relevant
quantities (number of layers and graph nodes, size
of state space of z) full DP is too slow because
of the large size of the state space (i.e. range of
values that zµ can take for each node µ). The
pruning reduces the allowable states of a node µ
to a set of proposals (borrowing terminology from
the MCMC literature) together with their energies.
These proposals are selected by two mechanisms: (i)
energy pruning - to remove proposals corresponding
to large energy, and (ii) surround suppression - to
suppress proposals that occur within a surrounding
window (similar to non-maximal suppression).

The intuition for compositional inference is that
it starts by detecting possible configurations of the
elementary (low-level) components of the HDT and
combines them to produce possible configurations
of high-level components, see figure (4).

The pruning threshold, and the window for sur-
round suppression, must be chosen so that there are
very few false negatives (i.e. the object is always de-
tected as, at worst, a small variant of one of the pro-
posals). In practice, the window is (5, 5, 0.2, π/6)
(i.e., 5 pixels in the x and y directions, up to a
factor of 0.2 in scale, and π/6 in orientation –
same for all experiments). But rapid inference is
achieved by keeping the number of proposals small
(avoiding the danger of combinatorial explosion
due to composition). We performed experiments
to balance the trade-off between performance and
computational speed. Our experiments show that
the algorithm has linear scaling with image size, as
shown in section (VI), and we empirically quantify
the performance of each component of the hierarchy
in section (VI-C).

We now specify compositional inference more
precisely by first specifying how to recursively com-
pute the energy function – which enables dynamical
programming – and then describe the approxima-
tions (energy pruning and surround suppression)
made in order to speed up the algorithm without
decreasing performance.

Recursive Formulation of the Energy The dis-
criminative model, see equation (3), is of Gibbs
form and can be specified by an energy function:
E(z|I) =

∑
µ∈V ~αµ · ~φ(zµ, zch(µ)) +

∑
µ∈V ~αD

µ ·
~φD

µ (I, D(zµ)). We exploit the tree-structure and ex-

Input: {p1
ν1}. Output:{pL

νL}
Bottom-Up(p1)
Loop : l = 1 to L, for each node ν at level l

1) Composition:
{pl

ν,b} = ⊕ρ∈ch(ν),a=1,...,ml−1
ρ

pl−1
ρ,a

2) Pruning: {pl
ν,a} = {pl

ν,a|E(pl
ν,a|I) < Tl}

3) Local Maximum: {pl
ν,a} =

SurroundSuppression({pl
ν,a}, εW )

where εW is the size of the window W l
ν

defined in space, orientation, and scale.
Fig. 5. The inference algorithm. ⊕ denotes the operation of
combining proposals from child nodes to make proposals for parent
nodes.

press this energy function recursively by defining an
energy function Eν(zdes(ν)|I) over the subtree with
root node ν in terms of the state variables zdes(ν)

of the subtree where des(ν) stands for the set of
descendent nodes of ν – i.e. zdes(ν) = {zµ : µ ∈ Vν}.

This gives Eν(zdes(ν))|I) =
∑

µ∈Vν
~αµ ·

~φ(zµ, zch(ν)) +
∑

µ∈Vν
~αD

µ · ~φD(I, D(zµ)), which
can be computed recursively by Eν(zdes(ν)|I) =∑

ρ∈ch(ν) Eρ(zdes(ρ)|I) +~αν · ~φ(zν , zch(ν)) +~αD
ν ·

~φD(I, D(zν)), so that the full energy E(z|I) is
obtained by evaluating Eν(.) at the root node µR.

Compositional Inference. Initialization: at each
leaf node ν ∈ V LEAF we calculate the states {pν,b}
(b indexes the proposal) such that Eν(pν,b|I) < T
(energy pruning with threshold T ) and Eν(pν,b|I) ≤
Eν(pν |I) for all zν ∈ W (pν,b) (surround suppression
where W (pν,b) is a window centered on pν,b). (The
window W (pν,b) is (5, 5, 0.2, π/6) centered on pν,b).
We refer to the {pν,b} as proposals for the state
zν and store them with their energies Eν(pν,b|I).
Recursion for parent nodes: to obtain the propos-
als for a parent node µ at a higher level of the
graph µ ∈ V/V LEAF we first access the proposals
for all its child nodes {pµi,bi

} where {µi : i =
1, ..., |ch(µ)|} denotes the set of child nodes of µ
and their energies {Eµi

(pµi,bi
|I) : i = 1, ..., |ch(µ)|}.

Then we compute the states {pµ,b} such that
Eµ(pµ,b|I) ≤ Eµ(zµ|I) for all zµ ∈ W (pµ,b) where
Eµ(pµ,b|I) = min{bi}{

∑|ch(µ)|
i=1 Eµi

(zdes(µi,bi)|I)
+~αµ · ~φ(pµ,b, {pµi,bi

}) +~αD
µ · ~φD(I, D(pµ,b))}. In our

experiments, the thresholds T are set to take values
such that the recall in the training data is 95%. In
other words, for all object parts corresponding to the
nodes in the hierarchy, 95% of training examples are
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Level 4

Level 3

Level 2

Level 1

Fig. 4. This snapshot illustrates the compositional inference algorithm. The algorithm proceeds by combining proposals for the states of child
nodes to form composite proposals for the states of parent nodes. These composite proposals are pruned to remove those whose energies are
too large and then surround suppression is applied (within a window in space, orientation, and scale) so that only locally maximal proposals
are accepted.

correctly detected by using the thresholds to prune
out proposals.

V. STRUCTURE-PERCEPTRON LEARNING

We now describe our parameter learning algo-
rithm. This constructs the HDT probability distri-
bution by selecting and weighting features from the
dictionaries. Recall that the graph structure of the
HDT has already been learnt from one example by
the hierarchical clustering algorithm and a default
HDT has been specified, see subsection (III-C). We
now have a training dataset where the boundary is
specified. We hand-specify points on the boundaries
of the object (24 points for the horses and cows)
using a template to ensure consistency (i.e., that the
points correspond to similar parts of the object on all
training images). This specifies the ground-truth for
all the state variables of the HDT because the states
of the parent nodes are determined by the states of
their child nodes (see section (III-B)). This enables
us to learn the distributions P (F (I, D(zµ))|object)
and P (F (I, D(zµ))|background) and hence deter-
mine the data potentials φD (recall that the horizon-
tal and vertical potentials are specified by the default
HDT). Thus the remaining task is to estimate the α’s
described in section (III-B).

A. Background on Perceptron and Structure-
Perceptron Learning

Perceptron learning was developed in the 1960’s
for classification tasks (i.e., for binary-valued out-
put) and its theoretical properties, including conver-

gence and generalization, have been studied [35].
More recently, Collins [13] developed the structure-
perceptron algorithm which applies to situations
where the output is a structure (e.g. a sequence or
a tree of states). He obtained theoretical results for
convergence, for both separable and non-separable
cases, and for generalization. In addition Collins
and his collaborators demonstrated many successful
applications of structure-perceptron to natural lan-
guage processing, including tagging [36] (where the
output is sequence/chain), and parsing [37] (where
the output is a tree).

Structure-perceptron learning can be extended to
learning the parameters of HDTs. The learning pro-
ceeds in a discriminative way. By contrast to max-
imum likelihood learning, which requires calculat-
ing the expectation of features, structure-perceptron
learning only needs to calculate the energies of the
state variables. Hence structure-perceptron learning
is more flexible and computationally simpler.

To the best of our knowledge, structure-
perceptron learning has never been exploited in
computer vision except in our previous work [15]
(unlike the perceptron which has been applied to
many binary classification and multi-class classifi-
cation tasks). Moreover, we are applying structure-
perceptron to more complicated models (i.e. HDTs)
than those treated by Collins [36] (e.g. Hidden
Markov Models for tagging).
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B. Details of Structure-Perceptron Learning
The goal of structure-perceptron learning is to

learn a mapping from inputs I ∈ I to output
structure z ∈ Z . In our case, I is a set of images,
with Z being a set of possible parse trees (i.e. con-
figurations of HDTs) which specify the positions,
orientations, scales of objects and their subparts
in hierarchical form. We use a set of training ex-
amples {(Ii, zi) : i = 1...n} and a dictionary of
functions/potentials {φ} which map each (I, z) ∈
I × Z to a feature vector φ(I, z) ∈ Rd. The task
is to estimate a parameter vector α ∈ Rd for the
weights of the features. This can be interpreted as a
soft form of feature selection so that unimportant
features have small weights. The feature vectors
φ(I, z) can include arbitrary features of parse trees,
as we discussed in section (III-A).

The loss function used in structure-perceptron
learning is of form:

Loss(α) = min
z

φ(I, z) · α− φ(I, z) · α (5)

where z is the correct state configuration for input
I, and z is a dummy variable. (Here φ(I, z) denotes
all the potentials of the model – both data and prior
– and α denotes all the parameters).

The basic structure-perceptron algorithm – Algo-
rithm I – is designed to minimize the loss function.
Its pseudo-code is given in figure (6). The algorithm
proceeds in a simple way (similar to the perceptron
algorithm for classification). The HDT is initialized
by the default model (e.g., α = 1 for the vertical,
horizontal, and leaf node intensity terms and α =
0 for the other data terms). Then the algorithm
loops over the training examples. If the highest
scoring parse tree for input I is not correct, then
the parameters α are updated by an additive term.
The most difficult step of the method is to find
z∗ = arg minz φ(Ii, z)·α. But this can be performed
by the inference algorithm described in section (V).
Hence the performance and efficiency (empirically
polynomial complexity) of the inference algorithm
is a necessary pre-condition to using structure-
perceptron learning for HDTs.

C. Averaging Parameters
There is a simple refinement to Algorithm I,

called “the averaged parameters” method (Algo-
rithm II) [13], whose pseudo-code is given in fig-
ure (7). The averaged parameters are defined to

Input: A set of training images with ground
truth (Ii, zi) for i = 1..N . Initialize the param-
eter vector α by the default model.
Algorithm I:
For t = 1..T, i = 1..N

• Use bottom-up inference to find the best
state of the model on the i’th training
image with current parameter setting, i.e.,
z∗ = arg minz φ(Ii, z) · α

• Update the parameters: α = α+φ(Ii, z∗)−
φ(Ii, zi)

Output: Parameters α

Fig. 6. Algorithm I: a simple training algorithm of structure-
perceptron learning. α, φ denote the data and prior potentials and
parameters.

Algorithm II:
For t = 1..T, i = 1..N

• Parse: z∗ = arg minz φ(Ii, z) · α
• Store: αt,i = α
• Update: α = α + φ(Ii, z∗)− φ(Ii, zi)

Output: Parameters γ =
∑

t,i α
t,i/NT

Fig. 7. Algorithm II: a modification of Algorithm I with same
training images and initialization. α, φ are the same as in Algorithm
I.

be γ =
∑T

t=1

∑N
i=1 αt,i/NT , where NT is the

averaging window. It is straightforward to store
these averaged parameters and output them. The
theoretical analysis in [13] shows that Algorithm II
(with averaging) gives better performance and con-
vergence rate than Algorithm I (without averaging).
We will empirically compare these two algorithms
in section (VI).

D. Soft Feature Selection

Structure-perceptron learning uses a dictionary of
features {φ} with parameters {α} initialized by the
default HDT (after one-example learning). As the
algorithm proceeds, it assigns weights to the fea-
tures so that more important features receive larger
weights. This can be thought of as form of “soft”
feature selection (by contrast to the “hard” feature
selection performed by algorithms like AdaBoost).
This ability to perform soft feature selection allows
us to specify a large dictionary of possible features
and enable the algorithm to select those features
which are most effective. This allows us to learn
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Fig. 8. Examples of the Weizmann horse data set. This figure shows
input image, ground truth of segmentation, parsing (position of leaf
nodes) and detection, from left to right respectively.

HDTs for different objects without needing to spe-
cially design features for each object.

This ability to softly select features from a dic-
tionary means that our approach is more flexible
than existing conditional models (e.g., CRF [28],
[29], [38]) which use multi-level features but with
fixed scales (i.e. not adaptive to the configuration of
the hidden state). In section (VI-E), we empirically
study what features the structure-perceptron algo-
rithm judges to be most important for a specific
object like a horse. Section (VI-F) also illustrates
the advantage of soft feature selection by applying
the same learning algorithm to the different task of
face alignment without additional feature design.

VI. EXPERIMENTAL RESULTS

A. Dataset and Evaluation Criterions
Dataset. We evaluate HDT for different tasks

on different public datasets. Firstly, we use two
standard public datasets, the Weizmann Horse
Dataset [16] and cows [17], to perform experi-
mental evaluations for HDTs. See some examples
in figure (8). These datasets are designed to eval-
uate segmentation, so the groundtruth only gives
the regions of the object and the background. To
supplement this groundtruth, we asked students to
manually parse the images by locating the states
of leaf nodes of the hierarchy in the images which
deterministically specifies the states of the nodes of
the remainder of the graph (this is the same proce-
dure used to determine groundtruth for learning, see
section (V)). These parse trees are used as ground
truth to evaluate the ability of the HDT to parse the
horses (i.e. to identify different parts of the horse).

Secondly, to show the generality and versatility
of our approach and its ability to deal with dif-
ferent objects without hand-tuning the appearance
features, we apply it to the task of face alignment
(this requires parsing). We use a public dataset [18]
which contains the groundtruth for 65 key points
which lie along the boundaries of face components
with semantic meaning, i.e, eyes, nose, mouth and
cheek. We use part of this dataset for training (200
images) and part for testing (80 images).

The measure for parsing/alignment. For a given
image I, we apply the HDT to parse the image
and estimate the configuration z. To evaluate the
performance of parsing (for horses) and match-
ing/alignment (for faces) we use the average posi-
tion error measured in terms of pixels. This quan-
tifies the average distance between the positions of
leaf nodes of the ground truth and those estimated
in the parse tree.

The measure for segmentation. The HDT does
not directly output a full segmentation of the object.
Instead the set of leaf nodes gives a sparse estimate
for the segmentation. To enable HDT to give full
segmentation we modify it by a strategy inspired
by grab-cut [14] and obj-cut [27]. We use a rough
estimate of the boundary by sequentially connecting
the leaf nodes of the HDT, to initialize a grab-cut
algorithm (recall that standard grab-cut [14] requires
human initialization, while obj-cut needs motion
cues). We use segmentation accuracy to quantify
the proportion of the correct pixel labels (object
or non-object). Although segmentation accuracy is
widely used as a measure for segmentation, it has
the disadvantage that it depends on the relative size
of the object and the background. For example,
you can get 80% segmentation accuracy on the
weizmann horse dataset by simply labelling every
pixel as background. Therefore, to overcome the
shortcoming of segmentation accuracy, we also re-
port precision/recall, see [28], where precision =
P∩TP

P
and recall = P∩TP

TP
(P is the set of pixels

which are classified as object by HDT and TP is
the set of object pixels in ground truth). We note
that segmentation accuracy is commonly used in the
computer vision community, while precision/recall
is more standard in machine learning.

The measure for detection. We use detection
rate to quantify the proportion of successful detec-
tions. We rate detection to be successful if the area
of intersection of the labeled object region (obtained
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by graph-cut initialized by the HDT) and the true
object region is greater than half the area of the
union of these regions.

The measure for performance analysis. We
judge that an object(or part) is correctly parsed if
each subpart (i.e. the location of each node in the
hierarchy) is located close (within k1× l+k2 pixels
where l is the level with k2 = 5 and k1 = 2.5) to the
ground-truth. The thresholds in the distance measure
vary proportionally to the height of levels so that the
distance is roughly normalized according to the size
of object parts. We plot the precision-recall curve
to study the performance of the components of the
whole model.

B. Experiment I: One-example Learning

Fig. 9. This shows the exemplars used for the horse (left) and the
cow (right).

We first report the performance of the default
HDT obtained by one-example learning, see subsec-
tion (III-C). The two exemplars used to obtain the
horse and cow hierarchies are shown in figure (9).
We use identical parameters for each model (i.e. for
the hierarchical aggregation algorithm, for the data
terms, and the horizontal and vertical terms, for the
proposal thresholds and window sizes).

We illustrate the segmentation and parsing results
in figure (10). Observe that the algorithm is success-
ful even for large changes in position, orientation
and scale – and for object deformations and occlu-
sion. The evaluation results for detection, parsing,
and segmentation are shown in table (I). Overall, the
performance is very good and the average speed is
under 4 seconds for an image of 320× 240.

C. Experiment II: Contributions of Object Parts:
Complexity and Performance Analysis

We use the default model provided by one-
example learning to analyze the effectiveness of
different components of the HDT in terms of perfor-
mance and time-complexity. This is shown in table

Num. of Prop. Time/Node Time/Img
Level 4 51 0.14s 0.14s
Level 3 77 0.29s 0.88s
Level 2 105 0.21s 1.05s
Level 1 158 0.10s 1.22s
Level 0 225 0.01s 0.18s

Hierarchy 180 0.08s 3.47s

TABLE II

ANALYSIS OF COMPOSITIONAL INFERENCE. LEFT PANEL: THE

NUMBERS OF PROPOSALS FOR EACH NODES AT DIFFERENT

LEVELS (AFTER ENERGY PRUNING AND SURROUND

SUPPRESSION). CENTER PANEL: THE TIME COSTS FOR EACH

NODES. RIGHT PANEL: THE TIME COSTS FOR THE IMAGE

(AVERAGED OVER THE NODES OF ALL THE LEVELS OF THE

HIERARCHY).

(II) and figure (11). We anticipate that this analysis
of the tradeoffs between speed and performance
will yield general principles for optimal design of
modeling and inference for computer vision systems
particularly those requiring multi-level processing.

Performance Contributions of Multi-level Ob-
ject Parts. Figure (11) shows how different com-
ponents of the hierarchy contribute to performance.
It is easy to note that smaller object parts have
worse performance in terms of precision-recall.
More high-level knowledge including both appear-
ance and shape prior makes object parts more dis-
tinct from background and thus improves the overall
performance. One can see that there is a jump in
performance when we move from level 2 to level
3, indicating that the information at level 3 (and
below) is sufficient to disambiguate the object from
a cluttered background.

Computational Complexity Analysis. Table (II)
shows that the number of proposals scales almost
linearly with the level in the hierarchy, and the
time cost for each level is roughly constant. This
demonstrates that the pruning and surround sup-
pression are important factors for making bottom-up
processing effective. Overall, this helps understand
the effectiveness of the bottom-up processing at
different levels.

D. Experiment III: Evaluations of Structure-
Perceptron Learning for Deformable Object
Detection, Segmentation and Parsing

In this experiment, we apply structure-perceptron
learning to include all image features for the leaf
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Dataset Size Detection Rate Parsing (Average Position Error) Segmentation Precision/Recall Speed
Horse 328 86.0 18.7 81.3% /73.4% 3.1s
Cow 111 88.2 15.8 81.5% /74.3% 3.5s

TABLE I

THE PERFORMANCE OF THE DEFAULT HDT PROVIDED BY ONE-EXAMPLE LEARNING.

Fig. 10. Segmentation and parsing results on the horse and cows datasets using the default HDT obtained by one-example learning. The
first column shows the raw images. The second one show the edge maps. The third one shows the parsed result. The last one shows the
segmentation results. The main errors are at the head and legs due to their large variability which may require a model with OR nodes,
see [39].

TABLE III

COMPARISONS OF ONE-EXAMPLE LEARNING AND STRUCTURE-PERCEPTRON LEARNING

Learning Approaches Training Validation Detection Parsing Segmentation (Precision/Recall) Speed
One-example learning 1 – 86.0 % 18.7 81.3% / 73.4% 3.1s

Structure-perceptron learning 50 50 99.1% 16.04 93.6% / 85.3% 23.1s

nodes and non-leaf nodes, and estimate the pa-
rameters α. The hierarchical structure is obtained
by one-example learning. We use the Weizeman
horse dataset [16] for evaluation where a total of
328 images are divided into three subsets – 50 for

training, 50 for validation, and 228 for testing. The
parameters learnt from the training set, and with the
best performance on validation set, are selected.

Results. The best parse tree is obtained by
performing inference algorithm over HDT learnt
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Fig. 11. This figure shows the Precision-Recall curves for different
levels. Level 4 is the top level. Level 0 is the bottom level.

TABLE IV

COMPARISONS OF SEGMENTATION PERFORMANCE ON

WEIZMANN HORSE DATASET

Methods Testing Seg. Accu. Pre./Rec.
Our approach 228 94.7% 93.6% / 85.3%

Ren [28] 172 91.0% 86.2%/75.0%
Borenstein [40] 328 93.0%

LOCUS [30] 200 93.1%
Cour [31] 328 94.2%
Levin [29] N/A 95.0%

OBJ CUT [27] 5 96.0%
Grabcut 228 83.3% (bounding box init.)

by structure-perceptron learning. Figure (12) shows
several parsing and segmentation results. The states
of the leaf nodes of parse tree indicate the posi-
tions of the points along the boundary which are
represented as colored dots. The points of same
color in different images correspond to the same
semantic part. One can see our model’s ability to
deal with shape variations, background noise, tex-
tured patterns, and changes in viewing angles. The
performance of detection and parsing on this dataset
is given in table (III). Structure-perceptron learning
which include more visual cues outperforms one-
example learning in all tasks. The localization rate
is around 99%. Our model performs well on the
parsing task since the average position error is only
16 pixels (to give context, the radius of the color
circle in figure (12) is 5 pixels). Note no other
papers report parsing performance on this dataset
since most (if not all) methods do not estimate the
positions of different parts of the horse (or even
represent them). The time of inference for image

with typical size 320× 240 is 23 seconds.
Comparisons. In table (IV), we compare the

segmentation performance of our approach with
other successful methods. Note that the object cut
method [27] was reported on only 5 horse im-
ages (but object cut was also tested on cows and
other objects). Levin and Weiss [29] make the
strong assumption that the position of the object is
given (other methods do not make this assumption)
and not report how many images they tested on.
Overall, Cour and Shi’s method [31] was the best
one evaluated on large dataset. But their result is
obtained by manually selecting the best among top
10 results (other methods output a single result).
By contrast, our approach outputs a single parse
only but yields a higher pixel accuracy of 94.7%.
We put in results of Grabcut using the groundtruth
bounding box as initialization to illustrate the big
advantage of using HDT to initialize grabcut. Hence
we conclude that our approach outperforms those al-
ternatives which have been evaluated on this dataset.
As described above, we prefer the precision/recall
criteria [28] because the segmentation accuracy is
not very distinguishable (i.e. the baseline starts at
80% accuracy, obtained by simply classifying every
image pixel as being background). Our algorithm
outperforms the only other method evaluated in this
way (i.e. Ren et al.’s [28]). For comparison, we
translate Ren et al.’s performance ( 86.2%/75.0%)
into segmentation accuracy of 91% (note that it is
impossible to translate segmentation accuracy back
into precesion/recall).

E. Experiment IV: Diagnosis of structure-
perceptron learning

In this section, we will conduct diagnosis experi-
ments to study the behavior of structure-perceptron
learning.

Convergence Analysis. Figure (13) shows the
average position error on training set for both Algo-
rithm II (averaged) and Algorithm I (non-averaged).
It shows that the averaged algorithm converges
much more stably than the non-averaged algorithm.

Generalization Analysis. Figure (14) shows av-
erage position error on training, validation and
testing set over a number of training iterations.
Observe that the behavior on the validation set and
the testing set are quite similar. This confirms that
the selection of parameters decided by the validation
set is reasonable.
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Fig. 12. Examples of Parsing and Segmentation. Column 1 , 2 and 3 show the raw images, parsing and segmentation results respectively.
Column 4 to 6 show extra examples. Parsing is illustrated by dotted points which indicate the positions of leaf nodes (object parts). Note
that the points in different images with the same color correspond to the same semantical part. As for the HDT default model, the main
errors are at the head and legs due to their large variability which may require a model with OR nodes, see [39]
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Fig. 13. The average position errors measured in terms of pixels
(y-axis) across iterations (x-axis) are compared between Algorithm-
II(average) and Algorithm-I (non-average).

Soft Feature Selection. Structure-perceptron ef-
fectively performs soft feature selection by assign-
ing low values of the weights α to many fea-
tures/potentials, see figure (15). This enables us to
specify large dictionaries of features/potentials and
allow structure-perceptron to select which ones to
use. We illustrate the types of features/potentials
that structure-perceptron prefers in figure (16) (we

10

15

20

25

1 10 100 1000

A
v

e
ra

g
e

 P
o

si
ti

o
n

 E
rr

o
r

Iteration

Train Valid Test

Fig. 14. The average positions errors measured in terms of pixels
on training, validation and testing dataset are reported.

only show the features are shown at the bottom
level of the hierarchy for reasons of space). The
top 5 features, ranked according to their weights,
are listed. The top left, top right and bottom left
panels show the top 5 features for all leaf nodes,
the node at the back of horse and the node at the
neck respectively. Recall that structure-perceptron
learning performs soft feature selection by adjusting
the weights of the features.
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Fig. 15. The weights α of the features for the horse’s back (left
panel) and the horse’s neck (right panel). These experiments use 380
features and show that most are assigned small weights α and hence
are effectively not selected.
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6
π).

F. Experiment V: Multi-view Face Alignment

To demonstrate the versatility of HDTs we ap-
plied them to the task of multi-view face alignment.
This is a tougher test for the ability of HDTs to parse
images because there have been far more studies of
face alignment than horse parsing. The input is a set
of 64 points marked on the faces. We applied one-
example learning followed by structure-perceptron
to learn HDTs for faces. We then perform alignment
by applying HDTs to each image and using compo-
sitional inference to estimate the state variables. Our
HDT approach, using identical settings for horse
parsing, achieves an average distance error of 6.0
pixels, comparable with the best result 5.7 pixels,
obtained by [19]. Their approach is based mostly
on Active Appearance Models (AAMs) [20] which

were designed specifically to model faces and which
are a mature computer vision technique. Figure (17)
shows the typical parse results for face alignment.
We note that HDTs allow considerable more de-
formability of objects than do AAMs. Moreover,
HDTs required no special training or tuning for this
problem (we simply acquired the dataset and trained
and tested HDTs the next day).

VII. CONCLUSION

We developed a novel Hierarchical Deformable
Template (HDT) model for representing, detecting,
segmenting, and parsing objects. The model is ob-
tained by one-example learning followed by the
structure-perceptron algorithm. We detect and parse
the HDT by the compositional inference algorithm.
Advantages of our approach include the ability to
select shape and appearance features at a variety of
scales in an automatic manner.

We demonstrated the effectiveness and versatility
of our approach by applying it to very different
problems, evaluating it on large datasets, and giv-
ing comparisons to the state of the art. Firstly,
we showed that the HDT outperformed other ap-
proaches when evaluated for segmentation on the
weizmann horse dataset. It also gave good results for
parsing horses (where we supplied the groundtruth),
though there are no other parsing results reported for
this dataset for comparison. Secondly, we applied
HDTs to the completely different task of multi-view
face alignment (without any parameter tuning or
selection of features) and obtained results very close
to the state of the art (within a couple of days).
The current limitations of the HDT are due to their
lack of OR nodes which decreases their ability to
represent objects that vary greatly in appearance and
shape, see [39].

We note that certain aspects of HDTs have simi-
larities to the human visual system and, in particular,
to biologically inspired vision models. The bottom-
up process by its use of surround suppression and
its transition from local to global properties is
somewhat analogous to Fukushima’s neocognitron
[41] and more recent embodiments of this principle
[42], [43].

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the Na-
tional Science Foundation with NSF grant number



17

Fig. 17. Multi-view Face Alignment.

0413214 and the W.M. Keck Foundation. We thank
YingNian Wu and Zhuowen Tu for helpful dis-
cussions and the anonymous reviews for feedback
which greatly helped the clarity of the paper.

REFERENCES

[1] J. M. Coughlan, A. L. Yuille, C. English, and D. Snow, “Ef-
ficient deformable template detection and localization without
user initialization,” Computer Vision and Image Understanding,
vol. 78, no. 3, pp. 303–319, 2000.

[2] J. M. Coughlan and S. J. Ferreira, “Finding deformable shapes
using loopy belief propagation,” in ECCV (3), 2002, pp. 453–
468.

[3] H. Chui and A. Rangarajan, “A new algorithm for non-rigid
point matching,” in CVPR, 2000, pp. 2044–2051.

[4] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 24, no. 4, pp. 509–522, 2002.

[5] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures
for object recognition,” International Journal of Computer
Vision, vol. 61, no. 1, pp. 55–79, 2005.

[6] P. F. Felzenszwalb and J. D. Schwartz, “Hierarchical matching
of deformable shapes,” in CVPR, 2007.

[7] P. A. Viola and M. J. Jones, “Fast and robust classification using
asymmetric adaboost and a detector cascade,” in NIPS, 2001,
pp. 1311–1318.

[8] ——, “Robust real-time face detection,” International Journal
of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[9] A. L. Yuille, J. Coughlan, Y. Wu, and S. Zhu, “Order parameters
for detecting target curves in images: When does high-level
knowledge help?” International Journal of Computer Vision,
vol. 41(1/2), pp. 9–33, 2001.

[10] Z. Tu, C. Narr, P. Dollar, I. Dinov, P. Thompson, and A. Toga,
“Brain anatomical structure segmentation by hybrid discrimina-
tive/generative models,” IEEE Tran. on Medical Imaging, vol.
27(4), pp. 495–508, 2008.

[11] L. Zhu and A. L. Yuille, “A hierarchical compositional system
for rapid object detection,” in NIPS, 2005.

[12] Y. Chen, L. Zhu, C. Lin, A. L. Yuille, and H. Zhang, “Rapid
inference on a novel and/or graph for object detection, segmen-
tation and parsing,” in NIPS, 2007.

[13] M. Collins, “Discriminative training methods for hidden markov
models: theory and experiments with perceptron algorithms,” in
EMNLP, 2002, pp. 1–8.

[14] C. Rother, V. Kolmogorov, and A. Blake, ““grabcut”: interactive
foreground extraction using iterated graph cuts,” ACM Trans.
Graph., vol. 23, no. 3, pp. 309–314, 2004.

[15] L. Zhu, Y. Chen, X. Ye, and A. L. Yuille, “Structure-perceptron
learning of a hierarchical log-linear model,” in CVPR, 2008.

[16] E. Borenstein and S. Ullman, “Class-specific, top-down seg-
mentation,” in ECCV (2), 2002, pp. 109–124.

[17] B. Leibe, A. Leonardis, and B. Schiele, “Combined object
categorization and segmentation with an implicit shape model,”
in ECCV’04 Workshop on Statistical Learning in Computer
Vision, Prague, Czech Republic, May 2004, pp. 17–32.
[Online]. Available: citeseer.ist.psu.edu/leibe04combined.html

[18] S. Z. Li, H. Zhang, S. Yan, and Q. Cheng, “Multi-view face
alignment using direct appearance models,” in FGR, 2002, pp.
324–329.

[19] H. Li, S.-C. Yan, and L.-Z. Peng, “Robust non-frontal face
alignment with edge based texture,” J. Comput. Sci. Technol.,
vol. 20, no. 6, pp. 849–854, 2005.

[20] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appear-
ance models,” in ECCV (2), 1998, pp. 484–498.

[21] Z. Tu and A. L. Yuille, “Shape matching and recognition -
using generative models and informative features,” in ECCV
(3), 2004, pp. 195–209.

[22] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of
adjacent contour segments for object detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30(1), pp. 36–51, 2008.

[23] J. Shotton, A. Blake, and R. Cipolla, “Multi-scale categorical
object recognition using contour fragments,” IEEE Trans. on
Pattern Anal. Mach. Intell., vol. 30(7), pp. 1270–1281, 2008.

[24] M. Marszalek and C. Schmid, “Semantic hierarchies for visual
object recognition,” in Computer Vision and Pattern Recogni-
tion, 2007, pp. 1–7.

[25] H. Chen, Z. Xu, Z. Liu, and S. C. Zhu, “Composite templates
for cloth modeling and sketching,” in CVPR (1), 2006, pp. 943–
950.



18

[26] Y. Jin and S. Geman, “Context and hierarchy in a probabilistic
image model,” in CVPR (2), 2006, pp. 2145–2152.

[27] M. P. Kumar, P. H. S. Torr, and A. Zisserman, “Obj cut,” in
CVPR (1), 2005, pp. 18–25.

[28] X. Ren, C. Fowlkes, and J. Malik, “Cue integration for fig-
ure/ground labeling,” in NIPS, 2005.

[29] A. Levin and Y. Weiss, “Learning to combine bottom-up and
top-down segmentation,” in ECCV (4), 2006, pp. 581–594.

[30] J. M. Winn and N. Jojic, “Locus: Learning object classes with
unsupervised segmentation,” in ICCV, 2005, pp. 756–763.

[31] T. Cour and J. Shi, “Recognizing objects by piecing together
the segmentation puzzle,” in CVPR, 2007.

[32] L. Zhu, Y. Chen, and A. L. Yuille, “Unsupervised learning of
a probabilistic grammar for object detection and parsing,” in
NIPS, 2006, pp. 1617–1624.

[33] S.-F. Zheng, Z. Tu, and A. Yuille, “Detecting Object Boundaries
Using Low-, Mid-, and High-Level Information,” in Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[34] E. Sharon, A. Brandt, and R. Basri, “Fast multiscale image
segmentation,” in CVPR, 2000, pp. 1070–1077.

[35] Y. Freund and R. E. Schapire, “Large margin classification
using the perceptron algorithm,” Machine Learning, vol. 37,
no. 3, pp. 277–296, 1999.

[36] M. Collins and N. Duffy, “New ranking algorithms for parsing
and tagging: kernels over discrete structures, and the voted
perceptron,” in ACL, 2001, pp. 263–270.

[37] M. Collins and B. Roark, “Incremental parsing with the per-
ceptron algorithm,” in ACL, 2004, p. 111.

[38] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi, “Texton-
Boost: Joint appearance, shape and context modeling for multi-
class object recognition and segmentation,” in ECCV (1), 2006,
pp. 1–15.

[39] L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. L. Yuille, “Max margin
and/or graph learning for parsing the human body,” in CVPR,
2008.

[40] E. Borenstein and J. Malik, “Shape guided object segmenta-
tion,” in CVPR (1), 2006, pp. 969–976.

[41] K. Fukushima, “Neocognitron: A hierarchical neural network
capable of visual pattern recognition,” Neural Networks, vol. 1,
no. 2, pp. 119–130, 1988.

[42] Y. Amit, D. Geman, and X. Fan, “A coarse-to-fine strategy for
multiclass shape detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 12, pp. 1606–1621, 2004.

[43] T. Serre, L. Wolf, and T. Poggio, “Object recognition with
features inspired by visual cortex,” in CVPR (2), 2005, pp. 994–
1000.




