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A Haystack Heuristic for 
Autoimmune Disease Biomarker 
Discovery Using Next-Gen Immune 
Repertoire Sequencing Data
Leonard Apeltsin1, Shengzhi Wang1, H.-Christian von Büdingen1 & Marina Sirota2

Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery 
of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not 
adequately suited for elucidating possible biomarker candidates from within large immunosequencing 
datasets due to unsatisfactory scalability and sensitivity. Here, we present the Haystack Heuristic, an 
algorithm customized to computationally extract disease-associated motifs from next-generation-
sequenced repertoires by contrasting disease and healthy subjects. This technique employs a local-
search graph-theory approach to discover novel motifs in patient data. We apply the Haystack 
Heuristic to nine million B-cell receptor sequences obtained from nearly 100 individuals in order to 
elucidate a new motif that is significantly associated with multiple sclerosis. Our results demonstrate 
the effectiveness of the Haystack Heuristic in computing possible biomarker candidates from high 
throughput sequencing data and could be generalized to other datasets.

Autoimmune diseases are a significant source of worldwide chronic illness, disability, and death. Early diagnosis 
is critical to limiting short-and long-term tissue destruction caused by autoimmunity1, and clinically actionable 
biomarkers based on understanding of fundamental pathological mechanisms allowing for timelier diagnoses or 
clear disease risk stratification may result in significantly improved outcomes2. For example, diagnostic certainty 
early in the disease has greatly improved the clinical care and outcomes of patients with neuromyelitis optica 
(NMO). NMO is an inflammatory demyelinating disease whose symptoms overlap with those of multiple sclero-
sis (MS). Prior to the identification of antibodies against aquaporin-4 (AQP4) being specific for NMO spectrum 
disorders3, distinguishing MS from NMO was mainly based on clinical decision-making4, and NMO specific 
treatment algorithms were not available. The discovery of anti-AQP4 antibodies led to the immediate develop-
ment of blood-based assays for accurate NMO-IgG detection, allowing for earlier diagnosis and prompt initiation 
of disease-appropriate therapies5, 6.

Here, we were interested in developing a computational approach leveraging deep B-cell immune repertoire 
sequencing data from blood of patients with MS (and healthy donors) to identify disease-specific features that 
may, after further validation, be used as biomarkers for the early detection of MS. Multiple Sclerosis is an inflam-
matory autoimmune disease of the central nervous system that involves CNS demyelination and neuronal dam-
age leading to a wide range of debilitating neurological symptoms7, 8. MS affects over 2.5 million people in the US 
and around the world, and there currently is no cure. Although possible causes of the disease include genetic and 
environmental factors, the actual cause of MS is currently unknown9. MS diagnosis presently rests entirely on 
clinical and MRI data and may include cerebrospinal fluid (CSF) analyses to test for the presence of clonal immu-
noglobulins, products of clonally expanded CSF B-cells10, 11. Increased B-cell levels within a patient’s CSF indicate 
that an inflammation process which is consistent with MS diagnosis might be ongoing12. Scientific evidence 
suggests that antigen-specific B-cells play a role in the onset and progression of the disease13. Antigen-specificity 
in turn would be encoded in the antigen-recognizing B cell receptor (BCR), surface expressed immunoglobulins, 
on a highly individual level. Therefore, certain sets of B-cells may serve as MS biomarkers for disease activity or 
even prediction. There has been some previous work exploring the B-cell and T-cell immune repertoire in MS, 
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however most of the studies have been limited in sample size14–16. In our previous work, we showed that clonally 
related B-cells are present in the actual site of tissue injury17.

Any deep examination of a patient’s B-cell repertoire is complicated by the sheer diversity of the B-cell reper-
toire. On average, the blood of a human adult may contain an estimated 3–9 million distinct B-cell secreted anti-
bodies18. The recent advent of high-throughput sequencing technologies has enabled researchers to sample and 
study the immune repertoire on a large scale19–23. These newly developed techniques can now extricate millions 
of antibody sequences, aiding in studies of lymphocyte malignancies, infectious disease, and autoimmunity24–27. 
In this work, we apply high-throughput sequencing to isolate and catalogue blood-based B-cell DNA from dozens 
of MS patients and healthy controls (HCs). We present a computational method to query and analyze these data 
for the purpose of pinpointing potential B-cell related disease biomarkers.

Currently, no protocol exists for calculating biomarker likelihood among a set of antibody sequences. 
Implicitly, a sequence-associated biomarker may take the form of an amino-acid pattern that correlates with 
disease diagnosis, and ideally, that pattern would be found exclusively in disease-afflicted patients. Any such 
‘Disease-Only Motif ’ (DOM) would make a good potential biomarker candidate. Immunoglobulin sequence 
datasets uniquely lend themselves to efforts directed at DOM determination, as features separating patients from 
non-patients might be present but deeply hidden in the vast diversity of the experimental data. However, pres-
ently available techniques are inadequate for DOM determination, and motif discovery algorithms used to date 
suffer from a twofold limitation of constrained scalability since algorithms cannot process large sequence quan-
tities and surplus sensitivity to noise since motif quality decreases with increased sequence count28, as they are 
not built to process millions of sequences as input. Scalability issues arise from the dependence of the algorithms 
on computationally expensive multiple-alignments, while sensitivity errors are caused by the presence of random 
patterns in larger sequence sets. When both the input sequence dataset and queried motif length increase in size, 
the resulting random noise dilutes potential signals in the data28.

One tactic to surmount this limitation is to reframe motif elucidation as a combinatorial optimization prob-
lem, where all conceivable sequence combinations exist in a geometric space of disparately optimal motifs. 
Combinatorial techniques have been shown to more accurately detect subtle signals in noisy sequence datasets, 
though their use in discovering motifs has been quite limited thus far29, 30. With this in mind, we designed a com-
binatorial heuristic for uncovering hidden DOMs within the haystack of next-gen immune repertoire sequencing 
data.

Our “Haystack Heuristic” is a DOM discovery technique that is less sensitive to excessive sequence noise. The 
heuristic implements local search optimization31 to locate DOMs within large antibody datasets. Upon design, 
we tested the heuristic on an assembly of over nine million blood-extracted antibody sequences. The sequences 
contained the partial B-cell repertoire of 97 distinct individuals, 51 of whom are MS patients. We processed this 
data with the aforementioned Haystack Heuristic and discovered a DOM, which appears in two-thirds of all MS 
patients and in none of the healthy controls.

Materials and Methods
Generating the Input Sequence Dataset. We performed high-throughput sequencing of immunoglob-
ulin heavy-chain variable-region (IgG-VH) transcripts on peripheral blood samples obtained from 51 multiple 
sclerosis patients and 46 healthy individuals. The samples were processed and sequenced using our previously 
published protocol25.

Sample Collection. We obtained peripheral blood from a total of 51 MS patients and 46 healthy control (HC) 
volunteers following informed consent. A diagnosis of MS was based on the latest diagnostic criteria for MS32. 46 
out of 51 patients had relapsing remitting MS. 14 of the patients were treated with Copaxone; 11 were treated with 
Interferon. Four were treated with Tsyabiri; One was treated with Rituximab; 21 patients remained untreated. 
Peripheral blood was obtained via standard venipuncture. Peripheral blood mononuclear cells (PBMC) were 
isolated using a Ficoll gradient, red blood cells lysed and PBMC washed in phosphate buffered saline (PBS) con-
taining 1% BSA. These studies were approved by the institutional review board of the University of California, 
San Francisco and informed consent was obtained from patients before CSF/PB collection. All methods were 
performed in accordance with the relevant guidelines and regulations.

Unbiased Ig mRNA amplification and Ig repertoire sequencing. In brief, Total RNA was isolated from PBMC 
(RNeasy mini kit, Qiagen) and RNA quality was assessed using an Agilent Bioanalyzer. Total isolated RNA was 
reverse transcribed (SMARTerTM RACE, Clontech), and approximately 27% of each cDNA reaction was used 
for IgG-VH amplification via PCR using SMARTerTM RACE 10X Universal primer mix (Clontech) and an IgG 
specific 3′ primer (5′-GGG AAG ACS GAT GGG CCC TTG GTG G-3′) for 31 cycles following the manufactur-
er’s recommendation. In addition to the IgG-specific portion, reverse primers also contained the Lib-L specific 
adaptor (454 sequencing, Roche) and barcode sequences. Barcoded IgM-VH (~715 bp) and IgG-VH (~640 bp) 
transcript libraries were purified using AMPure XP (Beckman Coulter Inc.), quantified using PicoGreen (Life 
Technologies) and normalized to 1 × 109 molecules/μl. Uniquely barcoded samples were combined in pools of 
normalized IgG-VH amplified libraries and subjected to emulsion PCR and unidirectional sequencing using the 
GS FLX Titanium Lib-L chemistry (454 Sequencing, Roche).

Analysis. The raw sequence output was analyzed using the VDJFasta algorithm20; each sequence was annotated 
with IGHV and IGHJ germline segments and the amino acid sequence of the Complementary Determining 
Regions (CDRs). The CDR3 amino acid sequence was used to pick a proper reading frame for nucleotide trans-
lation. All translated sequences with a v-gene, j-gene, and CDR3 assignment were stored in a MySQL database. 
Within that database, the total sequence count was equal to 9,212,022 (Supplementary Table S1 categorizes 
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sequence counts by patient, Supplementary Table S7 shows the lane and run information for each individual). 
Among these 9 million sequences, 1,531,415 unique CDR3s were present. The MySQL dataset was used as direct 
input into the Haystack Heuristic.

The Haystack Heuristic. The overview of our approach is shown in Fig. 1. We start with a set of over 9 
million immunoglobulin sequences in amino acid space. The sequences are then broken down to 8,000 (20^3) 
atomic vectors of size three. For each of the possible vectors we carry out up to three sequence and cardinality 
extension steps and apply a greedy algorithm to examine the presence of the motif in the MS and healthy individ-
uals. The traversal is stopped if it is not promising based on a threshold.

Haystack Heuristic Overview. The Haystack Heuristic searches for position-specific gapped amino acid 
motifs, short subsequences that are present at specific sequence coordinates. Explicit Motif Subsequences (EMSs) 
within each gapped motif are linear sequence elements that are separated out by gaps of unspecified sequence 
characters. Position-specificity arises from the mapping of every EMS to a location in an antibody sequence. 
Thus, a gapped motif is a vector composed of the EMS itself and an associated antibody coordinate (Fig.1b), the 
presence of which can be assessed in an IgG-VH sequence at a specified location with respect to the beginning 
of the CDR3 region. If all the motif vector elements are found within an antibody sequence, then the sequence is 
treated as a match to the input motif.

For the purpose of our analyses we define an “atomic vector” as the shortest allowable motif. The atomic vec-
tor contains a single element, indicating that no gaps are present. That single atomic element is comprised of a 
sequence coordinate and a short EMS of length three, where three is the standard minimum length of a short lin-
ear motif. Thus, an atomic vector is an amino acid triplet that matches a unique antibody sequence location. The 
triplet may be extended by adding a single new character to either of its endpoints, resulting in quadruplet motif. 
Iteratively applying this “EMS extension” will eventually yield a new vector motif of length k and cardinality one. 
In this manner, we are able to transform any inputted atomic vector into a gapless motif of length k. Inserting a 
gap into that motif requires us to increase its vector dimension from one to two. The simplest way to carry out this 
“cardinality extension” is to append a new atomic vector to the existing vector motif. Thus, cardinally extending 
a gapless motif of length k will produce a single-gapped motif that contains two explicit subsequences of length 
three and k. Iteratively applying cardinality extension will eventually yield a motif containing n gaps and n + 1 
dimensions. Afterwards, the length of all its n + 1 explicit subsequences may be expanded using EMS extension.

EMS extension and cardinality extension (Fig. 1b) allow us to construct complex motifs from simpler 
input. Starting with a plain atomic vector, we may apply a series of extensions to develop new motifs of higher 

Figure 1. Methodology Overview and Example. (A) We start with a set of over 9 million immunoglobulin 
sequences in amino acid space. The sequences are then broken down to 8,000 (20^3) atomic vectors of size 
three. For each of the possible vectors we carry out up to three sequence and cardinality extension steps and 
apply a greedy algorithm to examine the presence of the motif in the MS and healthy individuals. The traversal 
is stopped if it is not promising based on a threshold. (B) Schematic illustration of constructing atomic 
vectors from a single read sequence. See Haystack Heuristic Overview in the Methods section for a detailed 
explanation.
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complexity. Each step within that series represents a physical transition between a lower-order and higher-order 
motif. For example, suppose we initialize our motif as a singe atomic vector “CAT”, located at coordinate posi-
tion one. The sequence and position of the vector can be encoded symbolically as (CAT, 1). Using a single EMS 
extension, a proline may be added to the right-most position of the vector, resulting in new motif of (CATP, 1). 
Afterwards, a cardinality extension is used to add an additional motif component, SSD at position eight, thus 
resulting in an updated motif of (CATP, 1), (SSD, 8). Next, an EMS extension extends an arginine to the left-most 
position of the triplet subsequence SSD, while a second CAT subsequence is cardinally extended at position 15 
of the motif. The result is a newly created motif of (CATP, 1), (RSSD, 7), (CAT, 15). Thusly, only four extension 
operations are required to adequately construct a two-gapped 11 amino acid long motif. That entire process of 
construction may be represented as a series of physical transitions within a single pathway: (CAT, 1) = > (CATP, 
1) = > (CATP, 1), (SSD, 8) = > (CATP, 1), (RSSD, 7) = > (CATP, 1), (RSSD, 7), (CAT, 15). These transitions 
directly correspond to a shift between neighboring vertices in a unidirectional network. In essence, all motifs 
exist as nodes within a network whose edges signify EMS and cardinality extensions. Therefore, progressively 
extending new motifs from simpler input is directly analogous to a directed traversal across a network of motifs.

Furthermore, we propose a network-based motif representation, which permits us to run a network search for 
DOM motifs. The search initializes at a single node exemplifying an atomic vector. Then, in a breadth-first-search 
(BFS) approach, the neighbors of the root node are inspected and evaluated. These neighboring motifs are 
tested against the central dataset of antibody sequences. The sequences matching to each neighbor are aggre-
gated by the individual people from whom they were obtained. Next, all neighboring motifs are marked by the 
number of patients and healthy controls to which they are a match. If a given neighbor matches the majority of 
disease-afflicted patients, while also failing to match any of the healthy controls, then we have discovered a DOM 
and the search is over. Otherwise, the neighbors are assessed on their ability to differentiate disease-afflicted 
patients from healthy controls. Nodes whose differentiation score falls above a specified threshold undergo a BFS 
analysis of their own. New neighbors are iteratively obtained and the search space is gradually extended until a 
DOM is finally found or the search reaches a stipulated endpoint.

Network search capacity to uncover DOMs in data is dependent on the quality of our starting three-character 
motifs. Triplets situated closer to a DOM in network space serve as better starting nodes then other more isolated 
vertices. We may therefore enhance our DOM-detecting capabilities by traversing the network from several start-
ing locations. Parallelized search execution on multiple inputs raises the overall yield of useful results. However, 
such useful results are contingent upon the proper selection of suitable starting motifs. Under ideal conditions, 
the set of initial motifs would match to every plausible atomic vector. Unfortunately, such breadth of coverage 
is not computationally viable. Instead, we may settle for an atomic vector subset that contains each conceivable 
three-character EMS. There exist 8,000 (20^3) three-character amino acid combinations, each of which can be 
transformed into a full atomic vector by assigning it an optimal coordinate using a preset optimization function. 
The resulting array of 8,000 vectors may then serve as input for a parallelized network search. The scope of that 
search should suffice to uncover DOMs hidden in the network.

Our Haystack Heuristic implements the network search procedures discussed above. Many of the outlined 
steps capitalize on built-in database infrastructures to swiftly match motifs against efficiently stored sequences in 
memory. Effectively, the Heuristic runs a network search using queries to the database in which the sequence data 
is deposited. This allows all users to integrate that search within their existing database schema.

The next two subsections discuss all preliminary input settings, as well as algorithmic steps for Heuristic 
execution.

Preliminary Input Settings. These specifications must be set prior to running the Heuristic.

Categorical Assignment. A “Diagnosis” column in the database categorizes people into individual diagnostic 
groups. The Haystack Heuristic specifies that all diagnosed individuals must fall into one of two categories; A or 
B. Categorical assignment is determined by the diagnosis column. Category A may be assigned to any diagnoses, 
including a lack of disease. All diagnoses not in category A will automatically fall into category B. The total count 
of people within each respective category is defined as |A| and |B|.

DOM-determining Threshold Selection. Given a motif M, we query the motif against the antibody sequences, 
grouping the results by the unique individuals from whom the matching sequences were obtained. Afterwards, we 
count the number of motif-matching individuals from each of the two categories A and B. These counts are repre-
sented by variables a and b, respectively. If b is equal to zero, then M may be considered a potential candidate for 
DOM categorization. Whether or not M is actually a DOM is determined by the DOM-determining threshold Dt. 
Motif M is considered a DOM only if a/|A| ≥ Dt and b = 0. Thus, threshold Dt must be assigned a value between 
zero and one prior to running the Heuristic. For the purposes of solving the base-case problem, we assume the 
motif only exists in the MS population. The possibility of a low-frequency motif match in the controls is discussed 
in final paragraph of Assessing the Statistical Significance of Discovered Dom Motifs, and is analyzed rigorously 
in Supplementary Materials S3.

Separation Threshold Selection. For any M, we define a separation score SM where SM = a − b. The SM parameter 
measures motif preference for category A over category B. We set a separation threshold, St, to evaluate a given 
SM. If SM > = St, then motif M remains a candidate for network search. Otherwise, neither that motif nor any of 
its neighbors will undergo additional analysis. St values are further discussed in the Testing the Heuristic of the 
Database section of Methods.
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Gap Count Specification. We define Gc as the maximum number of gaps that can occur within our outputted 
motif. As a result, no starting motif may undergo more than Gc cardinality extensions. Gc values are further dis-
cussed in the Testing the Heuristic of the Database section of Methods.

Running the Haystack Heuristic. Once the preliminary input settings have been specified, the Heuristic is ready 
to be implemented using the following series of steps:

Triplet Extraction. The Heuristic scans all full antibody sequences in order to tally the total occurrence of every 
unique three-character triplet within the sequence database. Triplets occurring less than Dt*|A| instances are 
ignored. The remaining triplets are inputted into Step 2.

Atomic Vector Generation. Each triplet is transformed into a new atomic vector by selecting a coordinate 
that maximizes match variable a (for a detailed discussion of optimal coordinate selection, see Supplementary 
Materials S1). All vector position coordinates are defined relative to the endpoints of the CDR3 within the 
triplet-matching antibody sequences. Vectors whose separation score falls below the specified St do not undergo 
further analysis.

Non-gapped EMS Extension. The database is searched for all non-gapped four-character motifs whose sequences 
and positions overlap with existing atomic vectors. After St filtration, all remaining four-character motifs are 
appended to the atomic vector list. The result is list L, which contains short, non-gapped motifs.

Recursive Restriction. Each M in list L is queried against the database. All sequences matching a given M are 
transferred to a new, temporary database dM. Afterwards, Steps 1–3 are repeated on contents of dM. The resulting 
list L’ contains non-gapped motifs that may be merged together with M.

Motif Merging. Each motif M is associated with a non-gapped motif list L’. Every motif M’ in L’ contains a 
single motif vector element. That element may overlap with an existing element of M. If so, then the overlapping 
elements are merged to lengthen a subsequence of M. This is directly analogous to EMS extension. If there is no 
overlap, then the element of M’ may be appended to the other elements of M, thereby resulting in cardinality 
extension. If the merged motifs do not overlap, then this action is the same as the cardinality extension. If they do 
overlap, then this is analogous to the EMS extension.

Iteration. L is replaced by a list of all newly extended motifs. The Heuristic terminates if either a DOM is discov-
ered or the maximum gap length in L corresponds to Gs. Otherwise, L is resubmitted to Step 4 of the Heuristic

Assessing the Statistical Significance of Discovered DOM Motifs. Suppose we encounter DOM D 
with a matches to |A| category A patients and zero matches to |B| category B patients. We might assume that if 
PA(D) is the probability of matching D to a category A patient, and if PB(D) is the probability of matching D to a 
category B patient, then PA(D) must be significantly greater than PB(D). However, this might not necessarily be 
the case. We must consider the possibility that D is a homogenous motif for which PA(D) is equal to PB(D). If D 
is homogenous, then it will match all patients will equal likelihood, regardless of category. Under such circum-
stances, the presence of D in the Heuristic results will be a purely random anomaly. Thus, in order to demonstrate 
statistical significance, we must show that the likelihood of encountering a homogenous DOM is significantly low 
for our results.

In order to do so, let us first assume that D is a homogeneous motif that matches all patients with an equal 
probability of px. The probability that D is a DOM with a total matches may be represented by function P(px, a, 
|A|, |B|). We are unable to compute P(px, a, |A|, |B|) directly, because the value of px is unknown. However, we are 
able to calculate the maximum possible value of P(px, a, |A|, |B|), thereby representing maximum possible likeli-
hood of encountering a homogenous DOM. Our calculations in Supplementary Materials S2 demonstrate that 
P(px, a, |A|, |B|) ≤ ML(a, |A|, |B|), where ML(a, |A|, |B|) = | |A

a
( )(1 − w)a(1/w−1)wa and the variable w is equal to 

a/(|A| + |B|).
Using the formula ML(a, |A|, |B|), we are able to show that the likelihood of randomly encountering certain 

homogenous DOMs is exceedingly low. However, that in of itself is not enough to demonstrate significance. The 
Haystack Heuristic traverses across millions of antibody motifs, any of which may be a homogeneous DOM. 
Thus, we must show that E(C, a, |A|, |B|) < 1, where E(C, a, |A|, |B|) the expected count of random homogenous 
DOMs that match a or more patients across a set of C total motifs. Using our previous calculations it is trivial to 
show that E(C, a, |A|, |B|) ≤ C*∑ = ML i A B( , , )i a

A . Thus, if the Heuristic traverses C motifs and elucidates a 
D OM def ines  by a ,  then we must  ca lculate  the  Maximum Expected Value Me v  where 
Mev = C*∑ .= ML i A B( , , )i a

A  If the Mev is significantly less than one, then we may deem the DOM statistically 
significant. Otherwise, must we must discard the DOM as unreliable result.

A low Mev indicates that PA(D) is unlikely to equal PB(D). It does not however, indicates that PB(D) necessary 
equals zero. As discussed in Supplementary Materials S3.1, the presence of a statistically significant DOM simply 
indicates PA(D) > PB(D). Thus, the DOM might still appear within certain category B patients, though with a 
lesser frequency relative to all category A matches. Though PA(D) and PB(D) may not be computed directly, it 
is in our interest to show that PA(D) is significantly greater than PB(D). We have thusly developed a protocol for 
estimating the maximum value of PB(D)/PA(D). That protocol is presented in Supplementary Materials S3.2. As 
presented in Supplementary Materials S1, optimizing on a category-blind selection function (total # of people 
matched – 51)^2 still leads to the prime motif getting discovered.
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Testing the Heuristic on the Database. We ran the Heuristic on the sequence data stored within the 
MySQL database (statistics are shown in Supplementary Table S1) two times. In the preliminary run, MS patients 
were assigned to category A while Healthy Controls were assigned to category B. In the secondary run, these 
categorical assignments were reversed. The Mev was calculated for all discovered DOMs in order to evaluate sig-
nificance. The input parameters for the both Heuristic runs were set as follows; Dt = 0.6, St = 15, Gc = 2.

Code and Data Availability. An optimized example implemented in python in order to make the method-
ology more reproducible is available at https://github.com/lapeltsin/HaystackHeuristic. The data is available at: 
http://www.immport.org/immport-open/public/study/study/displayStudyDetail/SDY1043.

Results
Searching for MS Specific Motifs using the Haystack Heuristic. The Heuristic traversed 2,743,571 
motifs and identified 171 MS-specific DOMs, which are listed in Supplementary Table S2. The DOM patient 
match counts ranged from 30 to 35 MS patients (Table 1). The DOM Mev quantities ranged from 3.98E-06 to 
7.49E-09, (Fig. 2), indicating that the DOM results were not occurring by random.

The 171 MS-specific motifs appeared to be similar in structure. All 171 motifs contained a threonine located 
14 amino acids to the left of the CDR3. In addition, 66% of the motifs contained a cysteine followed by an alanine 
at the start of the CDR3. These similarities implied that all MS-specific motifs were matching to an overlapping 
set of sequences. In order to investigate motif-match sequence overlap, we examined the motif with the maximum 
number of sequence and patient matches. This “Prime Motif ” matched to 35 patients and 104 antibody sequences. 
The Prime Motif matched sequences were analyzed for overlap between the matching sequences for the remain-
ing 170 motifs. All 170 motifs matched to sequences that overlapped with 104 the Prime Motif antibody matches. 

Patient Match 
Count

#Unique 
Motifs Motif with Maximum Hit Count

Maximum Hit 
Count

35 6 (TNE, 14), (DTA, 6), (CAR,0) 104

34 55 (TNE, 14), (VYYCAR, 3) 93

33 1 (SKN, 21), (YLT, 16), (PES, 10) 62

32 6 (YLTN, 16), (DTA, 6), (CAR, 0) 87

31 37 (YLTN, 16), (VYYCAR, 3) 79

30 66 (RDN, 24), (YLTN, 16), (CAR, 0) 74

Table 1. Each row of the table corresponds to DOM motifs associated with a patient match count ranging 30 
and 35. The patient match counts are listed in the first column. The second column contains the number of 
DOM motifs associated with each match count. The third column contains the DOM motif that matches the 
maximum number of sequences for a particular match count. The number of sequences matched by the third-
column column motif is listed in the final column of the table. All motifs are stated in a parenthesis notation 
where (S, x) represents an non-gapped subsequence S that is located x amino acids to the left of the CDR3. The 
Prime Motif appears in row 1, column 3 of the table.

Figure 2. The -LN(Mev) is plotted for all possible DOM matches counts, ranging between zero and 51 MS 
patient matches. The plot is negative for match counts below a total of 20 patients, indicating that a DOM match 
to 20 patients or less may potentially occur at random. The plot is significantly greater than zero at 30 patient 
matches, which is our cutoff threshold for DOM categorization.

http://S1
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The fraction of overlapping sequences ranged from 36% to 100% across all discovered motifs (Supplementary 
Table S2). On average, 75% of motif matches overlapped with the 104 Prime Motif-targeted sequences. Therefore, 
we concluded that the Prime Motif held properties that corresponded to the structure of all other motifs. As a 
result, the Prime Motif underwent additional analysis.

Exploring the Prime Motif. We characterized the Prime Motif as “(TNE,14),(DTA,6),(CAR,0)”, using the 
parenthesis notation introduced in Table 1. This motif was composed of three separate subsequences; TNE, DTA, 
and CAR. The subsequence starting coordinates were located respectively at 14, three, and zero positions to 
the left of the CDR3. Each of the 35 motif-associated repertoires held between one and ten Prime Motif match-
ing sequences, the variable regions of which were all IGHV3 (Supplementary Table S3). The antibody sequence 
matches to the Prime Motif were not dependent on the total patient sequence counts or IGHV3 variable region 
usage (Fig. 3). Therefore, we had reason to believe that the presence of the Prime Motif was not merely an artifact 
and that its role in Multiple Sclerosis might somehow be physiologically significant.

We further probed the nature of the Prime Motif by investigating its individual subsequence components. 
Among the three subsequences, only CAR was found within the antigen-targeting loop CDR3. CAR, however, 
represented an unmodified germline segment known to commonly occur at the starting point of the CDR3 
region33. Therefore, the CAR component did little to account for the uniqueness of the Prime Motif. Motif spec-
ificity appeared to be a product of subsequences TNE and DTA. Querying the database against matches to just 
these two components yielded a total of 204 antibody sequences. The 204 sequences were distributed across 46 
individual repertoires (Supplementary Table S4). Four MS patients and seven Healthy Controls matched both to 
TNE and DTA, but not to the entire Prime Motif. Thus, 80% of the repertoires containing TNE and DTA mapped 
to an MS diagnosis, implying that the presence of the two components factored into MS selectivity. Also, as with 
the Prime Motif, the two selective components were not influenced by repertoire size or IGHV3 usage (Fig. 3).

We scrutinized more closely how the TNE and DTA components developed from nucleotide mutations. The 
nucleotide sequences of all 104 Prime Motif associated antibodies underwent analysis using igBlast, a compu-
tational tool for identifying the relationships between antibodies and their germline origins34. The inspection 
of a sample igBlast alignment revealed an adenine insertion in the nucleotides of the TNE component (Fig. 4). 
In addition, a deletion flanked the first position of the DTA component, which itself remained identical to its 
germline counterpart. Thus, it appeared that the two selective components marked the endpoints of a 24 base long 
frameshift mutation. The multiple alignment of a motif-matched sequence subset helped confirm that a localized 
reading frame shift was present in the framework three (FR3) region of the antibodies, relative to the IGHV3 gene 
(Fig. 5). FR3 insertions and deletions have previously been observed in B-cell sequences35, 36. These insertions and 
deletions are believed to be compatible with antigen-targeting antibody functions36.

Based on our alignment observations, we supplemented the initial Prime Motif with an additional indel 
requirement. The indel requirement stipulated that a TNE-adjoined insertion and a DTA-adjoined deletion 
must be present in all Prime Motif matching sequences. We tested this constraint on the 104 sequences obtained 
from the initial Prime Motif. 101 of the original 104 sequences complied with our indel requirement. These 
indel-associated sequences remained distributed across 35 unique patient repertoires (Supplementary Table S6).

Searching for HC Specific Motifs using the Haystack Heuristic. The Heuristic traversed 175,426 
motifs aiming to find Healthy Control specific motifs. No DOM sequences were found in that traversal. 

Figure 3. All 51 patients and 46 Healthy Controls are represented in this 2D plot. The x-axis contains the nun-
redundant patient sequence counts, obtained from column three of Supplementary Table 1. The y-axis contains 
the IGHV3 usage percentages obtained from column two of Supplementary Table 5. The data point shapes 
are determined by patient type. MS patients are represented by diamonds. Healthy Controls are represented 
by circles. The data points are further subcategorized by match type. Prime motif matches are categorized as 
“Prime.” TNE and DTA matches are categorized as “TNE_DTA.” All other matches are categorized as “None.” 
Though a few MS outliers are present in the plot, most patient data points appear to overlap regardless of 
categorization.
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Additionally, the Heuristic did not encounter any motifs that matched to zero MS patients. Instead, a total 
of 19,104 motifs matched to a single MS patient. Each of these single-MS motifs matched between 15 and 20 
Healthy Controls. All match counts for the single-MS motifs fell below the DOM-determining threshold of 60%. 

Figure 4. The igBlast alignment of a Prime Motif matching subsequence with its germline origin. The 
subsequence includes all three motif components; TNE, DTA, and CAR. These components have been 
highlighted in red. The nucleotide contents of the queried input sequence are listed on the line marked Query_
DNA. The proper amino acid translation of the query is included on the line marked Query_AA. The third 
line, labeled as Germ_DNA, features an alignment between the query nucleotides and the germline sequence 
IGHV3-53. Each dot in that alignment represents a nucleotide that has not mutated from the germline origin. 
The line as marked as Germ_AA contains the amino acid translation of the germline nucleotides. Based on the 
alignment, the query is identical to the germline, except for a single insertion and a single deletion. These indels, 
which are highlighted in blue, serve as endpoints of components TNE and DTA. The indels result in a localized 
reading frame shift, which transforms the germline subsequence QMNSLRAEDTA (highlighted in purple) into 
a Prime Motif associated subsequence TNEQPESRDTA.

Figure 5. A subset of Prime Motif matching nucleotides have been aligned to the IGHV3-53 germline 
sequence. The visualized segment of the resulting multiple alignment corresponds with the FR3 region of the 
antibody sequence. All other lines contain subsequences obtained from Prime Motif matching antibodies. 
Insertions and deletions in the multiple alignment are highlighted in red. A single adenine insertion is present 
in all sequences within the input nucleotide subset. The insertion is followed by a single deletion that occurs 
within the space of 24 nucleotides.
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Thus, further traversal of the single-MS motifs would not lead to eventual DOM discovery. We concluded that 
control-specific motifs were not present in our repertoire sequence dataset.

Comparison to Other Approaches. In our efforts to investigate alternate approaches to biomarker motif 
discovery, we used the HOMER (Hypergeometric Optimization of Motif EnRichment) Software Suite37 to search 
for nucleotide motifs that were over-represented in the patient sequence set relative to the healthy controls. 
The HOMER output contained 25 over-represented motifs, ranging from eight to twelve nucleotides in length. 
Plotting the percentage of MS sequences matched by each motif relative to the percentage of matched Healthy 
Controls revealed a strongly linear relationship (Fig. S2). The regression slope of 0.68 indicated that the HOMER 
motifs were not significantly over-represented in the MS data, thus limiting their potential diagnostic utility.

As a substitute approach to elucidating out a predictive signal from our sequence repertoires, we attempt to 
train a model to predict the presence of MS from sequence data. For model building purposes, we used the ran-
dom forest learning algorithm, was shown to have the capability of handling a large number of input variables 
while avoiding model overfitting38. To generate the model, a feature set was constructed for each of the patients 
and healthy controls. Each set of features for each sample corresponded to the frequencies of amino acid occur-
rences relative to the residue positions used in the Haystack Heuristic motif vectors. The Scikit-Learn machine 
learning module39 was then used train a model to differentiate between patients and Healthy Controls based on 
the positional residue frequencies. Five-fold cross-validation was applied to evaluate the model’s predictive poten-
tial. The F-measure, a commonly used evaluation metric computed from the geometrical mean of precision and 
recall, was equal to 0.63, indicating that the random forest model itself had very little predictive power.

Discussion
The Haystack Heuristic proved successful at its fundamental task of uncovering disease-related patterns in a vast 
noise-prone sequence dataset. After processing millions of Ig-VH sequences, the Heuristic was able to detect an 
MS-associated motif matching to less than 0.01% of analyzed sequences. Based on the calculated Mev, this motif 
is unlikely to have occurred by random. Furthermore, a search for HC-specific motifs did not yield any viable 
results; thereby implying that the Heuristic is sensitive to input data and is not prone to random output. Our find-
ings suggest that a genuine separating signal is present among MS B-cell repertoires.

Two separate runs of our Haystack Heuristic were performed. The first run, optimized for MS patient matches, 
traversed approximately 2.7 million nodes in motif network space. The second run, searching for motif enrich-
ment in HC data, traversed approximately 175 thousand nodes within the network. Thus, there was a 15-fold 
variation in overall network coverage between the two Heuristic executions. However, both runs commenced 
from an equal of number of initial vertex positions, hence the starting conditions are unlikely to have influenced 
the final observed divergence. Rather, the results imply that differences in coverage may be caused by the differ-
ence in separation scores used to jettison nodes unsuitable for additional traversal. An elevated set of separation 
scores would account for the extended network scope of the primary Heuristic run. Since the separation scores 
represent the balance between the number of MS and Healthy Control matches, we can conclude that certain 
lopsided motifs are present in our processed B-cell repertoires. Such lopsided motifs are found in MS patients 
with an implicitly higher frequency relative to the Healthy Control data. Inversely, an HC-inclined imbalance 
does not appear to substantially occur, based on the limited network coverage of our second Heuristic execution. 
Consequently, we conclude that the observed motif disparity is an illness-related phenomenon. However, addi-
tional work such as B-cell repertoire sequencing of NMO patients will be necessary to determine whether the 
motif is an MS-specific feature able to differentiate one CNS autoimmune disease from another.

The Haystack Heuristic identified a set of motifs whose presence is more frequent within the blood of MS 
patients. Among that set, the Prime Motif particularly stands out. The total observed frequencies of Prime 
Motif occurrences within the MS patients and the Healthy Controls are respectively, 68% and 0%. However, 
the observed frequency of 0% does not guarantee that the Prime Motif is always absent from within all healthy 
repertoires. It is quite possible that the Prime Motif is occasionally present in Healthy Controls, but with a lower 
frequency relative to all MS-linked occurrences. Confirming the precise occurrence frequencies may be the goal 
of future studies on replication cohorts and with increased sequencing depth. Nevertheless, our calculations 
provide strong evidence that the Prime Motif itself is substantially more likely to occur within the repertoire of 
disease-afflicted patient (Supplementary Materials S3.3). Thus, the Prime Motif might serve as a useful biomarker 
for more nuanced or possibly earlier MS diagnosis. At the very least, the role of the Prime Motif in at risk popula-
tions and in context of autoimmune disease progression should be examined in more detail. Some extensions of 
this work would include applying machine learning classifier approaches for disease diagnosis, however further 
utility of such methods needs to be evaluated.

Our present understanding of the Prime Motif is limited to sequence-based interpretations and its biological 
relevance remains subject to future studies. However, it is conceivable that the Prime Motif resulting from a pro-
ductive frame shift in the Ig-VH FR3 region may directly alter structural and consequently binding properties 
of BCR. Furthermore, the FR3 region has been proposed to be directly involved in immunoglobulin interaction 
with antigen targets, for example between Staphylococcal Protein A and FR3 region of IGHV3-enconded recep-
tors36, 40. Thus, in an autoimmune disease with prominent B cell involvement, the Prime Motif may not only 
serve as biomarker but may also aid in the understanding of immune mechanisms involved in the etiology of 
demyelinating CNS pathology. In this regard, our findings raise additional questions. In our study, the overall 
count of motif-matched sequences is low, suggesting that none of the associated peripheral blood B cells were 
actively undergoing expansion during patient sample collection. While we cannot exclude the possibility that a 
Motif-triggered inflammatory response occurred at an earlier stage of disease onset, future studies with increased 
sequencing depth and at different stages of MS are necessary to address this question. Furthermore, alternate 
samples from non-MS autoimmune patients would help us examine the role of the Prime Motif described here or 
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similar ones in more general autoimmune responses. We will continue to explore the validity of the Prime Motif 
as biomarker and pathway to biological explanations of autoimmunity.

While our Heuristic was successful at identifying a possible differentiating motif, this first-pass implementa-
tion may also lack in several aspects. For example, the search algorithm is dependent on a greedy, hill-climbing 
technique that may, or may not discover the most optimal differentiating motif. The addition of a stochastic search 
component would be a nice future extension of the approach presented here resulting in increased search-space 
coverage. Furthermore, our motif-vector model currently relies upon exact amino acid matches. Future itera-
tions of the heuristic will need to take into account partial matches based on amino acid similarity and polarity. 
The current scoring function does not evaluate the quantity of motif-matching sequences within each sampled 
patient. Adding a per-patient sequence match component might help push the heuristic towards discovering 
more immunologically active disease motifs. Finally there are issues with detection limit that should be consid-
ered - at greater depth there will always be some false positives of any motif occurring in the negative control 
population. Likewise at too low a depth too many false-positive motifs will appear due to insufficient sampling 
saturation of the motif graph. Nonetheless, the current heuristic implementation serves as an adequate baseline 
for measuring improvements to the algorithm.

In this work, we present the “Haystack Heuristic”, a DOM discovery technique that uses local search optimi-
zation to locate motifs within large datasets of antibody sequences. Upon design, we tested the heuristic on an 
assembly of over nine million blood-extracted antibody sequences with partial B-cell repertoire of 97 distinct 
individuals, including 51 MS patients as well as healthy controls. The Haystack Heuristic was applied to discover a 
DOM, which appears in two-thirds of all MS patients studied here and in none of the healthy controls and might, 
after further necessary validation in replication cohorts, and in comparison to other systemic or CNS autoim-
mune diseases, serve a diagnostic biomarker for MS.
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