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Background: The gut microbiome may play a role in the pathogenesis of

neuropsychiatric diseases including major depressive disorder (MDD). Bile acids (BAs)

are steroid acids that are synthesized in the liver from cholesterol and further processed

by gut-bacterial enzymes, thus requiring both human and gut microbiome enzymatic

processes in their metabolism. BAs participate in a range of important host functions

such as lipid transport and metabolism, cellular signaling and regulation of energy

homeostasis. BAs have recently been implicated in the pathophysiology of Alzheimer’s

and several other neuropsychiatric diseases, but the biochemical underpinnings of these

gut microbiome-linked metabolites in the pathophysiology of depression and anxiety

remains largely unknown.

Method: Using targeted metabolomics, we profiled primary and secondary BAs in

the baseline serum samples of 208 untreated outpatients with MDD. We assessed the

relationship of BA concentrations and the severity of depressive and anxiety symptoms

as defined by the 17-item Hamilton Depression Rating Scale (HRSD17) and the 14-item

Hamilton Anxiety Rating Scale (HRSA-Total), respectively. We also evaluated whether the

baseline metabolic profile of BA informs about treatment outcomes.

Results: The concentration of the primary BA chenodeoxycholic acid (CDCA) was

significantly lower at baseline in both severely depressed (log2 fold difference (LFD) =

−0.48; p = 0.021) and highly anxious (LFD = −0.43; p = 0.021) participants compared

to participants with less severe symptoms. The gut bacteria-derived secondary BAs

produced from CDCA such as lithocholic acid (LCA) and several of its metabolites, and

their ratios to primary BAs, were significantly higher in the more anxious participants

(LFD’s range = [0.23, 1.36]; p’s range = [6.85E-6, 1.86E-2]). The interaction analysis
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of HRSD17 and HRSA-Total suggested that the BA concentration differences were more

strongly correlated to the symptoms of anxiety than depression. Significant differences

in baseline CDCA (LFD = −0.87, p = 0.0009), isoLCA (LFD = −1.08, p = 0.016)

and several BA ratios (LFD’s range [0.46, 1.66], p’s range [0.0003, 0.049]) differentiated

treatment failures from remitters.

Conclusion: In patients with MDD, BA profiles representing changes in gut microbiome

compositions are associated with higher levels of anxiety and increased probability

of first-line treatment failure. If confirmed, these findings suggest the possibility of

developing gut microbiome-directed therapies for MDD characterized by gut dysbiosis.

Keywords: metabolomics, gut microbiome, bile acids, anxiety, depression, major depressive disorder

INTRODUCTION

Abnormalities in the gut microbiome and gut-brain axis
have emerged as potentially important contributors to the
pathophysiology of neuropsychiatric diseases. Several microbe-
derived metabolites (e.g., neurotransmitters, short-chain fatty
acids, indoles, bile acids [BAs], choline metabolites, lactate, and
vitamins) play a significant role in the context of emotional and
behavioral changes (Caspani et al., 2019). Both direct and indirect
mechanisms have been proposed through which gut microbial
metabolites can affect central nervous system (CNS) functions
(Yarandi et al., 2016; Tognini, 2017; Tremlett et al., 2017; Caspani
et al., 2019). These include activation of afferent vagal nerve
fibers, stimulation of the mucosal immune system or circulatory
immune cells after translocation from the gut into the circulation,
and absorption into the bloodstream followed by uptake and
biochemical interaction with a number of distal organs. In the
brain, these metabolites may activate receptors on neurons or
glia, modulate neuronal excitability, and change gene expression
patterns via epigenetic mechanisms (Caspani et al., 2019).

A growing body of evidence indicates the various mechanisms
related to bidirectional communication between the gut
microbiome and the host’s CNS with anxiety and depression
(Dinan and Cryan, 2015, 2017; Rieder et al., 2017; Simpson
et al., 2021). Certain gut bacteria regulate the production of
neurotransmitters and their precursors, such as serotonin,
gamma-aminobutyric acid and tryptophan, and they also
regulate proteins such as brain-derived neurotrophic factor, a
key molecule involved in neuroplastic changes in learning and
memory (Bercik et al., 2010; O’Sullivan et al., 2011; Agus et al.,
2018; Miranda et al., 2019). Metabolites such as short-chain fatty
acids (Parada Venegas et al., 2019) are involved in neuropeptide
and gut hormone release, and they modulate immune signaling

Abbreviations: BA, Bile Acid; CA, Cholic Acid; CDCA, Chenodeoxycholic Acid;

CNS, Central Nervous System; DCA, Deoxycholic Acid; FXR, Farnesoid X

Receptor; GDCA, Glycodeoxycholic Acid; GHCA, Glycohyocholic Acid; GLCA,

Glycolithocholic Acid; HRSA-PSY, Psychic Anxiety subscale of the 14-item

Hamilton Anxiety Rating Scale; HRSA-SOM, Somatic Anxiety subscale of the

14-item Hamilton Anxiety Rating Scale; HRSA-Total, 14-item Hamilton Anxiety

Rating Scale; HRSD17, 17-item Hamilton Depression Rating Scale; IEM, Inborn

Errors of Metabolism; LCA, Lithocholic Acid; MCA, Monocarboxylic Acid; MDD,

Major Depressive Disorder; PReDICT, Predictors of Remission in Depression to

Individual and Combined Treatments study; TDCA, Taurodeoxycholic Acid.

along the gut-brain axis via cytokine production. Gut bacteria
are thought to be involved in the development and functioning
of the hypothalamic-pituitary-adrenal axis (Sudo et al., 2004;
de Weerth, 2017; Foster et al., 2017a). Dysregulation of the
hypothalamic-pituitary-adrenal axis has been implicated in
anxiety and depressive disorders, being associated with higher
cortisol levels, increased intestinal permeability, and a sustained
proinflammatory state (Keller et al., 2017). Gastrointestinal
conditions believed to involve gut-microbial dysbiosis and
intestinal permeability, such as irritable bowel syndrome,
co-occur at remarkably high rates with psychiatric disorders
(Simpson et al., 2020). In addition, several animal studies have
supported the possibility of gut dysbiosis having a causative
role in depression-like behaviors. For example, mice exposed
to antibiotics showed gut dysbiosis, depression-like behavior,
and altered neuronal hippocampal firing, with reversal of this
phenotype following probiotic treatment (Guida et al., 2018).
Transplantation of gut microbiota from humans with major
depressive disorder (MDD) to germ-free or microbiota-deficient
rodents resulted in a depression-like phenotype, including
anhedonia and anxiety-like behaviors (Kelly et al., 2016; Zheng
et al., 2016). Despite the literature supporting the involvement
of the microbiota-gut-brain axis in mental health disorders, the
underlying mechanisms of bidirectional communication and
the metabolite mediators by which the gut bacteria regulate
the gut-brain connection are not fully understood. Therefore,
characterizing the rich array of compounds produced by gut
bacteria and defining their protective and cytotoxic effects on the
CNS can effectively define targeted interventions.

A potential mechanism by which the gut microbiome may

alter CNS function is its impact on BAs. BAs are the amphipathic
end products of cholesterol metabolism and can contribute
significantly to hepatic, intestinal, and metabolic disorders (Li

and Chiang, 2014). Figure 1 shows how BAs are synthesized
from cholesterol in the liver via two major pathways, the
classical and the alternative; secondary BAs are metabolized

by colonic bacteria through multiple and well-characterized
enzymatic pathways (Lefebvre et al., 2009). Primary BAs are
the direct products of cholesterol metabolites in hepatocytes,
such as cholic acid (CA) and chenodeoxycholic acid (CDCA).
In response to cholecystokinin after feeding, primary BAs
are secreted by the liver into the small intestine to ensure
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FIGURE 1 | Bile acid metabolism pathway. Bile acids are synthesized from cholesterol in the liver mainly by two pathways. The classical pathway is initiated by the

rate-limiting enzyme, CYP7A1 that synthesizes the two primary bile acids in humans, CA and CDCA. CYP8B1 is required for CA synthesis along with the

mitochondrial CYP27A1 that catalyzes a steroid side-chain oxidation. The alternative pathway is initiated by CYP27A1, followed by CYP7B1. After synthesis, the

primary bile acids are conjugated to the amino acids taurine or glycine for biliary secretion. In the distal ileum and colon, gut bacteria deconjugates the conjugated bile

acids, and bacterial 7α-dehydroxylase removes the 7α-hydroxyl group to convert CA and CDCA to the secondary bile acids DCA and LCA, respectively. The LCA as a

high toxic bile acid is mostly excreted by feces. A small amount of LCA, which is recycled back into the liver, is subjected to sulfor conjugation at the 3–hydroxy

position of sulfotransferase 2A1 (SULT2A1). Sulfoconjugated BAs are almost never reabsorbed by the most important transport proteins, and they are excreted from

the body. Several other bacterial modifications are now known that result in the production of a no of different secondary BAs. The classical pathway is the major

pathway for daily synthesis of about 80–90% of the bile acids in humans, whereas the alternative pathway synthesizes about 10–20%. Most bile acids (∼95%) are

reabsorbed in the ileum and transported via portal blood to the liver to inhibit bile acid synthesis. A small amount of bile acids (∼5%) lost in feces is replenished by de

novo synthesis. BA, Bile Acid; CA, Cholic Acid; CDCA, Chenodeoxycholic Acid; DCA, Deoxycholic Acid; FXR, Farnesoid X Receptor; GCA, Glycocholic Acid; GCDCA,

Glycochenodeoxycholic Acid; GLCA, Glycolithocholic Acid; HCA, Hydroxycitric Acid; HDCA, Hyodeoxycholic Acid; LCA, Lithocholic Acid; MCA, Monocarboxylic Acid;

TCA, Taurocholic Acid; TCDCA, Taurochenodeoxycholic Acid; UDCA, Ursodeoxycholic Acid.

absorption of dietary lipids. Accordingly, 95% of the BAs
are actively absorbed in the terminal ileum and redirected
into the portal circulation to reenter the liver. A small
proportion pass into the colon where bacteria transform them
into secondary BAs—lithocholic acid (LCA), deoxycholic acid
(DCA), and ursodeoxycholic acid—via deconjugation and 7α-
dehydroxylation (Hofmann and Hagey, 2008; Bajor et al., 2010).
Although DCA and LCA are the most abundant secondary BAs,
∼50 different secondary BAs have been detected in human feces
(Devlin and Fischbach, 2015).

Although primary BAs like CDCA may be synthesized in the
brain, no evidence so far supports the synthesis of secondary BAs
in the brain (Baloni et al., 2020). This suggests that the major
source of brain BAs is the systemic circulation, which functions
as a direct communication bridge between the gut microbiome
and the brain (Monteiro-Cardoso et al., 2021), thereby playing a

vital role in brain health. Circulating BAs generated in the liver
and intestine can reach the brain by crossing the blood-brain
barrier, either by simple diffusion or through BA transporters
(Monteiro-Cardoso et al., 2021). Higashi et al. (2017) recently
found that levels of CA, CDCA, and DCA detected in the brain
positively correlated with their serum levels. The liver-gut-brain
axis is critical for the maintenance of metabolic homeostasis,
yet much remains to be elucidated about how BAs that are
synthesized in the liver and modified in the gut mediate the
crosstalk between the peripheral and central nervous system
and impact neuropsychiatric disorders like major depression and
anxiety disorders.

Several lines of evidence implicate secondary BAs as
contributors to CNS dysfunction. Hepatic encephalopathy is
associated with elevated levels of ammonia and cytotoxic
BAs, including several conjugated primary and secondary BAs
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(Xie et al., 2018). Post-mortem brain samples and serum
concentrations of living Alzheimer’s disease patients (compared
to health controls) demonstrated lower levels of the primary bile
acid, CA, and higher levels of its bacterially-derived secondary
bile acid, DCA and its conjugated forms (MahmoudianDehkordi
et al., 2019; Nho et al., 2019; Baloni et al., 2020). In contrast,
ursodeoxycholic acid, the 7β isomer of CDCA, has antiapoptotic,
anti-inflammatory, antioxidant, and neuroprotective effects in
various models of neurodegenerative diseases (Ramalho et al.,
2013; Daruich et al., 2019) and Huntington’s disease (Rodrigues
et al., 2000; Parry et al., 2010; Mortiboys et al., 2013; Ackerman
and Gerhard, 2016). Taken together, these data indicate that
BAs affect brain function under both normal and pathological
conditions. However, the association of BAs on psychiatric
diseases such as MDD has received little study to date.

In this study, we profiled baseline serum samples from
208 patients enrolled in a randomized controlled trial of
treatment-naïve outpatients with MDD, measuring 36 primary
and secondary BAs to address the following questions:

1. Is there a relationship between BA profiles and depressive and
anxiety symptom severity?

2. Does symptom severity correlate with differential metabolism
of BAs through the classical and alternate pathways?

3. Do baseline BA profiles distinguish MDD patients who
achieved remission from those who failed to benefit after 12
weeks of treatment?

MATERIALS AND METHODS

Study Design and Participants
This study examined serum samples from the Predictors
of Remission in Depression to Individual and Combined
Treatments (PReDICT) study. The design and clinical outcomes
of PReDICT have been detailed previously (Dunlop et al.,
2012, 2017a, 2019). PReDICT aimed to identify predictors and
moderators of response to 12 weeks of randomly assigned
treatment with duloxetine (30–60 mg/day), escitalopram (10–
20 mg/day) or cognitive behavior therapy (16 1-h individual
sessions). Eligible participants were adults aged 18–65 with
non-psychotic MDD who had never previously been treated
for depression. The primary diagnosis of MDD was made via
interview with a study psychiatrist and confirmed by assessors
trained in administering the Structured Clinical Interview for
DSM-IV (SCID) (First et al., 1995). The SCID was also used
to diagnose any comorbid psychiatric disorders, including the
exclusionary diagnoses of bipolar disorder, psychotic disorder,
obsessive compulsive disorder, anorexia nervosa, and current
substance abuse or dependence. Additional exclusionary criteria
included a neurocognitive disorder, pregnancy, lactation, any
uncontrolled general medical condition, or a positive urine
drug screen for illicit drugs. Severity of depression at the
randomization visit was assessed with the 17-item Hamilton
Depression Rating Scale (HRSD17) (Hamilton, 1960). Eligibility
required an HRSD17 score ≥18 at the screening visit and
≥15 at the randomization visit, indicative of moderate-to-
severe depression.

Metabolomic Profiling and Ratios and
Summations
At the randomization visit, antecubital phlebotomy was
performed without regard for time of day or fasting status to
obtain the serum samples used in the current analysis. Blood
samples were allowed to clot for 20min, then centrifuged at
4◦C for 10min. The serum was pipetted into Eppendorf tubes
and immediately frozen at −80◦C until ready for metabolomic
analysis. Using targeted metabolomics protocols and profiling
protocols established in previous studies (Qiu et al., 2009; Xie
et al., 2015; Zhao et al., 2017), BAs were quantified by ultra-
performance liquid chromatography triple quadrupole mass
spectrometry (Waters XEVO TQ-S, Milford, USA). Measures
of primary and secondary BAs, including their conjugated and
unconjugated forms, can be found in Supplementary Table 1.

We examined individual BAs as well as a number of BA
summations and ratios that have been previously implicated
in several pathophysiological conditions (O’Byrne et al., 2003;
Shonsey et al., 2005; Sonne et al., 2014; Wahlstrom et al., 2016;
Chiang, 2017; Martinot et al., 2017; Vaz and Ferdinandusse, 2017;
Marksteiner et al., 2018; MahmoudianDehkordi et al., 2019).
See Supplementary Table 2 for these ratios and their associated
diseases or metabolic conditions.

Depression and Anxiety Symptoms
Depression severity was assessed using the clinician-
administered HRSD17. Participants with HRSD17 < 20 were
labeled as non-severely depressed and those with HRSD17 ≥ 20 as
severely depressed (Weitz et al., 2015). Anxiety symptom severity
was assessed using the clinician-rated 14-item Hamilton Anxiety
Rating Scale (HRSA-Total) (Hamilton, 1959), comprising two
subscales: “psychic anxiety” (items 1–6 and 14) (HRSA-PSY),
and “somatic anxiety” (items 7–13) (HRSA-SOM) (Dunlop et al.,
2020). Psychic anxiety (HRSA-PSY) consists of the symptoms
of anxious mood, tension, fears, depressed mood, insomnia,
impaired concentration, and restlessness. Somatic anxiety
(HRSA-SOM) consists of physical symptoms associated with the
muscular, sensory, cardiovascular, respiratory, gastrointestinal,
genitourinary, and autonomic systems. Participants were divided
into those with high (HRSA-Total ≥15) and low (HRSA-Total
<15) levels of anxiety (Matza et al., 2010). The HRSD17, and
HRSA-Total ratings were re-administered after the completion
of treatment at week 12. Consistent with other studies evaluating
the biological effects of treatments, we compared the participants
who achieved remission (remitters) (defined as completing 12
weeks of treatment and reaching HRSD17 ≤7) vs. those who
completed 12 weeks of treatment but whose week 12 HRSD17

score was <30% lower than their baseline score (treatment
failure) (Dunlop et al., 2017b).

Statistical Analysis
Differences in demographic variables and depression scores
across the response groups were evaluated using ANOVA and
the Pearson Chi-squared test (for categorical variables). All
analyses were performed in a metabolite-wise manner in two
ways. (1) Difference in metabolite concentrations in severe vs.
non-severe depression, high vs. low anxiety levels, and remission
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TABLE 1 | Participant demographic and clinical characteristics.

Characteristic Population (N = 208) Depression Anxiety Treatment Outcome

Non-Severe Severe Low High Remission Treatment Failure

(N = 102) (N = 106) (N = 91) (N = 117) (N = 73) (N = 25)

Age (yrs) a 38.99 (0.81) 36.93 (1.14) 40.97 (1.13) 38.77 (1.27) 46 (50.55) 37.40 (1.24) 37.68 (2.61)

Sex: Maleb 81 (38.94 %) 46 (45.10%) 35 (33.02%) 46 (50.55%) 35 (29.91%) 32 (43.84%) 10 (40%)

Body Mass 28.78 (0.42) 28.59 (0.65) 28.97 (0.55) 28.34 (0.69) 29.13 (0.53) 29.18 (0.75) 27.62 (1.14)

Index (kg/m2)a

HRSDa
17 19.89 (0.26) 16.82 (0.14) 22.84 (0.28) 17.69 (0.29) 21.60 (0.34) 18.56 (0.42) 19.20 (0.69)

HRSA-Totala 16.40 (0.37) 13.46 (0.38) 19.24 (0.49) 11.77 (0.21) 20.01 (0.39) 14.78 (0.55) 15.80 (1.09)

HRSA-SOMa 4.04(0.23) 2.77(0.26) 5.25(0.34) 1.64(0.16) 5.91(0.29) 3.21(0.34) 3.88(0.78)

HRSA-PSYa 10.84 (0.19) 9.50 (0.21) 12.12 (0.25) 8.98 (0.19) 12.28 (0.22) 10.04 (0.26) 10.48 (0.52)

aMean and standard error of the mean for each group.
bNumber and percent of males for each group.

HRSA-SOM, Somatic anxiety subscore of the Hamilton Anxiety Rating Scale; HRSA-PSY, Psychic anxiety subscore of the Hamilton Anxiety Rating Scale; HRSA-Total, 14-item Hamilton

Anxiety Rating Scale; HRSD17, 17-item Hamilton Depression Rating Scale.

vs. treatment failure were analyzed using the non-parametric,
two-sample Wilcoxon signed-rank test. (2) Partial correlations
between metabolite levels and the continuous variables HRSD17,
HRSA-Total, HRSA-SOM, and HRSA-PSY were conducted using
partial Spearman rank correlation and adjusted for age, sex, and
body mass index. A p < 0.05 was considered significant. Given
the exploratory nature of this initial investigation, no correction
for multiple comparisons was made.

We conducted separate partial least squares regression and
partial least squares discriminant analysis to examine the
contribution of baseline BA levels to baseline HRSD17, HRSA-
Total, and treatment outcome. In all models, we accounted
for age, sex and body mass index, and used 5-fold cross-
validation with 100 repeats. In partial least squares regression
models, baseline BA profiles of all participants were considered
as predictor variables, and the HRSD17 and HRSA-Total as
continuous dependent variables. Using a partial least squares
discriminant analysis model, we examined whether the baseline
BA profiles could discriminate participants at the two extremes
of the treatment response spectrum, the remitters and those with
treatment failure. Significant predictors were identified based
on their variable importance on projection scores. Variables
with a variable importance on projection score value >1 were
considered important for the models.

RESULTS

Participant Characteristics (Demographic
and Clinical)
Table 1 summarizes the demographic and clinical features of
the 208 participants in the PReDICT Study. Of these, 38.94%
of participants were male, and mean (standard error of mean)
age, HRSD17, and HRSA-Total were 38.99 (0.81), 19.89 (0.26),
and 16.40 (0.37), respectively. Baseline total HRSD17 scores
were highly correlated with HRSA-Total scores (Spearman rank
correlation rho = 0.64) and HRSA-PSY scores (rho = 0.58),
but less strongly correlated with HRSA-SOM (rho = 0.41). The
correlation between HRSA-PSY and HRSA-SOM was only rho

= 0.35 (Supplementary Figure 1). Results of PLS regression
analyses are presented in Supplementary Methods and Results.

BA Profiles and Disease Severity
BA Profiles Related to Depressive Symptom Severity
The concentrations of the conjugated and unconjugated
versions of the primary and secondary BAs are reported in
Supplementary Table 1.

Primary BAs
As depicted in Figure 2, the primary bile acid CDCA, which
is produced predominantly from the alternate pathway, was
negatively correlated with the baseline total HRSD17 score after
adjusting for age, sex, and body mass index (partial correlation
rho = −0.16, p = 0.021). Dichotomous analysis showed a
significantly lower CDCA in the more compared to the less
severely depressed participants (LFD = −0.48, p = 0.02). No
significant correlation or difference was noted for CA, the
primary BA produced through the classical pathway (rho =

−0.01, p= 0.88; pWilcoxoN = 0.41).

Secondary BAs
The secondary bacterially-produced BAs, lithocholic acid 3
sulfate (LCA_3S) and isohyodeoxycholic acid (βHDCA) were
positively correlated with HRSD17 (rho = 0.158, p = 0.022, and
rho = 0.156, p = 0.025, respectively) while dehydro-LCA was
negatively correlated (rho = −0.154, p = 0.027). Similar trends
were noted in non-severe vs. severe depressed groups for the
aforementioned analytes, but the differences did not reach the
significance level.

BA Profiles Related to Anxiety Symptom Severity

Primary BAs
CDCA was negatively correlated with HRSA-Total (rho =

−0.149, p = 0.032) and HRSA-PSY (rho = −0.207, p = 0.0028),
but not HRSA-SOM (rho = −0.015, p = 0.82). CDCA was
significantly lower in the highly anxious participants (p= 0.021).
No significant correlation was noted for the other primary bile
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FIGURE 2 | Correlations between baseline BAs and depression and anxiety scores, and differences in baseline BA profiles between several participant groups. On the

left: Heat map of partial Spearman rank correlations between baseline BAs and scores on the HRSD17 and Hamilton Anxiety Rating Scale and subscales, after

accounting for age, sex, and body mass index. On the right: Heat map of differences in baseline BA profiles in severe vs. non-severe depressed, high vs. low anxiety

and treatment-failure vs. remitter groups. T-values were used for visualization purposes and the Wilcoxon Ranked Sum Test were used to test the significance of

differences. BA, Bile Acid; CA, Cholic Acid; CDCA, Chenodeoxycholic Acid; DCA, Deoxycholic Acid; GCA, Glycocholic Acid; GCDCA, Glycochenodeoxycholic Acid;

GDCA, Glycodeoxycholic Acid; GHCA, Glycohyocholic Acid; GHDCA, Glycohyodeoxycholic Acid; GLCA, Glycolithocholic Acid; GUDCA, Glycoursodeoxycholic Acid;

HCA, Hydroxycitric Acid; HDCA, Hyodeoxycholic Acid; HRSA-PSY, Psychic anxiety subscore of the Hamilton Anxiety Rating Scale; HRSA-SOM, Somatic anxiety

subscore of the Hamilton Anxiety Rating Scale; HRSA-Total, 14-item Hamilton Anxiety Rating Scale; HRSD17, 17-item Hamilton Depression Rating Scale; LCA,

Lithocholic Acid; MCA, Monocarboxylic Acid; TCA, Taurocholic Acid; TCDCA, Taurochenodeoxycholic Acid; TDCA, Taurodeoxycholic Acid; THCA,

Tetrahydrocannabinolic Acid; THDCA, Taurohyodeoxycholic Acid; TUDCA, Tauroursodeoxycholic Acid; UCA, Ursocholic Acid; UDCA, Ursodeoxycholic Acid; _3S, 3

Sulfate. *uncorrected p-value < 0.05. **uncorrected p-value < 0.01. ***uncorrected p-value < 0.001.
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FIGURE 3 | Scatter plots of HRSD17 scores by HRSA-total interaction for selected bile acids and ratios. Anx, Anxiety; CA, Cholic Acid; CDCA, Chenodeoxycholic

Acid; Dep, Depression; HRSA-Total, 14-item Hamilton Anxiety Rating Scale; HRSD17, 17-item Hamilton Depression Rating Scale; LCA, Lithocholic Acid. *uncorrected

p-value < 0.05. **uncorrected p-value < 0.01. ***uncorrected p-value < 0.001; ns, not significant.

acid, CA (classical pathway). However, norcholic acid, which is
a non-conjugated C23 homolog of the primary bile acid, CA,
exhibited positive correlations with HRSA-Total (rho = 0.163, p
= 0.019), and HRSA-SOM (rho= 0.195, p= 0.015).

Secondary BAs
The bacterially derived 7β-hydroxy epimer of CA, β-ursocholic
acid, and the CDCA-derived hyocholic acid were inversely
correlated with HRSA-Total and HRSA-SOM (rho’s range [−0.22
to −0.13], p’s range [0.001–0.046]). LCA, produced by 7-
alpha-dehydroxylation of CDCA, and several of its derivatives
including 7-keto-LCA, isoLCA, alloLCA, and 12-ketoLCA, were
strongly positively correlated with HRSA-Total and HRSA-SOM
(rho’s range [0.18–0.34], p’s range [4.46E-07 to 8.85E-03]). These
BAs were also significantly elevated or trended to be elevated in
highly anxious compared to less anxious participants (p’s between
0.0002 and 0.01). In contrast to LCA and many of its derivatives
that correlated positively with anxiety severity, dehydroLCA (a
known anti-inflammatory BA) was negatively correlated with
HRSA-Total (rho = −0.266, p = 0.0001), HRSA-SOM (rho

= −0.195, p = 0.004) and HRSA-PSY (rho = −0.266, p =

0.0001). In addition, two secondary glycine conjugated BAs were
positively correlated with HRSA-Total and HRSA-SOM scores:
glycodeoxycholic acid (GDCA) (HRSA-Total: rho = 0.20, p =

0.002; HRSA-SOM: rho = 0.18, p = 0.006) and glycolithocholic
acid 3 sulfate (GLCA_3S) (HRSA-Total: rho = 0.17, p = 0.011;
HRSA-SOM: rho= 0.187, p= 0.007).

Overall, greater baseline anxiety was associated with lower
concentrations of the primary BAs (primarily CDCA) and
their conjugated forms, and higher levels or concentrations of
secondary BAs, derived from CDCA, such as the hepatotoxic
LCA and many of its metabolites. The correlations between the
secondary BAs and HRSA-Total score were driven primarily by
somatic anxiety symptoms.

To investigate whether the differences observed in the
BAs reported above were driven by anxiety or depression, we
further tested the interaction effect of severity of anxiety and
depression on the BAs. As shown in Figure 3, several gut-
microbe-produced BAs and ratios of secondary to primary
BAs (e.g., LCA, 7-ketoLCA, 12-ketoLCA, LCA/CDCA,
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7-ketoLCA/CDCA, alloLCA/CDCA, 12-ketoLCA/CDCA)
significantly differed between low vs. highly anxious MDD
participants irrespective of depression severity. For example,
LCA levels were significantly higher in both non-severe
depression-high anxiety and high depression-high anxiety
participants compared to the non-severe depression-low anxiety
and severe depression-low anxiety groups, respectively (p =

0.012 and p = 0.016, respectively). This was also observed
with the other CDCA derived BAs or the ratios (Figure 3).
These data suggest that the differences in these BA profiles
are significantly associated with anxiety but not depressive
symptom severity.

Altered Metabolism of BAs Through
Classical and Alternate Pathways in MDD
Participants
To investigate potential shifts in BA synthesis pathways
or possible alterations in enzymatic activities, we further
examined all possible pairwise BA ratios and selected composite
summations and ratios that can inform about changes in classical
and alternate pathways of BA metabolism. A list of the BA
summations and ratios and their implicated pathophysiology are
shown in Supplementary Table 2. Partial correlation analysis of
depression severity score with composite summations and ratios
did not yield strong correlation (Figure 4A). However, a few
ratios showed significant differences between participants with
non-severe vs. severe symptoms of anxiety. A higher value of the
ratio of “primary BAs to total BAs,” which represents a fraction
of primary BAs relative to the BA pool, was correlated to less
severe anxiety. Concomitantly, lower values of the “secondary
to primary BAs” ratio, which represents a fraction of secondary
BAs relative to the BA pool, as well as “Secondary BA Synthesis,”
which is the ratio of cytotoxic secondary BAs to primary BAs,
were correlated with less severe anxiety symptomology (HRSA-
Total). Both HRSA-PSY and HRSA-SOM were similarly affected
(absolute rho’s range [0.19–0.25], p’s range [2.14E-4 to 5.11E-3]).
Additionally, “sum of unconjugated primary Bas,” a higher level
of which may indicate less BA conjugation and less solubility,
was negatively correlated with HRSA-PSY (rho = −0.22,
p= 9.61E-4).

Ratios of CDCA/CA, which is an indicator of a shift in
BA synthesis from classical to alternate pathway, as well as
conjugated/unconjugated BA ratio for the taurine or glycine
conjugations, did not yield significant correlations.

In high anxiety vs. low anxiety participants, the most
significant differences in pairwise ratios were observed in the
ratios of secondary to the (precursor) primary CDCA such
as LCA/CDCA (p = 0.0001), 7-ketoLCA/CDCA (p = 6.85e-
06), 12-ketoLCA/CDCA (p = 4.87e-05), alloLCA/CDCA (p =

0.0001), isoLCA/CDCA (p = 3.57e-05), LCA-3S/CDCA (p =

0.002), glycohyocholic acid (GHCA)/CDCA(p = 0.041), omega
monocarboxylic acid (ωMCA)/CDCA (p = 0.021), all of which
were significantly higher in participants with more severe
symptoms, particularly HRSA-PSY. This suggests an increased
utilization of CDCA for the synthesis of bacterially-derived
secondary BA in these participants (Figure 4B).

Partial correlation analysis of BA ratios and anxiety scores
also showed that the gut-bacteria-produced secondary BAs
to their precursor primary BA ratios such as LCA/CDCA,
7-ketoLCA/CDCA, 12-ketoLCA/CDCA, alloLCA/CDCA,
isoLCA/CDCA, LCA-3S/CDCA were significantly positively
correlated with anxiety symptoms (rho’s range [0.14–0.35], p’s
range [2.32e-07–4.16e-02]). The ratio of the taurine to glycine
conjugated deoxycholic acid, TDCA/GDCA, was significantly
negatively correlated to HRSA-SOM (rho = −0.27; p = 7.22e-
05). Overall, our ratio data indicated a significant trend toward
higher levels of secondary BAs compared to their primary
precursors that correlated with more anxiety severity in these
MDD participants, which suggests gut microbiome dysbiosis in
more anxious patients.

Do Baseline BA Concentrations
Distinguish Participants Who Reached
Symptom Remission From Those Who
Experienced Treatment Failure From 12
Weeks of Treatment?
We further examined whether any of the metabolites that were
associated with depression and/or anxiety symptom severity
at baseline were different in participants who responded to
treatment (remitters; N = 73) vs. those who did not respond
to treatment (treatment failures; N = 25) after 12 weeks of
treatment/therapy. The metabolites which showed significantly
higher baseline levels (p < 0.05) in remitters compared to
the treatment failures were the primary bile acid, CDCA
(p = 0.0009), its bacterial derivative isoLCA (p = 0.0162)
(Figures 2, 5) and the ratio of the two primary bile acids
CDCA/CA (p = 0.0495) (Figures 4B, 5). Several secondary
BA to CDCA ratios such as 7-ketoLCA/CDCA, GHCA/CDCA,
ωMCA/CDCA, dehydroLCA/CDCA, LCA-3S/CDCA, and the
secondary to secondary ratio, GLCA-3S/isoLCA (Figures 4B, 5)
were significantly lower at baseline in the remitters compared to
the treatment failures (p’s range [0.00032–0.0495]). A summary
model of secondary BA synthesis from CDCA and their
alterations in these participants is presented in Figure 6.

DISCUSSION

Mounting evidence indicates that gut dysbiosis and the
bidirectional communication between brain and gut microflora
play an important role in the development of neuropsychiatric
diseases. Using targetedmetabolomics in participants withMDD,
we determined that increased levels of cytotoxic secondary BAs,
bacterially-derived from the primary bile acid CDCA, correlated
with anxiety symptom severity. The classical pathway that,
predominantly, produces the primary bile acid CA seemed to
be less impacted. Additionally, participants who did not benefit
from treatment were found to have higher baseline levels of
the cytotoxic secondary BAs derived from CDCA. Our findings
suggest that alternate therapies might be needed that target the
gut microbiome for patients who have gut dysbiosis.

We first addressed whether BA concentrations impacted
depression and anxiety symptom severity. Overall, BA
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FIGURE 4 | Ratios of BAs reflective of liver and gut microbiome enzymatic activities in depressed patients. Three types of ratios (pairwise or composite) were

calculated to inform about possible enzymatic activity changes in depressed participants. These ratios reflect one of the following: (1) Shift in BA metabolism from

primary to alternative pathway. (2) Changes in gut microbiome correlated with production of secondary BAs. (3) Changes in glycine and taurine conjugation of BAs. (A)

Composite Ratios and summations. (B) Selected Pairwise Ratios. For each figure, the left panel presents a heat map of partial Spearman rank correlations between

BA ratios/summations and scores on the HRSD17 and Hamilton Anxiety scale and subscales, after accounting for age, sex, and body mass index, and the right panel

presents a heat map of differences in ratios/summations in severe vs. non-severe depressed, high vs. low anxious and treatment-failure vs. remitter groups. BA, Bile

Acid; CA, Cholic Acid; CDCA, Chenodeoxycholic Acid; DCA, Deoxycholic Acid; GCA, Glycocholic Acid; GCDCA, Glycochenodeoxycholic Acid; GDCA,

Glycodeoxycholic Acid; GHCA, Glycohyocholic Acid; GHDCA, Glycohyodeoxycholic Acid; GLCA, Glycolithocholic Acid; GUDCA, Glycoursodeoxycholic Acid; HCA,

Hydroxycitric Acid; HDCA, Hyodeoxycholic Acid; HRSA-PSY, Psychic anxiety subscore of the Hamilton Anxiety Rating Scale; HRSA-SOM, Somatic anxiety subscore

of the Hamilton Anxiety Rating Scale; HRSA-Total, 14-item Hamilton Anxiety Rating Scale; HRSD17, 17-item Hamilton Depression Rating Scale (HRSD17); LCA,

Lithocholic Acid; MCA, Monocarboxylic Acid; TCA, Taurocholic Acid; TCDCA, Taurochenodeoxycholic Acid; TDCA, Taurodeoxycholic Acid; THCA,

Tetrahydrocannabinolic Acid; THDCA, Taurohyodeoxycholic Acid; TUDCA, Tauroursodeoxycholic Acid; UDCA, Ursodeoxycholic Acid. *uncorrected p-value < 0.05.

**uncorrected p-value < 0.01. ***uncorrected p-value < 0.001.

concentrations appeared to have a stronger impact on anxiety
symptoms than on depressive symptoms. Several secondary
BA concentrations, and the ratios of secondary to primary
BAs, were significantly different between low vs. high-anxious
MDD participants irrespective of depression severity. These
secondary BAs included LCA and its derivatives, 7-keto-LCA,
isoLCA, alloLCA, and 12-ketoLCA. The 7α-dehydroxylation
reaction that results in the formation of the secondary BAs
has been described as the most quantitatively important

process performed by colonic bacteria belonging to the
genus Clostridium, an enzymatic reaction that is impacted
in many neurological diseases (Kiriyama and Nochi, 2019).
LCA is produced by 7α-dehydroxylation of CDCA and is
known to be cytotoxic in rodents as well as several human
cell types.

Our second question addressed whether there were any
associations of symptoms with the classical and alternate
pathways of BA synthesis. In Alzheimer’s disease, we had
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FIGURE 5 | Scatter plot of baseline concentration of selected bile acids and bile acid ratios in treatment failure vs. remission groups. CA, Cholic Acid; CDCA,

Chenodeoxycholic Acid; GHCA, Glycohyocholic Acid; GLCA, Glycolithocholic Acid; LCA, Lithocholic Acid; MCA, Monocarboxylic Acid.

observed a significant shift in BA synthesis from classical
to the alternative pathways in the Alzheimer’s participants
compared to healthy controls (MahmoudianDehkordi et al.,
2019; Nho et al., 2019; Baloni et al., 2020). In these MDD
participants, we observed that the alternate pathway that favors
CDCA synthesis was significantly impacted in the highly-
anxious participants. However, no shift from classical to alternate
pathway could be observed in these participants since the ratio
of CA/CDCA, indicative of such a shift, was not significantly
associated with symptom severity. Lower CDCA levels and
higher secondary metabolites derived from CDCA (and mostly
higher ratios of these secondary BAs to CDCA) characterized
the participants with higher symptom severity, which may
indicate greater utilization of CDCA by the gut bacteria. We also
found no significant impact of glycine and taurine conjugation
of BA on symptom severity. Interestingly, dehydrolithocholic
acid, a major metabolite of LCA, was strongly negatively
correlated to anxiety levels in the MDD participants. It is
an agonist of the nuclear receptors GPCR1, the farnesoid X
receptor (FXR) and the pregnane X receptor, and has recently
been shown to regulate adaptive immunity by inhibiting the
differentiation of TH17 cells that are known to contribute
autoimmunity and inflammation (Hang et al., 2019). Our final
question examined whether any relationship exists between

baseline metabolite levels and response to treatment. Remitters
showed higher levels of CDCA and one of its gut microbial
metabolites (isoLCA) compared to participants for whom
treatment failed.

The enzymatic processes involved in altered BA metabolism
in CNS diseases may be informed by the association of BAs
with inborn errors of metabolism (IEM), in which reduced
intestinal BA concentrations result in serious morbidity or
mortality. To date, investigators have identified nine recognized
IEMs of BAs that lead to enzyme deficiencies and impaired
BA synthesis (Heubi et al., 2007; Sundaram et al., 2008).
These diseases are characterized by a failure to produce
primary BAs and an accumulation of unusual BAs and BA
intermediaries. Administration of BAs for replacement therapy
often improves the symptoms of IEM, such as cerebrotendinous
xanthomatosis, with CDCA the predominant choice for treating
both neurological and non-neurological symptoms (Nie et al.,
2014). We have recently reported on a common link between
IEM and depression through acylcarnitines and beta oxidation
of fatty acids, in which medium-chain acyl-coenzyme A
dehydrogenase, an enzyme involved in the production of
medium chain acylcarnitines, was shown to be causally linked
to depression and also to IEM. These emerging data linking
metabolomic disturbances in CNS disorders and IEM provide
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FIGURE 6 | Summary of findings. CDCA, Chenodeoxycholic Acid; GHCA, Glycohyocholic Acid; GLCA, Glycolithocholic Acid; HCA, Hydroxycitric Acid; HDCA,

Hyodeoxycholic Acid; LCA, Lithocholic Acid; MCA, Monocarboxylic Acid; UDCA, Ursodeoxycholic Acid; _3S, 3 Sulfate.

novel insights into pathobiological processes that contribute to
psychiatric disorders (Milaneschi et al., 2022).

BAs influence metabolic processes by acting as signaling
molecules via the nuclear receptors FXR, the pregnane X
receptor, the vitamin D receptor, Takeda G-protein-coupled
bile acid receptor, and sphingosine-1-phosphate receptor 2,
initiating a variety of signaling cascades relevant to metabolic
and hepatic diseases such as obesity, steatosis and steatohepatitis,
as well as liver and colon cancer (Lefebvre et al., 2009; Wan
and Sheng, 2018). FXR plays many important roles in the
regulation mechanisms of BA synthesis and transport. FXR
activation represses the expression of the main enzymes in BA
synthesis, CYP7A1 and CYP27A1 (Pauli-Magnus and Meier,
2005). In contrast, FXR activation upregulates UGT2B4, which
is involved in the conversion of hydrophobic BAs to their less
toxic glucuronide derivatives (Barbier et al., 2003). CDCA is
the most potent activator of FXR. Studies in knockout mice
suggest the involvement of FXR in modulating brain function.
Deletion of FXR altered the levels of several neurotransmitters
in the hippocampus and cerebellum, and impaired cognitive
functioning and motor coordination (Huang et al., 2015),
which suggests that FXR signaling is required for normal
brain function. A recent study using a rat-model (Chen et al.,
2018) found that over-expression of hippocampal FXR mediated
chronic unpredictable stress-induced depression-like behaviors
and decreased hippocampal brain-derived neurotrophic factor
expression, and that knocking out of hippocampal FXR

completely prevented depressive behaviors via brain-derived
neurotrophic factor expression.

The decrease in CDCA with concomitant increase in LCA
has particular pathognomonic significance in MDD patients.
LCA is the most potent ligand for Takeda G-protein-coupled
BA receptor (Kawamata et al., 2003), and BA-dependent Takeda
G-protein-coupled BA receptor-mediated signaling has been
shown to influence the brain by regulating the production of
the gut peptide hormone GLP-1 (Monteiro-Cardoso et al., 2021),
which potentiates glucose-stimulated insulin secretion. LCA is
also a potent activator of pregnane X receptor and vitamin D
receptor. Thus, largely through their binding and activation of
these receptors, BAs regulate their own synthesis, conjugation,
transport, and detoxification, as well as lipid, glucose, and energy
homeostasis (Hylemon et al., 2009; Li and Chiang, 2015; Ridlon
et al., 2016; Grant and DeMorrow, 2020).

LCA is formed in humans mainly from the intestinal bacterial
7α-dehydroxylation of CDCA and comprises <5% of the total
BA pool in humans but is one of the most hydrophobic naturally
occurring BAs (Ceryak et al., 1998).

LCA has been shown to induce double-strand breaks in
DNA (Kulkarni et al., 1980). The mammalian host responds
by metabolizing LCA, mainly through sulfation, enabling more
efficient excretion and reduced hydrophobicity (Ridlon and
Bajaj, 2015). BA sulfation is an important detoxification process
that converts hydrophobic BAs into excretable metabolites in
the liver. Sulfation is catalyzed by a group of enzymes called
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sulfotransferases (Ridlon and Bajaj, 2015). Although, only a small
proportion of BAs in bile and serum are sulfated, more than 70%
of BAs in urine are sulfated, indicating their efficient elimination
in urine (Alnouti, 2009). It is estimated that 40–75% of the
hydrophobic, hepatotoxic LCA in human bile is present in the
sulfated form (Palmer and Bolt, 1971). The formation of BA-
sulfates increases during cholestatic diseases. Therefore, sulfation
may play an important role in maintaining BA homeostasis
under pathologic conditions. In our study, we observed elevated
levels of the sulfated form of the toxic LCA and GLCA in
more severely anxious patients. We have also previously reported
increased production of other bacterially-derived sulfates like
p-cresol sulfate and indoxyl sulfates (Brydges et al., 2021) in
the PReDICT study participants. Together, these findings suggest
that alterations in sulfotransferase activities may occur in the liver
of some patients.

The microbial conversion of CDCA to 7-keto-LCA, present
at higher levels in highly-anxious MDD participants, is known
to be reduced in the liver by human 11β-HSDH-1, an enzyme
with the primary function of converting cortisone to the
active glucocorticoid, cortisol (Odermatt et al., 2011). Microbial-
derived 7-keto-LCA acts as a competitive inhibitor of 11β-
HSDH-1, and thus may influence the ratio of cortisone/cortisol.

In contrast to toxic LCA and most of its derivatives,
dehydrolithocholic acid was the only one that negatively
correlated to anxiety levels and depression level indicating a
protective metabolite. It is an agonist of the nuclear receptors,
GPCR1, FXR, PXR, and has recently been shown to regulate
adaptive immunity by inhibiting the differentiation of TH17 cells
that are known to cause autoimmunity and inflammation (Hang
et al., 2019).

There are a few limitations to our study. First, we lacked
a healthy control group to compare with the participants who
had MDD. Second, food and medication intake (e.g., use of
pre/probiotics and antibiotics) can cause intestinal dysbiosis,
thus influencing the metabolism of bile acids. In PReDICT, no
food diary, record of physical activity, and medication were kept
or used as inclusion/exclusion criteria of participants. Hence,
we were not able to control for the effect of those potential
confounders. Third, we did not apply multiple comparison
adjustments due to the relatively small sample size and the
exploratory nature of this study. Fourth, these findings will
require replication in an independent cohort. Fifth, a number
of novel BAs have recently been discovered and were not
included in our metabolomic analyses; these compounds should
be evaluated in future studies. Sixth, stool samples were not
available in the PReDICT study. Considering the role of the
gut microbiota in the synthesis and metabolism of bile acids,
a microbiome and metabolomics analysis performed in stool
samples, coupled with the analysis in the blood, would have
provided a closer readout on the microbiota-related activity in
bile acids production.

It has been suggested (Hibbing et al., 2010; Foster et al.,
2017b) that in the highly evolutionary competitive environment
of the human gut microbiome, the persistence of these microbial
enzyme activities usually indicates that they increase the
organism’s ability to survive. However, dysbiosis in the gut is

also possible. Our data suggest that low levels of CDCA might
be a result of increased utilization for production of bacterial
products in the intestine which, in turn, suggest gut-microbe
composition changes or associated enzymatic changes. The
underlying pathophysiological significance of BA pool changes
remain to be determined, but a reasonable hypothesis emerging
from this work is that increases in circulating BAs result from
a more hydrophobic BA pool in the colon consequent to gut
microbial dysbiosis. These BAs may then produce enhanced
toxicity and pathophysiology to cells in the liver, gastrointestinal
tract, and the brain.
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