UC Berkeley SEMM Reports Series

Title

Behavior of Steel Building Connections Subjected to Repeated Inelastic Strain Reversal, Experimental Data

Permalink

https://escholarship.org/uc/item/9pg158p8

Authors

Popov, Egor Pinkney, R. Bruce

Publication Date

1967-12-01

STRUCTURES AND MATERIALS RESEARCH DEPARTMENT OF CIVIL ENGINEERING

BEHAVIOR OF STEEL BUILDING CONNECTIONS SUBJECTED TO REPEATED INELASTIC STRAIN REVERSAL - EXPERIMENTAL DATA

by

E. P. POPOV Faculty Investigator

R. B. PINKNEY Research Assistant

Report to American Iron and Steel Institute AISI Project No. 120 Earthquake Performance of Steel Members and Connections

DECEMBER 1967

STRUCTURAL ENGINEERING LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY CALIFORNIA

SESM 67-31

Structures and Materials Research Department of Civil Engineering

Report No. 67-31

BEHAVIOR OF STEEL BUILDING CONNECTIONS SUBJECTED TO REPEATED INELASTIC STRAIN REVERSAL

- EXPERIMENTAL DATA -

by

E. P. Popov Faculty Investigator

and

R. B. Pinkney Research Assistant

Prepared under the sponsorship of the American Iron and Steel Institute AISI Project No. 120 Earthquake Performance of Steel Members and Connections

> University of California Berkeley, California

> > December 1967

PREFACE

This report is a companion volume to Report No. SESM 67-30, entitled "Behavior of Steel Building Connections Subjected to Repeated Inelastic Strain Reversal". Detailed results are presented herein of load-reversal tests of twenty-three steel beam-column connections. It is believed that many engineers may wish to examine these results and reach their own conclusions. The authors have attempted throughout to be factual without interjecting their opinions or interpretations; these have been expressed in the preceding report. It is hoped that the information contained in this volume will prove useful and be a guide to better design in structural steel.

As with the companion report, it is a pleasure to acknowledge with gratitude, the financial support provided by the American Iron and Steel Institute. The suggestions of the AISI Advisory Committee and the Committee on Seismology of the Structural Engineers' Association of California were most helpful and much appreciated. Members of the committee were

ν.	ν.	Bertero	Η.	S.	Kellam	
R.	W.	Clough	L.	Α.	Napper	
Α.	L.	Collin	С.	W.	Pinkham	
Η.	J .	Degenkolb	С.	Α.	Zwissler,	Chairman

The advice of R. Binder and I. M. Viest is also gratefully acknowledged.

iii

CONTENTS

INTRODUCTION
FABRICATION AND INSPECTION OF SPECIMENS
MATERIAL PROPERTIES
DIMENSIONS OF SPECIMENS
INSTRUMENTATION AND DATA RECORDED
IDENTIFICATION OF SPECIMENS
REDUCTION OF DATA
ORGANIZATION OF DATA
SPECIMEN F1-S
SPECIMEN F1-C1
SPECIMEN F1-C2
SPECIMEN F1-C3
SPECIMEN F1-C4
SPECIMEN F1-C6
SPECIMEN F2-C1
SPECIMEN F2-C4
SPECIMEN F2A-C7
SPECIMEN F2B-C8
SPECIMEN F3-C1
SPECIMEN F3-C5
SPECIMEN F3A-C7
SPECIMEN F3B-C7
SPECIMEN W1-C1

v

Page

																									Page
SPEC IMEN	W1-C4 .	•	٠	,			٠	•		٠	۰	٠	ø		•	٠	e	e	۰		P	4	e	¢	205
SPECIMEN	W1-C7 .		9	٠	,		٠	٠	٠	ø	٠	s	,		•		ø	v		¢	a				209
SPECIMEN	W1-C9 .	s	•	,	٥			٠	۰		٠		•	٥	•	*	٠	٠			*	٠	ø	0	223
SPECIMEN	W2A-C7	•	•	٠	٠		9		٠		•		*	a	ø	•	,		ø	ø		8	a	a	241
SPECIMEN	W2B-C10	•	e	•	•	•	•	9	٠		v		•	٠	a	e	۰	٠	a	9	a	9		a	255
SPECIMEN	F1HS-C7	•		¢	0	σ.	ø	٥	\$		9	۰	•	a	•	я		,	٠	0	•	8	¢	*	269
SPECIMEN	F1HS-C11		8	•		•	٠	a	۵	ø	•	٥	ø	0	Ð	٠	¢	e	e	7	•	ø	•	a	287
SPECIMEN	F2HS-C7	,	ø	٠	٠	ø	0	۰	•	٠	٩	ø		۰		•	5	ø	۰	٠	9	۰	ø		303
SPECIMEN	F2HS-C9		P	٠	a			,	•	•		a			ø		•			D	٥		•		313

vi

BEHAVIOR OF STEEL BUILDING CONNECTIONS SUBJECTED TO REPEATED INELASTIC STRAIN REVERSAL EXPERIMENTAL DATA

Introduction

This report contains experimental data for each of the specimens tested as a part of the American Iron and Steel Institute Project No. 120. Also included are photographs of all specimens at failure.

Before the presentation of this data, however, some discussion is necessary concerning such matters as fabrication and inspection of the specimens, determination of material properties, and the methods of data reduction.

Fabrication and Inspection of Specimens

The principal philosophy of this experimental program has been to provide information useful to the designer. Thus detailing, fabrication and inspection were required, in general, to follow standard industry practice.

During the course of the program, specimens were ordered and fabricated in five different lots, referred to subsequently as Group I, Group II, etc., as given in Table I. Because of this, there was a lack of uniformity of material properties and member sizes, even among specimens of the same type.

The connection designs were selected in consultation with an AISI Task Force comprising consulting structural engineers and representatives from major steel companies; they are discussed in detail in the companion report, No. SESM 67-30.

Group		98950829429639999994848899489558865886588658888888888	Specimens		
I	F1-S F1-C1	F2-C1	F3-C1		
11	F1-C2 F1-C3	F2-C4	F3-C5	W1-C1 W1-C4	
III III	F1-C4 F1-C6	F2A-C7 F2B-C8			
IV			д, царандана (ча учаналай на Кайлай ССЛор Малининин		W2A-C7 W2B-C10
V	F1HS-C7 F1HS-C11				

TABLE I. SPECIMEN GROUPS

All but the specimens belonging to Group III were submitted for bids and were commercially fabricated. Similarly, professional inspection services were obtained for all but Group III.

The welds of Groups I and II were inspected ultrasonically after completion of fabrication. Because of difficulties encountered due to the relatively thin material used in the specimens, ultrasonic inspection alone was found to be somewhat unreliable, so professional shop inspection was carried out throughout the fabrication of specimens in Groups IV and V. The specimens of Group III were fabricated in a University shop; because of the closer control on fabrication, outside inspection services were not sought.

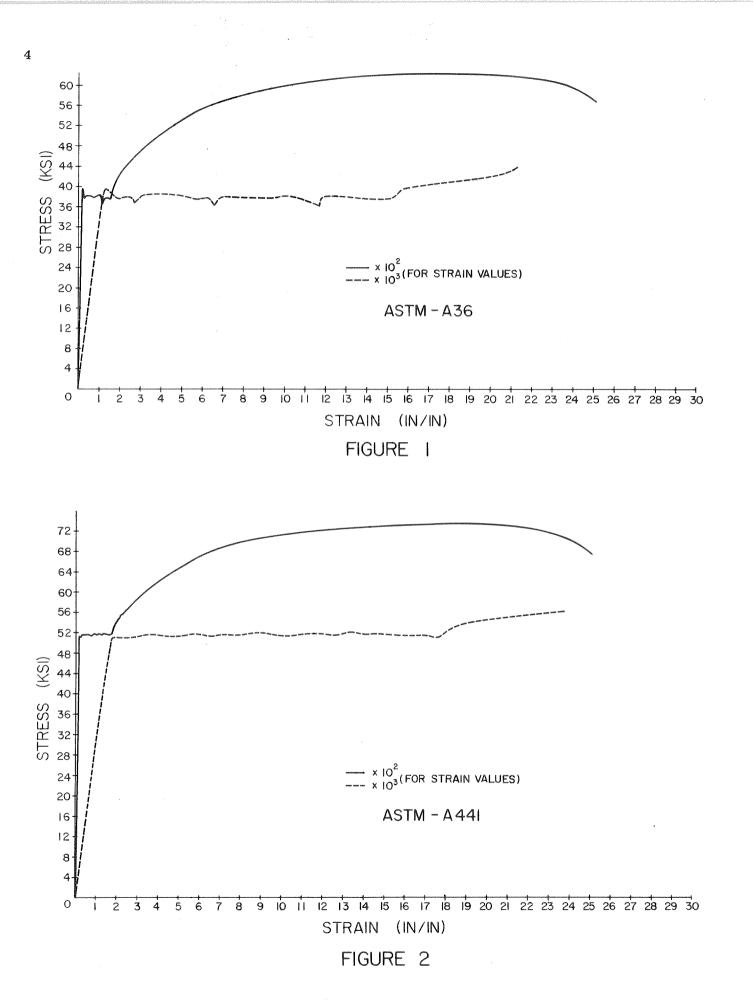
Material Properties

It would have been desirable to have had cyclic stress-strain relationships. Facilities for uni-axial cyclic testing were not

available, however, so standard ASTM 8-inch coupons were taken from the material and tested in tension.

An investigation of the so-called "static yield stress"¹ was carried out, but the rates of loading used in actual testing produced strain rates which made the use of the static yield stress unrealistic. Hence the value used was that of the lower yield stress obtained at a standard ASTM test rate.

Specimens of Groups I through IV were fabricated of ASTM A36 steel; those of Group V were of ASTM A441 steel. Typical stress-strain diagrams obtained for the two steels used are shown in Figures 1 and 2, respectively. The relevant mechanical properties of the material for each specimen are given in the appropriate section of this report.


Dimensions of Specimens

Although variations in the dimensions of rolled sections and plates are normal, this problem was intensified because, once again, the specimens were not all fabricated from the same stock. The dimensions and computed properties are given for each specimen in the appropriate section of this report. Comparable data for published section dimensions and specified material properties are presented in Tables II through VI. Figures 3 through 6 may be referred to for clarification.

Instrumentation and Data Recorded

A variety of instrumentation was employed in collecting experimental data. Certain of the data recorded were found to be of

Beedle, Lynn S. and Lambert Tall, "Basic Column Strength", Journal of the Structural Division, ASCE, Vol. 86, No. ST7, July, 1960.

DIMENSIONS OF WF SECTION

D£	PT	H	¢	0	¢		¢	ø	0		¢	0	Ð	Ð		æ	¢	ø	e	Ð	0	ø	Ð	ø	8.14	INCHES
																									5.268	
Β(TT	ОМ	f	L	AΝ	G	Ε	W	10	T	Н	¢.	ø	\$	Ð	Ф	Ð	-0	ø	9	۵	ø	ø	Ð	5.268	INCHES
TC)P	FL	A٨	IG	Ε	hole	HI	C	ΚN	IE	S S	5	e	Ð	0	Ð	Ð	Q		Ð	¢	ø	ø	÷ø	0.378	INCHES
80	TT	ОM	F	L	ΑN	١G	ε	T	ΗI	C	Κŀ	VES	S	Ð	ø	-	-10	Ð	49	40	ø	Ð	Ø	÷®	0.378	INCHES
WE	ΞB	TH	IC	λK	NE	S	S	٥	彩	,	¢	ø	Ð	Ð	Ð	ø	Ð	Ð	æ	ø	٩	ø	ø	ø	0.248	INCHES
εı	. A S	how	С	М	ОC	JU	LU	IS	c	,	o	Ł	¢	9	ø	Ð	-80	o	ø	-0	Ð	¢	0	Ð	30000。	KSI
Y)	EL	D	ST	R	ES	S		o	-C	>	Ð	ø	۰	Ð	0	Ð	ø	ø	\$	Ð	9	¢	÷	Ф	36.000	KSI

WF SECTION PROPERTIES

AREA, A	a a	9 0 C	0 4	o e	¢	\$	¢	Ð	4	Ð	G	ø	Ð	5.90	INCHES**2
LOCATION	I OF	CENTR	OID	× s	ΥE	Ð	4D	ø	ж	:0	B	Ð	\$	4.07	INCHES
MOMENT C	F IN	ERTIA	lo I	ø	\$	Ø	÷	ø	o	æ	ø	\$	e	69.5	INCHES**4
SECTION	MODU	LUS,	TOP	, S		\$	Ð	0	ø	Ø	Ð	Ф	÷	17.1	INCHES**3
SECTION	MODU	LUS,	BOTT	ГОМ	Ŷ	SB	ø	ø	¢	÷Ð	49	0	٩	17.1	INCHES**3
LOCATION	I OF	PLAST	IC N	NEU	TR	AL	AΧ	IS	* *	¥	'P	٩	٩	4.07	INCHES
PLASTIC	MODU	LUS,	Z	s o	ø	۰	Ş	Ð	Ð	Ð	\$	-10	÷	19.2	INCHES**3
SHAPE FA	CTOR	0 4		a .c	ø	ø	Ð	Ð	ø	ø	\$	ø	ø	1.122	
YIELD MC	MENT	, MY	Ð	0 0	ø	÷	a	¢	Ð	Ф	0	40	ø	51.23	KIP-FT.
PLASTIC	MOME	NT, N	1P .	9 Q	Ð	-9	¢	Ð	÷D	6	ø	Ð	ø	57.47	KIP-FT。
*MEASURED	FROM	OUTS	SIDE	FA	СE	OF	: B	OT	TC) M	FL	AN.	GE		

BEAM PROPERTIES

LENGTH,	L «	- 40	Q I	0 0	0	ø	20	ତ ବ		¢	Ð	Ð	ø	Ð	Ð	66.0	INCHES
ELASTIC	ST 1 F	FNE	SS:	, P.	101	EL T	A	6 6	÷	ø	Ð	æ	٩	Ф	ø	21.76	KIPS/IN.
YIELD D	EFLEC	TIC	IN _p	DE	LTA	λY	0	\$ 0	0	0	Q	ø	٠	¢	0	0.428	INCHES
YIELD L	OAD,	ΡΥ	-10 A	c #0	ø	ç	\$	e e	Ð	0	Q	Ð	•	ø	G	9.32	KIPS
PLASTIC																	

TABLE III. SPECIMEN TYPE F2

DIMENSIONS OF WF SECTION

DEP	ТΗ	G	ø	-12	Q.	Q	÷	4	>	¢	0	Ð	¢	0	ø	ç	-sD	÷C	Ð	ø	ø	-0	8.14	INCHES
TOP	FL	AN	GΕ	k	șeneș Jenneș)Ţ	diigto.	<	5	-0	ø	ø	¢	Ð	Ð	Ð	ø	Ð	o	Ð	ø	Ð	5.268	INCHES
8 O T	TOM	F	LΑ	NG	εE	M	IC		alle.	0	c	c	e	c	o	ø	Ð	÷C	0	ø	¢	40	5.268	INCHES
TOP	FL	AN	GΕ	hand	H	C	ΚŇ	IES	S		0	o	o	¢	¢	Ð	¢	-10	0	¢	Ð	¢	0.378	INCHES
BOT	том		L A	NG	E	prost	ΗI	СК	N	ES	S	G	0	Ð	c	Q	Ŷ	Ð	o	ø	¢	3D	0.378	INCHES
WEB	TH	ĨC	ΚN	ES	S	\$	40	0	, ,	e	ъ	0	Ó	¢	Ð	sto	Ð	Ð	-10	æ	Ð	3D	0.248	INCHES
ELA	STI	C :	MO	DU		IS	÷	<	>	Ð	¢	¢	¢	¢	\$	Ð	ø	٥	0	ø	Ð	0	30000。	KSI
YIE	LD	ST	RE	S S		-62	¢	£	6	ø	0	6	Ð	0	¢	e	o	¢	ø	ŝ	ø	ø	36.000	KSI

DIMENSIONS AND PROPERTIES OF TOP PLATE

I TALOTII	10													1/ 00	TAICHTC
LENGTH,															
WIDTH A	T END	AWAY	(FF	KOM I	COL	JMN	_γ Μ		\$ \$	\$	ø	¢	÷	2.50	INCHES
WIDTH A	T END	OF W	IELD	p R	3D	0 0	瘀	Q	© 0	Ð	ø	Ð	÷	4044	INCHES
AVERAGE	LOCA	TION	0F	END	OF	мE	LD*	9	N o	¢	¢	¢,	0	4.00	INCHES
THICKNE	SS ₈ T	n 1	ap -	00	0	e 0	¢	¢.	0 0	÷	o	٩	s⊋	0.500	INCHES
ELASTIC	MODU	LUS 。	o c	00	<u>ہ</u>	0 0	Ð	×0	0 0	¢	ø	Ð	¢.	30000.	KSI
YIELD S	TRESS	-0 G	φ	\$ Q	\$	⊃ n⊃	ø	-0	c . c	Q	Ð	¢	Q	36.000	KSI
*MEASURED	FROM	FACE	E OF	- C 01	LUMI	V									

DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH, LP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* 0 * 0	化物物氟石汞	0 6 6 0	14.00	INCHES
WIDTH, B .	10 10 10 10		ଦ୍ର ବ୍ୟ କ୍ଷ		6.25	INCHES
AVERAGE LOCA	ATION OF	COLUMN	END OF WELD*	×₂Q o	3.00	INCHES
AVERAGE LOCA	ATION OF	OUTER E	ND OF WELD*,	, P	13.00	INCHES
THICKNESS,	- • • • •	ပ ပ ပ မ	* * * * * *		0.375	INCHES
ELASTIC MODU	JLUS 。。	0 0 0 0	0 0 0 0 0 0		30000。	KSI
YIELD STRESS	5	စ ေ စ ခ	6 ¢ ¢ @ @ ¢	0 0 0	36.000	KSI
*MEASURED FROM	M FACE O	F COLUMN				

WF SECTION PROPERTIES

AREASAOSOSOSOS	** * * * * * * *	5.90 INCHES**2
LOCATION OF CENTROID*, YE .	N N N N N N N N	4.07 INCHES
MOMENT OF INERTIA, I	* * * * * * * *	69.5 INCHES**4
SECTION MODULUS, TOP, ST 。	というめのじゅ	17.1 INCHES**3
SECTION MODULUS, BOTTOM, SB	90 @ 40 40 40 40 40	17.1 INCHES**3
LOCATION OF PLASTIC NEUTRAL	AXIS*, YP	4.07 INCHES
PLASTIC MODULUS, Z		19.2 INCHES**3
SHAPE FACTOR	$v \circ \phi \phi \phi v \phi$	1.122
YIELD MOMENT, MY		51.23 KIP-FT.
PLASTIC MOMENT, MP	σ ϕ ϕ ϕ ϕ ϕ	57.47 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF	F BOTTOM FLANGE	

х	Α	YE	I	ST	SP
52.00	5.90	to a to to	69.5	17.1	17.1
52.00	7.15	5.20	88.8	23.3	18.4
52.50	7.20	5.22	89.4	23.6	18.4
53.00	7.25	5.25	90.0	23.9	18.5
53.00	9.59	4.01	135.4	27.1	33.7
57. 50	10.03	4.22	144.8	30.2	34.3
62.00	10.47	4.41	153.5	33.3	34.8
62.00	8.28	3.38	111.8	19.8	33.1
62.50	8.32	3.41	113.2	20.2	33.2
63.00	8.37	3.44	114.6	20.6	33.3
63.00	6.18	4.45	90.6	19.8	20.4
64.50	6.33	4.55	93.2	20.9	20.5
66.CC	6.47	4.64	95.8	21.9	20.6
N					
X	ΥP	2	F	MY	MD
52.00	4.62	18.8	1.098	51.23	56.27
52.00	7.14	22.4	1.215	55.20	67.08
52.50	7.24	22.4	1.217	55.31	67.31
53.CC	7.34	22.5	1.219	55.41	67.52
53.00	2.61	33.7	1.247	81.17	101.19
57.50	3.49	36.2	1.200	90 • 58	108.67
62.00	4.37	38.3	1.151	99.94	115.00
62.00	C.72	25.2	1.268	59.53	75.46
62.50	0.72	25.5	1.264	60.62	76.63
63.00	0.72	25.9	1.261	61.70	77.80
63.00	4.39	22.3	1.125	59.53	66.97
64.50	4.68	22.9	1.119	61.48	68.82
66.00	4.98	23.5	1.140	61.86	70.54

SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

X = DISTANCE FROM CONCENTRATED LOAD, INCHES

A = AREA CF CROSS-SECTION, INCHES**2

YE = CIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES

I = MOMENT OF INERTIA, INCHES**4

ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3

SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3

YP = CIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.

Z = PLASTIC MODULUS, INCHES**3

- F = SHAPE FACTOR
- MY = YIELD MCMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET

BEAM PROPERTIES

LE	NGTH,	L		9 Q	æ	ø	e 0	٩	•	Ð	ø	ø	ø :	•	\$	-0	66.0	INCHES
EL	ASTIC	ST	IFFN	IES	Sø	P/1	DEL	TΑ	ø	8	ø	Ð	•	, .	9	9	27.80	KIPS/IN.
ΥI	ELD D	EFL	ECTI	ON	۶ D	EL	ΤΑΥ	٠	*	\$	6	٥		, s	\$	49	0。405	INCHES
ΥI	ELD L	DAD	, P)	1 .	49	¢	a o	ø	\$	6	ø	¢	a (ø	ø	11.25	KIPS
PL	ASTIC	° LO	AD,	PΡ	ø	8	¢ @	ø	2	ø	ø	ø	s (٥		12.76	KIPS
LO	CATIC	N C	F. CF	IT	ICA	L .	SEC	TIC	DN	FO	R	Ργ	≉,	e e	-10	ę	66.00	INCHES
LO	CATIO	N O	F CF	IT	I C A	L	SEC	TIC	ΟN	FO	R	PP:	* ,			0	63.00	INCHES
≉ ME	ASURE	DF	ROM	00	VCE	NT	RAT	ED	LC)AD								

TABLE IV. SPECIMEN TYPE F3

DIMENSIONS OF WE SECTION

DEPTH	• • • • • • • • • • • • • • • • • • •	3 3 4 4 3 4 5 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 6 4 4 4 4 6 4 4 4 4 6 4 4 4 4 6 4 4 4 4	5.268 INCHES 5.268 INCHES 0.378 INCHES 0.378 INCHES 0.248 INCHES 30000. KSI
DIMENSIONS CF CONNECT	TION ELEMENTS		
DEPTH GUT-TO-OUT OF THICKNESS OF FILLEF HOLE DIAMETER	PLATE		0.125 INCHES
TOP PLATE LENGTH OF PLATE, WIDTH OF PLATE, E LOCATION OF FIRST LOCATION OF LAST THICKNESS OF PLAT ELASTIC MODULUS YIELD STRESS .	B C C C C C C C C C C C C C C C C C C C		5.50 INCHES 1.88 INCHES 9.38 INCHES 0.500 INCHES 30000. KSI
BCTTOM PLATE LENGTH OF PLATE, WIDTH OF PLATE, E LOCATION OF FIRST LOCATION OF LAST THICKNESS OF PLAT ELASTIC MCDULUS YIELD STRESS	3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	· · · · · · · · · · · · · · · · · · ·	5.50 INCHES 1.88 INCHES 9.38 INCHES 0.500 INCHES 30000. KSI

*MEASURED FROM FACE CF COLUMN

PROPERTIES OF GROSS SECTION OF WE

AREA, A	© 0 0 © ©		6 Q 6	5.90 INCHES**2
LOCATION OF CENT	ROID*, YE		ବ ଚ ଚ	4.07 INCHES
MOMENT OF INERTI	Ay I	e e a a e	\$ \$ \$	69.5 INCHES**4
SECTION MODULUS,	TOP, ST	0 0 0 0 0	0 0 0	17.1 INCHES**3
SECTION MODULUS,	BOTTOM, S	5B	Q Q Q	17.1 INCHES**3
LOCATION OF PLAS	TIC NEUTRA	L AXIS*,	γρ	4°C7 INCHES
PLASTIC MODULUS,	Ζ	6 6 6 6 0	\$ \$ \$	19.2 INCHES**3
SHAPE FACTOR .			6 6 6	1.122
YIELD MOMENT, MY			ତ ଛ ତ	51.23 KIP-FT.
PLASTIC MOMENT,	MP		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57.47 KIP-FT.
*MEASURED FROM OUT	SIDE FACE	OF BOTTOM	FLANGE	

PROPERTIES OF NET SECTION OF WF (AISC SPECIFICATION 1.10.1)

AREA, A	0 0 0	6 0 U	0 0 0	。 5。37	INCHES**2
LOCATION OF CENTROID*	γ YE 。	စ မ ပ	6 6 6	• 4.07	INCHES
MOMENT OF INERTIA, I	စ ဂ စ	0 0 0	0 0 0	· 61.4	INCHES**4
SECTION MODULUS, TOP,					INCHES**3
SECTION MODULUS, BOTTO					INCHES**3
LOCATION OF PLASTIC N					INCHES
PLASTIC MODULUS, Z .					INCHES**3
SHAPE FACTOR • • • •					
YIELD MCMENT, MY					KIP-FT.
PLASTIC MOMENT, MP .					KIP-FT.
*MEASURED FROM OUTSIDE F	FACE OF	BOTTO	M FLAN	IGE	

PROPERTIES OF GROSS SECTION OF PLATED WF

AREA, A		11.40 INCHES**2
LOCATION OF CENTROID*, YE .	ဆ ဆ ဆ ဆ ဆ ဆ ဆ	4.60 INCHES
MOMENT OF INERTIA, I		175.3 INCHES**4
SECTION MCDULUS, TOP, ST .		37.6 INCHES**3
SECTION MODULUS, BOTTOM, SB	\$ \$ \$ \$ \$ \$ \$ \$	38°1 INCHES**3
LOCATION OF PLASTIC NEUTRAL	AXIS*, YP 。。	4.75 INCHES
PLASTIC MODULUS, Z	5 4 4 4 4 5	42.8 INCHES**3
SHAPE FACTOR		1.140
VIELD MCMENT, MY		112.72 KIP-FT.
PLASTIC MOMENT, MP		128.55 KIP-FT.
*MEASURED FRCM OUTSIDE FACE O	F BOTTOM PLATE	

TABLE IV. (CONTINUED)

PROPERTIES OF NET SECTION OF PLATED WF (AISC SPEC. 1.10.1)

ΑRΕΑς Α ο ο ο ο ο ο	a o o a	0 0 0	e e	କ ବ	10.19	INCHES**2
LOCATION OF CENTROID					4.60	INCHES
MEMENT OF INERTIA, I	6 6 6	ର ବ ଦ	c e	0 0	154.2	INCHE S**4
SECTION MODULUS, TOP	s ST o	\$ \$ \$	0 0	00	33.1	INCHES**3
SECTION MODULUS, BOT	TOM, SB	0 0 0	0 0	e o	33.5	INCHES**3
LECATION OF PLASTIC	NEUTRAL	AXIS*,	P Y P	© ©	4.75	INCHES
PLASTIC MODULUS, Z			00	ତ ବ	37.8	INCHES**3
SHAPE FACTOR	4 4 4 4	0 0 0	e e	0 0	1.144	
YIELD MCMENT, MY .	6 0 3 3	0 0 0	e e	ຍ່		KIP-FT.
PLASTIC MOMENT, MP	0 0 a a	0 0 0	00	G &	113.43	KIP-FT.
*MEASURED FROM OUTSIDE	FACE OF	BOTTO	DM PL	ATE		

PROPERTIES OF GROSS SECTION OF PLATES ALONE

AREA, A	6 6 6 6 6	0 a 0	ю 4	0 0	e a	0 0	5.50	INCHES**2
LCCATION OF	CENTROID*	, ΥE 。	e (0 0 0	0 0	0 0	4.63	INCHES
MOMENT OF I	NERTIA, I	0 0 0	0	0 0	6 8	0 0	105.7	INCHES**4
SECTION MODI	ULUS, TOP,	ST 。	¢ (ç e	0 Q	\$ \$	22.8	INCHES**3
SECTION MOD								
YIELD MOMENT								
*MEASURED FROM								

PROPERTIES OF NET SECTION OF PLATES ALONE (AISC SPEC. 1.14.3)

AREA, A	。。。。 4。CC INCHES**2
LCCATION OF CENTROID*, YE	• • • • 4.63 INCHES
MOMENT OF INERTIA, I	。。。。 76。9 INCHES**4
SECTION MODULUS, TOP, ST	。。。。 16.6 INCHES**3
SECTION MODULUS, BOTTOM, SB	。。。。 16.6 INCHES**3
VIELD MOMENT, MY	•••• 52.59 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF BOTTOM	MPLATE

BEAM PROPERTIES

DIMENSIONS OF WE SECTION

DEP	1	in and in the second se	\$	a	ŵ	ø	0	0	¢	0	¢	0	¢.	0	o	ø	٥	ø	¢	Ð	¢	0	8.14	INCHES
TOP	>	FL	AN	GЕ	W	ID	TH	1	Ð	¢	¢	o	ø	Ð	Ð	Ð	ę	e	ø	ø	c	ю	5.268	INCHES
801	T	СМ	FI	LAI	NG	E	WI	D	Н	9	¢	¢	ø	¢	ę	¢	¢	¢	e	ø	¢	9	5.268	INCHES
TCF	>	FL	ΔΝ	GΕ	T	ΗI	СК	(NE	ESS	ŝ	Ð	ø	ø	¢	e	¢	Ð	ę	ŵ	బ	ŵ	¢	0.378	INCHES
801	T	СМ	FI	LAI	NG	E	T٢	110	KΝ	VES	S	Q	Ð	¢	ø	e	e	a	ø	¢	¢	ø	0.378	INCHES
WEE	3	ТΗ	ICI	۲N	ΕS	S	¢	0	ø	ø	¢	ø	e	ŝ	ò	Q	Ð	٥	£	c	ø	c	0.248	INCHES
EL /	12	ΤI	C /	ЧC	DU	LU	S	¢	ø	ç	c	ø	ø	ç	e	o	ø	0	ø	ø	ø	Q	300000	KSI
YIE	51	D	STI	RE	S S		Ð	e.	υ	Ð	¢	o	e	ų	U.	Ô	ø	Ð	Q	ş	Q	¢.	36.000	KSI

WF SECTION PROPERTIES

AREA, A	\mathfrak{L} ψ \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L}	5.90 INCHES**2
LOCATION OF CENTROID*, YE	U \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4.07 INCHES
MOMENT OF INERTIA, I	6 6 6 6 6 6 6 6 6	69.5 INCHES**4
SECTION MODULUS, TOP, ST	6 6 8 6 5 6 5 5	17.1 INCHES**3
SECTION MODULUS, BOTTOM, S	56	17.1 INCHES**3
LOCATION OF PLASTIC NEUTRA	AL AXIS*, YP	4.C7 INCHES
PLASTIC MODULUS, Z 🔹 🗸 🔹	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	19.2 INCHES**3
SHAPE FACTOR		1.122
YIELD MOMENT, MY		51.23 KIP-FT.
PLASTIC MOMENT, MP		57.47 KIP-FT.
*MEASURED FROM OUTSIDE FACE	OF BOTTOM FLANGE	

BEAM PPCPERTIES

LENGTH, L	0 0 0	ic i	o no	ŝ	0 4	o a	G	ø	ø	Ð	Ð	ø	¢	66.0	INCHES
ELASTIC STI	FNES	S. F	010	ELT	A a	່ຍ	ę	Q	ø	Ś	Ð	Ð	ø	21.71	KIPS/IN.
YIELD DEFLEG	TION	γ DE	ELT	Aγ	0 0	0 0	ø	¢	¢	¢	Ģ	40	¢	0.429	INCHES
YIELD LCAD'	PY .	ю (o	6 1	ပေစ	÷	¢	ŧ0	<i>4</i> .;	ବ	0	o	9.31	KIPS
PLASTIC LEAN	ο, ρρ	• •	0	0	0 0	υp	ø	ç	Q	Ð	ø	o	Ð	10.44	KIPS

TABLE VI. SPECIMEN TYPE W2A

DIMENSIONS OF WE SECTION

ſ	DEP.	TH	ę	ę	*	8.)-	Ģ	d);	<	,	0	¢	•	e	ø	ϕ	۲	Ð	9	0	Ð	40	¢	8.14	INCHES
- and	ГСР	FL	AN	GΕ	W	II	TI	ade	ø		0	c	e	0	ø	ø	Ð	¢	Q.	ø	ø	o	¢	5.268	INCHES
E	BOT	TOM	F		٨C	E	\mathbb{W}	(D	1+	1	e	¢	¢	ø	¢	¢	٩	ę	Ģ	۲	ø	¢	÷	5.268	INCHES
1	ΓCΡ	FL	AN	GΕ	T	H)	C F	٢N	ES	S		ø	c	¢	o	Ş	ø	¢	¢	ø	ø	ē	ŵ	0.378	INCHES
E	BOT	TCM	FI		٧G	E	Tł	- I	СK	N	ES	S	ø	ø	e	Ð	ø	Ð	e	ø	¢	Ð	e	C.378	INCHES
V	vEB	ΤH	IC	< N I	ΞS	S	ଈ	ø	5.		¢	ø	ø	e	Ø	¢.	¢	¢	ø	9	ø	¢	ō	0.248	INCHES
E	ELA	STI	C f	MC	DU	LL	JS	ø	¢		4	o	e	Ð	ø	¢	¢	Q	¢	Q	Ģ	Ð	ø	30000.	KSI
١	IE	LÐ	ST	>Es	SS		-52	¢	Ð		¢	Ð	¢	£	с	ø	G	¢	0	0	æ	0	e	36.000	KSI

DIMENSIONS AND PROPERTIES OF PLATES

WE SECTION PROPERTIES

AREAPADORECODODO	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5.90 INCHES**2
LECATION OF CENTROID*, YE	₽ <p< td=""><td>4.07 INCHES</td></p<>	4.07 INCHES
MOMENT OF INERTIA, I	6 6 5 6 6 6 6	69.5 INCHES**4
SECTION MODULUS, TOP, ST	€ € € € 0 €	17.1 INCHES**3
SECTION MCDULUS, BCTTOM, SB .	\$P\$ \$P\$ \$P\$ \$P\$ \$P\$	17.1 INCHES**3
LECATION OF PLASTIC NEUTRAL A	XIS*, VP 。。	4.07 INCHES
PLASTIC MODULUS, Z	ର ବ ଜ ୫ ନ	19.2 INCHES**3
SHAPE FACTOR	6 2 2 2 2 2 2 2	1.122
YIELD MOMENT, MY	¢ © © © © © U	51.23 KIP-FT.
PLASTIC MOMENT, MP	9 0 9 9 9 3 0	57.47 KIP-FT.
*MEASURED FROM CUTSIDE FACE OF	BOTTOM FLANGE	

TABLE VI. (CONTINUED)

Х	A	YE	lessond,	ST	SB
64.44	5.90	4.07	69.5	17.1	17.1
64.44	5.89	4.07	69.2	17.0	17.0
65.32	6.11	3.93	72.4	17.2	18.4
66.19	6.33	3.80	75.4	17.4	19.9
66.57	6.49	3.78	77.7	17.8	20.5
66.90	6.73	3.84	81.5	18.9	21.3
67.12	7.03	3.95	86.3	20.6	21.9
67.19	7.29	4.07	90.3	22.2	22.2
Х	ΥP	Z	F	MY	MP
64.44	4.07	19.2	1.122	51.23	57.47
64.44	4.07	19.1	1.122	50.98	57.21
65.32	3.62	19.9	1.157	51.57	59.66
66.19	3.18	20.6	1.187	52.09	61.81
66.57	3.10	21.2	1.188	53.43	63.49
66.90	3.26	22.2	1.171	56.84	66.56
67.12	3.64	23.5	1.139	61.80	70.39
67.19	4.07	24.5	1.105	66.54	73.52

SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

X = DISTANCE FROM CONCENTRATED LOAD, INCHES

A = AREA OF CROSS-SECTION, INCHES**2

YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES

- I = MOMENT OF INERTIA, INCHES**4
- ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3
- SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3
- YP = DIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.
- Z = PLASTIC MODULUS, INCHES**3
- F = SHAPE FACTOR
- MY = YIELD MOMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET

BEAM PROPERTIES

LENGTH,		9 ®	Ð	\$ \$	a a	Ð	0	Ð	ø	Ð	Ф	Ð	ø	2	Ð	67.2	INCHES
ELASTIC	STIF	FN	ESS	, P/	DEL	ΤA	ø	ø	Ð	Ð	Ð	4	0	\$	Ð	20.80	KIPS/IN.
YIELD DE	FLEC	TI(2N 🤋	DEL	TAY.	Ð	Ð	ø	ø	o	c	ø	\$	0	ø	0.454	INCHES
YIELD LO	AD,	РΥ	¢ ;	© ∞	0 0	-@	-9	0	e	¢	Ð	÷9	0	ø	ø	9.44	KIPS
PLASTIC	LOAD), {	p, q¢	0 Ø		¢	¢	0	Ð	¢	Ð	Ð	Ð	:0	0	10.65	KIPS
LOCATION	0F	CR	ITI	CAL	SEC	TIC	N	FO	R	ΡΥ	零	3	8	Ð	Ð	66.19	INCHES
LOCATION	0F	CR J	ITI(CAL	SECT	TIC	N	FO	R	ΡР	容	-	ø	Ð	Ð	64.44	INCHES
MEASURED																	The second s

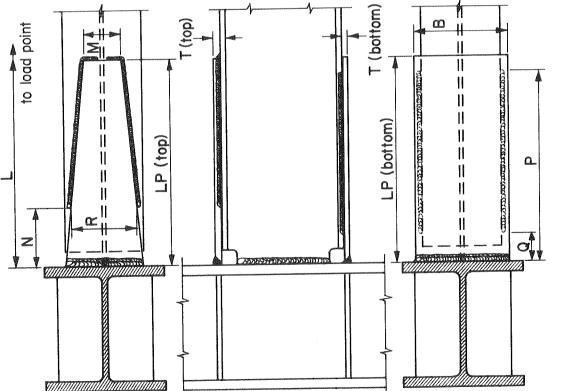
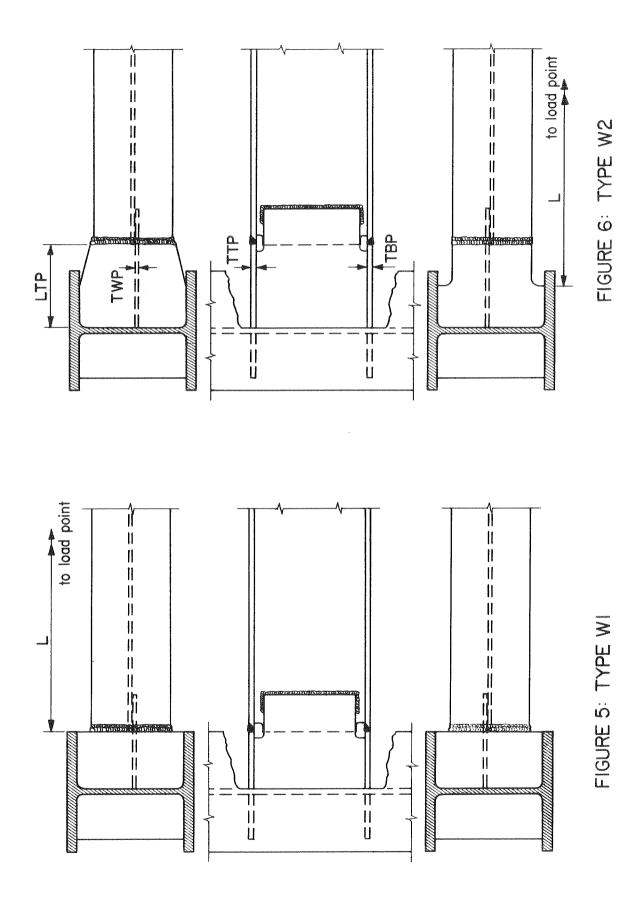



FIGURE 4: TYPE F3

FIGURE 3: TYPE F2

questionable value and so are not presented herein; however, a brief description follows.

Most of the specimens were instrumented with strain gages to a greater or lesser degree. Preliminary investigations were carried out to determine a suitable combination of gage and cement, which could withstand the extremely large cyclic strains to be imposed. A combination was found which was satisfactory for a limited number of reversals, but in no case did a severely strained gage endure an entire test. One useful piece of information which was derived from the strain gages concerned onset of buckling of the flanges. By placing two gages at the same location, one on each face of the flange, it was possible, by observing the divergence of the two strain readings, to determine whether buckling had occurred. The other significant application of strain gages was in connection with test control; this will be discussed later.

Because of the wide use of movement-curvature relationships, an attempt was made to record curvatures. This was done by mounting dial gages on brackets attached to the columns and by measuring the horizontal movement of "targets" mounted on threaded studs tack-welded to the beam flanges. Again, this proved to be less than satisfactory because of the large buckling distortions encountered except very early in a test.

Another difficulty, with both strain and curvature instrumentation, was the inherent instability of readings beyond the elastic limit. Continuous recording of readings seems virtually mandatory under such circumstances, and the necessary equipment was not available. In an attempt

to minimize the problem, strain readings were generally taken at no load, except during the initial cycles, and the curvature dials were photographed at preselected intervals, usually at peak- and no-load conditions.

Some means of test control was necessary for standardization and comparison purposes. The influence of a similar previous investigation² led to an attempt to control the experiments by means of strain. Although the control strain was always measured on the centerline of the face of a flange or connecting plate, the choice of the cross-section location at which it was measured was somewhat arbitrary, in that the control gage was positioned to try to avoid regions of high residual stress and stress concentration (for example, near the welds) and yet to be within a region of large cyclic strain. Uniformity in this regard was impossible to achieve in view of the different connection types tested. The latter consideration was further complicated, in the case of plated connections, by the uncertainty of whether first yielding would occur in the plates or in the WF beam.

Once these questions had been resolved, the strain gage chosen was connected either to a Baldwin SR-4 strain indicator or, more often, to the horizontal input of a graphical "X-Y" recorder. The specimen was loaded until a predetermined amplitude of control strain was reached, and then the load was reversed. As has been noted, however, the control gage could not be relied upon throughout the test, so a technique

²Bertero, V. V. and E. P. Popov, "Effect of Large Alternating Strains on Steel Beams", Journal of the Structural Division, Vol. 91, No. ST1, February, 1965, pp. 1-12.

was developed whereby a curvature dial was selected and its reading recorded when the desired amplitude of control strain was reached. This curvature reading was then used to determine subsequent points of load reversal. The tests performed in this manner have been designated "strain control" tests.

In every test, the deflection of the end of the cantilever, at the point of application of load, was recorded. Referred to as the "tipdeflection" it was usually recorded continuously on the horizontal axis of an X-Y recorder but, particularly in the earlier tests, was sometimes measured by means of dial gages. Continuous recording was made possible by the use of a multi-turn, electrically linear potentiometer.

Because of the eventual deterioration in reliability of curvature measurements, and hence of the "strain control", it was often necessary to resort to control by means of tip-deflection amplitude. Furthermore, it became apparent that this was the only sensible way of standardizing tests of entirely different connection configurations, so in the later tests, deflection control was used exclusively.

Regardless of whether strain or deflection was recorded on the horizontal axis, the load was recorded on the vertical axis of the X-Y recorder. The load was measured by means of a transducer placed in series with the hydraulic cylinder and the end of the beam. Two outputs were available, so the load was also monitored on a Baldwin SR-4 strain indicator. The load-cell was calibrated before and after each test.

The graphical records obtained as described above are very illuminating of the behavior and history of each specimen. They have there-

fore been included in this report in reduced size. As a cursory inspection will show, characteristic hysteresis loops were regularly obtained.

Identification of Specimens

Each specimen has been designated by a name conveying the connection type and the type of cycling imposed. This information is summarized in Table VII:

Type of Connection	F1 F2 F3 W1	direct butt-welded (flange-connected) welded connecting plates (flange-connected) bolted connecting plates (flange-connected) flush connecting plates (web-connected)								
	W2	tapered and filleted connecting plates (web- connected)								
	C1	five cycles each at nominal $\pm \frac{1}{2}\%$ control strain increments								
	C2	constant nominal $\pm 1 \frac{1}{2} \%$ control strain								
	C3	100 cycles at constant nominal $\pm \frac{1}{2}\%$ control strain followed by constant $\pm 1\frac{1}{2}\%$ nominal control strain								
	C4	constant nominal \pm 1% control strain								
	C5	constant $\pm \frac{1}{2}\%$ nominal control strain								
Type of Cycling	C6	two cycles each at $\pm rac{1}{4}\%$ nominal control strain increments								
	C7	fifteen cycles each at $\pm \frac{1}{2}$ " nominal tip- deflection increments starting from ± 1 "								
	C8	same as C7								
	С9	same as C7, except preceded by two cycles at $\pm 2^{\prime\prime}$ nominal tip deflection								
	C10 same as C7, except preceded by five cycl at $\pm 2^{"}$ nominal tip deflection									
	C11	same as C7, except preceded by five cycles at $\pm 2\frac{1}{2}$ " nominal tip deflection								

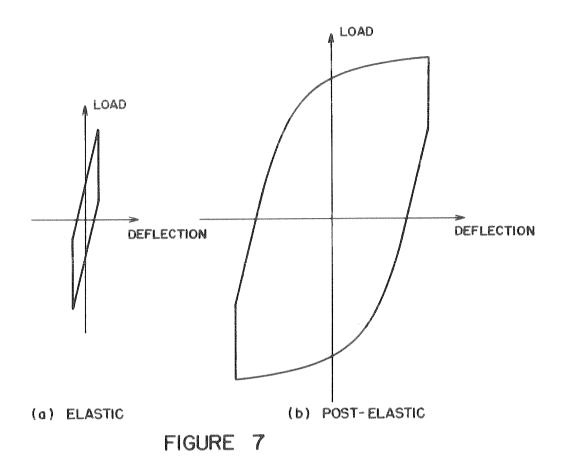
TABLE VII. SPECIMEN DESIGNATION

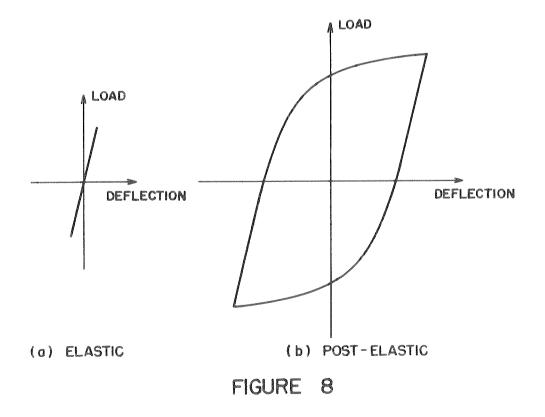
In certain instances, the letter "A" or "B" has been appended to the connection type. For types F2 and F3, this indicates the use of thinner connection plates. Type W2 had different connection plate configurations at the top and bottom flanges, respectively, and since all tests commenced with a down stroke, the two type W2 specimens were fabricated in such a way that each type of plate yielded initially in tension. Thus type W2B was identical to type W2A, except that it was inverted.

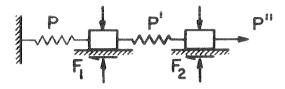
It will be noted that cycle programs Cl through C6 were straincontrolled while programs C7 through Cll were deflection-controlled. Programs C7 and C8 were identical.

The word "nominal" has been used in the descriptions in the above table because (1) in the case of strains, uniformity of control was impossible to achieve, and (2) in the case of deflections, support rotation had not been eliminated.

Reduction of Data


Of the variety of data mentioned above, the most useful were found to be the load-deflection relationships. In addition to providing a continuous record of both load and deflection, they permit the determination of the energy absorption. Along with the total number of cycles to failure, these appear to be the most significant parameters for evaluating the performance of each specimen. With this in mind, only the pertinent data has been reduced for inclusion in this report. A discussion of the treatment of the raw data follows.


Perhaps the most important source of experimental error was the presence of a certain amount of support rotation. A difficulty arises


here in defining "support" and determining its precise location. The most obvious definition is the face of the column. This is largely satisfactory for the flange-connected specimens, but becomes obscure for the web-connected ones. Even in the former case, however, the face of the column is not rigid, and therefore permits distortion of the adjacent beam cross-section, especially after yielding. For these reasons, direct measurement of the support rotation, although attempted, was not so successful as had been hoped. In an attempt to maintain uniform treatment of all data, therefore, the elastic stiffness, as computed from the measured section and material properties, was used for each specimen. Deflections were corrected in such a way that the apparent elastic slope, as graphically recorded, was made the same as the computed elastic slope. That is, corrections linearly proportional to load were applied to all deflections.

Errors were also introduced into the load readings because of friction developed at the guides provided for lateral support of the beam, and in the hydraulic cylinder. Characteristic experimental loaddeflection diagrams are shown in idealized form in Figure 7, with the effects of friction exaggerated. Figure 8 shows the same diagrams in the absence of friction.

In an attempt to rationalize the presence of the small vertical increments in load at the extremities of the curves of Figure 7, the simple model shown in Figure 9 was used.

 $P \equiv force applied to beam$ $F_i \equiv friction force developed at lateral guide$ $P' \equiv load$ as measured by transducer $F_2 \equiv friction$ force developed in hydraulic cylinder $P'' \equiv load$ developed by hydraulic pressure

FIGURE 9

Suppose now that the program of loading shown in Figure 10a is applied to the load P'', here plotted, for convenience, against a linear time scale. The resulting values of the forces F_2 , P', F_1 , and P would then be as shown in Figures 10b, c, d and e, respectively. Assuming the deflection Δ to be given as a function of the load P by Figures 8a and b, respectively, the relationship between the load P' and deflection Δ can be plotted. When this is done, the resulting diagrams are found to have precisely the forms shown in Figure 7. The three loads, P'', P'and P have been plotted against the deflection Δ in Figure 11. The points designated "a" correspond to the system at rest, with no hydraulic pressure. If the actual experimental hysteresis loops are examined, this lag in the load can be clearly seen, as can the vertical load increments at the extremities.

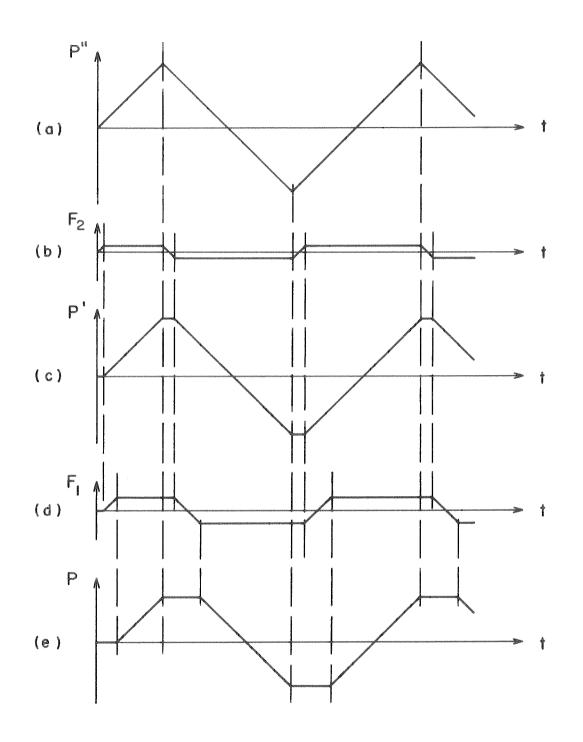


FIGURE 10

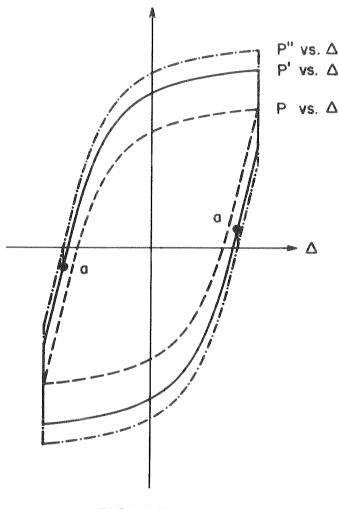
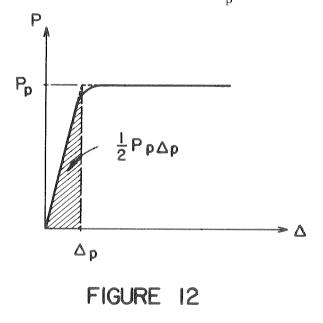


FIGURE II


Applying this reasoning to the elastic case of Figure 7a, it is possible to compute, from the horizontal width of the loop, the approximate friction force. The horizontal width is used because it can be measured more accurately from the experimental curves. This correction has been included in the peak loads tabulated for each specimen.

The energy absorption was determined by measuring the areas of the hysteresis loops. Since the support rotation causes only a rigid body

displacement, no correction to the areas of the hysteresis loops was required on this basis. It is obvious from Figure 11, however, that the correction for friction must also be applied to the hysteresis area. Since the friction forces have been assumed constant, the correction is made simply by deducting the area of a rectangle whose sides are twice the friction force F_1 , and the peak-to-peak deflection, respectively.

Only one other minor correction was made, to account for the errors introduced in the base line when the pen of the X-Y recorder was reset to fresh paper.

In the tabulated data, both corrected and non-dimensionalized corrected data have been presented. Non-dimensionalization has been carried out by dividing loads by the theoretical plastic load $P_{p'}$ deflections by a "characteristic" deflection Δ_p (see Figure 12), and

the energies by the elastic energy corresponding to the theoretical plastic load. Non-dimensionalized data has been denoted by placing a bar over the appropriate symbol. Figure 13 shows the symbols used:

FIGURE 13

Organization of Data

The remainder of this report has been organized into sections according to specimens. Each section contains specific information on the particular specimen, its dimensions and structural properties, the available graphical records, failure photographs and reduced loads, deflections and energies. The program of cycling has been given in terms of tip-deflection for each specimen. The total number of cycles to failure has been denoted as N. A single cycle comprises one down-stroke and one up-stroke or, alternatively, two "reversals".

SPECIMEN F1-S

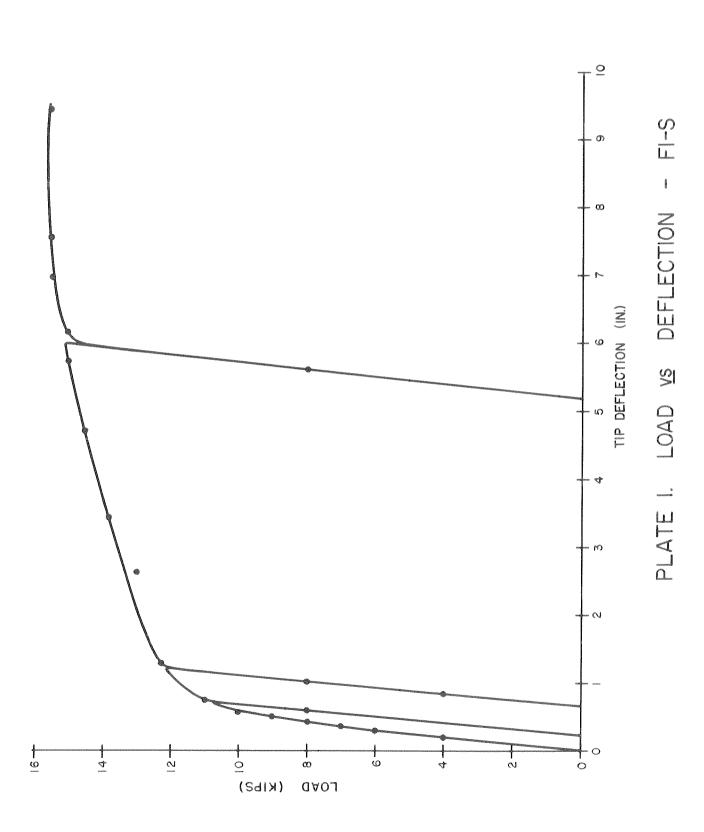
<u>Description</u>: The beam was butt-welded directly to the column flange. The specimen was commercially fabricated; there was no visually apparent departure from the detail drawings. Ultrasonic inspection disclosed no significant weld defects.

<u>Program of Loading</u>: This was a one-directional static test, with trial instrumentation.

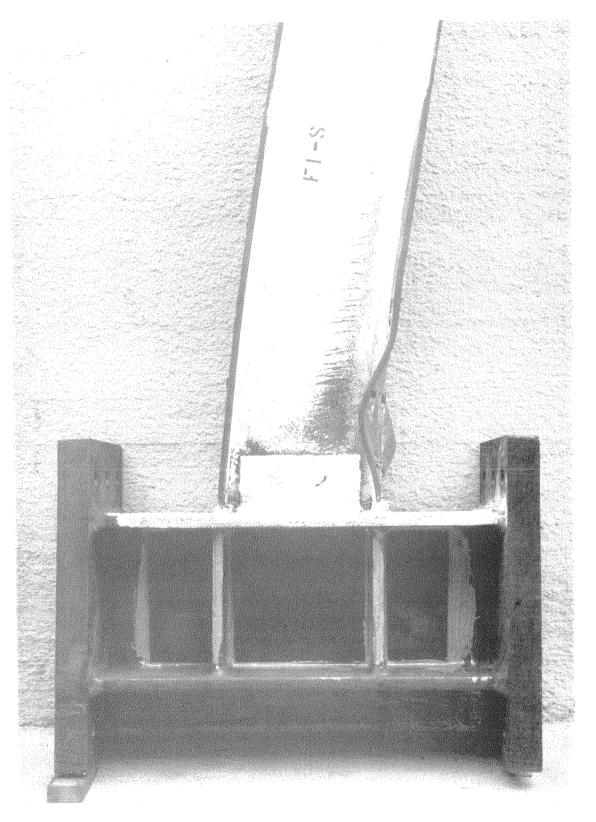
<u>Remarks</u>: Buckling of the compression flange was observed at a tip deflection of about two inches. The specimen was unloaded and reloaded in the same direction three times during the test. The test was terminated after the load had reached a maximum and had begun to decrease. The maximum recorded tip deflection was $9\frac{1}{2}$ inches, corrected for support rotation. No actual fracture occurred.

SPECIMEN TYPE F1-S

DIMENSIONS OF WE SECTION


DEPT	ГН	ø	¢.	ø	ø	ø	Ð	*	9	ø	¢	ø	ø	¢	¢	e G	ø	ŵ	ę	ø	Ģ	Ð	8.26	INCHES
TOP	FL	ΑN	GΕ	W	I (СТ	Η	¢	,	Ð	¢	ø	e	Ð	e	¢	e	6	ø	¢	9	Ð	5.150	INCHES
BOTI	ГОМ	F	LAI	٧G	E	W	ID	Tł	4	÷	Ø	ø	ø	¢	e	Ð	Ð	ŝ	ø	Ŷ	¢	ø	5.300	INCHES
тор	FL	AN	GΕ	T	H	I C	ΚN	IES	ŝS		e	e e	¢	ø	¢	φ	÷	s	¢	s	¢	e	0.373	INCHES
																							0.344	
																							0.273	
																							29800.	
																							38.90C	

WE SECTION PROPERTIES


	AREA	Δ	e e	8		¢	ø	¢ .	e	ø	o	ø	Q.	ç	۵.	ø	e	5.89	INCHES**2
	LCCAT	ION	CF	CEN	TR	CI)* v	Y	E	o	υ	Ð	ø	Q	υ Ο	s	e	4.18	INCHES
	MOMENT	T C	F IN	VERT	ΙA	9	l	0	ø	ø	£,	υ U	ç	¢	Ð	Q	¢	69.4	INCHES**4
	SECTIO	ЛС	MCDU	JLUS	S g	TO	P,	ST		0	ø	6	e	Ð	¢	e	Ģ	17.0	INCHES**3
	SECTION	NC	MCDU	JLUS)	801	T TC	Mg	S	8	ల	Ð	e	Ð	¢	Ð	e	16.6	INCHES**3
	LOCAT	ION	OF	PL4	ST	IC	NE	UT	RA	L	ΑX	IS	*,	Y	Р	¢	ç	4.29	INCHES
	PLAST	IC	мсы	JLUS	. y	Ζ	i AD	0	Ð	ø	ø	ø	Ģ	భ	Ð	Ð	\$	19.0	INCHES**3
	SHAPE	FA	стор	R .) 40	Ð	ø	o	ø	¢	Û	Ð	Q	ø	Ð	ø	ø	1.144	
	YIELD	MO	MENT	r, M	١Y	¢	¢	0	¢	Ð	0	Q	÷	ø	÷0	ø	ŵ	53.80	KIP-FT.
	PLAST	IC	MOM	ENT	M	р	ø	¢	¢	Ð	ø	6	e	Ð	e	ø	Q	61.57	KIP-FT.
*1	AEASURI	ΕO	FROM	N DL	JTS	ID	ĒF	AC	E	0F	В	OT	ΤO	М	FL	AN	GΕ		

BEAM PROPERTIES

LENGTH	s L	¢	\$ Q	ę	¢	Ð	Ð	ø	ଚ	ø	e	9	e	ø	e	ŝ	Ð	66.0	INCHES	
ELASTI	C ST	[FF	NES	S,	P/	DE	LT	A	Ð	9	Ð	Ð	0	ø	¢	Ð	ø	21.59	KIPS/IN.	5
																			INCHES	
VIELD																				
PLASTI																				

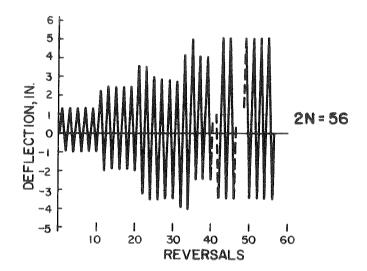


FIGURE 14. F1-S

SPECIMEN F1-C1

<u>Description</u>: This specimen was similar to specimen FI-S in detailing, fabrication and inspection. Threaded studs were tack-welded to both flanges to support rotation measuring devices.

Program of Cycling:

<u>Test Control</u>: Strain, as measured on the top flange 5.54 inches from the column face.

Raw Data Included: Graphical load-strain data for the control strain. <u>Total Energy Absorption</u>: Not available.

Plastic Load Reversals to Failure: 56 (28 cycles)

<u>Remarks</u>: Plastic buckling of the flanges was first detected, by strain measurements, after the first two plastic cycles. The control strain at this time was varying from -0.1% to +0.4%. Buckling of the bottom flange became visible after $10\frac{1}{2}$ plastic cycles, with a control strain range of from -0.7% to +1.85%. The top flange was visibly buckled after the next reversal (i.e., after 11 plastic cycles). As cycling continued, the flanges alternately straightened and buckled under tension and compression, respectively.

A small crack was first observed in the top flange weld after $15\frac{1}{2}$ plastic cycles. Small cracks were found in the bottom flange weld after 23 cycles. Severe buckles had by now developed, the ones nearest the column being at precisely the same cross-section as the studs which were welded to the flanges. Cracks were observed at the bottom flange stud weld, as well as a field of hair cracks across the concave face of the buckle. A similar situation was found on the top flange after $25\frac{1}{2}$ cycles. These cracks began to propagate, until finally the bottom flange cracked all the way through, and a rapid decrease in load ensued. This occurred after 28 plastic cycles, and was regarded as failure.

SPECIMEN TYPE F1-C1

DIMENSIONS OF WF SECTION

DE	EPT	-	ø	ø	¢	0	0	G	c	¢	G	Ö	₽	Ю	ø	0	0	¢	ø	0	Ð	\$	8.26	INCHES
T()P	FL	A٨	IGE	'n	IC	T		ø	Ð	Q	ø	Ф	־	0	ø	۵		٩	ø	ø	÷	5.170	INCHES
80	OTT	٥M	F	LA	NC	ε	h	ID	Th	÷	ø	Ф	\$	ø	٩	ø	Q	Ð	ø	ø	ø	ø	5.280	INCHES
TC)P	FL	A٨	IGE	(Insure	ΉĮ	C	ΚN	ES	S	ŝ	Ð	¢	ø	Ð	Ð	Q	ø	ø	¢	ø	¢	0.375	INCHES
BC) T T	OM	l.	LA	NG	εE	T	ΗĮ	СК	NES	S	10	¢	ŝ	Ð	-	ø	-0	Ģ	Ś	4	٩	0.349	INCHES
WE	ΞB	TH	IC	ΚN	ES	S	ŵ	ø	÷	Ð	ΰ	œ.	æ	ø	ø	o	-@	\$	֯	ø	-10	0	0.261	INCHES
EL	.AS	11	С	MC	DU	ILU	IS	÷O	Ø	0	\$	ø	ø	Ð	ø	Ð	ŵ	భ	Ð	Ð	Ś	Ð	29800.	KSI
Y	[EL	D	ST	RE	SS	, }	Ð	÷O	Ð	ø	\$P	Ð	ø	Ð	÷	s	ŵ	¢	Ŷ	4D	æ	ø	38.900	KSI

WF SECTION PROPERTIES

AREA, A	-2 -2 -2	Q 20 20	0 0 0		5.84	INCHES**2
LOCATION OF CENTROID)*, YE	\$ \$ \$	0 0 0	\$\$ \$\$	4.19	INCHES
MOMENT OF INERTIA, I	. e D	000	େ ଜ ଜ	\$ \$	69.5	INCHES**4
SECTION MODULUS, TOP	, ST	e o ø	0 0 0	\$ \$	17.1	INCHES**3
SECTION MODULUS, BOT	TOM, S	8	s e e	\$P \$P	16.6	INCHES**3
LOCATION OF PLASTIC	NEUTRA	L AXIS	*, YP) · © - ©	4.31	INCHES
PLASTIC MODULUS, Z	¢ ⊕ ∞	0 0 0	0 0 0	io io	19.0	INCHES**3
SHAPE FACTOR	ତ ବ ଇ	ବ ନ କ	\$ 0 C	• •	1.142	
YIELD MOMENT, MY .	~ ~ ~		* * *	10 D	53.79	KIP-FT。
PLASTIC MOMENT, MP	¢ a a	ୟ କ ହ	0 0 2	చి ల	61.44	KIP-FT.
*MEASURED FROM OUTSIDE	FACE	OF BOT	TOM F	LANGE		

BEAM PROPERTIES

LENGTH,		¢	0	ດ 🕫	0	ø	¢	Ð	0	ø	Q	٩	Ð	Φ	Ð	ø	ø	66.0	INCHES
ELASTIC	ST	IFF	NE:	55,	PI	Di	ELI	ΓA	ø	0	ø	Ф	Ø	\$	ø	Ð	ø	21.61	KIPS/IN.
YIELD DE	FL	ECT	ION	V 9	DEL	. T /	ά¥	Ð	ø	Ģ	0	ø	ø	-\$	\$	Ð	Ð	0。453	INCHES
YIELD LC	DAD	, P	γ.	o - 0	•	Ð	40	0	\$	÷	ø	Q	Ð	\$	Ð	<i>1</i> 0	Ø	9.78	KIPS
PLASTIC	LO	AD,	PF	> 。	Ŷ	٩	¢	10	٥	0	0	0	¢	- 10 - 10	Ð	ø	o	11.17	KIPS

\circ	C
ð	O.

لية في		PAGE I	
			f
	* <u>24%</u>		
	SCALES		
3-9		9	
F1-C1			
- LOAD YS STRAIN GA		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.17
CYCLES ELASTIC		the second	*
1.1.10.5		The second	171 • 40
			per (mp)
			pir loss

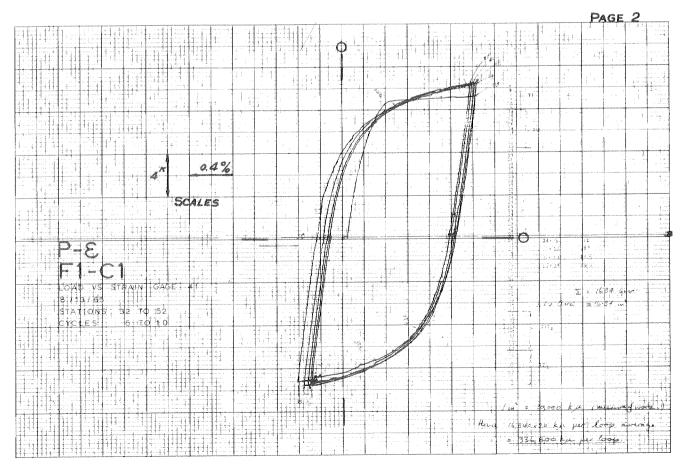


PLATE 2. LOAD VS. STRAIN - F1-C1

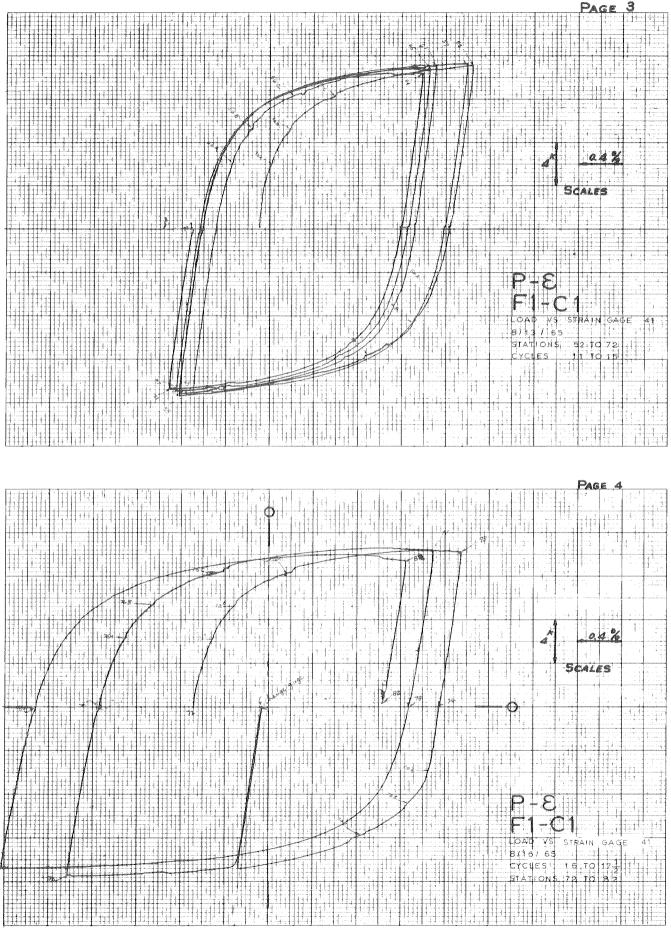
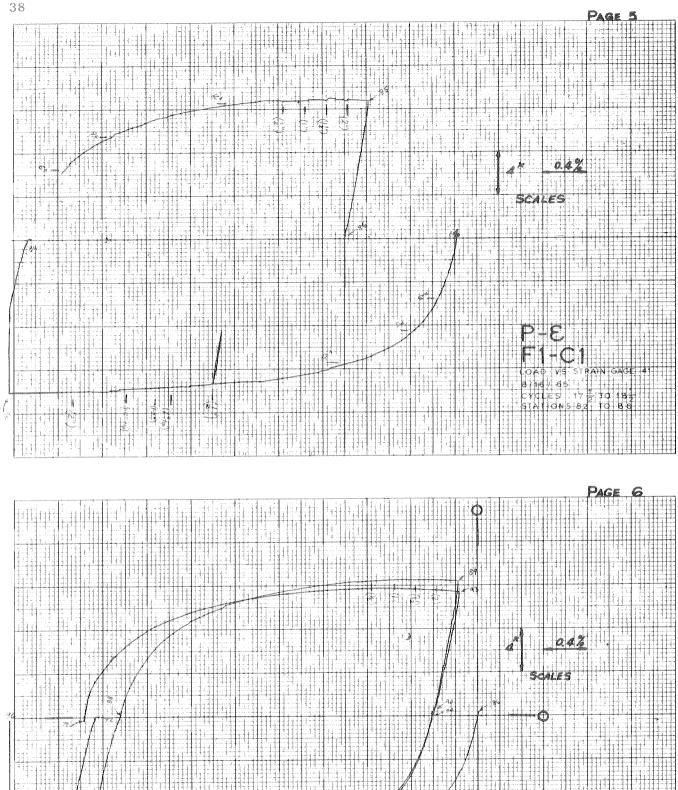



PLATE 2. (continued)

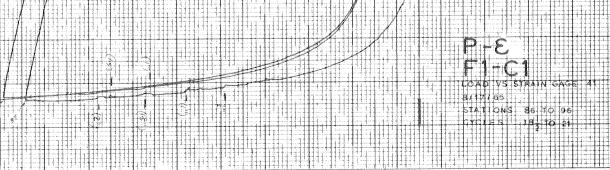
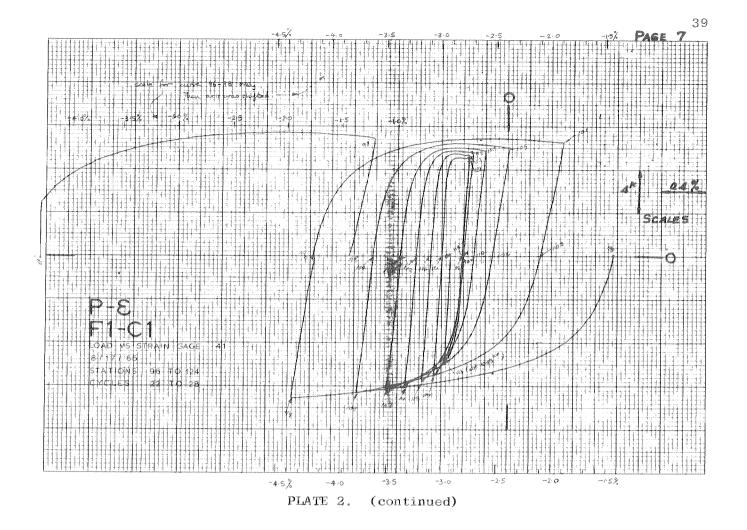



PLATE 2. (continued)

-11

tr

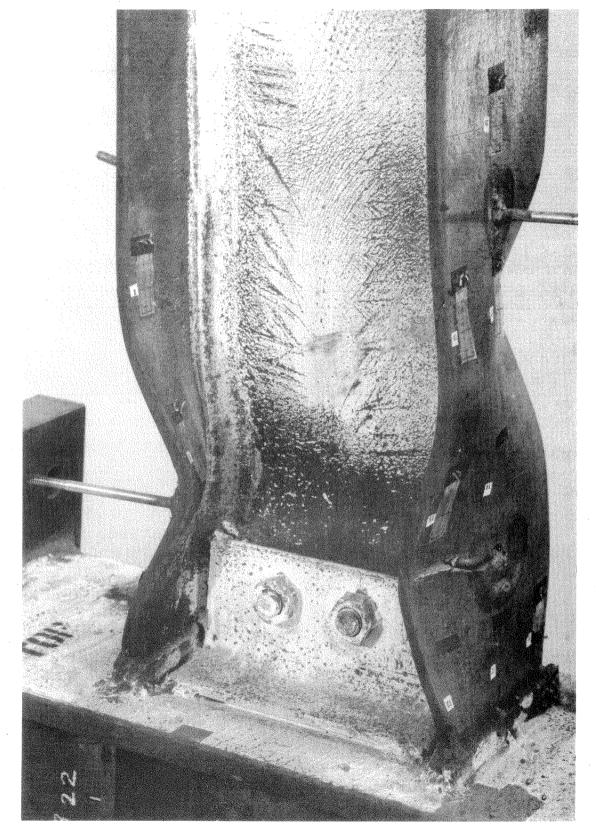
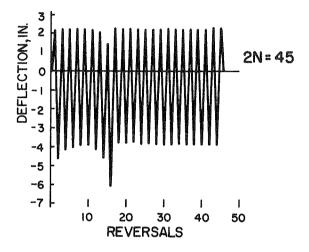


FIGURE 15. F1-C1

SPECIMEN F1-C1


Half- P Cycle KIPS	A IN.	Δ' IN.	Ē.	$\sum_{i=1}^{n}$	$\overline{\Delta}'$
1 11.89 2 -11.69	1.27	0.39	1.065	2.46	0.76 0.71
2 -11.69 3 12.11	-0.96	0.37	-1.046 1.084	-1.86 2.50	0.71
4 -11.67	-0.99	0.38	-1.045	-1.91	0.73
5 12.06	1.31	0.39	1.080	2.54	0.75
6 -11.67	-1.00	0.38	-1.045	-1.93	0.73
7 12.06	1.32	0.38	1.080	2.56	0.73
8 -11.72	-1.00	0.38	-1.049	-1.93	0.73
9 12.11 10 -11.72	1.32 -1.01	0.38 0.38	1.084 -1.049	2.56 -1.95	0.73 0.73
11 13.03	2.21	1.20	1.166	4.28	2.32
12 -13.54	-2.02	2.02	-1.212	-3,91	3.90
13 13.82	2.45	2.17	1.238	4.074	4.19
14 -13.86	-1.93	2.05	-1.241	-3.73	3.96
15 13.82	2.42	2.02	1.238	4.68	3.90
16 -13.96 17 13.87	-1.96 2.43	2.01 2.02	-1.250	-3.79 4.70	3.88
18 -13.91	-1.92	2.02	1.242	-3.71	3.90 3.90
19 13.77	2.43	2.02	1.233	4.70	3.90
20 -13.81	-1.92	2.01	-1.237	-3.71	3.88
21 14.70	3.59	3.09	1.316	6.95	5.97
22 -15.14	-3.21	4.23	-1.355	-6.21	8.18
23 14.89	3.53	4.14	1.333	6.83	8.00
24 - 15.38	-3.52	4.43	-1.377	-6.81	8.56
25 14.58 26 -15.26	2.98 3.48	3.90 3.87	1.306 -1.367	5.77 -6.73	7.54 7.48
27 14.29	2.86	3.77	1.280	5.53	7.29
28 -14.97	-3.44	3.74	-1.341	-6.65	7.23
29 13.98	2.81	3.70	1.252	5.44	7.15
30 -14.78	-3.43	3.70	-1.323	-6.63	7.15
31 13.85	3.74	4.59	1.240	7.24	8.87
32 -15.36	-3.97	5.13	-1.376	-7.68	9.92
33 13.81 34 -14.92	4.16 -3.99	5°51 5°49	1.237 -1.336	8.05 -7.72	10.65 10.62
35 12.80	4.99	6.33	1.146	9.66	12.24
36 -14.30		6.28	-1.281	-4.72	12.14
37 12.12	4.06	6.25	1.085		12.09
38 -13.77	2.44	6.25	-1.233	-4.72	12.09
39 12.36	4.07	6.25	1.106		12.09
40 -13.48	-2.45	4.79	-1.207	-4.74	9.26
41 11.11 42 -13.43	4.03 -3.45	5.02 6.00	0.995 -1.203	7.80	9.71 11.60
42 -13.43 43 10.54	5.07	5.92	0.944	9.81	11.45
44 -13.04	-3.44	5.91	-1.168	-6.65	11.43
45 10.05	5.06	5.86	0.900	9.79	11.33
46 -12.61	-3.43	5.88	-1.129	-6.63	11.37
47 9.58	5.03	5.88	0.858	9.73	11.37
48 -12.16	-1.45	5.92	-1.089	-2.80	11.45
49 9.25	5.06	5.92	0.828	9.79	11.45
50 - 11.89	-3.45	5 .93	-1.065 0.805	-6.67 9.79	11.47 11.56
51 8.99	5.06	5.98	0.000	7017	11000

Half- Cycle	P Kips	∆ I N ₀	Δ΄ IN.	P	$\overline{\Delta}$	∆ ′
52 53 54 55 56	-11.65 8.85 -11.12 8.61 -10.44	-3.44 5.06 -3.44 5.07 -3.47	6.00 5.95 5.95 5.95 5.95 5.75	-1.043 0.793 -0.996 0.771 -0.935	-6.65 9.79 -6.65 9.81 -6.71	11.60 11.51 11.51 11.51 11.12

SPECIMEN F1-C2

<u>Description</u>: This specimen was similar to specimen FI-Cl in detailing, fabrication and inspection.

Program of Cycling:

Test Control: Strain, as measured on the top flange 5.50 inches from the column face.

Raw Data Included: Graphical load-control strain data Graphical load-deflection data

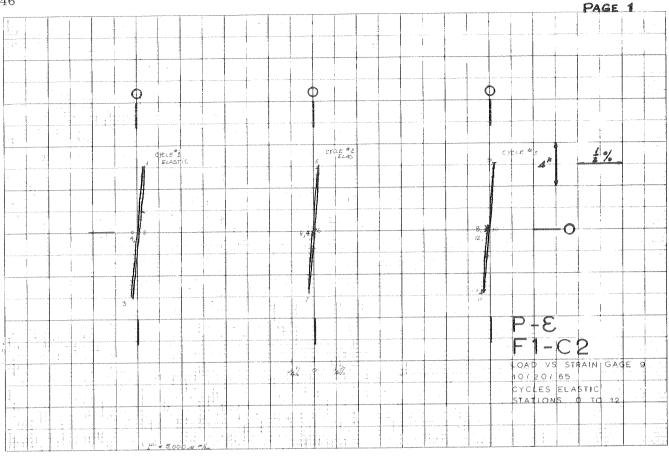
Total Energy Absorption: 2,411 kip-inches.

Plastic Load Reversals to Failure: 45 ($22\frac{1}{2}$ cycles).

<u>Remarks</u>: Plastic buckling of both flanges was visible after the first inelastic cycle. A small crack was noted in the top flange weld after three cycles. Buckling of the top flange was severe after 5 cycles and the web began to buckle with the top flange at about 7 cycles. The bottom flange and web showed similar distortion by the time $8\frac{1}{2}$ cycles had been applied. A crack was found at the bottom cope after 15 cycles. A similar crack was noted in the top cope after $18\frac{1}{2}$ cycles. These cracks propagated, until the bottom flange cracked through, causing failure after $22\frac{1}{2}$ cycles.

SPECIMEN TYPE F1-C2

DIMENSIONS OF WE SECTION


DEPT	T P	cρ	စင	¢	c	Ð	6 0	0	o	Ð	υ	ę	¢	ĸ.	e	¢.	o	¢	\$3	8.36	INCHES
TCP	FL	ANGE	WIC	DTH		¢	ø	Ð	¢	s	o	¢	0	0	ũ	Ð	¢	0	o	5.160	INCHES
BOTT	ΓOΜ	FLAI	VGE	WI	DT	Ή	ø	¢	¢	Ŷ	e	c	e	¢	¢	ę	¢	Ģ	Ð	5.160	INCHES
TOP	FLI	ANGE	THI	ίCΚ	NE	SS		¢	e	ø	¢	æ	e e	o	¢	o	¢.	ø	ŧ	0.375	INCHES
BOTT	ГCМ	FLAI	VGE	TΗ	IC	ΚN	IES	S	¢.	(ع	Ð	o	ø	G	Ð	ç	ø	e	Ð	0.366	INCHES
WEB	TH)	ίςκνι	ESS	Ň	c)	0	÷	e	¢	Ģ	ø	÷	Q	c	Q	€	e	Q	с	0.276	INCHES
ELAS	STIC	C MC(CULU	IS	Ð	e	¢	¢	0	c	ŝ	0	υ Ο	Q	¢	¢	¢.	Q	6	29000.	KSI
VIEL	0.	STRES	SS	e	e	v	Ċ,	Ð	Ð	¢	o	ę	¢	0	0	O	ω	c	0	40.500	KSI

WF SECTION PROPERTIES

AREAVAOLOUDO	e e e	ବ ସ		. (6.01 INCHES**2
LOCATION OF CENTROID*	γYE 。	0 0		c L	4.21 INCHES
MOMENT OF INERTIA, I	e D D	¢ 0		0 72	2.4 INCHES**4
SECTION MCDULUS, TOP,	ST .	6 6	6 6 6 6	. 1	7.4 INCHES**3
SECTION MCCULUS, BOTTO	DM, SB	la c		. 1	7.2 INCHES**3
LOCATION OF PLASTIC NE	UTRAL	AXIS	*, YP 。	۵ L	4.26 INCHES
PLASTIC MECULUS, Z .	0 0 0	6 0	ດ ດ ດ ພ	. 19	9.6 INCHES**3
SHAPE FACTER	စ စ ေ	0 U		. 1.	139
YIELD MOMENT, MY .	6 6 6	ф. с. ,	စု စ မ ပေ	58	3.06 KIP-FT.
PLASTIC MOMENT, MP		ο υ a	လ လ လ ရေး	. 66	5.14 KIP-FT.
*MEASURED FROM OUTSIDE F					

BEAM PROPERTIES

LENGTH, L · · ·	د. ت	© €	¢	U	¢,	Q.	•	ø	¢	Ģ	5	66 °C	INCHES
ELASTIC STIFFNESS	S, P/DE	LTA	Ð	U U	R:	¢۵	¢.	с	e.	£	Ð	21.90	KIPS/IN.
YIELD DEFLECTION,	, DELTA	v o	¢	ç.	c	Q	ç	¢.	0	ŝ	¢.	0.482	INCHES
YIELD LCAD, PY .	NU U 18	6 6	ç	c	0	Ø	¢	Ð	c	ç	0	10.56	KIPS
PLASTIC LCAD, PP	စာ ့ စ	0 0	ŝ	e O	¢	υ	U U	Ð	a	£	٤	12.02	KIPS

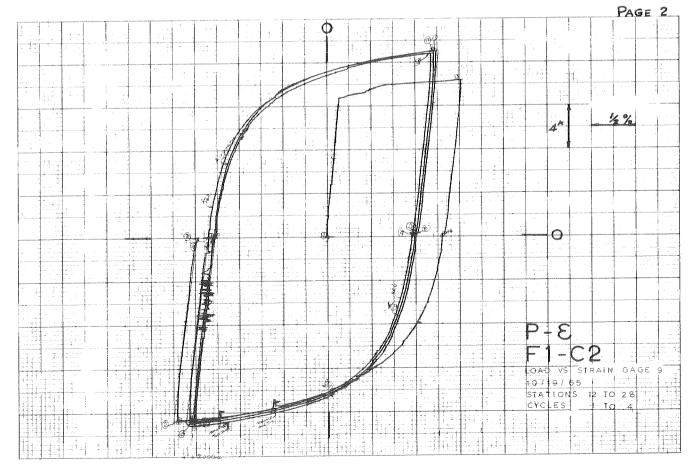


PLATE 3. LOAD VS. STRAIN - F1-C2

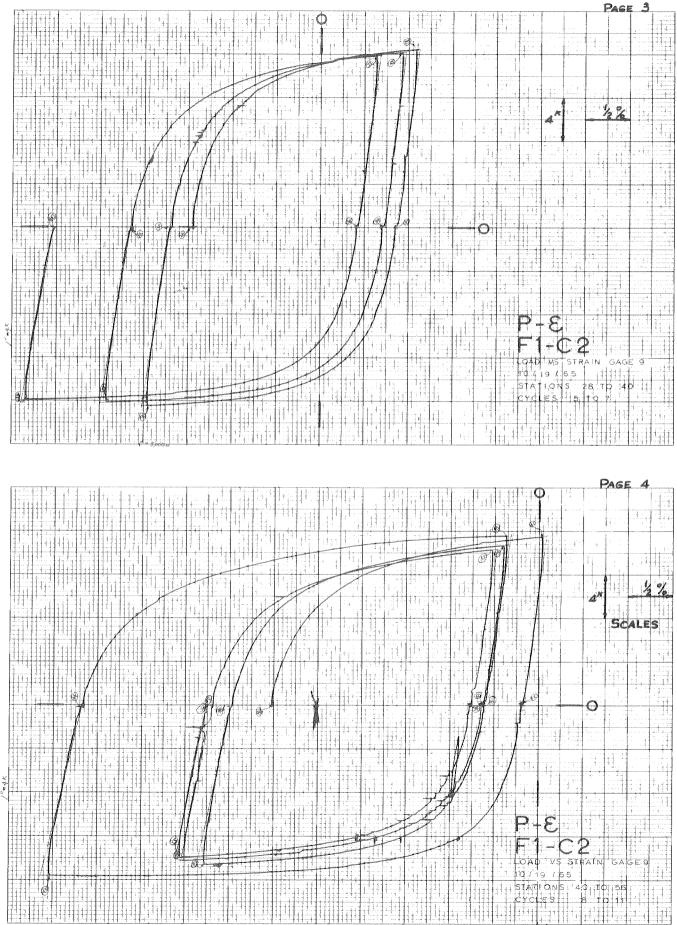
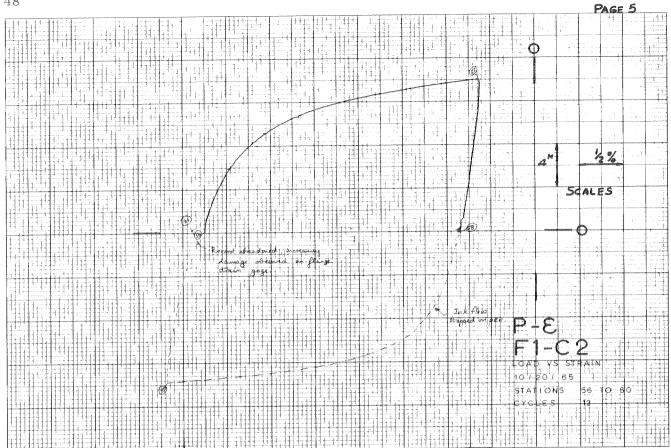



PLATE 3. (continued)

(continued) PLATE 3.

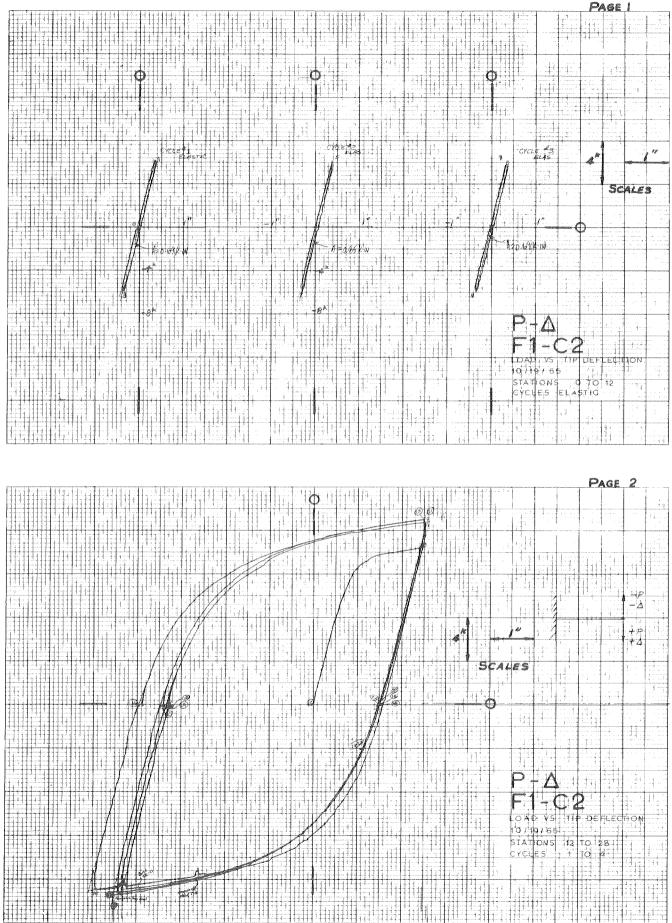


PLATE 4. LOAD VS. DEFLECTION - F1-C2

ti.

the state

11

1

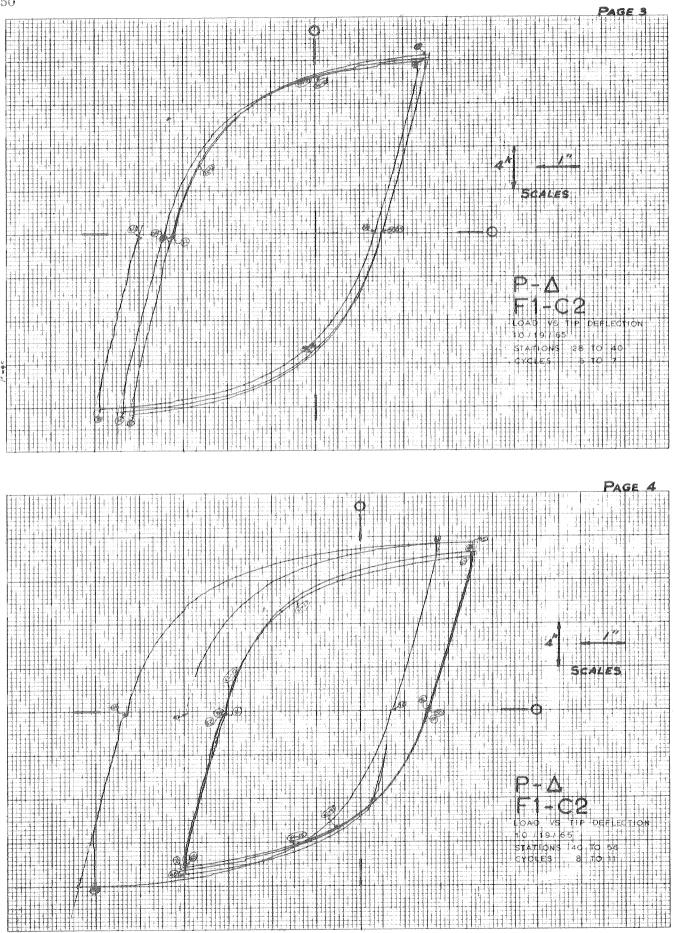
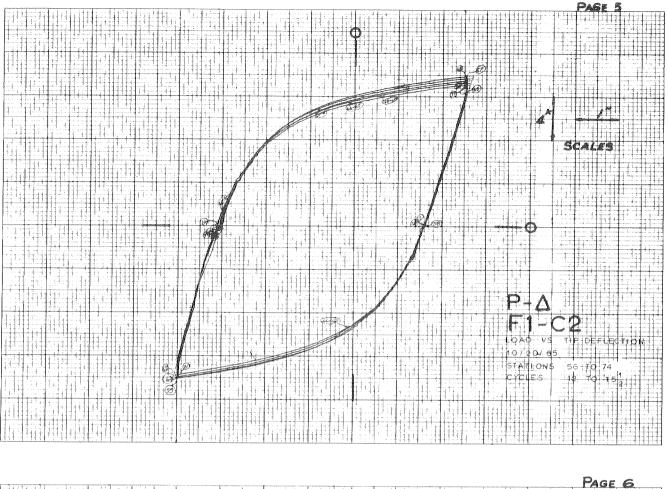



PLATE 4. (continued)

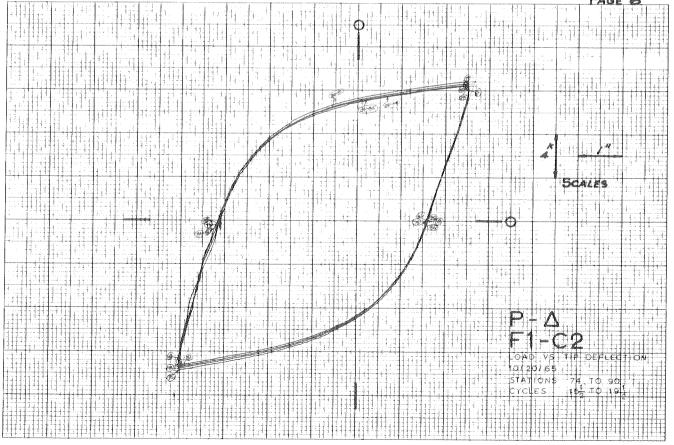


PLATE 4. (continued)

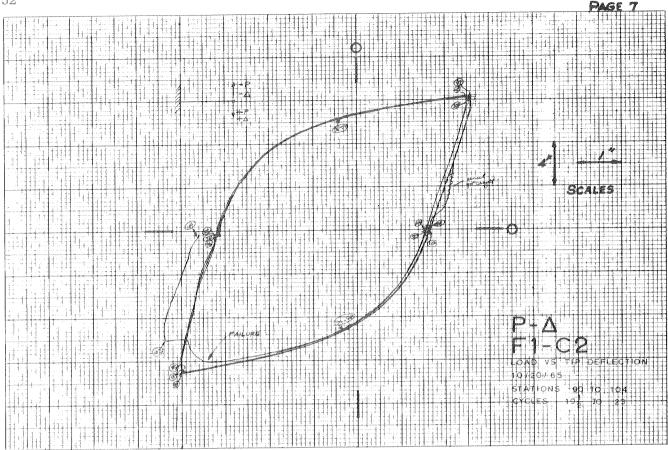
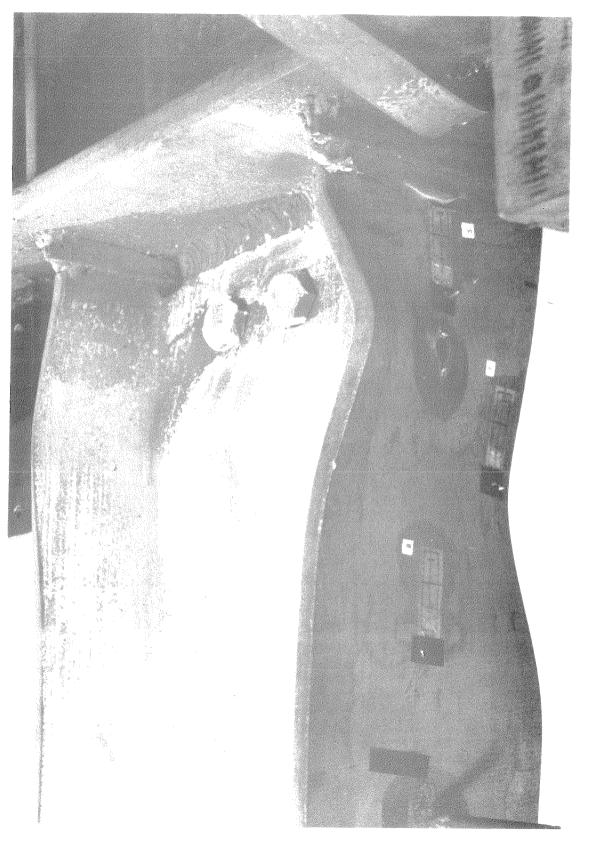
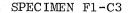
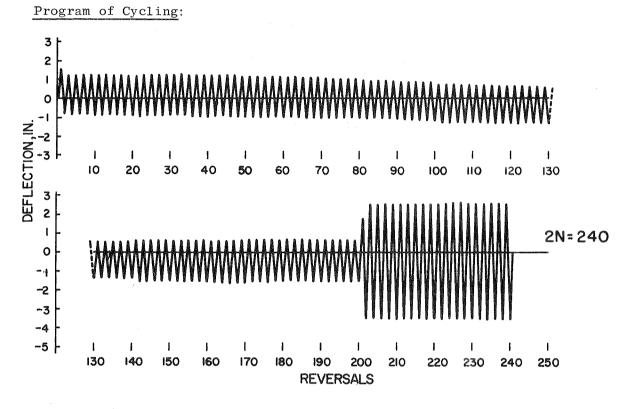


PLATE 4. (continued)


FIGURE 16. F1-C2

SPECIMEN F1-C2

Half-	Р	Δ	Δ^{\prime}	W	Ē	$\overline{\Delta}$	$\overline{\Delta}'$	w
Cycle	KIPS	IN.	IN.	K-IN.				
	***********		** 1 3 **	** ****				
1	13.80	2.16	1.47	18.9	1.148	3.93	2.67	5.73
	-16.55	-4.67	5.42	76.4	-1.377	-8.50	9.87	23.17
					1.368	4.05	9.83	21.45
	16.45	2.22	5.39	70.8				
	-16.98	-4.14	4.89	66.1	-1.412	-7.54	8.92	20.05
	16.40	2.22	4.89	64.9	1.364	4.05	8.92	19.66
	-16.69	-4.04	4.074		-1.388	-7.37	8.64	20.00
	16.16	2.26	40.76	63.0		4011	8.68	19.08
8	-16.39	-3.94	4.70	62.4	-1.364	-7.17	8.57	18.93
9	15.89	2.20	4.67	61.4	1.322	4.01	8.51	18.61
10	-16.09	-3.89	4.70	61.4	-1.338	-7.09	8.57	18.63
11	15.58	2.20	4.70	59.4	1.296	4.00	8.57	18.00
12	-15.79	-4.14	4.85	63.0 -	-1.314	-7.53	8.84	19.09
	15.26	2.03	4.68	59.2	1.270	3.70	8.53	17.96
	-15.60	-4.67	5.26		* ^ ^ ^	-8.51	9.59	20.69
	14.83	1.44	4.64	57.6			8.46	17.46
	-15.41	-6.09	5.95		-1.282		10.83	23.55
	14.93	2.27	6.75		1.242		12.29	26.41
							8.22	15.76
	-14.35	-3.79	4.51		-1.194			
19	14.06	2.24	4.53		1.170		8.26	16.11
	-13.96	-3.80			-1.162		8.32	15.13
	13.67	2.25	4.54		1.137		8.28	15.49
	-13.67	-3.77	4.51		-1.137		8.23	14.68
23	13.43	2.24	4.54		1.117		8.28	15.11
	-13.48	-3.86	4.63	49.2	-1.122	-7.04	8.44	14.91
25	13.19	2.23	4.63	49.2	1.097	4.06	8.44	14.92
26 .	-13.43	-3.85	4.56	48.5	-1.117	7.02	8.32	14.71
27	13.00	2.23	4.56	48.3	1.082	4.06	8.32	14.64
28 -	-13.34	-3.86	4.56	47.5	-1.110	-7.04	8.32	14.41
	12.80	2.23	4.56	47.6	1.065	4.07	8.32	14.43
	-13.14	-3.86	4.56			-7.03	8.32	14.44
	12.56	2.24	4.56	46.5		4.07	8.32	14.09
		-3.89	4.66		-1.093		8.50	14.51
	12.37	2.22	4.67	46.8	1.029	4.04	8.52	14.19
						-7.06		
						4.05		
						-7.08		
						4.05		
						-7.09		
						4.05		
						-7.09		
	11.79					4.04		
						-7.09		
	11.89					4.20		
						-7.09		
45	11.74	2.30	4.76	4407	0.977	4.19	8.68	13.54

<u>Description</u>: This specimen was similar to specimen F1-C1 in detailing, fabrication and inspection.

<u>Test Control</u>: Strain, as measured on the top flange 5.52 inches from the column face. The strain was read on a Baldwin SR-4 strain indicator. Raw Data Included: Graphical load-deflection data.

Total Energy Absorption: 3,734 kip-inches.

Plastic Load Reversals to Failure: 240 (120 cycles).

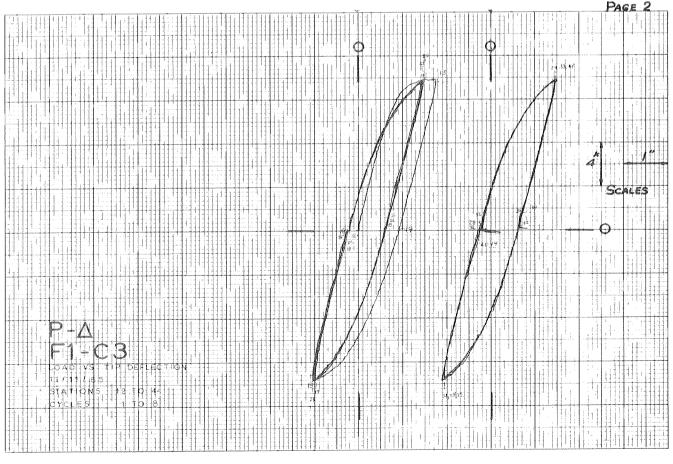
<u>Remarks</u>: One hundred cycles were applied to the specimen in the range $\pm 0.5\%$ strain without any apparent damage. There was but a hint of flange buckling as visually observed. The strain range was then

increased to $\pm 1.5\%$. After the first cycle in this range (i.e., after 101 plastic cycles) both flanges had developed distinct buckles. Fine cracks appeared at the ends of the top flange weld, and after 102 cycles, similar cracks were found in the bottom flange weld. After 106 cycles a fine crack was observed in the bottom flange at the web cope; by the 110th cycle, this crack was enlarging. At this time similar cracks were discovered in the top flange. Failure finally occurred after the 120th cycle when the latter cracks propagated through the top flange.

SPECIMEN TYPE F1-C3

DIMENSIONS OF WE SECTION

																					8.26	
																					5.16C	
																					5.160	
																					0.373	
																					C.369	
																					0.272	
																					29000.	
YIEL	. D	ST	2 E <	SS	υ.	ŝ	Ð	U.	٥	Û	ø	Ð	Ω.	μ	Ñ	L.	ŵ	٤·	Û.	÷	40.500	KSI


WF SECTION PROPERTIES


AREAY A COCOO O O O O O O O O O O O O O O O O	ြ မ မ မေ ဖ မ ့	5.96 INCHES**2
LOCATION OF CENTROID*, YE .	0 0 0 0 0 0 0	4.14 INCHES
MOMENT OF INERTIA, I	しこをむむねか	7C.4 INCHES**4
SECTION MOCULUS; TOP, ST .	လဲ ဆု ရာ ရာ ရေ ရေ ရေ	17.1 INCHES**3
SECTION MCCULUS, BOTTOM, SB	* 6 6 8 9 9 8	17.0 INCHES**3
LOCATION OF PLASTIC NEUTRAL	AXIS*, YP	4.17 INCHES
PLASTIC MCCULUS, Z	ပ္ ပ ပ ပ ေရ ေရ	19.3 INCHES**3
SHAPE FACTER		1.134
VIELD MOMENT, MY	ಸ್ರೆ ಹಲ ಹೆತ ಮು ಪು ಪು	57.34 KIP-FT.
PLASTIC MCMENT, MP		65.C1 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF	BOTTOM FLANGE	

BEAM PROPERTIES

LENGTH, L	ୟ ଉଛ	οp	Q 6	e e	ç	e	Ð	6	Ð	æ	89	ø	Ð	66.C	INCHES
ELASTIC ST															
YIELD DEFL	ECTION	P DEI	LTAY	1 0	6	ŵ	e	0	ψ	ъ	¢	s.,	¢	0.489	INCHES
YIELO LCAD	Vy PY o	6 e	0 6	υ	4,	Ø	ç	€)	ω	e.	e	÷	ω.	10.42	KIPS
PLASTIC LC	AC, PP	റെ	0 0	e	υ	o	ç	¢.	ω	ø	Ð	ø	ø	11.82	KIPS

		P	AGEL
the second s	les. 1	- G*	
		00	
A Sport for growthe for the sport of the spo			
\mathcal{M}	CALE	\$	
П - А-2.95KM			
$\mathbb{P}_{\mathcal{A}}$			
	3		
		LEC 11	ONS
	0 10	12	
673 per 12 ⁸	ELAST		
10 10 10 10 10 10 10 10 10 10 10 10 10 1			
24 and age light and to 122 1723 per 122 1723 per 122			

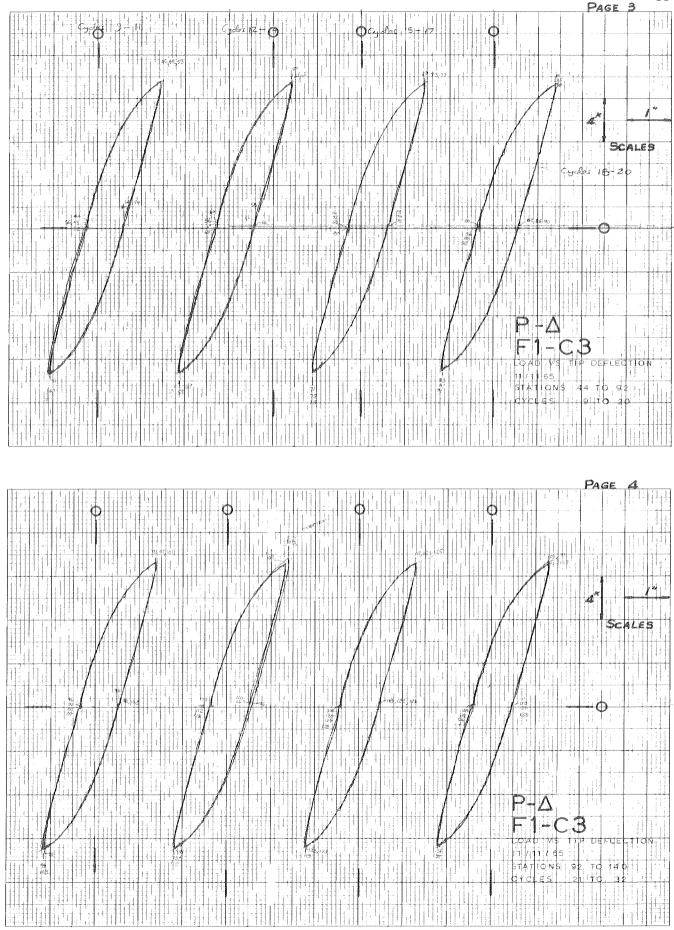


PLATE 5. (continued)

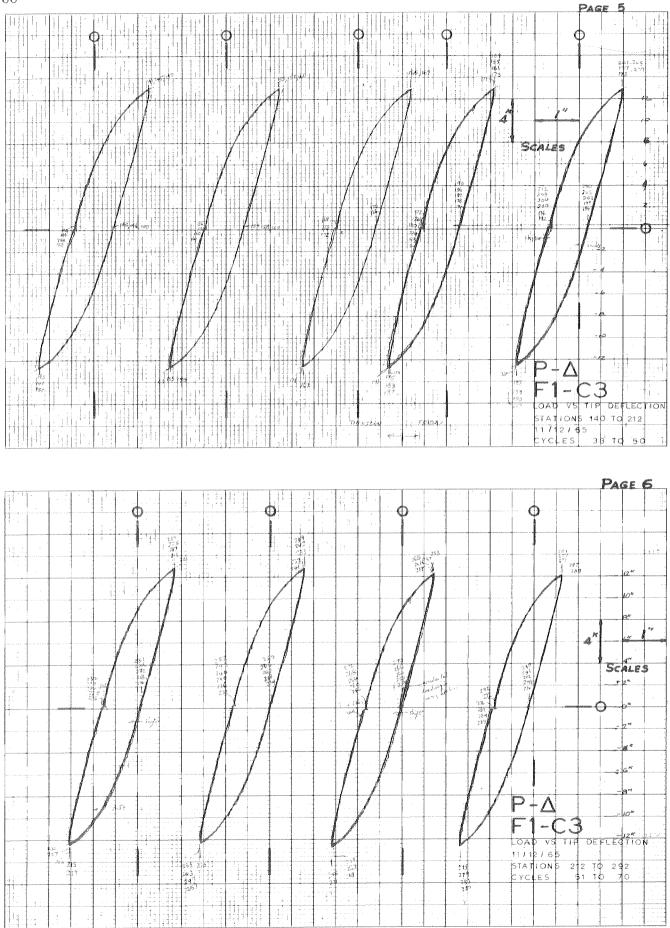


PLATE 5. (continued)

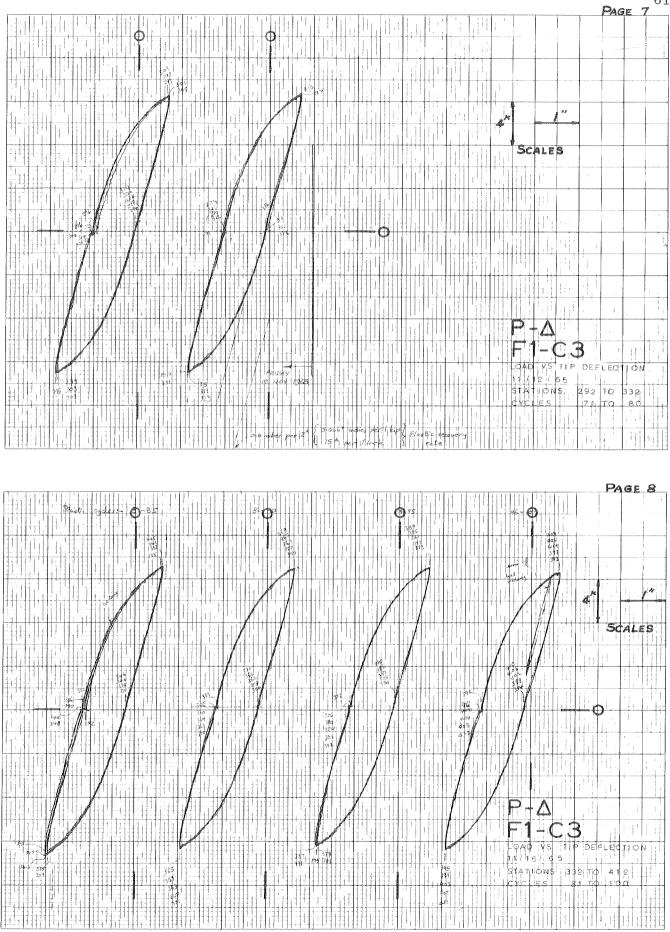


PLATE 5. (continued)

2	PAGE	9
	160	
	12	
	10	
	<u>(a</u>	:
	+4	
	+2	
	-2	
	-4	
	a	
$P+\Delta$	-10	
F1-C3	} -12	CITION
LOAD VS TIF 11/17/65 STATIONS 4	-14	
STATIONS 4 CYCLES 1		432

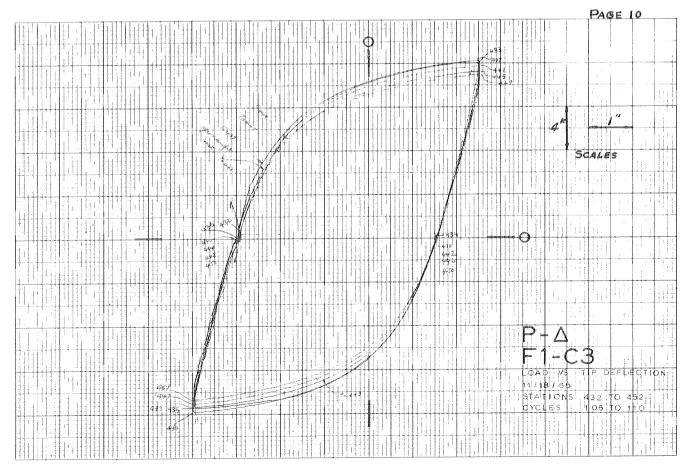
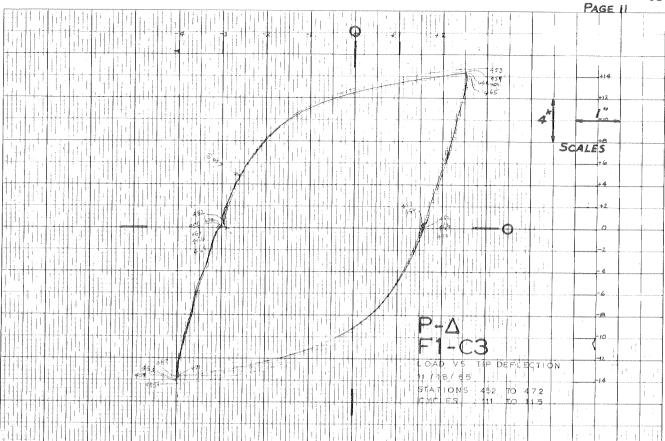



PLATE 5. (continued)

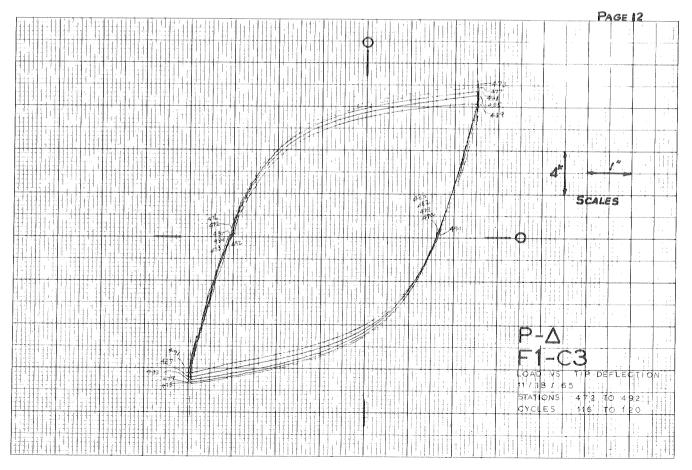
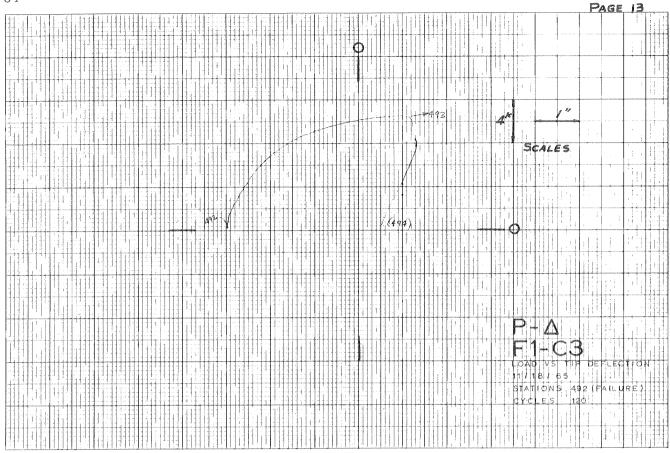




PLATE 5. (continued)

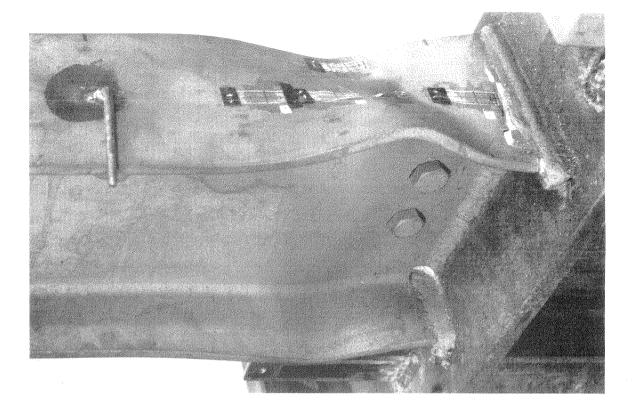


FIGURE 17. F1-C3

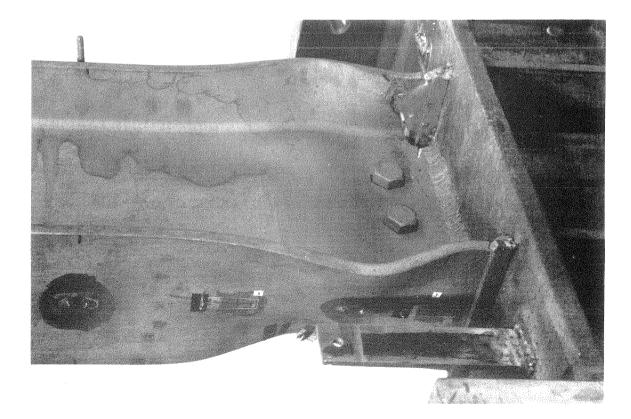
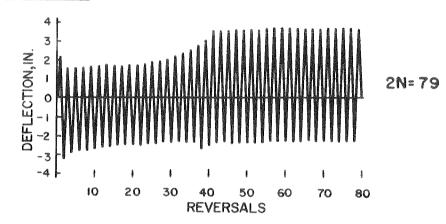


FIGURE 18. F1-C3

SPECIMEN F1-C3

Half-	Р	Δ	۵Í	Ъ		Δ	Č.	w		
Cycle	KIPS	IN.	IN.	K-IN.		6404°	1000			
-	3 % 62 × 3 ₁₀ 4	-6 1 1 1								
1	13.38	1.53	0.86	llel	1.132	2.76	1.55	3.39		
2	-13.43	-0.81	1.09	8.2	-1.136	-1.47	1.97	2.51		
3	12.98	1.21	0.78	Je4	1.098	2.17	1.41	2.25		
						-1.53	1.071	2.55		
4	-13.59	-0.85	0.80	8.4	-1.150					
5	13.11	1.23	0.80	7.6	1.109	2.22	1.44	2:33		
6	-13.54	-0.85	0.80	8.3	-1.146	-1.53	1.044	2.54		
7	13.16	1.26	0.80	7.9	1.114	2.28	1.44	2.41		
8	-13.51	-0.85	0.80	8.3	-1.143	-1.53	1.44	2.53		
9	13.14	1.25	0.81	8.1	1.112	2.26	1.46	2.46		
10	-13.52	-0.90	0.81	8.7	-1.144	-1.63	1.46	2.64		
inned Sweet	13.12	1.25	0.81	8.1	1.110	2.26	1.46	2.46		
12	-13.48	-0.90	0.81	8.6	-1.140	-1.63	1.046	2.63		
13	13.14	1.25	0.81	8.1	1.112	2.26	1.46	2.46		
14	-13.43	-0.90	0.81	8.6	-1.136	-1.63	1.46	2.62		
15	13.14	1.25	0.81	8.01	1.112	2.026	1.46	2.46		
16	-13.38	-0.90	0.81	8.6	-1.132	-1.63	1.46	2.61		
17	13.08	1.23	0.79	8 c 3	1.107	2.23	1.42	2.52		
18	-13.36	-0.91	0.80	8.5	-1.130	-1.65	1.44	2.59		
19	13.05	1.23	0.80	8.2	1.104	2.23	1.44	2.51		
20	-13.29	~0.88	0.79	7.9	-1.124	-1.59	1.43	2.41		
21	12.98	1.23	079	8.2	1.098	2.23	1.43	2.50		
22	-13.25	-0.95	0.79	8.9	-1.121	-1.70	1.43	2.72		
23	13.02	1.26	0.80	8.5	1.102	2.26	1.44	2.58		
24	-13.18	-0.91	0.79	7.9	-1.115	-1.63	1.43	2.42		
25	13.03	1.26	0.79	8.5	1.103	2.26	1.43	2.58		
26	-13.15	-0.91	0.79	7.9	-1.113	-1.63	1.43	2.42		
27	12.91		0.79	804	1.093	2.26	1.43	2.56		
28			0.79	8.0	-1.17	-1.63	1.43	2.42		
29	12.92	1.27	0.83	8.5	1.093	2.28	1.50	2.58		
30	-13.18	-0.89	0.83	8.3	-1.115	-1.60	1.50	2.52		
31	12.86	1.27	0.83	8.4	1.088	2.28	1.50	2.57		
32	-13.14	-0.89	0.83	8.2		-1.60	1.50	2.51		
33	12.89	1.27	0.83	8.5	1.091	2.28	1.50	2.58		
34	-13.06	-0.89	0.83	8.3	-1.105	-1.60	1.50	2.52		
		1.24	0.78		1.079	2.23	1.41	2.61		
36	-13.04	0.96	0.86	8.6	-1.103		1.55	2.63		
		1.24	0.86		1.076	2.23	1.55	2.59		
38	-13.04	-0.96	0.86	8.6	-1.103		1.55	2.63		
		1.24	0.86			2.23	1.55	2.58		
40	-12.97	-0.96	0.86	8.6	-1.098		1.55	2.62		
		1.23	0.83			2.22	1.50	2.51		
	12.68	-0.96	0.80	0°2 8°5	-1.095	-1.73	2044	2.59		
42	-12.94		0.80			2.22	1.44	2.53		
	12.75	1.23				-1.66	1:44	2.52		
lą lą 1. 5	-12.89	-0.92	0.80	8.3 8.3	-1.090	2.22	2044	2.52		
	12.70	1.23	0.80			2°22 -1°23				
46	-12.89	-0.96	0.80	8.5	-1.091		1.644	2.58		
	12.57	1.25	0.84			2.25	1.52	2.73		
48	-12.97	-0.98	0.89	9.0	-1.098		1.61	2.74		
	12.52	1.17	0.83			2.11	1.50	2.51		
					-1.088			2.56		
51	12.53	1.17	0.83	306	1.060	2.11	150	2.51		

Half		Δ	۵ (Ŵ	P	2	$\overline{\Delta}$	w
Cycł	e KIPS	IN.	IN o	K-IN	e e			
52	-12.86	-0.98	0.83	8:4	-1.088	-1.76	1.50	2.56
53	12.54		0.78	8.2	1.061	2.06	1.41	2.49
54	-12.83	-1.00	$0 \circ 84$	8.3	-1.085	-1.80	1.52	2.54
55	12.46		0.84	8.1	1.054	2.06	1.52	2.46
56	-12.83	-0.98	0.84	8.4	-1.086	-1.77		2.55
57 58	12.45	1.14 - 0.98	0.84	8.1	1.053	2.06		2.46
59	-12.82 12.45	1.14	0°84 0°86	8.4	-1.084	-1.77	1.52	2.55
60	-12.72	-0.99	0.84	8.3 8.6	1.053 -1.076	2.06 -1.79		2.52
61	12.65	1.15	0.84	8.4	1.070	2.08		2.62 2.56
62	-12.79	-0.99	0.84	8.6	-1.082	-1.79		2.63
63	12.38	1.14	0.84	8.2	1.047	2.06	1.52	2.51
64	-12.75	-0.99	0.84	8.6	-1.079	-1.79		2.62
65	12.35	1.09	0.79	8.0	1.045	1.97	1.43	2.44
66	-12.68	-1.03	0.81	8.4	-1.073	-1.86	1.46	2.57
67	12.29	1.09	0.81	8.0	1.040	1.97	1.46	2.43
68	-12.75	-1.03	0.81	8.5	-1.079	-1.86	1.46	2.59
69	12.35	1.09	0.81	8.0	1.045	1.97	1.46	2.44
70	-12.75	-1.03	0.81	8.5	-1.079	-1.86	1.46	2.59
71	12.36	1.05	0.78	8.2	1.046	1.90	1.41	2.49
72	-12.73	-1.06	0.82	8.5	-1.077	-1.92	1.48	2.59
73	12.32	1.05	0.82	8.1	1.042	1.90	1.48	2.47
74	-12.70	-1.06	0.82	8.5	-1.074	-1.92	1.48	2.59
75	12.11	1.05	0.82	8.0	1.024	1.90	1.48	2.43
76	-12.65	-1.06	0.82	8.5	-1.070	-1.92	1.48	2.58
77 78	12.23	1.04	0.81	8.1	1.035	1.87	1.46	2.48
79	12.28	-1.03 1.04	0.83 0.83	8.3	-1.068 1.039	-1.86	1.50	2.54
80	-12.62	-1.06	0.83	8.3		1.87	1.50	2.48
81	12.37	0.96	0.75	7.9		1.72	1.35	2.53
82	-12.70		0.80	7.8		-1.91	1.45	2.42 2.37
83	12.31		0.80		1.041		1.45	2.40
84	-12.70		0.80		-1.074		1.45	2.37
85		0.96	0.80	7.8		1.72	1.45	2.39
86	-12.60	-1.06	0.80	7.7		-1.91	1.45	
87	12.26	0.96	0.80		s	1.72	1.45	
88	-12.65	-1.06	0.000	7.7				
89	12.21	0.96	0.80	7.8	1.033	1.72	1.45	
90		-1.09	0.80	7.8			1.45	2.38
91	12.21	0.87	0.72		1.033		1.30	2.39
92	-12.60	-1.17	0.81	8.2		-2.10	1.46	
93	12.16	0.87	0.81			1.56		2.36
94	-12.60	-1.17	0.81		-1.066	-2.10	1.46	2.51
95 96	12.11 -12.50	0.87			1.024	1.56	1.46	2.35
97	12.11	-1.17	0.81	8.2	-1.057	-2.10	1.46	2.49
98	-12.55	0.87 -1.17	0.81 0.81	8.2	1.024 -1.062	1.56	1.46	2.35
99		0.87			1.023	-2.10 1.56	1.46 1.46	2.50
100		-1.19	0.81	8.2	-1.060	-2.14	1.46	2.35 2.49
101		0.72			1.020	1.30	1.21	2.34
102		-1.30	0.78		-1.057	-2.34	1.041	2.50
		0.72			1.020	1.30	1.41	2.31
104	-12.50	-1.30	0.78		-1.057	-2.34	1.41	2.50


00								
Half-	\mathbf{P}	Δ	Δ^{\prime}	W	P	Δ	$\overline{\Delta}'$	\overline{w}
Cycle	KIPS	IN.		K-IN.		(specifi		
C .	se s ada v sar	A * 1 &	34					
105	12.11	0.72	0.78	7.6	1.024	1.30	1.41	2.32
106	-12.48	-1.30	0.78		-1.056	-2.34	1.41	2.49
107	12.01	0.72	0.78		1.016	1.30	1.41	2.30
108	-12,45	-1.30	0.78	8.2	-1.053	-2.34	1.41	2.51
109	11.96	0.72	0.78		1.012	1.30	1.41	2.29
110	-12.48	-1.30	0.78	8.2	-1.056	-2.34	1.41	2.51
111	11.92	0.71	0.77		1.008	1.28	1.39	2.28
112	-12.45	-1.31	0.77	7.9	-1.053	-2.35	1.39	2.41
	11.94	0.71	0.77		1.010	1.28	1.39	2.28
114	-12.40		0.77		-1.049	-2,35	1.39	2.40
		0.71	0.77		1.012	1.28	1.39	2.28
116	-12.38	-1.31	0.77		-1.047	-2.35	1.39	2.39
	11.87	0.71	0.77		1.004	1.28	1.39	2.27
118	-12.43	-1.31	0.77		-1.052	-2.35	1.39	2.40
	11.87	0.71	0.77		1.004	1.28	1.39	2.27
	-12.43	-1,31	0.77		-1.052	-2.35	1.39	2.40
	11.92	0.65	0.75	7.1	1.008	1.17	1.36	2.18
122	-12.35	-1.33	0.78	7.5	-1.045	-2.39	1.41	2.28
	11.77	0.64	0.76	7.1	0.996	1.16	1.37	2.16
124	-12.38	-1.31	0.76		-1.047	-2.36	1.37	2.30
	11.77	0.64	0.76	7.1	0.996	1.16	1.37	2.16
126	-12.35	-1.31	0.76	7.6	-1.045	-2.36	1.37	2.31
127	11.77	0.63	0.76		0.996	1.14	1.37	2.18
128	-12.35	-1.31	0.76	7.6	-1.045	-2.36	1.37	2.31
	11.70	0.62	0.76	7.1	0.990	1.12	1.37	2.17
130	-12.31	-1.33	0.76	7.6	-1.041	-2.40	1.37	2.32
131	11.72	0.59	0.72	6.8	0.991	1.07	1.30	2.07
132	-12.33	-1.37	0.72	7.4	-1.043	-2.46	1.30	2.26
133	11.72	0.59	0.72	6.8	0.991	1.07	1.30	2.07
134	-12.28	-1.37	0.73	7.4	-1.039	-2.46	1.32	2.26
135	11.57	0.59	0.73	6.7	0.979	1.07	1.32	2.04
136	-12.28	-1.37	0.75	7.5	-1.039			2.28
137	11.62	0.60	0.75	6.8	0.983	1.07	1.35	2.06
138	-12.26	-1.37	0.77	7.5	-1.037	-2.47	1.39	2.28
139	11.65		0.77		0.986	1.07	1.39	2.07
140	-12.33	-1.37	0.79		-1.043		1.43	2.31
141	11.97		0.83		1.013	1.20	1.50	2.36
142	-12.72	-1.54	0.93		-1.076	-2.78	1.68	2.84
143		0.67	0.93		1.020	1.20	1.68	2.69
144		-1.51	0.95		-1.070		1.71	2.84
		0.67	0.95		1.023		1.71	2.70
146		-1.51	0.93		-1.070		1.68	2.83
	12.11		0.93		1.024		1.68	2.70
148			0.93		-1.070		1.68	2.83
			0.93		1.023	1.20	1.68	2.70
			0.93		-1.072	-2.73	1.68	2.84
151	12.35	0.65	0.89		1.045	1.18	1.61	2.68
152	-12.65	-1.54	0.89		-1.070	-2.78	1.61	2.73
	12.21	0.64	0.89		1.033	1.15	1.61	2.70
154	-12.65	-1.54			-1.070	-2.78	1.61	2.73
	12.21		0.89		1.033		1.61	2.70
		-1.54			-1.070		1.61	2.73 2.70
157	12.11	0.64	0.07	0.7	1.024	1.15	1.61	COTV

Half- Cycle	- p e KIPS	A IN o	Δ' INo	W K-IN.	P	Δ	$\overline{\Delta}^{\prime}$	Ŵ
158	-12.53	-1.54	0.89	8.9		-2.78	1.61	2.71
159	12.16	0.64	0.89		1.029	1.15	1.61	2.71
160	-12-62	-1.54	0.89	8.9		-2.78	1.61	2.73
161	12.45	0.60	0.85	9.0	1.053	1.09	1.53	2.75
162	-12.96	-1.61	0.93	9.3	-1.096	-2.90	1.68	2.85
163	12.55	0.62	0.93	9.0	1.062	1.12	1.68	2.73
164	-13.04	-1.61	0:93	9.4	-1.103	-2.90	1.68	2.86
165	12.53	0.62	0.93	8.9	1.060	1.12	1.68	2.73
$\frac{166}{167}$	-13.28 12.40	-1.64 0.62	0.95 0.95	10.1 8.8	-1.123	-2.96	1.71	
168	-13.09	-1.65	0.95	10.2	1.049 -1.107	1.12 -2.97	1.71	2.70
169	12.40	0.62	0.95		1.049	1.12	1.71	3.10 2.70
170	-12.84	-1.61	0.85	9.0		-2.90	1.53	2.75
171	12.18	0.63	0.87		1.031	1.13	1.57	2.70
172	-12.73	-1.57	0.89	9.3	-1.077	-2.83	1.61	2.83
173	12.22	0.63	0.89	8.9	1.034	1.13	1.61	2.70
174	-12.65	-1.57	0.90	9.2	-1.070	-2.83	1.62	2.82
175	12.16	0.63	0.90		1.029	1.13	1.62	2.69
176	-12.65	-1.57	0.90	9.2		-2.83	1.62	2.82
177	12.11	0.63	0.90		1.025	1.13	1.62	2.68
178	-12.68	-1.57	0.90		-1.073	-2.83	1.62	2.82
179	12.12 -12.62	0.63 -1.57	0.90 0.90		1.025	1.13	1.62	2.68
181	12.11	0.67	0.93	9.2 8.8	-1.068 1.024	-2.83 1.20	1.62	2.81
182	-12.65	-1.52	0.93	9.1	-1.070	-2.74	1.68 1.68	2.68 2.78
183	12.06	0.67	0.93	8.8	1.020		1.68	
184	-12.55	-1.50	0.93	9.2	-1.062	-2.71	1.68	2.80
185	12.11	0.67	0.93	8 ~ 8	1.024	1.20		2.68
186	-12.55	-1.50	0.93	9.2	-1.062	-2.71		2.80
187	12:06	0.67	0.93	8.8	1.020	1.20		2.67
188	-12.55	-1.55	0.93	9.2	-1.062	-2.80		2.79
189	12.06	0.67	0.93			1.20		
190	-12.53	-1.55	0.93	9.1	-1.060			2.79
191 192	12.06 -12.55	0.63				1.13	1.64	2.72
193	12.09	0.63		9.3 0 n	-1.062 1.023		1.64 1.64	2.83
194		-1.57				-2.84		
195		0.63				1.13		
196	-12.50	-1.57		9.2		-2.84		
197		0.63			1.024	1.13		
198	-12.45	-1.57	0.91	9.2	-1.053		1.64	
199		0.63			1.021			2.73
200				9.2	-1.052		1.64	2.80
201			2.02	24.1	1.203			
202 203		-3.49		48.4	-1.315			
205	15.57 -16.01	2.50 3.44	4.43 4.38		1.317 -1.354	4.50 -6.20		18.20
205	15.92					4.49		18.09 17.69
206		-3.49		58.8	-1.341			17.92
207		2.52		57.3	1.332			17.48
208		-3.49		58.8	-1.326			17.94
209			4.38			4.49	7.89	17.58
210	-15.43	-3.49	4.38	58.6	-1.305	-6.29	7.89	17.86

Half-	Р	Δ	\triangle'	W	$\tilde{\mathrm{P}}$	$\overline{\Delta}$	$\overline{\wedge}'$	Ŵ
Cycle	KIPS	IN.	IN.	K-IN.		Pilone.	inerv.	
211	15.53	2.54	4.43	58.8	1.314	4.58	7.99	17.93
212	-15.14	-3.48	4.43	57.5	-1.281	-6.27	7.98	17.54
213	15.51	2.56	4.43	58.5	1.312	4.61	7.98	17.84
214	-15.15	-3.51	4.46	56.8	-1.282	-6.33	8.04	17.31
215	14.96	2.56	4.46	56.0	1.266	4.62	8.04	17.06
216	-14.78	-3.48	4.46	54.6	-1.250	-6.27	8.04	16.65
217	14.41	2.57	4.46	53.5	1.219	4.63	8.04	16.32
218	-14.47	-3.48	4.46	53.4	-1.225	-6.28	8.04	16.27
219	14.09	2.57	4.46	52.3	1.192	4.64	8.04	15.95
220	-14.18	-3.51	4.46	51.8	-1.199	-6.32	8.04	15.81
221	13.79	2.56	4.45	51.4	1.167	4.61	8.02	15.67
222	-13.93	-3.54	4.49	51.4	-1.179	-6.38	8.09	15.68
223	13.55	2.58	4.52	50.7	1.147	4.65	8.15	15.45
224	-13.69	-3.53	4.52		-1.159	-6.37	8.15	15.52
225	13.35	2.60	4.54		1.130	4.68	8.18	15.21
226	-13.55	-3.52	4.54	50°5	-1.147	-6.34	8.18	15.40
227	13.16	2.63	4.56	49.4	1.113	4.73	8.22	15.07
228	-13.35	-3.53	4.56	50.0	-1.130	-6.36	8.22	15.25
229	13.16	2.59	4.57		1.113	4.66	8.24	15.00
230	-13.41	-3.51	4.59	50.2	-1.135	-6.33	8.27	15.30
	12.96	2.54	4.55	49.4	1.096	4.58		15.08
232	-13.18	-3.54	4.55		-1.115	-6.38	8.20	14.94
233	12.74	2.55	4.55		1.078	4.59	8.20	14.75
234	-13.07	-3.60	4.62	48.6	-1.106	-6.49	8.33	14.82
235	12.33	2.54	4.62	47.3	1.043	4.58	8.33	14.41
236	-12.84	-3.54	4.59	47.3	-1.087	-6.37	8.27	14.42
237	11.94	2.55	4.59	45.8	1.010	4.59	8.27	13.98
238	-12.57	-3.57	4.58	45.5	-1.064	-6.43	8.26	13.87
239	11.17	2.56	4.60		0.945	4.61	8.29	13.19
240	-12.24	-3.56	4.59	43.8	-1.036	-6.42	8.27	13.34

SPECIMEN F1-C4

<u>Description</u>: This specimen was similar to specimen Fl-Cl, except that it was fabricated in a University shop and was not ultrasonically inspected.

Program of Cycling:

<u>Test Control</u>: Strain, as measured on the top flange 5.46 inches from the column face. The strain was read on a Baldwin SR-4 strain indicator. Raw Data Included: Graphical load-deflection data.

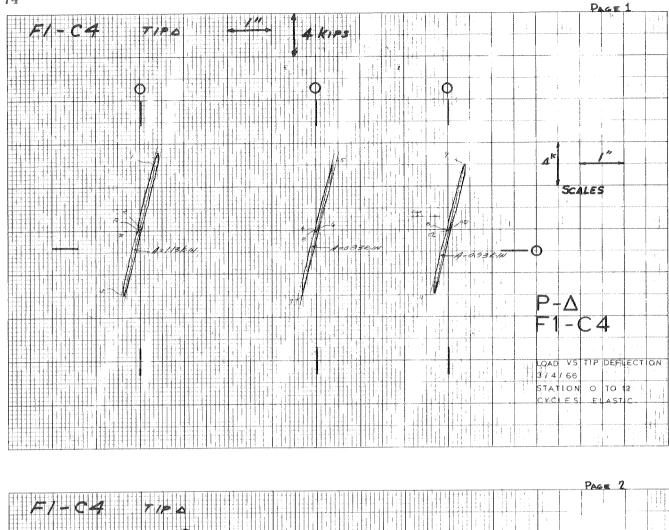
Total Energy Absorption: 2,837 kip-inches.

Plastic Load Reversals to Failure: 79 $(39\frac{1}{2} \text{ cycles})$.

<u>Remarks</u>: The specimen was immediately loaded to the $\pm 1\%$ strain range. According to visual observation, buckling of both the top and bottom flanges had occurred by the end of the first three reversals. The first cracks were noted after the l4th cycle, at the stud weld nearest the column on the top flange. Small cracks also developed at the extremities of the flange butt-welds, and from the web copes during subsequent cycles. After 25 cycles, cracks at both top and bottom flange studs were seen to be penetrating into the flange thickness. The crack at the bottom stud began to propagate through and across the bottom flange until at termination of the test, it measured $3\frac{1}{2}$ inches long in the flange and had penetrated $1\frac{1}{2}$ inches into the web.

SPECIMEN TYPE F1-C4

DIMENSIONS OF WF SECTION


DEPTH	40 - O	\$ D	c	¢	Ð	Ð	Ð	Ð	¢	ŵ	Ð	ø	Ð	ø	8.24	INCHES
TOP FLANGE WI	DTH	c e	0	Ð	Ð	Ģ	¢		Ş	÷	Ð	ø	49	4D	5.280	INCHES
BOTTOM FLANGE	WID	TH o	e	Q	Ð	Ð	¢	Ð	s	や	Ð	-@	ŵ	ø	5.310	INCHES
TOP FLANGE TH	ICKN	ESS	\$	Ð	10	Ð	Ð	ø	ø	ø	٥	۲	₩D.	Ð	0.350	INCHES
BOTTOM FLANGE	THI	CKNE	SS	¢	ø	c	¢	÷	Ð	\$	*	ę	Ð	Ð	0.347	INCHES
WEB THICKNESS	ю 0	10 C	\$	ø	¢	¢	Ð	ø	÷C	ŵ	49	٩	÷	Ð	0.247	INCHES
ELASTIC MODUL	JS 。	с 0	ō	ø	ø	٩	Ð		٩	40	-sp	Ð	¢	¢	29400。	KSI
YIELD STRESS	9 Q	0 0	-8-	Ð	¢	жQ	Ð	ø	ø	¢	0	Ð	Ø	ø	35.900	KSI

WF SECTION PROPERTIES

AREA, A 。。	ର ଜ ଜ ଜ		0 0 0 0	0 2 0	5.64 INCHES**2
LOCATION OF	CENTROI	D≉, YE ₀	0 6 0 7	io so so	4.12 INCHES
MOMENT OF I	NERTIA,	l e c c	ୟ ର କ	\$ \$ \$	67.6 INCHES**4
SECTION MOD					16.4 INCHES**3
SECTION MOD	ULUS, BO	ITOM, SB	ତ ବେ ବେ	\$ \$ \$ \$	16.4 INCHES**3
LOCATION OF	PLASTIC	NEUTRAL	AXIS*,	YP 。。	4.12 INCHES
PLASTIC MOD	ULUS, Z	* * * * *	6 6 6 6	¢ 9 ¢	18.4 INCHES**3
SHAPE FACTO	Roso	* * * *	\$ \$ \$ \$ \$	6 6 6 B	1.123
YIELD MOMEN	T, MY o	\$`0 C \$	€ © © ©	\$\$ \$\$ \$	49.05 KIP-FT.
PLASTIC MOM	ENT, MP		ବ ଶ ବ ବ	£0 46 48	55.07 KIP-FT.
*MEASURED FRO	M OUTSID	E FACE OI	- BOTTOM	FLANGE	

BEAM PROPERTIES

LENGTH	L	0	ю 4	o o	÷Q	Ю	ø	÷Ð	¢	жÇ	÷Q	¢	Ф	۲	0	¢	8	66.0	INCHES
ELASTIC	ST.	IFF	NES	Sr	P,	DI	ELT	ΓA	Ð	Ð	ø	¢	¢	Ð	0	¢	ю	20.73	KIPS/IN.
YIELD DI	EFLI	ECT	ION	9	DEI	. 1 :	AΥ	Q	õ	ø	0	¢.	o	ø	Ð	Ð	Ð	0.430	INCHES
YIELD LU	JAD,	v P	Y .	0	ø	ø		ø	٩	ø	Ð	9	ø	÷	*	ø	Ð	8.92	KIPS
PLASTIC	LO	AD 🔊	P₽	• •	ø	0	c	0	Ð	Q	o	0	ø	Ð	0	o	Q	10.01	KIPS

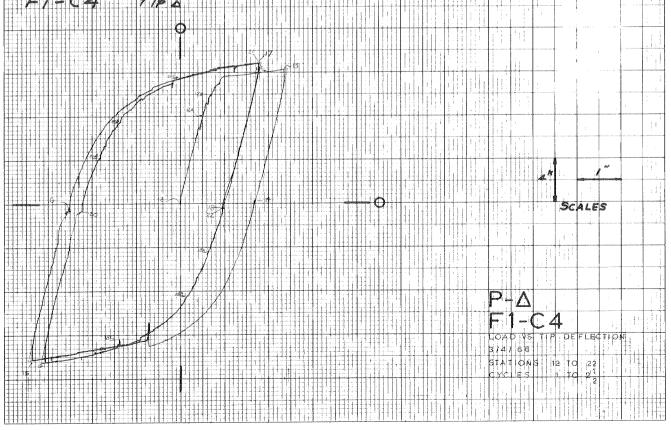
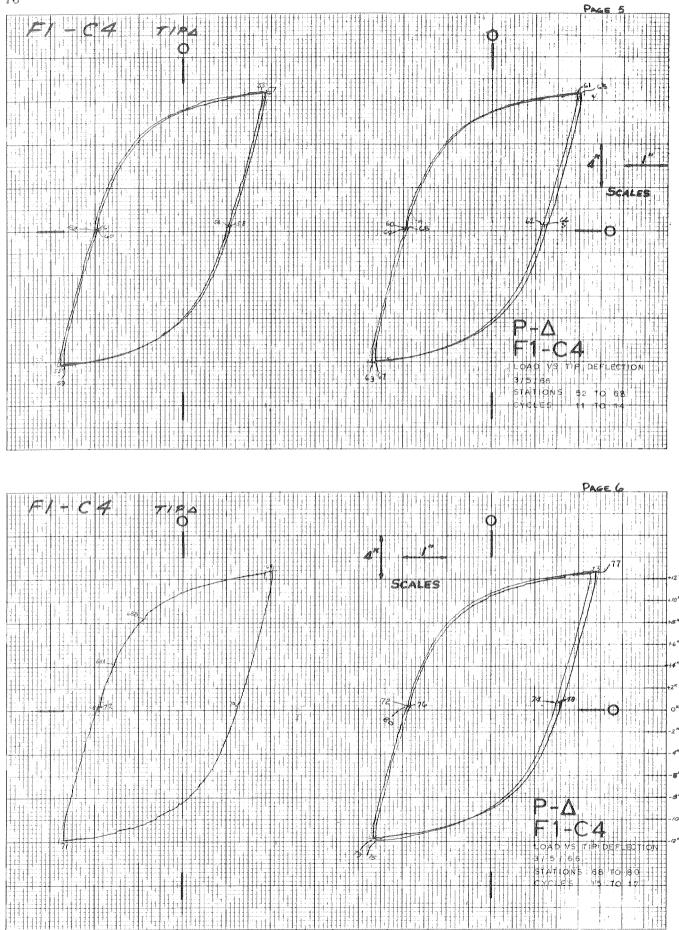
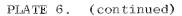




PLATE 6. LOAD VS. DEFLECTION - F1-C4

PLATE 6. (continued)

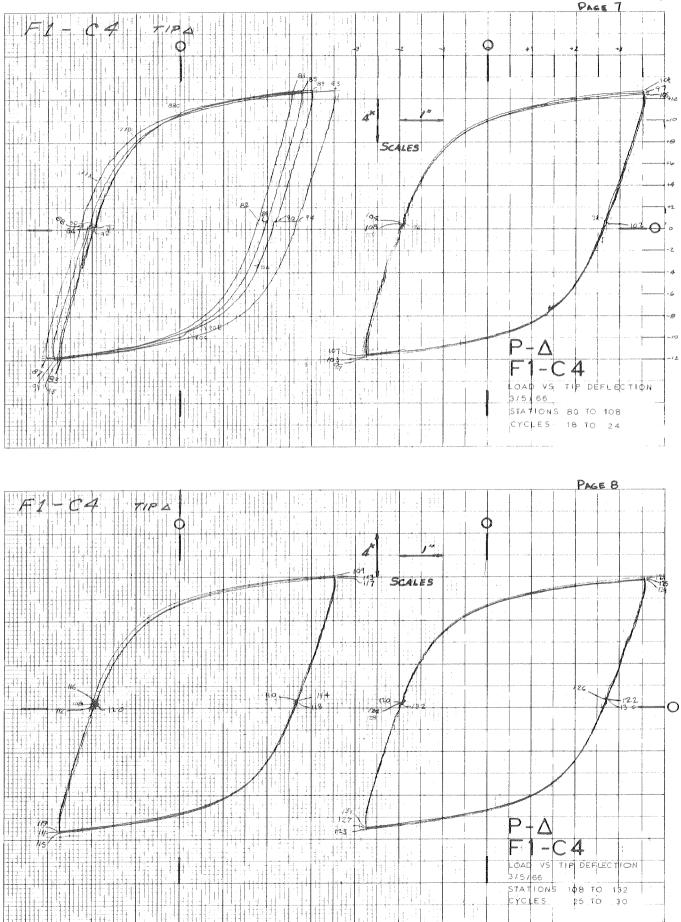
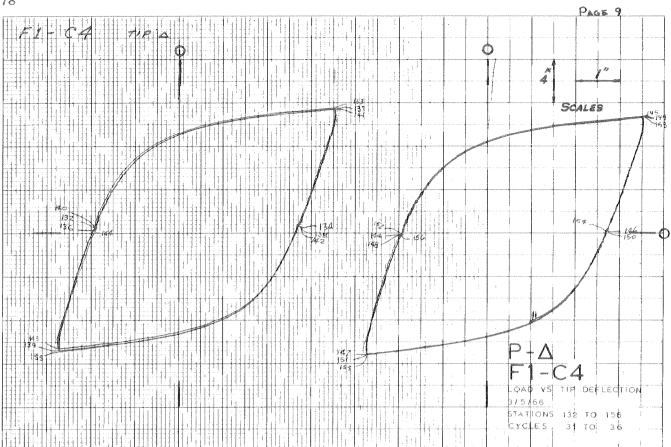
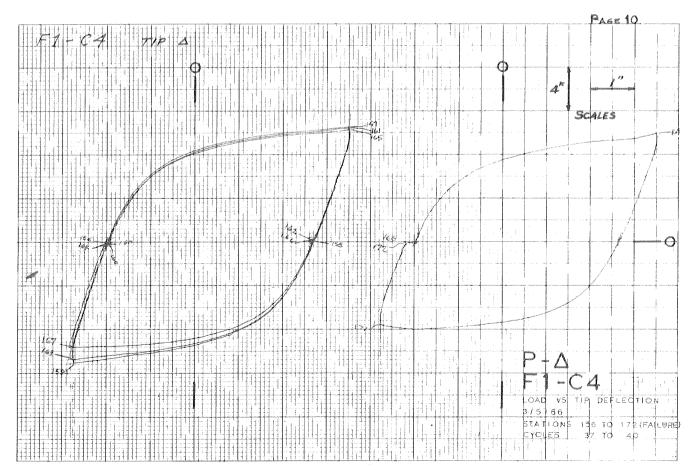




PLATE 6. (continued)

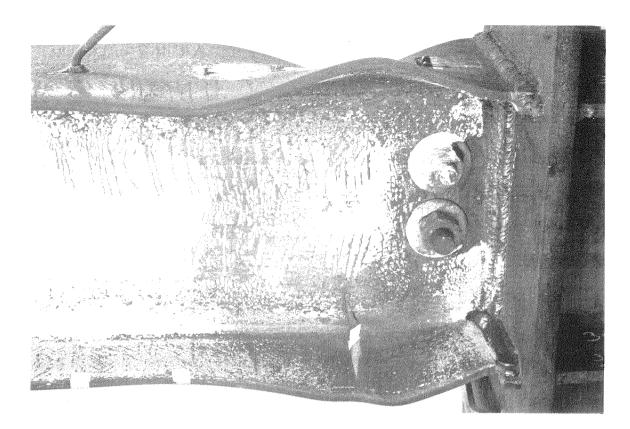


FIGURE 19. F1-C4

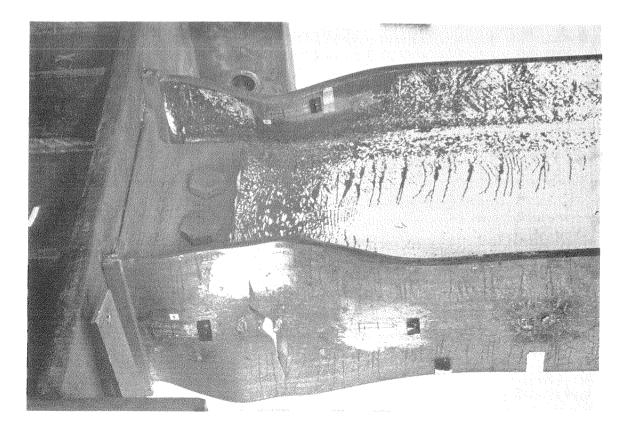
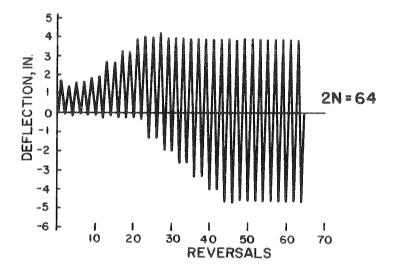


FIGURE 20. F1-C4

SPECIMEN F1-C4

a **4**

1. 1.193 - 1. - 1.


Half- Cycle	P KIPS	∆ IN₀	∆′ IN∝	W K-INo		, 17 ¹⁻⁵) - 1 💆	$\overline{\bigtriangleup}'$	Ŵ
1 2	12.44	2.18 -3.19	1.63 4.10	19.3 46.4	1.243	4.52 -6.61	3.38 8.49	8.00 19.19
3	12.90	1.60	3.35	36.5	1.289	3.31	6.95	15.11
4	-13.28	-2.89	3.09	35.1	-1.326	-5.99	6.40	14.52
5	12.94	1.60	3.09	37.9	1.293	3.31	6.40	15.68
6	-13.02	-2.78	3.00	32.7	-1.300	-5.76	6.21	13.54
7	12.80	1.61	3.05 3.00	32.1 33.2	1.279	3.33 -5.70	6.32 6.22	13.29
o 9	12.68	1.66	3.00	31.8	1.267	3.44	6.21	13.14
10	-12.58	-2.67	2.97	31.3	-1.256	-5.53	6.14	12.95
11	12.53	1.69	2.99	31.3	1.252	3.50	6.18	12.97
12	-12.70	-2.60	2.90	31.5	-1.269	-5.39	6.00	13.05
13	12.49	1.75	2.95	30.8	1.248	3.63	6.10	12.75
14	-12.29	-2.57	2.93	30.4	-1.228	-5.33	6.06	12.56
15	12.14	1.76	2.99 2.94	30.5 30.1	1.213 -1.225	3.64 -5.18	6.19 6.08	12.64 12.45
16 17	-12.27 12.39	-2.50 1.67	2.85	29.7	1.238	3.46	5.90	12.28
18	-12.27	-2.46	2.85	29.0	-1.226	-5.10	5.90	11.99
19	12.13	1.72	2.87	29.2	1.212	3.56	5.93	12.09
20	-12.02	-2.47	2.86	28.5	-1.201	-5.11	5.93	11.80
21	12.02	1.74	2.89	29.5	1.200	3.60	5.98	12.19
22	-11.98	-2.50	2.89	29.2	-1.197	-5.17	5.98	12.07
23	11.89	1.80	2.94	28.9	1.188	3.73	6.08	11.98
24	-11.90	-2.42 1.88	2.91 2.99	29.2 29.2	-1.189 1.174	-5.01 3.90	6.02 6.20	12:08
25 26	11.75		3.00	29.4	-1.182	-5.01	6.20	12.17
27	11.69	1.97	3.10	29.7	1.168	4.09	6.42	12.27
28	-11.78	-2.33	3.03	30.0	-1.177	-4.83	6.28	12.40
29	11.70	2.04	3.11	29.6	1.169	4.23	6.44	12.23
30	-11.69	-2.34	3.11	29.9	-1.167	-4.85	6.43	12.36
31	11.64	2.22	3.26	31.2	1.163	4.61	6.76	12.89
32	-11.77	-2.31	3.21 3.23	30.9	-1.176 10157	-4.79 4.86	6.64 6.68	12.80
33 34	11.58	2.35 -2.38	3,28	31.0 32.7	-1.170	≈4°00 ≈4°94	6.80	13.53
35	11.58	2.56	3.58		1.157	5.29	7.41	14.10
36	-11.64	-2.36	3.58		-1.163	-4.89	7.41	14.40
37	11.58	2.79	3.79	36.2	1.156	5.77	7.84	14.97
38	-11.72	-2.71	4.10	40.5	-1.170	-5.62	8.48	16.76
39	11.74	3.01	4.28		1.173	6.24		17.47
	-11.91	-2.55	4.11		-1.190	-5.28 7.30	8.50 9.56	16.93 18.70
41 42	11.64 -11.79	3.53 -2.39	4°62 4°45		L.163 -1.178	-4.95		18.03
	11.55	3.56	4.46		1.154	7.37	9.25	17.84
la la	-11.60		4.46		-1.159	-4.83	9.24	17.89
45	11.42	3.57	4.40		1.141	7.38	9.24	17.63
46	-11.58	-2.38	4.49		-1.157	-4.94	9.31	17.91
47	11.28	3.60	4.51		1.127	7.45	9.35	17.44
48	-11.51	-2.38	4.52		-1.150	-4.94	9.37	17.82
	11.07	3.58 -2.34	4°52 4°47		1.106 -1.129	7.42 -4.84	9.36 9.26	17.42 17.38
	-11.30 10.97	3,58	4,49		1.096	7.42	9.30	16.75
1 2	えるひょう	1997 C. 2017 Part	4 K K W	e ngr "kur" wêr"	alar en 202 var 2014	, and at their	an an antin and	

Half- Cycle	P KIPS	A IN o	Δ´ IN₀	w K-IN。	Ē	Ā	$\overline{\Delta}^{\mathbb{Z}}$	errana. W
*			\$ 1 ¥ 0					
52	-11.23	-2.34	4.48	41.1	-1.122	-4.84	9.28	17.02
53	10.91	3.59	4.48	40.2	1.090	7.43	9.28	16.63
54	-11.17	-2.34	4.43	41.4	-1.116	-4.85	9.18	17.15
55	10.88	3.69	4.54	40.3	1.087	7.64	9.39	16.67
56	-11.08	-2.28	4.53	41.0	-1.107	-4.72	9.39	16.95
57	10.67	3.70	4.53	39.4	1.066	7.66	9.39	16.28
58	-11.00	-2.28	4.53	40.5	-1.099	-4.73	9.39	16.76
59	10.58	3.70	4.53	38.9	1.057	7.66	9.39	16.09
60	-10.92	-2.28	4.53	40.2	-1.091	-4.73	9.39	16.65
61	10.49	3.66	4.52	38.7	1.048	7.58	9.36	16.03
62	-10.82	-2.26	4.52	39.6	-1.081	-4.69	9.37	16.38
63	10.42	3.67	4.52	38.1	1.041	7.61	9.36	15.77
64	-10.75	-2.29	4.52	39.4	-1.074	-4.73	9.37	16.30
65	10.34	3.67	4.52	38.1	1.033	7.61	9.37	15.77
66	-10.68	-2.27	4.48	39.2	-1.067	-4.70	9.28	16.23
67	10.21	3.67	4.55	38.4	1.020	7.59	9.42	15.91
68	-10.61	-2.30	4.55	38.8	-1。060	-4.76	9.42	16.06
69	10.15	3.67	4.55	37.3	1.014	7.60	9.42	15.44
70	-10.62	-2.30	4.55	38.7	-1.061	-4.76	9.42	16.03
71	10.08	3.67	4.55	37.0	1.007	7.60	9.42	15.33
72	-10.58	-2.30	4.55	38.6	-1.057	-4.76	9.42	15.98
73	10.00	3.68	4.55	37.7	0.999	7.62	9.43	15.58
74	-10.45	-2.28	4.56	37.9	-1.044	-4.72	9.43	15.67
75	9.95	3.68	4.56	37.0	0.994	7.62	9.43	15.31
76	-10.10	-2,29	4.56	37.5	-1.009	-4.73	9.44	15.52
77	9.79	3.68	4.56	36.3	0.978	7.63	9.43	15.02
78	-8.99	-2.30	4.60	35.1	-0.898	-4.77	9.52	14.53
79	9.41	3.65	4.51	33.3	0.940	7.55	9.35	13.77

SPECIMEN F1-C6

Description: This specimen was similar to specimen Fl-C4 with respect to detailing, fabrication and inspection.

Program of Cycling:

<u>Test Control</u>: Strain, as measured on the top flange 5.50 inches from the column face.

Raw Data Included: Graphical load-strain data for the control strain. Grappical load-deflection data.

Total Energy Absorption: 2,574 kip-inches.

Plastic Load Reversals to Failure: 64 (32 cycles).

<u>Remarks</u>: A crack was found at the innermost top flange stud weld after $7\frac{1}{2}$ cycles. Buckling of the top flange became visible after 9 cycles. By the 21st cycle, the above crack was beginning to penetrate into the top flange. After $27\frac{1}{2}$ cycles, numerous fine cracks were noted in the concave face of the top flange buckle, possibly originating from a scribe mark for strain gage positioning. Necking of the web became apparent after $29\frac{1}{2}$ cycles, and the first-mentioned crack penetrated into the web in the next cycle. At termination of the test, the top flange crack extended across virtually the entire flange.

SPECIMEN TYPE F1-C6

DIMENSIONS OF WF SECTION

																		8.24	
																		5.300	
																		5.300	
																		0.345	
																		0.352	
																		0.262	
																		29400.	
YIELD	ST	RE:	SS	ø	Ð	Ð	-0	\$ Ф	ø	49	Q	Ð	\$ ø	Ð	ø	۹	ø	35.900	KSI

WF SECTION PROPERTIES

														5.76	INCHES**2
LOCATIO	N OF	CENTR	OID	* 9	ΥE	ø	Ð		Ð	Ð	Ð	Ð	ø	4.10	INCHES
MOMENT	OF IN	ERTIA	9 I	÷	٩	*	¢	*	ф	₽	40	ø	ø	68.1	INCHES**4
SECTION	MODU	LUS,	TOP	, S	T	Ð	-O	49	Ð	₹ 0	\$	ø	Ð	16.5	INCHES**3
SECTION	MODU	LUS,	BOT	TOM	» S	SВ	ø	49	ø	-19	\$	Ð	¢	16.6	INCHES**3
LOCATIO	N OF	PLAST	IC	NEU	TRA		АX	IS	* 7	Y	Р	-19		4.06	INCHES
PLASTIC	MODU	LUS,	Z	£ 0	÷	ъ	ø	•	0	Ð	\$	•	\$	18.6	INCHES**3
SHAPE F	ACTOR	10 IV	-O	~ ~	÷Ð	Ð	9	÷	Ø .	Ð	÷	÷	0	1.132	
YIELD MI	OMENT	» MY	¢		Ð	Ð	0	÷0	0	• ·	-9	۲	ø	49.21	KIP-FT.
PLASTIC	MOME	NT, M	Ρ	e e	Ð	0	æ.	@ :	¢ ;	¢	ø	Ð	÷	55.71	KIP-FT.
*MEASURED	FROM	OUTS	IDE	FA	СE	0F	81	OT	TO I	Μ	FL	ΑΝ	GE		

BEAM PROPERTIES

LENGTH	\$	-	49	¢	Ð	\$	Ð	¢	\$	Ð	\$	Ð	٩	•	¢	ø	÷Ð		Ð	66.0	INCHES
ELASTI	C	STI	FF	NE	\$5	ş	P/	DI	EL 1	ΓA	Ð	ø	ç	-	æ	Ø	40	ø	-	20.89	KIPS/IN.
YIELD	DE	FLE	EC T	10	N p	Û	EL	T/	QΥ	ø	-	\$		4	÷	٢	40	-10	Ð	0.428	INCHES
YIELD	LO	AD ,	Р	Y	ø	ø	ø	Ð	ø	¢.	49	Ð	4	Ð	Ф	ø	÷	ø	Ð	8.95	KIPS
																				10.13	

36																																																														Pa	GE.	1	
	11	1.1		∔						1				1		i	:	-											1.1.1.1				and the second s	:]	-	, 1			ľ			H																				_			:
			- - -		-					4.				1.					++	11			1						quite	0	1						i																												!
						1	-			1			11		-	Ţ			Ħ			Ħ	•		T				1		1					t	11							+		++	T	• : •	T																
										ł						1]-[1					16		1	4	5		9. 7	21 +1	++	1	a.	34	uc'		5	2			1				1			t		1										1				
					biepu				4				Ì			-			1		+	Ť	t	++			-	1	+		12	1		-	+			T	1	1					1	+ 	÷+-		;														1		
				<u></u> 				i t		1	t,		ij	i. H					++	tİ		t		i.		11					11	Ϊ,					1								+-				-														1		
				- <u>+</u> :		1.				e	ş		++	1							1.1	#				++•			1					t			+			Ī		++	T					· · ·	+				1								T				
										1									1				-			1.			1							i I				1		4								•		i.	Ì												
									1		1					1			4	1	1	H			Ì				1.1.1	ļ		+												1		١,		<u>ار ا</u>	-+	1	1		Ì				Ì				1				
								N. De		1	1			1			-4 14		11		 		and the second		Ì			-				-		1		1			k		-								T	Ī,						:									
								- CAR	8	C	*					1					4			14	1		.		H	Ì			T			 1	100			1										,			1	1				•							
		rti Ti					ľ	-		2.4		++		-		• •				1	ļ	1	-	- deservation			-+								Ann shows					t							++-				i														
						ŤŢ	Î	- † - 1 -	1		*				-		 ,					all and a set of the		11	ł	÷		Ì	+- 1	Ì		у У		LL L						Ì									1				1												
	1.1.1.1			1			Ì			+(6-		-	1			H		ļ		8	1	++	11			jÌ	++			1.	1						ŕ											1	ti.															
								ł†	Ħ	-	9-								1	ľ				-	1	11			i		T	-	t								1					İ	++	11																	:
				.+-			ľ	1: 1			4	1	Ì			ļ					1								-+-	1	44																1									000 ⁰⁰⁰⁰⁰⁰⁰⁰	4	-	(2	6		1	1.	
					11			ų		t			Ţ					1	20		1		1				1		K.		1	-	Ţ	Z		5		0			1	1.		7			:	1.	1			÷		1	1	1:04	40	V5	\$	TRA	411	16	AG	E	9
													111	1			++	24	10	+				1					1				2	18	1	-		3.4		l f	1				T											572	17	66 0N	15	0		}			
							-	++				-		Ť	Ħ	1															a a	8048.	808.						Ì								Ì				T		1			Cre	54	ES		1-2	2	Eι	457	TIC	ł
						++	1	Ħ			+		1.				1	1								44 			t:		-			-	4				i.	÷.∔∙ ₹	ite Ite		1.		+ -			i ji	1			÷	İ						1						-

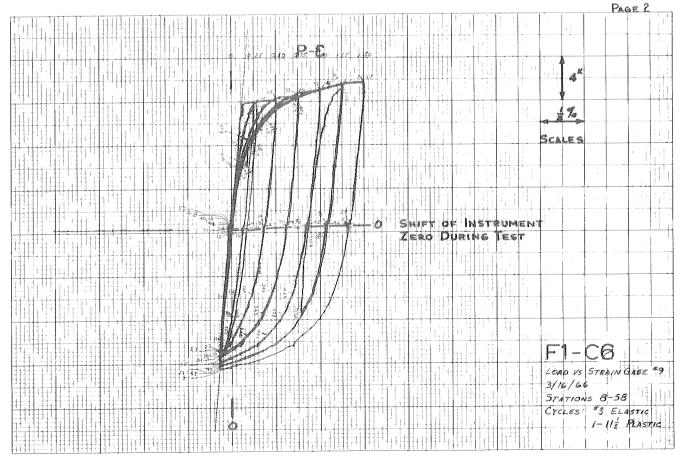


PLATE 7. LOAD VS. STRAIN - F1-C6

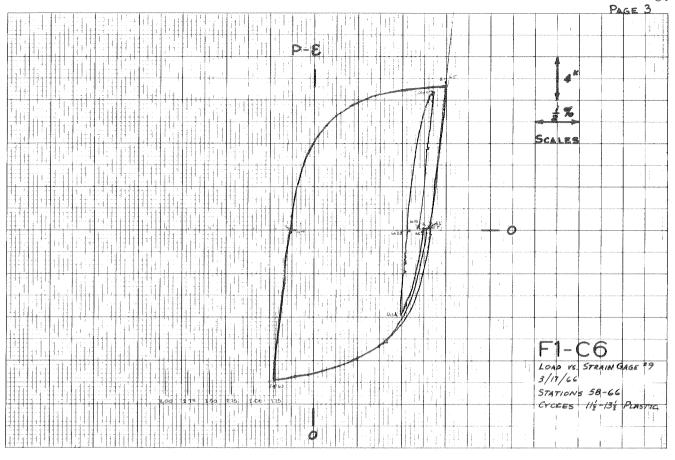


PLATE 7. (continued)

Q	Q.
$^{\circ}$	O

																																				~~~~					-						,	19	68	- 4h 	
1	1	۲.				1		1.							ł	-		1:-		7 . i													1		1			÷.,													
							1		++								1	i	1					Þ	-	A		-		V	1.1	:			.			ł	:												
			1	++-					1		1	t t t	+++						1											Å				T				1													
			1						++			-																		#†	-†-	-	1	ľ																	
- <del></del> [-]-1		-					T			-	+												; † ;		11				1			Ì	1.			1.	T	4		. :											
	++-					1					Ē						f			1		t:		1				TV	ţ,		۱÷.,	1	•		· [	:															
	++				8-							Ħ				Ŵ	j		Ľ						11			1	11	++ + -		-	:		( ) ( )				1												
					6							t			Î	Ĩ	1	1		++	+ -							¥				1	;	1.					T						Í						
		1	10		4				   1 :									11		++					1		#					Ì	1	-		1			!		1										
			Kips		2										1						į.		1				1						1		II.		-			; 	1										
			a		0-								i j	1										1	4										-++ !			1	111												
-			LOAD		2		1							7	A	0	71	¥  1		1			1.			×.	-4	2.2	¢¢ :	10		1	ļ																		
		ін. Г			4								1					Ī							1			T				ġ.							-			1									
		+ 			6-								E					1					1	1	14						Į.	1	i																		
		+++ 1 - 1			8-				t		- )	1.								1	1		:	1	į.						1	.	:	1							1	-					:				
											1			1		ļ		l.i		1			1	1																				F		49900	C	6			Ţ
					i.						ţ; 			10						. 1		Į,	1		. 1	0	Ξ,				†	Ť		4			1						1 :	20	PAE	> //s	Ti	PL	DEF	CECT	701
										1/			T,				h	)			1 		† 		:		1				     ; ;													57	747	66 10N	5 0	)-8	ļ ļ		
		· .		-		t			17	1				يع		11	11	w.		11	11.	N-	1		1	· .	34JD		isi <b>k</b> .	-			:									1		Cy	ce,	E5	1-2	E	2.A	5716	
		p d		4			1		11						d						1	:			•			:	;			1	-		-			•				•									

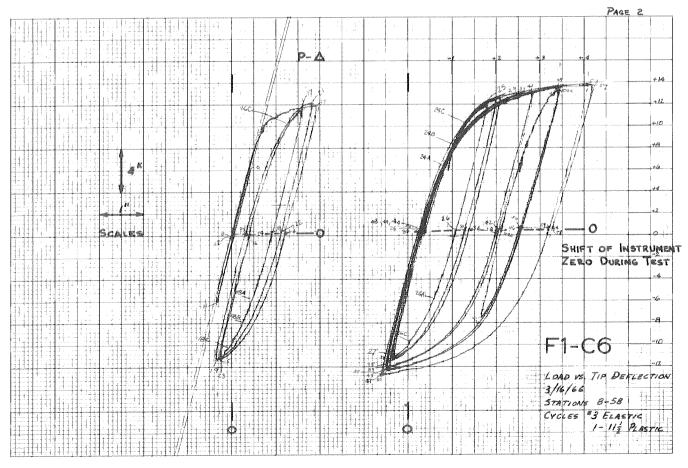



PLATE 8. LOAD VS. DEFLECTION - F1-C6

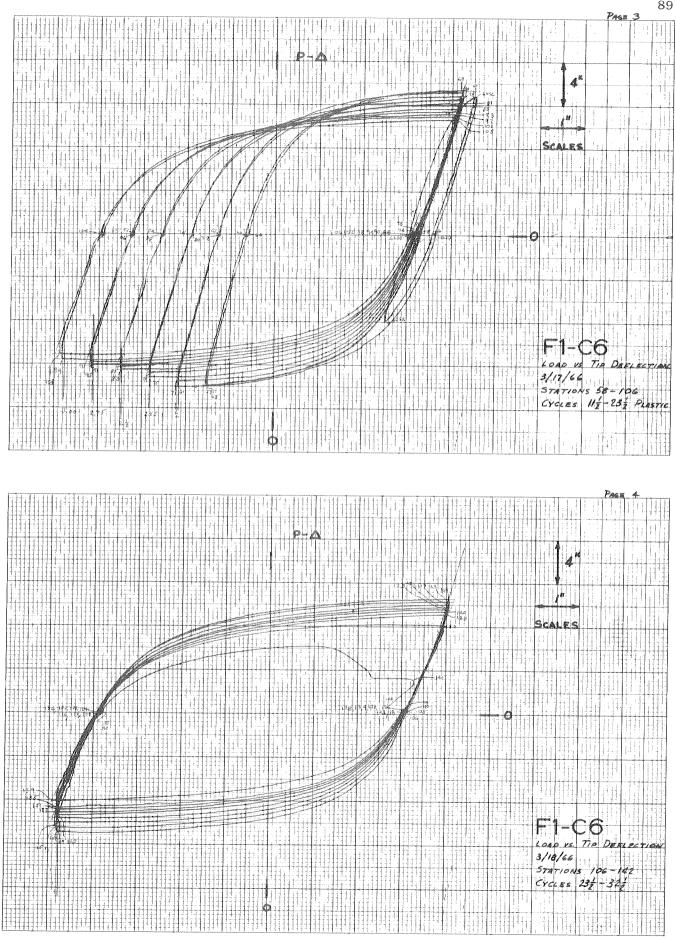



PLATE 8. (continued)

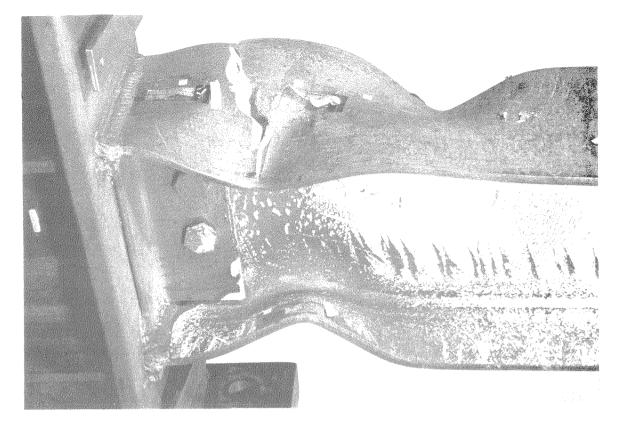



FIGURE 21. F1-C6

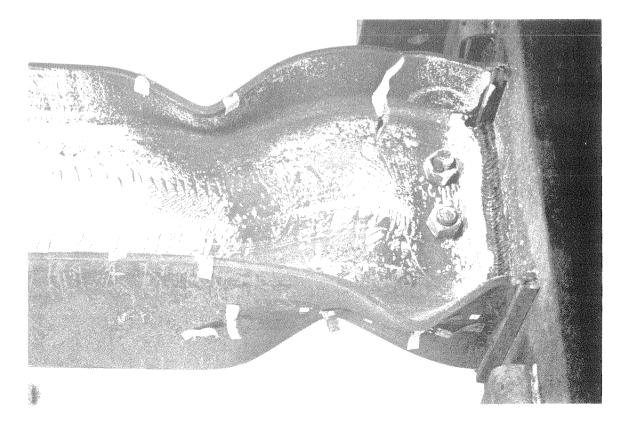
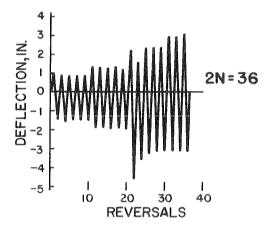



FIGURE 22. F1-C6

SPECIMEN F1-C6


Half- Cycle	P KIPS	<u>۸</u> ۱۸۰	∆′ I N ₀	W K-IN。	p	$\overline{\Delta}$	⊼′	W
1	11.51	1.72	1.17	12.3	1.137	3.55	2.42	5.01
2 3	-11.02 10.89	-C.11 1.41	0.72 0.43	6.5 3.9	-1.088 1.075	-C.22 2.91	1.48 0.89	2.63 1.59
4	-11.18	-0.19	C.54	4.6	-1.104	-0.39	1.11	1.88
5	11.48	1.63	C.75	6.8	1.133	3.37	1.54	2.77
6	-11.06	-0.07	C.65	5.4	-1.092	-0.15	1.34	2.21
7	11.46	1.65	0.62	5.4	1.132	3.39	1.28	2.21
8	-11.05	-0.12	0.67	5.8	-1.091	-0.25	1.38	2.35
9	11.83	1.83	0.87	8.1	1.167 -1.095	3.77 -C.32	1.8° 1.83	3₀28 3√20
1 C 1 1	-11.09 12.36	-C.16 1.93	6.89 0.99	7.8 9.6	1.220	3.98	2.04	3.89
12	-11.57	-0.26	1.02	9.6	-1.143	-0.54	2,00	3,00
13	12.35	2.71	1.69	16.7	1.220	5.59	3.49	6.79
14	-12.05	-C.19	1.68	16.5	-1.190	-0.40	3.47	6.72
15	12.34	2.63	1.64	16.3	1.218	5.42	3.39	6.65
16	-12.13	-0.27	1.66	16.3	-1.198	-0.56	3.42	6.65
17	12.81	3.24	2.20	23.9	1.264	6.69	4.54	9.73
18	-12.46	-0.28	2.20	22.4	-1.230	-0.57 6.65	4。54 4。48	9.13 9.57
19 20	12.76 -12.51	3.22 -0.26	2.17 2.14	23.5 22.9	1.260	-0.53	4.42	9.33
20	12.98	3.91	2.81	31.2	1.282	8.06	5.80	12.72
22	-12.91	-0.35	2.89	36.3	-1.275	-0.73	5.96	12.32
23	12.91	4.00	2.96	32.7	1.275	8.25	6.11	13.31
24	-13.59	-1.37	3.92	44.5	-1.342	-2.83	8 o C S	18.12
25	13.05	3.98	3.92	44.2	1.288	8.21	8.208	18.000
26	-13.60	-1.34	3.84	43.6	-1.342	-2.76	7.91	17.74
27	12.95	4.22	4.14	46.6	1.278	8.70	8.53	18.97
28	-13.72	-2.02	4.81	55°2 5°°6	-1.355 1.270	-4.16 8.21	9.91 9.26	22.47 20.60
29 30	12.86 -13.16	3.98 -2.03	4.49 4.49	56.2	-1.300	-4.18	9.25	20.42
31	12.52	3.95	4040	48.6	1.236	8.14	9.16	19.79
32	-12.86	-2.66	5.06	56.6	-1.270	-5.49	10.43	23.14
33	12.19	3.94	5.08	53.6	1.203	8.13	10.47	21.82
34	-12.42	-2.67	5.08	54.0	-1.226	-5.51	10.47	21.99
35	11.83	3.90	5.05	51.6	1.168	8.04	10.41	21.01
36	-12.20	-3.34	5.69	60.1	-1.205	6.89	11.74	24.47
37	11.65	3,90 -3,35	5.67	50.9	1.150 -1.175	8.C4 -6.9C	11.68 11.64	23.18 23.47
38 39	-11.9C 11.33	-3.90	5.64 5.63	57.7 55.1	1.118	8.04		22.42
40	-11.78	-4.03	6.35	64.2	-1.163	-8.31	13.09	26.14
41	11.04	3.87	6.31	59.5	1.090	7.98	13.01	24.24
42	-11.48	-4.05	6.32	62.5	-1.133	-8.36	13.03	25.43
43	10.79	3.87	6.31	58.5	1.065	7.99		23.80
44	-11.30	-4.70	6.98	68.4	-1.116	-9.69	14.39	27.83
45	10.57	3.83	6.93	63.0	1.043	7.89	14.29	25.63
46	-10.73	-4.76	7.00	65.7	-1.060	-9.82	14.43	26.74
47	10.27	3.82 -4.63	7.C4 6.88	61.1 65.3	1.014	7。88 -9。54	14.53 14.19	24.88 26.59
48 49	-1(.49 10.13	3.90	6.92	56.6	1.000	8.05		23.04
50	-10.12	-4.67	6.91	61.8	-0.999	-9.64	5	25.17
51	9.83	3.88	6.87	56.6	C.971	8.00	14.18	23.04

Half-	Р	$\Delta$	$\wedge'$	W	$\bar{\mathrm{p}}$	$\overline{\Delta}$	$\overline{\wedge}$ '	$\overline{W}$
Cycle	KIPS	IN.	IN.	K-IN.				
52	-9.67	-4.64	6.87	59.8	-0.954	-9.57	14.18	24.34
53	9.50	3.87	6.87	53.7	C.938	7.98	14.16	21.85
54	-9.35	-4.65	6.79	57.3	-0.923	-9.58	14.01	23.32
55	9.24	3.87	6.77	51.3	0.913	7.97	13.96	20.88
56	-9.13	-4.64	6.85	54.2	-(.901	-9.57	14.13	22.08
57	8.96	3.86	6.87	49.2	C.885	7.96	14.16	20.04
58	-8.90	-4.64	6.84	53.1	-0.879	-9.57	14.11	21.64
59	8.71	3.85	6.84	47.7	0.860	7.95	14.10	19.42
60	-8.70	-4.65	6.85	51.6	-0.859	-9.58	14.13	21.02
61	8.46	3.83	6.83	46.4	0.835	7.89	14.09	18.91
62	-8.51	-4.65	6.84	50.3	-0.840	-9.59	14.11	20.49
63	7.52	3.81	6.83	43.0	0.742	7.86	14.09	17.53
64	-7.95	-4.68	6.72	45.4	-C.785	-9.65	13.86	18.48

#### SPECIMEN F2-C1

<u>Description</u>: The beam flanges were attached to the column by means of welded connecting plates. The top plate was narrower in width than the flange, while the bottom plate was wider, in order that only down-hand welding be required. The web was butt-welded directly to the column. The specimen was commercially fabricated; there was no visually apparent departure from the detail drawings. Ultrasonic inspection disclosed no significant weld defects. Threaded studs were tack-welded to both plates and flanges to support rotation measuring devices.

Program of Cycling:



Test Control: Strain, as measured on the top flange 16.0 inches from the face of the column.

Raw Data Included: Graphical load-strain data as measured on the top plate 6.0 inches from the face of the column. Graphical load-strain data for the control strain.

Total Energy Absorption: Not available.

Plastic Load Reversals to Failure: 37  $(18\frac{1}{2} \text{ cycles})$ .

<u>Remarks</u>: Buckling of the beam flanges beyond the plates was indicated as early as the 4th plastic cycle, by means of strain measurements. This buckling became visible after about 13 cycles. In the next cycle, a crack appeared in the top plate at the end of one of the plate-tobeam flange welds, nearest the column. After 16 cycles, a longitudinal crack was found in one of the bottom plate-to-flange welds, but away from the column. A crack had also formed at the bottom web cope. During the next cycle the crack in the top plate extended, and necking of the plate was observed. The bottom flange plate was buckling between the column and the near ends of the welds. Failure occurred at 18 cycles with transverse rupture of the top plate at its critical section.

### SPECIMEN TYPE F2-C1

### DIMENSIONS OF WF SECTION

																							8.26	
																							5.320	
																							5.290	
																							0.375	
																							0.376	
																							0.274	
																							29800。	
Y	IEL	D	ST	RE	5.5	>	Ð	¢	0	¢	e	-8	ø	Ŷ	Ð	0	Ф	Q	40	÷	٩	Ð	38.900	KSI

# DIMENSIONS AND PROPERTIES OF TOP PLATE

LENGTH,	10												11.00	
WIDTH AT	F END	AWA	Y FR	ιOΜ	COLL	JMN:	M	*	*	ø	ନ୍ତ	¢	。  2。53	INCHES
WIDTH AT	r end	OF	WELD	), R	04	0 0	n≎ n≎	8	Ð	-	Ð	¢	• 4.53	3 INCHES
AVERAGE	LOCAT	<b>FION</b>	0F	END	0F	WEL	D*,	N	\$	ø	Ф	D	• 3.49	<b>INCHES</b>
THICKNES	5S, T	\$	10 10	c n	e e	0 0		ø	¢	0	0	0	. 0.520	) INCHES
ELASTIC	MODUI	_US	D O	e e	10 f	a. c	e e	ø	ø	Ð	Ð	6	。29600。	KSI
YIELD ST	<b>FRESS</b>	19	0 0	0 9	Ð (	0 - Q	<i>ю</i> 0	Ð	0	Ð	ŵ	6	. 38.700	) KSI
*MEASURED														

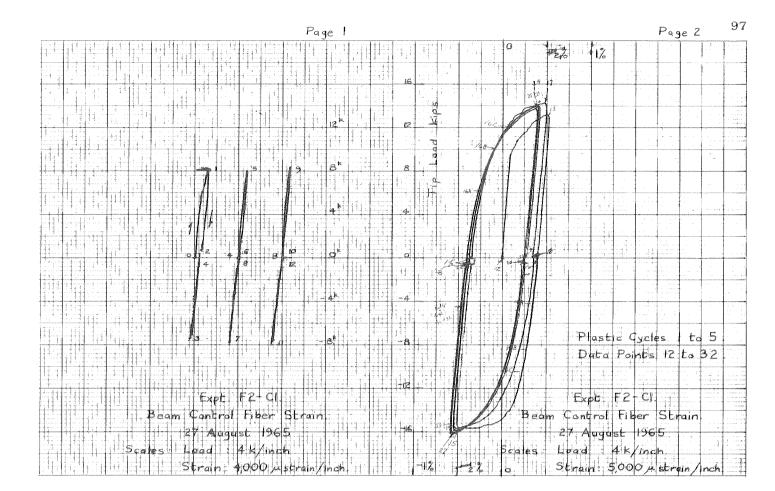
### DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH, LP	N 18 2 2	ବ ଷ ବ ତ	s e a a	@ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	14.00 INCHES
WIDTH, B 。	<b>0</b> 0 0 0	n n a		&` <b>&amp;</b> ⊕ ⊕ ⊕	6.38 INCHES
AVERAGE LOCA	ATION OF	COLUMN	END OF WE	LD*, Q .	2.20 INCHES
AVERAGE LOCA	ATION OF	OUTER E	ND OF WEL	0*, P	12.91 INCHES
THICKNESS, T		ବ ଏ ବ ଏ	. e o o	5. 0 0 0 0 0	0.309 INCHES
ELASTIC MODU	JLUS 。。	ପ ବ କ ବ	-0 -0 -0 -0-		29100. KSI
YIELD STRESS		<i>၈ ၈ ၃ ၈</i>	•	* * * * *	39.100 KSI
*MEASURED FROM	I FACE OI	- COLUMN			

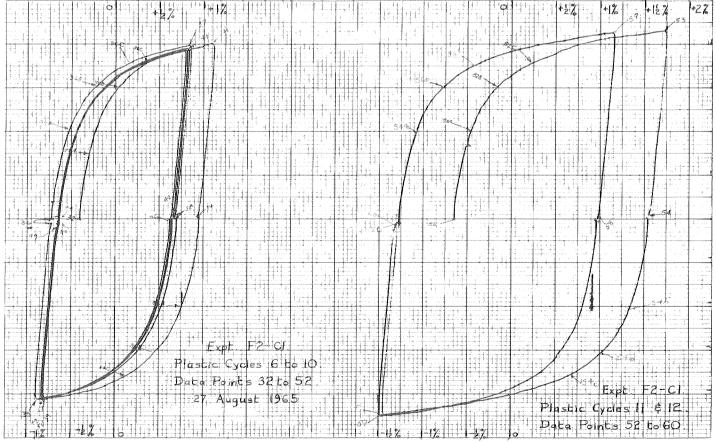
### WF SECTION PROPERTIES

AREA,	А	* *	ø	ø	a o	-6	చ	\$	÷	\$	ф	\$	Ð	Ð	49	÷	6.13	INCHES**2
LOCAT	ICN	I OF	СE	NT	ROI	)*	<b>,</b> 1	¥Ε	÷	Ð	ø	0	\$	Ð	Ð	۹	4.14	INCHES
MOMEN																	72.9	INCHES**4
SECTI																		INCHES**3
SECTI																		INCHES**3
LOCAT	ION	I OF	PL	AS	TIC	N	EUT	ΓR	AL	AΧ	15	)* 7		IP	బ		4.15	INCHES
PLAST	IC	MCD	ULU	Sø	Z	o	o	¢	*	ø	¢	Q	-0	Ð	-10	ø	19.9	INCHES**3
SHAPE	FA	CTO	R	¢	υø	ø	۲	0	Ŷ	Ð	Ð	ø	o	ත	ø	Ð	1.130	
YIELD	MC	MEN	<b>\$</b>	ΜY	ø	٥	Ø	ø	ø	۰	ç	Ð	ø	-9	ø	40	57.11	KIP-FT.
PLAST	IC	MOM	ENT	9 I	ЧP	19	ø	-15	\$	ø	Ф	Ф	*	¢	ø	so.	64.51	KIP-FT.
*MEASUR	ED	FRO	мO	UT:	SID		ΞΑ(	E	OF	B	OT	TO	М	۴L	AN.	IGE		

SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

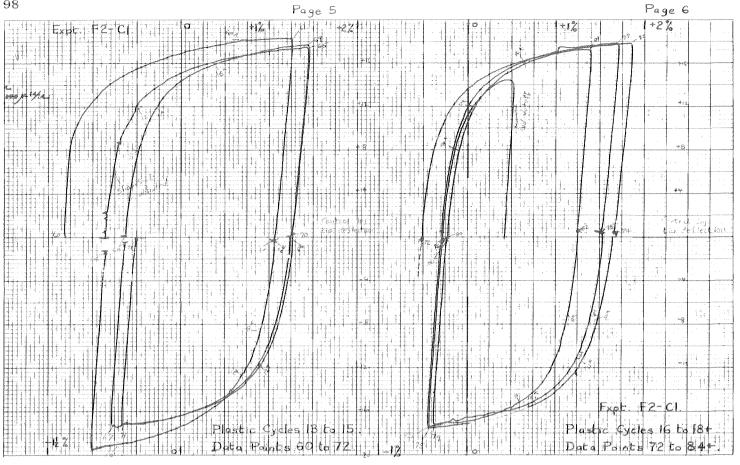

	Х	Δ	ΥE	bring	ST	SB
	52.00	6.13	4.47	72.9	17.6	17.5
	52.00	7.44	5.24	93.8	24.1	19.0
	52.54	7.49	5.27	94.5	24.4	19.1
	53.09	7.55	5.29	95.2	24.8	19.1
			4.25	135.7	27.8	
	57.80	9.93	4.46	145.1	31.1	32.5
	62.51	10.40	4.66	153.7	34.4	33.0
	62.51	8.19	3.66		21.0	31.5
	63.16	8.25	3.70		21.5	31.6
	63.80	8.31	3.74		22.0	31.7
	63.80	6.11	4.88	88.3		18.1
	64.90		4.95			18.2
	66.00	6.32	5.02	91.6	22.3	18.2
	X	ΥP	T.	F	MY	MP
	52.00	4.64	19.5	1.115		63.21
	52.00	7.02	23.5	1.228		76.11
	52.54	7.12	23 . 6	1.230	62.13	76.42
	53.09	7.22	23.7	1.232		76.72
	53.09	3.60	34.1	1.233	89.60	110.51
	57.80		36.3	1.175	100.26	117.79
			38.2	1.151	107.55	123.80
			27.0	1.292	67.88	87.68
			27.5	1.286	69.40	89.28
		1.33	28.0	1.281	70.92	90.85
	63.80	5.35	21.9	1.205	58.90	71.00
	64.90	5.55	22.3	1.220	59.18	72.20
	66.00	5.74	22.6	1.233	59,45	73.33
Х	= DISTANC	F FROM CO	INCENTRATED	LOAD, IN	CHES	
A			CTION, INC			
YE	$= DIST_{o}F$	ROM OUTS	DE OF BOTT	OM PLATE	TO CENTROL	D _v INCHES
· · ···			A, INCHES*			
ŜT			FOR TOP FL		HES**3	
S 8			FOR BUTTOM			
	= DIST. P	ROM OUTSI	DE OF BOTT	OM PLATE	TO PLASTIC	NoAog IN.
Z			INCHES**3			
Mitar						

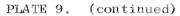
- Z F = SHAPE FACTOR
- MY = YIELD MOMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET


#### REAM PROPERTIES

LOCATION OF CRITICAL SECTION FOR PY* . . . . 66.00 INCHES LOCATION OF CRITICAL SECTION FOR PP* . . . . 66.00 INCHES * MEASURED FROM CONCENTRATED LOAD

ø






Page 4

PLATE 9. LOAD VS. STRAIN - F2-C1





Page 1	Page	2	99											
Scales Losa A K/inch														
Strain 4,000 uistrain /inda														
		: 1 :::												
		· · · · · · · · · · · · · · · · · · ·												
			.											
$\mathcal{L}$														
t														
-8														
Expt F2 Cl			· · · · · · · · · · · · · · · · · · ·											
Flange P. Flange P. F														
27 August 1965 Pata Points 0 to 12														
-2% Data Points	14 Ce	> <u>&gt;</u> _												

Page 3

Page 4 of

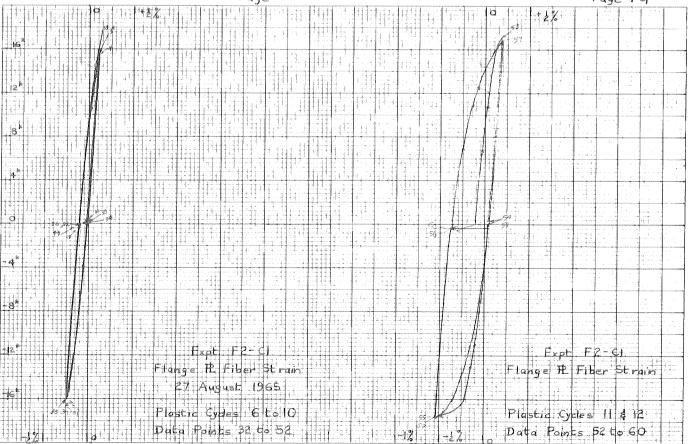
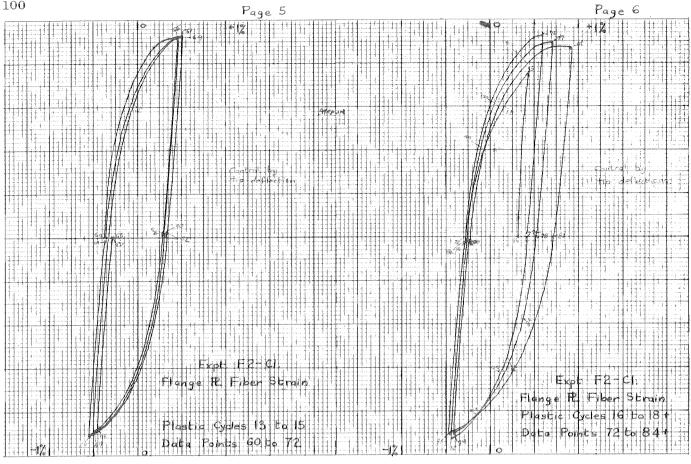
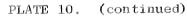





PLATE 10. LOAD VS. STRAIN - F2-C1





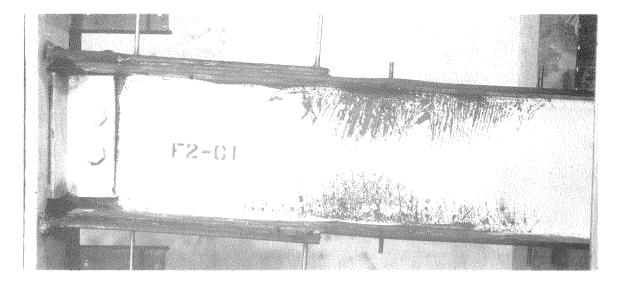



FIGURE 23. F2-C1

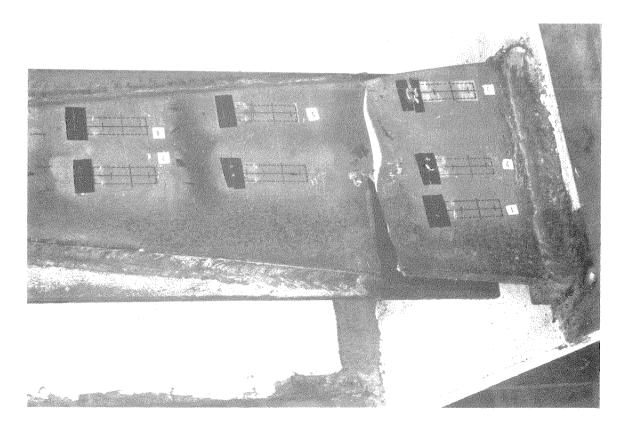
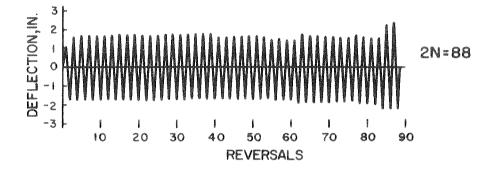



FIGURE 24, F2-C1


SPECIMEN F2-C1

Half- Cycle	P KIPS	∆ IN•	∆' IN₀	P	Δ	$\overline{\Delta}'$
Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	KIPS 12.55 -14.64 13.48 -14.93 13.63 -14.98 13.68 -14.93 13.68 -14.93 15.02 -15.62 15.14 -15.62 15.14 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -15.65 14.37 -17.65 17.69 -17.47	$IN \cdot 0.98 - 1.44 - 0.85 - 1.58 - 0.84 - 1.50 - 0.83 - 1.52 - 0.82 - 1.53 - 1.52 - 1.53 - 1.90 - 1.24 - 1.89 - 1.90 - 1.24 - 1.89 - 1.94 - 1.94 - 1.94 - 1.94 - 1.94 - 1.94 - 1.94 - 1.96 - 2.18 - 1.94 - 1.96 - 2.18 - 1.94 - 3.56 - 2.26 - 3.27$	IN. 0.14 0.50 0.31 0.33 0.39 0.41 0.42 0.44 0.45 0.46 0.45 0.46 0.76 1.06 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.942 -1.098 1.011 -1.120 1.022 -1.124 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.120 1.026 -1.127 -1.127 -1.172 1.036 -1.170 1.0176 -1.170 1.0176 -1.170 1.0176 -1.170 1.0176 -1.170 1.0176 -1.170 1.028 -1.170 1.028 -1.170 1.028 -1.230 -1.230 -1.230 -1.237 -1.230 -1.237 -1.237 -1.237 -1.279 1.327 -1.310	2.11 -3.10 1.83 -3.23 1.79 -3.27 1.76 -3.29 2.86 -4.09 2.67 -4.07 2.60 -4.15 2.75 -4.17 2.54 -4.22 4.69 -9.77 3.31 -7.66 4.86 -7.04	0.30 1.07 0.66 0.70 0.83 0.90 0.94 0.96 0.98 1.63 2.27 2.06 2.04 1.97 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.07 2.04 2.04 2.04 2.04 2.05 7.03 6.85
27	-17.47 17.65 -17.36 17.55	-3.27 2.33 -3.12 2.32	3.19 3.27 2.90 2.90	-1.310 1.324 -1.302 1.316	-7.04 5.01 -6.71 4.99	6.23 6.23
30 31 32 33 34	-17.26 17.74 -17.37 17.54 -17.26 17.02 -17.26	-3.12 2.93 -3.12 2.93 -3.12 3.03 -3.12	2.90 3.47 3.47 3.48 3.47 4.59 1.00	-1.295 1.331 -1.303 1.316 -1.295 1.277 -1.295	-6.71 6.30 -6.71 6.30 -6.71 6.52 -6.71	6.23 7.46 7.46 7.48 7.46 9.87 2.14

#### SPECIMEN F2-C4

Description: This specimen was similar to specimen F2-C1 with respect to detailing, fabrication and inspection.

Program of Cycling:



<u>Test Control</u>: Strain, as measured on the top flange 16.01 inches from the face of the column. The strain was read on a Baldwin SR-4 strain indicator.

Raw Data Included: Graphical load-deflection data.

Total Energy Absorption: 2,495 kip-inches.

Plastic Load Reversals to Failure: 88 (44 cycles).

<u>Remarks</u>: Slight buckling appeared in the beam flanges during the first plastic cycle. Small cracks began to appear at the ends of the plateto-beam welds at about the 5th cycle. These cracks propagated very slowly as cycling continued. Necking of one edge of the top plate at the end of the weld became apparent after 16 cycles. The weld on the opposite edge was cracking longitudinally. By the 39th cycle, a crack had developed in the plate at the point of necking and extended about one inch into the plate in the next cycle. During the 44th cycle, this crack rapidly widened, precipitating failure.

# SPECIMEN TYPE F2-C4

DIMENSIONS OF WE SECTION

DEPT	ГΗ	e e	c.	0	c	କ	Ģ	U U	Ð	c	Ø	0	c	с	€.	÷	Q	o	Ð	¢:	Ģ	8.25	INCHES
TOP	FL	A N	GE	W	ΙC	TH	ł	¢	0	c.	¢	o	¢	s,)	v	Q.	Ð	0	o	e	Ģ	5.16C	INCHES
BCT	٢CŇ	1 F	LAI	٧G	E	W 1	DT	F	<u>د</u>	0	¢	Q	0	ē.	ŵ	é.	¢.	L ¹	٤.	ŵ	Ś	5.16C	INCHES
TOP	FL	_ Α Λ	IGE.	TI	41	CK	(NE	SS		o	Q	Ł	ø	e e	ŵ	÷	L,	c	Ļ	¢	Q	0.373	INCHES
80T1	r OM	1 F	LAI	ŃС	E	Tr	IC	ΚN	IE S	S	¢	e.	0	o	υ	o	c	υ	٤.	ŵ	o	0.368	INCHES
WEB	TH	<b>1</b> 10	ΚN	ES	S	de'	e G	i)	0	Q	ŧ,	Ģ	o	c	e.	ŵ	Ł	υ	ı	ę	сı	0.273	INCHES
ELAS	STI	C	MO	DU	LU	IS	¢.	ω	ĸ	¢	é	i.	ω.	¢	Ð	o	ψ	Q	ς.	Q	é)	29000.	KSI
YIE	_ D	ST	RE	SS.		¢.	G	C.	¢.	с	ú	c	ø	¢	ø	φ	o	¢	ç,	e	o	40.500	KSI

## DIMENSIONS AND PROPERTIES OF TOP PLATE

	LENGTH,	Lp .		υά	ο¢	£.)	ιυ	υu	4,1	5	ç	e	4.	÷	14.36	INCHES
	WIDTH AT	END	AWAY	/ FR	CM (	ULL	JHIN 8	M	o	ø	Ġ.	с	r.	¢	2.70	INCHES
	WIGTH AT	ENC	CF V	VELD	R R	6.1	c o	ς w	ç	ø	¢	0	c	ଚ	4.52	INCHES
	AVERAGE	LCCAT	TICN	OF	END	OF	wEL	.0≉v	N	ς,	5	22	1.	Ł	4.46	INCHES
	THICKNES	S, T	6	е 0	ε <		· · · · ·	ф C	e.	s:	e	6,1	ń.	e	6.470	INCHES
	ELASTIC	MCDUL	US .	ε 6	с. ю	4. 5	n 4	6 6	¢	÷	0	ş.	¢	<.	296500	KSI
	YIELD ST	RESS	ç	, u	6 O	с 4	ь с	ارد د	40	4,1	Ð	<.,	4J	¢.	40.500	KSI
*	MEASURED	FRCM	FACE	E C F	COL	.U -11	Vi									

#### DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH, LP		14.23 INCHES
WIDTH, B	<b></b>	6.45 INCHES
AVERAGE LOCATION OF	COLUMN END OF WELD*, Q .	2.10 INCHES
AVEPAGE LOCATION OF	OUTER END OF WELD*, P	12.88 INCHES
THICKNESS , T	ψ υ υ ω υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	C.370 INCHES
ELASTIC MCDULUS	0 6 9 9 6 0 0 0 0 0 0 0 0 0	29600. KS1
YIELD STRESS	0 0 4 0 6 4 6 6 6 6 6 6	38.100 KSI
*MEASURED FROM FACE G	- COLUMN	

DEPTH OUT-TO-OUT OF PLATES . . . . . . . . . . . . 9.05 INCHES

WE SECTION PROPERTIES

AREASA00000000	ବ ବ ତ	0 0	စ ပ	U	5.96	INCHES**2
LOCATION OF CENTROID*, YE	ର ଚ ର	6 Q	0 C	¢	4.14	INCHES
MCMENT OF INERTIA, I 。。	0 0 0	6 G	e 0	ø	70.2	INCHES**4
SECTION MCCULUS, TOP, ST	0 0 0	\$ 0	ତ ତ	a	17.1	INCHES**3
SECTION MCDULUS, BOTTOM,	SB o o	0 Q	6 6	0	16.9	INCHES**3
LCCATION OF PLASTIC NEUTRA	AL AXI	S*∘ Y	Ρ.	6	4.18	INCHES
PLASTIC MODULUS, Z	6 6 6	₽ D	0 0	ø	19.2	INCHES**3
SHAPE FACTOR	0 0 Q	© 0	6 6	Ð	1.135	
YIELD MOMENT, MY	0 0	e e	c c	e	57.18	KIP-FT.
PLASTIC MOMENT, MP	6 0 Q	o o	0 0	¢	64.89	KIP-FT.
*MEASURED FROM OUTSIDE FACE	0F 80	TTOM	FLAN	IGE		

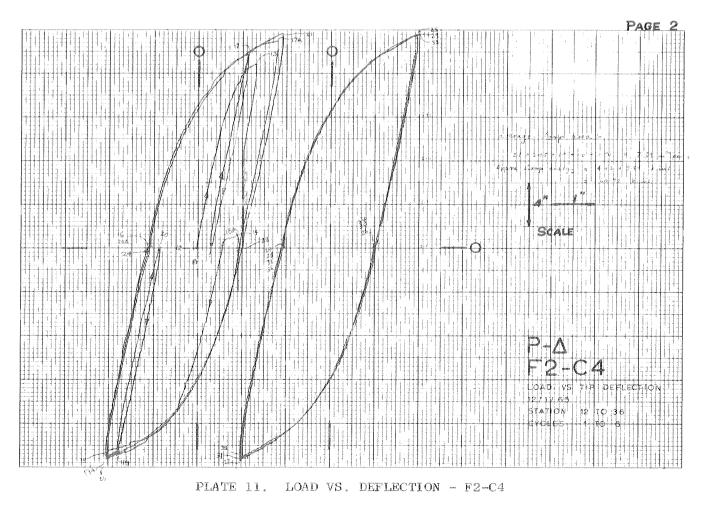
#### SPECIMEN TYPE F2-C4

#### SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

Х	A	ΥE	Ĩ	ST	SB
51.64	5.96	4.49	70.2	17.2	17.0
51.64	7.26	5.26	90.1	23.8	18.4
52.38	7.32	5.30	90.9	24.2	18.5
53.13	7.39	5,33	91.7	24.6	18.5
53.13	9.82	4.05	140.2	28.0	34.6
57.33	10.19	4.23	148.3	30.7	35.1
61.54	10.56	4.39	155.8	33.4	35.5
61.54	8.42	3.37	113.2	19.9	33.5
62.72	8.53	3.44	116.3	20.7	33.8
63.90	8.63	3.51	119.2	21.5	34.0
63,90	6.52	4.45	95.2	20.7	21.4
64.95	6.61	4.52	97.0	21.4	21.5
66.00	6.70	4.57	98.6	22.0	21.6
Х	ΥP	Z	ganere Banere	MY	MP
X 51.64	YP 4.69	Z 18. 8	F 1.175	MY 54.04	мр 63.53
51.64	4.69	18.8	1.175	54.04	63.53
51.64 51.64	4.69 7.01	18°8 22°6	1.175 1.305	54°C4 58°43	63.53 76.23
51.64 51.64 52.38	4.69 7.01 7.13	18.8 22.6 22.7	1。175 1。305 1。308	54°04 58°43 58°59	63.53 76.23 76.61
51.64 51.64 52.38 53.13	4.69 7.01 7.13 7.25	18°8 22°6 22°7 22°8	1.175 1.305 1.308 1.310	54.04 58.43 58.59 58.73	63.53 76.23 76.61 76.96
51.64 51.64 52.38 53.13 53.13	4.69 7.01 7.13 7.25 3.13	18.8 22.6 22.7 22.8 34.0	1.175 1.305 1.308 1.310 1.214	54.04 58.43 58.59 58.73 94.64	63.53 76.23 76.61 76.96 114.88
51.64 51.64 52.38 53.13 53.13 57.33	4.69 7.01 7.13 7.25 3.13 3.80	18.8 22.6 22.7 22.8 34.0 36.0	1.175 1.305 1.308 1.310 1.214 1.171	54.04 58.43 58.59 58.73 94.64 103.72	63.53 76.23 76.61 76.96 114.88 121.45
51.64 51.64 52.38 53.13 53.13 57.33 61.54	4.69 7.01 7.13 7.25 3.13 3.80 4.47	18.8 22.6 22.7 22.8 34.0 36.0 37.7	1.175 1.305 1.308 1.310 1.214 1.171 1.128	54.04 58.43 58.59 58.73 94.64 103.72 112.77	63.53 76.23 76.61 76.96 114.88 121.45 127.19
51.64 51.64 52.38 53.13 57.33 61.54 61.54	4.69 7.01 7.13 7.25 3.13 3.80 4.47 5.71	18.8 22.6 22.7 22.8 34.0 36.0 37.7 25.2	1.175 1.305 1.308 1.310 1.214 1.171 1.128 1.264	54.04 58.43 58.59 58.73 94.64 103.72 112.77 67.32	63.53 76.23 76.61 76.96 114.88 121.45 127.19 85.09
51.64 52.38 53.13 53.13 57.33 61.54 61.54 62.72	4.69 7.01 7.13 7.25 3.13 3.80 4.47 5.71 0.72	18.8 22.6 22.7 22.8 34.0 36.0 37.7 25.2 26.0	1.175 1.305 1.308 1.310 1.214 1.171 1.128 1.264 1.256	54.04 58.43 58.59 58.73 94.64 103.72 112.77 67.32 69.95	63.53 76.23 76.61 76.96 114.88 121.45 127.19 85.09 87.88
51.64 52.38 53.13 53.13 57.33 61.54 61.54 62.72 63.90	4.69 7.01 7.13 7.25 3.13 3.80 4.47 0.71 0.72 0.72	18.8 22.6 22.7 22.8 34.0 36.0 37.7 25.2 26.0 26.9	$1 \cdot 175$ $1 \cdot 305$ $1 \cdot 308$ $1 \cdot 310$ $1 \cdot 214$ $1 \cdot 171$ $1 \cdot 128$ $1 \cdot 264$ $1 \cdot 256$ $1 \cdot 249$	54.04 58.43 58.59 58.73 94.64 103.72 112.77 67.32 69.95 72.59	63.53 76.23 76.61 76.96 114.88 121.45 127.19 85.09 87.88 90.65
51.64 51.64 52.38 53.13 53.13 57.33 61.54 61.54 62.72 63.90	4.69 7.01 7.13 7.25 3.13 3.80 4.47 C.71 C.72 C.76 4.63	18.8 22.6 22.7 22.8 34.0 36.0 37.7 25.2 26.0 26.0 26.0 22.4	1.175 1.305 1.308 1.310 1.214 1.171 1.128 1.264 1.264 1.264 1.249 1.114	54.04 58.43 58.59 58.73 94.64 103.72 112.77 67.32 69.95 72.59 67.87	63.53 76.23 76.61 76.96 114.88 121.45 127.19 85.09 87.88 90.65 75.59

X = CISTANCE FROM CONCENTRATED LOAD, INCHES

A = AREA OF CROSS-SECTION, INCHES**2


YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES

- I = MOMENT OF INERTIA, INCHES**4
- ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3
- SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3
- YP = CIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.
- Z = PLASTIC MCDULUS, INCHES**3
- F = SHAPE FACTOR
- MY = YIELD NCMENT, KIP-FEET
- MP = PLASTIC MCMENT, KIP-FEET

#### BEAM PROPERTIES

	LENGTH,	1	÷	ତ ଛ	0	Ð	ତ ଦ	Ð	e •	6 6	Q	e a	0 0	æ	47	66.0	INCHES
	ELASTIC	ST	$I \vdash \vdash$	NES	S p	Ρ/	DELT	ΓA	ω ο	a 40	÷	ø ·	ω e	f _e	40	27.44	KIPS/IN.
	YIELD DE	FL	ECT	ION	γ' D	EL	ΤΑΥ	¢	6 6	) £	Ð	6	0 O	Q	40	C.454	INCHES
	YIELD LO	CAD	, p	۰. ۷	Ø	Ω.	0 0	¢	۰ s	i no	¢	¢ .	e 0	£	¢	12.45	KIPS
	PLASTIC	LO	AD ,	PP	a	6)	6 C	ø	6 (	0 a	¢	ю I	с e	e	Ø	14.19	KIPS
	LECATION	I C	F C	RIT	ICA	L	SECT	<b>I</b> C	N F	FOR	Pγ	*	6 6	Q	Ð	66.CO	INCHES
	LOCATION	V C	F C	RIT	ICA	1	SECT	r I O	N F	=OR	РP	莽	0 0	õ	st.:	66.00	INCHES
$_{\star}$	MEASURED	) F	RCM	60	NCE	NT	RATE	ED	LO4	٥							

106						PAGE I
	<b>•</b>	$\left  \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\Theta^{++}$		· · · · · · · · · · · · · · · · · · ·	
					an ar	
					Scale	
		1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6		Φ		
		1 1 A Out & hu	4-423-444			
	3					
					2- A	
					-12  Ck	1
						EFLECTION
						12
					<u>qyclesi elas</u>	<u>TilC</u>



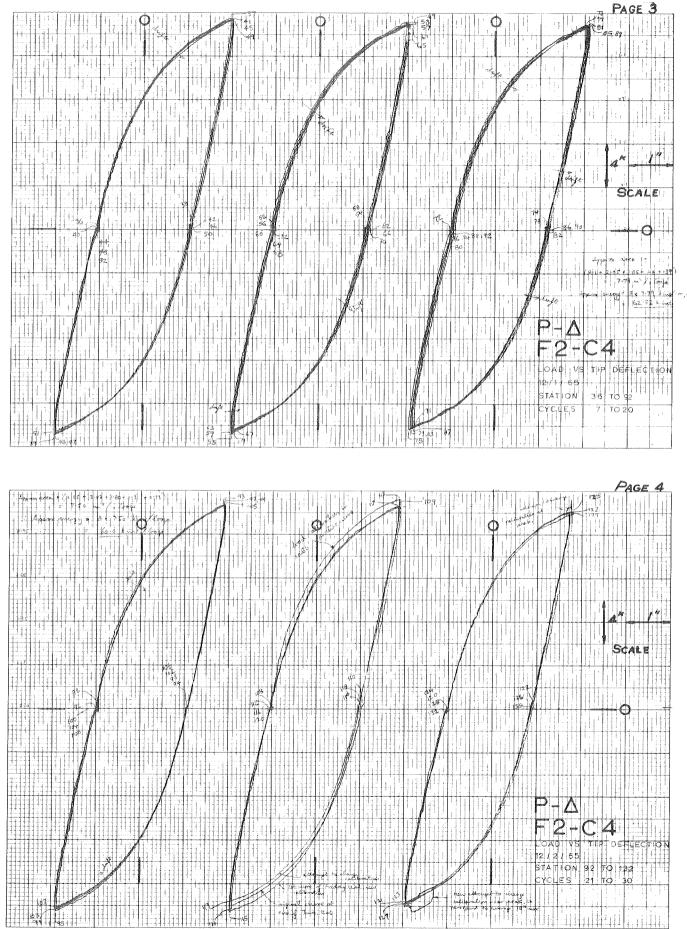



PLATE 11. (continued)

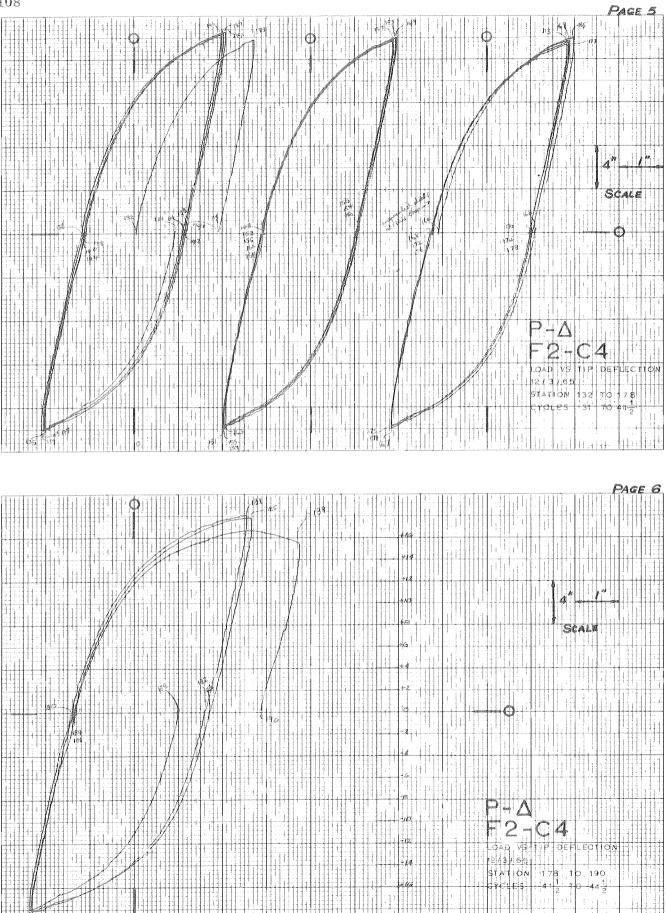



PLATE 11. (continued)

µ444

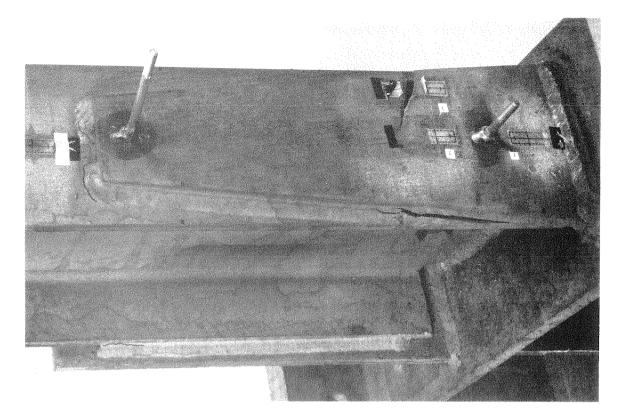



FIGURE 25. F2-C4

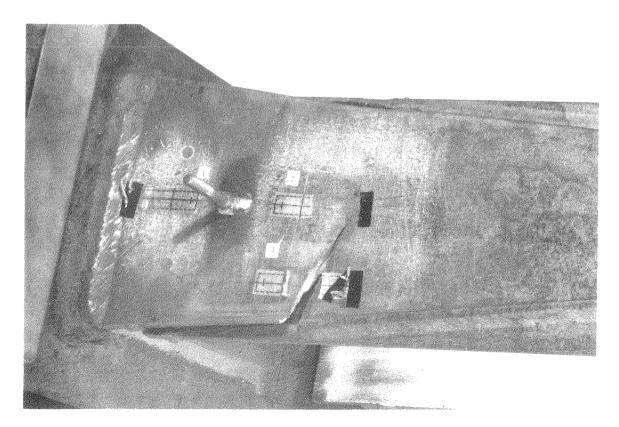
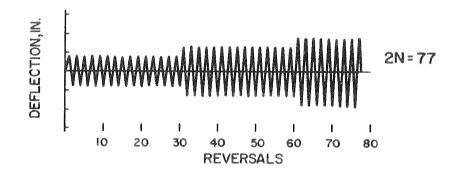



FIGURE 26. F2-C4

SPECIMEN F2-C4


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Half- Cycle	p KIPS		∆′ IN₀	W K-IN.	P	$\overline{\bigtriangleup}$	$\overline{\Delta}'$	Ŵ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2.15	1.07	2.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-17.71	-1.75						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12				29.4	-1.289	-3.37	3.84	8.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	18.28	1.71	2.03	29.7	1.288	3.31		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		17.91	1.73	2.10	29.2	1.262	3.34	4.05	7.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	-17.64	-1.75	2.08	28.8	-1.243	-3.38		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							3.50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 -	-17.23	-1.68	2.08	28.1	-1.214	-3.26	4.01	7.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	17.71	1.82	2.10	28.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
46-17.23-1.721.9727.1-1.214-3.333.807.404717.571.631.9727.31.2383.153.807.4348-17.20-1.681.9727.3-1.212-3.243.817.444917.381.651.9926.81.2253.193.857.3150-17.13-1.6682.0026.6-1.207-3.243.867.25									
4717.571.631.9727.31.2383.153.807.4348-17.20-1.681.9727.3-1.212-3.243.817.444917.381.651.9926.81.2253.193.857.3150-17.13-1.682.0026.6-1.207-3.243.867.25									
48-17.20-1.681.9727.3-1.212-3.243.817.444917.381.651.9926.81.2253.193.857.3150-17.13-1.682.0026.6-1.207-3.243.867.25									
49         17.38         1.65         1.99         26.8         1.225         3.19         3.85         7.31           50         -17.13         -1.68         2.00         26.6         -1.207         -3.24         3.86         7.25									
50 -17.13 -1.68 2.00 26.6 -1.207 -3.24 3.86 7.25									
							3.18	3.77	7.41

Half-		Δ	4	Ŵ	anna 1917 - S 1917 - S	$\overline{\Delta}$	Ā	Ŵ
Cycle	KIPS	IN.	IN o	K-IN.	a			
52	-17.13	-1.70	1.95	26.4	-1.207	-3.29	3.76	7.20
53	17.47	1.61	1.92	25.6	1.231	3.12	3.71	6.97
54	-17.03	-1.69	1.92	25.6	-1.200	-3.27	3.70	6.98
55	17.38	1.45	1.85	24.0	1.225	2.80	3.58	6.54
56	-17.03	-1.74	1.85	24.6	-1.200	-3.36	3.57	6.71
57	16.94	1.52	1.83	23.8	1.194	2.93	3.53	6.48
58	-16.89	-1.74	1.83	24.0	-1.190	-3.37	3.53	6.54
59	16.84	1.46	1.81	23.3	1.187	2.82	3.49	6.36
60	-16.82	-1.74	1.81	24.1	-1.185	-3.37	3.49	6.56
61	16.70	1.41	1.80	23.3	1.177	2.73	3.49	6.36
62	-17.11	-1.97	2.03	28.0	-1.206	-3.80	3.92	7.64
63	17.33	1.77	2.29	30.9	1.221	3.43	4.42	8.42
64	-17.25	-1.92	2.24	31.5	-1.215	-3.70	4.33	8.57
65	17.18	1.72	2.19	29.6	1.210	3.32	4.23	8.07
66	-17.20	-1.89	2.19	30.4	-1.212	-3.65	4.23	8.29
67	17.11	1.67	2.15	28.6	1.206	3.22	4.15	7.81
68	-17.08	-1.89	2.13	29.3	-1.203	-3.65	4011	7.98
69	16.99	1.64	2.10	27.1	1.197	3.17	4.05	7.38
70	-16.99	-1.88	2.10	27.7	-1.197	-3.63	4.05	7.54
71	16.87	1.61	2.09	27.01	1.189	3.11	4.03	7.38
72	-16.87	-1.85	2.09	27.7	-1.189	-3.58	4.04	7.54
73	16.75	1.57	2.04	26.0	1.180	3.04	3.94	7.08
74	-16.77	-1.85	2.04	26.1	-1.182	-3.58	3.94	7.12
75	16.60	1.55	2.02	25.8	1.170	3。00	3.90	7.02
76	-16.74	-1.82	2.02	26.4	-1.179	-3.52	3.90	7.20
77	16.84	1.65	2.11	27.7	1.187	3.19	4.07	7.56
78	-17.03	-1.95	2.25	30.2	-1.200	-3.76	4.35	8.24
79	16.60	1.55	2.19	27.4	1.170	3.00	4.23	7.46
80	-16.94	-1.95	2.19	29.5	-1.194	-3.77	4.23	8.04
81	16.45	1.52	2.16	26.6	1.159	2 . 95	4.17	7.24
82	-16.79	-1.95	2.16	28.5	-1.183	-3.77	4.17	7.77
83	16.26	1.50	2.16	26.3	1.146	2.89	4.17	7.18
84	-17.03	-2.24	2.32	32.0	-1.200	-4.33	4.50	8.71
85	16.99	2.22	2.93	40.0	1.197	4.29	5.66	10.89
86	-17.20	-2.20	2.87	40.2	-1.212	-4.25	5.54	10.96
87	16.75	2.33	2.97		1.180	4.51	J= ~~ ~ ×	11.02
88	-17.18	-2.20	2.95	41.2	-1.210	-4.25	5.70	11.23

#### SPECIMEN F2A-C7

<u>Description</u>: This specimen was similar to specimen F2-C1 with the following exceptions. The suffix "A" denotes the use of top and bottom plates each nominally 1/16 inch thinner than the corresponding plates of specimen type F2. The specimen was fabricated in a University shop, and was not ultrasonically inspected.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-strain data, with the strain measured on the top plate at 1.89 inches from the column face.

Graphical load-deflection data.

Total Energy Absorption: 1,054 kip-inches.

Plastic Load Reversals to Failure: 77  $(38\frac{1}{2} \text{ cycles})$ .

<u>Remarks</u>: The first crack appeared at the end of a top plate-to-beam weld during the 17th cycle. Similar cracks had appeared at the ends of all plate-to-beam welds by the end of the 22nd cycle. After 25 cycles, the top plate was observed to be buckling between the ends of the weld and the column. Similar buckling of the lower flange plate was very apparent after 33 cycles, as was buckling of the lower flange beyond the free end of the plate. Cracks had also developed at the ends of the vertical web-to-column welds. Necking of the top plate could be seen after 34 cycles. By the 35th cycle, surface cracks had developed in the concave face of the lower plate buckle, and during this cycle, these cracks penetrated the plate and extended about one inch in from the edge. In the next cycle, the crack at the end of a top plate weld also penetrated the thickness of the plate, extending about 3/16 inch in from the edge. Failure finally occurred after  $38\frac{1}{2}$  cycles with the rapid opening of the crack in the bottom plate.

## SPECIMEN TYPE F2A-C7

## DIMENSIONS OF WF SECTION

DEPT	ГН	¢	ø	ø	0	Ð	¢	dQ	o	¢	Ð	Ð	0	Ð	Ð	÷Ð	Ð	IC I	÷	Ð	0	8.16	INCHES
TOP	FL	AN	GE	M	ID	T	erster.	Ó	÷	¢	e	Ŷ	ø	s	o	¢	Ð	\$	ŵ	Ð	¢	5.290	INCHES
BOTI	OM	F	LΔ	NG	Ε	W.	I D	TH	Ð	¢	¢	ø	¢	÷	¢	Q	£	Ð	Ð	\$	¢	5.300	INCHES
TOP	Fi	AN	GΕ		HI	Cł	٢N	ES	S	¢	Ð	Ð	Q	\$	¢	÷	¢	¢	0	Ð	Ø	0.357	INCHES
80T1	OM	F	LA	NG	E		11	СК	NE.	SS	Ð	0	o	Ð	si)	ø	Ф	Ð	ø	¢	o	0.354	INCHES
WEB	(united)	IC	ΚN	ES	S	ø	æ	0	Q	ø	ю	ø	Ø	Ð	袋	4	\$	C	ø	¢	¢	0.258	INCHES
																						29400。	
YIEL	D	ST	RE.	SS		۵	\$	÷	Ð	¢	¢	0	-20	Ð	Ģ	٩	\$	¢	÷	ç	ø	35.900	KSI

# DIMENSIONS AND PROPERTIES OF TOP PLATE

L ENGTH,	LP	c c ¢	e e	0 0	0 0	6 G	Ð	ø	¢ ø	Q	¢	14.00	INCHES
WIDTH AT	r end	AWAY	FROM	I COL	UMN	, M	٥	Q	10 C	Ģ	Q	2.54	INCHES
WIDTH AT	r end	OF W	ELD,	R 。	0 0	0 0	÷Ð	0	s 10	\$	Q	4.50	INCHES
AVERAGE	LOCAT	TION	OF EN	ID OF	WEL	. D ≉ ₀	N	0	N @	*	ø	3.88	INCHES
THICKNES	SS ₉ T	c 0	N C	\$0 #0	ళ శు	ନ ଦ	0	o	6 Ø	Q	Ð	0.460	INCHES
ELASTIC	MODU	LUS 。	0 0	-e -o	ଦ ଦ	9 O	ø	¢	© @	Ð	Ø	27900。	KSI
YIELD SI	FRESS	6 O	0 0	0 10	n n	ନ ଚ	Ð	\$	c o	ø	ø	35.500	KSI
*MEASURED	FROM	FACE	OF C	OLUM	N								

# DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH	, LP	0 0 0	0 0	0	0 0	ø	Ð	ø	\$	40	Ð	s	ø	¢	€	14.12	INCHES
WIDTH,	8 °	n o c	0	ŵ	• •	Ð	ø	٩	֩	÷0	Ð	÷	Ф	Ð	0	6.25	INCHES
AVERAGE	E LOCA	TION	OF	CC	ILUM	N	ENI	) (	F	WE	L	)*,	, (	2	Ð	2.68	INCHES
AVERAGE	E LOCA	TION	OF	00	ITER	E	ND	OF		IEL	D۶	¥ 8	Ρ	÷	-03	12.85	INCHES
THICKNE	ESS + T	10 C	0	Q	ю о	e.	ø	o	÷0	¢	٥	\$	Ð	Ð	¢	0.290	INCHES
ELASTI(	C MODU	LUS a	) to	0	¢Ω	ø	¢	÷C	Ð.	ŝ	Q	Ð	ø	ø	-0	29400.	KSI
YIELD S	STRESS	• •		0	ର ଏହ	ą	Q	¢	¢	Ø	-0	sD	ø	ø	Ð	46.300	KSI
<pre>*MEASUREL</pre>	) FROM	FACE	E OF	- 0	OLU	MN											

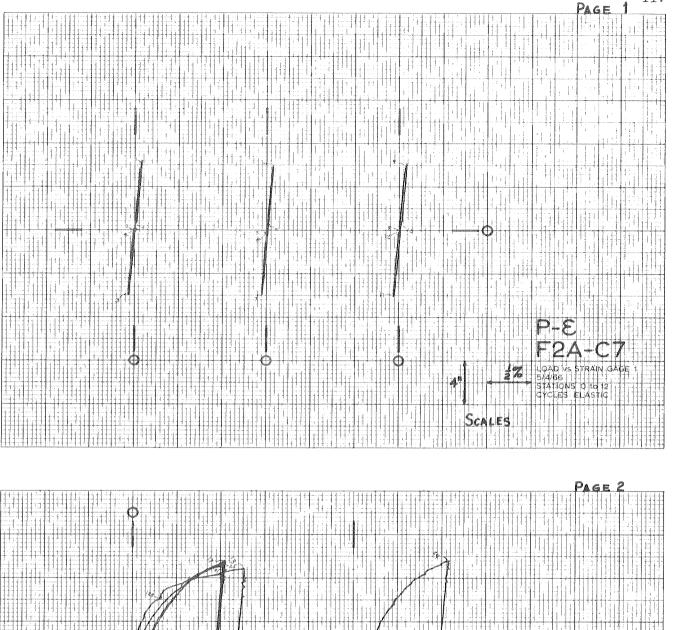
DEPTH OUT-TO-OUT OF PLATES . . . . . . . . . 8.92 INCHES

#### WF SECTION PROPERTIES

AREASACCCCCCC		· · 5.77	INCHES**2
LOCATION OF CENTROID*, YE	C O & & & &	• • 4.09	INCHES
MOMENT OF INERTIA, I 🔹 🛛	n e o n n e	0 0 67.4	INCHES**4
SECTION MODULUS, TOP, ST	\$ \$ \$ \$ \$ \$ \$ \$	16.5	INCHES**3
SECTION MODULUS, BOTTOM, S	8	16.5	INCHES**3
LOCATION OF PLASTIC NEUTRA	L AXIS*, YP	· · 4.10	INCHES
PLASTIC MODULUS; Z		· · 18.6	INCHES**3
SHAPE FACTOR		· · 1.127	
YIELD MOMENT, MY	0 4 0 0 0 0	49.33	KIP-FT.
PLASTIC MOMENT, MP			KIP-FT。
*MEASURED FROM OUTSIDE FACE	OF BOTTOM FL	ANGE	

SPECIMEN TYPE F2A-C7

SECTION PROPERTIES AT SELECTED CROSS-SECTIONS


X	A	ΥË	(hereas)	S	SB
52.00	5.77	4.38	67.4	16.5	16.5
52.00	6.88	5.08	84.7	22.0	17.7
52.57	6.93	5.10	85.3	22.3	17.7
53.15	6.98	5.13	85.9	22.7	17.8
53.15	8.79	4.10	121.6	25.2	29.7
57.63	9.17	4.29	129.3	27.9	30.1
62.12	9.55	4.46	136.4	30.6	30.5
62.12	7.45	3.40	98.2	17.8	28.8
62.72	7。50	3.44	99.6	18.2	28.9
63.32	7。55	3.47	101.0	18.5	29.1
63.32	5.47	4.60	75.7	17.5	16.4
64.66	5.58	4.69	77.5	18.3	16.5
66.00	5.69	4.77	79.3	19.1	16.6
X	ΥP	Z	gen-	ΜY	MP
52.00	4.57	18.2	1.113	48.89	54.41
52.00	6.81	21.7	0.994	65.17	64.79
52.57	6.90	21.8	0.985	66.09	65.07
53.15	7.00	21.8	0.975	67.01	65.33
53.15	2.47	32.6	1.305	74.65	97.45
57.63	3.24	34.9	1.263	82.61	104.35
62.12	4.00	36.9	1.219	90.54	110.34
62.12	0.61	23.9	1.361	52.64	71.63
62.72	0.62	24.4	1.356	53.75	72.90
63.32	0.62	24.8	1.352	54°85	74.18
63.32	4.02	21.6	1.245	51.87	64.59
64.66	4.25	22.1	1.222	54.18	66.20
66.00	4.47	22.6	1.199	56.49	67.73
	NCE FROM CON			,HES	
A = AREA	OF CROSS-SEC	ILUNS INC	HESFF2		

YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES

- I = MOMENT OF INERTIA, INCHES**4
- ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3
- SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3
- YP = DIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.
- Z = PLASTIC MODULUS, INCHES**3
- F = SHAPE FACTOR
- MY = YIELD MOMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET

BEAM PROPERTIES

	LENGTH, L	o	, s	-0	o c	Q (	0 O	e	¢ i	Ð	Ð	-	0 40	\$	ŵ	66.0	INCHES
	ELASTIC S	STIF	FNE	ESS	P P	DEL	TA.	v	0 4	Ð	so.	\$	ຍ 🕫	Ð	Ð	25.45	KIPS/IN.
	YIELD DEF	LEC	TIC	)N y	DEL	TA)	1 0	O	с н	3	ø	Ð	e 10	ø	ю	0.386	INCHES
	YIELD LOA	۱D,	РΥ	÷	0 0	c (	0 0	0	0 1	D	o	Ð	0 0	Ð	ø	9.83	KIPS
	PLASTIC L	.OAD	) _o f	р	\$ \$	-o - o	ວ ຍ	¢	6 A	0	0	¢ :	0 ¢	Ð	֩	12.24	KIPS
	LOCATION	0 F	CR 1	TI	CAL	SE(	TI	ΟN	FOF	R	PΥ	*	0 0	ø	Ð	63.32	INCHES
	LOCATION	OF	CRI	ITI	CAL	SE(	TI	ΟN	FO	3	ΡP	ż,	c -o	¢	¢	63.32	INCHES
容	MEASURED	FRO	M	CN	CENT	[RA]	<b>FED</b>	LC	DAG								



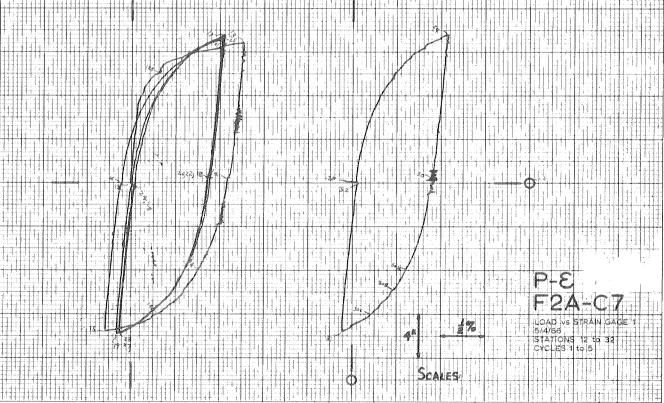
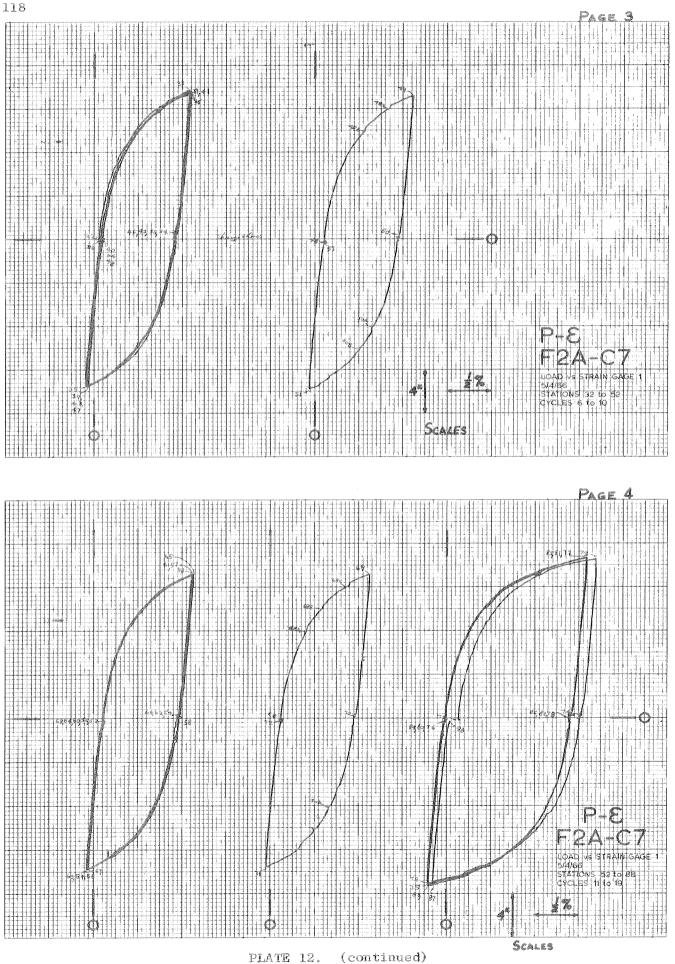




PLATE 12. LOAD VS. STRAIN - F2A-C7





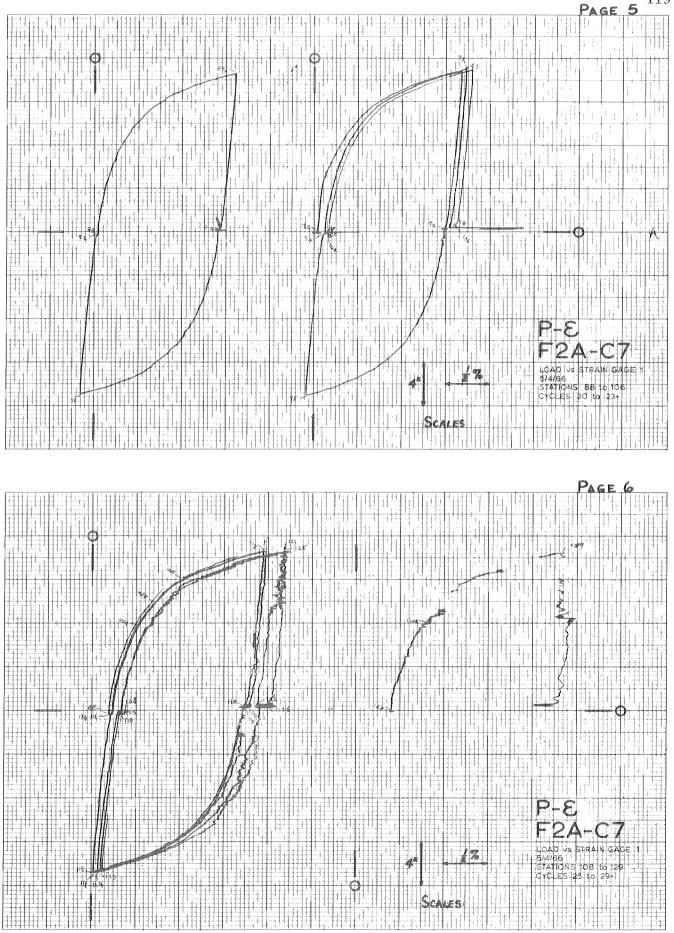



PLATE 12. (continued)

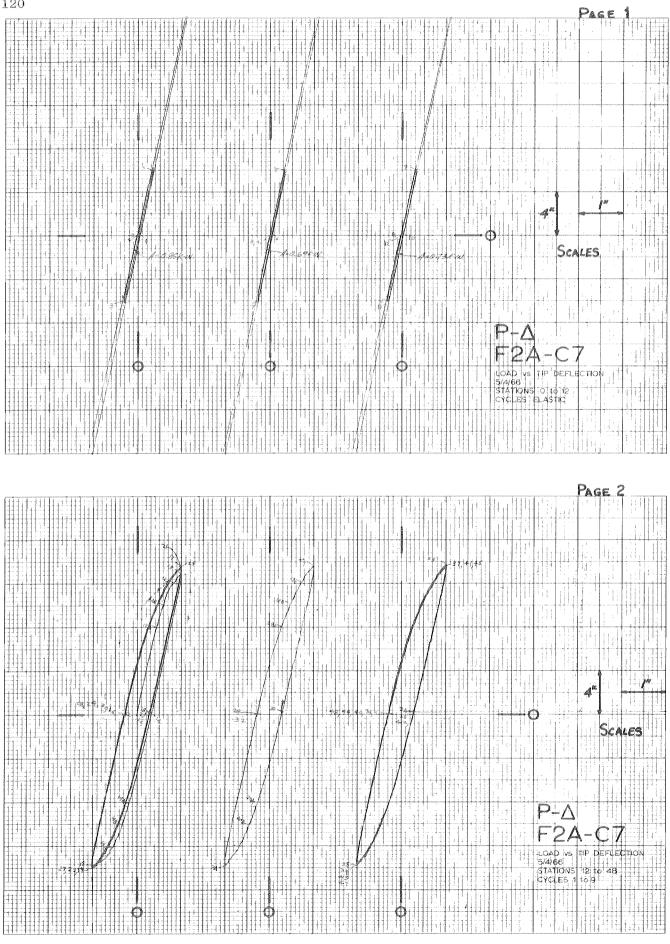
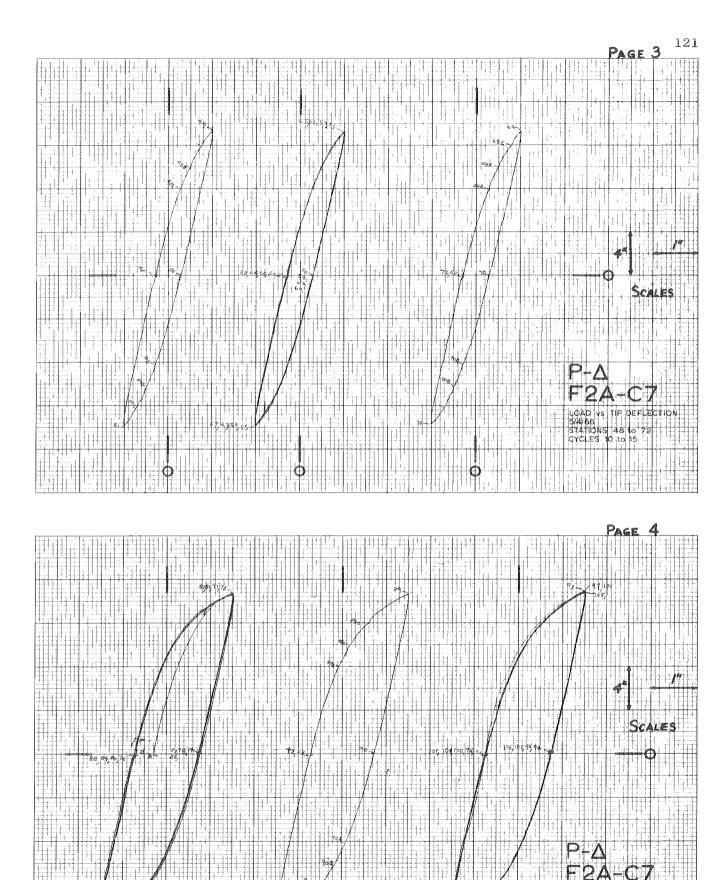
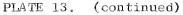





PLATE 13. LOAD VS. DEFLECTION - F2A-C7





10,2

m

++

1111

1, 15 57, 14 63

1...

0

<u>i</u>

dta

1 19975

194

Q

F2A-C7

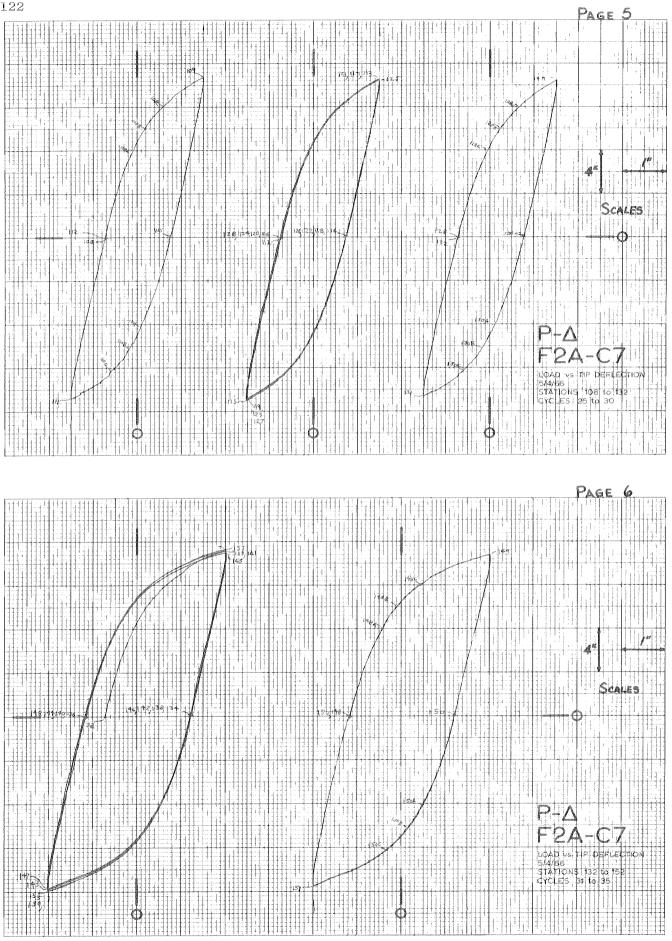



PLATE 13. (continued)

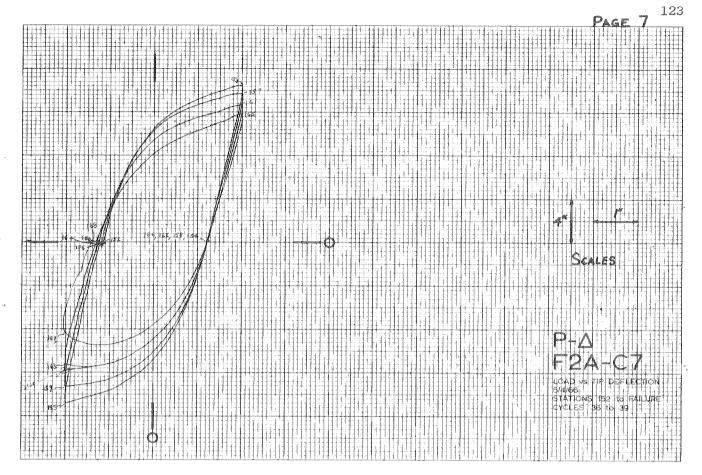



PLATE 13. (continued)

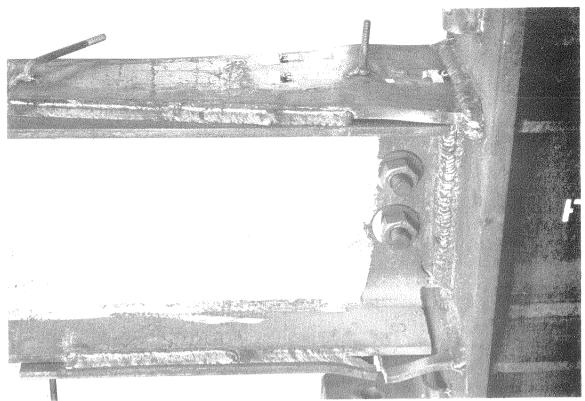



FIGURE 27. F2A-C7

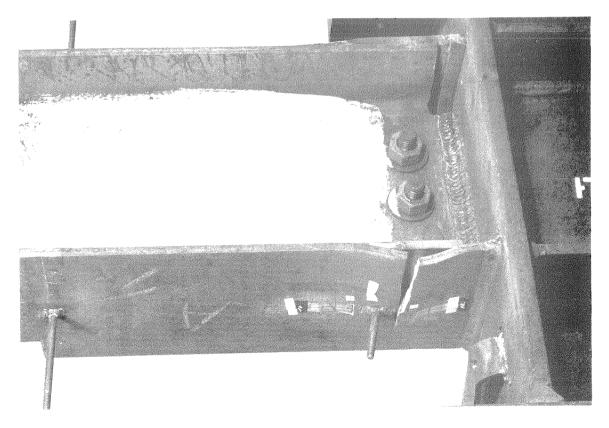
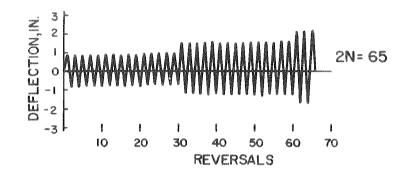



FIGURE 28. F2A-C7

SPECIMEN F2A-C7

Half- Cycle	P KIPS	∆ IN∘	$\Delta'$ IN.	W K-IN.	P	Ā	$\overline{\Delta}$ '	Ŵ
1	12.36	0.82	0.29	3.1 6.2	1.010 -1.082	1.71	0.60	1.05
2	12.81	0.81	0.50	0°2 4°9	1.046	-1.69 1.69	1.13 1.04	2.10 1.67
4	-13.53	-0.81	0.50	5.0	-1.105	-1.68	1.04	1.71
5	12.93	0.81	0.50	4.9	1.056	1.68	1.04	1.68
6 7	-13.48 12.97	-0.81 C.81	0.50 0.50	5.0	-1.101 1.060	-1.68 1.68	1.04	1.71
8	-13.51	-0.81	0.50	5.0	-1.104	-1.68	1.04	1.68 1.71
9	13.01	C.81	0.51	4.9	1.063	1.68	1.06	1.68
10	-13.28	-0.80	0.51	4.9	-1.085	-1.67	1.06	1.65
11	13.13	0.81	0.51	5.0	1.073	1.68	1.06	1.72
12 13	-13.26 12.95	-0.80 0.81	0.51 0.51	4。8 4。7	-1.083	-1.67 1.68	1.06	1.64
14	-13.27	-0.80		4.8	-1.084	-1.67	1.06 1.06	1.61
15	12.92	0.81	0.51	4.8	1.055	1.69	1.07	1.62
16	-13.30	-0.80	0.51	4.8	-1.087	-1.67	1.07	1.65
17	12.84	0.81	0.51	4.8	1.049	1.69	1.07	1.62
18 19	-13.18 12.89	-0.80 0.81	0.51	4.8	-1.076	-1.67	1.07	1.64
20	-13.28	-0.81	0.51 0.51	5.0 5.0	1.053 -1.085	1.69	1.06 1.06	1.71 1.70
21	12.81	0.81	0.52		1.047	1.69	1.09	1.67
22	-13.29	-0.80	0.53	5.0	-1.086	-1.67	1.11	1.70
23	12.85	0.81	0.53		1.050	1.69	1.11	1.68
24	-13.30	-0.80	0.53	5.0	-1.087	-1.67		1.70
25 26	12.79	0.81 -0.80	0.53 0.53	4.9 5.0	1.045 -1.082	1.69	1.11	1.67
27	12.82	0.81	0.53	4.9	1.047	-1.67 1.69		1.69
28	-13.19	-0.81	0.53		-1.077	-1.67	1.11	1.70
29	12.82	0.81	0.53		1.047	1.69	1.10	1.70
30	-13.06	-0.81	0.53	5.1	-1.067	-1.68	1.11	1.72
	14.15	1.28	0.94		1.156	2.67	1.96	3.98
32 33	-14.46 14.24	-1.30 1.28	1.35 1.37	15.8 15.7	-1.181	-2.69 2.66	2.81 2.85	5.37 5.34
34	-14.60	-1.29	1.39		-1.193	-2.69	2.89	5.58
	14.32		1.41		1.170	2.66	2.94	5.37
36			1.43		-1.208	-2.75	2.98	5.86
			1.41		1.166		2.94	5.35
38 39	-14.52 14.21		1.39		-1.187 1.161	-2.69 2.67	2.89	5.55
	-14.46		1.37 1.37			-2.70	2.85 2.85	5.24 5.13
		1.30	1.41		1.162		2.94	5.57
	-14.56	-1.27	1.39		-1.190	-2.65	2.89	5.42
	14.41		1.39			2.70	2.89	5.25
44	-14.55	-1.27	1.39			-2.65	2.89	5.42
	14.39 -14.64	1.30 -1.27	1.39 1.41		1.176 -1.196	2.70 -2.65	2。89 2。94	5.25 5.46
	14.22	1.30	1.41			2.70	2.94	5.22
	-14.64	-1.30	1.41		-1.196	-2.71	2.94	5.45
		1.28	1.40	15.6	1.160	2.67	2.91	5.31
		-1.30	22E - V - 1460		-1.164	-2-70	2.91	5.43
51	14.05	1.28	1.38	12.2	1.148	2.67	2.87	5.17


 $1\,26$ 

Half-	Р	۵	$\Delta^{\prime}$	W	P	Ā	$\overline{\Delta}'$	w
Cycle	KIPS	IN.	IN.	K-IN.				
52	-14.50	-1 22	1.39	15.7	-1.185	-2.74	2.89	5.33
				15.2	1.147	2.67	2.89	5.16
53	14.03	1.28	1.39		-1.171	-2.70	2.89	5.14
54	-14.33	-1.30	1.39	15.1				5.19
55	14.01	1.28	1.39	15.3	1.145	2.67	2.89	
56	-14.34	-1.30	1.39	15.1	-1.172	-2.70	2.89	5.15
57	13.90	1.29	1.39	15.3	1.136	2.67	2.89	5.19
58	-14.33	-1.30	1.39	15.1	-1.171	-2.70	2.90	5.14
59	13.90	1.29	1.43	15.1	1.136	2.67	2.98	5.14
60	-14.07	-1.31	1.43	15.5	-1.150	-2.73	2.98	5.27
61	14.62	1.78	1.87	21.5	1.194	3.69	3.89	7.31
62	-15.29	-1.80	2.33	28.9	-1.249	-3.75	4.85	9.83
63	14.78	1.77	2.33	27.2	1.208	3.69	4.85	9.23
64	-15.33	-1.80	2.33	28.9	-1.253	-3.75	4.85	9.83
65	14.69	1.77	2.33	26.9	1.200	3.69	4.85	9.14
66	-15.18	-1.80	2.33	28.5	-1.240	-3.73	4.85	9.69
67	14.45	1.78	2.33	26.1	1.181	3.69	4.85	8.88
68	-15.15	-1.80	2.33	28.5	-1.238	-3.74	4.85	9.69
69	14.28	1.79	2.32	25.9	1.167	3.72	4.83	8.82
70	-14.92	-1.80	2.32	27.2	-1.219	-3.74	4.83	9.25
71	14.00	1.75	2.31	25.8	1.144	3.65	4.81	8.76
72	-14.15	-1.83	2.34	27.3	-1.156	-3.80	4.87	9.29
73	13.25	1.77	2.34	25.3	1.082	3.67	4.87	8.59
74	-12.67	-1.86	2.40	25.6	-1.035	-3.87	4.99	8.70
75	12.22	1.78	2.40	23.1	0.998	3.70	5.00	7.85
76	-11.19	-1.88	2.45	23.2	-0.914	-3.92	5.10	7.89
77	11.37	1.80	2.45		0.929	3.75	5.10	6.94
.a. 7.	dan dar ber ville of	****	19000 W 2 10 ⁴⁷	-1000 1887 7367 18	387 Yu in 944 ff		the the state are	

#### SPECIMEN F2B-C8

<u>Description</u>: This specimen was similar to specimen F2A-C7, except that the suffix "B" denotes the use of top and bottom plates each nominally 1/8 inch thinner than the corresponding plates of specimen type F2.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-strain data, with strain measured on the top plate 1.88 inches from the column face. Graphical load-deflection data.

Total Energy Absorption: 533 kip-inches.

Plastic Load Reversals to Failure: 65  $(32\frac{1}{2} \text{ cycles})$ .

<u>Remarks</u>: Buckling of the top plate became obvious during the 5th cycle; that of the bottom plate, during the 6th. In the 9th cycle cracks appeared on both sides of the bottom plate at the ends of the longitudinal welds near the column. During the 14th cycle a small crack appeared in the top flange plate near the column at the end of one of the longitudinal welds. A similar crack developed on the opposite side of the plate in the 16th cycle. At the same time a crack about 3/8 inch long was found in the corner of the bottom cope. During the 18th cycle the same crack enlarged to approximately one inch in length.

A small surface crack was observed during the 20th cycle on the concave side of the lower plate buckle. It was also noted that closing the web crack on the down stroke coincided with the sudden load increase near the end of the stroke. One of the cracks at the lower flange weld began to propagate rapidly during this cycle. In the next cycle, the same phenomenon was observed on the top plate. Fracture occurred at the buckle in the bottom plate and at the weld to the column, during the 33rd cycle.

## SPECIMEN TYPE F2B-C8

#### DIMENSIONS OF WE SECTION

																				8.22	
TOP	FLA	NGE	WIC	)TH		¢	e.	¢۵.	ē	e	ø	υ	o	ç.	¢	۵.	۵.	c	¢	5.310	INCHES
BOTT	CM	FLAM	١GE	ΜI	DT	Η	¢	o	C.	s,	0	e e	ن.	¢.	¢	Q	¢	10	e O	5.310	INCHES
TOP	FLA	NGE	THI	[ C K	NE	SS		¢	0	¢	e	¢.	ŵ	c	¢	Ð	0	÷	ç	0.354	INCHES
BOTT	СM	FLAN	NGE	ΤH	IC	ΚN	ΞS	S	¢	ŵ	e	ø	Ģ	Ð	ŝ	ı©	e	ø	Ð	0.356	INCHES
WEB	THI	CKNE	ESS	¢	Q	Q	ø	ø	Ð	ω.	ç	Ð	o	Ð	6	ø	6	ø	©	0.256	INCHES
ELAS	TIC	MOD	DULU	JS	ο	ē	ø	ø	o	ç	0	ø	Ģ	Ð	0	Q	0	ō	e	29400.	KSI
																				35.900	

# DIMENSIONS AND PROPERTIES OF TOP PLATE

LENGTH, LP .	0 6 6 6	1 G Q Q Q Q Q	φ 6 (	; (c) (	S 6	13.95	INCHES
WIDTH AT END							
WICTH AT END							
AVERAGE LOCAT							
THICKNESS, T	0 0 0 0		େବେ	- 6 I	υo	C.370	INCHES
ELASTIC MCCUL	US o o o		6 0 6	с «	0 0	28400.	KSI
VIELD STRESS	နား ပ ပ သ		¢ € €	0 4	ာစ	36.500	KSI
*MEASURED FRCM	FACE OF C	OL UMN					

## DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH, LP 0000		0 0 0 0 0 0	14.09 INCHES
WICTH, B		မေးမ်းမ်း က လေးလ	6.28 INCHES
AVERAGE LCCATION OF	COLUMN END OF	WELD*, Q .	2.54 INCHES
AVERAGE LOCATION OF	OUTER END OF W	VELD*, P	12.81 INCHES
THICKNESS, T	ଈ ବ ଢ ଁ ଁ କ ଚ ଧ	0 0 0 0 0 0	0.250 INCHES
ELASTIC MCCULUS	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 0 0 0 0 0	30000° KSI
VIELD STRESS			37.900 KSI
*MEASURED FRCM FACE OF	F COLUMN		
	'		

DEPTH CUT-TC-OUT OF PLATES . . . . . . . . . 8.88 INCHES

WF SECTION PROPERTIES

AREA, A		0 0 0	Ø	c o	ω	ο	ø	0	e	6 6	¢	5.78	INCHES**2
LOCATIO												4.10	INCHES
MCMENT	OF IN	ERTIA	9 I	¢.	0 0	0	ŵ	ŝ	6	6 U	c	68.6	INCHES**4
SECTION	MCCU	LUSs	ТОР	° ST	Q	C	к;	¢	0	0 0	6	16.7	INCHES**3
SECTION	MODU	LUS,	BOT	TOMs	SΒ	¢	ø	ø	¢ 1	0 0	¢	16.7	INCHES**3
LOCATIC												4.09	INCHES
PLASTIC	MODU	LUSP	Z	е (р	် ဓ	÷	¢	ŝ	e 4	a a	¢	18.8	INCHES**3
SHAPE F	ACTOR	0 Q	¢	0 0	e e	¢	G	0	ю (	a a	¢	1.126	
YIELD M	CMENT	s MY	¢	e e	ତ କ	ø	e	e O	¢ (	ာစ	¢	49.87	KIP-FT.
PLASTIC	MOME	NTO M	Р	c c	င စ	ø	G	s	с 4	6 6	¢	56.16	KIP-FT.
*MEASURED	FRCM	OUTS	IDE	FAC	E OF	- 8	0 T	ΤO	MF	LAI	٧GE		

SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

х	Δ	ΥE	Ĩ	ST	SB
52.05	5.78	4.37	68.6	16.5	16.5
52.05	6.68	4.,95	83.1	21.1	17.7
52.62	6.72	4.97	83.6	21.4	17.7
53.18	6.75	4.99	84.2	21.7	17.7
53.18	8.36	4.06	114.9	23.8	28.3
57.63	8.66	4.22	121.1	26.0	28.7
62.08	8.96	4.37	127.0	28.2	29.0
62.08	6.87	3.19	85.6	15.0	26.8
62.77	6.52	3.23	87.0	15.4	27.0
63.46	6.57	3.26	88.4	15.7	27.1
63.46	4.26	4.40	65.2	14.8	14.5
64.73	4.95	4.53	66.7	15.4	14.7
66.00	5.04	4.61	68.2	16.0	14.8
Х	ΥP	Z	F	MΥ	MP
52.05	4.53	18.4	1.090	50°45	54.99
52.05	6.37	21.4	1.149	55.82	64.12
52.62	6.45	21.5	1.152	55。92	64-40
53.18	6.53	21.6	1.154	56°C3	64.67
53.18	3-29	29.5	1.219	<b>72.5</b> 0	88.39
57.63	3.91	31.2	1.178	79.12	93.24
62.08	4.53	32.6	1.137	85 ° 23	97.51
62.08	0.62	20.6	1.346	45.74	61.59
62.77	0.62	21.0	1.341	46.80	62.78
63.46	0.63	21.4	1.336	47.86	6 <b>3</b> 。97
63.46	4.58	17.1	1.140	<b>44</b> 。88	51.16
64.73	4.75	17.5	1.124	46°50	52.26
66.00	4.93	17.8	1.139	46.79	53.31
= DISTAN		CONCENTRATED	LOAD, IN	CHES	

A = AREA OF CROSS-SECTION, INCHES**2

YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4

ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3

SB = SECTIEN MECULUS FOR BOTTOM FLANGE, INCHES**3

YP = DIST. FROM CUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.

.

- Z = PLASTIC MEEULUS, INCHES**3
- F = SHAPE FACTER
- MY = YIELD MCMENT, KIP-FEET
- MP = PLASTIC MCMENT, KIP-FEET

### BEAM PROPERTIES

Х

	LENGTH, I		0	د ب	0	G	0	c	e e	ø	Q	0	e	ç	40	ø	¢	ø	66°C	INCHES
	ELASTIC S	STIF	FN	ESS	>	P/	DE	LT	A	ø	ø	e	ŵ	¢	ø	e	e	¢	24.74	KIPS/IN.
	YIELD DEP	FLEC	TI	DN ,	1	DEL	TΑ	Y	¢	ø	G	0	Ş	0	Q	¢	¢	¢	0.343	INCHES
	YIELD LOA	AC,	PΥ	÷	¢	¢	Ð	Ģ	ø	¢	ø	¢	¢	6	Ð	¢	ç	8	8.49	KIPS
	PLASTIC L	CAC	) 💡	рр	Q	ø	ଶ	ø	ø	ø	¢	ø	ø	Ð	Q	¢	Q	¢	9.67	KIPS
	LCCATION	CF	CR	ITI	C/	AL.	SE	CT	IC	ЛC	FO	R	Ργ	*	¢	Q	¢	Ð	63.46	INCHES
	LOCATION	0 F	CR	ITI	C/	16	SΕ	CT	Li	ЛC	FO	R	ΡP	*	۵	e e	e G	ø	63.46	INCHES
×	MEASURED	FRC	) M (	CCN	IC (	ENT	RA	TE	D	LC	DAD									

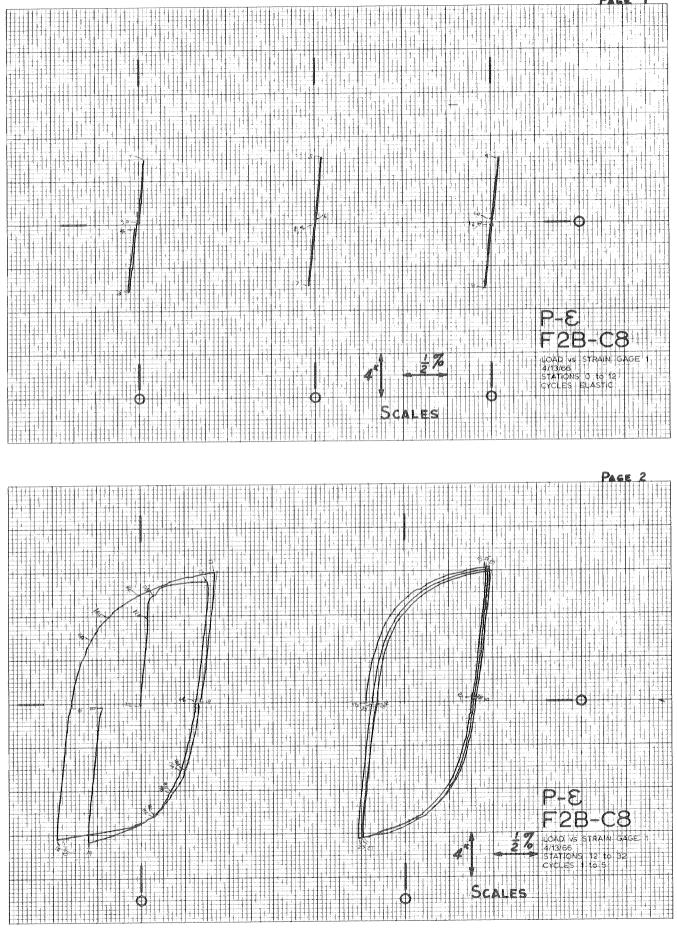



PLATE 14. LOAD VS. STRAIN - F2B-C8



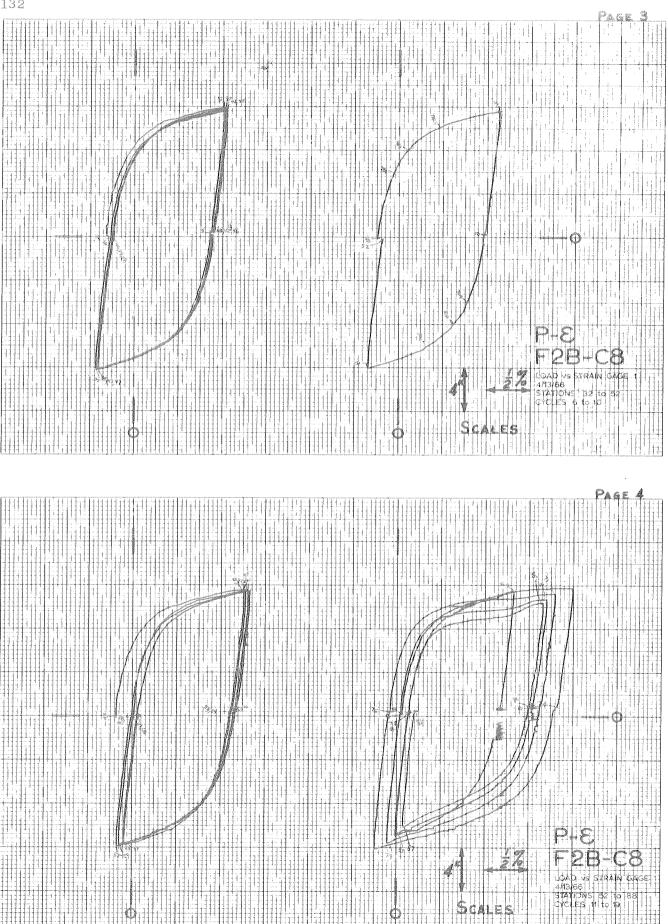



PLATE 14. (continued)

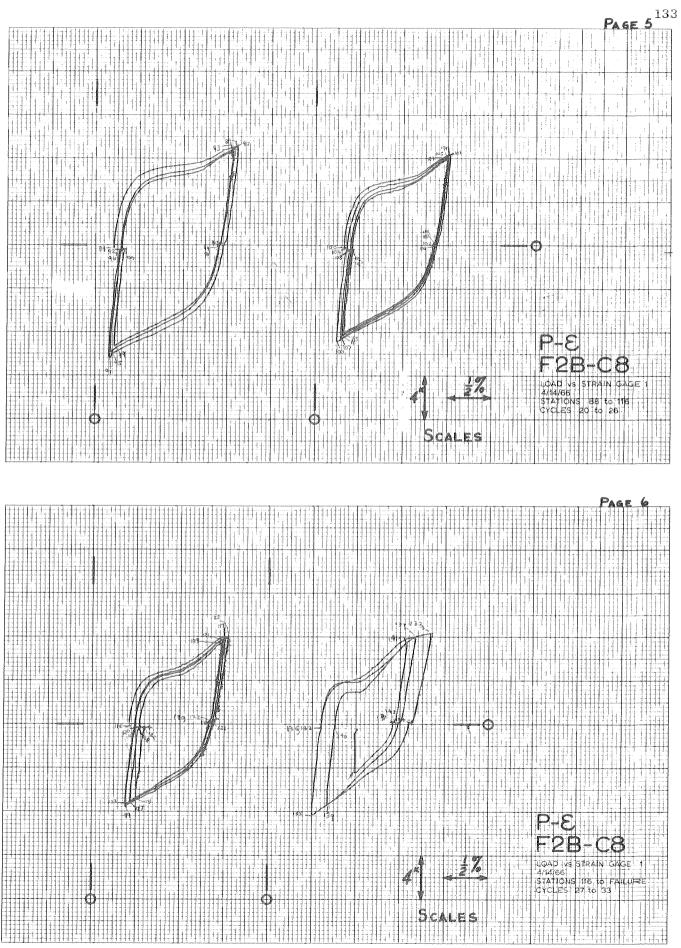
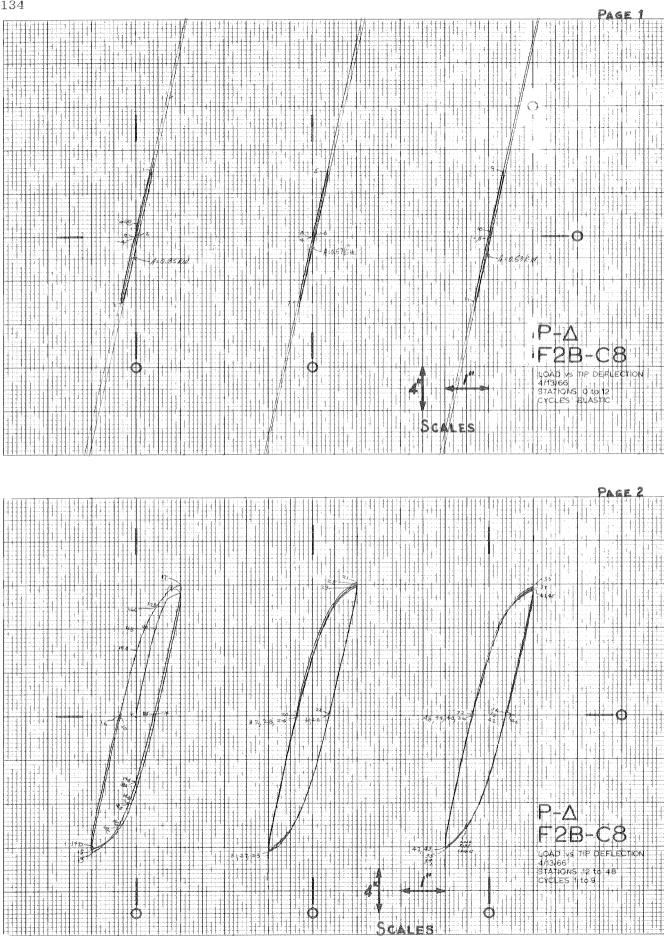




PLATE 14. (continued)



LOAD VS. DEFLECTION - F2B-C8 PLATE 15.

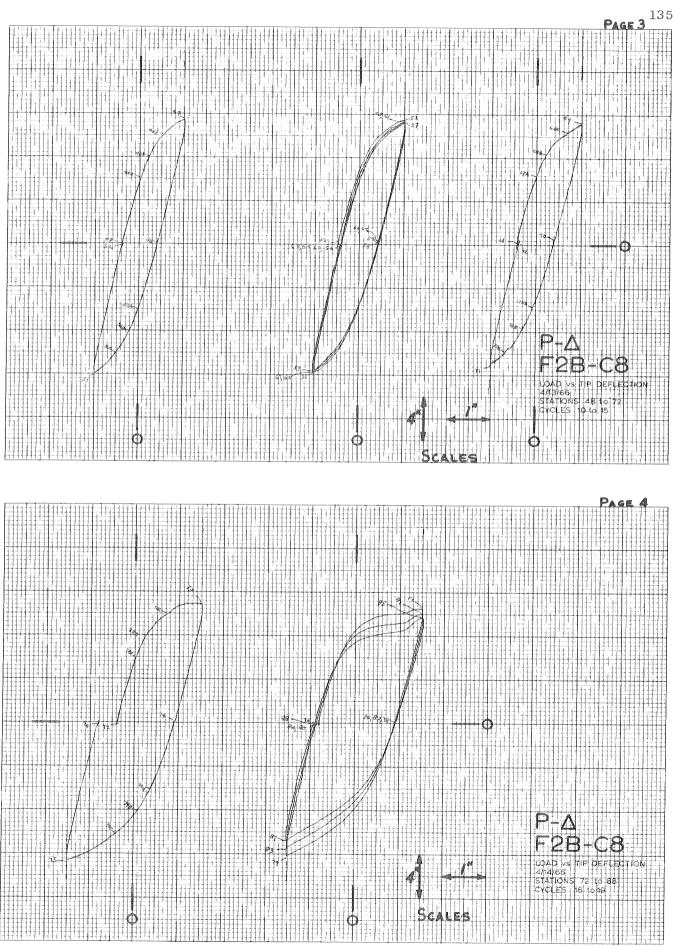



PLATE 15. (continued)

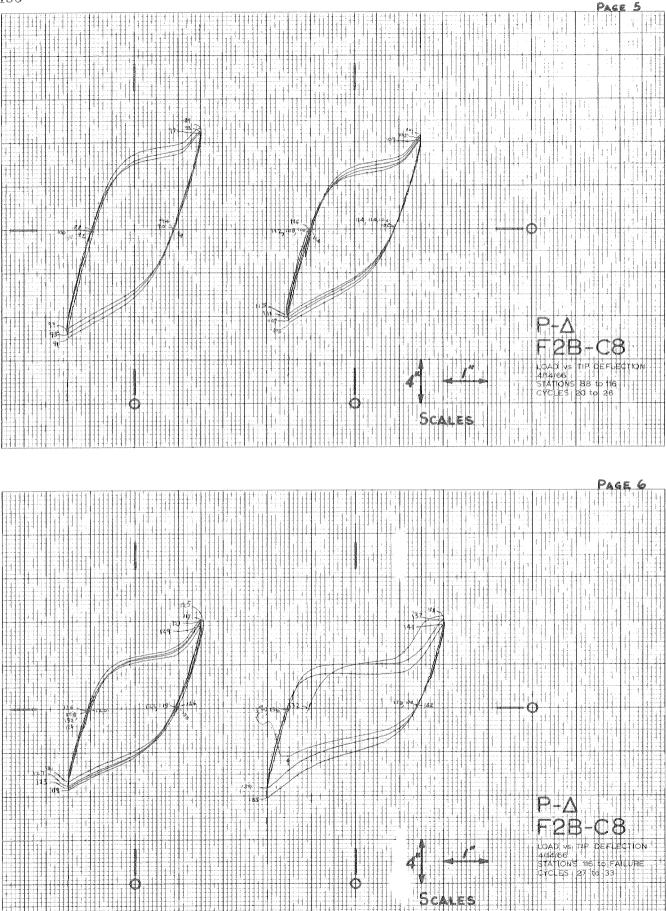



PLATE 15. (continued)

11:

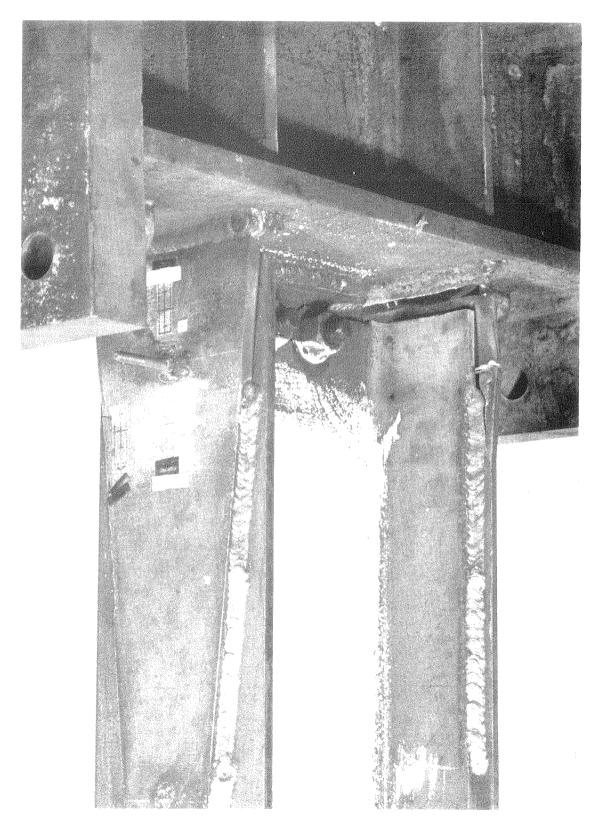
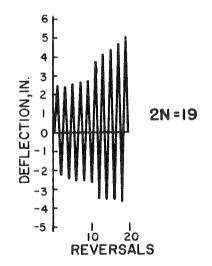



FIGURE 29. F2B-C8

SPECIMEN F2B-C8


Half-	р	Δ	۵′	W	$\tilde{\mathbf{P}}$	$\overline{\bigtriangleup}$	$\overline{\Delta}^{+}$	Ŵ
Cycle	KIPS	IN o	IN o	K-1No				
1	10.56	0.85	0.40	3。8	1.092	2.17	1.02	2.03
2	-11.58	-0.85	0.73	7.5	-1.198	-2.19	1.87	3.96
3	11.38	0.85	0.68	6.2	1.177	2.17	1.74	3.30
44	-11.83	-0.83	0.65	6 ° 5	-1.224	-2.13	1.66	3.43
5	11.54	0.85	0.65	6.3	1.193	2.16	1.66	3.33
6	-11.87	-0.82	0.65	5.7	-1.228	-2.10	1.66	3.03
7	11.31	0.85	0.65	5.8	1.170	2.17	1.66	3.09
8	-11.77	-0.82	0.65	5.7	-1.217	-2.10	1.66	3.03
9	11.13	0.85	0.65	5.7	1.151		1.66	3.01
10	-11.74	-0.82	0.65	5.7	-1.214	-2.10	1.66	3.02
and .	11.06	0.87	0.67	6.l	1.144	2.24	1.71	3.24
12	-11.66	-0.80	0.67	5.9	-1.206	-2.06	1.72	3.14
13	10.95	0.88	0.67	5.8	1.132	2.24 2.06	1.72	3.05 3.13
14	-11.60	-0.80	0.67	5.9 5.7	-1.199 1.121	2.24	1.72	3.02
15	10.84	88°0 08°0~	0.67 0.67	5.8	-1.192	-2.06	1.72	3.09
16 17	10.76	0.88	0.67	5.7	1.113	2.25	1.72	3.03
18	-11.49	~0.81	0.67	5.9	-1.189	-2.06	1.72	3.11
19	10.77	0.90	0.70	6.3	1.114	2.30	1.79	-
20	-11.41	-0.81	0.70	6.2	-1.180	-2.06	1.79	3.26
21	10.79	0.98	0.82	7.3	1.116	2.50	2.10	3.85
22	-11.26	-0.71	0.74	6.5	-1.164	-1.81	1.89	3.43
23	10.59	0.99	0.74	6.3	1.095	2.53	1.89	3.33
24	-11.11	-0.71	0.74	6.0	-1.149	-1.82	1.89	3.17
25	10.54	0.98	0.74	6.7	1.090		1.89	3.56
26	-11.20	-0.73	0.74	6.2	-1.158	-1.87	1.89	3.28
27	10.44	0.98	0.74	6.7	1.079	2.51	1.89	3.53
28	-11.17	-0.73	0.74	6.2	-1.155	-1.87	1.89	3.27
29	10.19	1.00	0.73	6.2	1.054	2.57	1.87	3.28
30	-10.60	-0.69	0.71	5.5	-1.097	-1.76	1.82	2.93
31	10.34	1.50	1.22	11.2	1.070	3.85	3.13	5.90 8.19
32	-11.92	-1.18	1.62	15.5	-1.233	-3.01 3.86	4.15	7.55
33	9.86	1.51	1.63	14.3 14.6	1.020	-3.08	4.33	7.71
34 35	-11.50 9.35	1.52	1.69 1.69	13.3	0.967	3.88	4.33	7.03
36	-10.77		1.71	13.3	-1.114	-3.11	4.38	7.06
37	9.07	1.54	1.71	12.4	0.938	3.94	4.38	6.56
38	-10.14	-1.24	1.75	12.6	-1.049	-3.16	4.48	6.67
39	8.70	1.55	1.75	11.8	0.900	3.96	4.49	6.25
40	-9.25	-1.22	1.72	10.9	-0.956	-3.11	4.40	5.75
41	8.38	1.53	1.72	10.6	0.867	3.92	4.40	5.63
42	-8.93	-1.24	1.77	10.7	-0.923	-3.18	4.53	5.66
43	8.21	1.54	1.77	10.1	0.849	3.95	4.53	5.35
44	-8.45	-1.24	1.77	9.8	-0.874	-3.17	4.53	5.19
45	7.99	1.55	1.79	9.8	0.826	3.96	4.58	5.18
46	-8.04	-1.22	1.81	9.5	-0.831	-3.11	4.64	5.01
47	7.77	1.55	1.81	9.2	0.804	3.97	4.64	4.84
48	-7.77	-1.22	1.82	9.1	-0.804	-3.12	4.66	4.80
49	7.61	1.55	1.82	8.8	0.787	3.97 -3.18	4.66	4.64 4.51
50	-7.52	-1.24	1.83	8.5	-0.778		4.69	4.35
51	7.46	1.55	1.83	8.2	0.772	3.98	4.69	4000

Half-	Р	Δ	$\Delta^{\prime}$	W	P	$\overline{\bigtriangleup}$	$\overline{\Delta}^{(2)}$	W
Cycle	KIPS	IN o	IN o	K-IN.				
52	-7.32	-1.28	1.85	8.4	-0.757	-3.27	4.73	4044
53	7.53	1.57	1.88	8.3	0.778	4.02	4.81	4.41
54	-6.76	-1.22	1.83	7.8	-0.699	-3.13	4.67	4.12
55	7.31	1.57	1.83	7.4	0.756	4.01	4.68	3.92
56	-6.63	-1.23	1.84	7.6	-0.686	-3.14	4.70	4.04
57	7.43	1.61	1.90	8.1	0.768	4.13	4.85	4.30
58	-6.50	-1.23	1.91	7.7	-0.672	-3.14	4.87	4.09
59	6.98	1.58	1.86	7.3	0.722	4.05	4.76	3.88
60	-6.09	-1.23	1.86	6.9	-0.630	-3.16	4.75	3.66
61	7.78	2.11	2.35	10.1	0.805	5.40	6.02	5.35
62	-7.64	-1.68	2.80	10.9	-0.790	-4.30	7.17	5.77
63	7.54	2.13	2.80	10.4	0.779	5.46	7.17	5.50
64	-6.69	-1.68	2.85	8.6	-0.692	-4.29	7.30	4.53
65	7.03	2.13	2.86	7.6	0.727	5.45	7.31	4.04

#### SPECIMEN F3-C1

<u>Description</u>: The beam was attached to top and bottom flange connecting plates and a web clip angle by means of 5/8 inch diameter high strength bolts. The connecting plates and the clip angle were welded to the column. The specimen was commercially fabricated, and there was no visually apparent departure from the detail drawing. All holes were punched and were 1/16 inch larger in diameter than the bolts. The torque in all bolts was checked and found to conform to AISC specifications. Ultrasonic inspection disclosed no significant weld defects. Threaded studs were tack-welded to both plates and flanges to support rotation measuring devices.

Program of Cycling:



<u>Test Control</u>: Strain, as measured on the top flange 12.02 inches from the column face.

Raw Data Included: Graphical load-strain data for the control strain.

#### Total Energy Absorption: Not available.

#### Plastic Load Reversals to Failure: 19 ( $9\frac{1}{2}$ cycles).

<u>Remarks</u>: During the first plastic cycle, slip between the lower plate and the beam flange was observed by noting that the white-wash had separated from the bolt heads. Slipping of the plates was accompanied by loud banging. Slight buckles appeared in the flanges beyond the ends of the plates during the 3rd cycle. The buckle in the bottom flange became more pronounced when the control strain was increased in the 6th cycle. Necking and cracking of the bottom flange at the outer line of bolts was observed after 9 cycles. Failure occurred at the beginning of the 10th cycle when the top flange fractured at the outer bolt line, the crack extending well into the web.

SPECIMEN TYPE F3-C1 PUNCHED HOLES 11/16 IN. NOMINAL DIAMETER

### DIMENSIONS OF WF SECTION

																						8.27	
																						5.260	
																						5.140	
																						0.350	
																						0.375	
																						0.275	
																						29800.	
Ŷ	'I EL	D	<b>S</b> 1	R	ES	S	Ø	Ø	Ð	Ø	Ð	Ð	49	ø	ø	¢	ø	-	Ð	-Q-	\$ ¢	38.900	KSI

## DIMENSIONS OF CONNECTION ELEMENTS

DEPTH OUT-TO-OUT OF PLAT THICKNESS OF FILLER PLAT HOLE DIAMETER	76	ବ ନ ବ ୦ ୦	0.125 INCHES
TOP PLATE			
LENGTH OF PLATE, LP .	ର ଦେବ ଦେଇ ଏହ	ଦ ଜ ଜ ଜ ଦ	10.60 INCHES
WIDTH OF PLATE, B			
LOCATION OF FIRST ROW			
LOCATION OF LAST ROW O	DF BOLTS*, D	କ ନ କ କ କ	9.37 INCHES
THICKNESS OF PLATE, T	0 C 2 2 0 0 0		0.510 INCHES
ELASTIC MODULUS			
YIELD STRESS	• • • • • • •	ତ ତା ହାରେ ବ	38.700 KSI
BOTTOM PLATE LENGTH OF PLATE, LP .			10 60 INCHES
WIDTH OF PLATE, B			
LOCATION OF FIRST ROW			1.88 INCHES
LOCATION OF LAST ROW D			
THICKNESS OF PLATE, T			0.540 INCHES
ELASTIC MODULUS			and an end of the state of the state of the
YIELD STRESS			
		~ ~ ~ ~ ~	್ರೆ ಕ್ರೈಕ್ / B ರಾಜಿ ಸರ್ಕ ಸರ್ಕ ಸರ್ಕ ಸರ್ಕ

*MEASURED FROM FACE OF COLUMN

SPECIMEN TYPE F3-C1 PUNCHED HOLES 11/16 IN. NOMINAL DIAMETER

PROPERTIES OF GROSS SECTION OF WF

5,93 INCHES**2 4.08 INCHES LOCATION OF CENTROID*, YE . . . . . . . 70.0 INCHES**4 MOMENT OF INERTIA, I . . . . . . . . . . . SECTION MODULUS, TOP, ST . . . . . . . 16.7 INCHES**3 SECTION MODULUS, BOTTOM, SB . . . . . . . 17.1 INCHES**3 LOCATION OF PLASTIC NEUTRAL AXIS*, YP . . 3.99 INCHES PLASTIC MODULUS, Z . . . . . . . . . . . . 19.1 INCHES**3 1.144 SHAPE FACTOR . . . . . . . . . . . . . . . . . . 54.23 KIP-FT. PLASTIC MOMENT, MP . . . . . . . . . . . . 62.03 KIP-FT. *MEASURED FROM OUTSIDE FACE OF BOTTOM FLANGE

PROPERTIES OF NET SECTION OF WF (AISC SPECIFICATION 1.10.1)

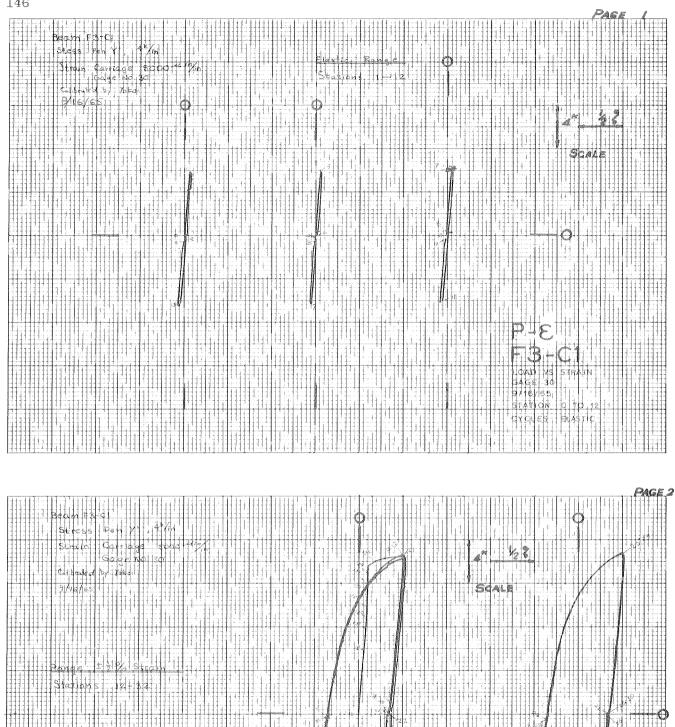
	AREA,	A .	0	-o -i	o 10	¢	so.	ø	Φ	¢	o	0	÷	÷	ŵ	ø	0	5.41	INCHES**2
	LOCATI	ΟN	OF	CEM	TR	OIC	)岑。	Y	E	Ð	c	÷	Ģ	ŝ	N)	0	ఫ	4.10	I NCHES
	MOMENT	OF	- 11	VERT	IA	9 I		¢	Ð	0	ø	o	-sp	Q	¢	-3D	Q	61.8	INCHES**4
	SECTIO	N N	1001	JLUS		TOF	9	ST		¢	ø	¢	æ	\$	¢	o	9	14.8	INCHES**3
	SECTIO	N N	1001	JLUS	)	801	TC	ЭΜ,	S	В	¢	0	s,	¢	ø	֩	ø	15.1	INCHES**3
	LOCATI	ΟN	٥F	PL/	١ST	IC	NE	UT	RA	ł.,,	ÂΧ	IS	* 9	¥	P	0	e i	4.03	INCHES
	PLASTI	C M	1001	JLUS		Z	ø	o	o	o	ø	Ð	-©	s	ø	ø	-20	17.1	INCHES**3
	SHAPE	FA(	TOF	2	) :D	Q	Ð	÷D	÷	Ð	¢	Ð	\$	0	\$	÷D	÷	1.152	
	YIELD	MON	1EN1	r _o M	٩Y	÷	¢	÷	Q.	o	.c	40	÷	¢	ø	¢	÷	48.05	KIP-FT.
	PLASTI	C N	AOME	ENT	M	р	¢	Ð	0	ø	Q	0	ø	Ð	ŝ	0	e	55.34	KIP-FT.
≉Ņ	IEASURE	DF	RO	4 01	ITS	IDE	F	AC	F	OF	В	OT	TO	М	FL	AN	IGE		

PROPERTIES OF GROSS SECTION OF PLATED WF

AREA, A		\$ 0 \$	¢ 0	0 0 0	ଣ ଜ	11.77	INCHES**2
LOCATION OF CENT							INCHES
MOMENT OF INERTI	A, I	0 0 0	io io i	e e e	\$ \$	182.6	INCHES**4
SECTION MODULUS,	TOP,	ST .	ତ ତ କ	ର ବେ ବ	-Q - Q	38.4	INCHES**3
SECTION MODULUS,	BOTT	DM, SB	¢ • • •	ေစစ	00	40.1	INCHES**3
LOCATION OF PLAS	TIC NO	EUTRAL	AXIS	≰, γp	e e	4.34	INCHES
PLASTIC MODULUS,	Z o	0 0 G	8 0	စ ေ အ	0 ¢	ly ly o ly	INCHES**3
SHAPE FACTOR .	0 4 0	0 0 0	00	0 0 0	o so	1.162	
YIELD MOMENT, MY	0 Q	୍ ଚ୍ଚ୍ଚ	\$0 \$0 \$	ବ ଣ କ	Q Q	123.81	KIP-FT.
PLASTIC MOMENT,	MP o	စာဂစ	6 6 9	ေရးခ	0 0	143.89	KIP-FT.
*MEASURED FROM OUT	SIDE 1	FACE OF	BOT	TOM PL	ATE		

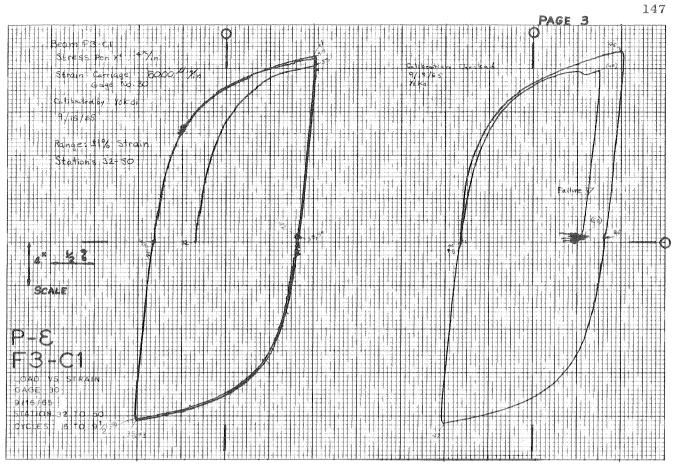
### SPECIMEN TYPE F3-C1 PUNCHED HOLES 11/16 IN. NOMINAL DIAMETER

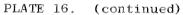
PROPERTIES OF NET SECTION OF PLATED WF (AISC SPEC. 1.10.1)


10.56 INCHES**2 LOCATION OF CENTROID*, YE . . . . . . . . 4.56 INCHES 4.42 INCHES INCATION OF PLASTIC NEUTRAL AXIS*, YP . . 39.3 INCHES**3 1.164 SHAPE FACTOR . . . . . . . . . . . . . . . *MEASURED FROM OUTSIDE FACE OF BOTTOM PLATE

PROPERTIES OF GRUSS SECTION OF PLATES ALONE

AREA, A	6 0	00	c 6 6	10 f	ନ	ю 4	o a	-0	÷	e e	5.84	INCHES**2
LOCATIO	N OF	CENT	ROID*	9 YE		-0 -8	p o	*G	÷O	e o	4.54	INCHES
MOMENT	OF IN	VERTI	A p I	@ (	o \$	\$ (	o 40	0	10	£0 48	112.6	INCHES**4
SECTION	MODU	JLUS,	TOP,	ST	-Q	at d	\$ ®	Ð	ø	ତ ତ	23.6	INCHES**3
SECTION	MODU	JLUS,	BOTT	٥M٥	SB	ф (	୍କ	×D	ø	\$	24.8	INCHES**3
YIELD M	OMEN1	r₂ my	e 0	0 6	6 Q	0 \$	9 Ø	¢	¢	0 0	81.01	KIP-FT.
*MEASURED	FROM	N OUT	SIDE	FACE	E OF	80	TTC	ЭM	ΡL	ATE		


PROPERTIES OF NET SECTION OF PLATES ALONE (AISC SPEC. 1.14.3)


BEAM PROPERTIES

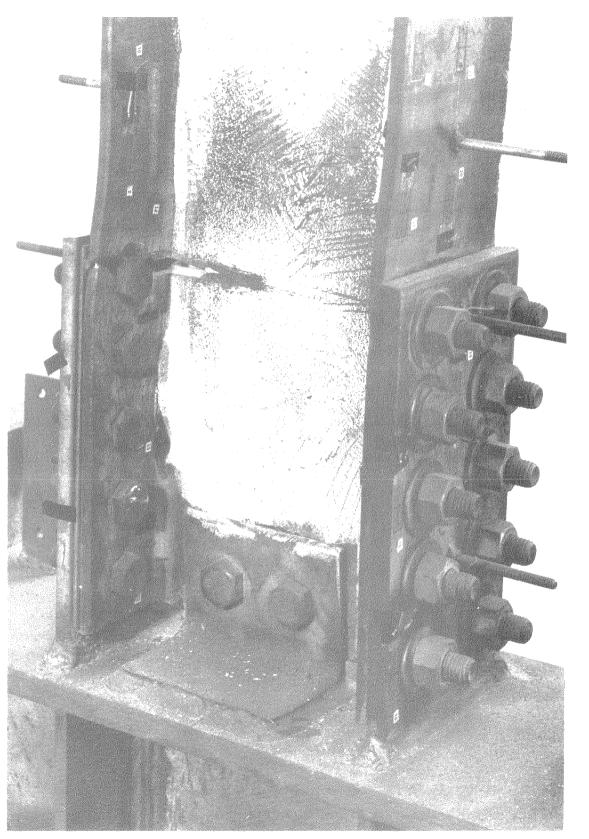


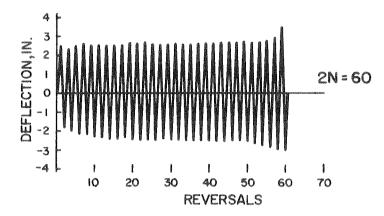


LOAD VS. STRAIN - F3-C1 PLATE 16.









FIGURE 30. F3-CI

Half-	Р	Δ	$\wedge'$	$\bar{\mathrm{p}}$	$\overline{\bigtriangleup}$	Δŕ
Cycle	KIPS	IN.	IN.			
group	14.08	2.47	1.54	1.268	5.99	3.73
	-14.17	-2.26	2.63	-1.276	-5.45	6.35
3	14.26	2.40	2.53	1.284	5.82	6.11
4	-14.56	-2.43	2.69	-1.311	-5.87	6.50
5	14.46	2.56	2.81	1.302	6.20	6.79
6	-14.71	-2.56	2.89	-1.324	-6.18	6.98
7	14.46	2.62	2.95	1.301	6.35	7.13
8	-14.60	-2.56	2.94	-1.314	-6.18	7.10
9	14.62	2.71	3.01	1.316	6.57	7.27
10	-14.74	-2.61	3.06	-1.327	-6.30	7.39
11	15.70	3.73	3.91	1.413	9.03	9.45
12	-16.07	-3.49	4.94	-1.447	-8.43	11.94
13	16.31	4.12	5.34	1.468	9.98	12.91
14	-16.31	-3.53	5.07	-1.468	-8.53	12.25
15	16.55	4.35	5.28	1.490	10.53	12.76
16	-16.31	-3.54	5.28	-1.468	-8.55	12.76
17	16.81	4.65	5.51	1.513	11.26	13.32
18	-16.49	-3.61	5.54	-1.484	-8.72	13.39
19	14.98	5.01	6.29	1.348	12.13	15.21

#### SPECIMEN F3-C5

<u>Description</u>: This specimen was similar to specimen F3-Cl in detailing, fabrication and inspection. Ultrasonic inspection indicated three suspected weld defects, but bolt hole geometry confused the readings and prevented verification. No action was taken as a result.

Program of Cycling:



<u>Test Control</u>: Strain, as measured on the top flange 11.99 inches from the column face. The strain was read on a Baldwin SR-4 strain indicator.

Raw Data Included: Graphical load-deflection data.

Total Energy Absorption: 1,533 kip-inches.

Plastic Load Reversals to Failure: 60 (30 cycles).

<u>Remarks</u>: A slight buckle was observed in the lower flange during the 3rd plastic cycle. In the 12th cycle a small crack was found in the top of the web angle-to-column weld. Commencing with approximately the 14th cycle, loud banging sounds were heard during loading. At about the same time, inspection showed that necking had occurred at the crosssection through the outer row of bolts in the bottom flange. This was less obvious in the top flange. At the 21st cycle, crack propagation was apparent along the weld of the angle leg at the column face. A crack appeared in the bottom flange at the outer bolt line during the 25th cycle, and remained open at no load.

During the 26th cycle, the top flange showed distinct necking at the end bolt line. Two cycles later, a crack appeared in the top flange. During the succeeding five cycles this crack became enlarged and penetrated into the beam web causing complete failure after a total of 30 cycles. SPECIMEN TYPE F3-C5 PUNCHED HOLES 11/16 IN. NOMINAL DIAMETER

## DIMENSIONS OF WE SECTION

DEP	T þ		¢ <	5	ø	¢	Q	Ð	¢	ø	Q	Ð	¢	¢	¢	ల	ø	ę	o	e	8.25	INCHES
TOP	FLA	ANGE	W I	ίD	TH		Q	ø	宠	e	0	¢	Q	Q	o	Q	Ð	â	Q	ø	5.160	INCHES
BGT	TOM	FLA	NGE	-	WI	DT	Ή	υ	¢	Ģ	e e	¢	Q	ø	¢	ç	¢	o	Ð	ę	5.170	INCHES
TOP	FL/	ANGE	Tŀ	11	СК	NE	ESS	5	c	ø	Q	Q	ø	¢	ø	Ŷ	e	0	ç.	0	0.374	INCHES
BOT	TCM	FLA	NG		ТΗ	IC	KI	VES	S	ø	Q	۵	Q	ø	Q	¢	£	Ð	0	o	C.358	INCHES
WEB	TH	ICKN	ESS	5	ŝ	¢	ø	o	6)	ŵ	o	¢	ø	ø	c	c	o	ų	¢	ø	C.272	INCHES
ELA	STIC	C MC	CUL	U.	S	ø	0	Ð	ଢ	o	o	ø	0	e	۰.	c	1Q	¢	ø	ę	29000.	KSI
VIE	_D :	STRE	SS		0	Ð	υ	¢.	Ð	Ð	Ð	¢	e	e	0	6	¢	£	i0	ø	40.500	KSI

## DIMENSIONS OF CONNECTION ELEMENTS

T	EPTH HICKN OLE D	IESS	CFI	FIL	LEF	R P	LA	TE	ç	Ð	¢.	Ŷ	ç.	¢	υ	£	o	c		INCHES INCHES INCHES
Т	WIDT LOCA LOCA THIC ELAS	ATE THOF TICN TICN KNES TIC D ST	PLA CF OF S OF	ATE FI LA F P JLU	, E RST ST LAT S	3	UW W W T	ĜF OF	= { B( °	BÔL DLI	.TS *	0 ** 9 0	D D c	ж 10 0 0	ବ ହ ଦ ଜ ଜ	ย ถ ม ม ม	ନ କ କ କ	0 4 0 0 0 0	9.38 0.480 29600.	INCHES INCHES INCHES INCHES KSI
B	OTTCM LENG WIDT LCCA LOCA THIC ELAS	( PLA TH O TH OF TICN	TE F PI OF OF S OI MODI	LAT ATE FI LA F P JLU	E, , E RSI ST LAI	LP 5 R 7 R 7 R 7 R 7 R 9 R	. OW IW T	° OF OF	ہ B ک B ک C	° BÔL DL T	° TS≉ °	0 0 ** 9 0 0	° C D °	ର ୟ କ କ କ କ	<b>ର</b> ତ ତ ତ	କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ	ଦ ୍ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ କ	େ ୫୦ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩ ୩	10.58 5.63 1.88 9.42 0.510 29600.	INCHES INCHES INCHES INCHES INCHES KSI KSI

*MEASURED FRCM FACE OF COLUMN

SPECIMEN TYPE F3-C5 PUNCHED HOLES 11/16 IN. NOMINAL DIAMETER

PROPERTIES OF GROSS SECTION OF WF

AREAS A co o co o co	6 6 6 C 9 6	e e e 5.96	INCHES**2
LOCATION OF CENTROID*, Y	Ecocos	000 4014	INCHES
MCMENT OF INERTIA, I .	0 6 6 6 6 6	· · · 70.2	INCHES**4
SECTION MODULUS, TOP, ST	0 0 0 0 0	o o o 1701	INCHES**3
SECTION MCDULUS, BOTTOM,	SBoooo	• • • <b>17</b> •C	INCHES**3
LOCATION OF PLASTIC NEUT	RAL AXIS*, \	(P 4.16	I NCHE S
PLASTIC MODULUS, Z		· · · 19·2	INCHES**3
SHAPE FACTOR		· · · 1.133	
YIELD MOMENT, MY	6 0 0 0 0 0	57.30	KIP-FT.
PLASTIC MOMENT, MP		64.95	KIP-FT.
*MEASURED FROM OUTSIDE FAC	E OF BOTTOM	FLANGE	

PROPERTIES OF NET SECTION OF WE (AISC SPECIFICATION 1.10.1)

AREA, A , , , , , , , , , , , , , , , , ,	5。42
LOCATION OF CENTROID*, VE	4.14 INCHES
MCMENT OF INERTIA, I	61.9 INCHES**4
SECTION MODULUS, TOP, ST	15.1 INCHES**3
SECTION MODULUS, BOTTOM, SB	15.0 INCHES**3
LUCATION OF PLASTIC NEUTRAL AXIS*, YP 。 。	4.16 INCHES
PLASTIC MODULUS, Z	17.1 INCHES**3
SHAPE FACTOR	1.144
YIELD MOMENT, MY	50.51 KIP-FT.
PLASTIC MOMENT, MP	57.80 KIP-FT.
*MEASURED FROM CUTSIDE FACE OF BOTTOM FLANGE	

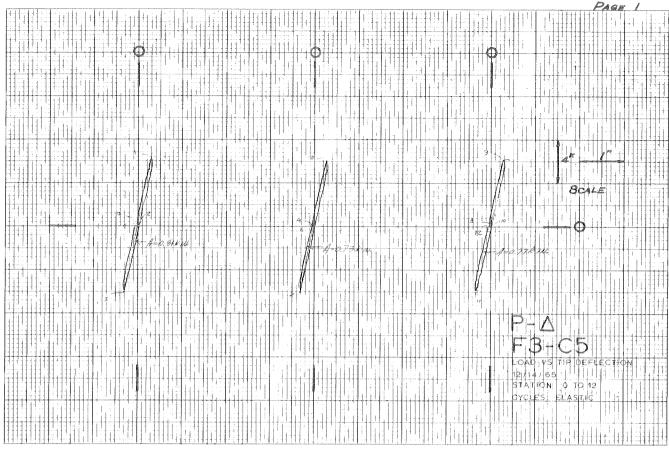
PROPERTIES OF GRESS SECTION OF PLATED WF

1

AREA9 A	<b>0 0 6 0 0 0 0</b>	11.65 INCHES**2
LOCATION OF CENTROID*, YE .	0 0 0 0 0 0 0	4.62 INCHES
MOMENT OF INERTIA, I	4 0 0 0 0 0 0	182.8 INCHES**4
SECTION MODULUS, TOP, ST .		38.3 INCHES**3
SECTION MCCULUS, BOTTOM, SB		39.6 INCHES**3
LOCATION OF PLASTIC NEUTRAL	AXIS*, YP 。 。	4.54 INCHES
PLASTIC MODULUS, Z		43.9 INCHES**3
SHAPE FACTOR		2 0 T 33
VIELD MOMENT, MY		130.82 KIP-FT.
PLASTIC MOMENT, MP		148.21 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF	BOTTOM PLATE	

١

SPECIMEN TYPE F3-C5 PUNCHED HOLES 11/16 IN. NOMINAL DIAMETER


PROPERTIES OF NET SECTION OF PLATED WF (AISC SPEC. 1.10.1)

10.45 INCHES**? 4.61 INCHES LOCATION OF CENTROLD*, YE . . . . . . . . . 35.0 INCHES**3 SECTION MODULUS, BOTTOM, SB . . . . . . LOCATION OF PLASTIC NEUTRAL AXIS*, YP . . 4.56 INCHES 38.9 INCHES**3 1.136 PLASTIC MOMENT, MP . . . . . . . . . . . 131.21 KIP-FT. *MEASURED FROM OUTSIDE FACE OF BOTTOM PLATE

### PROPERTIES OF GROSS SECTION OF PLATES ALONE

PROPERTIES OF NET SECTION OF PLATES ALONE (AISC SPEC. 1.14.3).

BEAM PROPERTIES



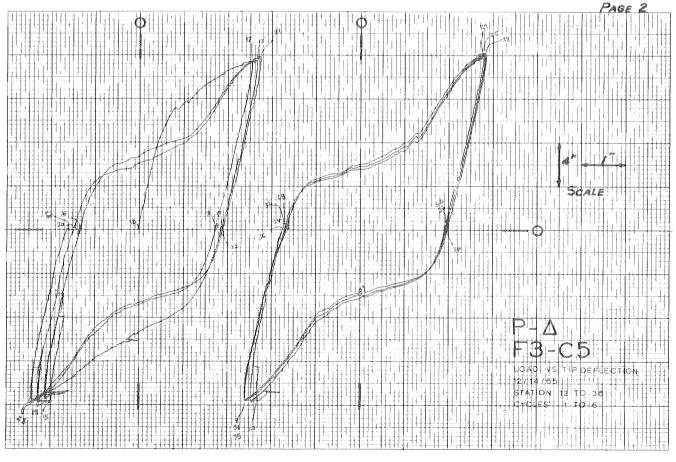
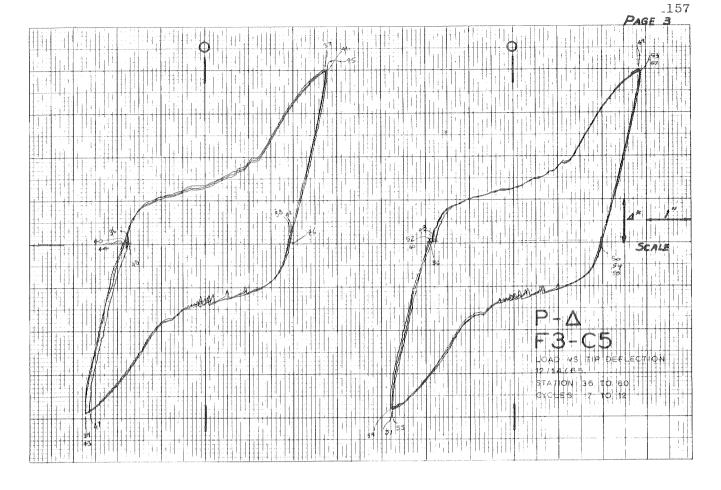




PLATE 17. LOAD VS. DEFLECTION - F3-C5



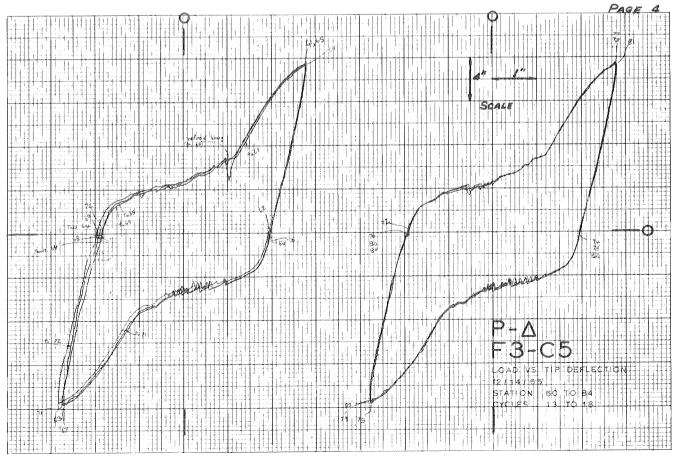
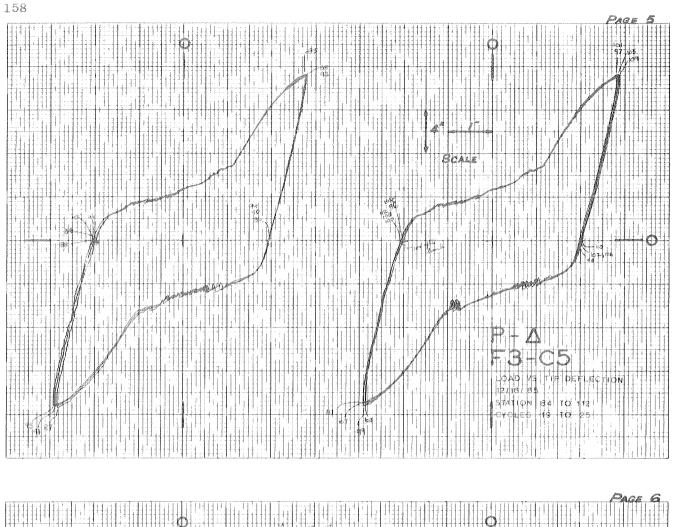




PLATE 17. (continued)



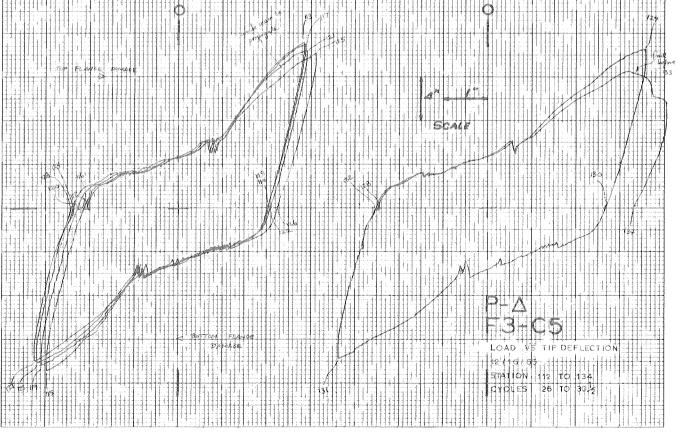



PLATE 17. (continued)

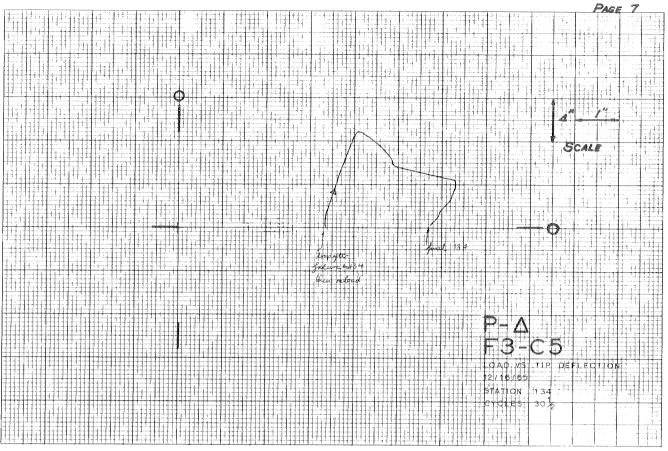



PLATE 17. (continued)



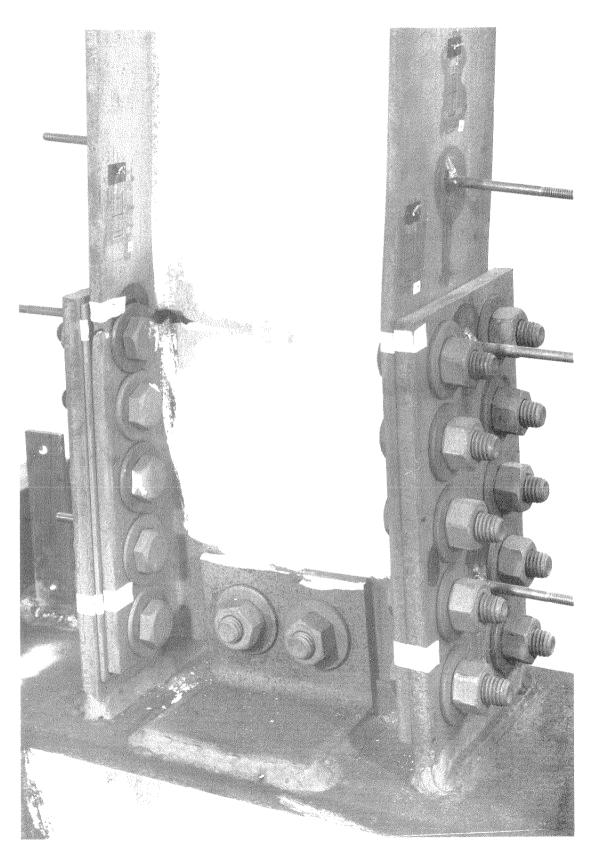
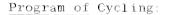
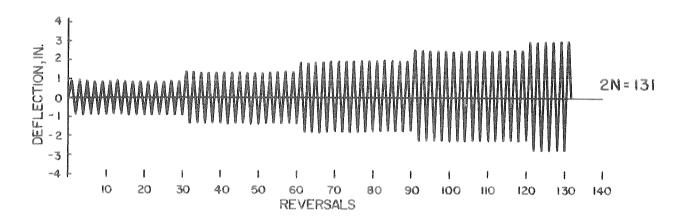



FIGURE 31. F3-C5


SPECIMEN F3-C5


	and and an and a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the											
Half-	Р	$\land$	6'	W	$\bar{\mathbf{p}}$	$\overline{\wedge}$	ð'	Ŵ				
Cycle	KIPS	IN.	IN.	K-IN.		()	(car)	× F				
	7 7 864 A 1969	-10 5 3 AF	46 X 10 S/	4 %	,							
1	14.83	2.44	1.85	22.9	1.316	5.67	4.30	9.48				
2	-14.56	-1.85	3.09	30.1	-1.292	-4.31	7.19	12.44				
3	14.67	2.31	2.97	23.3	1.302	5.37	6.92	9.62				
	-15.05	-2.02	3.13	25.7	-1.335	-4.71						
5	15.10	2.50	3.29	24.8		5.82	7.29	10.61				
6	-15.36		3.44	28.0	1.340		7.66	10.24				
		-2.15 2.59			-1.363	-5.01	8.01	11.55				
7	15.39		3.48	25.0	1.366	6.02	8.10	10.32				
8	-15.34	-2.20	3.52	27.7	-1.361	-5.12	8.20	11.44				
9	15.49	2.56	3.50	25.6	1.375	5.95	8.15	10.58				
10	-15.34	-2.33	3.53	27.2	-1.361	-5.42	8.22	11.24				
11	15.34	2.60	3.58	24.6	1.361	6.05	8.33	10.15				
12	-15.29	-2.33	3.64	26.7	-1.357	-5.42	8.48	11.03				
13	15.34	2.55	3.61	24.6	1.361	5.93	8.40	10.16				
14	-15.24	-2.43	3.66	26.7	-1.353	-5.66	8.52	11.04				
15	15.20	2.56	3.66	24.1	1.349	5.96	8.52	9.94				
16	-15.14	-2.43	3.71	26.7	-1.344	-5.66	8.64	11.05				
17	15.29	2.59	3.73	24.1	1.357		8.69	9.95				
18	-15.09	-2.34	3.60	25.3	-1.339	-5.45	8.38	10.46				
19	15.20	2.65	3.65	23.8	1.349	6.17	8.50	9.83				
20	-15.05	-2.47	3.79	26.7	-1.336	-5.76	8.82	11.02				
21	15.07	2.66	3.81	24.2	1.338	6.20	8.87	10.01				
22	-15.00	-2.45	3.77	25.9	-1.331	-5.71	8.78	10.70				
23	15.05	2.68	3.77	24.2	1.336	6.25	8.78	10.00				
24	-14.95	-2.50	3.85	26.8	-1.327	-5.83	8.97	11.08				
25	15.00	2.60	3.80	24.5	1.331	6.06	8.84	10.11				
26	-14.90	-2.52	3.80	25.6	-1.322	-5.86	8.86	10.56				
27	15.12	2.60	3.85	24.6	1.342	6.06	8.96	10.18				
28	-14.85	-2.41	3.73	25.2	-1.318	-5.62	8.68	10.42				
29	15.10	2.60	3.75	23.3	1.340	6.06	8.73	9.65				
30	-14.78	-2.44	3.80	25.5	-1.312	-5.69	8.85	10.52				
31	15.03	2.60	3.77	23.5	1.334	6.06	8.78	9.70				
32	-14.92	-2.46	3.80	25.9	-1.324	-5.73	8.85	10.68				
33	14.95	2.60	3.80	23.3	1.327	6.06	8.85	9.65				
34	-14.75	-2.48	3.80	25.9	-1.309	-5.76	8.85	10.70				
35	14.83	2.63	3.80	23.3	1.316	6.11	8.85	9.62				
36	-14.68	-2.48	3.80	25.9	-1.303	-5.77	8.85	10.72				
37	14.81	2.64	3.83	23.1	1.314	6.14	8.91	9.55				
38	-14.71	-2.47	3.83	25.0	-1.306	-5.74	8.92	10.34				
39	14.78	2.65	3.83	23.0	1.312	6.16	8.92	9.51				
40	-14.56	-2.53	3.88	25.5	-1.292	-5.89	9.03	10.54				
41	14.78	2.66	3.88		1.312	6.18	9.03	9.74				
42	-14.49	-2.57	3.90		-1.286	-5.99	9.09	10.75				
43	14.71	2.65	3.92		1.306	6.17	9.12	9.71				
Ly Ly	-14.56	-2.57	3.97	26.1	-1.292	-5.98	9.24	10.77				
45	14.71	2.66	3.98	23.5	1.306	6.19	9.27	9.69				
	-14.42	-2.52	3.93	25.5	-1.280	-5.87	9.15	10.52				
47	14.76	2.70	3.94	23.9	1.310	6.28	9.17	9.89				
	-14.34	-2.52	3.99	25.5	-1.273	-5.88	9.29	10.53				
49	14.66	2.73	4.01	24.2	1.301	6.35	9.33	10.00				
	-14.25	-2.57	4.01	25.2	-1.265	-5.99	9.34	10.42				
51		2.68	4.00		1.299	6.24	9.31	10.12				

Half-	P	Δ	$\Delta'$	W	Ē	À	$\overline{\bigtriangleup}'$	Ŵ
Cycle	KIPS	IN.	AN O	K-IN.				
52	-14.17	-2.68	4.07	27.1	-1.258	-6.23	9.48	11.22
53	14.42	2.71	4.07	24.2	1.280	6.31	9.48	10.01
54	-13.72	-2.79	4.23	28.0	-1.217	-6.51	9.85	11.55
55	13.78	2.75	4.28	24.9	1.223	6.41	9.96	10.28
56	-13.56	-2.90	4.38	28.7	-1.203	-6.74	10.20	11.84
57	13.55	2.96	4.55	26.8	1.203	6.88	10.59	11.06
58	-13.33	-2.98	4.58	29.1	-1.183	-6.94	10.66	12.04
59	13.90	3.48	5.06	32.3	1.233	8.11	11.78	13.33
60	-13.22	-3.03	5.10	32.9	-1.173	-7.06	11.87	13.60

#### SPECIMEN F3A-C7

<u>Description</u>: This specimen was similar to specimen F3-C1, except as follows. The suffix "A" denotes the use of connecting plates nominally 1/16 inch thinner than those of specimen type F3. The specimen was fabricated in a University shop; all bolt holes were drilled to a diameter of 41/64 inch. Of the 20 flange bolts, 14 were tightened to 200 foct-pounds using a torque wrench. The remaining 6 bolts (3 in each flange) were inaccessible to the torque wrench so they were tightened with a box wrench using the turn-of-the-nut method. There was no ultrasonic inspection.





Test Control: Tip deflection.

Raw Data Included: Graphical load-strain data, with strain measured in the center of the top plate 1.81 inches from the column face.

Graphical load-deflection data.

Total Energy Absorption: 2,488 kip-inches.

Plastic Load Reversals to Failure: 131 ( $65\frac{1}{2}$  cycles)

<u>Remarks</u>: During the 14th plastic cycle, yield lines had developed in the flanges beyond the ends of the bottom flange plates. Some necking occurred in the top plate at the line of bolts nearest to the column during the 32nd cycle. At the 58th cycle a crack was discovered in the same location. In the next cycle a crack was observed in a similar location in the bottom plate.

During the 61st cycle a small crack was found in the weld of the bottom plate to the column. In the following cycle, necking and a crack were observed in the bottom flange at the outer line of bolts. Failure was due to simultaneous propagation of the crack in the bottom flange at the outermost line of bolts, and the crack in the top connecting plate at the innermost bolt line.

# SPECIMEN TYPE F3A-C7 HOLES DRILLED 41/64 IN. DIA.

# DIMENSIONS OF WF SECTION

DEPTH	~ ~ ~	0	@ 0	ø	۹	۰	*	Ð	۰	e	ø	Ð	÷	8.22	INCHES
TOP FLANGE WI	oth 。	÷	10 D	0	ø	Ð	0	٥	4	\$	ø	ø	Ð	5.310	INCHES
BOTTOM FLANGE	WIDTH	æ	0 0	\$	ø	Q.	ø	\$	ø	40	49	٩	¢	5.310	INCHES
TOP FLANGE THE															
BOTTOM FLANGE	THICK	NES	S o	٥	Ð	Ð	ø	\$	-49	۰	Q	4	\$	0.358	INCHES
WEB THICKNESS		ø	@ D	Ð	۲	ø	\$	ø	٩	Ð	۵	Ð	Ф	0.230	INCHES
ELASTIC MODULU	JS 。。	Q.	\$ \$	Ð	\$	ø	¢	ø	:0	ø	٩	\$	¢	29400.	KSI
YIELD STRESS	0 D O	Φ	@ Ø	ø	¢	\$	\$	•	Ð	40	49	٩	Ş	35.900	KSI

# DIMENSIONS OF CONNECTION ELEMENTS

DEPTH OUT-TO-OUT OF PLATES . THICKNESS OF FILLER PLATE HOLE DIAMETER	• • • • • • • • 0.125 INCHES
TOP PLATE	
	• • • • • • • 10.62 INCHES
WIDTH OF PLATE, B	•••••••• 5.45 INCHES
LOCATION OF FIRST ROW OF BOL	TS*, C 1.82 INCHES
LOCATION OF LAST ROW OF BOLT	IS*, D 9.33 INCHES
THICKNESS OF PLATE, T	••••••••••••••••••••••••••••••••••••••
ELASTIC MODULUS	• • • • • • • • 31200• KSI
YIELD STRESS	••••••••••••••••••••••••••••••••••••••
BOTTOM PLATE	
	• • • • • • • • 10.62 INCHES
	• • • • • • • • 5.50 INCHES
	TS*, C 1.82 INCHES
	TS*, D 9.36 INCHES
•	· · · · · · · · O.430 INCHES
ELASTIC MODULUS	
YIELD STRESS	• • • • • • • • 38•100 KSI

*MEASURED FROM FACE OF COLUMN

SPECIMEN TYPE F3A-C7 HOLES DRILLED 41/64 IN. DIA.

PROPERTIES OF GROSS SECTION OF WF

5.60 INCHES**2 LOCATION OF CENTROID*, YE . . . . . . . . . 4.10 INCHES 67.8 INCHES**4 MOMENT OF INERTIA, I . . . . . . . . . . SECTION MODULUS, TOP, ST . . . . . . . . . 16.5 INCHES**3 SECTION MODULUS, BOTTOM, SB . . . . . . 16.5 INCHES**3 LOCATION OF PLASTIC NEUTRAL AXIS*, YP . . 4.08 INCHES PLASTIC MODULUS, Z . . . . . . . . . . . . 18.4 INCHES**3 1.120 49.27 KIP-FT. YIELD MOMENT, MY . . . . . . . . . . . . . . . . 55.17 KIP-FT. *MEASURED FROM OUTSIDE FACE OF BOTTOM FLANGE

PROPERTIES OF NET SECTION OF WF (AISC SPECIFICATION 1.10.1)

	AREA,	Д	က စ	-0-	ø	e o	Ð	ø	Ð	ø	Ð	Ð	Ð	Ŷ	Q	ø	5.25	INCHES**2
	LOCAT	[ ON	OF	CEN	TRO	ID≉	° 2 1	ίΕ	Ð	¢	Ð	Ð	Q	۵	S	¢	4.10	INCHES
	MOMEN	ΓO	FIN	IERT	IA,	heread	. 0	9	-0	o	0	-42	-	зQ	ō	40	62.5	INCHES**4
	SECTIO	ЭN	MODL	ILUS	, T	ОΡ,	ST	Γ	ø	Ð	ø	40	ø	Ð	Ð	ø	15.2	INCHES**3
	SECTIO	ЭN	MODL	JLUS	» B	OTT	OM,	S	βB	e	ø	ø	49	Ð	Ð	0	15.2	INCHES**3
	LOCAT	ION	OF	PLA	STI	C N	EUI	RA	1L	AΧ	IS	* ,	Y	Ρ	ø	Ð	4.08	INCHES
	PLAST	I C	MODL	LUS	۶ Z	¢	Ð	ø	¢	ø	Ð	Ð	۵	¢	¢	ø	17.1	INCHES**3
	SHAPE	FA	CTOR	) > - @	Ð	e e	Ð	\$	ø	ø	o	Ð	4D	ø	ø	ଭ	1.126	
	YIELD	MO	MENT	ъ М	Y	© 0	Ð	Ð	Q	Ð	ø	ø	0	ø	ø	Ð	45.39	KIP-FT.
	PLAST	I C	моме	NT,	ΜP	0	ø	¢	×D -	¢.	Ð	÷Q	ø	-0	ø	Ð	51.11	KIP-FT.
*	MEASURE	ΞD	FROM	( CU	TSI	DE	FA(	έE	OF	B	OT	ТО	М	FL	ΑN	GE		

PROPERTIES OF GROSS SECTION OF PLATED WF

AREA, A	0.0	-C -P	0 4	© #0	so :	0 0	۵	ø /	• •	Q	ø	10.36	INCHES**2
LOCATIO	N OF	CENT	ROID	1年2 )	ΥE.	0 0	¢	10 I		֩	南	4.46	INCHES
MOMENT	OF IN	ERTI	A, I	¢	\$ ×	¢ ¢	Ø	0 4	े क	Ð	Ð	159.6	INCHES**4
SECTION	MODU	ILUS,	TOP	s S1	Γ.	6 D	0	s ,	c ≉	Ð	Ð	33.8	INCHES**3
SECTION	MODU	ILUS,	BOT	TOM	, St	3 。	٩	÷۵		ø	٩	35.7	INCHES**3
LOCATIO	N OF	PLAS	TIC	NEUT	TRAL	: A	XIS	李。	ΥP	\$D	ŵ	4.16	INCHES
PLASTIC	MODU	JLUS,	Z	0 0	•	e e	0	<b>е</b> 4	ෙ න	ø	ø	38.9	INCHES**3
SHAPE F	ACTOR		Ф 43-	\$ \$	¢,	0 0	ø	ю (	5 æ	Ð	0	1.086	
YIELD M	OMENT	• МY	-3	ø 0	¢ ,	0 0	ø	a a	p so	Ð	¢	107.19	KIP-FT.
PLASTIC	MOME	NT,	MP	c c	ю 4	0 0	ø	10 H	<b>a</b>	ø	Q	116.42	KIP-FT.
*MEASURED	FROM	OUT	SIDE	FA(	JE (	JF I	BOT	TO	M P	LA	ΓE		

PROPERTIES OF NET SECTION OF PLATED WF (AISC SPEC. 1.10.1)

9.62 INCHES**2 LOCATION OF CENTROID*, YE 4.46 INCHES SECTION MODULUS, BOTTOM, SB . . . . . . . 32.8 INCHES**3 LOCATION OF PLASTIC NEUTRAL AXIS*, YP . . 4.20 INCHES 35.8 INCHES**3 1.089 YIELD MOMENT, MY . . . . . . . . . . . . . . 98.40 KIP-FT. *MEASURED FROM OUTSIDE FACE OF BOTTOM PLATE

PROPERTIES OF GROSS SECTION OF PLATES ALONE

PROPERTIES OF NET SECTION OF PLATES ALONE (AISC SPEC. 1.14.3)

BEAM PROPERTIES

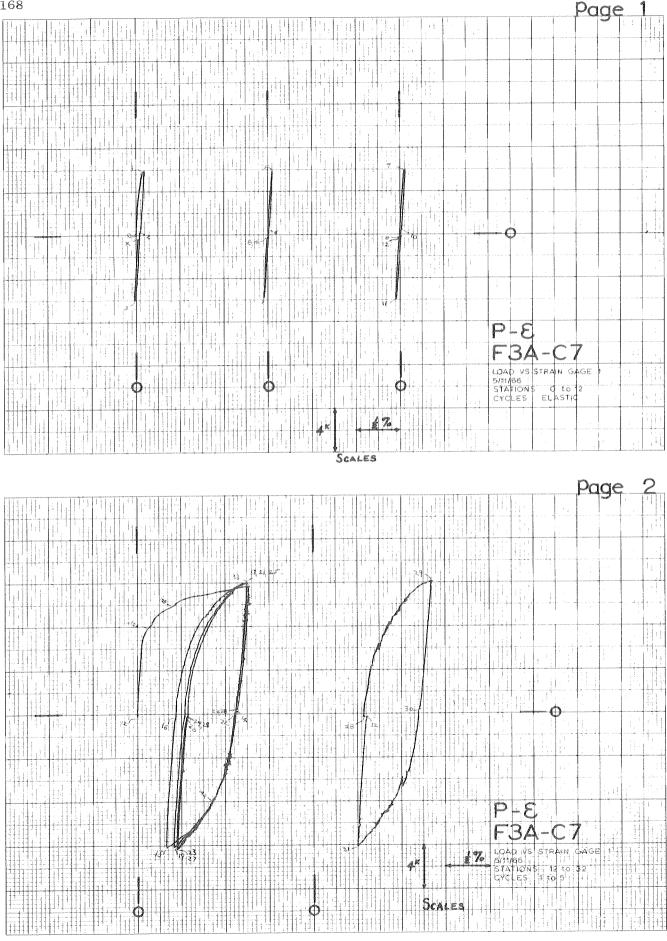
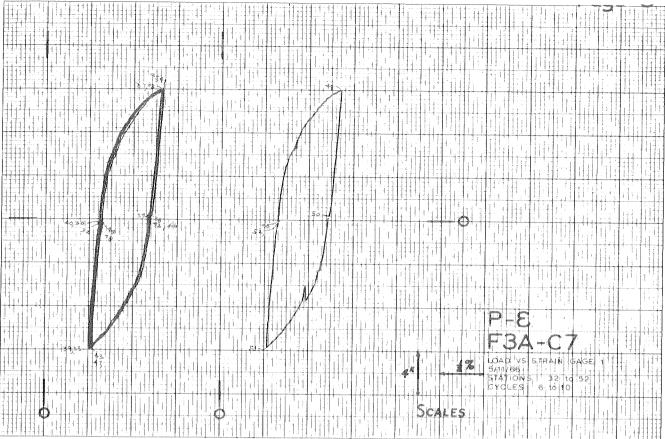




PLATE 18. LOAD VS. STRAIN - F3A-C7



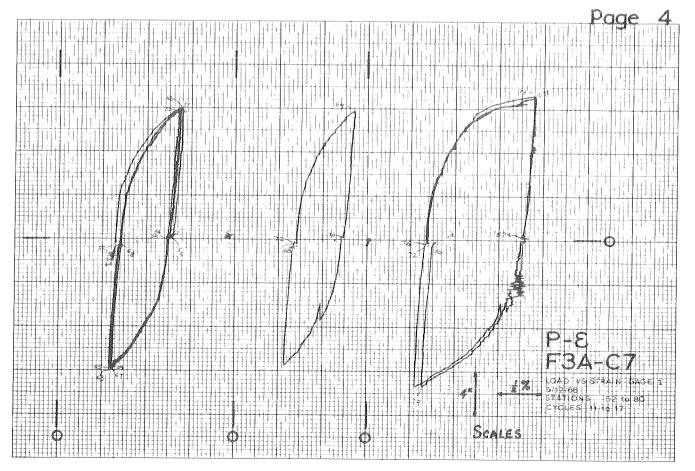
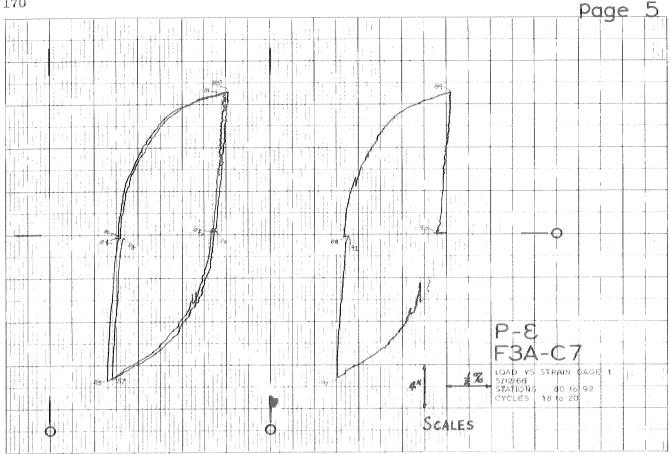
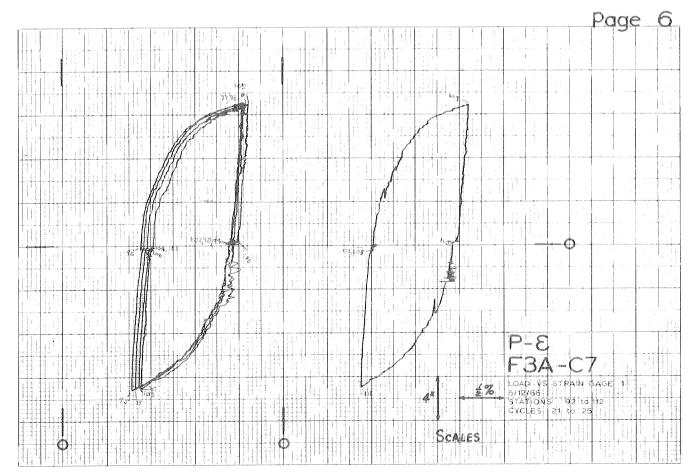





PLATE 18. (continued)





(continued) PLATE 18.

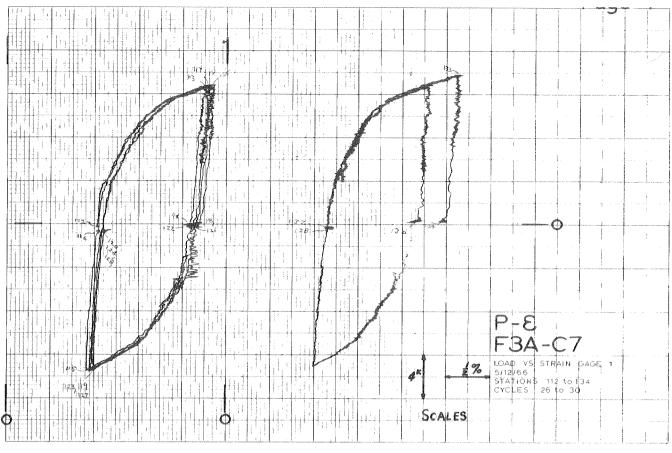
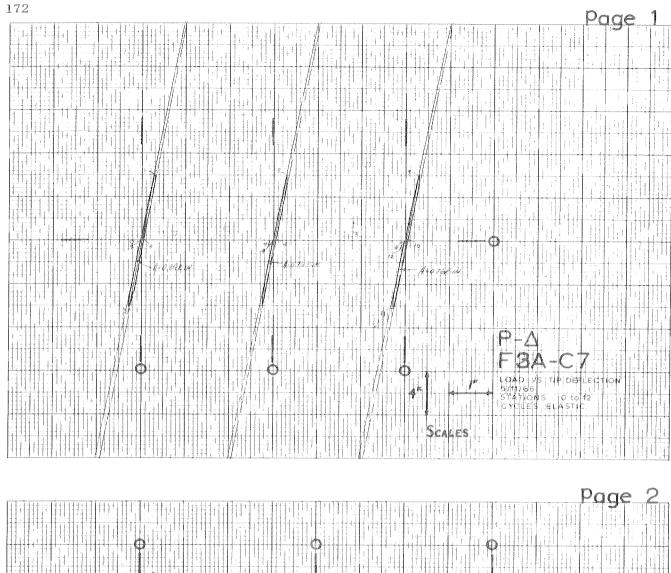




PLATE 18. (continued)



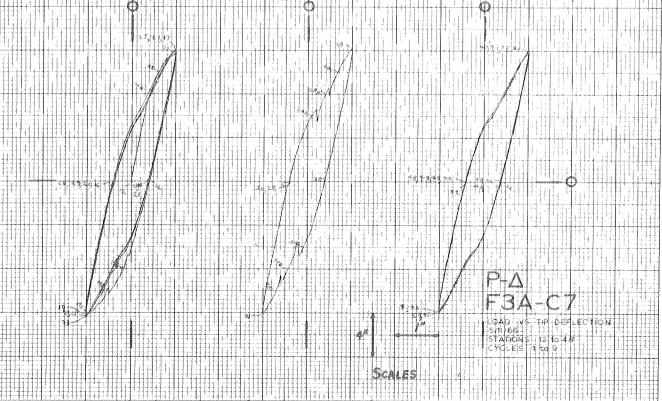
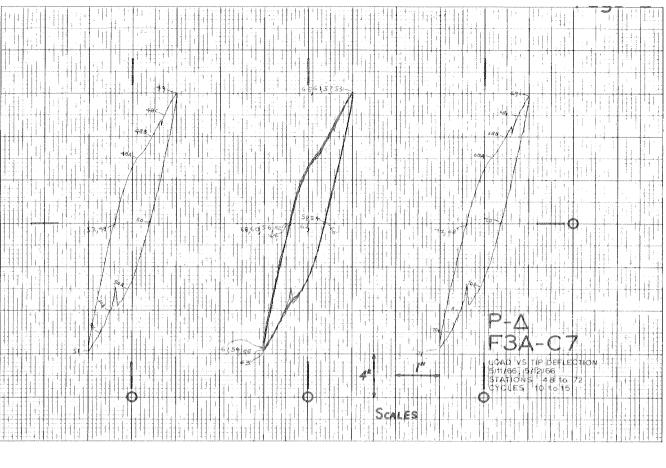




PLATE 19. LOAD VS. DEFLECTION - F3A-C7



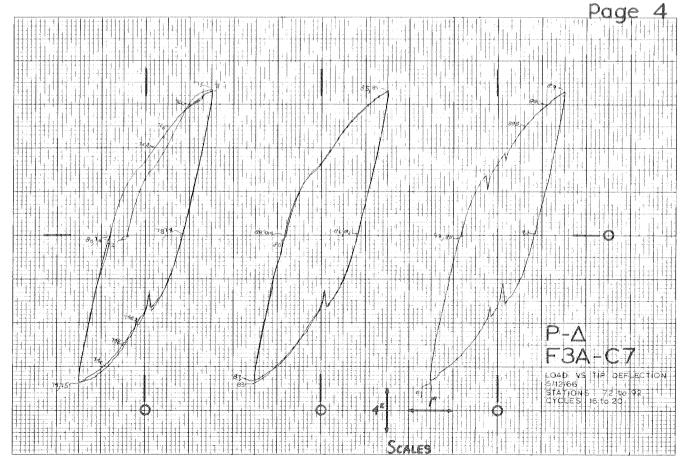
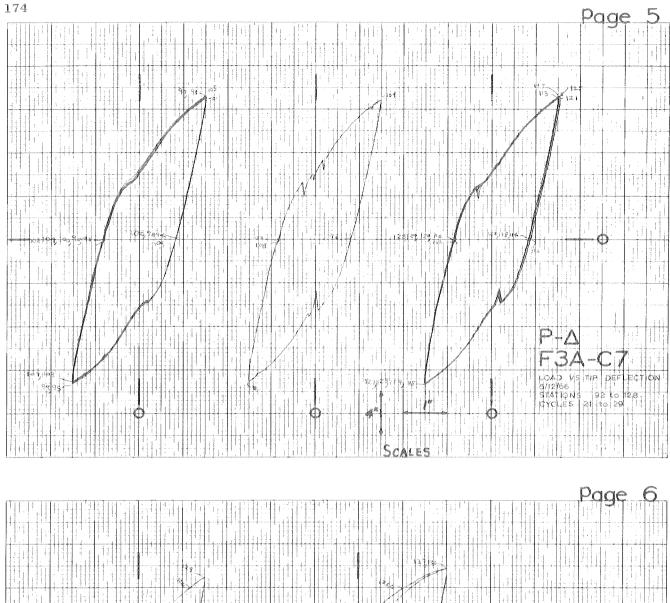




PLATE 19. (continued)



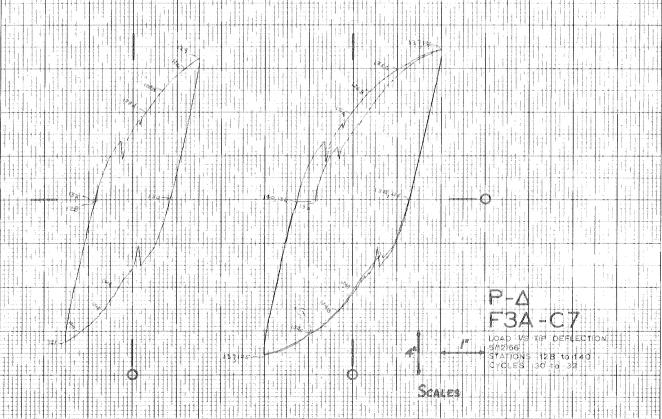



PLATE 19. (continued)

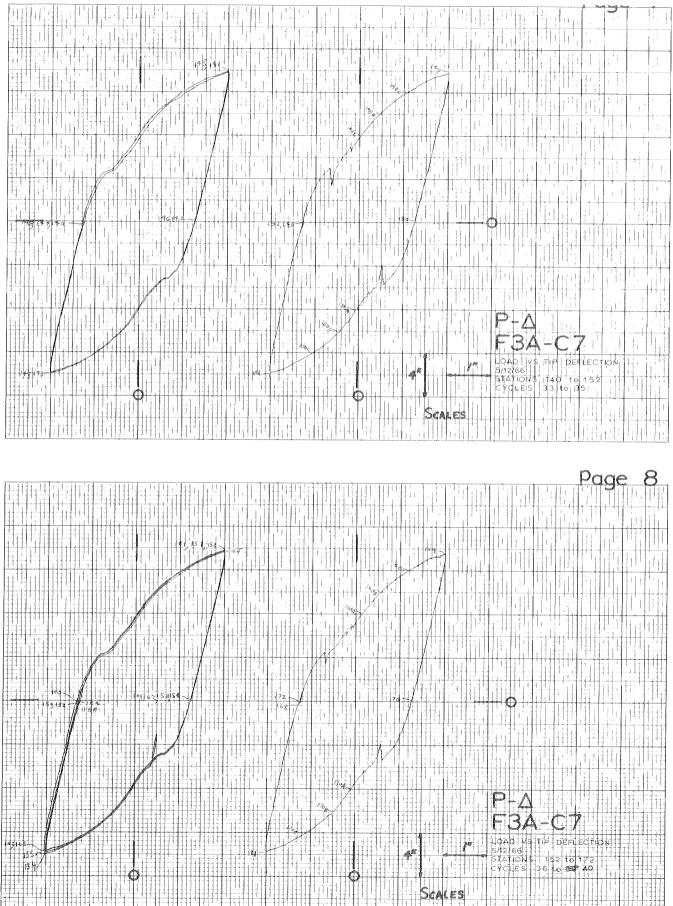



PLATE 19. (continued)

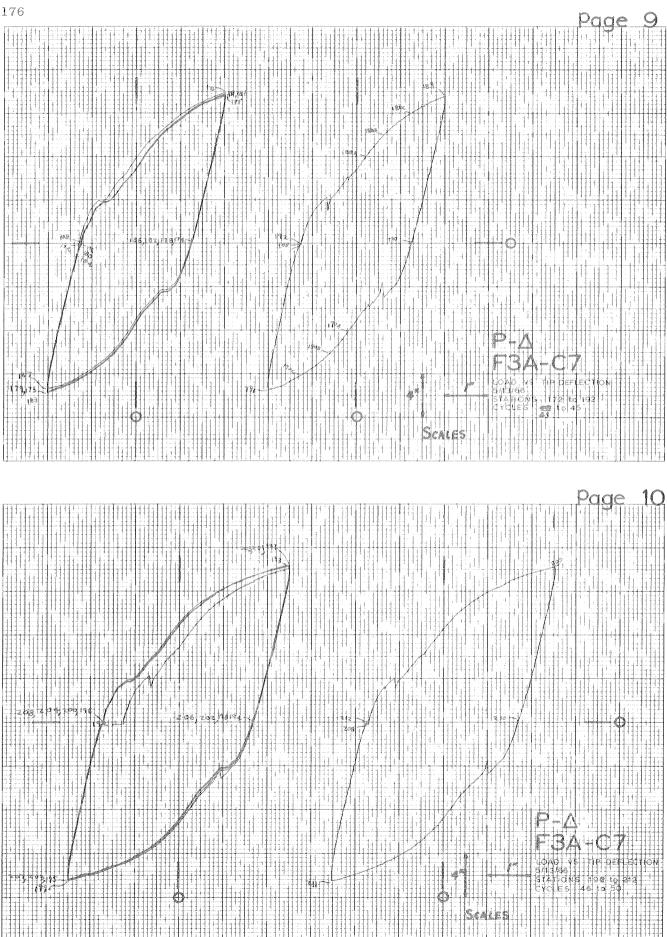
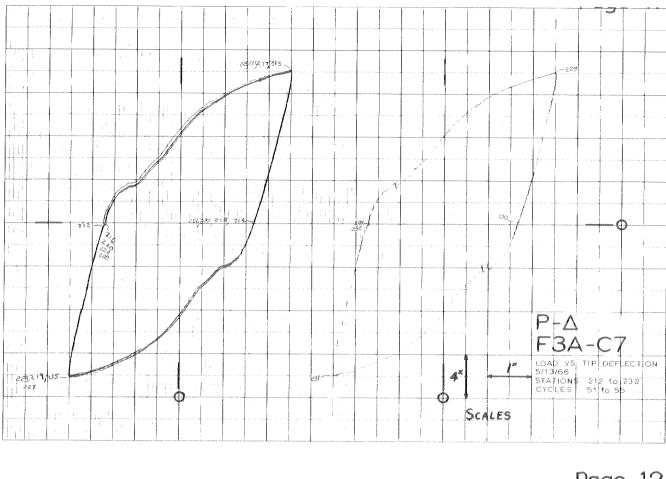




PLATE 19. (continued)



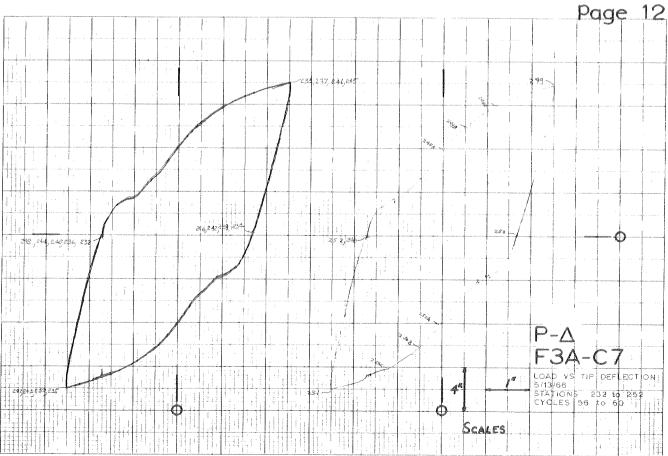



PLATE 19. (continued)

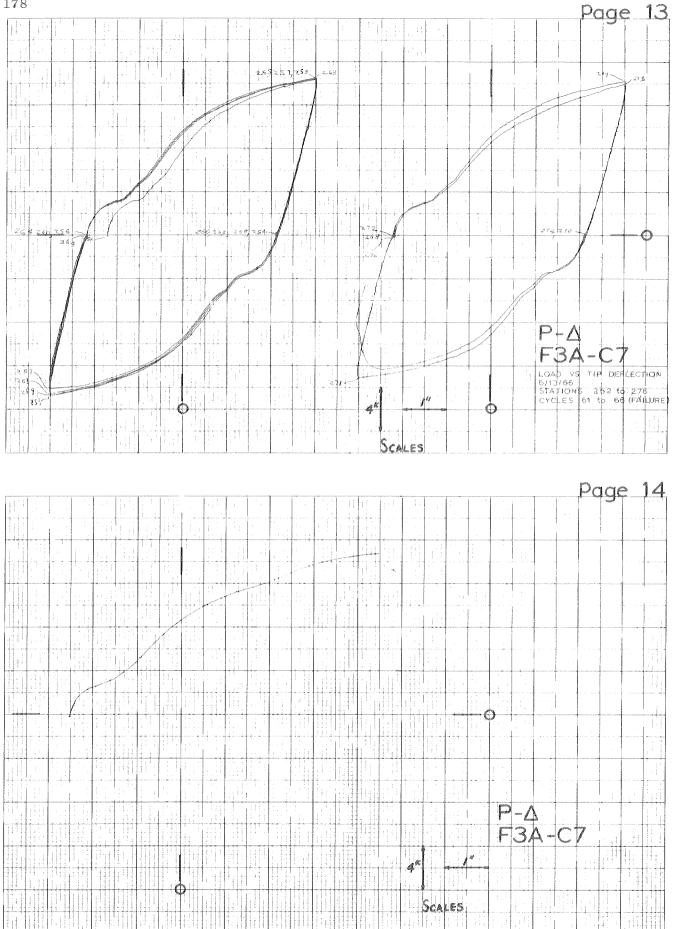



PLATE 19. (continued)

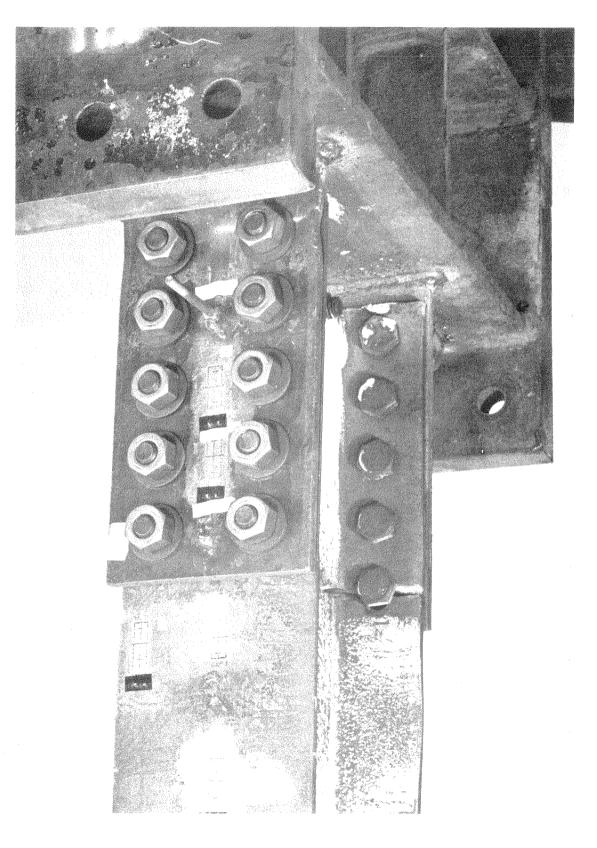
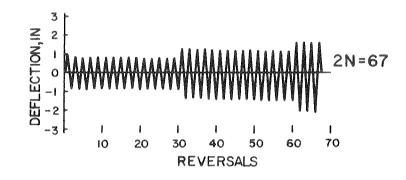



FIGURE 32. F3A-C7

SPECIMEN F3A-C7

Half- Cycle	P KIPS	∆ IN∘	∆′ IN₀	W K-IN。	P	$\overline{\bigtriangleup}$	$\overline{\Delta}'$	W
1 2 3 4 5 6 7 8 9 10 11	11.07 $-11.58$ $11.46$ $-11.55$ $11.44$ $-11.81$ $11.38$ $-11.57$ $11.55$ $-11.52$ $11.33$	C.89 -C.88 -C.88 -C.88 -O.88 -O.88 -O.88 -C.88 -C.88 -C.88 -C.88	0.37 0.73 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	3.5 5.4 5.4 5.3 5.3 5.2 5.2 5.2 5.0	$ \begin{array}{r} 1.308 \\ -1.368 \\ 1.353 \\ -1.364 \\ 1.351 \\ -1.394 \\ 1.344 \\ -1.367 \\ 1.364 \\ -1.361 \\ 1.338 \\ \end{array} $	2.63 -2.61 2.62 -2.62 2.62 -2.61 2.62 -2.61 2.62 -2.62 2.65	1.09 2.15 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09	2.44 4.59 3.79 3.81 3.48 3.48 3.72 3.43 3.65 3.66 3.46 3.46 3.50
12 13 14 15 16 17 18 19 20	-11.45 $11.30$ $-11.47$ $11.36$ $-11.31$ $11.25$ $-11.26$ $11.42$ $-11.14$	-C.87 C.9C -C.87 C.9C -C.88 C.9C -C.88 C.88 -C.88	C.73 C.73 C.73 C.73 C.73 C.73 C.73 C.71 C.71	4 ° 7 4 ° 7 4 ° 7 4 ° 7 4 ° 7 4 ° 6 5 ° 1	-1.352 1.335 -1.354 1.342 -1.336 1.328 -1.330 1.349 -1.315	-2.59 2.65 -2.59 2.65 -2.60 2.65 -2.60 2.62 -2.63	2 • 15 2 • 15 2 • 15 2 • 15 2 • 15 2 • 15 2 • 15 2 • 12 2 • 12 2 • 12	3.31 3.29 3.21 3.27 3.28 3.23 3.60 3.55
21 22 23 24 25 26 27 28 29 30	11.56 $-11.00$ $11.50$ $-10.90$ $11.52$ $-11.26$ $11.53$ $-10.98$ $11.23$ $-10.86$	C.89 -C.88 -C.89 -C.89 -C.90 C.89 -C.90 C.89 -O.88 C.89 -O.89	0.71 0.72 0.72 0.72 0.72 0.71 0.71 0.71 0.70 0.69	5。0 4。5 4。9 4。9 <b>4</b> 。9 <b>4</b> 。9 <b>4</b> 。5 4。8	$ \begin{array}{r} 1.365 \\ -1.298 \\ 1.358 \\ -1.287 \\ 1.360 \\ -1.330 \\ 1.362 \\ -1.296 \\ 1.326 \\ -1.282 \\ \end{array} $	2.65 -2.60 2.65 -2.60 2.65 -2.66 2.65 -2.61 2.63 -2.64	2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12	3.51 3.18 3.47 3.13 3.44 3.41 3.42 3.18 3.18 3.33
31 32 33 34 35 36 37 38 39	12.81 $-12.88$ $12.61$ $-12.90$ $12.65$ $-12.98$ $12.62$ $-12.73$ $12.59$	$ \begin{array}{r} 1 \cdot 37 \\ -1 \cdot 37 \\ 1 \cdot 37 \\ -1 \cdot 37 \\ 1 \cdot 37 \\ -1 \cdot 37 \\ 1 \cdot 37 \\ 1 \cdot 37 \\ 1 \cdot 38 \\ \end{array} $	1.16 1.55 1.55 1.55 1.53 1.56 1.56 1.56 1.56	10.6 14.3 13.4 13.8 13.2 13.3 13.1 13.1 12.7	$ \begin{array}{r} 1.513 \\ -1.521 \\ 1.489 \\ -1.524 \\ 1.493 \\ -1.532 \\ 1.490 \\ -1.503 \\ 1.487 \\ \end{array} $	$4 \cdot 06 \\ -4 \cdot 06 \\ 4 \cdot 07 \\ -4 \cdot 06 \\ 4 \cdot 07 \\ -4 \cdot 06 \\ 4 \cdot 07 \\ -4 \cdot 06 \\ 4 \cdot 06 \\ 4 \cdot 10 \\ $	3.43 4.61 4.61 4.55 4.61 4.61 4.61 4.61	7.40 10.02 9.39 9.68 9.22 9.32 9.19 9.21 8.92
42 43 44 45 46 4 <b>7</b> 48	-12.78 $12.66$ $-12.73$ $12.64$ $-12.64$ $12.43$ $-12.44$ $12.36$ $-12.50$ $12.23$ $-12.41$ $12.40$	$ \begin{array}{c} -1.37\\ 1.37\\ -1.37\\ 1.37\\ -1.37\\ 1.37\\ -1.37\\ 1.37\\ -1.40\\ 1.37\\ -1.36\\ 1.38\end{array} $	1.57 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.55 1.55 1.55 1.55 1.55	13.1 12.6 13.2 12.4 12.9 12.2 16.9 12.2 12.2	-1.509 $1.495$ $-1.503$ $1.492$ $-1.492$ $1.467$ $-1.469$ $1.460$ $-1.476$ $1.443$ $-1.465$ $1.464$	$-4 \circ 06  4 \circ 07  -4 \circ 06  4 \circ 07  -4 \circ 07  4 \circ 07  -4 \circ 07  4 \circ 08  -4 \circ 16  4 \circ 05  -4 \circ 04  4 \circ 10 $	4.67 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.64 4.61 4.70	11.81 8.55 8.88


Half Cycl			Δ' IN.	W K-IN	P	$\overline{\Delta}$	Āŕ	W
52 53	-12.60	-1.36	1.60	13.2		-4.04	4.73	9.24
54	-12.53		1.61	12.6 13.2		4.13	4.73	8.81
55	12.42	1.38	1.01	12.5	-1.479 1.466	-4.04 4.10	4.76	9.23
56	-12.65	-1.36	1.61	13.1	-1.493	-4.04	4.76 4.76	8.73
57	12.61	1.42	1.65	13.0	1.489	4.22	4.91	9.19
58	-12.55	-1.36	1.65	13.4		-4.04	4.91	9.10 9.37
59	12.29	1.39	1.61		1.451	4.11	4.76	8.92
60	-12.40	-1.36	1.61	13.2	-1.464	-4.04	4.76	9.23
61	13.16	1.87	2.05	18.4	1.554	5.53	6.07	12.90
62	-13.46	-1.86	2.47	23.1	-1.589	-5.52	7.34	16.21
63	13.24	1.87	2.47	22.4	1.563	5.53	7.34	15.68
64	-13.44	-1.86	2.47	24.3	-1.587	-5.53	7.34	16.99
65	13.27	1.88	2.49	22.5	1.567	5.59	7.37	15.74
66	-13.32	-1.84	2.44	22.4	-1.573	-5.47	7.25	15.68
67	13.24	1.90	2044	21.5	1.563	5.62	7.25	15.09
68	-13.23	-1.84	2.45	22.4	-1.562	-5.47	7.25	15.66
69	13.18	1.93	2.46	21.5	1.557	5.71	7.31	15.05
	-13.22	-1.80	2.47	22.1	-1.561	-5.35	7.31	15.45
71	13.13	1.95	2.48	21.5	1.551	5.77	7.34	15.04
72	-13.23	-1.80	2.45	22.2	-1.563	-5.33	7.25	15.57
73	13.17	1.95	2.45	21.3	1.555	5.77	7.25	14.93
74	-13.12	-1.81	2.48	22.3	-1.549	-5.38	7.34	15.61
75	13.12	1.95	2.48	21.4	1.549	5.77	7.34	14.96
76	-13.11	-1.79	2.46	21.7	-1.547	-5.30	7.28	15.21
77	13.04	1.95	2.46	20.5	1.540		7.28	14.35
78	-13.07	-1.79	2.45	21.7	-1.544	-5.30	7.25	15.17
79	12.89	1.95	2.47	20.7	1.522	5.78	7.31	14.48
80	-13.12	-1.79	2.46	21.8	-1.550	-5.30	7.31	15.25
81	13.26	1.97	2.46	21.4	1.566	5.83	7.29	15.00
82 83	-13.06 13.09	-1.77	2.42	21.2	-1.542		7.16	14.85
0 <i>5</i> 84	-13.09	1.97 -1.77	2.42	19.8		5.83		13.88
	12.99		2.42	21.1	-1.542			14.80
86			2.42		1.534	5.83	7.16	13.82
					-1.537 1.520		7.16	
	-12.90		~ . ~			5。84 		
		1.96	~		1.525		7.24	
		-1.75		21.2	-1.518			14.82
		2.48				7.37		17.91
		-2.24		32.3	-1.621			
		2.48			1.619			
94	-13.85	-2.24		32.1	-1.635			
95		2.48				7.36		
96		-2.24		31.5		-6.64		
97	13.55	2.48	3.32			7.36		
98	-13.80	-2.24	3.32					
		2.49	3.32			7.39		
	-13.85	-2.27	3.36	31.5		-6.73		
		2.47				7.33	9,96	
102	-13.60			30.6	-1.606		9.83	
		2.47				7.33		20.24
104	-13.62	-2.25	3.32	30.2	-1.608	-6.68	9.83	21.17

Half-	P	Δ	$\Delta^{\neq}$	W	$\bar{\mathbf{P}}$	Δ	$\overline{\Delta}^*$	w
	KIPS	IN.		K-IN.				
			2000					
105	13.39	2.47	3.32	28.9	1.581	7.33	9.83	20.26
106	-13.55	-2.25	3.32	29.8	-1.600	-6.68	9.83	20.88
	13.34	2.47	3.32	28.3	1.575	7.34	9.83	19.80
	-13.52	-2.25	3.32	29.8	-1.596	-6.68	9.84	20.84
	13.33	2.48	3.30	28.8	1.574	7.37	9.79	20.14
110	-13.42	-2.24	3.31	29.1	-1.584	-6.65	9.80	20.37
	13.30	2.51	3.33	28.4	1.570	7.43	9.87	19.86
	-13.45	-2.24	3.33	29.3	-1.588	-6.65	9.86	20。54
	13.24	2.51	3.33	28.2	1.563	7.43	9.86	19.78
	-13.49	-2.24	3.33	29.4	-1.593	-6.65	9.86	20.60
115	13.19	2.51	3.33	28.3	1.557	7.43	9.86	19.85
116	-13.48	-2.24	3.33	29.4	-1.591	-6.65	9.86	20.58
	13.21	2.51	3.33	28.4	1.560	7.43	9.86	19.88
	-13.46	-2.24	3.33	29.3	-1.589	-6.65	9 . 86	20.55
119	13.22	2.48	3.32	28.1	1.561	7.34	9.83	19.68
120	-13.38	-2.26	3.32	28.6	-1.580	-6.71	9.83	20.03
	13.76	2.99	3.80	34.4	1.624	8.87	11.26	24.12
	-14.14	-2.74	4.26	4101	-1.669	-8.11	12.62	28.80
	13.90	2.99	4.24	39.7	1.642	8.86	12.56	27.83
124	-14.01	-2.74	4.24	40.5	-1.654	-8.12	12.56	28.38
	13.86	2.99	4.24	38.9	1.636	8.86	12.56	27.27
	-13.92	-2.74	4.24	42.0	-1.643	-8.12	12.56	29.42
	13.77	2.99	4.24	38.3	1.626	8.86	12.56	26.79
	-13.42	-2.74	4.24	39.4	-1.585	-8.13	12.56	27.57
	13.63	3.02	4.26	38.0	1.610	8.96	12.65	26.64
	-12.39	-2.75	4.31	36.9	-1.463	-8.16	12.77	25.87
	13.34	3:00	4.29	35.7	1.576	8.91	12.71	25.03

#### SPECIMEN F3B-C7

<u>Description</u>: This specimen was similar to specimen F3A-C7 except that the suffix "B" denotes the use of connecting plates nominally 1/8 inch thinner than those of specimen type F3.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-strain data, with strain measured in the center of the top plate 1.96 inches from the column face. Graphical load deflection data.

Total Energy Absorption: 704 kip-inches.

Plastic Load Reversals to Failure:  $67 (33\frac{1}{2} \text{ cycles})$ .

<u>Remarks</u>: Slip first occurred during the second plastic cycle. No distress was observed until the 30th cycle, when necking became apparent in both top and bottom flange plates at the bolt line nearest the column. Failure was due ultimately to a crack in the bottom plate at the bolt line, and occurred during the 34th cycle. SPECIMEN TYPE F3B-C7 HOLES DRILLED 41/64 IN. DIA.

# DIMENSIONS CF WF SECTION

	DEPTH .	e e	0	4	e 0	¢	Ð	ç	o	ç	Ø	Ð	Q	0	÷	Ð	¢	0	8.34	INCHES
	TOP FLAN																			
	BOTTOM FI	AN	GF	wTI	отн	en i	n N	0	6	Ð	<u>ه</u>	0	Ð	a	Ø	¢	ø	£)	5.200	INCHES
	TCP FLAN																			
	BETTOM FI		GE	TH	I ČK	NES	SS	5	é	ŝ	6	- 0	5	0	0	Ð	z,	o	0.354	INCHES
	WEB THICK																			
	ELASTIC																			
	YIELD ST																			
	• 2 La Ban La • •		9	~	* *			÷		0	~	U	2		~	÷	-			
n	IMENSIONS	٢F	СC	٨N	FCT	TCI	N F	-1.8	M	ENT	r s									
6.0	21011020110	Name 1															•			
	DEPTH CU	r - T (	r~0	UΤ	OF	PI	AI	TE S	5	47	Ð	o	c	¢.	o	s)	Ð	¢	9.00	INCHES
	THICKNES																			
	HOLE DIA																			
	a the second second second second second second second second second second second second second second second s			-			-													
	TOP PLAT	Ç.																		
			ы	ΔΤΙ	F.	LP	6	نه	4)	٤ı	6	٤	e	ı	Ð	6	o	6	10.62	INCHES
																			5.50	
																			1.82	
																			9.33	
																			C.37C	
																			29100.	
																			392000	
	4 L L. L.		un ur hæ		6 62	4)	19	¢	î.	۴.	6,2	V	e	<b>N</b> 2	U	•	~	°,		
	BCTTCM PI		¢																	
				ATI	Ξ.	D											~	~	10.62	INCHES
																			5,50	
		⊃n i ≏Ni r		ETI	v C Dom	Li I	نما (	nF	4) 2	പ്	T		Č	· ·	~	č	-		1.82	INCHES
																			9.36	
																			0.380	
																			29100.	
																			39.000	
	VIELD	SIKI	E 2 2		e e	Ð	ø	Ð	÷	Q.	Ð	0	Ģ	ø	ç	Ð	0	ŝ	220000	V 2 T

*MEASURED FROM FACE OF COLUMN

PROPERTIES OF GROSS SECTION OF WF

AREAYACEECCE	0 0 0 a g	5.78	INCHES**2
LOCATION OF CENTROID*, YE	- 	c o o 4.18	INCHES
MOMENT OF INERTIA, I		· · · 70.5	INCHES**4
SECTION MODULUS, TOP, ST	ေ ေ ေ လ မ ပ	· · · 16.9	INCHES**3
SECTION MODULUS, BOTTOM,	58 e e e e	o o o 16o9	INCHES**3
LOCATION OF PLASTIC NEUTR	KAL AXIS*, )	YP 4.19	INCHES
PLASTIC MODULUS, Z		19.C	INCHES**3
SHAPE FACTOR		e e e 10126	
YIELD MCMENT, MY	တာ တဲ့ တဲ့ က	50.48	KIP-FT.
PLASTIC MCMENT, MP	୍କ୍ତ୍ତ୍ର	56.85	KIP-FT.
*MEASURED FRCM OUTSIDE FACE	E OF BOTTOM	FLANGE	

PROPERTIES OF NET SECTION OF WE (AISC SPECIFICATION 1.10.1)

AREAs A νοοοοροσιστου στο στο στο στο στο στο στο στο στο στο	5.43 INCHES**2
LOCATION OF CENTROID*, YE	4.18 INCHES
MOMENT OF INERTIA, I	64.9 INCHES**4
SECTION MCDULUS, TOP, ST	15.6 INCHES**3
SECTION MODULUS, BOTTOM, SB	15.6 INCHES**3
LOCATION OF PLASTIC NEUTRAL AXIS*, YP 💧 🗉	4.19 INCHES
PLASTIC MCDULUS, Z	17.6 INCHES**3
SHAPE FACTOR	1.133
VIELD NOMENT, MY O DO O C DO O C D	46.52 KIP-FT.
PLASTIC MOMENT, MP	52.71 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF BOTTOM FLANGE	

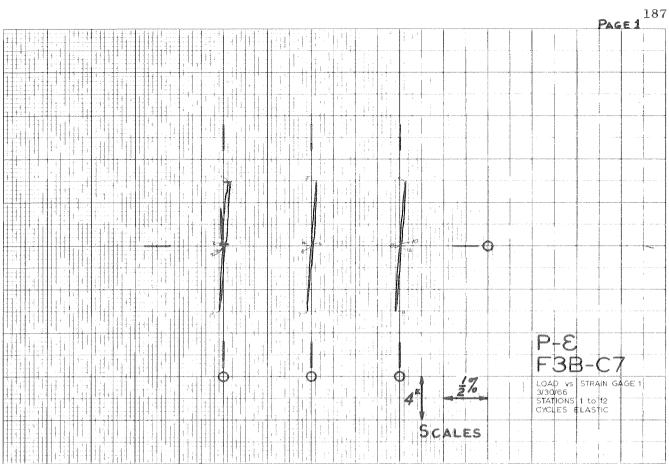
# PROPERTIES OF GROSS SECTION OF PLATED WE

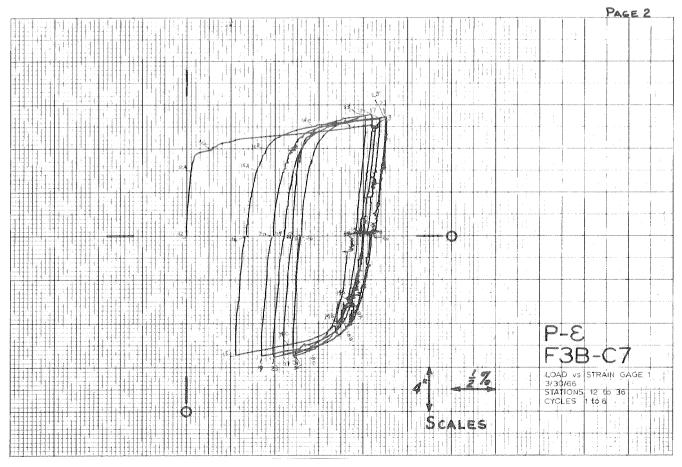
AREA, Αυσυσου	e 6 6	çε	6 6	० ० ६	9.86	INCHES**2
LOCATION OF CENTROID*,	YE o	φe	<li><li><li><li><li><li><li><li><li><li></li></li></li></li></li></li></li></li></li></li>	0 0 0	4.45	INCHES
MOMENT OF INERTIA, I	ο ο υ	0 0	o c	0 0 9	146.4	INCHES**4
SECTION MCDULUS, TOP,	ST 。	0 0	€ €	0 0 0	32.2	INCHES**3
SECTION MODULUS, BOTTO	DM, SB	οι	ç e		32.9	INCHES**3
LOCATION OF PLASTIC NE	EUTRAL	AXIS	×, Y	Ρ.,	4.52	INCHES
PLASTIC MODULUS, Z .	0 0 0	0 0	ωs	e c c	37.9	INCHES**3
SHAPE FACTOR	စ ပ ပ	0 0	s) s)	6 <b>6</b> 6	1.085	
YIELD MCMENT, MY	0 C C	0 C	e e	6 C 6	104.55	KIP-FT.
PLASTIC MOMENT, MP .	© © ©	6 6	ο ω	с © с	113.48	KIP-FT.
*MEASURED FROM OUTSIDE F	ACE OF	BOT	том	PLATE	r 	

## SPECIMEN TYPE F38-C7 HOLES DRILLED 41/64 IN. DIA.

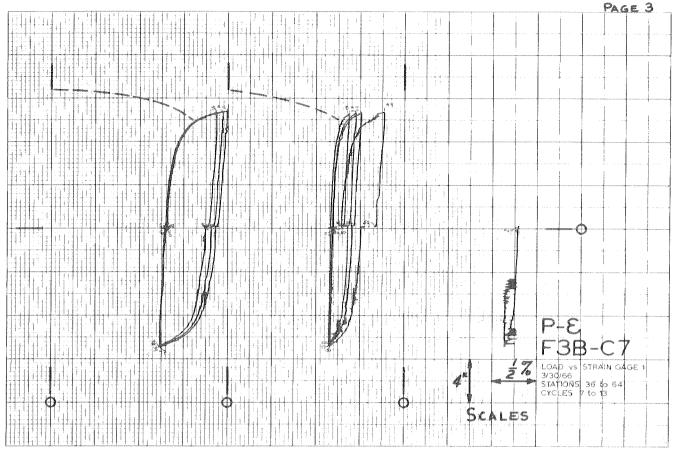
## PROPERTIES OF NET SECTION OF PLATED WF (AISC SPEC. 1.10.1)

AREA, A.	o o e c	0 0 0	8 6	0 e e	ବ ହ	¢	9.17	INCHES**2
LCCATION CF	CENTROID	)∻, YE	• ¢	ନ ବ ର	ଦ୍ଦ	٩	4.45	INCHES
MCMENT OF I	NERTIA,	6 6	6 6	6 6 6	ତ	¢	134.6	INCHES**4
SECTION MCD	ULUS, TOP	s ST	ବ ତ	ତ ଦ ଦ	6 Q	s	29.6	INCHES**3
SECTION MCD	ULUS, 801	TOM, S	8 .	e e e	ତ୍ତ୍	ŵ	30.3	INCHES**3
LCCATION OF	PLASTIC	NEUTRA	L AX	IS*,	γp 。	6	4.53	I NC HE S
PLASTIC MOD	ULUS, Z	0 4 0	8 L)	¢ & Q	ନ ପ	۵	34.9	INCHES**3
SHAPE FACTO	Roco	శ బ భ	2 0	¢ & u	େତ	s.	1.088	
YIELD MOMEN	Τ, ΜΥ	© ∜ £	0 0	e e e	e c	e e	96.10	KIP-FT.
PLASTIC MOM	ENT, MP	ද ක ක	o a	ରେ କେ କ	0 Q	ø	104.55	KIP-FT.
*MEASURED FRC	M CUTSID	E FACE	OF B	OTTOM	PLA	TE		

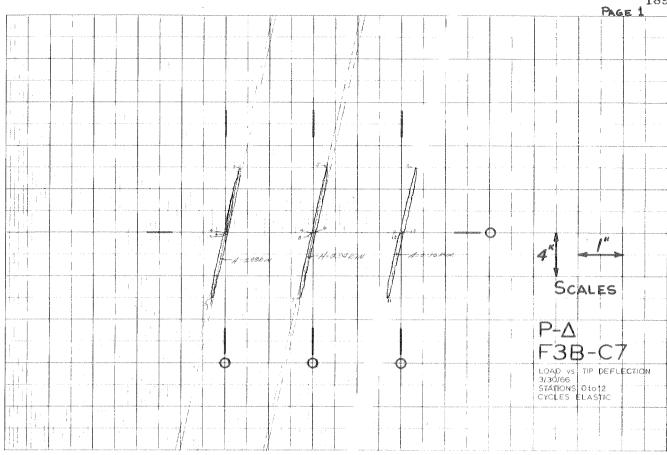

## PROPERTIES OF GROSS SECTION OF PLATES ALONE


AREA, A			υ υ ü	4.C8 INCHES**2
LCCATION OF CEN	TROID#, YE	ରେ ଏକ ବେ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.44 INCHES
MCMENT OF INERT	IAy I c c c	ຍ່ຍ່ວ	ခ ပ ပ	76.C INCHES**4
SECTION MODULUS	, TOP, ST .	e u e e	ن د د	16.7 INCHES**3
SECTION MCCULUS	, BOTTOM, SB		0 0 0	17.1 INCHES**3
YIELD MCMENT, M		မ ေ မ မေ	0 0	57.04 KIP-FT.
*MEASURED FPCM CL	TSIDE FACE OF	BOTTOM	PLATE	

PROPERTIES OF NET SECTION OF PLATES ALONE (AISC SPEC. 1.14.3)


AREA9 A v o o o o o o o o o o o o o o o o o o	3.13 INCHES**2
LCCATION OF CENTROID*, YE	4.44 INCHES
MCMENT OF INERTIA, I	58.3 INCHES**4
SECTION MODULUS, TOP, ST	12.8 INCHES**3
SECTION MODULUS, BOTTOM, SB	13.1 INCHES**3
VIELD MEMENT, NY	43.76 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF BOTTOM PLATE	

#### BEAM PROPERTIES






LOAD VS. STRAIN - F3B-C7 PLATE 20.







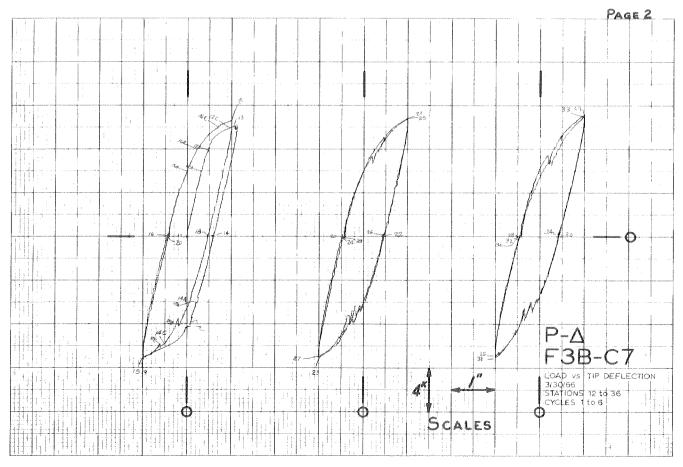



PLATE 21. LOAD VS. DEFLECTION - F3B-C7

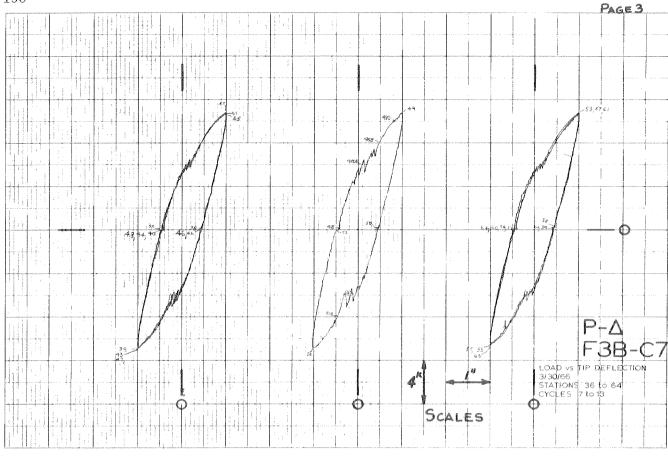





PLATE 21. (continued)

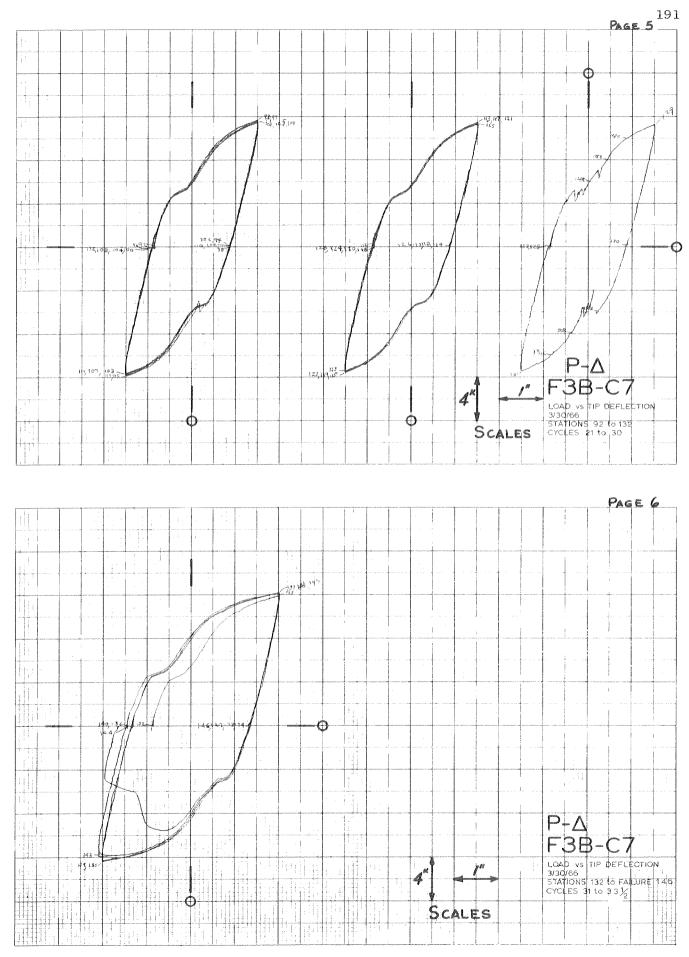



PLATE 21. (continued)

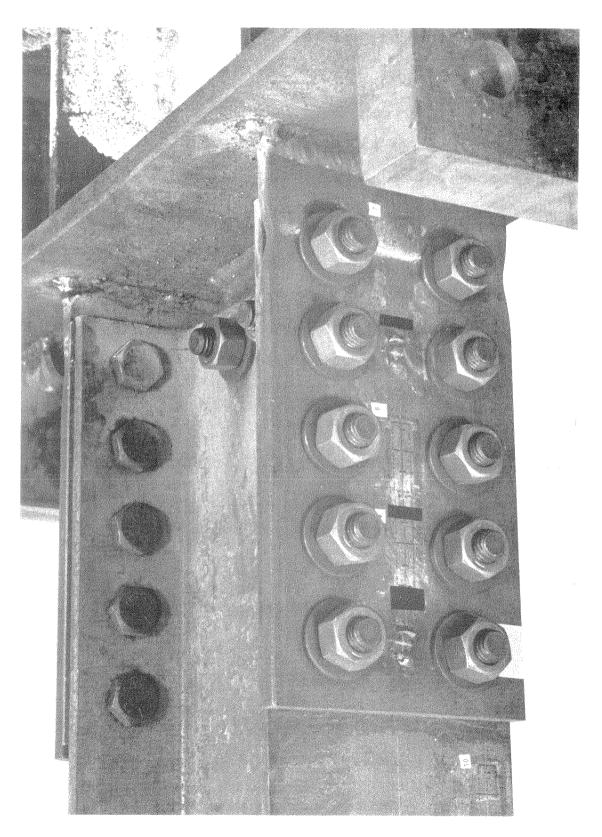
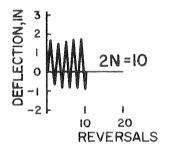



FIGURE 33. F3B-C7

SPECIMEN F38-C7


			ngr 4 nuo hav da	4 + 60 +	100° 100° 1			
Half-	P	Δ	${\vartriangle}'$	W	P	Ā	$\bar{\Delta}'$	w
					1.	$\Box$	4	**
Cycle	KIPS	IN.	IN.	K-IN.				
parent .	9.28	C.97	0.55	4.7	1.135	2.98	1.68	3.50
2	-10.38	-0.84	0.93	8.7	-1.268	-2.57	2.84	6.55
3	9.96	0.84	0.81	6.8	1.218	2.59	2.48	5.06
4	-10.46	-0.84	0.84	6.8	-1.279	-2.57	2.57	5.13
5	10.01	0.82	0.81	6.2	1.224	2.52	2.48	4.61
6	-10.68	-C.86	0.85	6.3	-1.306	-2.62	2.61	4.69
7	9.98	0.82	0.83	6.2	1.220	2.52	2.54	4.63
					-1.282	-2.63	2.47	4.75
8	-10.49	-0.86	0.81	6.3				
9	10.43	0.83	0.79	6.2	1.275	2.54	2.42	4.65
10	-10.50	-C.85	0.79	5.5	-1.284	-2.59	2.42	4.11
11	10.27	0.82	0.79	5.4	1.255	2.51	2.42	4.07
12	-10.42	-0.85	0.79	5.5	-1.273	-2.60	2.42	4.12
13	10.15	0.83	0.80	5.5	1.241	2.55	2.45	4.09
14	-10.32	-0.85	0.80	5.6	-1.262	-2.60	2.45	4.22
15	10.09	0.83	0.80	5.5	1.233	2.56	2.45	4.14
16	-10.26	-0.85	0.80	5.6	-1.254	-2.60	2.45	4.20
17	10.01	0.83	0.80	5.5	1.224	2.56	2.45	4.15
18	-10.27	~0.85	0.80	5.6	-1.256	-2.60	2.45	4.17
19	10.07	0.81	0.80	5.6	1.231	2.49	2.45	4.19
20	-10.29	-0.89	0.85	6.2	-1.258	-2.73	2.60	4.68
21	10.03	0.80	0.82	5.4	1.226	2.46	2.51	4.07
22	-10.04	-0.88	0.81	5.8	-1.228	-2.71	2.48	4.36
		0.80	0.81	5.2	1.216	2.47	2.48	3.90
23	9.95				-1.233	-2.71	2.48	4.38
24	-10.09	-0.88	0.81	5.8			2.48	3.89
25	9.88	0.81	0.81	5.2	1.208	2.47		
26	-10.18	-0.88	0.81	5.8	-1.244	-2.70	2.48	4.35
27	10.02	0.78	0.80	6.0	1.225	2.40	2.45	4.48
28	-10.01	-0.90	0.83	5.6	-1.223	-2.77	2.54	4.22
29	9.97	0.79	0.83	5.3	1.218	2.41	2.54	3.99
30	-9.84	-0.91	0.83	5.6	-1.203	-2.78	2.54	4.20
31	11.08	1.26	1.29	10.5	1.354	3.86	3.95	7.87
32	-11.45	-1.39	1.71	11.0	-1.400	-4.27	5.24	8.25
33	11.17	1.26	1.70	14.0	1.366	3.85	5.21	10.50
34	-11.50	-1.39	1.69	14.5	-1.406	-4.27	5.18	10.84
	11.10		1.66	13.2	1.357	. 3.85	5.09	9.91
36	-11.39		1.66	13.9	-1.392	-4.27	5.09	10.42
		1.26	1.64		1.357	3.85	5.03	9.72
38	-11.32	-1.39	1.63		-1.384	-4.27		10.27
39		1.23	1.62		1.358	3.76	4.96	9.61
40	-11.25	-1.42	1.67	13.1	-1.375	-4.37	5.12	9.84
					1.348	3.70	5.09	9.52
41		1.21	1.66				5.15	
42	-11.29	-1.44	1.68		-1.380		5.15	9.45
43		1.21	1.68		1.340			
44	-11.24	-1.44	1.68		-1.374		5.15	9.89
		1.21	1.68		1.333		5.15	
46	-11.13	-1.45	1.68	13.0	-1.361	-4.43	5.15	9.76
	10.81	1.21	1.68	12.3	1.322	3.72	5.15	9.23
48		-1.45	1.68	13.7	-1.354	-4.43	5.15	10.26
49	10.83	1.21	1.68	12.3	1.324	3.72	5.15	9.24
50	-11.08	-1.45	1.68		-1.355	-4.43	5.15	9.60
51	10.77	1.17	1.64	12.0	1.317	3.60	5.03	9.03

Half- Cycle	P KIPS	A IN.	∆′ IN₀	W K-INo	$\overline{\mathbf{P}}$	Δ	$\overline{\Delta}'$	Ŵ
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	-11.03 10.74 -10.95 10.65 -10.88 10.65 -10.87 10.58 -10.87 11.23 -11.79 11.50 -11.75 11.51 -11.15	-1.49 1.17 -1.49 1.17 -1.49 1.17 -1.49 1.15 -1.53 1.61 -2.04 1.62 -2.04 1.62 -2.04 1.62 -2.04	1.65 1.65 1.66 1.66 1.67 1.67 1.68 1.64 1.67 1.68 2.17 2.12 2.12 2.12 2.11 2.22	12.3 12.0 12.2 11.7 11.9 11.6 12.2 11.7 12.3 16.6 23.7 21.2 22.9 20.9 23.5	-1.348 1.313 -1.339 1.302 -1.330 1.302 -1.329 1.294 -1.329 1.329 1.373 -1.441 1.406 -1.436 1.407 -1.363	-4.56 3.60 -4.57 3.60 -4.57 3.60 -4.57 3.51 -4.69 4.95 -6.24 4.97 -6.24 4.97 -6.51	5.06 5.09 5.09 5.12 5.12 5.12 5.12 5.12 5.13 5.12 5.16 6.51 6.51 6.48 6.82	9.21 8.99 9.14 8.79 8.96 8.69 9.14 8.76 9.26 12.44 17.75 15.91 17.20 15.65 17.60
67	11.51	1.62	2.22	22.0	1.407	4.97	6.82	16.49

#### SPECIMEN W1-C1

Description: The beam was indirectly connected to the web of the column through two short flange plates and a web plate. The flange plates were fitted as column stiffeners and were welded to the column web and flanges. The free edges were flush with the edges of the column flanges. The beam flanges were butt-welded to the free edges of the plates. The web plate served also as an erection clip, extending past the edges of the flanges, and the beam web was fillet-welded to it. There was no visually apparent departure from the detail drawings in the specimen as delivered. No significant weld defects were detected by means of ultrasonic inspection. Threaded studs were tack-welded to both flanges to support rotation measuring devices.

Program of Cycling:



Test Control: Strain, as measured in the center of the top flange 7.50 inches from the face of the column web.

Raw Data Included: Graphical load-control strain data. Graphical load-deflection data.

Total Energy Absorption: 129 kip-inches.

Plastic Load Reversals to Failure: 10 (5 cycles).

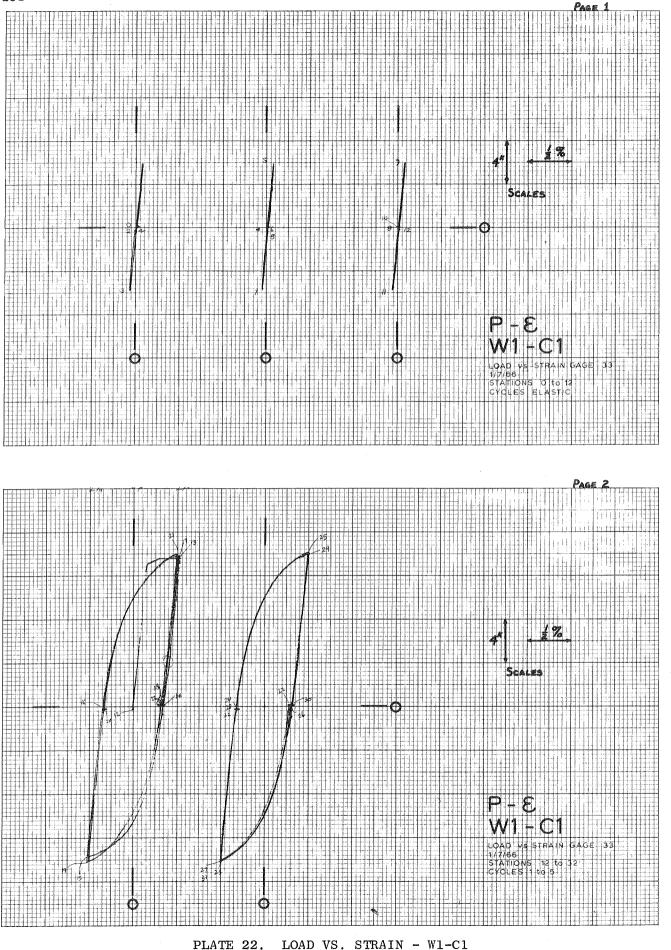
<u>Remarks</u>: At the 5th cycle, inspection showed a deep crack at one edge of the top flange weld next to the connecting plate. On the second half of the same cycle, a crack could be clearly seen on the other end of the same weld. The butt-weld of the top flange failed at the beginning of the 6th cycle.

The failure revealed that the butt weld had penetrated to only about one-half the thickness of the flange.

## SPECIMEN TYPE W1-C1

## DIMENSIONS OF WE SECTION

DEPT	-	ŵ	ø	÷	4	¢	¢	¢,	ŝ	¢	٥	Ģ	ø	40	Ģ	¢	Ð	ø	₽	ົ	Q	8.26	INCHES
TOP	FL	AN	GΕ	W	IC	T	4	60	ø	e	Ð	Q	Ð	e	¢	0	ю	ø	ø	Ð	¢	5.17C	INCHES
																						5.170	
TCP	FL	AN	GĒ	Т	HI	Cł	٢N	ΕS	S	Ð	Û	ø	o	ŵ	Ð	ç	¢	Ð	ç	Ð	ŧ	0.368	INCHES
BOTT	CM	F	LA	NG	Ε		11	СK	NES	SS	ú	ŵ	o	æ	0	¢	¢.	e	41	e	÷	0.376	INCHES
WEB	TH	IC	KNI	ΕS	S	¢	6)	Ð	D)	¢	o	¢	ø	÷	Ð	¢	¢	۵	ş	¢	¢	0.280	INCHES
ELAS	TI	С	МО	CU	LU	IS	¢	ę	¢	Ð	e	Ð	٩	ę	s	Q	s	Ð	ω	ø	چە	290000	KSI
YIEL	D.	ST	RE	SS		ŵ	Ð	ю	Û	ε	¢	e	ø	ø	ø	Ð	¢	¢	¢	<ul> <li>Image: Construction</li> </ul>	¢	40.500	KSI


# WE SECTION PROPERTIES

AREA, Αρερυρουρορο	v D D D D D Q Q	6.04 INCHES**2
LOCATION OF CENTROID*, YE 。 。	မ မ မေး မ မေး မ	4.1C INCHES
MOMENT OF INERTIA, I		7C.9 INCHES**4
SECTION MODULUS, TOP, ST 💧 🗤	υφυφα≴υ∎ 	17.1 INCHES**3
SECTION MCCULUS, BOTTOM, SB .	••••••••••	L7.3 INCHES**3
LOCATION OF PLASTIC NEUTRAL A)	(IS*, YP 。 。	4.06 INCHES
PLASTIC MODULUS, Z		L9.4 INCHES**3
SHAPE FACTOR		1.138
YIELD NOMENT, MY	α φ ε ε α σ	57.6C KIP-FT.
PLASTIC MCMENT, MP	6	55.57 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF E	BOTTOM FLANGE	

## BEAM PROPERTIES

l

LENGTH, L	0 6 9 9	0 0	ళ ప	ନ ଧ	\$ \$	န န	Ð	66.1	INCHES
ELASTIC STIFFN	ESS, P/D	ELTA	e 2	s. 6)	€) <b>\$</b>	6 Q	4)	21.34	KIPS/IN.
YIELD DEFLECTION	ON, DELT	AY .	ω is	10 eC	6 6	0 0	Ð	0.490	INCHES
YIELD LCAD, PY	() 4 0 0	εc	ن ن ن	ຍຍ	ତ୍ୟ	6 6	÷	10.46	KIPS
PLASTIC LCAD, I	PP 。 。 。	6 U	φũ	G 6	6 6	6 6	ŵ	11.90	KIPS



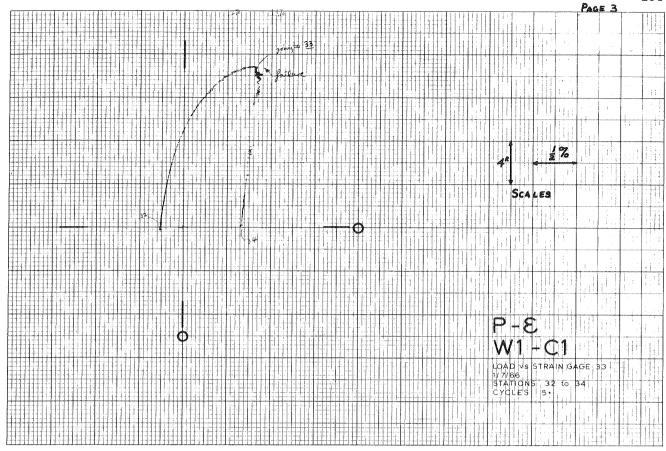



PLATE 22. (continued)

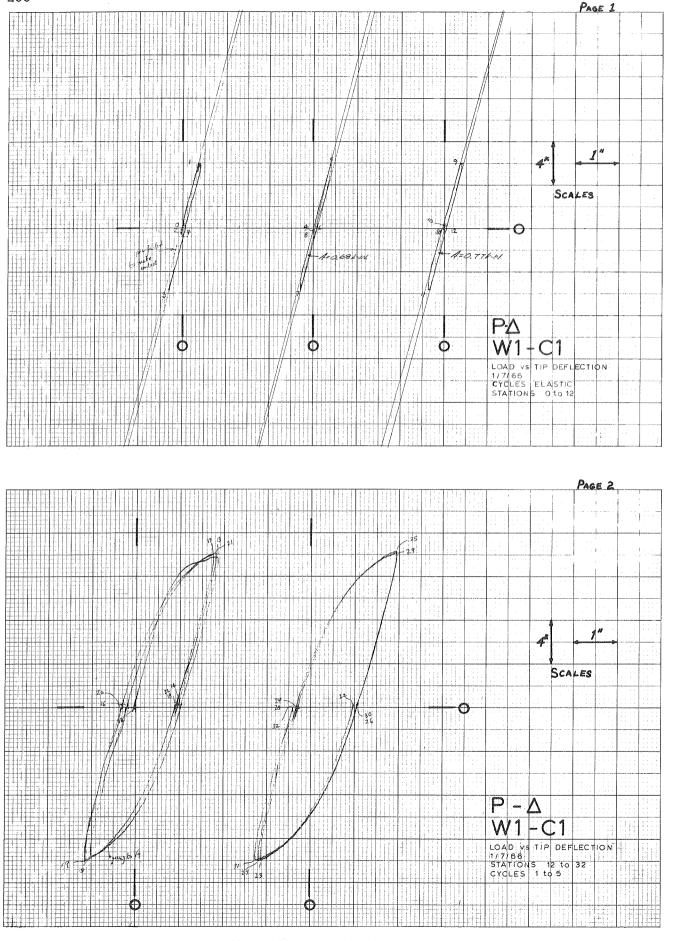



PLATE 23. LOAD VS. DEFLECTION - W1-C1

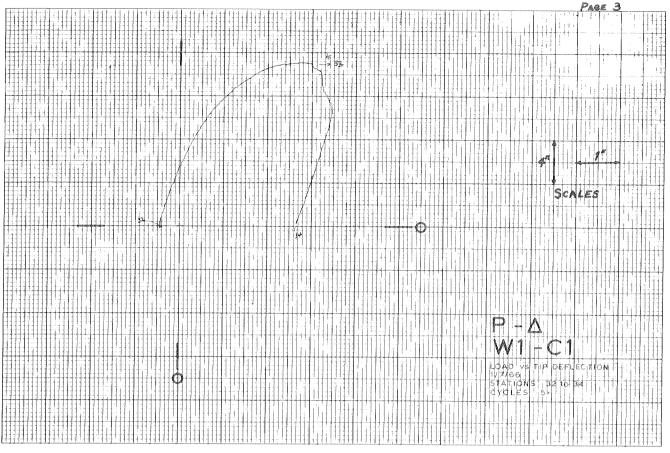
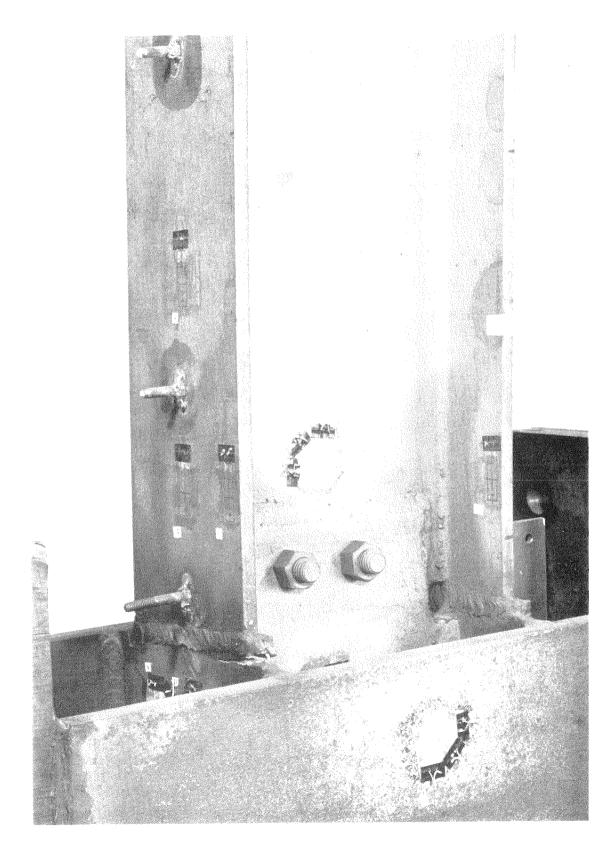
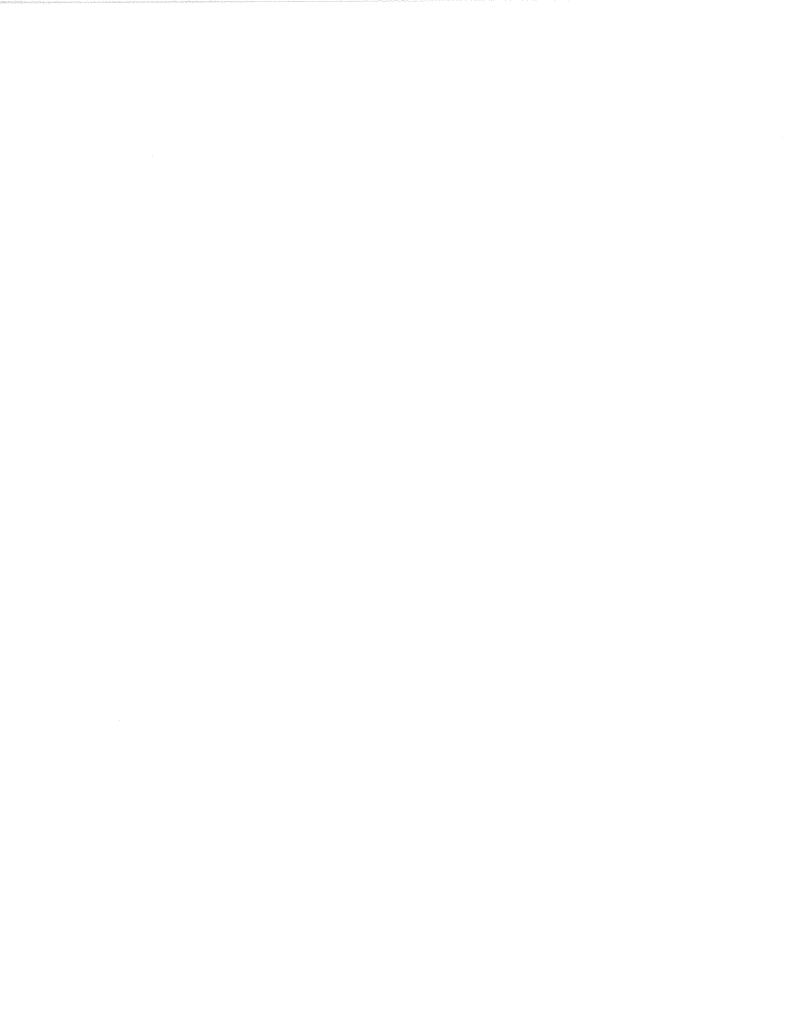




PLATE 23. (continued)






# FIGURE 34. W1-C1

SPECIMEN W1-C1

Half- Cycle	P KIPS	∆ IN₊	∆' IN•	W K-IN。	P	Ā	$\bar{\bigtriangleup}'$	Ŵ
1	13.43	1.67	1.11	12.4	1.129	3.00	1.99	3.75
2	-13.26	-C.71	1.14	12.0	-1.114	-1.28	2.05	3.62
3	13.63	1.56	1.02	11.4	1.145	2.79	1.84	3.44
4	-13.65	-C.85	1.13	12.3	-1.147	-1.52	2.04	3.70
5	13.79	1.62	1.18	12.6	1.159	2.91	2.12	3.81
6	-13.60	-0.84	1.18	12.5	-1.143	-1.50	2.11	3.76
7	13.96	1.74	1.25	13.8	1.173	3.12	2.23	4.16
8	-13.67	-0.90	1.28	13.6	-1.149	-1.61	2.29	4.10
9	13.84	1.74	1.28	14.1	1.163	3.13	2.29	4.25
10	-13.62	-C.98	1.35	14.6	-1.145	-1.75	2.41	4.41



#### SPECIMEN W1-C4

<u>Description</u>: This specimen was similar to specimen W1-C1 with respect to detailing, fabrication and inspection.

#### Program of Cycling: 2N = 1

Inasmuch as the specimen failed during the first cycle, no cycling diagram is presented.

<u>Test Control</u>: Strain, as measured in the center of the top flange 7.54 inches from the face of the column web.

Raw Data Included: Graphical load-deflection data.

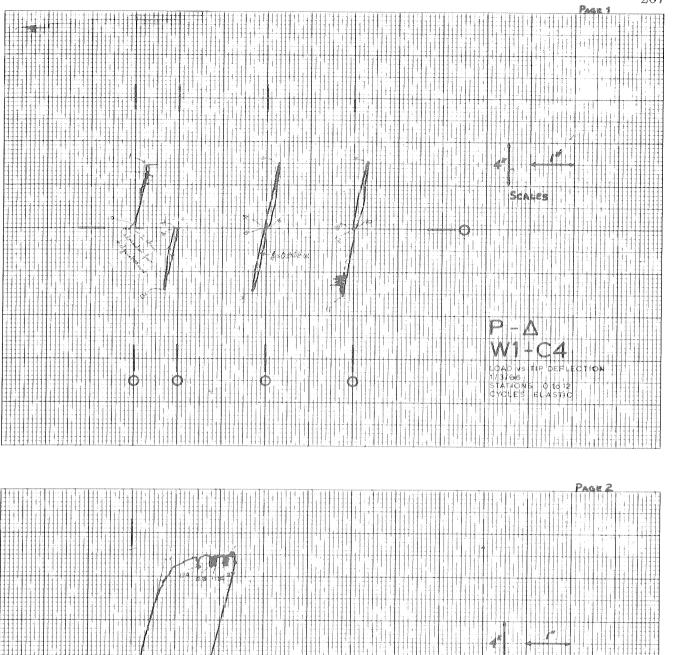
Total Energy Absorbed: Not measured.

Plastic Load Reversals to Failure: 2 (1 cycle).

<u>Remarks</u>: Sudden failure of the entire bottom flange butt-weld occurred in the second half of the first plastic cycle. The failure revealed that the bottom flange had been beveled only to approximately one-half of its thickness and that there had been no root opening at all. Except for the end returns, the weld had penetrated uniformly to about half the flange thickness, instead of being a full-penetration buttweld as specified.

# SPECIMEN TYPE W1-C4

DIMENSIONS OF WE SECTION


	DEPI	- <b>-</b>	6 0	×	r	¢	Q	<	,	9	÷	ø	Ð	¢	\$)	0	Ċ.	0	ŵ	¢	40	÷	10	8,26	INCHES
																								5.175	
																								5.177	
	тср	FL	ANG	E	1	- 1	[Cł	٢N	IE S	S S		Ð	ъ	÷	9	[©]	ŵ	Ş	Ð	¢	ŵ	ŵ	ø	0.367	INCHES
																								C.378	
ł	WEB	ΤH	ICK	NE	5	S	*	ø		0	6	Ð	Ð	¢	0	0	¢	Q	0	Q	s.	8	4	C.281	INCHES
	ELAS	STI	C N	100	U	LL	JS	¢		υ	G	62	\$	¢	ø	¢	ŵ	£1	Ð	ø	ø	ଢ	ŝ	29000.	KSI
,	VIEL	.D	STO	ES	S		w	ø		0	÷	e.	¢	ø	к.	41	4J	¢.	Q	¢.	ø	۵	¢	40.500	KSI

# WE SECTION PEOPERTIES

AREA, A c c c c c c c c c c c c c c c c c c	。。。。。 6.06 INCHES**2
LCCATION OF CENTREID*, YE	· · · · · · · · · · · · · · · · · · ·
MOMENT OF INERTIA, I	0 0 0 0 0 71 02 INCHES**4
SECTION MODULUS, TOP, ST	17.1 INCHES**3
SECTION MCCULUS, BGTTOM, So	。。。。。 17.4 INCHES**3
LOCATION OF PLASTIC NEUTRAL AXIS	S*, YP 4.04 INCHES
PLASTIC METULUS, Z	。。。。。。 19.5 INCHES**3
SHAPS FACTURE	o o o o 1.0141
YTELD MUMENT, MY	0 0 0 0 57.72 KIP-FT.
PLASTIC MCMENT, MP	• • • • • 65.84 KIP-FT.
*MEASURED FFCM OUTSIDE FACE OF BUTT	FTOM FLANGE

SEAM PROPERTIES

LENGTH, L	e e	6 4	5 0	e e	6	e.	Q N	6	ø	ø	. 66.3	INCHES
ELASTIC STIFFN	ESS,	PIC	DELT	Å.	¢	ల	ေခ	6	e	e	. 21.29	KIPS/IN.
YIELD DEFLECTI												
YIELD LOAC, PY												
PLASTIC LEAD,												



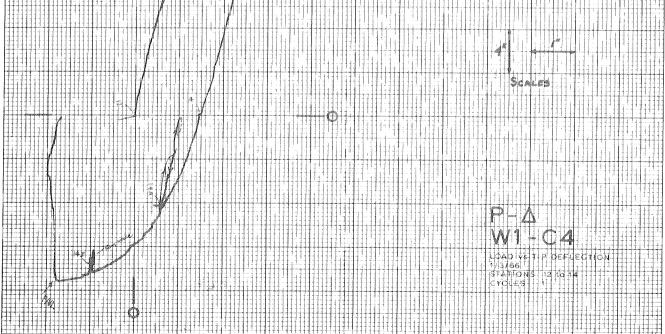
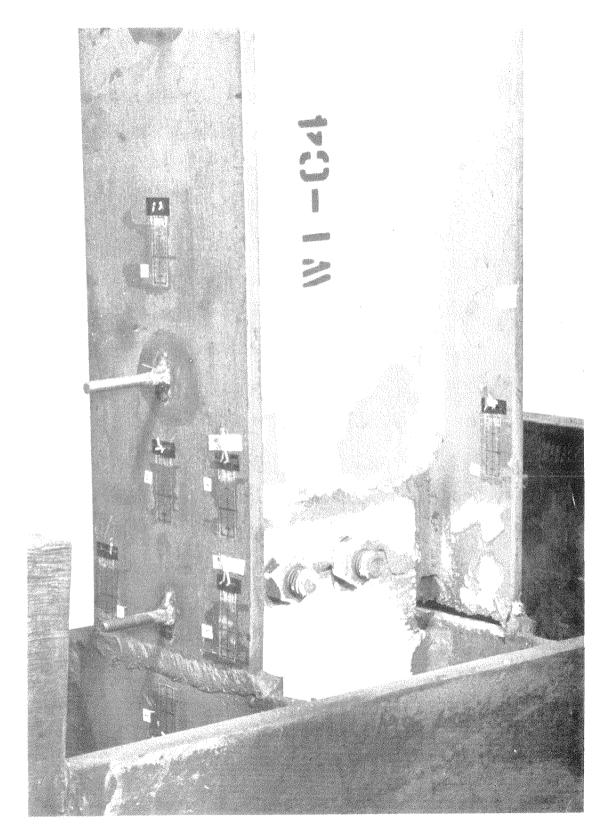
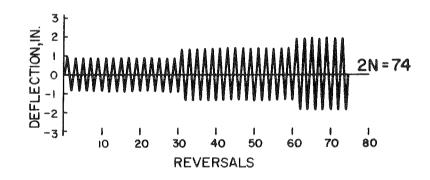




PLATE 24. LOAD VS. DEFLECTION - W1-C4






# FIGURE 35. W1-C4

### SPECIMEN W1-C7

<u>Description</u>: This specimen was similar to specimen W1-C1 except as follows. The only visually apparent departure from the detail drawing was that the web connection plate was centered in the column web, with the result that the beam was off-center relative to the vertical center-line of the column. The specimen was commercially fabricated, and professional inspection was conducted throughout fabrication. Ultrasonic inspection of the finished welds indicated a two-inch flaw in a stiffener to column flange weld. The weld was repaired, and no further significant defects were found.

### Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-strain data with strain measured in the center of the bottom flange 5.05 inches from the face of the column web.

Graphical load-deflection data.

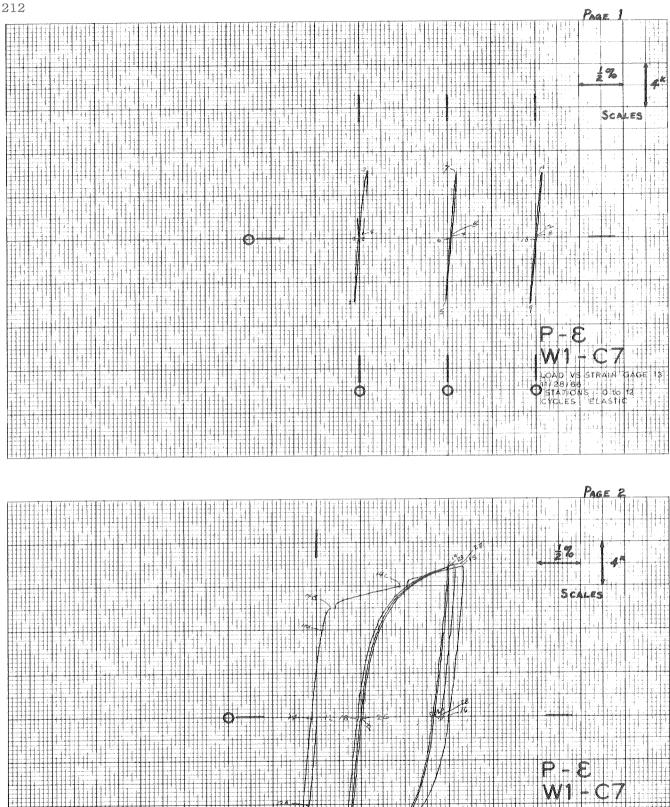
Total Energy Absorption: 926 kip-inches.

Plastic Load Reversals to Failure: 74 (37 cycles).

<u>Remarks</u>: Buckling of the bottom flange became evident during the 18th plastic cycle. At the end of the 20th cycle, a crack 1/16 inch long appeared at the edge of the top weld in the middle of the flange. One cycle later a fine crack appeared at the end of the same weld. This was followed by a similar crack at the bottom flange weld. After the 28th cycle, and more noticeably during the 33rd cycle, the edge crack at the top flange slowly propagated. At about the same time, some buckling of the top flange also became apparent. Failure occurred when the top flange crack rapidly propagated into the connecting plate.

## SPECIMEN TYPE W1-C7

# DIMENSIONS OF WE SECTION


Dŧ	EPT	<b>6</b> -	۰	ø	Ð	ę	•	Ø	4		ø	ø	Ð	ø	÷	\$	-19	8		S	9	ø	49	¢	8.18	INCHES
T (	)P	FL	A٨	GE	-	W ]	[ D	Tł	4	6	>	ø	ø	ø	ø	0	ø	٥	0	ø	÷	ø	ø	Q	5.340	INCHES
8(	STT	CM	F	LL	١N	G 8	5	W ]	l D	Tł	1	ø	ø	9	æ	æ	0	8	æ	æ	\$	ø	¢	ø	5.340	INCHES
T	ΟP	FL	۵N	Gŧ		Tŀ	łĪ	Cł	(N	IES	SS	ŝ	40	ø	\$	¢	\$	0	0	¢	ø	ø	ø	ଶ	0.353	INCHES
80	TTC	СМ	F	LA	١N	GE	1- 1- 1-	Tŀ	١I	Cr	<1	√ES	S	ŧ	ŵ	Ð	ø	ø	9	¢	ø	Ð	Ð	ø	0.354	INCHES
W	E 8	TΗ	IC	K٨	١E	SS	5	¢	ø	4	•	Ŷ	8	¢	¢	ø	ø	ø	ą	ø	ø	ø	ę	ø	0.260	INCHES
EL	AS	ΤI	С	MC	)C	UL	U.	S	ø	4	Þ	кр	\$	¢	9	<b>39</b>	କ	ø	۰	Ð	ø	ø	-	۵	29200.	KSI
Y	[EL	0	ST	RE	ĒS	S		ø	ø	\$	ə	ත	\$	ø	ø	19	Ð	8	Ð	9	Ð	ø	÷	ŵ	44.100	KSI

# WF SECTION PROPERTIES

AREA, A	ф ө	6 Ø	a o	ø	ŵ	e e	ø	Ð	Ð	ø	*	Q	æ	5.81	INCHES**2
LOCATIC	NCF	CENT	ROID	)本。	Y	Ε.	Ð	ø	¢	Ð	9	ø	Q	4.09	INCHES
MOMENTI	DF IN	ERTI	A, I		Q	Ф 9	Ð	¢	۵	ø	ø	Ð	6	68.1	INCHES**4
SECTION	MCDU	LUSP	TOP	9	SТ	\$	e	ø	e	6	ę	Q	0	16.6	INCHES**3
SECTION	MCCU	LUS	BOT	TO	M,	SΒ	9	Ð	ø	Ð	۵	ø	o	16.7	INCHES**3
LOCATIO	V CF	PLAS	TIC	ΝΕ	UT	RAL	Α)	KIS	*,	Y	Ρ	ø	8	4.08	INCHES
PLASTIC	MCCU	LUS,	Z	10	0	e 0	ø	æ	0	\$	۲	ø	20	18.7	INCHES**3
SHAPE F.	ACTCP	ø	ອຍ	Ð	¢	o 0	8	9	٥	۰	e	ø	\$	1.126	
YIELD M	GMENT	, MY	ø	ø	\$	9 9	٩	*	¢	ø	ø	0	ø	61.12	KIP-FT.
PLASTIC	MOME	NT 💡	MP	8	ø	e e	-	e	ø	\$	٩	ø	ø	68.82	KIP-FT.
*MEASURED	FRCM	CUT	SIDE	F	AC	E O	F 6	301	TO	М	FL	AN.	GE		

### BEAM PROPERTIES

LENGTH,	L .	ବ ସ	Ð	Ð	a a	ŵ	Ð	ø	6	ଶ	ø	-9	ø	0	ø	66.2	INCHES
ELASTIC	STIF	FNESS	9	P/	DEL	ΤA	0	ø	10	ø	49	ø	Ð	ø	ø	20.57	KIPS/IN.
YIELD DE	FLEC	TION	D	EL.	ΓΑΥ	6	ø	÷	0	Ø	۲	۵	9	ø	ନ	0.539	INCHES
YIELD LO	AD,	Pγ 。	٥	•	a a	\$	4	ø	\$	0	9	ø	٩	ø	0	11.08	KIPS
PLASTIC	LCAD	, PP	ø	Ð	& @	ø	8	e	0	Ð	Ð		ø	\$	c	12.48	KIPS



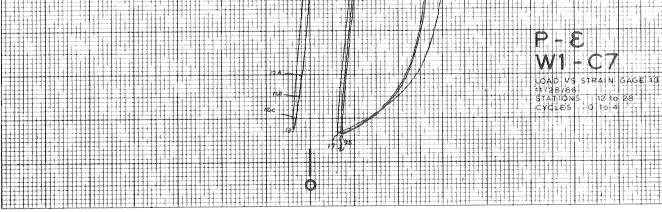



PLATE 25. LOAD VS. STRAIN - W1-C7

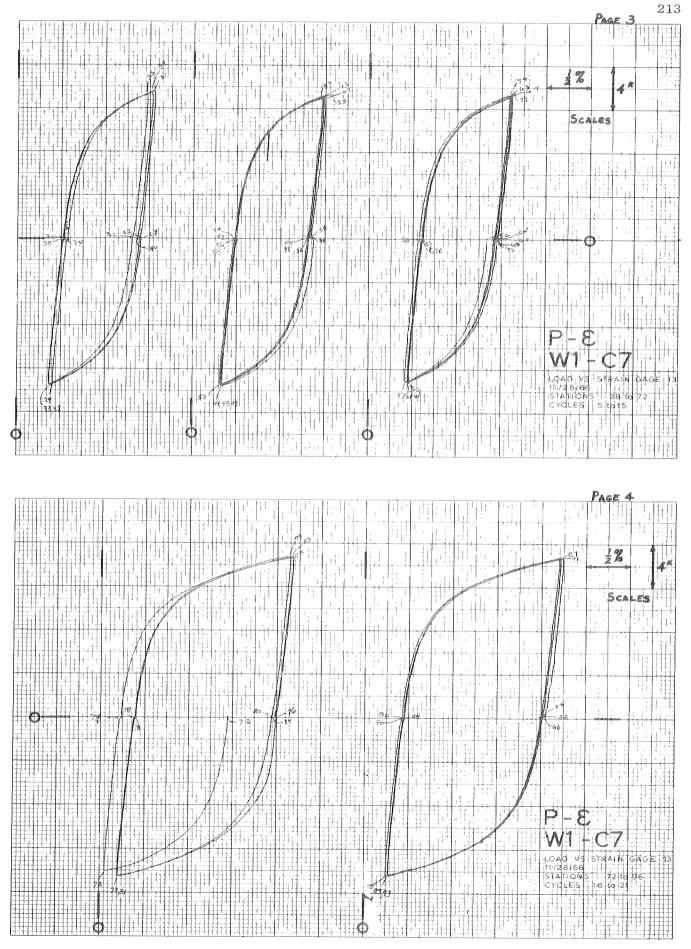



PLATE 25. (continued)

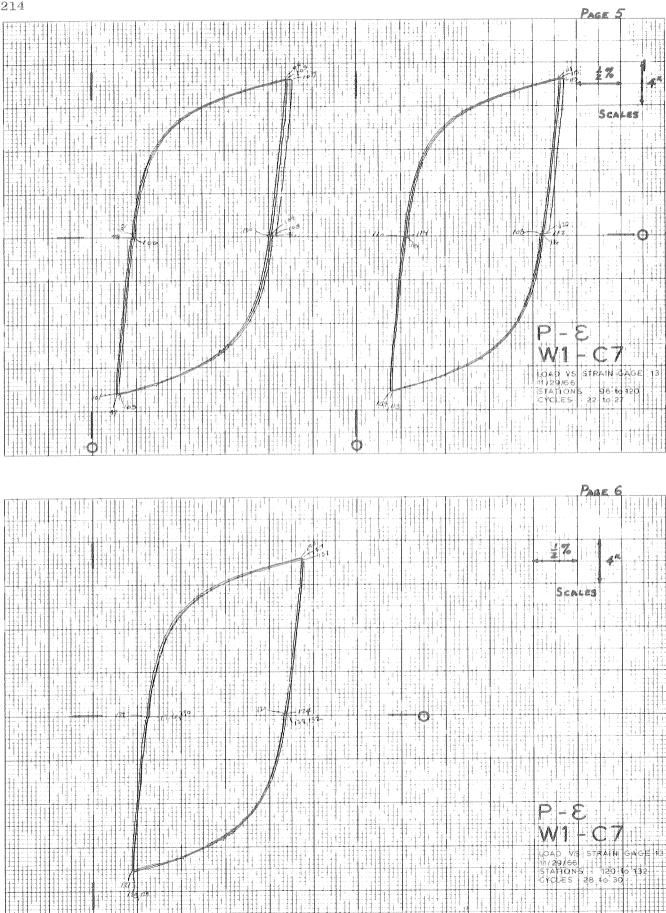
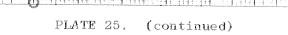




PLATE 25. (continued)

O





Ť

1114

144

Ţ

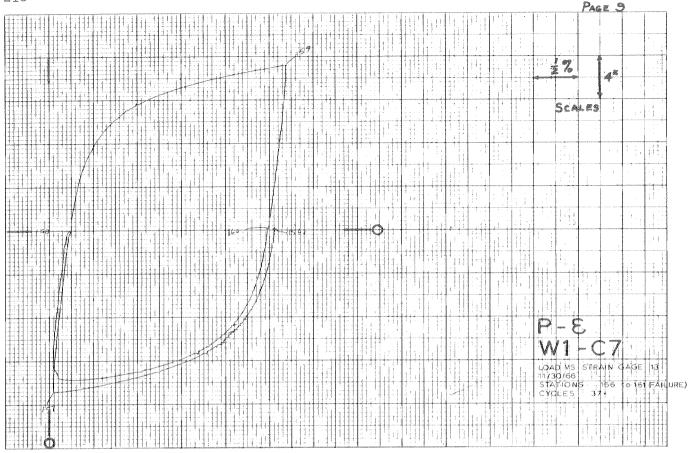
P 0569

W1

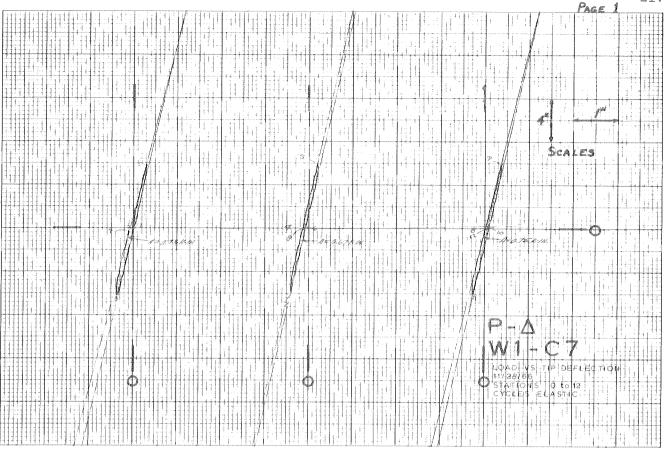
11/30/66

CYCLES

8


+C7

LOAD VS STRAIN GAGE 13


34 to 36

Ĥ

4+







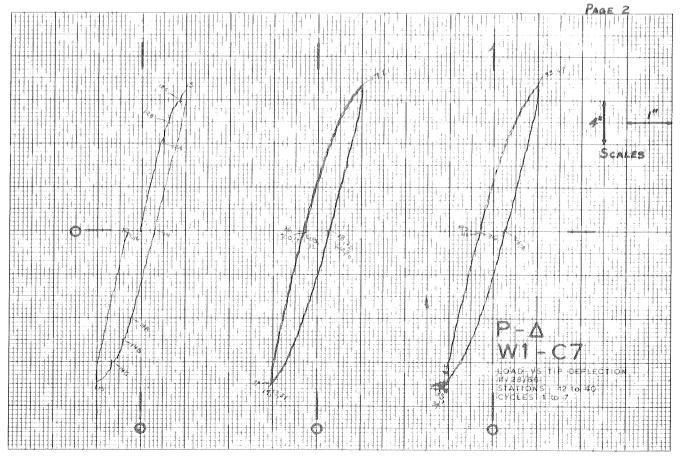
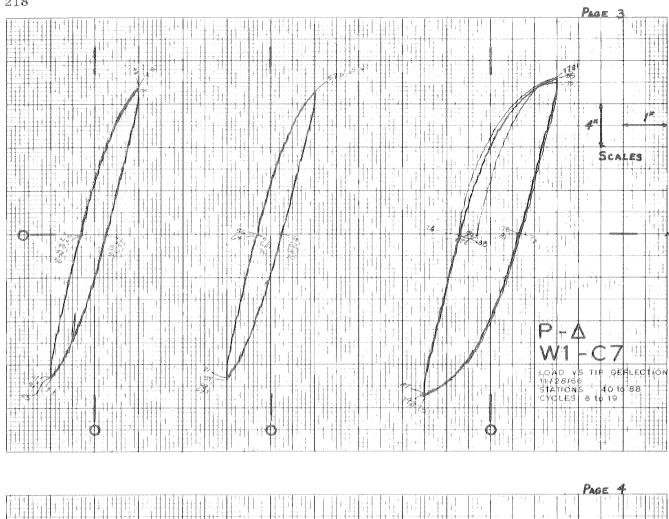




PLATE 26. LOAD VS. DEFLECTION - W1-C7



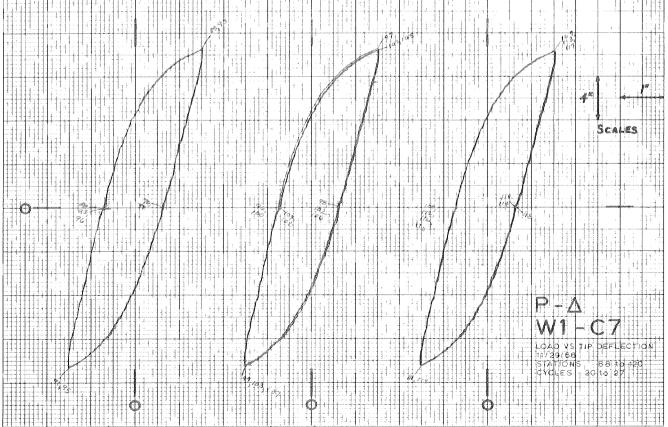



PLATE 26. (continued)

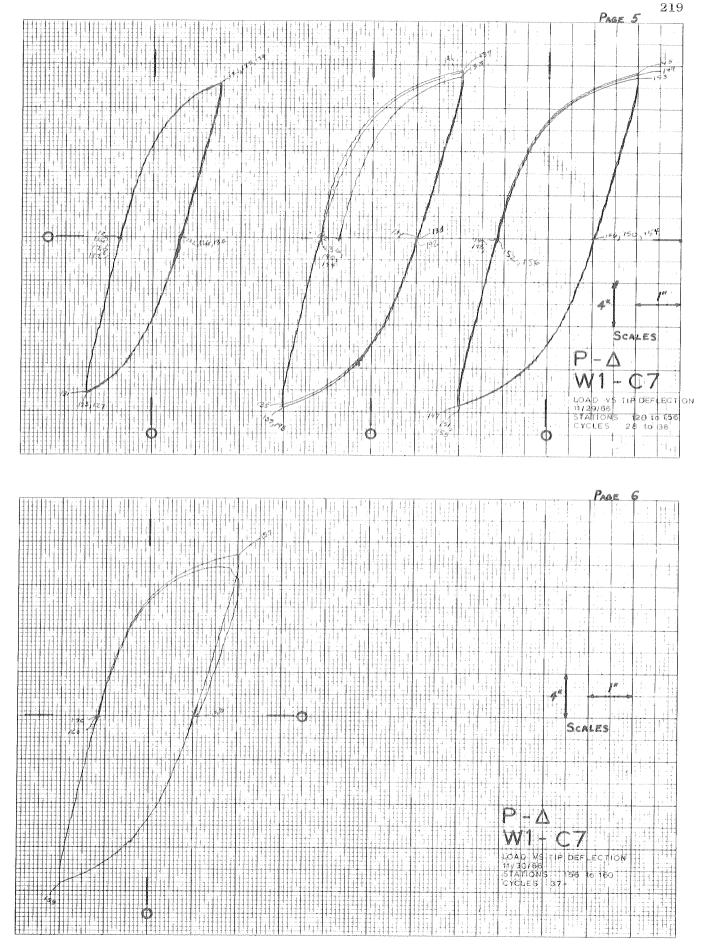
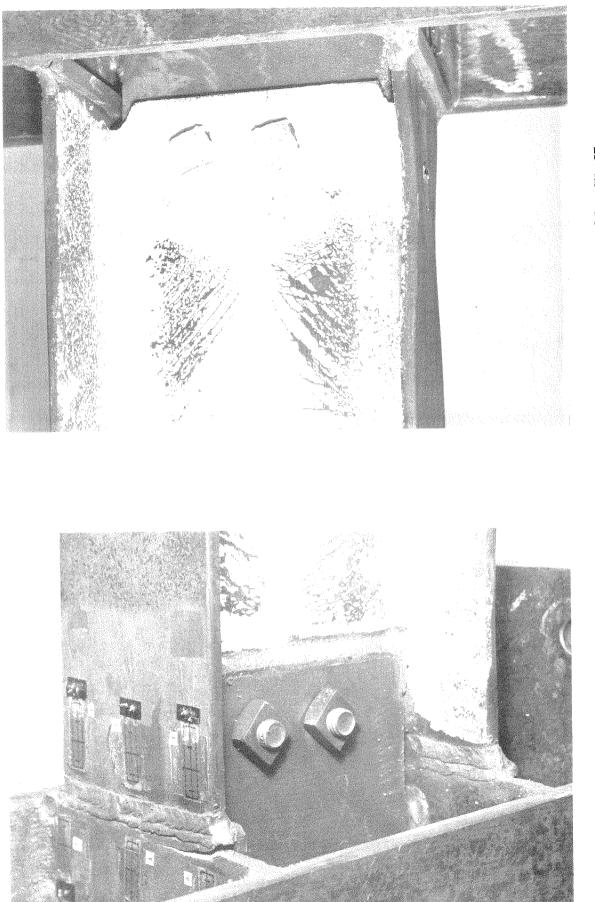



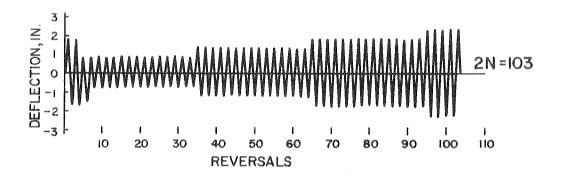

PLATE 26. (continued)



# FIGURE 37. W1-C7

FIGURE 36. W1-C7

SPECIMEN W1-C7


Half-	р	Δ	Δ΄	W	P	$\overline{\Delta}$	$\overline{\Delta}$ :	w
Cycle		1 No		K-IN.		Kooord	faaro f	p t
1	12.53	0.94	0.35	3.2	1.004	1.54	0.57	0.84
2	-13.38	-0.86	0.53	6.0	-1.072	-1.42	0.87	1.58
3	13.02	0.89	0.46	5.1	1.043	1.47	0.75	1.34
4	-13.27	-0.90	0.50	5.0	-1.063	-1.48	0.82	1.32
5	13.11	0.89	0.50	5.0	1.050	1.47	0.82	1.33
6	-13.33	-0.90	0.50	5.0	-1.068	-1.48	0.82	1.32
7	13.15	0.89	0.50	5.1	1.053	1.47	0.82	1.33
8	-13.55	-0.93	0.50	5.3	-1.085	-1.53	0.82	1.39
9	12.98	0.89	0.50	5.0	$1 \circ 040$	1.47	0.82	1.33
10	-13.27	-0.90	0.50	5.0	-1.063	-1.48	0.82	1.31
11	13.17	0.89	0.49	5.3	1.055	1.47	0.81	1.41
12	-12.95	-0.89	0.47	4.8	-1.037	-1.47	0.77	1.27
13	13.10	0.89	0.47	5.3	1.049	1.047	0.78	1.39
14	-13.13	-0.89	0.50	4.9	~1.052	-1.47	0.82	1.29
15	13.23	0.89	0.47	5.8	1.060	1.47	0.78	1.52
16	-12.83	-0.89	0.48	5.3	-1.028	-1.47	0.78	1.39
17	13.15	0.89	0.48	5.4	1.053	1.47	0.78	1.44
18	-12.61	-0.89	0.48	5.1	-1.010	-1.48	0.78	1.35
19	13.12	0.89	0.48	5.1	1.051	1.47	0.78	1.35
20 21	-12.69	-C.89 C.89	0。48 0。48	- 5.1	-1.017	-1.48	0.78	1.34
22	-12.79	-0.89	0.48	4.9 4.9	1.050 -1.025	1.47	0.78	1.31
23	12.85	0.89	0.48	4.8	1.029	-1.47	0°78 0°78	1.30 1.28
24	-12.93	-0.89	0.48	4.7	-1.036	-1.47	0.78	1.23
25	12.77	0.89	0.48	4,9	1.023	1.47	0.78	1.29
26	-12.84	-0.89	0.48	407	-1.029	-1.47	0.78	1.23
27	12.72	C.89	0.48	4.9	1.019	1.47	0.78	1.30
28	-12.81	-0.89	0.48	4.7	-1.026	-1.47	0.78	1.24
29	12.81	0.89	0.48	4.9	1.026	1.47	0.78	1.30
30	-12.70	-0.89	0.48	4.7	-1.018	-1.48	0.78	1.24
31	13.84	1.39	0.90	11.4	1.109	2.28	1.48	3.00
32	-14.20	-1.38	1.31	14.5	-1.138	-2.28	2.15	3.82
33	14.28	1.38	1.27	15.6	1.144	2.28	2.09	4.12
34	-14.37	-1.38	1.26	14.4	-1.151	-2.27	2.07	3.80
	14.29	1.38	1.26		1.145	2.28		3.75
36	-14.31	-1.38	1.26	14.3			2.07	3.78
		1.38	1.26		1.134	2.28	2.07	3.74
38	-14.16		1.26	14.3			2.07	3.78
		1.40	1.27		1.140	2.31	2:09	3.90
	-14.22	-1.37	1.27	13.7		-2.26	2.09	3.63
	14.20	1.40	1.27		1.138	2.31	2.09	3.88
42 43	14.25	-1.37 1.44	1.27 1.30		-1.136 1.142	-2.26	2.09	3.62
	-14.06	-1.34	1.29	13.4		2.38 -2.21	2.14	4.02 3.55
45	14.09	1.45	1.29		1.129	2.40	2.12	3.80
46	-14.02	-1.34	1.29	13.4	-1.123	-2.21	2.12	3.53
	14.10	1.45	1.29		1.129	2.40	2.12	3.79
	-14.07	-1.34	1.29	13.4	-1.127	-2.21	2.12	3.55
	14.02	1.42	1.29		1.123	2.35	2.12	3.89
		-1.37	1.29		-1.125	-2.26	2.12	3.74
51	14.02	1.43	1.29		1.123	2.36	2.12	3.88

Half- Cycle	P KIPS	A IN.		W K-INo	$\bar{\mathrm{P}}$	$\overline{\bigtriangleup}$	$\overline{\Delta}'$	Ŵ
Cycle 52 53 54 55 56 57 58 59 60 61 62 63	KIPS -14.00 14.00 -14.00 13.87 -13.94 13.94 -13.91 13.91 -13.80 14.64 -14.90 15.14	IN. -1.37 1.44 -1.38 1.44 -1.33 1.45 -1.33 1.46 -1.34 1.94 -1.85 1.96	IN. 1.29 1.29 1.30 1.30 1.30 1.30 1.30 1.30 1.68 2.12 2.12	K-IN. 14.1 14.6 14.1 14.8 13.7 14.8 13.8 14.8 13.7 21.2 24.2 27.9	$-1 \cdot 122$ $1 \cdot 122$ $-1 \cdot 121$ $1 \cdot 111$ $-1 \cdot 117$ $1 \cdot 117$ $-1 \cdot 115$ $1 \cdot 115$ $-1 \cdot 106$ $1 \cdot 173$ $-1 \cdot 194$ $1 \cdot 213$	-2.26 2.38 -2.28 2.37 -2.20 2.38 -2.20 2.40 -2.20 3.20 -3.04 3.24	2 • 12 2 • 12 2 • 12 2 • 14 2 • 14	3.73 3.87 3.91 3.62 3.91 3.63 3.63 3.63 5.59 6.40 7.36
64 65 67 68 69 70 71 72 73 74	-15.01 15.08 -15.00 14.97 -14.92 14.88 -14.82 14.61 -14.84 14.51 -14.75	-1.84 1.96 -1.84 1.93 -1.86 1.93 -1.83 1.93 -1.86 1.93 -1.86 1.93 -1.85	2.12 2.12 2.12 2.11 2.11 2.11 2.11 2.11	24.5 26.6 24.4 26.5 24.5 26.0 24.3 25.7 24.3 26.1 24.1	-1.203 1.208 -1.202 1.199 -1.196 1.193 -1.188 1.171 -1.189 1.162 -1.182	-3.04 3.24 -3.04 3.17 -3.06 3.18 -3.01 3.18 -3.06 3.18 -3.06 3.18	3.49 3.49 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47	6.47 7.02 6.45 6.99 6.47 6.86 6.43 6.43 6.43 6.43 6.43 6.43 6.36

#### SPECIMEN W1-C9

<u>Description</u>: This specimen was similar to specimen W1-C7 in detailing, fabrication and inspection except that no significant weld defects were found by ultrasonic inspection.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data.

Graphical load-strain data measured by gage No. 2 on the top flange at a distance at 5.00 inches from the face of the column web.

Graphical load-strain data measured by gage No. 7 in the center of the bottom flange at a distance of 5.05 inches from the face of the column web.

Graphical load-transverse strain data measured by gage No. 9 located at right angles to gage No. 7.

Total Energy Absorption: 1,500 kip-inches.

Plastic Load Reversals to Failure: 103 ( $51\frac{1}{2}$  cycles).

<u>Remarks</u>: At the end of the first plastic cycle there was no visible buckling; nor were any cracks found. During the second cycle, there was a hint of buckling of the lower flange. After the 5th cycle a crack was observed at the edge of the bottom flange butt-weld. During the 10th cycle, a new crack appeared on the opposite end of that weld. A hair crack was found at an edge of the top flange butt-weld during the 17th cycle. At about the same time propagation of the two edge cracks at the bottom flange weld became noticeable. Buckling of the lower flange had also increased. Much later, during the 43rd cycle, some top flange buckling became evident. Just before applying a  $2\frac{1}{2}$  inch tip deflection (after 47 cycles), no cracks longer than  $\frac{1}{2}$  inch had been observed; however, the bottom flange was markedly buckled. During the 48th cycle a new crack in the middle of the bottom flange butt-weld was observed. Failure occurred with rupture of the bottom flange.

# SPECIMEN TYPE W1-C9

# DIMENSIONS OF WE SECTION

																		8.19	
																		5.330	
																		5.300	
TOP F	LANGE	THI	CKN	iES	S	Ð	ø	¢	ø	o	ø	¢	¢	ø	ø	Q	٥ ٥	0.361	INCHES
BCTTC	M FLA	NGE	THI	CK	NES	S	Ð	19	e	ø	0	ę	Ð	o	Ð	9	ø	C.349	INCHES
WEB T	HICKN	ESS	e e	-	ø	Ð	Ð	ø	ø	e	٩	ø	e	Ø	o	ø	ø	0.279	INCHES
ELAST	IC MC	CULU	S.	Ð	e	ø	¢	ଚ	e	e	G	ø	Ð	ø	ø	Q	0	29200.	KSI
																		44.100	

# WF SECTION PROPERTIES

AREA, A	。。。。 5。95 INCHES**2
LOCATION OF CENTROID*, YE	· · · · · 4.14 INCHES
MOMENT OF INERTIA, I	
SECTION MCDULUS, TOP, ST	
SECTION MCCULUS, BOTTOM, SB 。 。 。	
LOCATION OF PLASTIC NEUTRAL AXIS*,	
PLASTIC MCCULUS, Z	。。。。 19.0 INCHES**3
SHAPE FACTER	
YIELD MCMENT, MY	• • • • 61.12 KIP-FT.
PLASTIC MOMENT, MP	• • • • 69.84 KIP=FT.
*MEASURED FROM OUTSIDE FACE OF BOTTO	M FLANGE

BEAM PROPERTIES

LENGTH, L	ବ କ କ କ ବ	ø	0 0	ø	6 Q	¢	e e	G	66.5	INCHES
ELASTIC STIFFNESS	S, P/DEL	ΤA	0 O	Ð	0 0	Ð	ଚତ	e	20.49	KIPS/IN.
YIELD DEFLECTION	, DELTAY	e e	• •	e	© ₽	ŝ	e e	0	0.538	INCHES
YIELD LEAD, PY .										
PLASTIC LEAD, PP	• • • • •	Ð	• •	ŵ	\$ D	0	စ ပ	o	12.60	KIPS

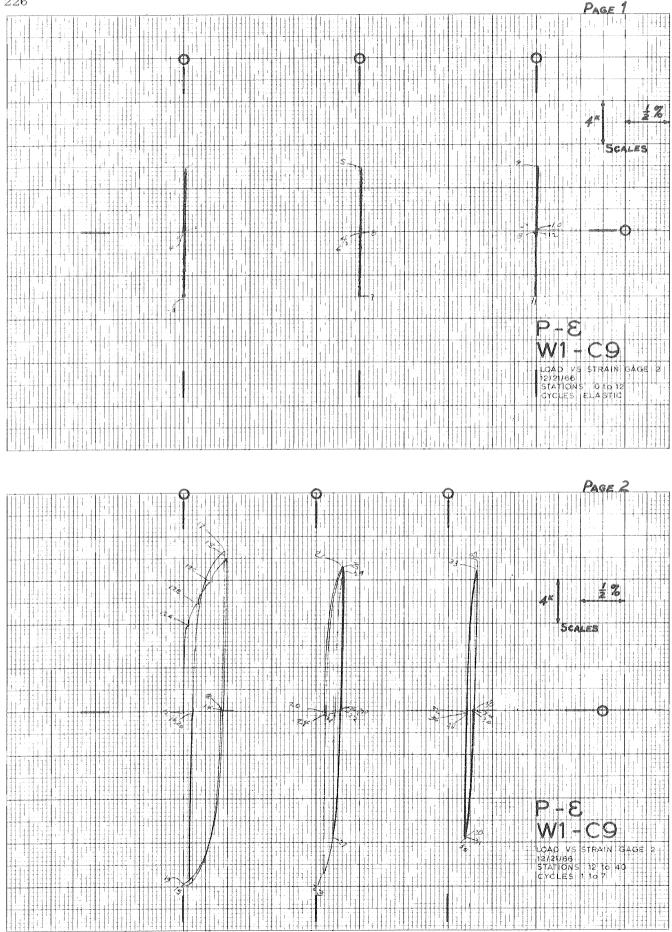
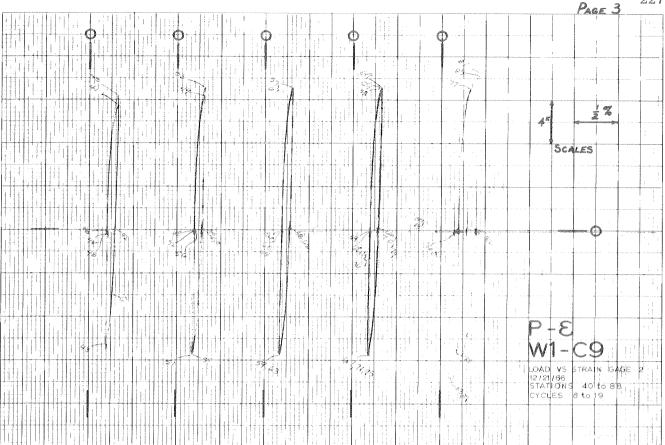




PLATE 27. LOAD VS. STRAIN - W1-C9



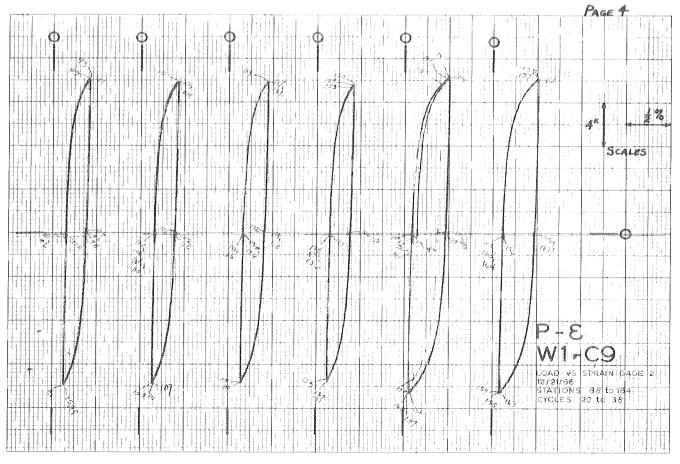
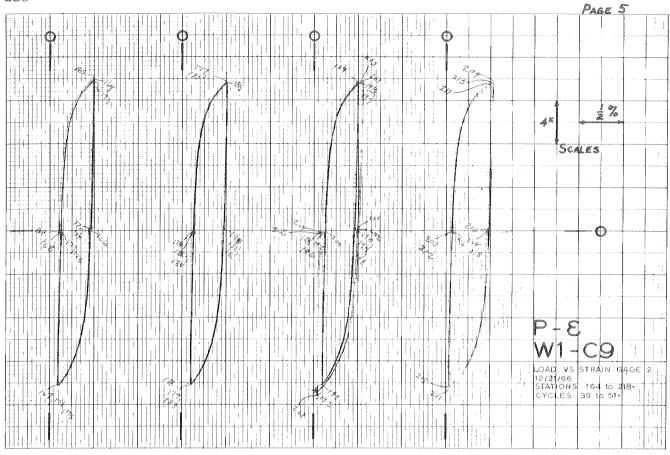
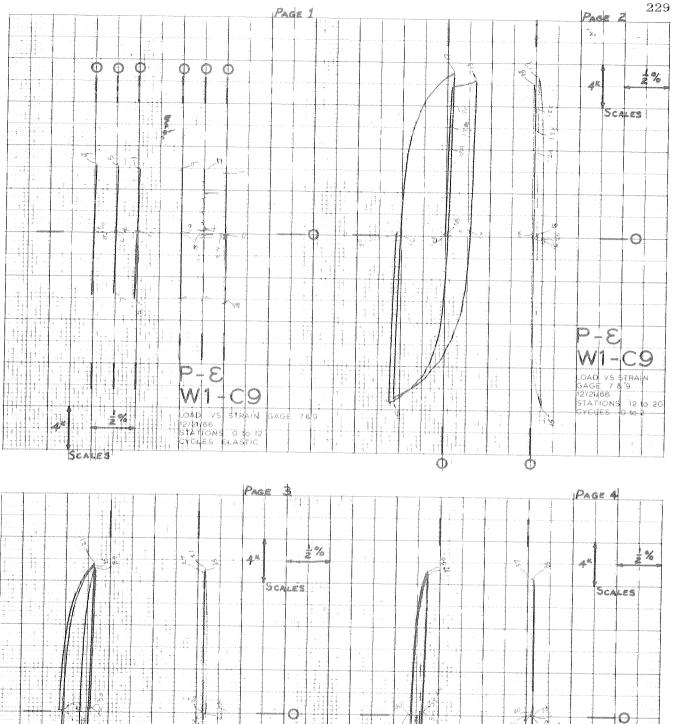
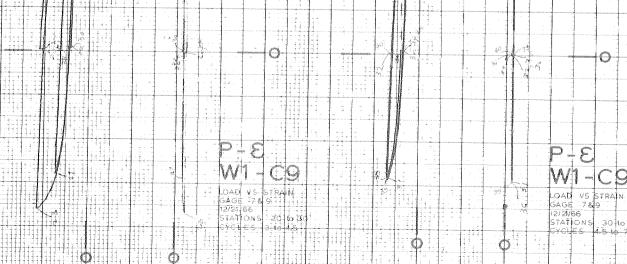






PLATE 27. (continued)









#### PLATE 28. LOAD VS. STRAIN - W1-C9

C9

30 to 40

1

4.5 10 7

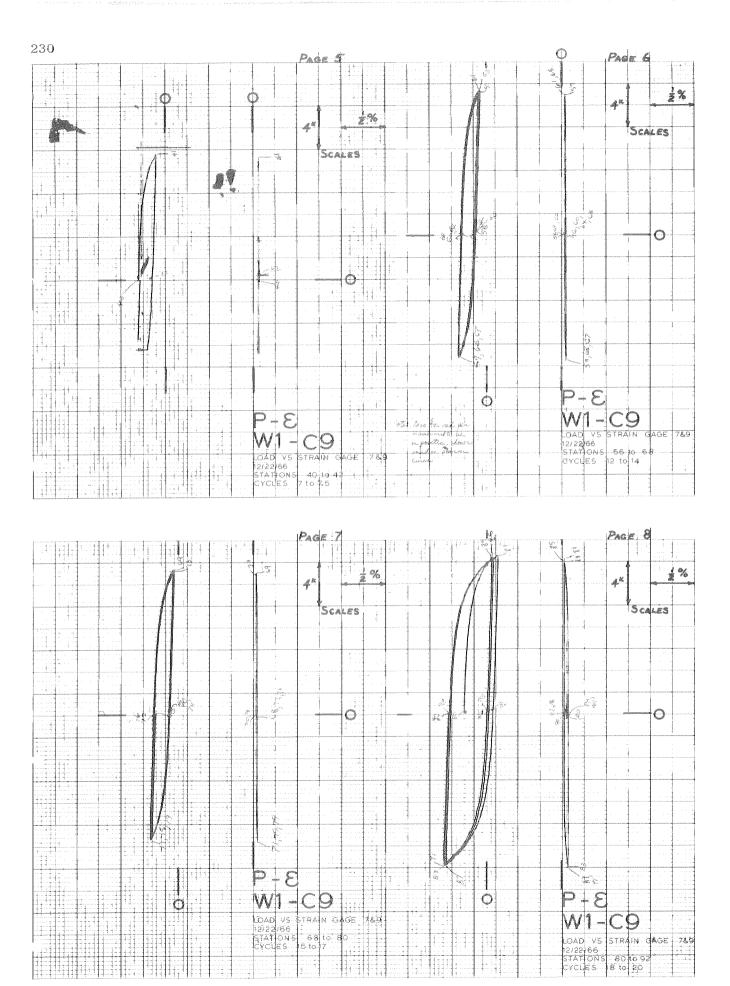



PLATE 28. (continued)

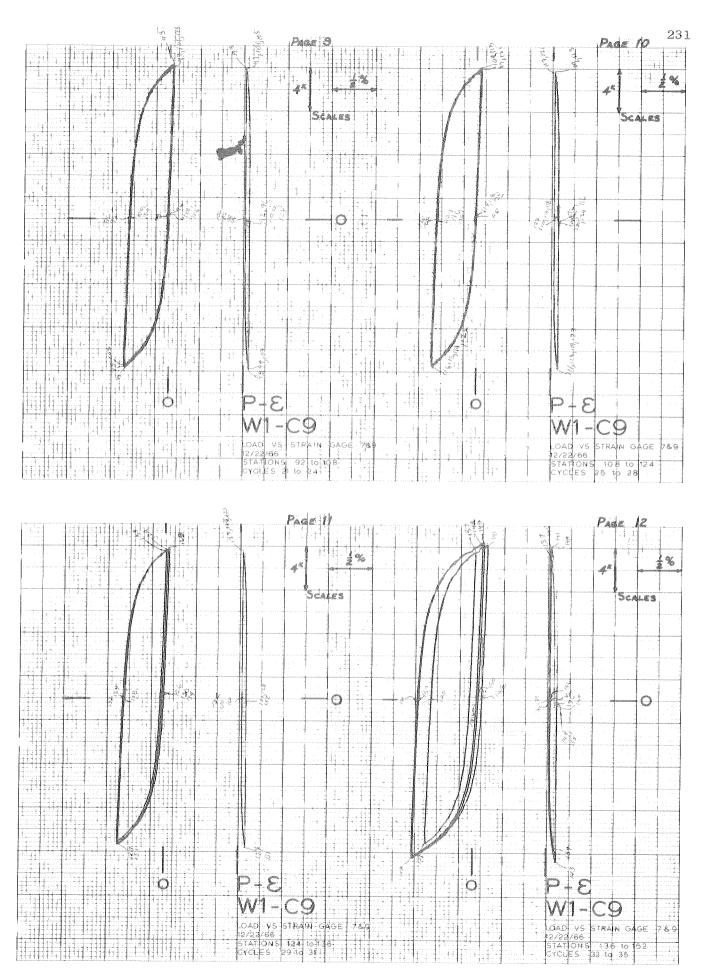
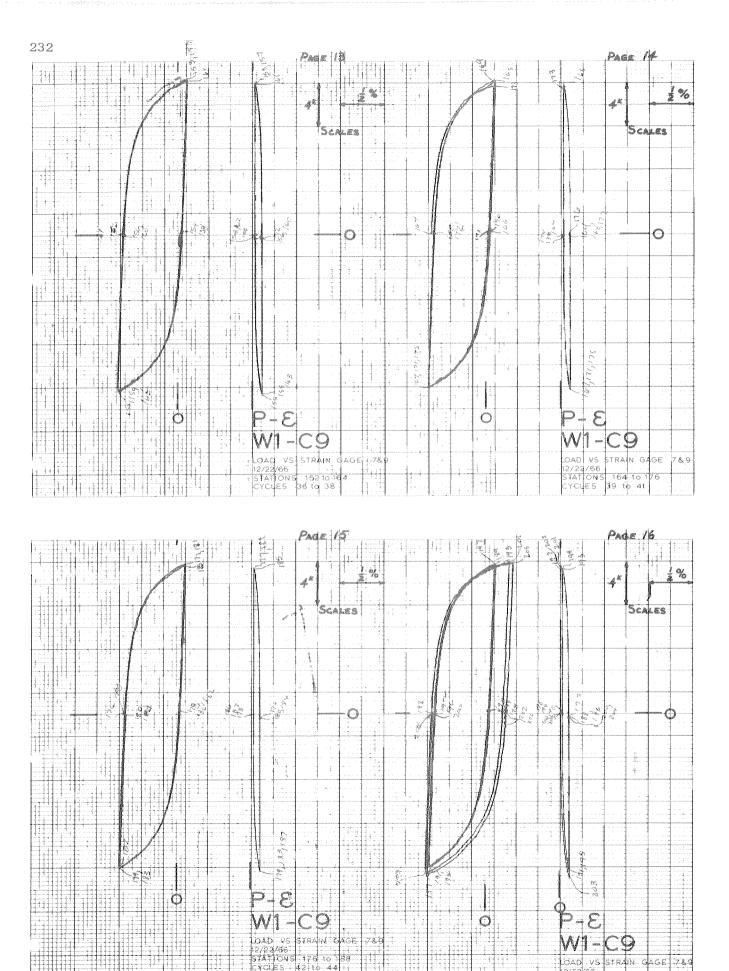




PLATE 28. (continued)





78.9

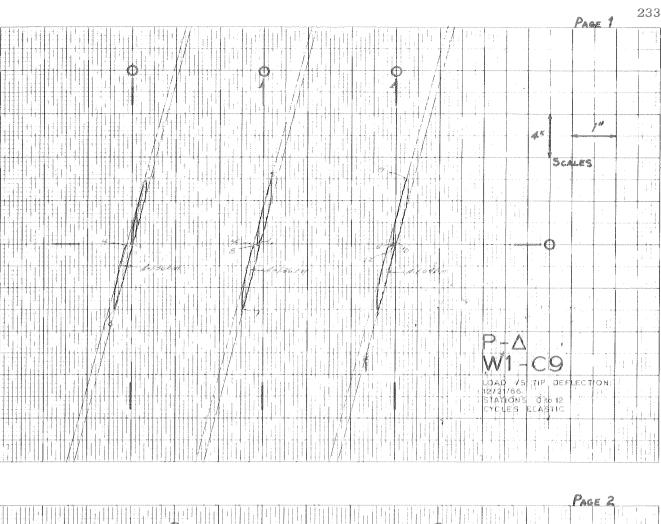
9

(

OAD VS STRAIN GAGE 789 12/22/86 STATIONS 176 to 188 CYCLES 421to 44

-5-

W1 -


0

11

LOAD VS STRAIN GAGE 789 12/22/66 STATIONS 1188 to 208 CYCLES 45 to 49

3-9

W1-C9






PLATE 29. LOAD VS. DEFLECTION - W1-C9

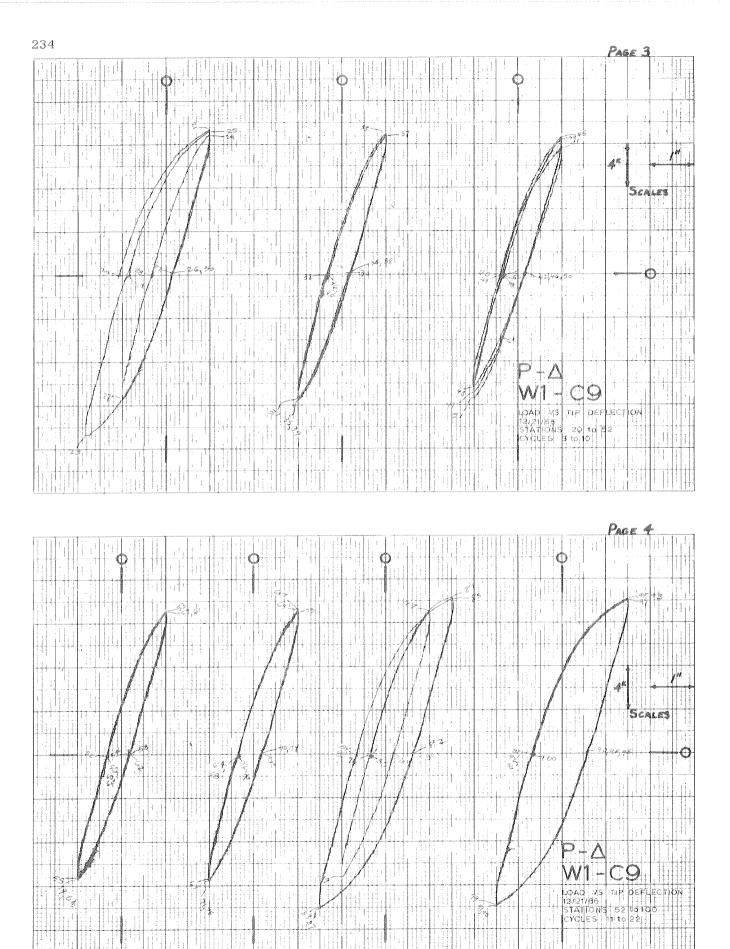



PLATE 29. (continued)

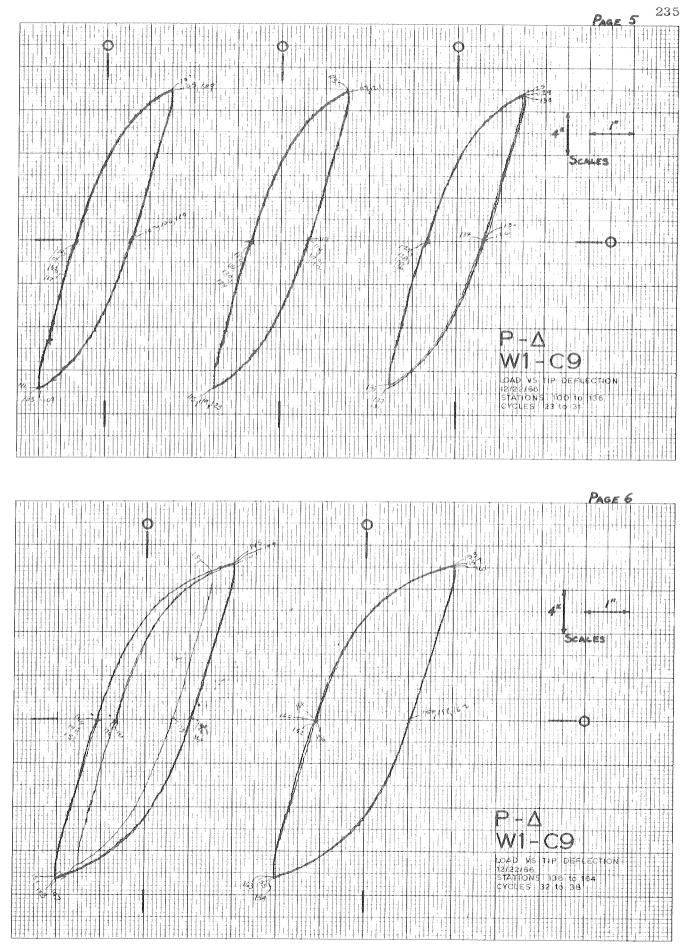



PLATE 29. (continued)

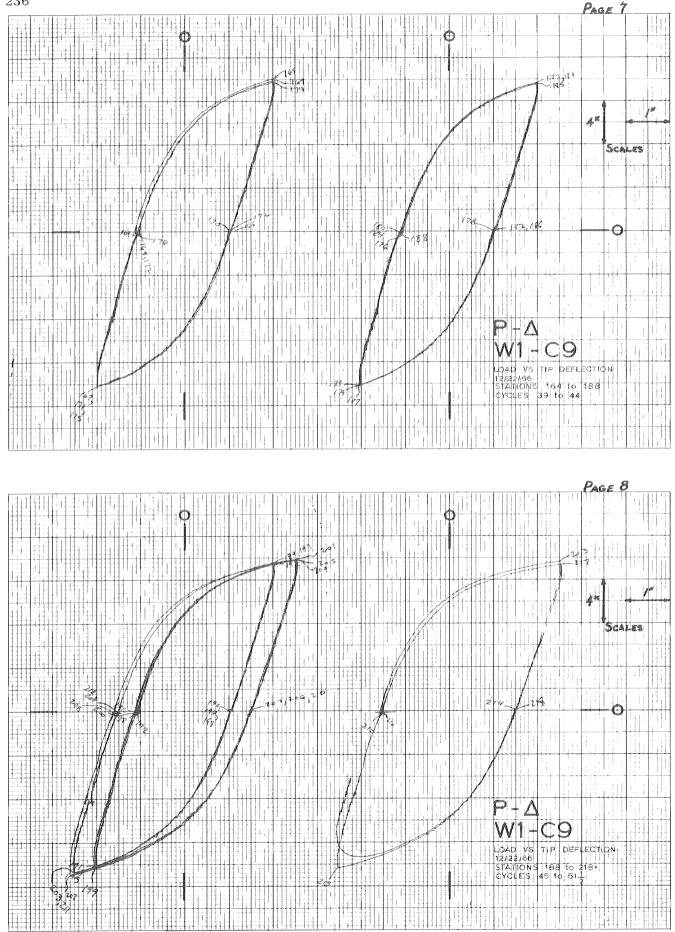
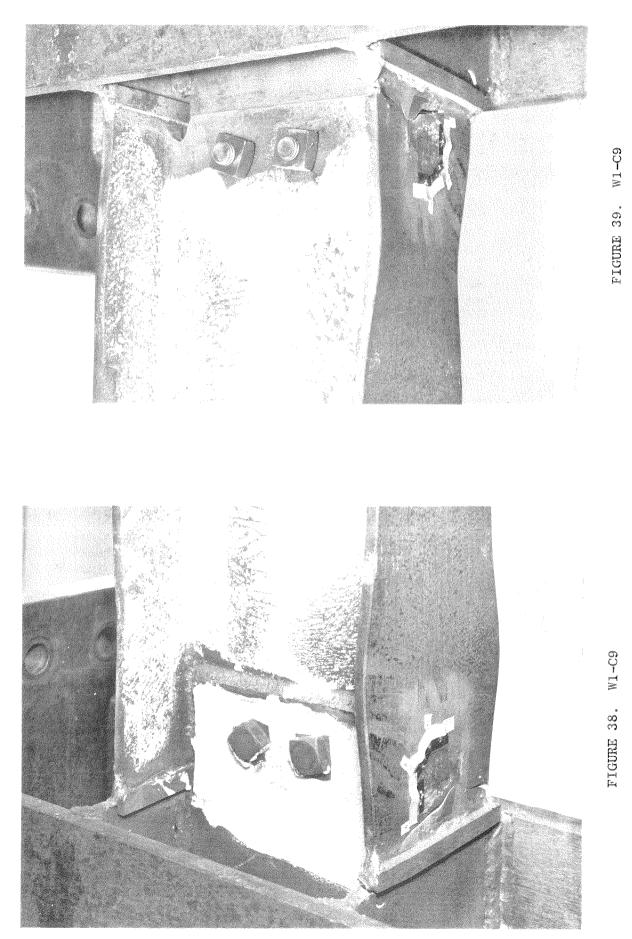
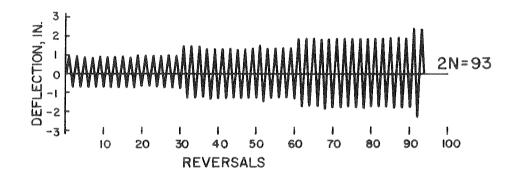




PLATE 29. (continued)



SPECIMEN W1-C9

Half- Cycle	P KIPS	∆ IN∘	A IN o	W K-INo	p	$\overline{\Delta}$	$\overline{\Delta}'$	Ŵ
1	13.45	1.83	1.19	13.7	1.067	2.98	1.93	3.54
2	-14.61	-1.68	2.05	25.2	-1.160	-2.73	3.34	6.50
	14.16	1.81	1.95		1.124	2.94	3.16	5.80
4	-15.12	-1.70	1.96	23:0	-1.200	-2.77	3.18	5.93
5	12.80	0.85	1.07	10.5	1.016	1.38	1.74	2.70
6	-13.89	-1.52	0.89	10.1	-1.102	-2.47	1.044	2.60
	12.66	0.85	0.89	8.5	1.005	1.38	1.44	2.19
8	-10.84	-0.76	0.31	2.9	-0.860	-1.23	0.50	0.74
9	12.40	0.86	0.31	3.6	0.984	1.39	0.50	0.93
10	-10.76	-0.76	0.33	2.8	-0.854	-1.24	0.54	0.72
11	12.51	0.85	0.39	3.8	0.993	1.38	0.64	0.99
12	-11.05	-0.76	0.35	3.0 -	-0.877	-1.23	0.58	0.78
13	12.21	0.85	0.36	3.4	0.969	1.39	0.58	0.87
14	-11.06	-0.76	0.36	3.00	-0.878	-1.23	0.58	0.78
15	12.50	0.91	0.38	3.7	0.992	1.47	0.62	0.97
16	-10.06	-0.76	0.42	206	-0.799	-1.23	0.68	0.66
17	12.66	0.89	0.41	403	1.005	1.044	0.67	1.11
18	-10.56	-0.73	0.34	2.4	-0.838	-1.18	0.56	0.62
19	12.42	0.89	0.34	3.3	0.986	1.45	0.56	0.85
20 -	-10.63	-0.72	0.35	2.5	-0.844	-1.17	0.56	0.65
21	12.72	0.89	0.36		1.010		058	0.97
22	-10.61	-0.73	0.35	2.7	-0.842	-1.19	0.57	0.71
23	12.50	0.89	0.35	3.7	0.992		0.57	0.96
24	-10.68	-0.73	0.35	2.07		-1.19	0.58	0.69
25	12.41	0.89	0.35		0.985	1.045	0.58	0.94
26	-10.67		0.35			-1.19	0.57	0.69
	12.63	0.92	0.40			1.49	0.66	1.07
28	-10.74	-0 ° 7 0	0.40	2.9		-1014	0.66	0.75
29	12.57	0.92	0.40			149	0.66	1.06
	-10.84	-0.70	0.40	2.9		-1.13	0.66	0.75
	12.41	0.92	0.40			1.50	0.66	1.05
32	-10.72	-0.70	0.41			-1.13	0.66	0.74
	12.46	0.87	0.40		0.989	3 <b>1.41</b> .7	0.65	0.85
	-10.57					-1.13		0.69
		1.42	0.83	10.0 -	- 1.100	2.30	1.00	2.59
	-13.28					-1.86		2.82
	13.80					2.31		
						-1.86		
		1.30	Loll	1111	1 0V0/ ·	2.24	1000	3.19
	-13.33					-1.89		
41	-13.32	1.00	1043	11 0	-1 057	2.24	1.83	
						2.25		
	-13.34					-1.89		
						2.24		
40	12 14	-1.19	1.15	10.9	-1,045	-1.92	1.86	
						2.024		
48	-13.24	-1.18	1.15	10.9	-1.051	-1.92	1.86	
						2.24		
						-1.92		
					1.080		1.90	
1899 - 1889 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 - 1899 -			· ··· •					


sta

	Р	Δ		Ŵ	$\tilde{\mathbf{P}}$	$\bar{\Delta}$	$\overline{\widehat{\Delta}}^{\mathcal{F}}$	Ŵ
Cycre	KIPS	IN.	1No	K-IN.				
							1.89	
		1.37				2.22		3.13 2.92
		-1.37				2.22		3.14
	-13.16					-1.94	1.89	2.90
57	13.53	1.39				2.26	1.88	3.25
						-1.97		3.09
						2.21		3.16
	-13.16					-1.97		3.02
						2.17		3.08
	-12.98					-1.98		2.90
						-1.99	- 1.88	2.77
						2.97		4.60
	-14.35		1.98	21.6	-1.139	-2.81	3.23	5.59
67	14.35	1.83	1.98	22.9	1.139	2.97	3.23	5.92
68	-11.39	-1.73	1.98	17.2	-0904	-2.81	3.23	4.43
		1.83				2.97		5.83
	-14.40		1.98			-2.81		5.59
	14.38		1.99			3.01		5.92
	-14.42	-1.75	1.98			-2.84	3.23	5.66
	-14,55	1.85	1.98 2.03			3.01		5.96 5.68
	14.29	1.85	2.03			3.01	3.30	5.90
	-14.43	-1.75				-2.84	3.29	
	14.31		2.06			3,08	3.35	
78	-14.23	-1.68	1.97		and the second second second second second second second second second second second second second second second	-2.73	3.20	
79	14.12	1.87		22.1	1.120	3.05	3.20	5.70
	-14.22						3.20	
		1.87				3.04	3.20	
	-14.24	-1.68					3.20	
		1.86 -1.70				3.02	3.15 3.21	
							3.25	
						-2.80		5.46
						3:02		5.56
		-1.72	2.00	21.1 -	-1.128	-2.80	3.25	5.46
89	13.84	1.82	1.96	22.2	1.098	2.96	3,18	5.72
90 -	-14.21	-1.74	1.99	21.9 -	-1.128	-2.83	3.23	5.64
91	13.78	1.82	1.99			2.96		5.71
						-2.83		5.65
93	10010 -14 20	1.84	2.02.			3.00 -2.90		5.76 6.96
95	14.09	2.32	2.51	29.2	1,110	3.77	4.08	
						-3.63		8.60
								8.72
98 .	-15.19	-2.32	2.99	33.1 -	-1.206	3。80 -3。77	4.86	8.53
99	14.13	2.34	2.99	34.8	10122	3.80	4 . 86	8.97
	-14.85	-2.23	2.89	35.0 -	-1.178	-3.63	4.69	
101	13.97	2.40	2.93	34.1	1.108	3.90	4.77	8.80
								8.27
103	1.2000	Z 0 4 L	<u>600%</u>	2602	10004	コップム	4.69	8.38

#### SPECIMEN W2A-C7

Description: This specimen was similar to specimen W1-C7 with exceptions as noted. The flange connecting plates had special geometries; one plate was tapered from the inside depth of the column to the width of the beam flange, while the other achieved the same width reduction in a single step with one-inch radius fillets. The suffix "A" indicates that the tapered plate was at the top flange and the filleted plate at the bottom flange, of the beam. All three plates extended past the edges of the column flanges, with the web plate extending past the edges of the flange plates. The off-center web plate caused misalignment of flanges and flange plates. Ultrasonic inspection disclosed no significant weld defects.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data. Graphical load-strain data measured by gage No. 15 in the center of the top flange at a distance of 6.94 inches from the column web face. Graphical load-strain data measured by gage No. 16 in the center of the bottom flange at a distance of 6.86 inches from the column web face.

# Total Energy Absorption: 1,189 kip-inches.

# Plastic Load Reversals to Failure: 93 ( $46\frac{1}{2}$ cycles).

<u>Remarks</u>: No cracks were visible after the first half-cycle at  $l_2^{\frac{1}{2}}$  inch tip deflection (16th plastic cycle); however, there was slight buckling of the lower flange. During the 18th cycle, upward buckling of one edge of the bottom connecting plate was noted. About the 24th cycle, a crack was observed at one end of the weld between the column flange and the top connecting plate, as well as between the same connecting plate and the beam flange. After 30 cycles, two cracks became visible in the fillet or curved part of the bottom plate; one of these initiated at a cutting torch gouge. Failure was caused by the propagation of the latter crack across the flange connecting plate and into the web plate.

## SPECIMEN TYPE W2A-C7

# DIMENSIONS OF WE SECTION

DEP	TF	e	Ð	ø	¢	ø	€	ø	ę	¢	Ð	Ģ	¢	Ð	¢	¢	ø	Ð	ø	o	Ð	8.17	INCHES
TOP	FL	_ A N	СE	W	IC	)TH	ł	¢	¢	¢	¢	ø	υ	ε	ç	Q	ø	ø	ø	a	o	5.330	INCHES
BOT	TON	1 F	LΔ	NG	Е	WI	D.	TΗ	0	¢	¢	o	ø	Ģ	ø	G	٥	ø	¢	Q	Q	5.310	INCHES
TCP	FL	_ AN	GΕ	T	HI	CK	NI	ΕS	S	Ð	Q	۵	o	÷	ø	ø	ę	Ð	ø	c	0	0.353	INCHES
BOT	TCN	1 F	LA	NG	E	TH	I (	СК	NES	S	ø	ø	¢	¢	c	¢	e	Ģ	e	e	Ð	0.352	INCHES
WEB	T٢	IC	ΚN	ES	S	Ð	Q	υ	e	e	÷	ŵ	¢.	ŵ	ø	AŬ	¢	¢	0	¢	¢	0.274	INCHES
ELA	ST I	[ C	MC	CU	LU	IS	ø	ø	ø	ø	¢	ø	e	e	ø	Û	6	Q	ø	¢	ø	29200.	KSI
ΥIE	LD	ST	RE	SS		6	Ð	Ð	0	ø	0	ø	c	ø	¢	ø	o	¢	ø	¢	0	44.100	KSI

# DIMENSIONS AND PROPERTIES OF PLATES

LENGTH OF	TOP PL	ATE*, L	ΤΡ 。 。	, o	é	e,	٩	¢	e	Q	5.36	INCHES
THICKNESS	OF TOP	PLATE,	TTP 。	0	Ð	ŵ	6 E	¢	ø	Ø	C.370	INCHES
LENGTH OF	BOTTOM	PLATE*	, LBP	Q	o	Q	w 0	ç	G	¢	5.34	INCHES
THICKNESS	OF BOT	TOM PLAT	TE, TE	8P	Ģ	e	φ c	ø	ŵ	ø	0.370	INCHES
THICKNESS	CF WEB	PLATE	TWP	a (	Q	o	ຍ່ຍ	Û	6	o	0.250	INCHES
ELASTIC M	COULUS	OF PLATI	ES _y EP	•	e	e	υe	0	0	¢	29200.	KSI
VIELD STR	ESS OF	PLATES,	SYP .	e	ę	ę	0 0	•	Ð	Ģ	43.700	KSI
*MEASURED F	REM FAC	E OF COL	_UMN W	IEB								

# WF SECTION PROPERTIES

AREA9 A			6 6 6	5.89 INCHES**2
LOCATION OF CENTROID	≉, YE .	6 C A D	စ မ မ	4.10 INCHES
MOMENT OF INERTIA, I	0 0 0	a o a	@ Q U	68.1 INCHES**4
SECTION MODULUS, TOP	s ST a	ବ ଜ କ କ	စ မ မ	16.7 INCHES**3
SECTION MCCULUS, BOT	TOM, SB		a a a	16.6 INCHES**3
LOCATION OF PLASTIC	NEUTRAL	AXIS≉,	YP 。。	4.11 INCHES
PLASTIC MODULUS, Z	စ ဂု ဝ စ	0 0 0 0	0 0 Q	18.8 INCHES**3
SHAPE FACTER		0 0 0 0	ତ୍ତ୍	1.131
YIELD MOMENT, MY 。		<b>စ</b> ရ လ ရ	ଣ କ ର	61.12 KIP-FT.
PLASTIC MCMENT, MP			6 6 6	69.15 KIP-FT.
*MEASURED FRCM OUTSIDE	FACE OF	F BOTTOM	FLANGE	

Х	Δ	ΥE	I	ST	SB
64.71	5.89	4.10	68.1	16.7	16.6
64.71	5.89	4.09	69.8	17.1	17.1
65.46	6.09	4.22	72.8	18.4	17.3
66.20	6.29	4.34	75.6	19.7	17.4
66.59	6.45	4.36	77.9	20.4	17.9
66.91	6.70	4.30	81.8	21.1	19.0
67.13	6.99	4.19	86 - 6	21.7	20.6
67.20	7.23	4.09	90.2	22.1	22.1
			ere.	N4N/	MO
X	YP	Z	F	MY	MP
64.71	4.11	18.8	1.131	61.12	69.15
64.71	4.09	19.2	1.122	62.23	69.80
65.46	4.49	19.9	1.153	62.88	72.50
66.20	4.89	20.6	1.180	63.46	74.90
66.59	4.98	21.1	1.183	65.1C	77.02
66.91	4.83	22.2	1.167	69.21	80.75
67.13	4.47	23.4	1.135	75.19	85.36
67.20	4.09	24.4	1.105	80.35	88.77

#### SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

X = DISTANCE FROM CONCENTRATED LOAD, INCHES

A = AREA OF CRESS-SECTION, INCHES**2

YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4

- ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3
- SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3
- YP = DIST. FROM CUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.
- Z = PLASTIC MCCULUS, INCHES **3
- F = SHAPE FACTCR
- MY = YIELD MCMENT, KIP-FEET
- MP = PLASTIC MCMENT, KIP-FEET

#### BEAM PROPERTIES

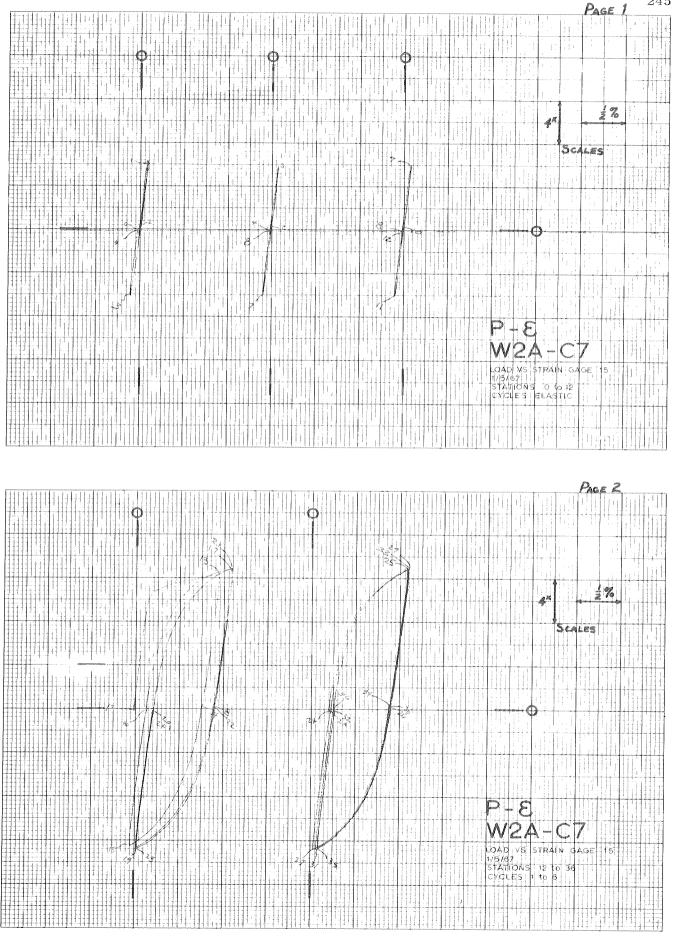



PLATE 30. LOAD VS. STRAIN - W2A-C7

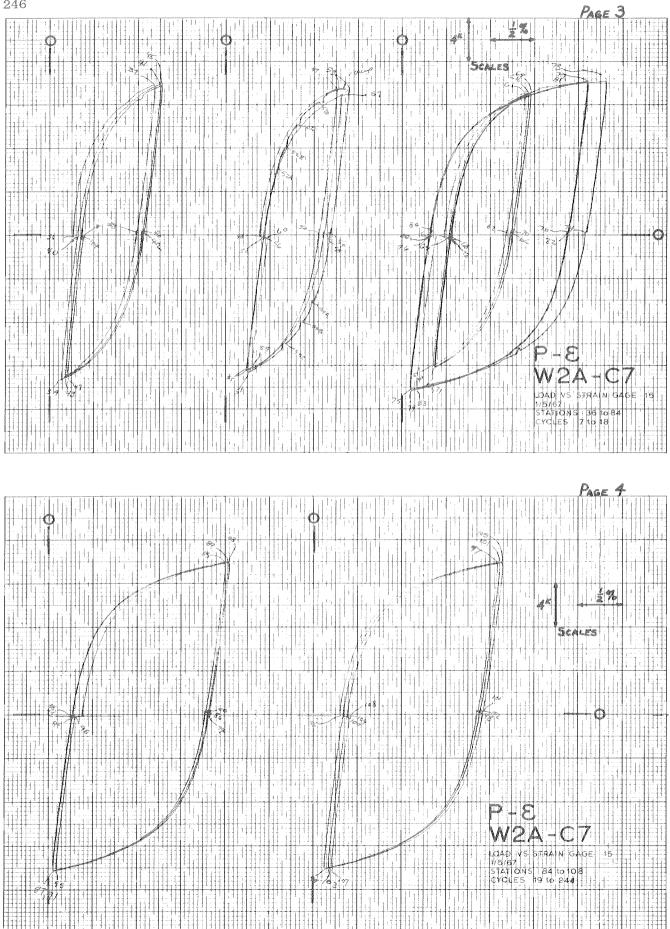
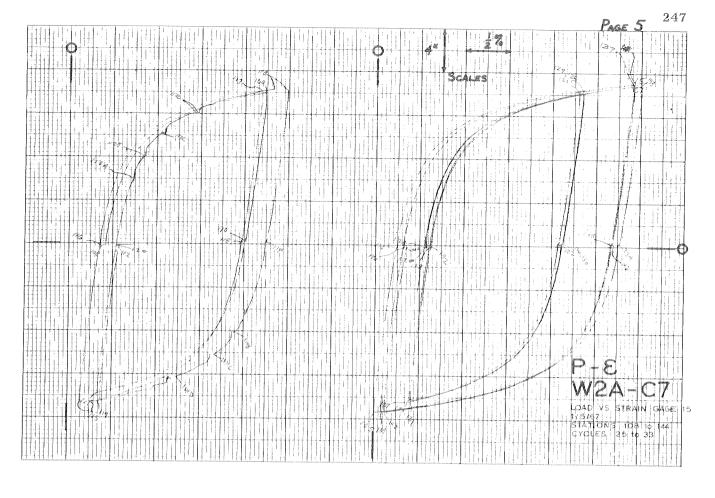




PLATE 30. (continued)



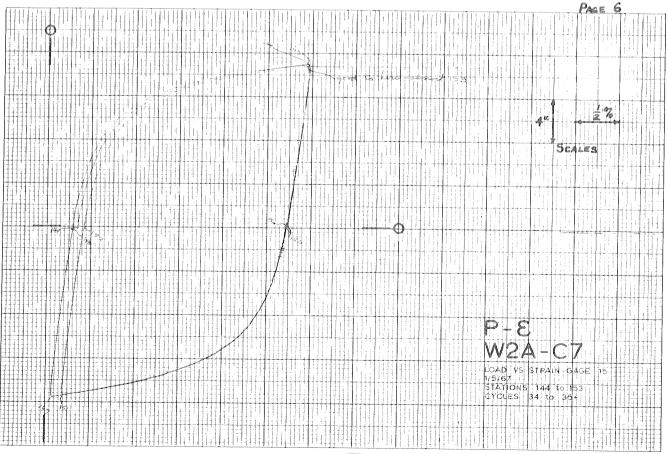
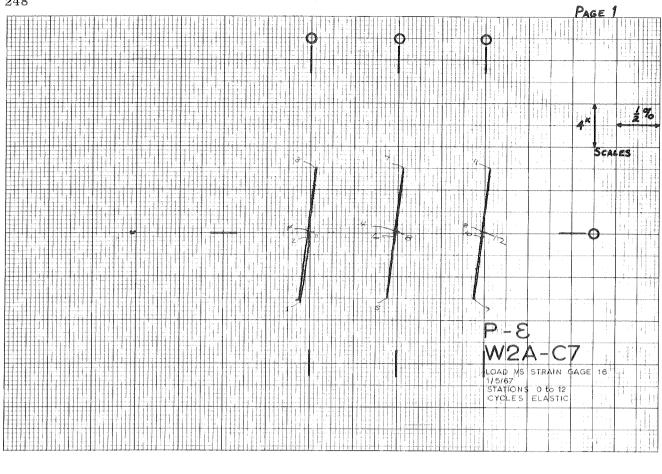




PLATE 30. (continued)



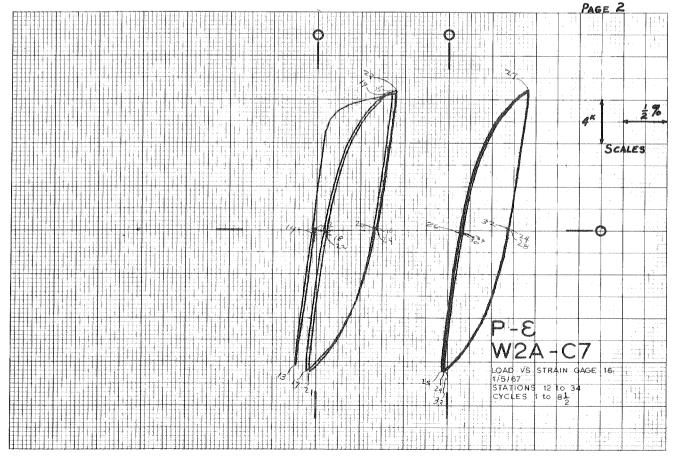
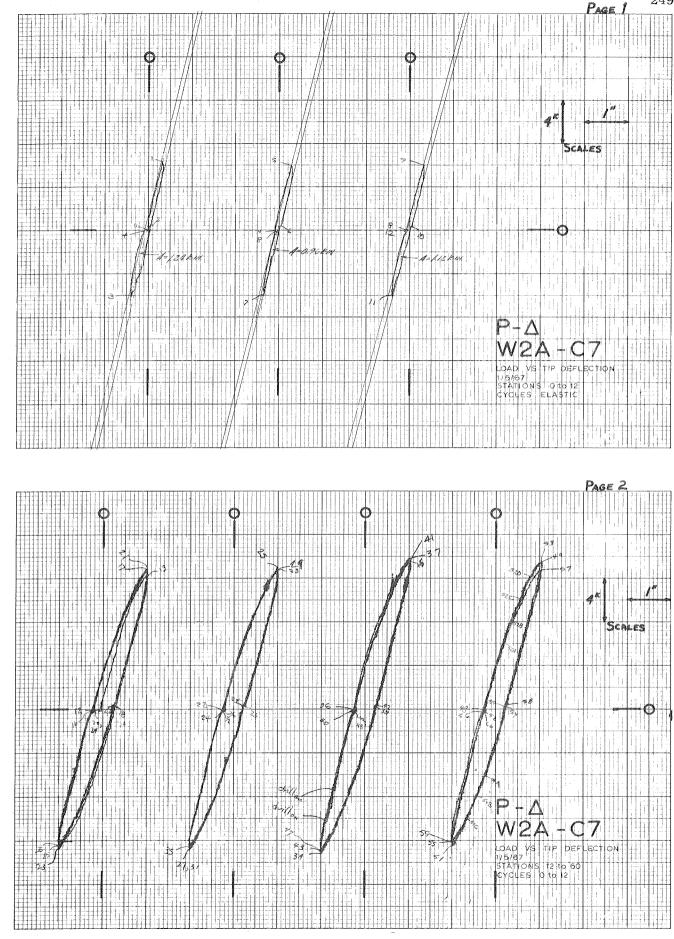




PLATE 31. LOAD VS. STRAIN - W2A-C7



LOAD VS. DEFLECTION - W2A-C7 PLATE 32.

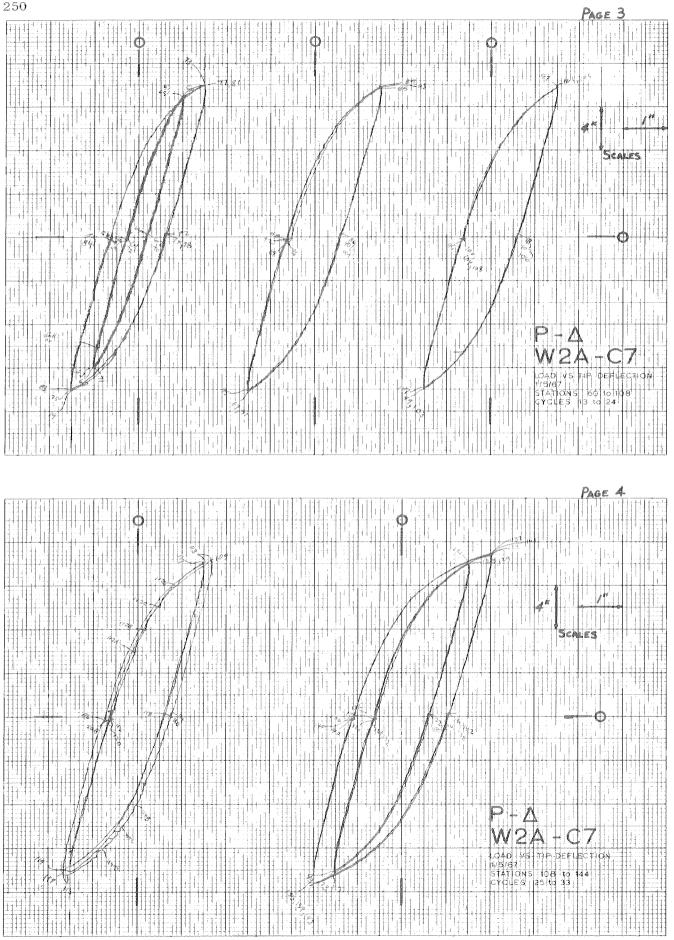



PLATE 32. (continued)

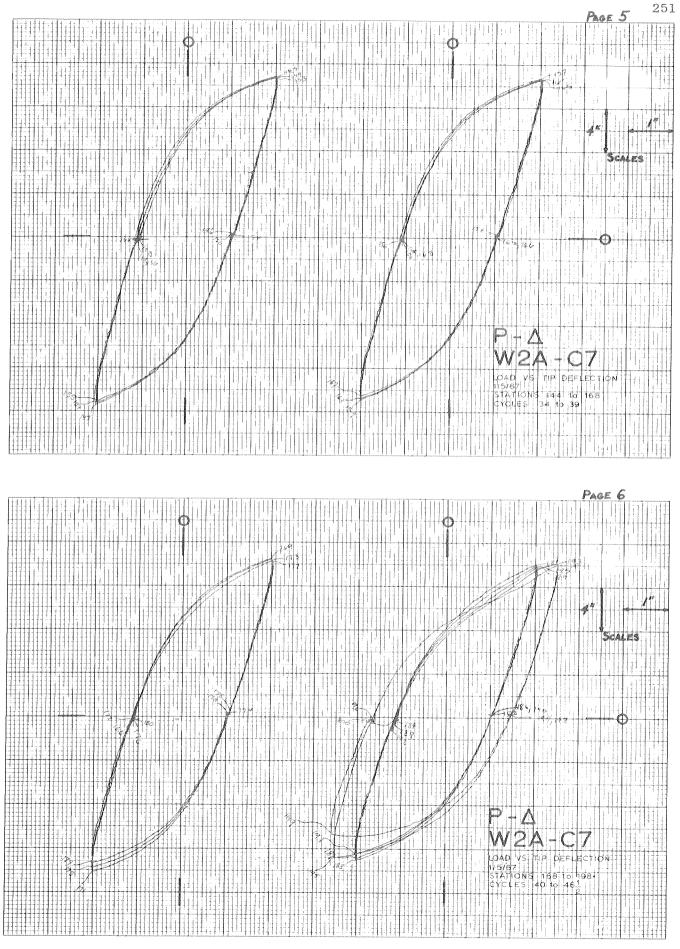
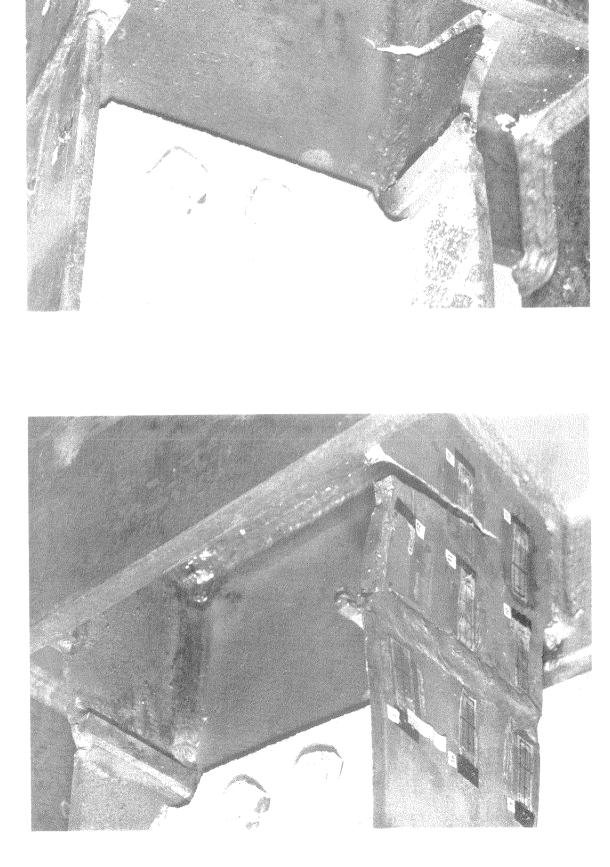
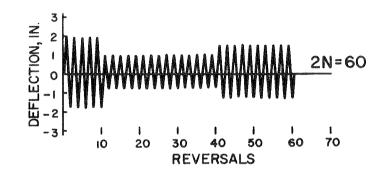




PLATE 32. (continued)



# FIGURE 41. W2A-C7

FIGURE 40. W2A-C7


SPECIMEN W2A-C7

Half-	Р	Δ	$\triangle^{\prime}$	W		$\overline{\wedge}$	<u> </u>	Ŵ
Cycle 🖡	(IPS	IN.	IN o	K-IN.				
	l.72	0.93	0。35	1.9	0.915	1.45	0。54	0.47
		-0.79	0.40	4.2	-0.934	-1.22	0.61	1.01
	2.22	0.93	0.36	3.5	0.953	1.044	0.55	0.84
	2.10	-0.79	0.33	3.5	-0.944	-1.23	0.50	0.84
		0.93	0.33 0.33	3.5 3.4	0.961 -0.955	1.44	0。50 0。50	0.85 0.83
	2.31	0.93	0.33	3.6	0.960	1.044	0.50	0.87
		-0.79	0.37	3.2	-0.957	-1.22	0.57	0.77
9 12	2.23	0.93	0.37	3.5	0.954	1.44	0.57	0.86
		-0.79	0.37	3.2	-0.959	-1.22	0.57	0.77
	2.23	0.93	0.37	3.5	0.954	1.44	0.57	0.85
		-0.79 0.93	0.37	3.2	-0.945	-1.22	0.57	0.77
	.67 .17	-0.77	0.40 0.36	3.9 3.2	0。988 ~0。950	1.44 -1.19	0.61 0.55	0.94 0.77
	.77	0.95	0.36	3.6	0.996	1.47	0.55	0.87
		-0.77	0.36	3.2	-0.944	-1.20	0.55	0.77
	70	0.93	0.36	3.6	0.991	1.44	0.55	0.88
		-0.77	0.36	3.2	-0.942	-1.20	0.55	0.77
19 12		0.98	0.37	3.3	0.971	1.52	0.57	0.81
	73 50	-0.72 1.03	0.35	3.0	-0.915	-1.12	0.54	0.73
		-0.73	0.36 0.37	. 3.6 3.6	0.975	1.59 -1.14	0.55 0.57	0.88 0.88
	.43	0.99	0.39	3.1	0.969	1.53	0.60	0.75
		-0.73	0.42	3.6	-0.921	-1.14	0.65	0.88
		0.96	0.35	3.6	0.988	1.48	0.54	0.86
		-0.77	0.35	2.9	-0.904	-1.19	0.54	0.70
		C.96 -0.77	0.35	3.5	0.985 -0.914	1.48	0.54	0.85
	.57	0.96	0.35 0.35	2.9 3.5	0.980	-1.19 1.48	0.54	0.70 0.85
30 -11		-0.77	0.35	2.9	-0.918	-1.19	0.54	0.71
	.78	1.45	0.78	9.5	1.075	2.25	1.20	2.29
		-1.25	1.14	12.1	-1.078	-1.94	1.76	2.93
		1.45	1.14	12.3	1.076	2.25	1.76	2.98
34 -14 35 13		-1.25	1.14	12.4	-1.092	-1.94	1.76	3.00
35 13 36 -13		1.45 -1.25	1014 1014		1.076 -1.079	2.25	1.76	2.97
37 13		1.35	1.01		1.053	2.09	1.56	2.58
38 -14		-1.36	1011	11.5	-1.092		1.72	2.78
39 13		1.35	1.11		1.065	2.08	1.71	2.79
40 -14		-1.36	1.11		-1.093		1.71	2.78
41 13 42 -13		1.35	Loll		1.061	2.08	1.71	2.77
43 13		-1.36 1.35	1011		-1.085 1.056	-2.11 2.09	1.72 1.74	2.77 2.83
44 -13		-1.35	1.13		-1.081	-2.10	1.75	2.78
45 13		1.35	1.13		1.057	2.09	1.75	2.75
46 -13		-1.35	1.13	11.4	-1.075	-2.10	1.75	2.76
47 13		1.35	1.13		1.057	2.09	1.75	
48 -13 49 13		-1.35 1.37	1.13 1.15		-1.070 1.065	-2.10 2.12	1.75	2.76
$\frac{49}{50}$ -13			1012			2°12 -2°06	1.78	2.89 2.69
51 13			1.27		1.049	2.39	1.96	3.19

### SPECIMEN W2B-C10

<u>Description</u>: This specimen was similar to specimen W2A-C7, except that the suffix "B" indicates that the filleted plate was at the top flange and the tapered plate at the bottom flange, of the beam.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data.

Graphical load-strain data measured by gage No. 1 at the center of the top flange at a distance of 7.01 inches from the face of the column web.

Graphical load-strain data measured by gage No. 2 at the center of the bottom flange at a distance of 7.01 inches from the face of the column web.

Total Energy Absorption: 651 kip-inches.

Plastic Load Reversals to Failure: 60 (30 cycles).

<u>Remarks</u>: There was a possible hint of buckling at the juncture of the connecting plate and the bottom beam flange during the first downward loading. A similar situation was observed at the top flange during the first upward loading. By the 15th cycle, a crack had initiated at a small cutting torch gouge in the fillet of the upper connecting plate. During the 20th cycle, a crack was observed in the plate at one end of the bottom flange butt weld, by the 23rd cycle, this crack had fully penetrated the thickness of the plate. A crack suddenly appeared in the center of the flange adjacent to the butt-weld during the 28th cycle. Propagation of this crack precipitated the final failure, at which time several slag inclusions were observed in the cracked weld.

### SPECIMEN TYPE W28-C10

### DIMENSIONS OF WF SECTION

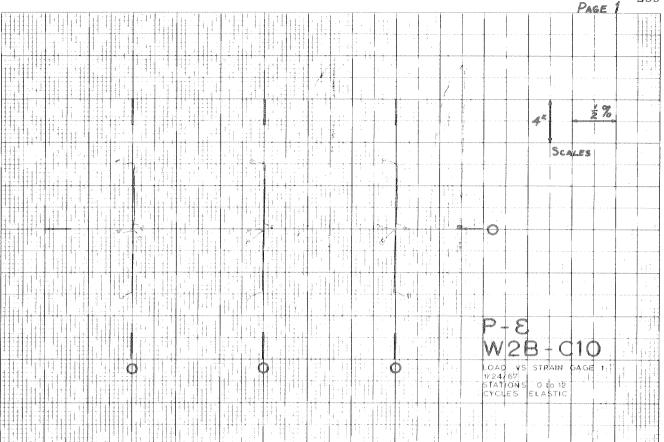
DI	EPT	-	÷Q	¢	ւ	¢	ø	42	ø	o	ø	٥	ø	ø	¢.	0	-10	ø	ø	P	\$	Ð	8.18	INCHES
T(	ΟP	FL	AN	GΕ	M	10	)T(	h	Ð	40	ø	Q.	o	ø	o	¢	۰	ø	Ģ	R	s	0	5.330	INCHES
																							5.320	
																							0.349	
8(	OTT	СM	F	L A	NG	£		-II	СК	NES	S	Ð	Ø	¢	-20	Ð	40	Ð	0	Ø	÷	ø	0.333	INCHES
₩1	ΞB	TΗ	IC	ΚŅ	ES	S	ø	ø	o	Ð	Ð	¢	ø	-6	ø	Ð	ø	Ð	Ð	۲	-0	۹	0.264	INCHES
																							29200.	
ΥI	EL	D	ST	RE	SS		ø	æ	Ø	0	Ð	ø	ø	*	.0	Q	\$	жD	0	æ	¢	40	44.100	KSI

# DIMENSIONS AND PROPERTIES OF PLATES

WF SECTION PROPERTIES

AREA, A		· · · 5.70	INCHES**2
LOCATION OF CENTROID*, YE		0 0 0 4015	INCHES
MOMENT OF INERTIA, I 🖕 🕫		66.3	INCHES**4
SECTION MODULUS, TOP, ST		o o o 16.4	INCHES**3
SECTION MODULUS, BOTTOM,	58	° ° ° 16°0	INCHES**3
LOCATION OF PLASTIC NEUTR	AL AXIS*,	YP 4.25	INCHES
PLASTIC MODULUS, Z		· · · 18·3	INCHES**3
SHAPE FACTOR		000 10142	
YIELD MOMENT, MY 💿 💩 📀 📀		58.75	KIP-FT.
PLASTIC MOMENT, MP	\$ \$ \$ \$ \$ \$ \$	0 0 0 67011	KIP-FT.
*MEASURED FROM OUTSIDE FACE	OF BOTTOM	FLANGE	

SPECIMEN TYPE W28-C10


SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

Х	Α	YE	(janua)	ST	SB
64.70	5.70	4.15	66.3	16.4	16.0
64.70	5.79	4.16	68.5	17.0	16.5
65.39	5.97	4.03	71.3	17.2	17.7
66.08	6.16	3.92	73.9	17.4	18.9
66.47	6.31	3.90	76.3	17.8	19.6
66.79	6.56	3.95	80.2	18.9	20.3
67.01	6.86	4.06	84.9	20.6	20.9
67.08	7.09	4.16	88.4	22.0	21.2
Х	ΥP	T_	1000	MY	MP
64.70	4.25	18.3	1.142	58.75	67.11
64.70	4.30	18.8	1.141	59.96	68.39
65.39	3.93	19.5	1.134	62.63	71.03
66.08	3.56	20.2	1.162	63.21	73.42
66.47	3.47	20.8	1.165	64.86	75.59
66.79	3.62	21.8	1.149	68.98	79.25
67.01	3.98	23.0	1.116	74.95	83.68
67.08	4.37	23.9	1.124	77.31	86.90

X = DISTANCE FROM CONCENTRATED LOAD, INCHES

- A = AREA OF CROSS-SECTION, INCHES**2
- YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4
- ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3
- SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3
- YP = DIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.
- Z = PLASTIC MODULUS, INCHES**3
- F = SHAPE FACTOR
- MY = YIELD MOMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET

BEAM PROPERTIES



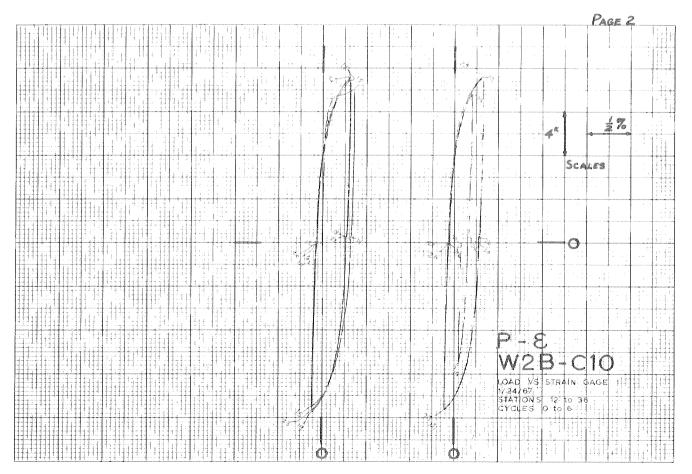
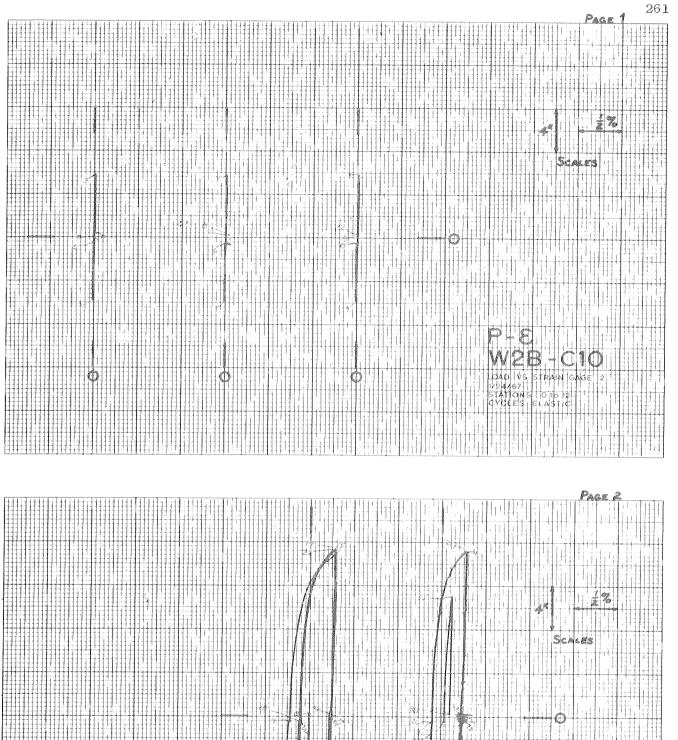




PLATE 33. LOAD VS. STRAIN - W2B-C10

260	anne prato anno 1990 anno 1990 anno 1990 anno 1990 anno 1990 anno 1990 anno 1990 anno 1990 anno 1990 anno 1990				·					1		r			PA	QE Ŝ	}	
						: ' : ' : ' :												
									1	A.								
					L				¢									
							14			L Å				×		2%		'
									1					ļ	ALES			
																, 		
		512	<i>a</i>	(unander and und	30									$+\epsilon$				
	6								2	11.14					-			
															1			
												P-	3		•			1
											1 141		2B			<b>D</b>		· • • • • • • • • • •
				3								LOAD 1/24/6 STATI CYCLE	7 7 DNS	36 to 21	· [ ·			
		$\phi_{i_1}$		φ [†]			$\phi$			þ.								
											÷	J						
						and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s					· · · · · · · · · · · · · · · · · · ·			:	PA	GE 4		
													-		PA	GE 4		
											· · · · · · · · · · · · · · · · · · ·				Pa	GE 4		
				2 C														
						a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a										GE 4		
																12 %		
				2												12 %		
														Sc		12 %		
														Sc		12 %		
								•						Sc		12 %		
								•						Sc		12 %		
														Sc		12 %		
													4	Sc		1270		
													ε 2 8	Sc 	ALES			
													2B Vys s	Sc I I I I I I I I I I I I I I I I I I I		1270		
												P -	<b>E</b> 2B 711 5 5 222 223					

(continued) PLATE 33.

Ø



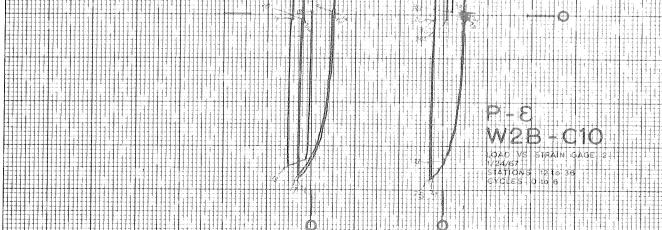



PLATE 34. LOAD VS. STRAIN - W2B-C10

62	1	T						1	1	Ĩ	1	1	1		1		I		1		<u> </u>		1	1	Pai	9E - 3	}	
						 															-						'···	
i i i i i i i i i i i i i i i i i i i				•	<u>.</u>		ļ								ļ.				<b> </b>		<u> </u>				1			
					•				·			-				-			93-									
	1 25	¥3~~	3				1 53			<u>6,7</u>			-	7	2	·		ß	1							anna -		
		19				Sy				1	$\square$	·		8	1				M				4×			1 07	•	
			A				A								1				Щ									-
												1			$\ $		ļ							DCA	LE 5			
										+											-	1						11. A
	Rym			i												<u> </u>				-		ļ	ļ	ļ				-
	\$4 ₇ -		a v	1 1		5e 🔍		-				] :		11.1		s st i	T.	0. 42.5			. t	11		-0			ļ	
	2.+ 	1		:	<:	3		3 		×~~	1 N		:	7.2		3		4	1	76 7		 : 		-			-	
		iê.																		ł				-		 	ļ	
				1	<u>]</u> .					ļ								ļ				ļ						1: '
					]			.÷.,			Ц.					ļ		1			1000			-			ļ	+-+
		10					$\mathbb{N}$	1.	Ŀi.		I				1		1		<b>  </b>		P.	3 -				1		1
							V.			<u> </u>	1				Y				V.		W		B.	†C	10	******	· · · ·	11
	#	~97T	9		1.57	57 44			-	0 	1.05			25				25	r .		LOAE	2 V,S 167	STF	₹ÅIN S to ⊆ ₽1	GAGE	2		
	4										4	: :					:	13			CÝC	LES	7 to	21		:		1
				1							1:				antrojulos -	-		. 	on minimum	1					ļ			
		¢	<b>)</b> ' ! ; ]			(	φ			. (	ф.				φ			(	φ :						-	1		
																			-,	<b></b>					Pa	se Á	Ļ	
									· · ·					-					· · · :	:		: 						
				1																						 		
			1				14 14 19 19							1							1 :			-				
			$\overline{A}$		.i		X			/3	1	1				-												

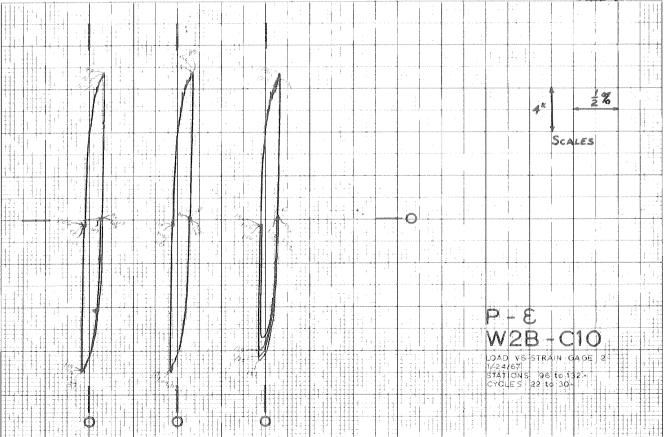
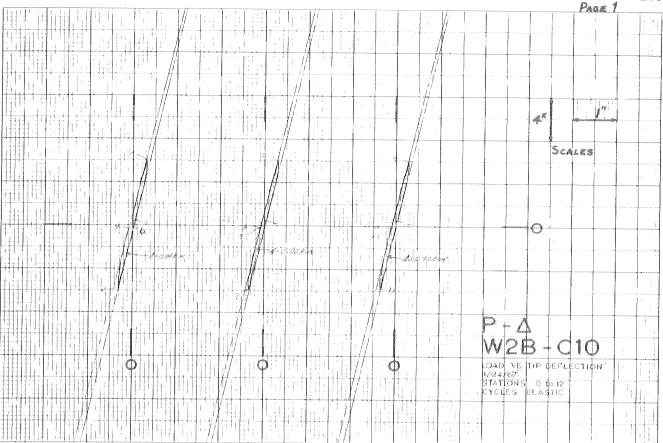
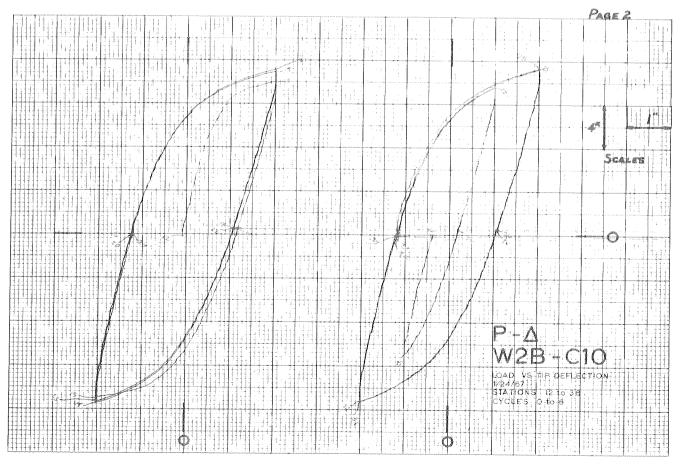
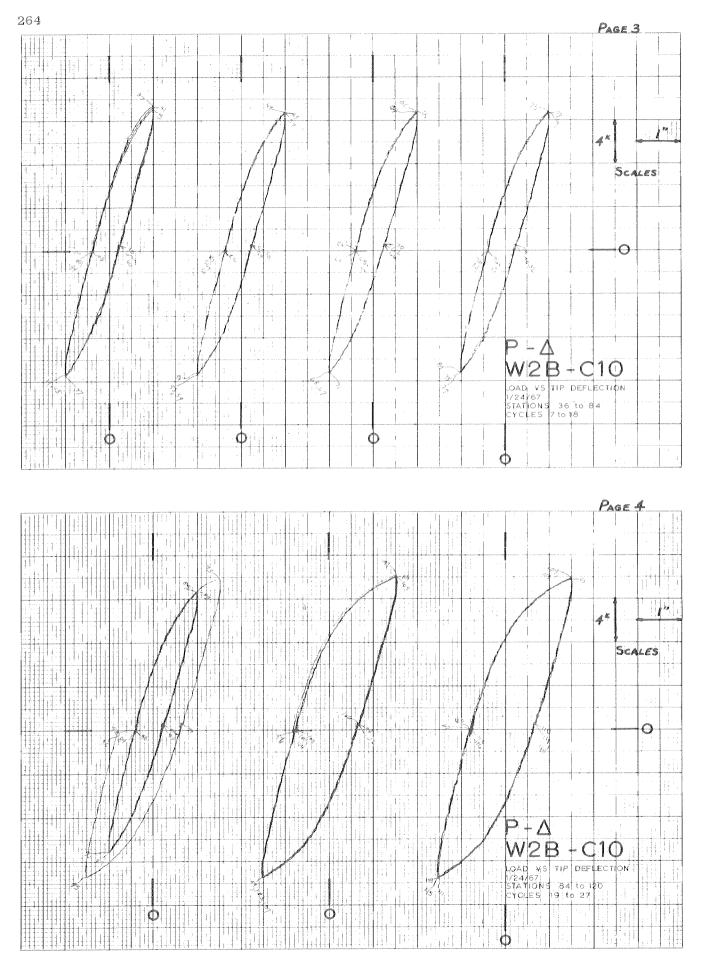
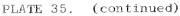
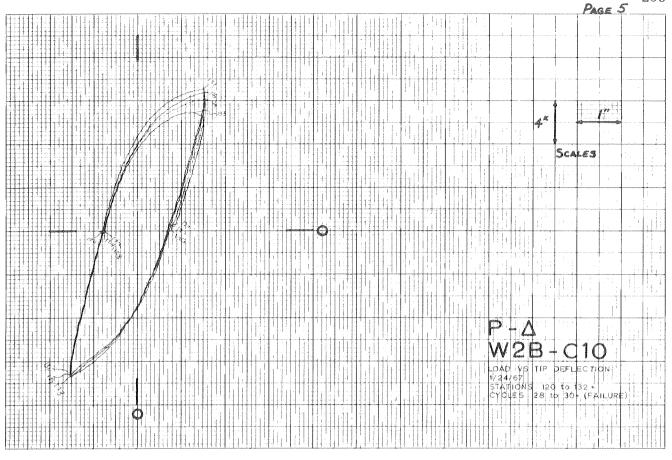
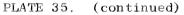
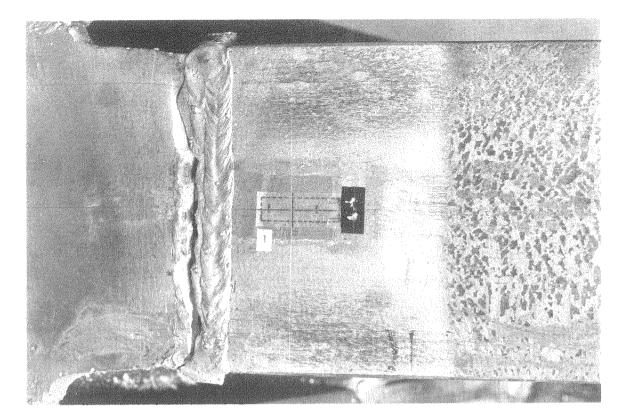



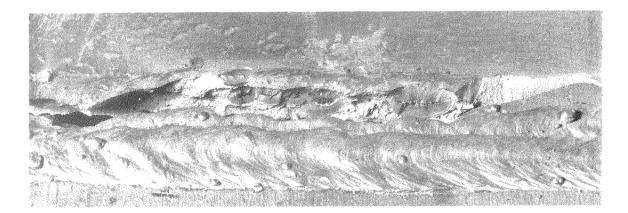

PLATE 34. (continued)





PLATE 35. LOAD VS. DEFLECTION - W2B-C10







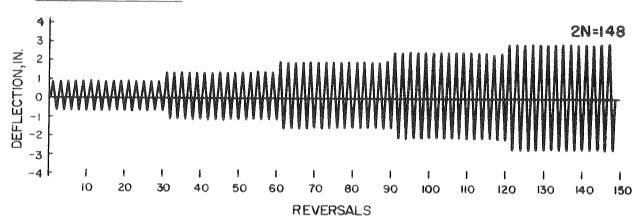












SPECIMEN W2B-C10

Half- Cycle	P KIPS	∆ IN∞	s' IN.	W K-JNo	and The Second	Δ	$\overline{\Delta}^{(i)}$	Ŵ
1 2	13.45 -14.63	1.98 1.80	1.29 2.31	14.5 27.3	1.080 -1.175	3.10 -2.81	2.02 3.60	3.65 6.84
3	14.30	1.98	2.20	25.6	1.149	3.08	3.44	6.43
4 5	-15.13 14.51	-1.81 1.98	2.20 2.20	25.4 25.9	-1.215 1.166	-2.82 3.10	3.44 3.44	6.37
6	-14.98	-1.81	2016	25.0	-1.203	-2.82	3.37	6.49 6.27
7	14.65	1.97	2.15	26.6	1.177	3.08	3.36	6.68
8	-14.89	-1.80	2.11	24.4	-1.196	-2.81	3.29	6.13
9	14.63	1.97	2.11	25.4	1.175	3.08	3.29	6.37
10	-14.93 12.90	-1.80 0.99	2.11 1.26	24.5 12.8	-1.199 1.036	-2.81 1.54	3.29 1.96	6.15
12	-10.61	-0.82	0.45	3.6	~0.852	-1.29	0.71	3.21 0.91
13	12.78	1.01	0.50	5.3	1.026	1.57	0.77	1.32
14	-11.08	-0.80	0.50	401	-0.890	-1.25	0.78	1.03
15	12.57	1.01	0.50	5.1	1.009	1.58	0.78	1.28
16 17	-11.12 12.38	-C.80 1.Cl	0.50 0.50	4.1 5.1	-0.893 0.994	-1.25	0.78	1.04
18	-11.29	-0.80	0.50	4.1	-0.907	1.58 -1.25	0。78 0。78	1.27 1.04
19	12.01	0.99	0.49	5.1	0.964	1.55	0.76	1.29
20	-10.97	-0.82	0.49	3.8	-0.881	-1.28	0.76	0.96
21	11.96	0.99	0.49	5.2	0.961	1.55	0.76	1.30
22	-11.09	-0.82	0.49	3.8	-0.891	-1.28	0.76	0.96
23 24	11.96	0。99 ~0。82	0.49 0.49	5.1 3.8	0.960 -0.885	1.55 -1.28	0。76 0。76	1.29 0.95
25	12.08	1.00	0.52	5.1	0.970	1.57	0.81	1.28
26	-10.89	-0.81	0.52	3.7	-0.874	-1.27	0.81	0.92
27	12.11	1.00	0.52	5.1	0.973	1.57	0.81	1.28
28	-10.95	-0.81	0.52	3.7	-0.880	-1.27	0.81	0.93
29 30	12.01 -10.95	1.00 -0.81	0.52 0.52	5.1 3.7	0.964 -0.879	1.57 -1.27	0.81 0.81	1.27
	12.11	1.01	0.52	5.2	0.972	1.58	0.81	0.93
	-10.84	-0.81	0.52	4.0		-1.27	0.81	1.01
	11.99	1.01	0.52	4.9	0.963	1.58	0.81	1.23
34	-10.95	-0.81	0.52		-0.879	-1.27	0.81	1.02
	11.97 -10.89	1.01 -0.81	0.52		0.962		0.81	1.21
	11.96	1.02	0°52 0°52		-0.875	-1.27 1.60	0.81 0.81	1.00 1.28
	-10.82	-0.79	0.52		-0.869		0.81	1.07
	12.01	1.02	0.52			1.60	0.81	1.28
	-10.90	-0.79	0.52	4.3		-1.24	0.81	1.08
	13.23	1.53	0.93			2.40	1.45	2.63
	-13.12 13.56	-1.29	1.33 1.34	10.6	-1.054 1.089		2.08	2.67
	-13.12	-1.29	1.31	12.6	-1.054		2.09 2.04	3.74 3.15
	13.40	1.53	1.31	14.1	1.077	2.39	2.04	3.53
	-13.15	-1.29	1.31	12.6	-1.056	-2.02	2.04	3.16
	13.31	1.53	1.31		1.069	2.39	2.04	3.50
	-13.18	-1.29	1.31	12.6	-1.058	-2.02	2.04	3.16
	13.23	1.52 -1.29	1.31 1.34		1.062 -1.062	2。38 -2。02	2.04 2.09	3.52 3.19
51		1.52	1.34		1.058	2.38	2.09	3.49

Half- Cycle	P KIPS		∆´ IN.	W K-INo		$\overline{\bigtriangleup}$	⊼́′	W
52	-13.31	-1.32	1.34	12.8	-1.069	-2.07	2.09	3.20
53	13.07	1.52	1.34	13.9	1.050	2.38	2.09	3.50
54	-13.25	-1.32	1.34	12.7	-1.064	-2.07	2.09	3.18
55	12.43	1.53	1.41	14.9	0.998	2.39	2.20	3.73
56	-13.06	-1.31	1.40	13.1	-1.049	-2.05	2.18	3.30
57	12.04	1.53	1.42	13.7	0.967	2.39	2.21	3.44
58	-13.12	-1.31	1.42	13.1	-1.054	-2.05	2.21	3.28
59	11.35	1.54	1.45	13.9	0.911	2.40	2.26	3.49
60	-12.89	-1.32	1.45	13.0	-1.035	-2.06	2.26	3.26

### SPECIMEN F1HS-C7

<u>Description</u>: This specimen was similar to specimen FI-S in detailing and fabrication. The letters "HS" appended to the specimen type signify the use of high strength (ASTM A441) steel. Professional inspection was carried out throughout fabrication, and ultrasonic inspection disclosed no significant weld defects.



Program of Cycling:

Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data.

Graphical load-curvature data. The curvature data was found by reading the combined output of gages No.1 and No. 2 connected in series. Gage No. 1 was located at the center of the top flange 2.00 inches from the column face; gage No. 2 was in the same location on the bottom flange.

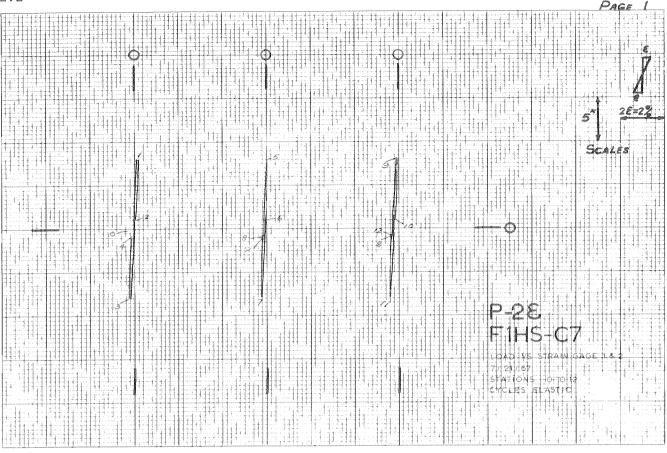
Total Energy Absorption: 3,597 kip-inches.

Plastic Load Reversals to Failure: 148 (84 cycles).

<u>Remarks</u>: During the 23rd cycle a fine crack was found on one side of the bottom flange at the column face. There was pronounced buckling by the 31st cycle. A new crack was initiated at the center of the top flange weld during the 40th cycle. On the 48th cycle, a new crack appeared at one end of the top weld. Almost immediately following, a similar crack formed in the bottom flange. Spread of the crack from the end of the top weld caused failure.

# SPECIMEN TYPE FIHS-C7

# DIMENSIONS OF WF SECTION


DEPTH 。。。。	0 0 0	o	南 南	Ð	ø	0	٩	÷¢	¢	ø	Ð	0	Ð	8.19	INCHES
TOP FLANGE WIG	)TH e	Ð	o 0	o	Ð	ē	0	÷C	¢	ø	0	0	¢	5.220	INCHES
BOTTOM FLANGE	WIDTH	10	@ ©	Ð	Ð	٩	¢	Ð	÷	÷C	ą.	0	¢	5.270	INCHES
TOP FLANGE TH	ICKNES	S	e o	ō	0	Q	ø	0	:0	Ð	Ð	ю	ø	0.368	INCHES
BOTTOM FLANGE	THICK	NES	s.	ø	¢	ē	o	.o	¢	Ģ	₽	o	ŝ	0.371	INCHES
WEB THICKNESS	000	÷C	0 0	-0	o	ø	ø	ø	Ð	¢	æ	Ø	o	0.257	INCHES
ELASTIC MODULU	15	; @	e e	o	0	¢.	÷	¢.	Ð	Ð	c	\$9	.G	30600。	KSI
YIELD STRESS	0 0 0	Ð	0 0	G	ŵ	枪	ø	Ø	¢	Ð	0	Ð	-O	51.200	KSI

## WF SECTION PROPERTIES

AREA, A	* * < ×	° ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5.88 INCHES**2
LOCATION OF CENTROI	D≉, YE	口 影 伦 彩 彩 彩 彩 彩	4.07 INCHES
MOMENT OF INERTIA,	Į ο ο		69.3 INCHES**4
SECTION MODULUS, TO			16.8 INCHES**3
SECTION MODULUS, BO			17.0 INCHES**3
LOCATION OF PLASTIC			4.03 INCHES
PLASTIC MODULUS, Z			19.0 INCHES**3
SHAPE FACTOR			
YIELD MOMENT, MY 。			71.87 KIP-FT.
PLASTIC MOMENT, MP	e e e	କୁ କୁ କୁ କୁ <del>କୁ</del> ମୁହା କୁ	81.25 KIP-FT.
*MEASURED FROM OUTSID	E FACE I	F BOTTOM FLANGE	

BEAM PROPERTIES

LENGTH,	i, w	to io	e e	Ø	0 Q	÷	¢	Ð	*	ø	-@	φ	ø	Q	66.0	INCHES
ELASTIC	STIF	ENESS	v P.	/DE	LTA	¢	¢	-Q	0	Ð	¢	Ø	ø	·Q	22.14	KIPS/IN.
YIELD D	EFLECT	ION :	DEI	TA	¥	ø	ø	ø	o	Ð	Ð	Ð	ø	ø	0.590	INCHES
YIELD L																
PLASTIC	LCAD	PP	e e	0	0 0	÷	¢	÷	Q	¢	0	ø	Ð	ø	14.77	KIPS



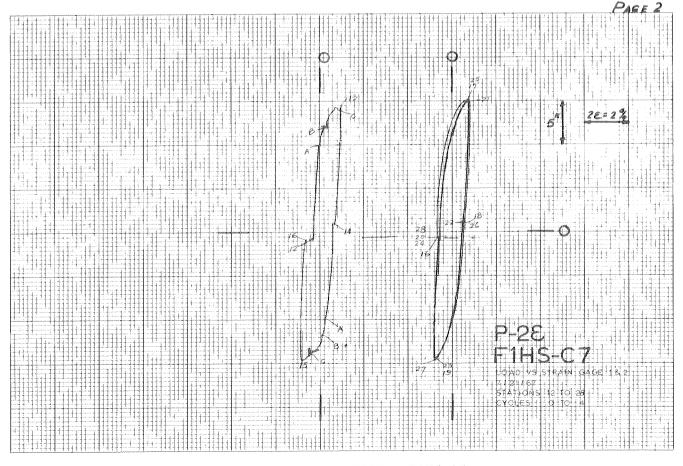
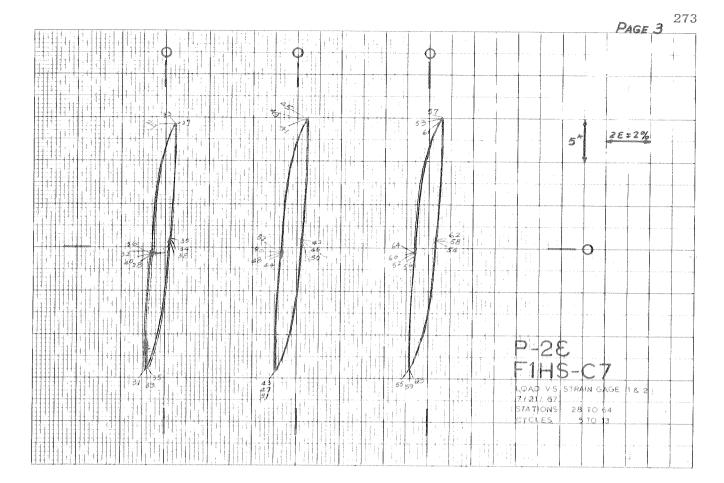




PLATE 36. LOAD VS. STRAIN - F1HS-C7



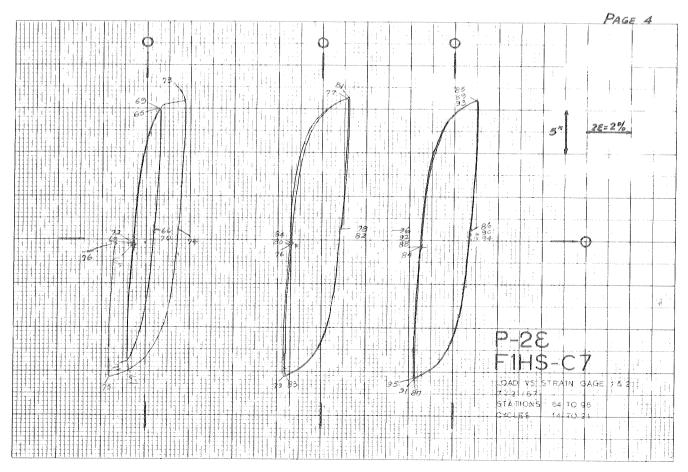



PLATE 36. (continued)

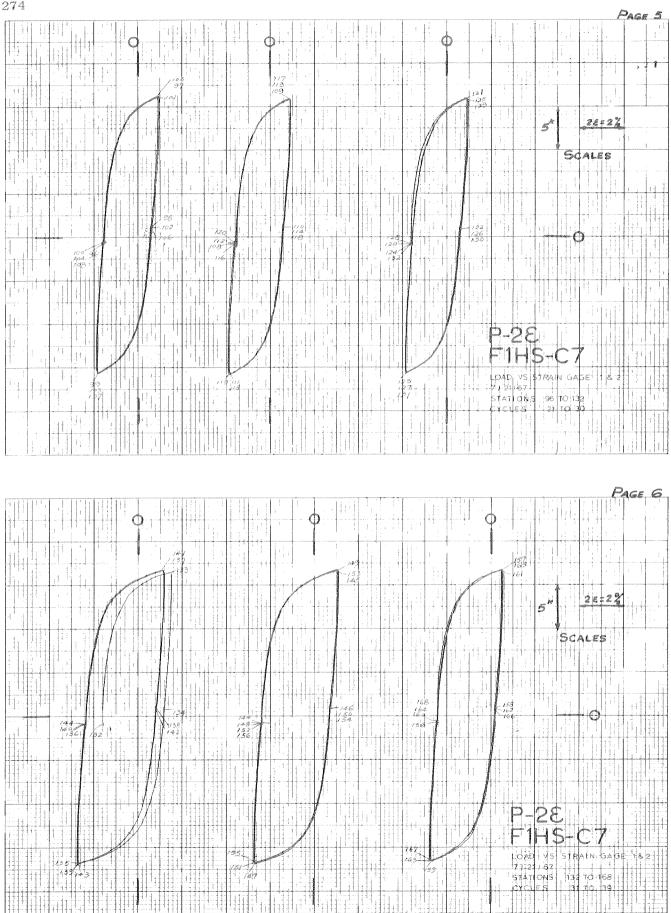



PLATE 36. (continued)

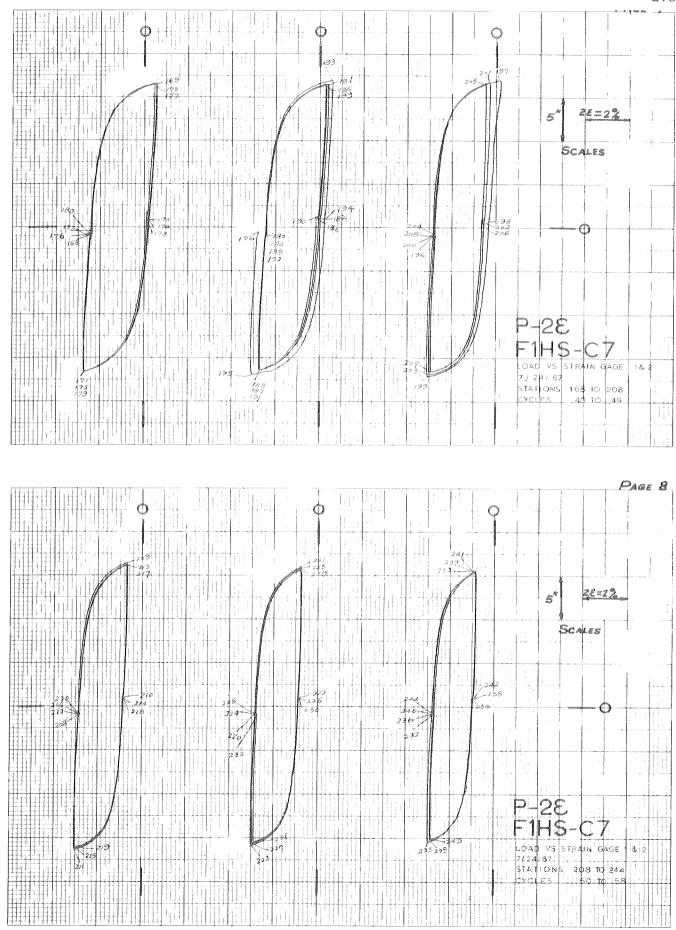
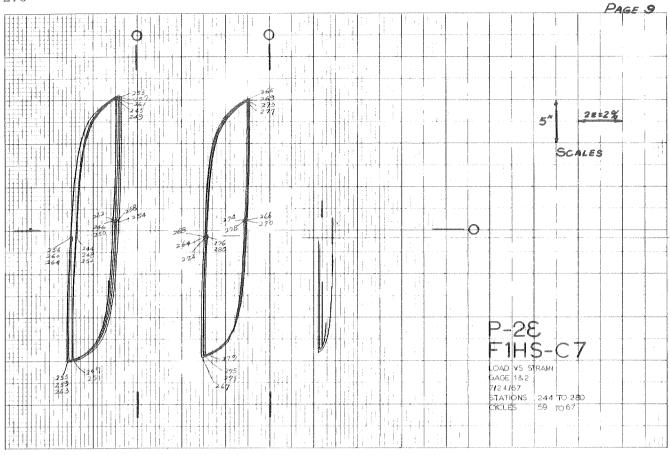




PLATE 36. (continued)





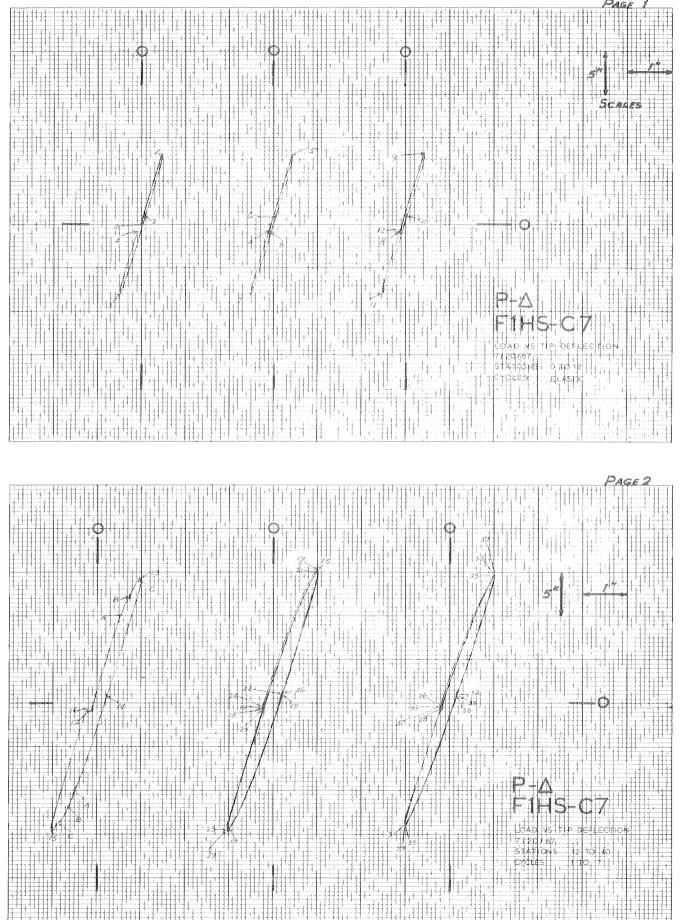



PLATE 37. LOAD VS. DEFLECTION - F1HS-C7

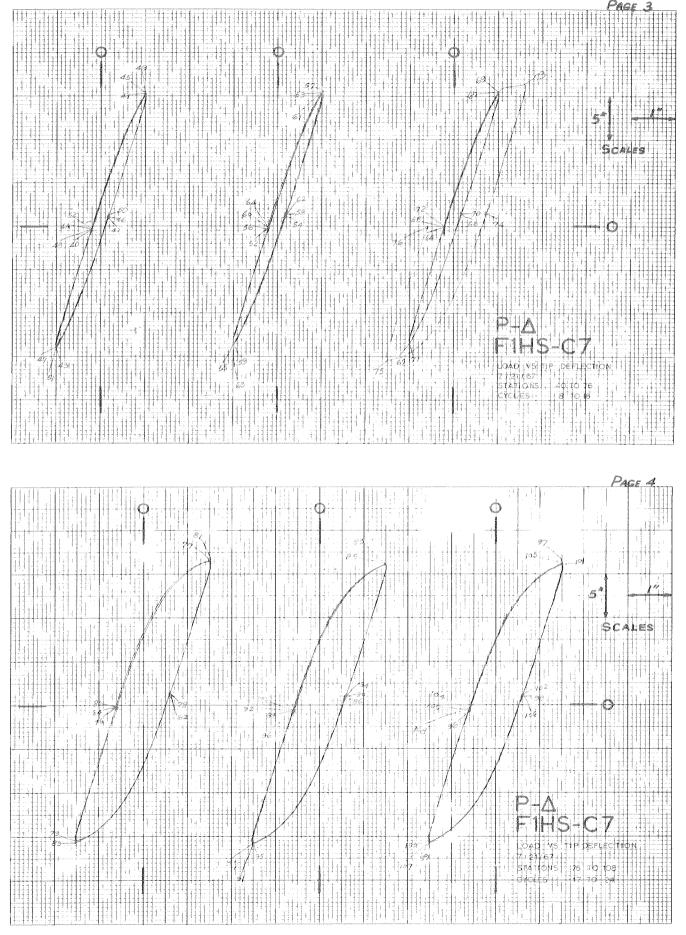



PLATE 37. (continued)

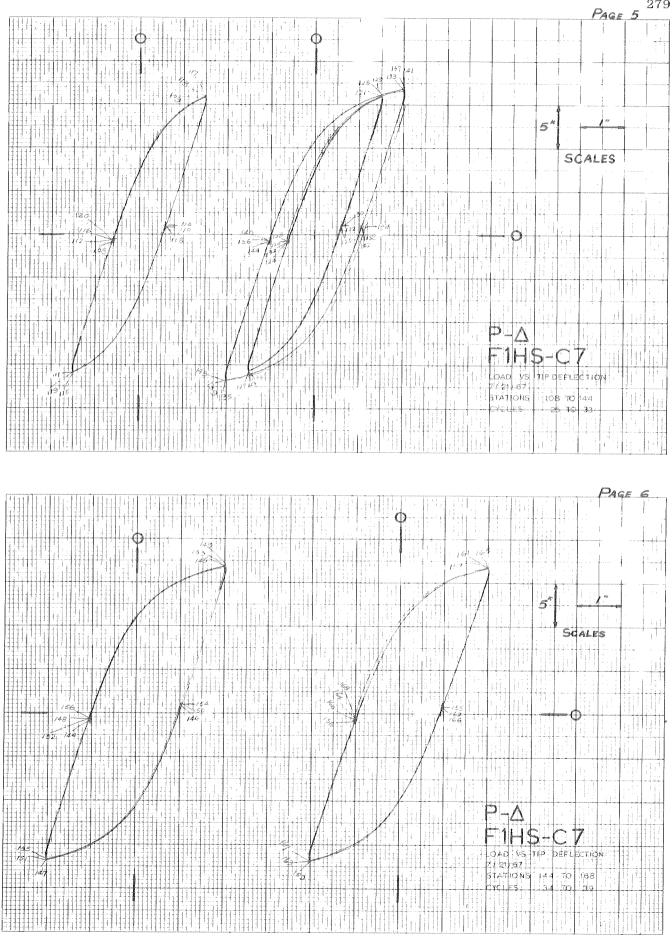
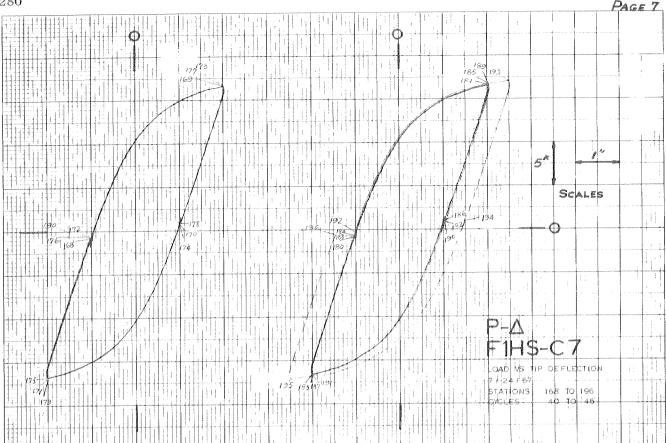




PLATE 37. (continued)



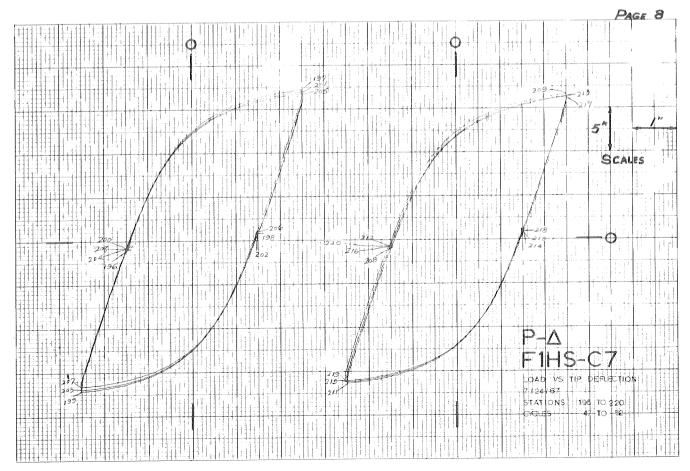



PLATE 37. (continued)

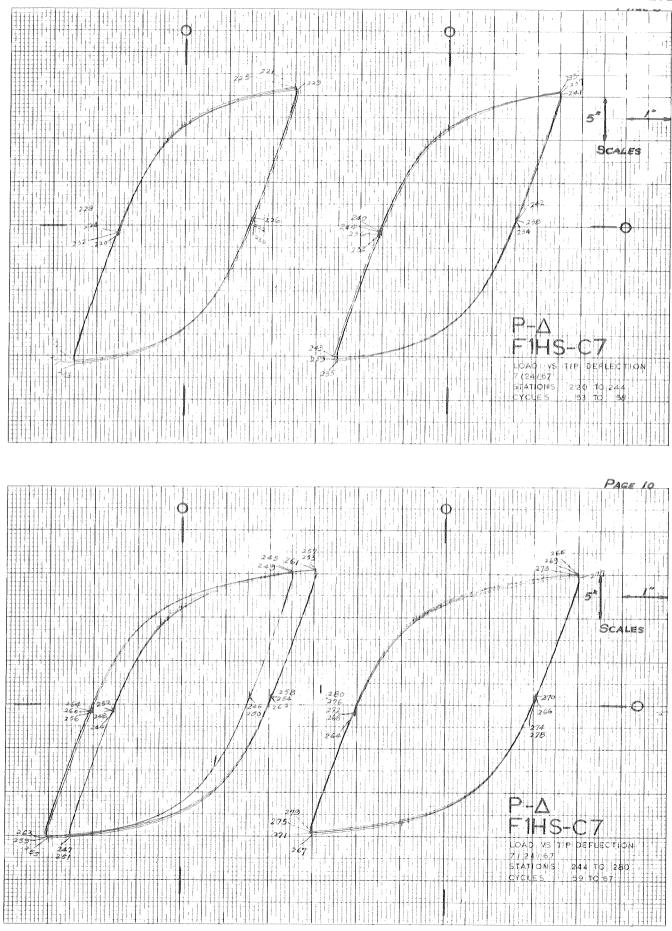
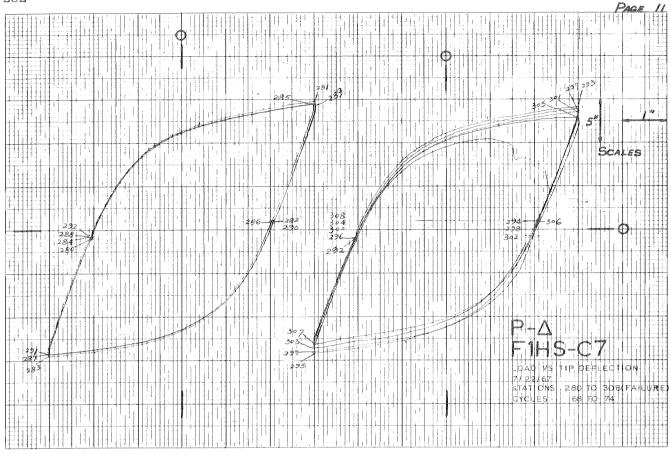





PLATE 37. (continued)





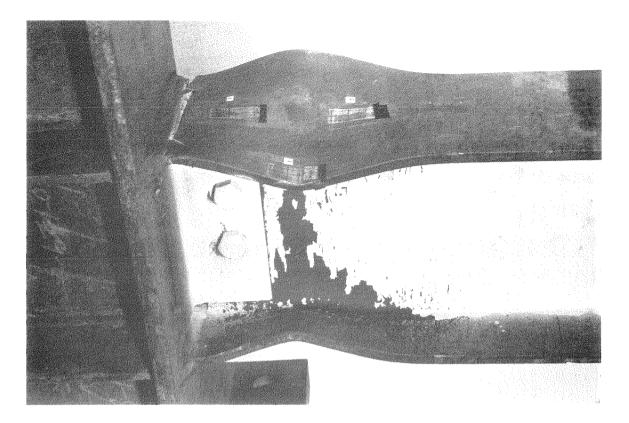



FIGURE 44. F1HS-C7

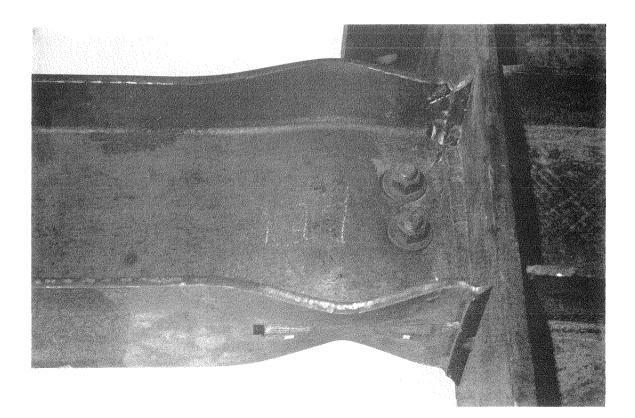
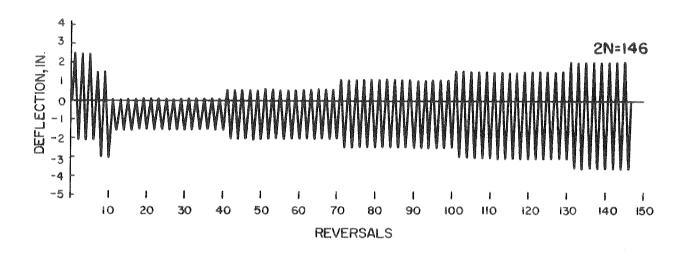



FIGURE 45. F1HS-C7

SPECIMEN F1HS-C7

Half- Cycle	P KIPS		IN o	w K-INo	F	-anne Line	$\overline{\Delta}^{+}$	Ŵ
1	13.98	0.89	0.42	2.6	0.947	1.33	0.63	0.53
2	- 14.44	-0.68	0.36	3.6	-0.978	-1.03	0.55	0.73
3	14.78	0.88	0.35	3.2	1.001	1.32	0.52	0.66
4	-14.30	-0.69	0.34	3.0	-0.968	-1.03	0.51	0.61
5	14.66	0.88	0.34	2.08	0.993	1.32	0.51	0.56
6	-14.63	-0.69	0.34	3.0	-0.991	-1.04	0.51	0.62
7	14.71	0.88	0.34	2.8	0.996	1.32	0.51	0.56
8	-14.51	-0.68	0.33	2.09	-0.982	-1.02	0.50	0.60
9	13.98	0.90	0.29	2.3	0.946	1.34	0.44	0.48
r o	-13.88	-0.68	0.27	2.0	-0.940	-1.02	0.41	0.40
present.	13.92	0.90	0.27	1.9	0.943	1.34	0.41	0.39
12	-13.93	-0.68	0.27	2.0	-0.943	-1.02	0.41	0.40
13	13.97	0.90	0.27	21	0.946	1.34	0.41	0.43
14	-14.04	-0.68	0.27	202	-0.951	-1.02	0.41	0.44
15	14.61	0.90	0.31	2.6	0.989 -0.943	1.35	0.46	0.52 0.45
16 17	-13.93	-0.67 0.90	0.30 0.30	2.2 2.6	0.987	-1.00 1.35	0.45	0.52
- 18	14.58 -13.92	-0.67	0.30	2.04	-0.943	-1.00	0.45	0.48
19	14.32	0.90	0.30	3.0	0.970	1.35	0.45	0.60
20	-14.03	-0.67	0.30	2.7	-0.950	-1.00	0.45	0.54
21	14.62	0.90	0.31	3.0	0.990	1.35	0.47	0.60
22	-13.69	-0.67	0.31	2.04	-0.927	-1.01	0.47	0.48
23	14.74	0.92	0.31	2.7	0.998	1.38	0.47	0.55
24	-13.74	-0.67	0.30	2.04	-0.930	-1.01	0.46	0.49
25	14.47	0.90	0.31	2.06	0.980	1.36	0.,47	0.53
26	-13.84	-0.67	0.31	2.4	-0.937	-1.01	0.46	0.48
27	14.52	0.90	0.31	2.7	0.983	1.35	0.46	0.54
28	-13.73	-0.67	0.30	2 = 3	-0.930	-1.01.	0.45	0.46
29	14.54	0.00	0.30	2.5	0.985	1.35	0.45	0.52
30	-13.83	-0.67	0.30	2.2	-0.937	-1.01	0.45	0.45
31	15.29	1.39	0.84	11.0	1.036		1.27	2.24
32	-15.80	-1.14	1.24	15.4	-1.070	-1.71.	1.86	3.12
33	15.67	1.39	1.13	14.02	1.061	2.08	1.69 1.71	2.88 2.72
34	-15.77	-1.15	1.14 1.14	13.4		2.09	1.71	2.82
	15.77				-1.070		1.71	2.64
		1.37	loll		1.069		1.67	2.61
	-15.70	-1.16	Loll		-1.063	-1.74	1.66	2.45
	15.80	1.37	loll		1.069		1.66	2.56
40	-15.79	-1.16	1.11	12.5		-1.74	1.66	2.54.
	15.66	1.37	Lall		1.060	2.06	1.66	2.71
	-15.79	-1.16		13.0	-1.069	-1.74	1.66	2.64
		1.37	1.13		1.068	2.06	1.70	2.70
44	-15.80	-1.16	1.12	13.1	-1.070	-1.074	1.69	2.65
		1.38	1.13	13.2		2.06	1.69	2.68
46		-1.16	1.13	13.1	-1.065	-1.74	1.69	2.66
La a	15.77	1.38	1.13		1.068	2.06	1.69	2.74
	-15.79	-1.16	1.13		-1.069	-1.74	1.69	2.67
	15.71	1.38	1.12		1.064	2.07	1.68	2.66
		-1.16	1.13		-1.067 1.058	-1.74 2.07	1.69	2.61
51	15.62	1.38		LJCL	10490	60311	1.69	2.65


Half- Cycle	P KIPS	La constance	A' IN o	W K-IN.	an L Ar Ar	Ā	$\bar{\Delta}^{\prime\prime}$	Ŵ
52	-15.75			12.9	-1.067	-1.73	1.69	2.63
53	15.66	1.38	1.13		1.060	2.07	1.69	2.67
54 55	-15.88	-1.16 1.40		12.8 13.3	-1.075 1.068	-1.73 2.10	1.69	2.61
56	-15.60	-1.14	1.13	12.9	-1.056	-1.71	1.69	2.61
57	15.74	1.40	1.13		1.066	2.10	1.69	2.71
58	-15.65	-1.14	1.13	13.0	-1.060	-1.71	1.69	2.65
59	15.72	1.40	1.13		1.064	2.10	1.69	2.77
60	-15.66	-1.14	1.13	12.9	-1.061		1.69	2.63
61	16.37	1.89	1.67		1.108	2.83	2.50	3.43
62 63	-16.66	-1.62 1.89	2.09 1.99	28.4 25.6	-1.128 1.117	-2.43	3.13 2.98	5.77 5.20
64	-16.70	-1.62	1.99	26.7	~1.131	-2.43	2.98	5.42
65	16.56	1.89	1.99		1.122	2.83	2.98	5.28
66	-16.75	-1.62	1.99	26.5	-1.134	-2.43	2.98	5.39
67	16.46	1.92	1.98	26.0	1.115	2.87	2.97	5.27
68	-16.69	-1.59	1.98	25.6	-1.130	-2.38	2.97	5.20
69	16.61	1.92	2.01		1.125	2.88	3.01	5.37
70	-16.77	-1.59	2.01	26.3	-1.135	-2.39	3.01	5.33
71 72	16.48 -16.70	1.92 -1.59	2.03 2.03	26.6 25.8	1.116 -1.131	2.87 -2.39	3°04 3°04	5.39
73	16.31	1.91	2.005		1.105	2.87	2.93	5.16
74	-16.50	-1.59	1.90	23.8	-1.117	-2,39	2.84	4.84
75	16.23	1.92	1.90		1.099	2.87	2.85	4.90
76	-16.52	-1.59	- 1.90	23.9	-1.119	-2.39	2.85	4 . 86
77	16.15	1.91	1.90		1.094	2.87	2.85	4.86
78	-16.46	-1.59	1.90		-1.115	-2.39	2.84	4.90
79	16.24	1.94	1.94	24.8 25.2	1.099	2.90 2.38	2.91	5.03 5.11
80 81	-16.43	-1.58 1.94	1.94		-1.112	2.90	2.90 2.90	2011 4.99
82	-16.45	-1.58	2.024		-1.114	-2.38	2.90	5.08
	16.15	1.94	1.94		1.094	2.90	2.90	5.03
84	-16.38	-1.58			-1.109	-2.38	2.90	5.08
85	16.22	1.93	2.94	25.4	1.098	2.89	2.90	5.15
86	-16.32		-1.93		-1.105	-2.38	2.90	4.97
	16.05	1.94	1.94		1.086	2.90	2.91	5.17
88	-16.28	-1.59	1.94		-1.102	-2.38	2.91	5.04
	16.05	1.95	1.94 1.94		1.087 -1.109	-2.38	2.92 2.91	5.00 5.23
	16.46	2. 0 2 2 2. 0 4 2	2.42		1.115	3.63	3.63	6.69
92	-16.83	-2.08	2.85		-1.139	-3.11	4.27	7.89
	16.74	2.41	2.84		1.134	3.61		
94	-16.76	-2 - 08	2.88	40.1	-1.135	-3.12	4.32	8.14
		2.43	2.92		1.119	3.64		8.10
96	-17.11	-2.08	2.92	40.4	-1.159	-3.12		
		2.43	2.92		1.093	3.65	4.38 4.37	
98 99	-16.25 16.21	-2.09 2.43	2.91 2.92		-1.100 1.098	-2012		
100	-16.04	-2.08	2.89		-1.090		4.33	
		2.43	2.88			3.64		
102	-16.00	-2.09	2.90		-1.083		4.35	
103		2.43	2.90	36.4		3.64		
104	-15.94	-2.11	2.92	38.0	-1.079	-3.17	4.37	7.72

0	Q	G
hand	O	U

Half-	P	Δ	۵′	W	Ē	$\overline{\Delta}$	$\overline{\Delta}^{\prime}$	Ŵ
Cycle		IN.	IN.	K-IN.	*			• •
105	15.74	2.41	2.94	37.4	1.066	3.62	4.40	7.59
106	-15.65	-2.12	2.95	37.5	-1.060	-3.17	4.42	7.61
107	15.59	2.42	2.96	36.7	1.056	3.62	4.43	7.46
108	-15.47	-2.12	2.95	37.0	-1.047	-3.18	4.43	7.50
109	15.50	2.44	3.00	37.2	1.049	3.66	4.50	7.55
110	-15.27	-2.12	3.00	37.3	-1.034	-3.18	4.50	7.57
111	15.32	2.42	2.94	35.9	1.037	3.63	4.41	7.29
112	-15.20	-2.14	2.97	36.9	-1.029	-3.21	4.45	7 . 48
113	15.26	2.42	2.98	36.7	1.033	3.63	4.46	7.45
114	-15.08	-2.13	2.98	35.8	-1.021	-3.19	4.46	7.26
115	15.06	2.42	2.98	35.0	1.020	3.63	4.40	7.11
116	-15.01	-2.13	3.03	35.8	-1.016	-3.19	4.54	7.27
117	15.02	2.37	3.01	34.7	1.017	3.56	4.51	7.05
118	-14.89	-2.18	3.00	36.2	-1.008	-3.27	4.50	7.35
119	14.92	2.37	3.00	35.7	1.010	3.56	4.50	7.25
120	-14.78	-2.18	3.00	35.5	-1.001	-3.27	4.49	7.21
121	15.03	2.88	3.49	42.6	1.018	432	5.23	8.65
122	-14.93	-2.69	3.96	49.0	-1.011	-4.03	5.94	9.95
123	14.96	2.88	3.96	47.8	1.013	4.32	5.93	9.70
124	-14.86	-2.71	4.00	47.9	-1.006	-4.06	6.00	9.72
125	14.92	2.87	4.00	48.7	1.010	4.31	5.99	9.89
126	-14.81	-2.71	4.00	48.4	-1.003	-4.06	5.99	9.83
127 128	14.61 -14.67	2.86 -2.70	3。99 4。00	47°2 44°6	0.989 -0.993	-4.05	5.98 5.99	9°59 9°05
120	14.49	2.86	4.00	44.0	0.981	4.29	6.00	9.45
130	-14.45	-2.71	4.00	46.8	-0.978	-4.06	5.99	9.50
131	14.49	2.86	4.00	46.1	0.981	4.29	5.99	9.36
132	-14.41	-2.71	4.00	46.8	-0.976	-4.06	5.99	9.50
133	14.30	2.87	4.00	45.1	0.968	4.30	5.99	9.15
134	-14.25	-2.71	4.00	46.5		-4.06	5.99	9.43
135	14.35	2.88	4.01		0.971	4.31	6.02	9.26
136	-14.18	-2.72	4.02	46.8		-4.07	6.02	9.50
137		2.86	3.96		0.956	4.29	5.94	8.83
	-13.93		3.96		-0.943		5.94	9.07
139	14.03	2.88	4.02	45.0	0.950	4.32	6.02	9.13
		-2.71		45.0	-0.949	-4.06	6.02	9.13
141	13.74	2.87	4.00	4307	0.930	4.31	5.99	8.86
142			3.97	42.5	-0.941	-4.06	5.96	8.63
143	13.53	2.88	3.98	42.5	0.916	4.32	5.96	8.62
144	-13.63	-2.71		43.8	-0.923	-4.07	5.96	8.88
145				40.9	0.882	4.32	5.95	8.29
146				41.6	-0.908	-4.08	5.94	8.44
					0.836	4.34	6.03	8.24
148	-13.02	-2.73	3.97	41.6	-0.882	-4.10	5.95	8.44

#### SPECIMEN F1HS-C11

<u>Description</u>: This specimen was similar to specimen FlHS-C7 in detailing, fabrication and inspection. Ultrasonic inspection indicated a possible defect in the top flange butt-weld. The back-up bar was therefore removed and a weld made on the underside of the flange. Subsequent ultrasonic re-inspection indicated the weld to be satisfactory.



Program of Cycling:

Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data. Graphical load-curvature data. The curvature data was found by reading the combined output of gages No. 1 and No. 2 connected in series. Gage No. 1 was located at the center of the top flange 2.00 inches from the column face; gage No. 2 was in the same location on the bottom flange.

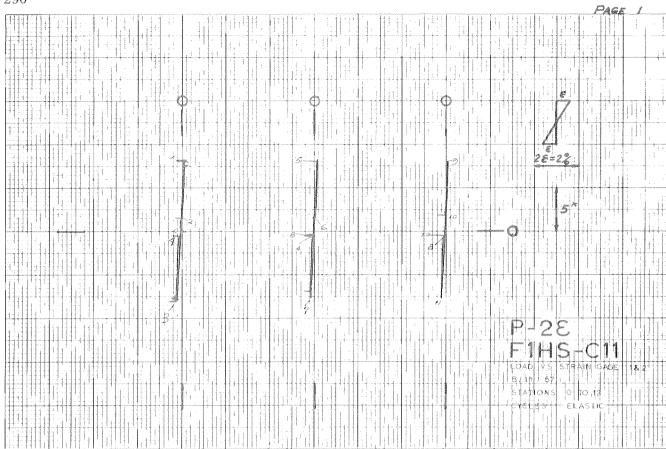
Total Energy Absorption: 3,539 kip-inches.

Plastic Load Reversals to Failure: 146 (73 cycles).

<u>Remarks</u>: Buckling of the flanges was clearly visible during the first plastic cycle. At the end of the 3rd cycle, an error was made by the operator in interpreting the load-deflection output record, resulting in displacement of the hysteresis loops along the deflection axis. At the end of the 24th cycle, a crack was discovered in the middle of the top flange at the edge of the weld. A similar fine crack formed in the bottom butt-weld during the 52nd cycle. Cracks developed at one end of first the bottom and then the top butt-weld, during the 61st and 65th cycles, respectively. Failure occurred when the two cracks just outside the weld in the top flange met.

# SPECIMEN TYPE F1HS-C11

# DIMENSIONS OF WF SECTION


DEPTH • • • •															
TOP FLANGE WI															
BOTTOM FLANGE	WIDT	-	о ю	¢	¢	:®	÷	Ð	ø	Ð	¢	Ф	Ð	5.300	INCHES
TOP FLANGE TH	[CKNES	55.	D 0	ø	ø	-sp	ø	-60	ø	Ð	1	孕	-99	0.371	INCHES
BOTTOM FLANGE	THICK	(NES:	> •	-0	Ð	٥	÷	ø	Ð	Ð	٩	0	40	0.370	INCHES
WEB THICKNESS	\$0 \$0 \$		0 10	0	ø	Ð		÷	æ	ø	٥	-0	ø	0.261	INCHES
ELASTIC MODULU	JS 。 。	) e :	ə - ç	0	-10	÷	.8	-	\$	ø	٩	ø	ø	30600。	KSI
YIELD STRESS	000		୍ବ	Ð	Ð	\$	Q	\$	-	Ð	ø	49	÷	51.200	KSI

# WF SECTION PROPERTIES

AREA, A	5.93 INCHES**2
LOCATION OF CENTROID*, YE	4.06 INCHES
MOMENT OF INERTIA, I	69.0 INCHES**4
SECTION MODULUS, TOP, ST	16.9 INCHES**3
SECTION MODULUS, BOTTOM, SB • • • • • •	17.0 INCHES**3
LOCATION OF PLASTIC NEUTRAL AXIS*, YP	4.04 INCHES
PLASTIC MODULUS, Z	19.1 INCHES**3
SHAPE FACTOR	1.128
YIELD MOMENT, MY	72.17 KIP-FT.
PLASTIC MOMENT, MP	81.39 KIP-FT.
*MEASURED FROM OUTSIDE FACE OF BOTTOM FLANGE	

BEAM PROPERTIES

LENGTH,	-inter-	0	e 0	ø	Ð	Ð	©.	0 4	e i e	¢	ø	ŵ	0	49	ND I	Ø	66.0	INCHES
ELASTIC	STI	[FFM	VESS	P	P/	DE	LT	A .	0	:0	÷	٩	sý	45	Ð	֩	22.03	KIPS/IN.
YIELD D	EFL	ECT	ίΟΝ,	D	EL	TA	¥	o c	0	ø	0	4	Ð	æ	Ð	Ð	0.596	I NCHE S
YIELD L																		
PLASTIC																		



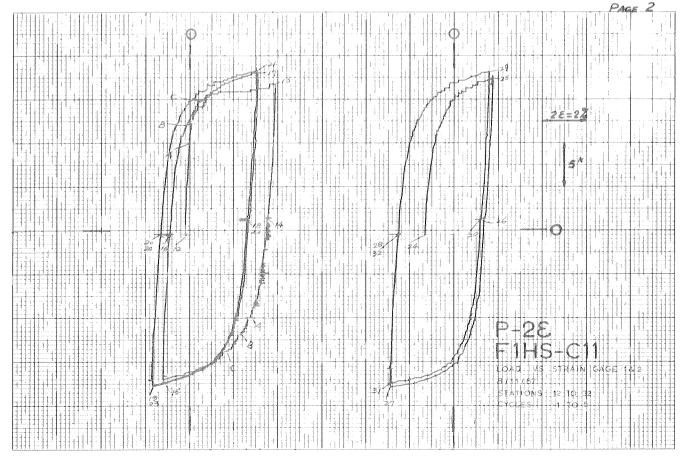



PLATE 38. LOAD VS. STRAIN - F1HS-C11

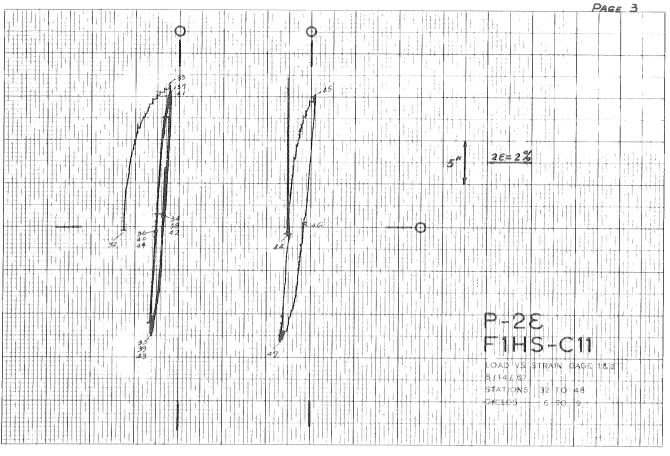



PLATE 38. (continued)

434	PAGE 1
$ = \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
	5*
and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	
	1HS-C11
$\omega_{i}$	1767
	TONS O TO 12

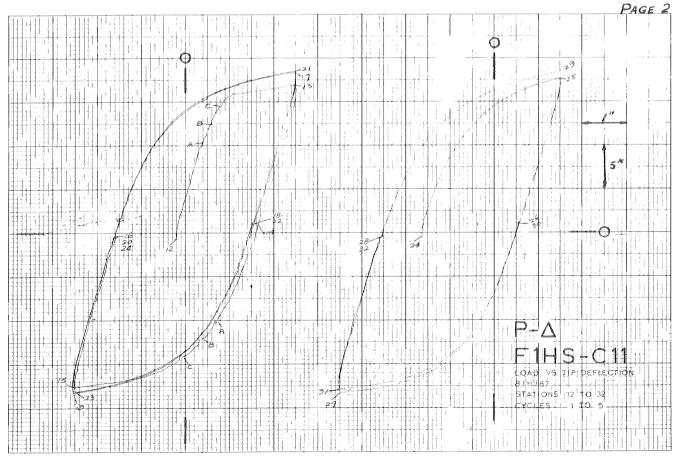
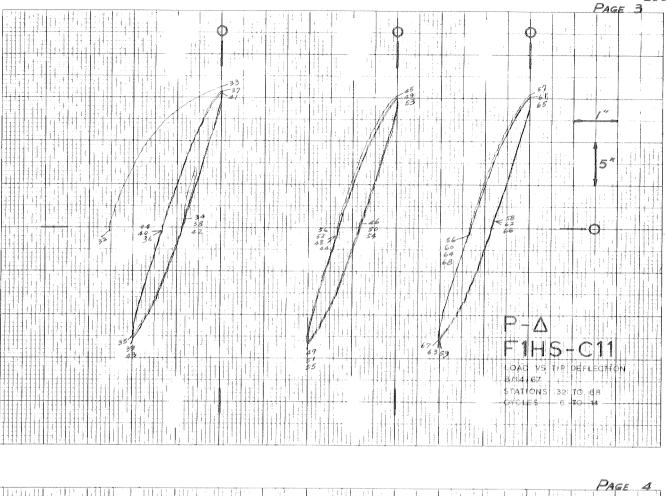




PLATE 39. LOAD VS. DEFLECTION - F1HS-C11



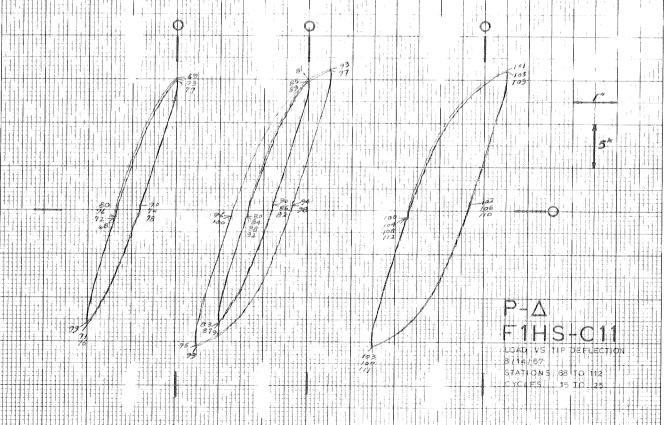
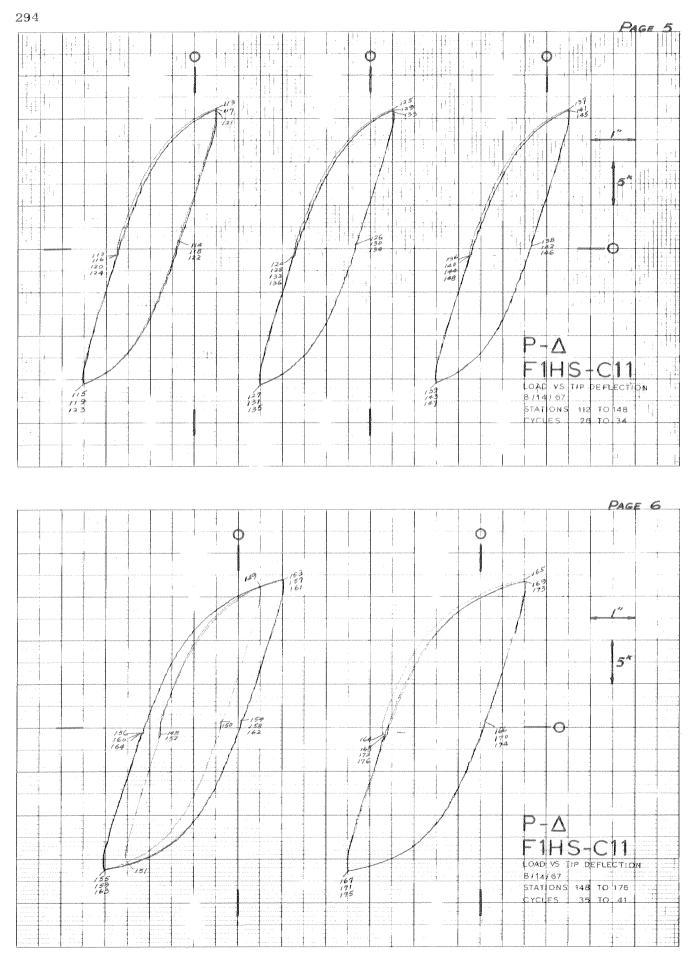
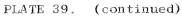
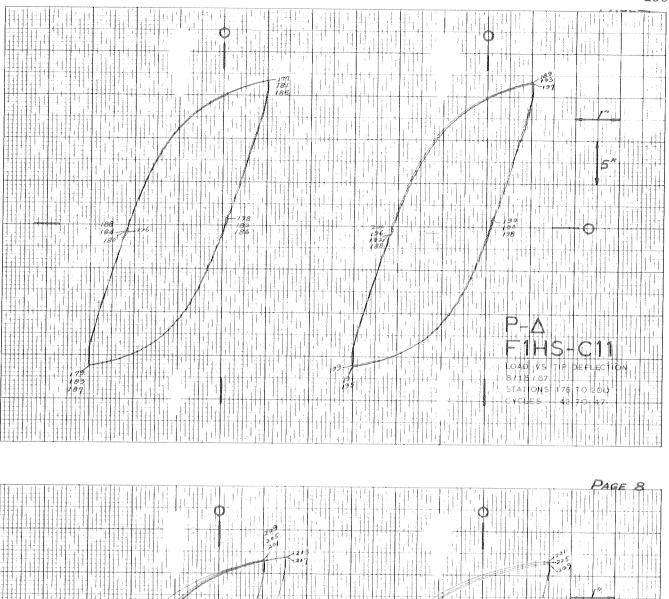






PLATE 39. (continued)







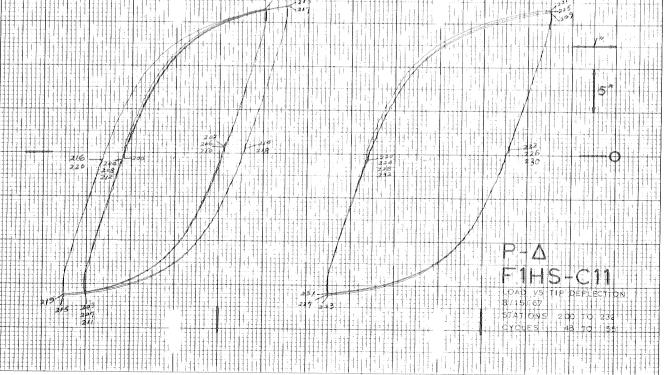



PLATE 39. (continued)



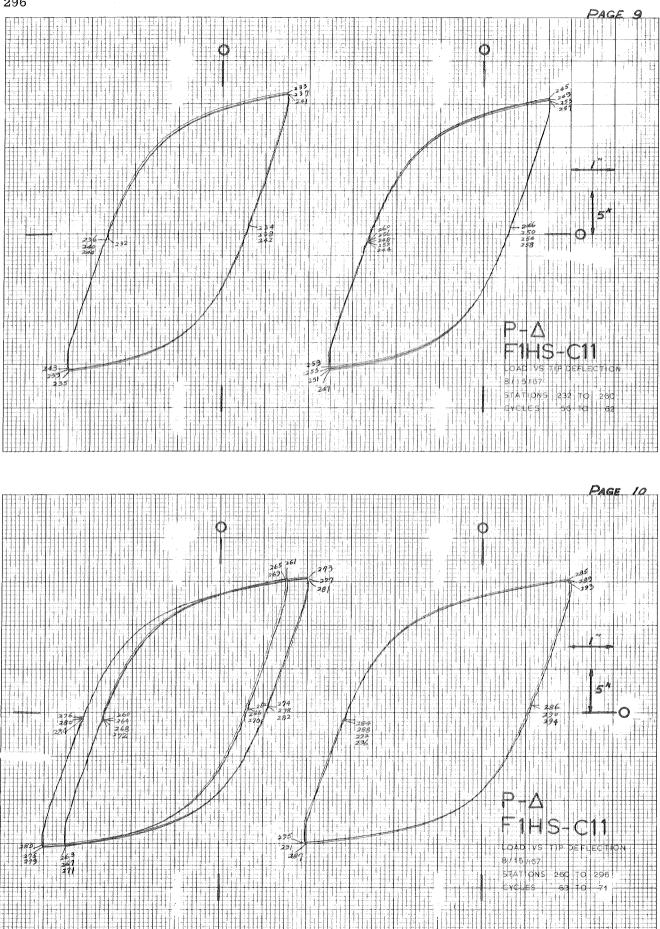
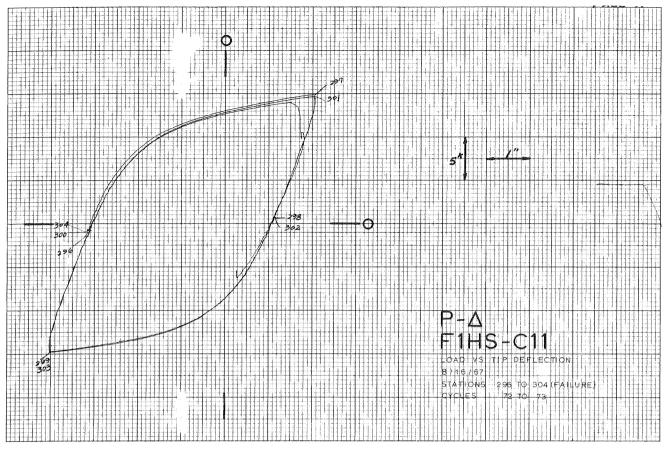
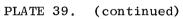
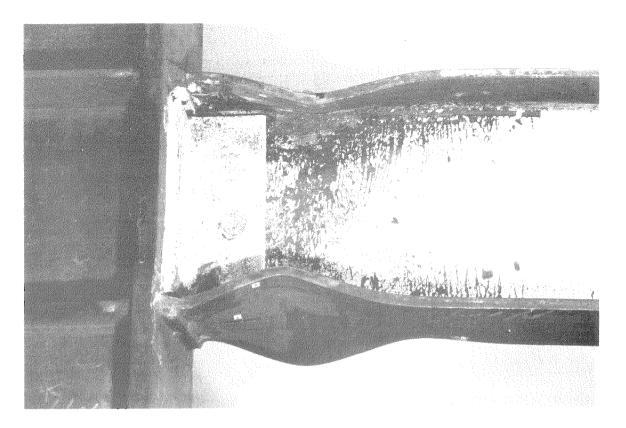






PLATE 39. (continued)









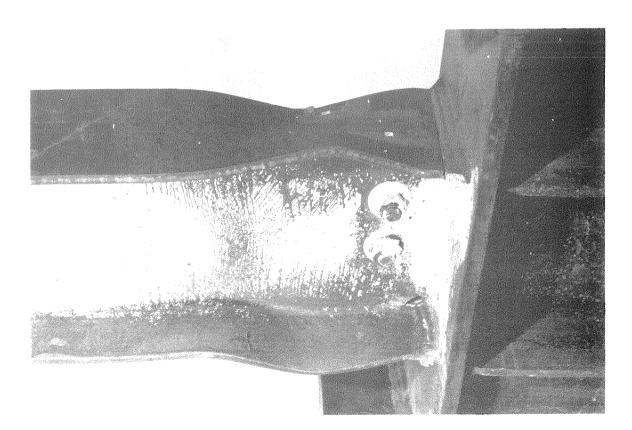
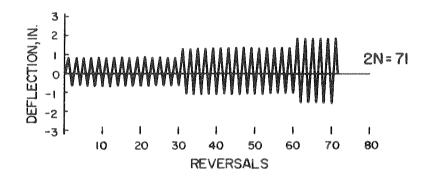



FIGURE 47. F1HS-C11

# SPECIMEN F1HS-C11

Half- Cycle	P KIPS	∆ IN∞	s' IN.	w K-IN.	Ē	<u> </u>	Δ	Ŵ
theorem	15.60	2.49	2.04		1.054	3.71	3.03	5.10
2	-16.65	-2.08	3.14	43.3		-3.09	4.67	8.71
3	16.91	2.47	3.02	44.0	1.143	3.68	4.49	8.84
4	-17.38	-2.09	3.02	42.6	-1.174	-3.11	4.49	8.56
5	16.97	2.47	2.99	42.06	1.147	3.68	4.45	8.56
6	-17.12	-2.07	2.93	42.1	-1.157	-3.08	4.37	8.46
7	16.25	1.55	2.06	27.2	1.098	2.31	3.06	5.48
8	-17.21	-3.00	2.99	43.6	-1.163	-4.46	4.45	8.78
9 10	17.03	1.54 -3.00	2.99 2.99	39.6 42.6	1。150 -1。144	2.29 -4.47	4045 4044	7.96
10	14.95	0.05	1.51	18.5	1.010	0.08	2.24	3.73
12	-11.42	-1.60	0.31	2.07	-0.772	-2.38	0.46	0.55
13	14.50	0.06	0.39	4.3	0.980	0.09	0.59	0.86
14	-11.99	-1.59	0.40	2.9	-0.810	-2.36	0.59	0.58
15	14.34	0.06	0.40	3.9	0.969	0.09	0.59	0.79
16	-11.94	-1.59	0.40	2.7	~0.807	-2.36	0.59	0.54
17	14.56	0.08	0.41	5.1	0.984	0.12	0.62	1.02
18	-11.96	-1.57	0.42	3.6	-0.808	-2.34	0.62	0.72
19	14.48	0.08	0.42	3.7	0.978	0.12	0.62	0.75
20	-11.83	-1.57	0.42	3.1	-0.800	-2.34.	0.62	0.62
21	14.23	0.08	0.42	4.3	0.962	0.12	0.62	0.87
22	-12.01	-1.57	0.42		-0.812	-2.33	0.62	0.61
	14.33	0.08	0.44	4.7	0.968	0.12	0.65	0.94
24	-11.77	-1.57	0.44	3.2	-0.795	-2.34	0.65	0.64
25	14.11	0.08	0.44	4.1	0.954	0.12	0.65	0.82
26	-11.90	-1.57	0.44	3.6	~0.804	-2.34	0.65	0.72
27	14.09	0.08	0.44	4.1	0.952	0.13	0.65	0.82
28 29	-12.04	-1.58	0.44	3.5 5.5	-0.813	-2.34	0.65	0.69
30	14.29	0.09 -1.56	0.44 0.45	3-1	0.966 -0.793	0.14 -2.32	0.66	1.11
31	14.13	0.09	0.45		0.955	0.14	0.67	0.63
32	-11.93	-1.56	0.45	3.3		-2.32	0.67	0.67
33	14.03	0.10	0.45		0.948	0.14	0.67	0.91
	-11.91		0.45	2.9		-2.33	0.67	0.58
35	14.12	0.09	0.45		0.954	0.14	0.67	0.98
		-1.56	0.47		-0.803		~ ~~~	0.78
	13.83		0.47		0.934			0.86
38	-11.81	-1.56	0.47	3.9	-0.798	-2.33	0.70	
	13.92	0.09	0.47	4.3	0.940	0.14	0.70	0.87
					-0.795			0.73
	15.17	0.58	0.92			0.86	1.36	2.22
		-2.03	1.26		-0.967	-3.02	1.87	2.81
	15.11	0.58	1.26		1.021	0.86	1.87	2.90
	-14.38	-2.03		13.9		-3.02	1.87	2.79
	15.16	0.57				0.85	1.92	2.95
	-14.34	-2.04 0.57			-0.969			2.78
	-14.40	-2.04	1.29 1.29		1.022 0.973		1.91 1.91	2.85 2.80
		0.57	1.29		1.013		1.91	
		-2.04	1.28		-0.974		1.91	2.80
		0.61	1.30		1.023	0.91	1.93	3.28
			The Table		the second data			and the state parts


Half- Cycle	F KIPS	∆ IN₀	∆́ IN∝	K-INº	and the second second second second second second second second second second second second second second second s	Ā	$\overline{\Delta}$	W
52	-14.45	-2.00	1.30	14.2	-0.976	-2.97		2.86
53	14.98	0.61	1.30		1.012	0.91	1.93	2.95
54	-14.50		1.30	13.8	-0.980	-2.97	1.93	2.78
55	14.91	0.60	1.28	14.8	1.007	0.90	1.90	2.98
56	-14.38	-2.00	1.28	13.0	-0.971	-2.97	1.91	2.61
57	15.14	0.59	1.28	15.1	1.023	0.87	1.91	3.03
58	-14.43	-2.02	1.29	14.3	-0.975	-3.00	1.92	2.88
59 60	15.06 -14.38	0.59 -2.02	1.29 1.29	14.3 14.1	1.017 -0.971	0.88 -3.00	1.92 1.92	2.87 2.83
61	14.97	0.60	1.29		1.011	0.90	1.92	3.02
62	-14.43	-2.02	1.29	14.3	-0.975	-3.00	1.92	2.87
63	15.01	0.61	1.29	14.8	1.014	0.90	1.92	2.98
64	-14.34	-2.01	1.29	13.8	-0.969	-2.99	1.92	2.78
65	14.92	0.61	1.29	13.9	1.008	0.91	1.92	2.80
66	-14.36	-2.01	1.29	13.7	-0.971	-2.99	1.92	2.76
67	14.91	0.61	1.29	13.7	1.007	0.91	1.92	2.75
68	-14.31	-2.01	1.29	13.8	-0.967	-2.99	1.92	2.78
69	15.18	0.61	1.26	15.9	1.025	0.91	1.88	3.19
70	-14.12	-2.01	1.26	13.6	-0。954	-2.99	1.88	2.74
71	15.64	1.10	1.72	21.9	1.057	1.64	2.56	4.41
72	-15.08	-2.49	2.15	25.6	-1.019	-3.70	3.20	5.14
73	15.79	1.10	2.15	26.0	1.067	1.64	3.20	5.22
74	-15.10	-2.49	2.15	25.4	-1.020	-3.70	3.20	5.10
75	15.77	1.10	2.15	26.3	1.066	1.64	3.20	5.30
76	-15.14	-2.49	2.15	25.7	-1.023 1.072	-3.70 1.69	3.20 3.27	5.16 5.76
77 78	15.86 -15.14	1.14 - 2.46	2.20 2.08	28.6 25.5	-1.023	-3.66	3.10	5.13
79	15.65	1.13	2.08	26.1	1.057	1.68	3.10	5.25
80	-15.08	-2.46	2.14	25.4	-1.019	-3.66	3,18	5.12
81	15.70	1.13	2.14	25.4	1.061	1.68	3.18	5.12
82	-15.14	-2.46	2.14	25.3	-1.023	-3.66	3.18	5.10
83	15.55	1.13	2.14	26.7	1.050	1.68	3.19	5.38
84	-15.05	-2.46	2.19	26.2	-1.017	-3.66	3.26	5.27
85	15.57	1.13	2.19	26.5	1.052	1.69	3.26	5.32
86	-15.04	-2.46	2.19	25.9	-1.017	-3.66	3.26	5.21
87	15.52	1.13	2.19	26.2	1.049	1.69	3.26	5.27
88	-15.08	-2.46	2.19	26.0	-1.019	-3.66	3.26	5.22
89	15.60	1.09	2.19	26.7	1.054	1.63	3.26	5.38
90	-15.05	-2.51	2.18	26.2	-1.017		3.25	5.26
91	15.58	1.09	2.18	26.0	1.053 -1.012	1.63	3.25 3.25	5.22 5.20
92 93	-14.98 15.53	-2.51 1.08	2.18 2.18	25.8 25.5	1.049	-3.73 1.61	3.25	5.13
93 94	-14.85	-2.51	2.19	25.4	-1.003	-3.74	3.25	5.10
95	15.46		2.16	27.9	1.045	1.64	3.22	5.61
96		-2.49	2.21	26.3	-1.004	-3.71	3.29	5.29
		1.10	2.21	27.0	1.033	1.64	3.29	5.43
98		-2.49	2.21	25.7	-1.012	-3.71	3.29	5.17
99	15.19	1.10	2.21	26.3	1.027	1.64	3.29	5.29
100		-2.48	2.21	24.7	-1.008	-3.70	3.29	4.96
101	15.60	1.60	2.69	33.3	1.054	2.38	4.00	6.70
102	-15.22		3.17	37.9		-4.45	4.72	7.63
	15.61	1.60	3.17		1.055	2.38	4.72	7.75
104	-15.10	-2.99	3.17	38.0	-1.020	-4.45	4.72	7.65

Half-	Р	Δ	$\Delta^{\prime}$	W	jus ka	$\overline{\Delta}$	$\Delta^{2}$	$\overline{W}$
Cycle	KIPS	IN.	IN.	K-IN.				
105	15.45	1.57	3.14	38.9	1.044	2.34	4.67	7.82
106 -	15.02	-3.02	3.14	37.9	-1.015	-4.50	4.67	7.62
	15.26	1.57	3.14	36.8	1.031	2.34	4.67	7.39
108 -		-3.02		37.1	-1.006	-4.50	4.67	7.46
		1.58		36.5	1.022	2.34	4.67	7.34
		-3.02		36.9	-1.002	-4.50	4.67	7.41
		1.53		37.4	1.013	2.28	4.61	7.53
		-3.07	3.16	37.9	-0.997	-4.57	4.70	7.63
		1.53		36.4 36.9	1.004 -0.981	2.28 -4.58	4°70 4°70	7.33 7.42
		-3.07 1.53		36.0	0.996	2.28	4.70	7.25
		-3.08	3.16	36.6	-0.978	-4.58	4.70	7.37
		1.53		35.7	0.984	2.28	4.70	7.18
		-3.09	3.16	36.3	-0.975	-4.59	4.70	7.30
		1.53		35.6	0。980	2.28	4.70	7.15
120 -	14.35	-3.08	3.16	35.6	-0.970	-4.58	4.70	7.16
121	14.45	1.54	3.16	34.8	0.976	2.29	4.70	7.00
		-3.08		35.7	-0.957	-4.58	4.67	7.19
		1.54	3.14	34.7	0.971	2.29	4.67	6.98
		-3.08		35.7	-0.950	-4.59	4.67	7.17
		1.56		35.9	0.956	2.32	4.73	7.23
		-3.08		36.2	-0.949	-4.59	4.78	7.29
		1.56 -3.08		35.4 35.7	0.957 -0.941	2.32 -4.59	4.78 4.77	7.13 7.18
		1.54		34.5	0.958	2.29	4.70	6.93
		-3.08		34.9	-0.943	-4.59	4.70	7.02
		2.04		42.3	0.967	3.03	5.48	8.50
				47.3	-0.956	-5.33	6.14	9.52
133	14.22	2.04	4.13	45.5	0.961	3.03	6.14	9.16
134 -				47.0	-0.949	-5.33	6.14	9.46
		2.04		45.2	0.959	3.03	6.14	9.09
		-3.58			-0.937	-5.33	6.14	9.35
				45.8	0.950	3.04	6.12	9.20
	13.85							9.41
					0.942	3.04	6.15	9.13
					-0.927 0.931		6.15 6.15	9.32 8.82
							6.17	9.17
							6.14	9.09
								9.00
					0.913		6.13	8.62
							6.13	8.71

#### SPECIMEN F2HS-C7

Description: This specimen was similar to specimen F2-C1, with exceptions as noted. The letters "HS" appended to the connection type signify the use of high strength steel. Inspection was as for specimen F1HS-C7. The only significant departure from the detail drawing was that the fillet welds between the bottom connecting plate and the flange extended to the outer end of the plate, instead of stopping short of that point as shown on the drawing. In spite of this, no end returns were provided, in accordance with a note on the drawing.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data,

Total Energy Absorption: 897 kip-inches.

Plastic Load Reversals to Failure: 71  $(35\frac{1}{2} \text{ cycles})$ .

<u>Remarks</u>: A small buckle appeared after the 15th cycle in the top flange outside the connecting plate. The bottom plate buckled next to the column during the 21st cycle. The initiation of a crack was found at the end of the bottom plate on one side of the flange after the 28th cycle. Another crack appeared in the same weld at the end nearest the column during the 30th cycle. Failure occurred suddenly with a loud report at  $35\frac{1}{2}$  cycles when the two cracks noted above met, resulting in a longitudinal crack of the entire fillet weld.

# SPECIMEN TYPE F2HS-C7

# DIMENSIONS OF WF SECTION

																								8.16	
																								5.260	
BOTI	r O M			ΔN	G			10	)]	H	Ø	÷	¢	0	Ð	4	¢	o	4	.Q	Ð	-0	Ð	5.280	INCHES
TOP	FL	A١	<b>V</b> G	E	T	HI	C	×۸	ιE	55	>	49	0	-6	o	\$	Ø	s)	¢	ç	¢	÷C	÷	0.372	INCHES
BOTI	ſC₽		÷L,	4 N	G	E		1	C	K٨	VE S	S	¢	4	Ģ	-10	¢	¢	¢	Ð	ø	Ð	÷	0.371	INCHES
WEB	Th	1(	KI	NE	S	S	¢	1	1	¢	¢	đ	O	-10	Ø	Q	ø	Ð	0	0	o	0	°0	0.264	INCHES
ELAS	STI	C	M	DD	U	LU	Ş	<	)	ւ	ø	s	÷	÷	e,	ø	e.	Ø	¢	¢	¢	÷Ş	ę	30600。	KSI
YIEL	- D	ST	R	ΕS	S		Ü	c		e	Ø	Ð	Ð	Ð	Ð	Ð	Ð	÷	Ð	o	٩	÷	s)	51.200	KSI

# DIMENSIONS AND PROPERTIES OF TOP PLATE

## DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH, LP .	-9 C		റം	ø	തം പ	~	~ ~		~			14.06	INCHES
WIDTH, B													
AVERAGE LOCAT													
AVERAGE LUCAT													
THICKNESS, T													
ELASTIC MODUL	US .	÷ v	0 O	Ð	e o	¢.	ඩ බ	-0	¢	o 10	¢	32100.	KSI
YIELD STRESS	¢ Q	ю. н	ο	0	e o	ap ·	0 0	ŝ	*	ළ ව	e	56.000	KSI
*MEASURED FROM	FACE	OF	CO	LUM	N								

# WF SECTION PROPERTIES

AREA, A	a 10 a	ଦ କ କ	e ≪	0 0	0	Q	ø	ę	c	Ð	Q	Ð	5.96	INCHES**2
LOCATIO	N 6F (	CENTRO.	U D* (	, YE	Ð	۵	ø	¢	Ð	ю	Ð	ð.	4.08	INCHES
MOMENT	OF IN	ERTIA	L	0 0	o	ø	Ð	¢	ø	0	¢	e	69.6	INCHES**4
SECTION	MODUL	US o TO	JP 🤉	ST	ø	٩	0	Ð	Ð	¢	¢.	o	17.0	INCHES**3
SECTION	MGDUI	US, BU	TTC	JΜγ	SB	¢	÷	ø	Ð	Ð	Ð	Ð	17.1	INCHES**3
LOCATIO	VOFF	PLASTIC	. NE	EUTR	AL	AX	IS	* ,	Y	Ρ	£	o	4.08	INCHES
PLASTIC	MODUL	US, Z	đ)	୍ ତ	ø	÷	ę	Ó	Ð	o	0	c	19.2	INCHES**3
SHAPE F	ACTOR	0 0 0	s c	0 €	a	\$	¢	ø	Ð	Ð	÷	0	1.126	
YIELD MO	DMENT,	MY.	ः २	οc	Ð	¢	0	0	÷D	÷	0	0	72.72	KIP-FT.
PLASTIC														
*MEASURED														

SPECIMEN TYPE F2HS-C7

## SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

X	Δ.	YE	I	ST	SB
51.97		4.49	69.6	16.9	16.9
51.97	7.25	5.27	90.0	23.4	18.4
51.95	7.25	5.27	90.0	23.3	18.4
51.94	7.25	5.27	89.9	23.3	18.4
51.94	9.66	4.00	136.7	26.7	34.2
57.01	10.16	4.24	148.0	30.3	34.9
62.09	10.67	4.46	158.3	33.9	35.5
62.09	8.55	3.50	118.2	21.0	33.8
62.19	8.57	3.50	118.5	21.1	33.8
62.30	8.58	3.51	118.8	21.2	33.9
	6.44	4047	95.1	20.4	21.3
64.15				21.8	21.5
66.00	6.81	4.70	101.9	23.1	21.7
X	ΥP	Z.	F	MY	MP
51.97	4.65	18.8	1.019	78.71	80.20
51.97	7.29	22.8	1.137	85.66	97.41
51.95	7.28	22.08	1.137	85.66	97.40
51.94	7.28	22.8	1.137	85.65	
51.94	2.53	34.07	1.188		
57.01	3.55	37.8	1.140	141.52	161.40
62.09	4.58	40.4	1.089	158.43	
62.09	0.77	28.3	1.231	98.11	120.82
62.19	0.77	28.4	1.231	98.47	121.20
62.30	0.77	28.5		98.83	
62.30	4.50	24.5	1.096	95.38	
64.15	4.87	25.3	1.078	100.32	
66.00	5.25	26.1	1.101	101.11	111.33
		و المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ا	. 1	~ 1 1 m /	
	ANCE FROM CON			UHES	
A = AREA	OF CROSS-SEC	I LUNO LN			5 T 510 110 C

YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4

ST = SECTION MODULUS FOR TOP FLANGE, INCHES**3

SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3

YP = DIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.

- $Z = PLASTIC MODULUS_{0} INCHES**3$
- F = SHAPE FACTOR
- MY = YIELD MOMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET

#### BEAM PROPERTIES

LOCATION OF CRITICAL SECTION FOR PY* . . . . 51.97 INCHES LOCATION OF CRITICAL SECTION FOR PP* . . . . 51.97 INCHES * MEASURED FROM CONCENTRATED LOAD

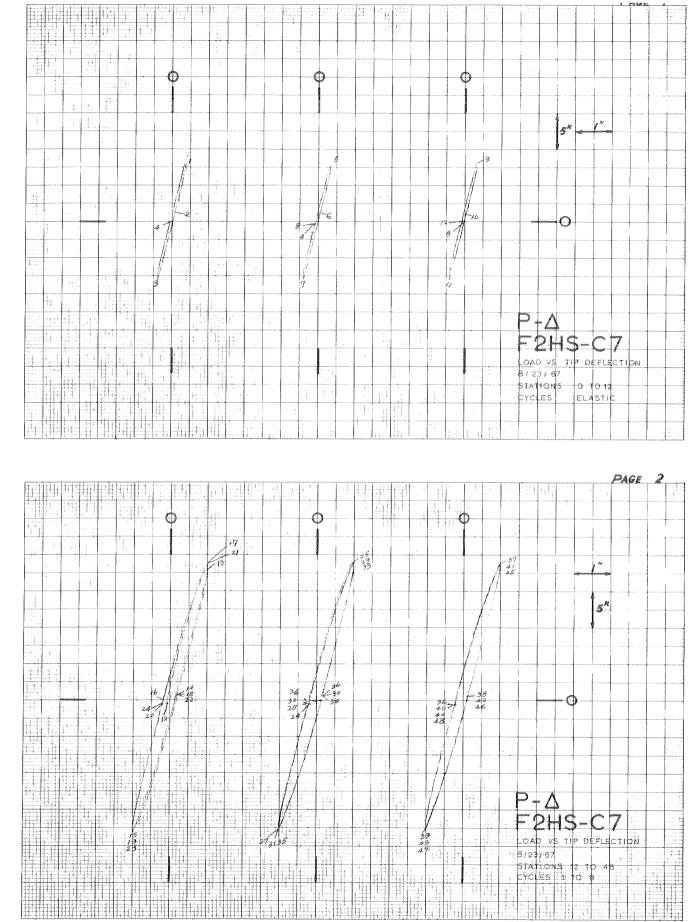



PLATE 40. LOAD VS. DEFLECTION - F2HS-C7



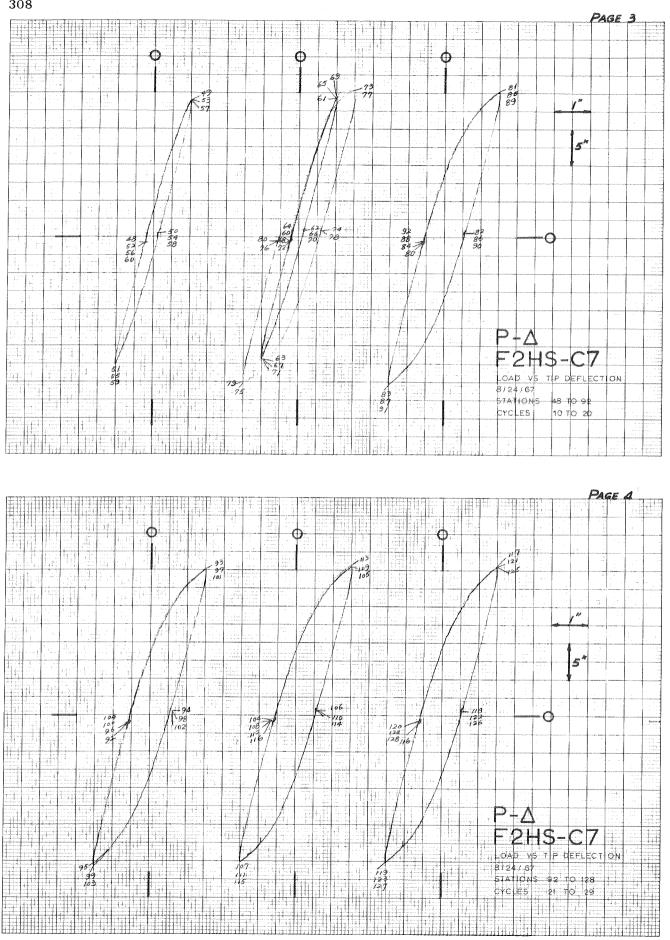
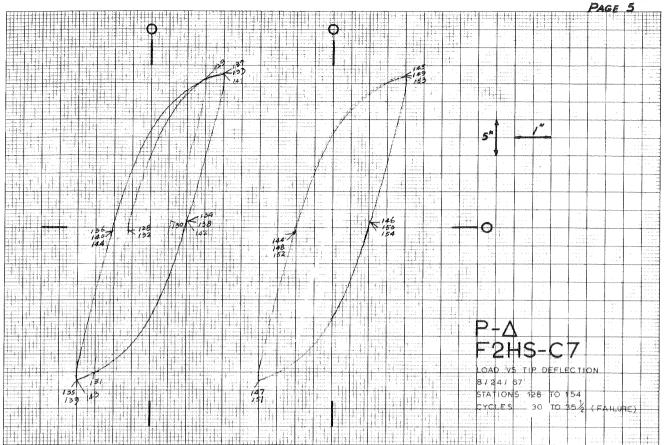
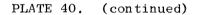





PLATE 40. (continued)  $\widetilde{\mathbb{V}}_{p}^{(i)}$ 

1





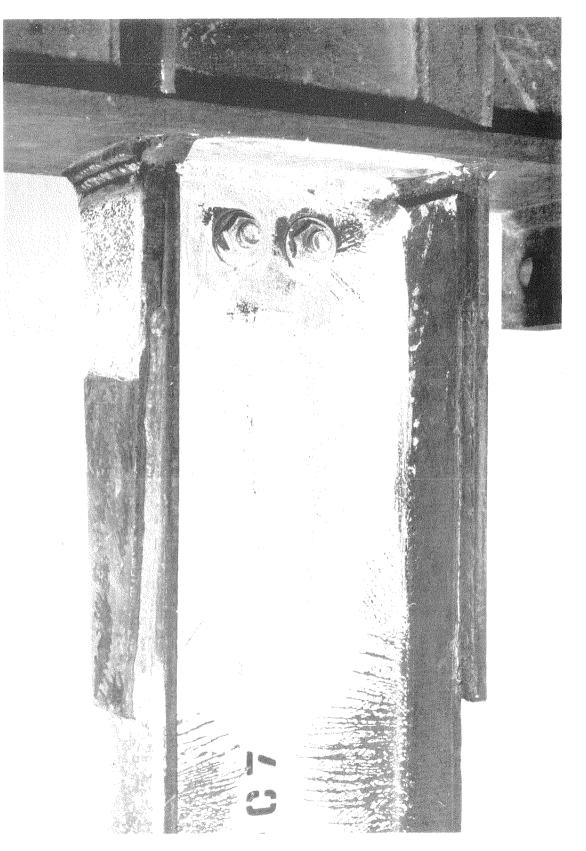
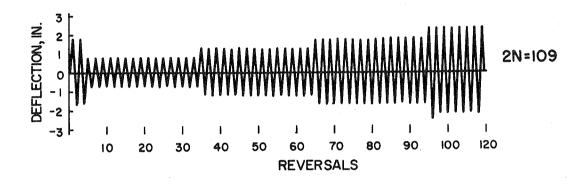



FIGURE 48. F2HS-C7

SPECIMEN F2HS-C7


Half- Cycle		<u>^</u>		W	Ē	$\overline{\wedge}$	⊼′	w
CyCrC	e KIPS	IN.	IN o	K-IN.				
1	18.56	0.86	0.34	3.0	1.002	1.34	0.53	0.51
2	-17.80	~0.65	0.27	2.9	-0.961	-1.01	0.43	0.49
	17.96	0.85	0.31	4.4	0.970	1.33	0.48	0.75
4	-17.75	-0.65	0.33	3.8	-0.958	-1.02	0.52	0.64
5	18.23	0.84	0.32	3.9	0.984	1.32	0.50	0.65
6	-17.74	-0.65	0.32	3.7	-0.958	-1.02	0.50	0.63
7	18.57	0.84	0.26	4.0	1.003	1.31	0.41	0.68
8	-16.98	-0.66	0.26	3.2	-0.917	-1.03	0.41	0.53
9	18.63	0.84	0.26	3.3	1.006	1.31	0.41	0.56
10	-17.00	-0.66	0.26	3.2	-0.918	-1.03	0.41	0.55
11	18.69	0.84	0.26	3.4	1.009	1.31	0.41	0.58
12	-16.98	-0.66	0.26	3.1	-0.917	-1.03	0.41	0.52
13	18.43	0.86	0.24	3.2	0.995	1.35	0.38	0.53
14	-16.75	-0.64	0.24	3.0	-0.904	-1.00	0.38	0.51
15	18.49	0.86	0.24	3.2	0.999	1.35	0.38	0.54
16	-16.81	-0.64	0.24	2.9	~0.908	-1.00	0.38	0.50
17	18.47	0.86	0.24	2.9	0.997	1,35	0.38	0.50
18	-16.82	-0.64	0.24	2.9	-0.908	-1.00	0.38	0.50
19	18.81	0.86	0.27	3.2	1.016	1.34	0.42	0.54
20	-16.83	-0.64	0.26	3.0	-0.909	-1.00	0.41	0.50
21 22	18.88	0.86	0.26	3.1	1.020	1.35	0.41	0.52
22	-16.67 18.69	-0.64 C.86	0.26 0.26	2.9 3.5	-0.900		0.41	0.50
24	-16.81	-0.64	0.26	3.0	1.009	1.35 -1.01	0.41 0.41	0.59 0.51
25	18.61	0.86	0.26	3.3	1.005	1.34	0.41	0.55
26	-16.22	-0.65	0.26	2.7	-0.876	-1.01	0.41	0.45
27	18.48	0.86	0.26	3.1	0.998	1.34	0.41	0.52
28	-16.20	-0.65	0.26	2.4	-0.874	-1.02	0.41	0.40
29	18.54	0.86	0.26		1.001	1.34	0.41	0.56
30	-16.14	-0.65	0.26	2.7	-0.871	-1.02	0.41	0.46
31	19.49	1.34	0.74		1.052	2.10	1.16	2.10
32	-19.54	-1.10		16.3		-1.72	1.72	2.76
33	19.65		1.10	15.7	1.061	2.10	1.72	2.66
34	-19.74	-1.08	1.10	16.6	-1.066	-1.69	1.73	2.81
35	19.65	1.34	1.05	15.6	1.061	2.10	1.64	2.63
. 36		-1.10	1.05	15.1	-1.056	-1.72	1.65	2.56
						2.10		2.66
						-1.72		
						2.10		
						-1.72		
						2.13		
	-19.58					-1.70		
						2.13		2.59
44					-1.038			
						2.13		
46	-19.12					-1.69		2.35
						2.17		2.58
48 49					-1.033			
					-1.031	2.17 -1.65		2.55
51			1.09			2.17		2.59
12	27000	2030	L 0 V 7	ふつつつ	LOVIL	2021	2012	2.61

Half-	Р	Δ	$\Delta'$	W	$\bar{\mathbf{p}}$	$\overline{\wedge}$	$\overline{\Delta}^{\prime}$	Ŵ
Cycle	KIPS	IN.		K-IN.			Ke.r	
52 -	-19.12	-1.06	1.09	15.5	-1.033	-1.65	1.71	2.62
53	19.73	1.39	1.05	15.7	1.065	2.17	1.64	2.65
54 -	-19.28	-1.06	1.06	15.7	-1.041	-1.65	1.66	2.65
55	19.65	1.39	1.06	15.6	1.061	2.17	1.66	2.63
56 -	-19.14	-1.06	1.06	15.4	-1:034	-1.65	1.66	2.61
57	19.71	1.39	1.06	15.9	1.064	2.17	1.66	2.68
58 -	-19.24	-1.06	1.06	15.6	-1.039	-1.65	1.66	2.63
		1.38	1.09		1.077	2.16	1.71	2.87
			1.09	14.5	-1.025	-1.67	1.71	2.45
61	20.57	1.87				2.92		4.45
						-2.42		5.20
						2.92	3.09	5.51
					-1.116		3.09	5.19
					1.115		3.09	5.49
						-2.42	3.09	5.11
						2,92		5.56
						-2.42		5.25
						2.92	3.08	5.34
						-2.42		5.26
71	20.49	1.87	1.97	31.2	1.107	293	3.08	5.27

## SPECIMEN F2HS-C9

<u>Description</u>: This specimen was similar to specimen F2HS-C7 in detailing, fabrication and inspection. In particular, the remarks concerning the bottom plate weld also apply here.

Program of Cycling:



Test Control: Tip deflection.

Raw Data Included: Graphical load-deflection data.

Total Energy Absorption: 2,149 kip-inches.

Plastic Load Reversals to Failure: 109 ( $54\frac{1}{2}$  cycles).

<u>Remarks</u>: Cracks developed at the column face at both ends of the top plate butt-weld during the first half of the first cycle. No buckling was visible, however. After two cycles, fine cracks were found at the bottom cope, and at the outer end of one of the bottom plate fillet welds, respectively. Buckling of the top flange was apparent after the 8th cycle. During the next cycle, a crack appeared at the outer end of the other bottom plate fillet weld. About the 42nd cycle, several new cracks developed, in the upper cope and in the ends nearest the column, of both fillet welds of both connecting plates. The bottom plate butt-weld cracked through during the 50th cycle, precipitating failure of the connection.

# SPECIMEN TYPE F2HS-C9

## DIMENSIONS OF WF SECTION

DE	PΤ	H	Q	0	÷	0	¢	>	Q	¢.	4.)	40	-10	<i>\$</i> 0	¢	0	.0	9	Ð	0	¢	C	Ð	8.15	INCHES
TO	Р	FL	A٨	IGE	2	11	)1	Ή		Q	¢	0	Ð	-sQ	¢	sD	0	ø	10	ø	0	Ð	Q	5.250	INCHES
80	and the second	CM	F	14	N(	зE	100	1I.	D W	-	¢	ø	ø	¢	÷	¢	¢	Ð	£	ø	¢	Ð	÷	5.280	INCHES
																								0.371	
8 O	TT	ОM	F	LA	N(	ЗE	1	1	I C	KI	VES	S	¢	ø	£	ø	¢	¢	Ð	0	-@	ø	0	0.371	INCHES
WE	8	TH	10	K٨	ES	5	¢		Q	-0	-@	Ð	0	\$	¢	¢	0	÷	ø	i0	ø	÷	ø	0.269	INCHES
EL	AS	janan }eraej	С	MC	DU		15	2	÷	\$9	0	ø	ø	ø	÷	÷	Ð	¢	ø	÷	0	÷	Ð	30600。	KSI
ΥI	EL	D	ST	RE	ESS	5	C	2	с	0	0	Ð	9	ø	0	÷	Ð	Ð	40	Q	Ð	Q	Ð	51.200	KSI

#### DIMENSIONS AND PROPERTIES OF TOP PLATE

## DIMENSIONS AND PROPERTIES OF BOTTOM PLATE

LENGTH, LP	4 D	÷C	e e	Ø	¢	\$ \$	¢	¢ ¢	Ð	¢	\$	e 40	14.01	INCHES
WIDTH, B .	\$ D	¢	е e	۲	ø	0 0	Ð	e e	¢	÷	ø	0 0	6.27	INCHES
AVERAGE LOC.	ATIO	N C	F C	OLL	JMN	ENI	D O	FW	ELC	)*,	Q	Ф	3.77	INCHES
AVERAGE LOC	ATIO	N O	F O	UTE	R	END	OF	WE	L D *	× 9	P	9 Q	14.01	INCHES
THICKNESS,	Г о	-0	Q 40	¢	Ð	© ©	ø	¢ ≈	4D	0	\$	0 6	0.359	INCHES
ELASTIC MOD	JLUS	\$	¢ ¢	Æ	0	<b>a</b> o	.0	0 0	\$		¢	େବ	32100.	KSI
YIELD STRES	S o	d) i	o o	¢	֩	e 'o	ø	n n	÷	ø	0	9 -10	56.000	KSI
*MEASURED FROM	N FA	СE	0F	01	UM	N								

#### WF SECTION PROPERTIES

AREA, A		5.99 INCHES**2
LOCATION OF CENTROID*, YE .		4.07 INCHES
MOMENT OF INERTIA, I	6 6 6 ⁽ () 6 6 <b>6 6</b>	69.4 INCHES**4
SECTION MODULUS, TOP, ST .	6 4 4 6 6 <b>4</b> 6 4	17.0 INCHES**3
SECTION MODULUS, BOTTOM, SE		17.1 INCHES**3
LOCATION OF PLASTIC NEUTRAL	LAXIS*, YP	4.05 INCHES
PLASTIC MODULUS, Z		19.2 INCHES**3
SHAPE FACTOR	5 6 6 8 8 6 9 9	1.129
YIELD MOMENT, MY	化化化化化化化	72.55 KIP-FT.
PLASTIC MOMENT, MP	*	81.94 KIP-FT.
*MEASURED FROM OUTSIDE FACE C	OF BOTTOM FLANGE	

SPECIMEN TYPE F2HS-C9

SECTION PROPERTIES AT SELECTED CROSS-SECTIONS

52.10       5.99       4.52       69.4       16.6       16.7         52.10       7.27       5.30       90.1       23.1       18.2         52.04       7.27       5.29       90.0       23.1       18.2         51.99       7.26       5.29       90.0       23.1       18.2         51.99       7.26       5.29       90.0       23.1       18.2         51.99       9.62       4.04       136.6       26.5       33.8         57.09       10.12       4.28       148.0       30.2       34.6         62.20       8.51       3.54       118.7       21.0       33.5         62.21       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.00       6.74       4.75       102.0       23.0       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       2.9       1		Х	A	YE	¥.	ST	SB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					69.4	16.6	16.7
52.04       7.27       5.29       90.0       23.1       18.2         51.99       7.26       5.29       90.0       23.1       18.2         51.99       9.62       4.04       136.6       26.5       33.8         57.09       10.12       4.28       148.0       30.2       34.6         62.20       10.62       4.50       158.4       33.8       35.2         62.20       8.51       3.54       118.7       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.63       98.6       21.6       21.3         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       29       1.149       85.11       97.75         51.99       7.21       22.9       <							18.2
51.99       7.26       5.29       90.0       23.1       18.2         51.99       9.62       4.04       136.6       26.5       33.8         57.09       10.12       4.28       148.0       30.2       34.6         62.20       10.62       4.50       158.4       33.8       35.2         62.20       8.51       3.54       118.6       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP       52.10       7.64       80.22         52.10       7.23       22.9       1.149       85.14       97.79       51.99       7.21       22.9       1.149       85.11       97.75       51.99       2.64       34.6       1.193       123.68       147.58       57.09       3.64       31.09							
51.99       9.62       4.04       136.6       26.5       33.8         57.09       10.12       4.28       148.0       30.2       34.6         62.20       10.62       4.50       158.4       33.8       35.2         62.20       8.51       3.54       118.7       21.0       33.5         62.21       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.55         X       YP       Z       F       MY       MP         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.77         51.99       7.21       22.9       1.149       85.14       97.79         51.99       7.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       0.81       28							18.2
57.09       10.12       4.28       148.0       30.2       34.6         62.20       10.62       4.50       158.4       33.8       35.2         62.20       8.51       3.54       118.6       21.0       33.5         62.21       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.79         51.99       7.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       0.81       28.4       1.235       97.96       121.02         62.20       0.81       28.4       1.235       98.00       121.02         62.20       0.81 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>33.8</td></td<>							33.8
62.20       10.62       4.50       158.4       33.8       35.2         62.20       8.51       3.54       118.6       21.0       33.5         62.21       8.52       3.54       118.7       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       4.67       18.8       1.033       77.64       80.22         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.11       97.75         51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40							34.6
62.20       8.51       3.54       118.6       21.0       33.5         62.21       8.52       3.54       118.7       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       4.67       18.8       1.033       77.64       80.22         52.10       7.23       22.9       1.149       85.14       97.83         52.04       7.22       22.9       1.148       85.11       97.75         51.99       7.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.82       2							35.2
62.21 8.52 3.54 118.7 21.0 33.5 62.22 8.52 3.54 118.7 21.0 33.5 62.22 6.37 4.51 95.1 20.3 21.1 64.11 6.56 4.63 98.6 21.6 21.3 66.00 6.74 4.75 102.0 23.0 21.5 X YP Z F MY MP 52.10 4.67 18.8 1.033 77.64 80.22 52.10 7.23 22.9 1.149 85.16 97.83 52.04 7.22 22.9 1.149 85.14 97.79 51.99 7.21 22.9 1.149 85.11 97.75 51.99 2.64 34.6 1.193 123.68 147.58 57.09 3.64 37.7 1.144 140.71 160.95 62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.00 121.06 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES*2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES*44				3.54	118.6		33.5
62.22       8.52       3.54       118.7       21.0       33.5         62.22       6.37       4.51       95.1       20.3       21.1         64.11       6.56       4.63       98.6       21.6       21.3         66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       4.67       18.8       1.033       77.64       80.22         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.79         51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.81       28.4       1.235       98.00       121.02         62.21       0.82       28.4       1.235       98.00       121.02         62.22       0.82				3.54	118.7	21.0	33.5
62.22 6.37 4.51 95.1 20.3 21.1 64.11 6.56 4.63 98.6 21.6 21.3 66.00 6.74 4.75 102.0 23.0 21.5 X YP Z F MY MP 52.10 4.67 18.8 1.033 77.64 80.22 52.10 7.23 22.9 1.149 85.16 97.83 52.04 7.22 22.9 1.149 85.14 97.79 51.99 7.21 22.9 1.148 85.11 97.75 51.99 2.64 34.6 1.193 123.68 147.58 57.09 3.64 37.7 1.144 140.71 160.95 62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4			8.52	3.54	118.7	21.0	33.5
64.11 6.56 4.63 98.6 21.6 21.3 66.00 6.74 4.75 102.0 23.0 21.5 X YP Z F MY MP 52.10 4.67 18.8 1.033 77.64 80.22 52.10 7.23 22.9 1.149 85.16 97.83 52.04 7.22 22.9 1.149 85.14 97.79 51.99 7.21 22.9 1.148 85.11 97.75 51.99 2.64 34.6 1.193 123.68 147.58 57.09 3.64 37.7 1.144 140.71 160.95 62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.00 121.06 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4				4.51	95.1	20.3	21.1
66.00       6.74       4.75       102.0       23.0       21.5         X       YP       Z       F       MY       MP         52.10       4.67       18.8       1.033       77.64       80.22         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.79         51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.81       28.4       1.235       97.96       121.02         62.21       0.82       28.4       1.235       98.00       121.02         62.22       0.82       28.4       1.235       98.04       121.01         62.22       0.82       28.4       1.0235       98.04       121.01         62.22       0.82       28.4       1.0235       98.04       121.01         64.11			6.56	4.63	98.6	21.6	21.3
52.10       4.67       18.8       1.033       77.64       80.22         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.79         51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.81       28.4       1.235       98.00       121.02         62.21       0.82       28.4       1.235       98.00       121.02         62.22       0.82       28.4       1.235       98.04       121.11         62.22       0.82       28.4       1.0235       98.04       121.01         62.22       0.82       28.4       1.0235       98.04       121.11         62.22       0.82       25.2       1.080       99.37       107.31         66.00       5.29       25.9       1.004       100.18       110.58         <			6.74	4.75	102.0	23.0	21.5
52.10       4.67       18.8       1.033       77.64       80.22         52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.79         51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.81       28.4       1.235       98.00       121.02         62.21       0.82       28.4       1.235       98.00       121.02         62.22       0.82       28.4       1.235       98.04       121.11         62.22       0.82       28.4       1.0235       98.04       121.01         62.22       0.82       28.4       1.0235       98.04       121.11         62.22       0.82       25.2       1.080       99.37       107.31         66.00       5.29       25.9       1.004       100.18       110.58         <							
52.10       7.23       22.9       1.149       85.16       97.83         52.04       7.22       22.9       1.149       85.14       97.79         51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.81       28.4       1.235       97.96       121.02         62.20       0.81       28.4       1.235       98.00       121.02         62.21       0.82       28.4       1.235       98.04       121.01         62.22       0.82       28.4       1.0235       98.04       121.01         62.22       0.82       28.4       1.0235       98.04       121.01         62.22       0.82       28.4       1.035       98.04       121.01         62.22       0.82       25.2       1.080       99.37       107.31         66.00       5.29       25.9       1.000.18       110.58         X <t< td=""><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td></t<>		Х					
52.04 7.22 22.9 1.149 85.14 97.79 51.99 7.21 22.9 1.148 85.11 97.75 51.99 2.64 34.6 1.193 123.68 147.58 57.09 3.64 37.7 1.144 140.71 160.95 62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		52.10	4.67	18.8			
51.99       7.21       22.9       1.148       85.11       97.75         51.99       2.64       34.6       1.193       123.68       147.58         57.09       3.64       37.7       1.144       140.71       160.95         62.20       4.64       40.3       1.091       157.65       172.01         62.20       4.64       40.3       1.091       157.65       172.01         62.20       0.81       28.4       1.235       97.96       121.02         62.21       0.82       28.4       1.235       98.00       121.02         62.22       0.82       28.4       1.235       98.00       121.02         62.22       0.82       28.4       1.235       98.04       121.11         62.22       0.82       28.4       1.096       94.69       103.73         64.11       4.92       25.2       1.080       99.37       107.31         66.00       5.29       25.9       1.104       100.18       110.58         X       = DISTANCE FROM CONCENTRATED LOAD, INCHES       100.18       110.58         YE       DIST.       FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES         I       = MOMEN		52.10	7.23	22.9	1.149		
51.99 2.64 34.6 1.193 123.68 147.58 57.09 3.64 37.7 1.144 140.71 160.95 62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.00 121.06 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		52.04					
57.09 3.64 37.7 1.144 140.71 160.95 62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		51.99					
62.20 4.64 40.3 1.091 157.65 172.01 62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		51.99					
62.20 0.81 28.4 1.235 97.96 121.02 62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		57.09	3.64	37.7	1.144	140.71	160.95
62.21 0.82 28.4 1.235 98.00 121.06 62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		62.20	4.64	40.3	1.091	157.65	172.01
62.22 0.82 28.4 1.235 98.04 121.11 62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		62.20	0.81	28.4			121.02
62.22 4.55 24.3 1.096 94.69 103.73 64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM OUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		62.21	0.82	28.4	1.235	98.00	121.06
64.11 4.92 25.2 1.080 99.37 107.31 66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4		62.22	0.82	28.4	1.235	98.04	121.11
66.00 5.29 25.9 1.104 100.18 110.58 X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4	-	62.22	4.55	24.3	1.096	94.69	103.73
<pre>X = DISTANCE FROM CONCENTRATED LOAD, INCHES A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4</pre>		64.11	4.92	25.2	1.080	99.37	107.31
A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4	\$	66.00	5.29	25.9	1.104	100.18	110.58
A = AREA OF CROSS-SECTION, INCHES**2 YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4							
YE = DIST. FROM CUTSIDE OF BOTTOM PLATE TO CENTROID, INCHES I = MOMENT OF INERTIA, INCHES**4						CHES	
I = MOMENT OF INERTIA, INCHES**4							
						TO CENTROID,	I NCHES
cT = ccction modulus cod tod clance. Inchestat							
SB = SECTION MODULUS FOR BOTTOM FLANGE, INCHES**3							

YP = DIST. FROM OUTSIDE OF BOTTOM PLATE TO PLASTIC N.A., IN.

- Z = PLASTIC MODULUS, INCHES**3
- F = SHAPE FACTOR
- MY = YIELD MOMENT, KIP-FEET
- MP = PLASTIC MOMENT, KIP-FEET

# BEAM PROPERTIES

LENGTH, L. . . . . . . . . . . . . . . . . . 66.0 INCHES LOCATION OF CRITICAL SECTION FOR PY* . . . . 52.10 INCHES LOCATION OF CRITICAL SECTION FOR PP* . . . . 52.10 INCHES * MEASURED FROM CONCENTRATED LOAD

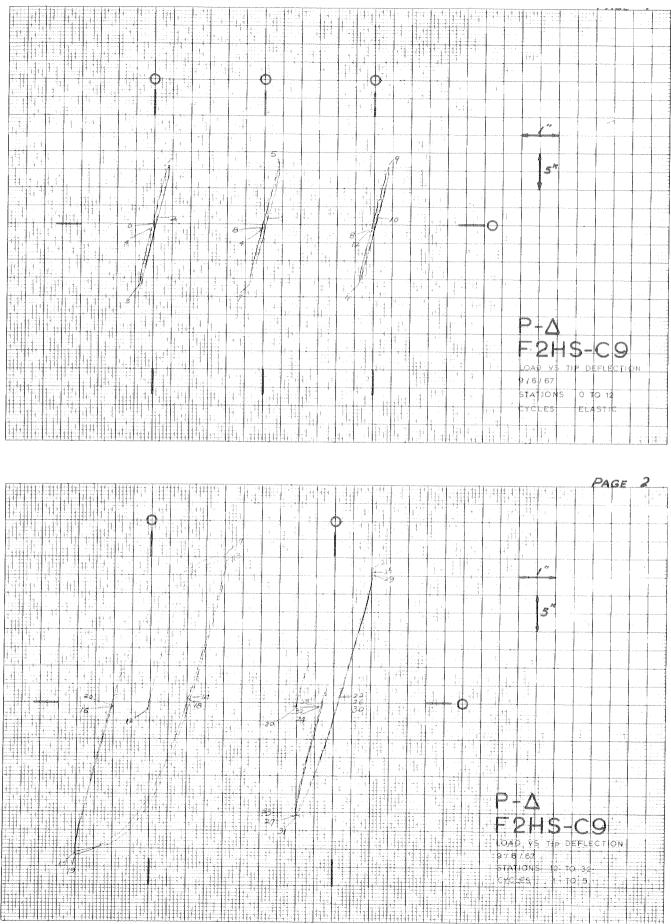
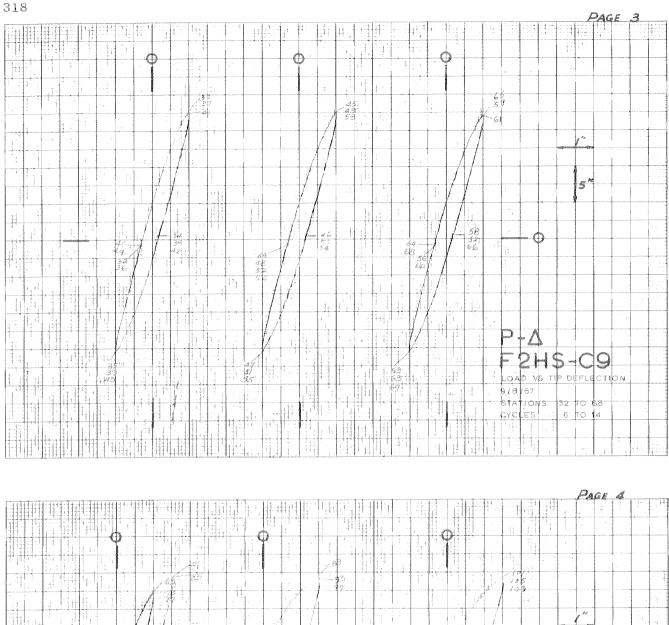




PLATE 41. LOAD VS. DEFLECTION - F2HS-C9



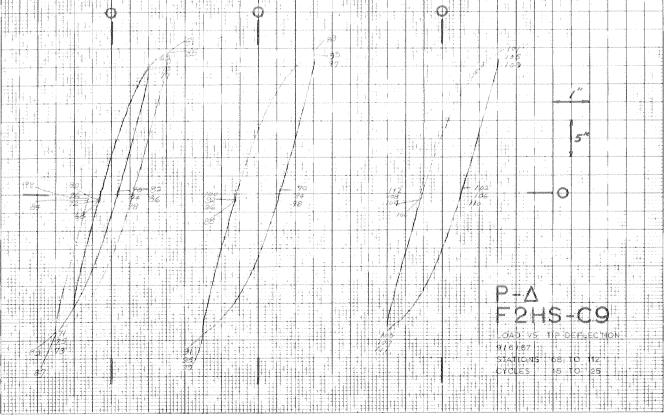



PLATE 41. (continued)

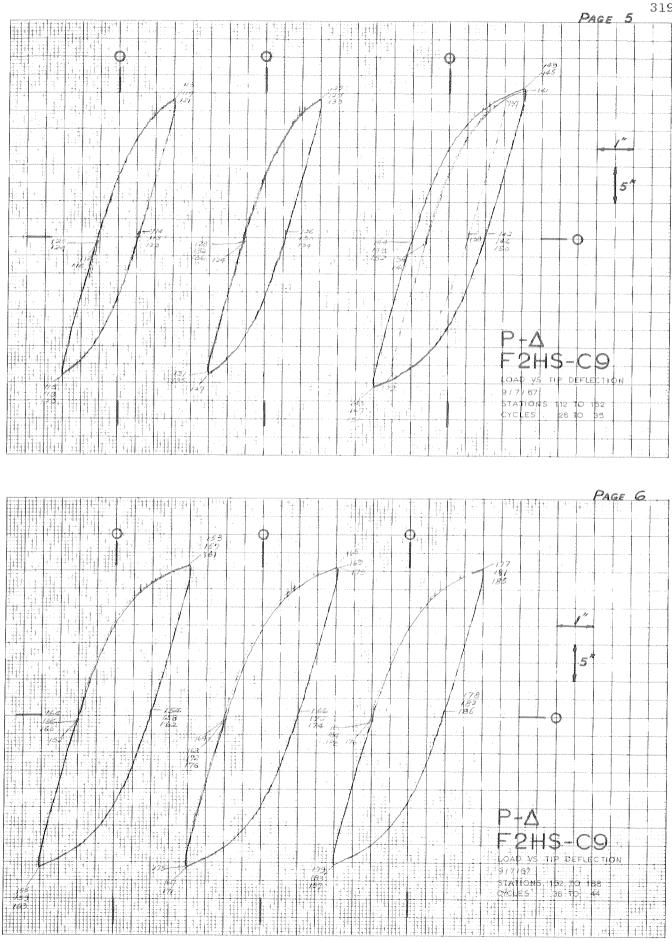



PLATE 41. (continued)

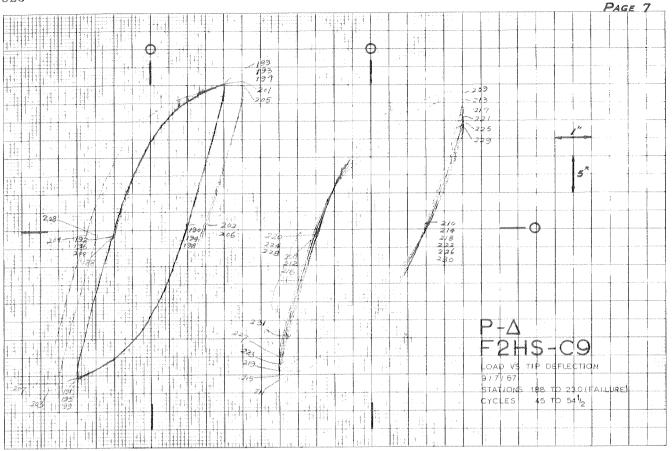



PLATE 41. (continued)

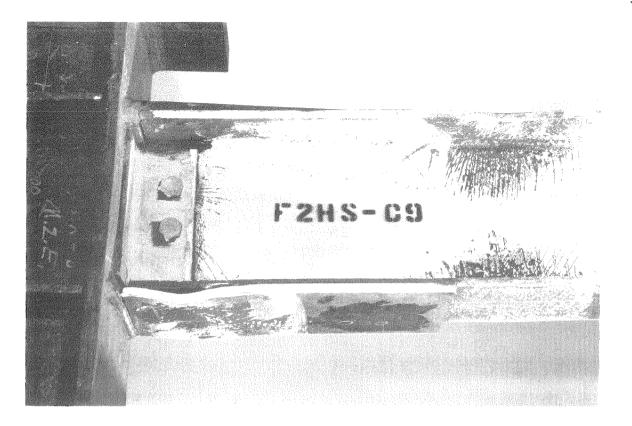



FIGURE 49. F2HS-C9

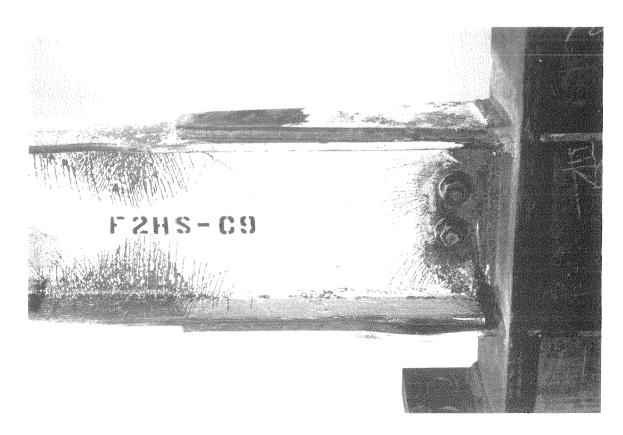



FIGURE 50. F2HS-C9

SPECIMEN F2HS-C9

Half-		Δ	$\Delta^{2}$	Ŵ	P	<u>ل</u>	<u>ک</u>	Ŵ
Cycle	KIPS	IN o	1No	K-IN.				
1	19.16	1.79	1.20	18.6	1.037	2.80	1.88	3.14
1 2	-20.09	-1.65	2.03	33.5	-1.087	-2.58	3.18	5.66
3	20.08	1.80	1.96	32.0	1.087	2.81	3.06	5.41
4	-20.67	-1.65	1.91	32.0		-2.57	2.99	5.42
5	18.07	0.81	1.08	14.5	0.978	1.26	1.68	2.45
6	-14.89	-0.73	0.38	3.4	-0.806	-1.14	0.60	0.57
	17.83	0.81	0.38	5.1	0.965	1.27	0.60	0.86
8	-14.99	-0.72	0.39	3.7	-0.811	-1-13	0.60	0.63
9	17.37	0.82	0.36	4.6	0.940	1.28	0.56	0.78
10	-15.19	-0.72	0.36	3.2	-0.822	-1.13	0.56	0.54
	17.81	0.81	0.39	5.7	0.964	1.27	0.60	0.97
12	-14.62	-0.73	0.38	2.9	-0.791	-1.14	0.60	0.50
13	17.75	0.81	0.36	4.09	0.960	2.27	0.57	0.83
14	-14.67	-0.73	0.36	3.0	-0.794	-1.14	0.57	0.51
15	17.42	0.81	0.37	5.2	0.943	1.27	0.57	0.89
16	-14.64	-0.73	0.37	3.0	-0.792	-1.14	0.57	0.50
17	17.59	0.81	0.38	4.0	0.952	1.27	0.60	0.79
18	-14.83	-0.73	0.39	3.7	-0.802	-1.14	0-60 0-60	0.62 0.77
19	17.45	0.81	0.39 0.39	4.5 3.5	-0.806	-1.14	0.60	0.59
20	-14.89	-0.73 0.81	0.39	309 408	0.946	1.27	0.60	0.81
21 22	17.48	-0.73	0.39	3.5	-0.802	-1.14	0.60	0.60
23	16.99	0.81	0.37	4.3	0.919	1.26	0.57	0.73
24	-14.82	-0.74	0.37	3.2	-0.802	-1.15	0.57	0.55
25	16.80	0.81	0.37	4.3	0.909	1.27	0.57	0.73
26	-14.80	-0.74	0.38	3.5	-0.801	-1.15	0.59	0.60
27	17.10	0.82	0.38	4.3	0.925	1.28	0.59	0.73
28	-14.85	-0.74	0.38	3.5	-0.804	-1.15	0:59	0.60
29	17.35	0.79	0.38	4.8	0.939	1.24	0.60	0.81
30	-14.74	-0.75	0.41	3.7	-0.798	-1.17	0.63	0.62
31	17.29	0.79	0.41	5.4	0.935	1.24	0.63	0.91
32	-14.88	-0.75	0.41	3.3	-0.805	-1.17	0.63	0.56
33	17.08	0.79	0.40	5.2	0.924	1.24	0.62	0.87
34	-14.89	-0.75		3.3	-0.806	-1.17	0.64	0.55
	19.07	1.27			1.032	1.98	1.29	2.18
36	-18.42	-1.20		14.4	-0.997	-1.88	1.76	2.44
	19.13	1.27			1.035	-1.87	1.76	2.75 2.47
38	-18.62			14.6		1.98	1.76	2.92
39 40	19.32	1.27			-1.004	-1.87	1.74	2.62
		1.27			1.042	1.99	1.074	2.74
42	-18,58			15.0	-1.006	-1.87	1.74	2.54
		1.27				1.99	1.74	2.81
44	-18.71	-1.19	1.12	15.0	-1.013	-1.87	1.74	2.53
45	18.85	1.26			1.020	1.97	1.66	2.78
46	-18.31	-1.21		13.1		-1.89	1.64	2.22
	18.79	1.26		14.4		1.98	1.64	2.43
48	-18.34		1.05	12.2		-1.89	1.64	
	18.78	1.26				1.98	1.64	2.42
	-18.35	-1.21		12.8		-1.89	1.64	
51	18.91	1.24	1.07	15.2	1.024	1.94	1.68	2.58

Half		Δ	$\Delta^2$	Ŵ	ana Tri San J	Ď	Δ.	W
Cycle	e KIPS	IN.	ξN _o	K-IN.	8			
52	-18.39	-1.22	1.09	13.8	-0.995	-1.91	1.71	2.34
53	18.31	1.24	1.09	14.4	0.991	1.94	1.71	2.43
54	-18.51	-1.22	1.09	14.1	-1.001	-1.91	1.71	2.39
55	18.95	1.25	1.09	15.2	1.025	1.95	1.71	2.57
56 57	-18.51	-1.22	1.09	13.5	-1.001	-1.91	1.71	2.28
57 58	18.85 -18.73	1.24 -1.23	1.10	15.7 14.1	1.020	1.94 -1.93	1.71	2.65 2.39
59	18.73	1.24	1.09	15.1	1.014	1.94	1.71	2.55
60	-18.58	-1.24	1.09	13.9	-1.006	-1.93	1.71	2.36
61	18.72	1.24	1.09	14.8	1.013	1.94	1.71	2.50
62	-18.52	-1.23	1.09	13.9	-1.002	-1.92	1.71	2.35
63	18.86	1.26	1.06	15.3	1.021	1.97	1.66	2.59
64	-18.58	-1.21	1.07	14.0	-1.006	-1.89	1.67	2.37
65	20.02	1.74	1.52	22.9	1.084	2.73	2.38	3.88
66	-20.24	-1.68	1.89	28.9	-1.095	-2.63	2.96	4.89
67	20.43	1.76	1.89	30.9	1.105	2.75	2.96	5.22
68 69	-20.14 20.47	-1.68 1.76	1.89 1.89	28.7 30.5	-1.090 1.108	-2.63 2.75	2。96 2。96	4.85 5.17
70	-20.29	-1.68	1.89	29.3	-1.098	-2.63	2.96	4.95
71	20.54	1.76	1.92	31.7	1.112	2.75	3.00	5.37
72	-20.33	-1.66	1.91	29.7	-1.100	-2.59	2.99	5.03
73	20.46	1.76	1.91	30.3	1.107	2.75	2.99	5.12
74	-20.29	-1.66	1.91	29:8	-1.098	-2.59	2.99	5.05
75	20.44	1.76	1.91	30.7	1.106	2.76	2.99	5.19
76	-20.47	-1.66	1,92	29.9	-1.108	2. 60	2.99	5.06
77 78	20.42 -20.15	1.77	1.93	30.9	1.105	2.77	3.02 2.99	5.23
79	20.35	-1.66 1.76	1.91 1.91	29.4 29.5	-1.090 1.101	-2。60 2。76	2.99	4.97 4.99
80	-20.18	-1.66	1.91	29.1	-1.092	-2.60	2.99	4.92
81	19.27	1.76	1.91		1.043		2.99	4.73
82	-19.44	-1.68	1.91	27.9	-1.052	-2.63	2.99	4.72
83	20.09	1.80	1.90	29.8	1.087	2.81	2.98	5.05
84	-19.96	-1.63	1.88	28.2	-1.080	-2.55	2.93	4.77
85	20.31				1.099		2.93	4.95
86	-19.76	-1.63	1.88	27.5	-1.069	-2.55	2.93	4.65
87 88	20.04 -19.84	1.80	1.88 1.88	29.1 27.9	1.084	2.81 -2.55	2.93 2.93	4.92 4.72
89	20.05	1.81	1.88	29.5	1.085	2.83	2.95	4.99
90	-20.05	-1.64	2.92	27.8	-1.085	-2.57	3.00	4.70
91	20.01	1.81	1.92	29.8	1.083	2.83	3.00	5.03
92	-20.11	-1.64	1.92	28.8	-1.088	-2.57	3.00	4.87
93	19.75		1.92	30.0	1.069	2.81	3.00	5.07
94	-20.01	-1.64	1.92	28.3	-1.083	-2.57	3.00	4.78
95	20.15	2.32	2.42	39.4	1.091	3.63	3.78	6.67
96 97	-20.82 19.57	2.29	3.15 3.10	50.8	-1.127 1.059	-3.78 3.58	492 485	8.59
98	-20.68	-2.13	2.81	51.6 42.5	-1.119	-3.34	4.39	8.73 7.19
99	18.46	2.31	2.86	43.3	0.999	3.61	4.47	7.33
	-20.30		2.87	40.9	-1.099	-3.35	4.48	6.91
101	17.35	2.32	2.89	42.4	0.939	3.63	4.52	7.00
102	-19.77	-2.15	2.89	39.4	-1.070	-3.36	4.51	6.67
103	16.31	2.34	2.91	38.5	0.882	3.65	4.55	6.51
104	-19.12	-2.16	2.94	36.9	-1.035	-3.37	4.59	6.24

	P KIPS			W K-IN.		Δ	$\Delta'$	Ŵ
108	15.35 -18.23 14.50 -17.06 13.89	2.35 -2.17 2.36 -2.19 2.37	2.96 2.99 3.01 3.06 3.08	32.4	0.831 -0.986 0.784 -0.923 0.751	3.68 -3.39 3.70 -3.42 3.71	4.63 4.67 4.71 4.79 4.82	6.07 5.53 5.49 5.24 5.07