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On nonlinear Onsager symmetry and mass-action kinetics
J. D. Goddard

Department of Mechanical and Aerospace Engineering, University of California, San Diego,California, USA

ABSTRACT
This brief paper is a continuation of previous work (J.D. Goddard, 
“Dissipation potentials for reaction-diffusion systems.” I&EC 
Res.,54.16,4078–4083, 2015) dealing with the application of Edelen’s 
dissipation potentials to the irreversible thermodynamics of chemical- 
reaction networks. It is shown that one can achieve non-linear Onsager 
symmetry by means of constraints on a certain combination of Gibbs 
free energies dubbed reactivity, from which it follows that reaction 
rates are given simply as gradients of a dissipation potential. This may 
open the door to the application of thermodynamics and variational 
methods to combustion and biochemical reaction networks, including 
the possibility of enhanced derivation of reduced kinetic mechanisms. 
A graph-theoretical description of reaction networks is presented, 
which is based on stoichiometric hypergraphs and encompasses sev
eral past treatments in a more economical fashion. It may also suggest 
hypergraph optimization techniques to enhance the selection of 
reduced mechanisms.
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Introduction

A preceding paper Goddard (2015),,1 hereinafter denoted by Ref. 1, considers the applica
tion of Edelen’s theory of strictly dissipative (i.e. completely irreversible) systems to the 
description of multiple chemical reactions accompanied by heat and mass transfer. In 
particular, a certain variational principle was assumed whose validity requires non-linear 
Onsager symmetry. It was tacitly assumed that the irreversible processes involved in 
chemical kinetics were endowed with this symmetry, which among other things provides 
the desired variational principle.

Apart from the philosophical appeal of teleological principles, the existence of an 
extremum principle could be important for modeling various chemical and biochemical 
processes, not only for the derivation of approximate solutions to steady-state field equa
tions, such as those describing steady laminar flames, but also for the development of 
reduced kinetic mechanisms, as studied extensively in the field of combustion (Fernández- 
Galisteo et al. 2019; Jiang et al. 2020; Millán-Merino et al. 2020, and references therein). 
When it comes to construction of reduced mechanisms for combustion reactions, varia
tional methods grounded in thermodynamics seem physically more attractive than certain 
abstract optimization techniques proposed by others (Bhattacharjee et al. 2003).

CONTACT J. D. Goddard jgoddard@ucsd.edu Department of Mechanical and Aerospace Engineering, University of 
California, San Diego9500 Gilman Drive, La Jolla, California 92093-0411 USA.
1A list of minor but previously unpublished corrigenda is given below in Appendix A.
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Since mass-action kinetics are generally employed for the description of gaseous combus
tion reactions, the question naturally arises as to the underlying thermodynamics and the 
possible Onsager symmetry. To clarify the latter, we recall that Edelen (Edelen 1972; Goddard 
2014) shows that any strictly dissipative system with finite degrees of freedom is endowed 
with a dissipation potential. To recapitulate, for systems defined by a finite set of generalized 
“fluxes” represented by an abstract vector J ¼ ½Jj�; j ¼ 1; 2; . . . ; n; given as functions JðXÞ of 
conjugate generalized “forces” X ¼ ½Xj�, the power X � J defines a non-negative definite 
dissipation rate (or entropy-generation rate multiplied by absolute temperature): 

D ¼ DðXÞ ¼ X � J ¼ J � X ¼def JjXj ¼ D�ðJÞ � 0; (1) 

where equality holds only if J or X vanishes. Then, superscripts and subscripts serve 
conveniently to distinguish nominal forces from fluxes (as dual vector spaces).

The functions D and D� are assumed to be convex, which implies invertibility with 
X ¼ XðJÞ, so that the D can be regarded as function of either X or J as indicated in Eq (1), 
either of which defines a dissipation function. We recall that the classical Rayleigh–Onsager 
dissipation function for linear systems is quadratic in X or J, whereas Edelen’s theory 
applies to arbitrary non-linear processes. This is the only situation for which dissipation 
function (or entropy generation rate) is basically identical with the dissipation potential to 
be discussed next.

For the systems defined above, there exist a potential function φðXÞ such that 

J ¼ ½Jj� ¼ @XφðXÞ þ JoðXÞ ¼
@φ
@Xj þ Jo

j

� �

; (2) 

and a dual relation with the role of force and flux reversed, which we do not need for the 
present analysis. The flux Jo is non-dissipative (“powerless” or “gyroscopic”), such that: 

X � Jo ¼ XiJo
i ¼ 0; (3) 

and both φðXÞ and JoðXÞ can be derived from the function JðXÞ (Edelen 1972; Goddard, 
2014). We recall that a discussion of non-dissipative fluxes in chemical kinetics is given by 
Bataille, Edelen, and Kestin (1978).

When gyroscopic terms are absent, one obviously has the Maxwell-type relations 

@Ji

@Xj ¼
@Jj

@Xi ; for i; j ¼ 1; 2; � � � ; n; (4) 

which are not satisfied by Jo. Thus, the occurrence of non-zero gyroscopic terms in Eq (2) 
represents the breakdown of non-linear Onsager symmetry. When such terms are absent, 
we say the system is strongly dissipative, hyperdissipative, or simply Onsager-symmetric.

The dissipation potentials for Onsager-symmetric systems represent the dissipative 
analogs of the potentials describing equilibrium-thermodynamic systems. Thus, the con
stitutive equations connecting generalized displacements or fluxes to conjugate forces in 
such systems are completely determined by convex-conjugate scalar potentials. Moreover, 
in perfect analogy to equilibrium systems, certain conservation laws or balance equations 
arise from the minimization of potential. We refer the reader to Ref. 1 and references 
therein while focusing attention here on the issue of Onsager symmetry of the mass-action 
form of chemical kinetics.

2 J. D. GODDARD



In the interest of a reasonably self-contained exposition, certain material from previous 
publications is restated in the following presentation. As a word on notation, we shall 
employ bold upper case Greek and Roman font for matrices, with bold lower case generally 
reserved for the special case of column or row vectors, and with the rules of matrix 
multiplication for their products. (As the sole exception, we employ Onsager’s upper-case 
notations for general forces and fluxes.) We indicate the components of vectors and 
matrices by letters with superscripts and subscripts, all in light font, enclosed in square 
brackets ½ �. Superscripts generally denote forces and subscripts their conjugate rates (as 
members of dual spaces), with summation over pairs of repeated superscript and subscript 
(as tensor summation convention), except where otherwise indicated. Partial derivatives are 
most often denoted by subscripted symbol @.

Irreversible thermodynamics of mass-action kinetics

We shall have occasion to employ Edelen’s construct for the force potential in terms of 
dissipation rate as outlined in Ref. 1 

φ Xð Þ ¼ ò
1

0
D sXð Þ

ds
s
¼ X � ò

1

0
J sXð Þds; (5) 

whereas we will not need related formula for Jo. It is obvious from the preceding relation 
that the dissipation function is generally not the same as the dissipation rate X � J except for 
the case where J is linear in X, which represents the classical Rayleigh-Onsager form.

We consider a chemical reaction or network of reactions involving n ¼ S chemical 
species Si; i ¼ 1; . . . ; S with molar concentrations Ci [moles /vol.], volumetric rates of 
production by reaction ri [moles /vol.-time], and with abstract fluxes given by the reaction 
rates, with J ¼ ½Ji� ¼ ½� ri�, we provisionally identify the conjugate forces Xi with the 
chemical potentials (partial molar Gibbs free energies) μi. Adopting the postulate of several 
past works and Ref. 1, the quantity D ¼ � μiri is assumed to represent a non-negative 
dissipation rate.

For the purposes of this analysis, we assume isothermal conditions with the μi given as 
invertible functions of S species concentrations μiðCjÞ ¼ μiðC1;C2; . . . ;CSÞ. More detail is 
given in Ref. 1, where, to satisfy the condition J ¼ 0 for X ¼ 0, the force is defined as 

Xi ¼ μ̂i ¼ μi � μi
o; where riðμ

j
0Þ ¼ 0; i ¼ 0; 1; . . . ; S; (6) 

with μi
o denoting a fixed referential state of chemical equilibrium. Artificial values of yi and 

μi may need to be imposed at the nominal equilibrium state in the case of reactions like 
those of combustion, where the amounts of certain species such as oxidant or fuel may be 
completely consumed. With these understandings, we drop the hats bon μ.

The standard decomposition of the species reaction rates into R stoichiometrically 
independent kinetic pathways with rates ωj; j ¼ 1; 2; . . . ;R � S is given by 

r ¼ ½ri� ¼ Nω ¼ ½νi
jωj� (7) 

where N ¼ ½νi
j�, of rank R, is the S� R matrix of stoichiometric coefficients νi

j (representing 
the number of moles of species i produced by reaction j, with negative values distinguishing 
reactants from products. Hence, the dissipation rate takes on a standard form:a 

COMBUSTION SCIENCE AND TECHNOLOGY 3



D ¼ � μiri ¼ αjωj ¼ α � ω; where α ¼ ½Ai� ¼ � ½νj
iμj� ¼ � NTμ; (8) 

where the affinity Ai represent the decrement of chemical potential along reaction path i 
(vide infra). Thus, in lieu of species rates and chemical potentials, we can now adopt rates ωi 

and conjugate affinities Ai as respective fluxes and forces with a corresponding form for the 
dissipation potential φ. However, the relation proposed provisionally in Ref. 1 

ω ¼ ½ωi� ¼ @αφ ¼
@φ
@Ai

� �

; (9) 

is subject to qualifications that are illustrated by the special case of mass-action kinetics 
considered next.

From single to multiple reactions

Following others, e.g. Fogler (2021), we employ the term elementary reaction to denote 
a reaction subject to mass-action kinetics, for which the rate of a reaction step is propor
tional to the concentrations of each participating species raised to a power of the magnitude 
of its stoichiometric coefficient, for both forward and reverse reactions. Thus, for the 
elementary reaction among chemical species A;B;C;D; . . . involving a molecules of A, b 
molecules of B, etc., which in elementary chemical notation reads 

aAþ bBþ . . .Ð cC þ dDþ . . . ; (10) 

the forward rate is proportional to ½A�a½B�b . . . and the reverse rate to ½C�c½D�d . . . where 
square brackets, otherwise reserved herein for other usage, denote molar concentrations for 
this example.

To introduce a more general and convenient notation, we begin by considering the case 
of a single elementary reaction among various species, with certain modifications of the 
treatment given in Ref. 1. However, we adopt the same assumption of ideal solutions, 
a generally excellent approximation for the gaseous reactions involved in combustion. 
Then, the partial molar Gibbs free energies μi, rendered nondimensional by RT, are given 
in terms of species concentrations Ci by 

μi ¼ ln yi; where yi ¼ Ci=C and C ¼
XS

i¼1
Ci; (11) 

where C is total molar density and yi is mole fraction. Hence, the generalized force defined 
in Eq (6) is given by μ̂i ¼ ln yi=yi;o where the equilibrium mole fractions yi;o are function of 
C1; . . . ;CS. To avoid implicit restrictions on yi or μi as independent variables, we may 
assume the existence of a fictitious or real inert diluent (such as nitrogen in certain 
combustion reactions and interstitial fluid or plasma for biochemical reactions). We further 
note that non-ideal solutions could be treated by means of activity coefficients.

With the above understanding, we write the S� 1 vector of stoichiometric coefficients 

ν ¼ ½νi� ¼ νP þ νR; (12) 
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where νR is an S� 1 vector with components νi that are negative for the nominal reactants 
and zero otherwise, while νP is an S� 1 vector with components νi that are positive for the 
nominal products and zero otherwise. We then introduce the vector of absolute values 

ν ¼ ½jνij� ¼ νP � νR; (13) 

With account taken of the vanishing of rate with vanishing affinity the rate of an elementary 
reaction is given by Ref. 1 

ωðμÞ ¼ ωðA;AÞ ¼ k eAR � eAPð Þ ¼ 2keA=2 sinhðA=2Þ;
where AR ¼ � νR � μ; AP ¼ νP � μ;
A ¼ � ν � μ ¼ AR � AP; and A ¼ ν � μ ¼ AP þ AR;

(14) 

where k is a kinetic constant depending on C, which is assumed constant.
With the conventional designation of A as affinity, the quantity A might be dubbed 

reactivity, motivated to a certain extent by the Mechanical analogy presented below. Note 
that the quantities AR and AP represent affinities for irreversible reactions of the nominal 
reactants or products and that the equations are invariant under reversal of roles, with ν!
� ν under exchange of subscripts P & R.

From the above, we find that 

@μω ¼ ½@μi ω� ¼ � ð@AωÞνþ ð@AωÞν (15) 

Moreover, it follows from r ¼ νω and the Eqs (12) and(13) that 

@μr � ð@μrÞT ¼ ½@irj � @jri� ¼ 2ðνP � νR � νR � νPÞ@Aω; (16) 

where a� b ¼ ½aibj� denotes the tensor product. Unless this antisymmetrical form 
vanishes, it represents the breakdown of Onsager symmetry. In the present case, this 
breakdown arises from the dependence on A, i.e from the dependence of reactant rates 
on the concentrations or free energies of the products. As suggested in Ref. 1, the form 
of Eq (14) is analogous to pressure- and rate-dependent sliding friction, with sliding 
force represented by A dependent on the reactive orthogonal pressure force represented 
by A.

The case of a nominal irreversible reaction, discussed further below, corresponds to 
AP ! 0, with degeneracy A! AR ! A and limit ω ¼ kðexp A � 1Þ, which is Onsager- 
symmetric with dissipation potential φ^ ¼ kðexp A � 1 � AÞ. Consistent with this definition 
of irreversibility we must take A ¼ 0 for the state of nominal equilibrium where one or 
more reactants are exhausted, such that yi ! 0, μi ! � 1, and therefore AR ! � 1.

Following Ref. 1, we may define an effective dissipation potential for a set of reversible 
reactions by the following modification of Edelen’s formula (5): 

φ̂ðA;AÞ ¼ A
ð1

0
ωðsA;AÞds ¼ 4keA=2ðcoshðA=2Þ � 1Þ; with ω ¼ @Aφ̂ð ÞA; (17) 

and 

ν � dμ ¼ 0 and dμ ¼ dμ̂ � ν�ðν � dμ̂Þ; where ν � ν� ¼ 1; (18) 

where dμ̂ is an arbitrary S� 1 vector. Eq (18) represents a projection normal to ν (i.e. onto 
the null space of the linear function defined by ν).

COMBUSTION SCIENCE AND TECHNOLOGY 5



Multiple reactions

The generalization to R stoichiometrically independent, thermodynamically uncoupled, 
and reversible reactions is given by 

φ̂ðα; αÞ ¼ kjBj; where ðwith no sum on kÞ Bk ¼ 4eA
k
=2ðcoshðAk=2Þ � 1Þ;

α ¼ ½Ai� ¼ � NTμ ¼ � ½νi
j μj�; α ¼ ½Ai

� ¼ NTμ ¼ ½νi
j μj�;

and ω ¼ ½ωi� ¼ @αφ̂ ¼ ½@Ai φ̂� ¼ ½2kieA
i
=2 sinhðAi=2Þ� ðno sum on iÞ;

with dα ¼ NTdμ ¼ 0 and dμ 2 kerðNT
Þ;

(19) 

with ker denoting the null space of the linear transformation represented by NT .
Thus, as generalization of Eq (18), we may write dμ ¼ Pdμ̂ where matrix P represents the 

projection onto ker(NT). Since R ¼ rank ðNT
Þ � R, it follows that dα ¼ � NTPdμ̂ and, 

hence, α are restricted to a space of dimension ¼ minðR; S � RÞ. Therefore, in order that 
the degrees of freedom represented by α be at least equal to the number of independent 
reactions R, we must require that rank ðNÞ þ rank ðNÞ ¼ Rþ R � S. Since this is not 
generally guaranteed, this condition must be confirmed for given stoichiometry N, perhaps 
serving as restriction on any reduced kinetic mechanism with number of independent 
reactions.

A graph-theoretical view of reaction networks

Some of the earliest applications of graph theory to chemical reaction networks are 
found in the works of Oster and coworkers, notably Perelson and Oster (1974) and 
references therein. In the author’s opinion, the graph-theoretical treatment presented 
here, together with the existence of a dissipation potential, provides a more economical 
and perhaps clearer treatment than that of most previous works, including that of 
Goddard (2002).

Thus, a dissipative network of R independent chemical reactions among S distinct 
chemical species may be viewed as a bipartite graph with a set of S nodes or vertices 
connected solely by multiple bonds or edges to a second set of R nodes, as depicted 
schematically in Figure 1, where one set of nodes, labeled alphabetically, represents chemi
cal species and is connected to a second distinct set of nodes, labeled numerically and 
representing reactions.

Alternatively, the above bipartite graph may also be viewed as a directed hypergraph 
(Berge 1973) with the R nodes 1, 2, . . . representing hyperedges connecting hypervertices or 
hypernodes as subsets of A, B, . . .. Note that the exceptional Edge 5 does not represent 
a valid chemical reaction but might represent an exchange with the surroundings. Although 
connected to a nonparticipating or “inert” species in the figure, similar connections to 
a reactive species could also represent non-trivial external exchanges or network “multi
ports.” (In the special case of a simple graph each edge 1, 2, . . .,with 5 excluded, connects 
a unique pair of distinct nodes from the set A, B, . . ..).

By associating positive weights ωi to the nodes i = 1, 2, . . . and by decorating the 
connecting edges with arrows to indicate direction and with stoichiometric coefficients to 
indicate edge weights, one obtains a weighted, directed hypergraph which has found applica
tions in other fields (Ausiello and Laura 2017; Gallo et al. 1993).

6 J. D. GODDARD



Then, the R� S matrix Δ ¼ NT , a generalization of the incidence matrix for simple 
directed graphs (digraphs), represents a differential operator such that the R� 1 vector 
Δμ ¼ � α yields R differences of nodal potentials defined by S� 1 vector μ. Furthermore, 
the S� R matrix � ΔT is the analog of a divergence operator, such that ΔTω ¼ r represents 
the rate of nodal accumulation due to fluxes or currents given by the R� 1 vector ω. Note 
that Δ and ΔT represent the respective boundary and coboundary operators of cohomology 
(Barile 2021; Slepian 2012), as recognized by Perelson and Oster (1974), but overlooked by 
(Goddard (2002) who nevertheless points out the connection between stoichiometry and 
the differential operators. Note also that the matrix N, which possesses only positive 
elements, represents an undirected hypergraph and a generalization of the adjacency matrix 
for a simple graph, while serving to define the reactivity vector α.

The reaction rates ω, which represent flows on the associated network, are now given by 
the pseudo-linear Onsager form (Goddard 2014) 

ω ¼ @αφ̂ ¼ ½ωi� ¼ Lα ¼ � LΔμ; with Lðα; αÞ ¼ diag ½λi�;

where λi ¼ 2kieA
i
=2 sinhðAi=2Þ=Ai ðno sum on iÞ

(20) 

The diagonal form for the conductance L reflects the fortuitous status of the conjugate pair 
fα;ωg, which represent non-linear analogs of the normal modes of the linear system that 
arises asymptotically for k α k! 0. Under a dissipation-preserving transformation to a pair 
fQTα;Q� 1ωg the matrix L takes on a more general symmetric, positive, and non-diagonal 
form. A different expression for λi applies to non-elementary reactions and to the irrever
sible reactions considered below.

The above graph-theoretical description of flow on a resistive network offers an appeal
ing conceptualization of the dissipation that governs that flow, as is the case with current 
flow on electrical networks of non-linear resistors.

However, it should be carefully noted that it is the dissipation potential and not the 
dissipation (or entropy generation) rate that is minimized by that flow, the exception being 
linear or power-law resistances for which dissipation rate is equal to or proportional to 
dissipation potential (Goddard 2014). In particular, dissipation potential is minimized with 
respect to variations of affinity α or chemical potential μ subject to the constraint of constant 
reactivity α, together with other constraints, such as specification of a subset of the species 
potentials μ or of the external rate of supply of certain species. The relation to conservation 
laws is discussed in Ref. 1.

Figure 1. Bipartite species-reaction graph.
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Irreversible reactions, partitions, and linearization

We now assume that the above set of R reactions includes R � R0 irreversible reactions. The 
analysis given above holds for the rates and affinities fωi;Aig; i ¼ 1; 2; . . . ;R0; of the R0
reversible reactions, whereas it follows from the above discussion that the remaining rates 
and affinities are for i ¼ R0 þ 1; . . . R given by 

ωi ¼ kiðeAi
� 1Þ ¼ @Ai φ^ ðno sum on iÞ;

where φ^ ¼ kiEi; and Ei ¼ ðeAi
� 1 � AiÞ;

(21) 

which shows clearly that irreversible reactions are Onsager-symmetric.
Since dissipation is additive over reactions, the dissipation potential is given by the total 

φ ¼ φ̂ðαrev; αrevÞ þ φ^ðαirrÞ, where 

αrev ¼ Ai ; 1mu�αrev ¼� ½�Ai
h i

; 1mui ¼ 1; . . . R0; αirr

¼ Ai� �
; 1mui ¼ R0 þ 1; . . . R;

(22) 

with partial derivatives taken at constant reactivity αrev ¼ NT
revμ, where Nrev is determined 

by the stoichiometry of these reactions. Eq (20) now apply to the reversible reactions, 
i ¼ 1; . . . R0, whereas λi ¼ kiðeAi

� 1Þ=Ai (with no sum on i) for the irreversible reac
tions, i ¼ R0 þ 1; . . . ;R.

The reader may have noted that the above decomposition of reactions into two kinetic 
classes is a special case of decomposition into any number of kinetic classes which 
corresponds mathematically to the idea of the decomposition of ω and dual α into direct 
sums of independent subspaces, with additivity of dissipation and dissipation potential over 
subspaces. This is perhaps most easily visualized in terms of the standard partition of 
matrices and vectors, with partition by column of N, or by row of NT , and partition by 
row of the column vectors ω and α.

In addition to partition into kinetic classes there is an additional partition into classes of 
chemical species, for example, stable molecules and unstable intermediates, which is 
represented by partition by row of N. It is obvious then that there exists a two-way partition 
of matrices representing the simultaneous decomposition into distinct classes of species and 
of reaction kinetics.

In closing here it is worth noting that the above relations can in an obvious way be 
linearized in a small perturbation α0 of a given α, e.g. the equilibrium state α ¼ 0. In this case 
one has recourse to more or less standard linear network analysis.

We recall that the near-equilibrium approximation has been employed by Friedlander 
and Keller (1965) in a study of the effects of chemical reaction on biological mass transfer. 
Since this approximation does not require the restriction to constant reactivity, it might be 
employed as a test of the non-linear theory proposed above, and it might provide useful 
approximate analytical or numerical solutions. While it may be implausible to speak of 
near-equilibrium perturbations for combustion reactions, the linearized equations could 
still offer clues as to optimal reaction pathways. With that in mind, Appendix B, added in 
the proof to this paper, suggests a possible algorithm.
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Summary and potential applications

The preceding analysis shows how one may obtain a dissipation potential and nonlinear 
Onsager symmetry for chemical kinetics, provided the dissipation potential is treated as 
a constrained function of the chemical potentials of reagents, namely, a function of reaction 
affinities with reactivities held constant. This may open the door to the application of 
variational principles to complex networks of chemical reactions, including those involving 
diffusion of heat and mass discussed in Ref. 1. Although detailed applications are relegated 
to future work, it is worth mentioning potential applications to reduction of kinetic 
mechanisms in combustion.

The current approach to reduced mechanisms appears to be based largely on the so- 
called quasi-steady state hypothesis, whereby reactions involving unstable or highly reactive 
radicals and similar species are assumed to be at equilibrium.2 This partial equilibrium 
condition provides equations that allows for the elimination of those species with conse
quent reduction of the ostensible kinetic pathways. A basic introduction is given in Chapt. 9 
of the textbook by Fogler (2021) along with some important examples, and an abstract 
treatment is provided by Goddard (1990). The technique has received extensive application 
in the field of combustion by F. Williams and coworkers in works mentioned above in the 
Introduction (Fernández-Galisteo et al. 2019; Jiang et al. 2020; Millán-Merino et al. 2020).

The approach just described might be qualified as kinetic, to be distinguished from the 
thermodynamic approach based on dissipation. From a physics perspective, the former 
might be regarded as more general since it deals directly with concentrations of reactants 
and involves detailed identification of reactive intermediates to be eliminated. 
Concomitantly, it requires a considerable degree of insightful guess-work as suggested by 
the revision of mechanism proposed by Millán-Merino et al. (2020). Based on these 
considerations, the aforementioned approaches might be viewed as complementary, with 
the reaction times in the kinetic approach being analogs of the network resistances in the 
thermodynamic approach. Hence, the question arises as to whether thermodynamics can 
facilitate the choice of reduced mechanisms. For example, the minimum dissipation poten
tial, subject to constraints based on prescribed chemical potentials of key reagents such as 
fuel and air together with reactivity constraints could provide one criterion for choosing 
from among various reduced mechanisms, despite the somewhat artificial nature of the 
reactivity constraints. In this context, the relation to optimal paths on weighted hypergraphs 
(Ausiello and Laura 2017; Gallo et al. 1993) might be worth considering. The selection of 
optimal paths may be connect to the algorithm suggested below in Appendix B.

In any event, there remains a crucial open question as to whether the constraint on 
reactivities allows for sufficient degrees of freedom for the specification of affinities for all 
stoichiometrically independent reactions. If so, the dissipation potential could be extended 
to include dissipation associated with heat and mass transfer, which would also allow for an 
assessment of their possible influence on the reduced kinetic mechanism (Goddard 1990, 
2015). This and related issues for biochemical reaction networks are matters worthy of 
further investigation.

2The frequent characterization of this partial equilibrium as a condition of vanishing reaction rate is more appropriately 
stated as a vanishing of reaction affinity, which tends to zero with the reciprocal of large kinetic constant representing large 
conductance.
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Appendix A. Minor corrigenda for Ref. 1

(1) si should be replaced by � si in Eqs (10) and (11) and in the phrase immediately following Eq. (11).
(2) Eq. (13) should read 

D ¼ � μiri ¼ Ajωj ¼ α � ω; where α ¼ ½Aj� ¼ � ½νj
iμ

j� ¼ � NTμ;

as indicated by Eq. (8) of the present paper.
(3) Eq. (14) should be replaced by Eq. (9) of the present paper.

Appendix B. Possible algorithm

The dissipation potential φ for a given set of R independent reactions can be written as the sum 
P

i φi 
of dissipation potentials of the individual reactions. This set can be partitioned into a set of R0
nominally rapid reactions and a remaining set of R � R0 slow steps. This partition can be provision
ally based on the magnitude of the effective rate constants k0 ¼ k expðA=2Þ defined by (19) for which 
according to (21) we may take A ¼ 0 for irreversible reactions.

Assuming that the fast reaction are driven toward their equilibrium state A ¼ 0, we may provi
sionally linearize their potential about this state to obtain an approximately quadratic dissipation 
potential ~φ / k0A2. It follows that the validity of the equilibrium approximation will then depend on 
~φ. Note that by linearization of all reactions one can create a hierarchy of values ~φ with a nominal 
cutoff ~φ0 defining fast reactions for which we take A;0 with φ;0. By lowering the cutoff one 
obviously reduces the overall dissipation potential 

P
i φi. Note that the condition α ¼ � ν � μ for 

the set of independent equilibrium reaction provides restrictions on the the Gibbs free energies and 
concentrations, which appears equivalent to the usual kinetic technique for eliminating intermediate 
species.
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