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Abstract

Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin
associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA
oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is
an essential component of the H. pylori T4SS that has an unusual sequence structure, in which an extraordinary number of
direct DNA repeats is predicted to cause rearrangements that invariably yield in-frame insertions or deletions. Here we
demonstrate in murine and non-human primate models that immune-driven host selection of rearrangements in CagY is
sufficient to cause gain or loss of function in the H. pylori T4SS. We propose that CagY functions as a sort of molecular switch
or perhaps a rheostat that alters the function of the T4SS and ‘‘tunes’’ the host inflammatory response so as to maximize
persistent infection.
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Introduction

Helicobacter pylori commonly infects the human gastric epithelium

and sometimes causes peptic ulcer disease or gastric cancer, which

is the second most common cause of cancer death worldwide. The

H. pylori virulence locus most strongly associated with clinical

disease, rather than asymptomatic infection, is the cag pathoge-

nicity island (cagPAI). The 40-kb cagPAI consists of approximately

27 genes, several of which encode a type IV secretion system

(T4SS) that binds b1 integrins [1,2] and translocates the CagA

oncoprotein into gastric epithelial cells [3]. Phosphorylated and

nonphosphorylated forms of intracellular CagA cause complex

changes in host-cell signaling that lead to epithelial cell elongation

[4], disruption of tight junctions [5], and alteration of cell polarity

[6,7]. The T4SS is also required for induction of interleukin-8 (IL-

8), a member of the CXC cytokine family, which has long been

used as a convenient assay to characterize the inflammatory

potential of H. pylori strains [8,9]. It has been proposed that IL-8

induction is mediated by cagPAI-dependent translocation of

peptidoglycan, activation of nucleotide-binding oligomerization

domain 1 (NOD1), and stimulation of NF-kB [10]. However, this

remains controversial, as some have suggested that IL-8 and other

NF-kB-dependent proinflammatory responses are mediated pri-

marily by toll like receptors and MyD88, rather than NOD1 [11].

Very recently, a NOD1- and CagA-independent pathway of IL-8

induction has also been described [12].

The prototypical T4SS is the VirB secretion apparatus of

Agrobacterium tumefaciens, which consists of 11 VirB proteins

(encoded by virB1-11) and the coupling protein, VirD4 [13].

Although the function of the H. pylori T4SS proteins cannot be

easily assigned based on the distantly related A. tumefaciens,

functional and structural studies are beginning to emerge.

Mutagenesis studies have demonstrated that 15 genes on the

cagPAI are required for H. pylori induction of IL-8 [14,15]. One

such gene is cagY, which encodes the H. pylori VirB10 orthologue.

CagY is a large protein of approximately 220 kDa that is thought

to mediate contact between the inner and outer bacterial

membrane [16], similar to what has been described in A.

tumefaciens and other Gram-negative bacteria [17]. However, cagY

is much larger than virB10 from A. tumefaciens, and it has an

unusual sequence structure in which an extraordinary number of

direct DNA repeats are found in a small 59 repeat region (FRR)

and a large middle repeat region (MRR) of the gene [18]. Potential

DNA rearrangements predicted by these repeats invariably yield

PLOS Pathogens | www.plospathogens.org 1 February 2013 | Volume 9 | Issue 2 | e1003189



in-frame insertions or deletions that result in variant proteins. The

observation that variant CagY proteins are found in different H.

pylori strains or after passage in mouse models, led to the suggestion

that CagY undergoes antigenic variation to evade the host

immune response [18] while maintaining T4SS function [19].

Here we demonstrate that experimental infection with H. pylori

leads to host immunity-dependent recombination in cagY that is

sufficient to eliminate the functionality of the T4SS. Moreover,

changes in cagY during experimental infection could also turn on

the capacity to induce IL-8 and phosphorylate CagA, suggesting

that the function of CagY diversity is not to evade the host

immune response but rather to modulate it. We propose that

CagY functions as a molecular switch or perhaps a rheostat that

‘‘tunes’’ the host inflammatory response by altering the function of

the T4SS so as to maximize persistent infection.

Results

H. pylori isolates recovered from experimentally infected
rhesus macaques lose the capacity to induce IL-8

H. pylori strains adapted to colonization of mice frequently lose

the capacity to induce IL-8 and translocate CagA into gastric

epithelial cells [20,21], which are measures of a functional T4SS.

The cagPAI is retained and the mechanism is unknown [21]. Since

mice are not a natural host for H. pylori, we asked whether similar

changes occur during infection of rhesus macaques, which are

commonly infected with H. pylori that is indistinguishable by

comparative genomic hybridization from that which infects humans

[22]. Five rhesus monkeys were previously challenged with a single

colony of wild type (WT) H. pylori J166 that has a functional cagPAI

[23]. Multiple output colonies recovered from each monkey up to

14 months post inoculation (PI) were co-cultured with AGS gastric

cells to determine their capacity to induce IL-8, which was

normalized to the WT control strain. IL-8 induction resembled

WT in bacteria recovered early after challenge, but decreased over

time in 4 of 5 monkeys (Figure 1A–D). In one monkey, all but one

bacterial colony induced IL-8 at levels$WT, even after 14 months

of colonization (Figure 1E). Selected rhesus output colonies that

induced low IL-8 (designated rOut1 and rOut2) or high IL-8

(rOut3) in AGS cells were also tested in KATO III gastric cells.

Similar results were obtained (Figure S1A). These results demon-

strate that H. pylori infection of rhesus monkeys results in a

population of strains that have lost the capacity to induce the pro-

inflammatory cytokine, IL-8, though there are individual differences

among animals. Since loss of T4SS function occurs in macaques as

well as mice, yet differs among individuals, it may represent a

physiologic accommodation to the gastric environment.

Changes in the capacity for induction of IL-8 during
colonization of macaques are associated with
recombination in cagY

Systematic mutagenesis experiments have demonstrated that 15

genes on the cagPAI (cagd, cagc, virB11, cagY, cagX, cagW, cagV, cagU,

cagT, cagM, cagL, cagI, cagH, cagE, cagC) are essential for H. pylori to

fully induce IL-8 [14,15]. In some strains, cagA is required as well

[24]. To determine if change in one or more of these genes was

responsible for loss of IL-8 induction during colonization of rhesus

monkeys, we amplified and sequenced each of these genes from

WT J166 and from a rhesus output strain (rOut1) that had lost the

capacity to induce IL-8. Each of the 16 genes was identical

between WT J166 and rOut1 with the exception of cagY, in which

a 321 bp fragment was deleted.

Dot-plot analysis (Figure S2) demonstrated that, like in strains J99

and 26695 [18,25], cagY in H. pylori J166 has a large number of

direct repeats that are organized into a 59 repeat region (FRR) and a

middle repeat region (MRR), in which the 321 bp deletion in rOut1

was located. The large number of direct repeats in cagY could permit

deletion or duplication of the intervening region with preservation

of an open reading frame, and might alter the functionality of the

cagPAI. Since high throughput DNA sequencing of cagY is difficult

owing to its large size and repeat structure, we used PCR-RFLP to

determine if recombination in cagY occurred during infection of

rhesus monkeys, and if it was associated with altered capacity to

induce IL-8. Figure S3A shows representative cagY PCR-RFLP

patterns from WT J166 and rOut1-3, each of which is unique. Each

monkey was colonized by multiple unique cagY variants with the

exception of one (31811), in which all but one colony induced IL-

8$WT and had a cagY that was indistinguishable from that in WT

J166 (Figure 1F). We next compared the cagY PCR-RFLP from all

81 output colonies with their capacity to induce IL-8, and asked if

cagY was the same (solid circles) or different (open circles) from that

of WT J166 (Figure 1). Among all monkey output colonies that had

normalized IL-8 induction $1.0, 96% (23 of 24) had the same cagY

PCR-RFLP fingerprint as WT J166, while only 25% (14 of 57) of

colonies with IL-8 induction ,1.0 showed the same fingerprint

(Fisher’s exact test, two-tailed, P,0.0001). Output strains in which

cagY differed from WT J166 typically showed IL-8 induction similar

to the mean (6SEM) of a cagY deletion mutant (0.2960.04). Loss of

IL-8 induction without an apparent change in cagY may sometimes

occur due to the inability of PCR-RFLP to detect frameshift

mutations that lead to premature stop codons in cagY, or to a change

in other cagPAI genes, including cagA, which is essential for full

induction of IL-8 in H. pylori J166 (Figure S4). To determine if

changes in cagY might be due simply to frequent recombination

during in vitro culture, WT H. pylori J166 was passaged daily for 5

weeks, and each week 6 individual colonies were isolated and

examined by PCR-RFLP. Of the 30 clones tested, 28 (93%) showed

the same RFLP pattern and similar mean (6SEM) IL-8 induction

(0.916.01) as WT J166; the two clones with a different cagY RFLP

showed reduced induction of IL-8 (0.326.00). Since loss of IL-8

induction and change in cagY were common during experimental

infection but not during in vitro passage, these results suggest that H.

pylori infection of rhesus macaques selects for allelic diversity in cagY

that is associated with decreased capacity to induce IL-8.

Author Summary

Helicobacter pylori is a bacterium that colonizes the
stomach of about half the world’s population, most of
whom are asymptomatic. However, some strains of H.
pylori express a bacterial secretion system, a sort of
molecular syringe that injects a bacterial protein inside the
gastric cells and causes inflammation that can lead to
peptic ulcer disease or gastric cancer. One of the essential
components of the H. pylori secretion system is CagY,
which is unusual because it contains a series of repetitive
amino acid motifs that are encoded by a very large
number of direct DNA repeats. Here we have shown that
DNA recombination in cagY changes the protein motif
structure and alters the function of the secretion system—
turning it on or off. Using mouse and non-human primate
models, we have demonstrated that CagY is a molecular
switch that ‘‘tunes’’ the host inflammatory response, and
likely contributes to persistent infection. Determining the
mechanism by which CagY functions will enhance our
understanding of the effects of H. pylori on human health,
and could lead to novel applications for the modulation of
host cell function.

Functional Plasticity in the H. pylori T4SS
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Recombination in cagY is sufficient to modify the
induction of IL-8 and phosphorylation of CagA

Recombination in cagY might be associated with changes in IL-

8, but not mechanistically linked to the function of the cagPAI.

Therefore, we used contraselection [26,27] to replace the cagY in

WT J166 with the cagY gene from rOut1 or rOut2, each of which

induced low IL-8 and had a unique cagY RFLP pattern. The cagY

gene from streptomycin resistant J166 was deleted by homologous

recombination with the cat-rpsL cassette (chloramphenicol resis-

tant, dominant streptomycin susceptible), and then transformed

with chromosomal DNA from either WT J166 (restoring the WT

cagY allele) or one of the two rhesus output strains. Transformants

Figure 1. Loss of the capacity to induce IL-8 in H. pylori recovered from rhesus monkeys is associated with changes in the gene
encoding CagY, an essential protein in the T4SS. (A–E) H. pylori was isolated from five rhesus macaques up to 14 months after experimental
infection with H. pylori WT J166. Individual colonies were co-cultured with AGS cells, and ELISA was used to measure IL-8 levels, which were
normalized to the WT J166 positive control. Each data point represents the results from a single colony. The capacity to induce IL-8 decreased over
time in colonies recovered from four monkeys (A–D), but was largely unchanged in one (E). PCR-RFLP analysis showed that H. pylori colonies that lost
the capacity to induce IL-8 were associated with a change in cagY (open circles), while those that maintained IL-8 induction typically had cagY that
was indistinguishable from WT J166 (filled circles). Animal designation is shown in the upper left corner of each panel. (F) Output strains from each
monkey were analyzed by cagY PCR-RFLP and compared to WT H. pylori J166 (dark blue) and to one another. Each pie chart represents all colonies
recovered from one of the five monkeys (12–24 colonies/monkey); different colors represent different cagY variants.
doi:10.1371/journal.ppat.1003189.g001

Functional Plasticity in the H. pylori T4SS
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that were chloramphenicol susceptible and streptomycin resistant

(due to loss of the cassette), and had the appropriate cagY gene by

PCR-RFLP and confirmed by full-length DNA sequence analysis,

were then tested for induction of IL-8 and translocation of CagA.

As expected, deletion of cagY in J166 markedly reduced IL-8

induction, and replacement of the WT cagY allele restored

expression of CagY and induction of IL-8 (Figure 2). In contrast,

replacement with cagY from rOut1 and rOut2, which induced low

IL-8, did not restore IL-8 induction, even though the CagY

protein was expressed. Although it was uncommon, we also

identified a rhesus output strain (rOut3) that induced IL-8 at a

level similar to WT J166, but had a unique cagY allele. As

expected, replacement of the WT cagY allele with cagY from rOut3

maintained the capacity to induce IL-8. Only those strains that

induced IL-8 were also capable of inducing CagA translocation

and phosphorylation. These results demonstrate that recombina-

tion in cagY is sufficient to alter the functionality of the T4SS

encoded by the cagPAI.

Host immunity is required for in vivo selection of cagY
variants that have lost the capacity to induce IL-8

Identification of the direct repeat structure of cagY suggested

that frequent in-frame recombination events may be a mechanism

of antigenic variation to avoid the host adaptive immune response

[28]. To test this hypothesis, we inoculated WT H. pylori J166 into

WT C57BL/6 and RAG22/2 mice, which do not have

functional B or T cells and develop little or no gastric

inflammation after H. pylori infection [29]. H. pylori colonization

levels were approximately 10-fold higher in RAG22/2 mice

compared to WT mice (Figure S5A). Similar to the results in

rhesus monkeys, bacteria recovered from WT mice resembled

input H. pylori early after challenge (Figure 3A). However, at 12

and 16 weeks PI, bacteria from WT mice showed a significant loss

in IL-8 induction (P,0.01) and change in cagY (P,0.001)

compared to colonies from RAG22/2 mice, which uniformly

resembled WT J166 in IL-8 induction and showed no changes in

cagY by RFLP analysis (Figure 3B). We next replaced the cagY allele

in WT H. pylori J166 with that from mouse output strains that

changed cagY and either lost (mOut1 and mOut2) or maintained

(mOut3 and mOut4) IL-8 induction in AGS cells, which was

confirmed in KATO III cells (Figure S1B). Similar to the results

with rhesus output strains (Figure 2), induction of IL-8 and

phosphorylation of CagA in mouse output strains were phenocop-

ied when their cagY allele was used to replace that in WT J166

(Figure 4). Interestingly, the bacterial population within each

individual mouse was relatively homogenous, showing either WT

levels of IL-8 and cagY indistinguishable from input, or low IL-8

and one or at most two unique cagY variants (Figure 3C). These

experiments demonstrate that CagY-mediated change in function

of the H. pylori T4SS is dependent on an intact host immune

system.

cagY variants that fail to induce IL-8 and translocate
CagA do not induce expression of NF-kB

Although H. pylori-induced signaling cascades in host cells are

complex and poorly understood, it is clear that T4SS-mediated

pro-inflammatory responses are dependent upon activation of the

transcription factor, NF-kB [30]. Therefore, we examined NF-kB

activation using an AGS cell line stably transfected with a

luciferase reporter construct. AGS cells were co-cultured with WT

J166 or isogenic J166 strains encoding cagY from monkey or mouse

output strains. Phorbol myristate acetate (PMA) and deletions in

the entire cagPAI or in cagY were used as positive and negative

controls, respectively. Similar to strains with a deletion in cagY or the

entire cagPAI, cagY variants that failed to induce IL-8 and translocate

CagA (rOut1,2; mOut1,2) also failed to activate NF-kB (Figure 5).

In contrast, introduction of cagY alleles from strains that induced IL-

8 and translocated CagA (rOut3; mOut3,4) showed significantly

increased activation of NF-kB, though rOut3 did not achieve a level

similar to WT J166. These results suggest that cagY mediated

alterations in T4SS function is mediated largely by NF-kB.

Variants in CagY demonstrate a modular change in
structure

Previous analysis of 14 full-length CagY sequences in the NCBI

non-redundant protein data base suggested that the MRR is

organized into two a-helical principal motifs, which occur in

tandem arrays of one to six 38–39 residue A motifs flanked by

Figure 2. Recombination in cagY during infection of rhesus
monkeys is sufficient to reduce the capacity of H. pylori to
induce IL-8 and translocate CagA. Deletion of cagY (nY) from WT
H. pylori J166 significantly reduced its capacity to induce IL-8 (mean 6
SEM of 3 replicates), which was recovered when the chromosomal WT
cagY allele was restored (nY [J166]) by complementation (black bars).
Immunoblot showed that only the WT or nY [J166] expressed CagY
protein (a-CagY) and translocated CagA that was tyrosine phosphor-
ylated (a-PY99). Two rhesus output strains with unique cagY alleles
(rOut1, rOut2) lost the capacity to induce IL-8 (gray bars) and
translocate CagA, although they expressed CagY. Replacement of
ncagY with cagY from rOut1 (nY [rOut1]) or rOut2 (nY [rOut2])
recapitulated their failure to induce IL-8 induction (white bars) and
translocate phosphorylated CagA. Similarly, complementation with
cagY from an output strain (rOut3) that expressed a unique cagY but
maintained the capacity to induce IL-8 (gray bar) and translocate CagA,
also phenocopied its IL-8 induction and translocation of CagA. All
strains expressed CagA (a-CagA), though only those that induced IL-8
had the capacity to translocate CagA that was tyrosine phosphorylated.
Multiple bands in the CagY immunoblot could represent different
transcription or translation products, or even protein fragments, but
they are CagY-specific since they are absent in the cagY deletion
mutant. **P,0.01; ***P,0.001.
doi:10.1371/journal.ppat.1003189.g002

Functional Plasticity in the H. pylori T4SS
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single copies of a 31 residue B motif [19]. Both principal motifs are

made up of three distinct submotifs, which remain invariant in

their order. This annotation suggests that CagY variants that are

selected in vivo are likely a result of duplication or deletion of

principal motif segments, without compromising the underlying

submotif composition. To examine this, we first identified the A

and B principal amino acid motifs in the CagY MRR of WT H.

pylori J166. Similar to other H. pylori strains previously described

[19], the CagY MRR of H. pylori J166 is organized into six tandem

arrays of one to four A motifs flanked by B motifs (Figure 6). We

Figure 3. Loss of the capacity to induce IL-8 and change cagY
during infection of mice is dependent on an intact host
immune system. H. pylori was isolated from C57BL/6 WT (A) or
RAG22/2 (B) mice (N = 3–6/time point) up to 16 weeks after
experimental infection with H. pylori WT J166. Individual colonies (3–
6/mouse) were co-cultured with AGS cells, and ELISA was used to
measure IL-8 levels, which were normalized to the WT J166 positive
control (line = mean). Each data point represents the results from a
single colony. Induction of IL-8 in colonies isolated from WT mice was
significantly lower than in RAG22/2 mice at 12 and 16 weeks PI

(P,0.01). Changes in cagY (open circles) were detected by PCR-RFLP in
28 of 70 colonies from WT mice but in 0 of 64 colonies from RAG22/2
mice (Fishers exact test, P,0.0001). Output strains from WT C57BL/6
mice were analyzed by cagY PCR-RFLP and compared to WT H. pylori
J166 (dark blue) and to one another (C). Each pie chart represents the
unique cagY RFLP patterns identified in a single mouse from 2 to 16
weeks PI, and is positioned according to the mean IL-8 induction by
colonies recovered from that mouse.
doi:10.1371/journal.ppat.1003189.g003

Figure 4. Recombination in cagY during infection of mice is
sufficient to reduce the capacity of H. pylori to induce IL-8 and
translocate CagA. Deletion of cagY (nY) from WT H. pylori J166
significantly reduced its capacity to induce IL-8 (mean 6 SEM of 3
replicates), which was recovered when the chromosomal WT cagY allele
was restored (nY [J166]) by complementation (black bars). Two output
strains from C57BL/6 mice with unique cagY alleles (mOut1, mOut2) lost
the capacity to induce IL-8 (gray bars) and translocate CagA, although
they expressed CagY (a-CagY). Complementation of ncagY with cagY
from mOut1 (nY [mOut1]) or mOut2 (nY [mOut2]) recapitulated their
lack of IL-8 induction (white bars) and translocation of phosphorylated
CagA (a-PY99). Similarly, replacement with cagY from two output
strains (mOut3, mOut4) that expressed a unique cagY but maintained
the capacity to induce IL-8 (gray bars) and translocate CagA, also
phenocopied their IL-8 induction and translocation of CagA. All strains
expressed CagA (a-CagA), though only those that induced IL-8 had the
capacity to translocate CagA that was tyrosine phosphorylated. Multiple
bands in the CagY immunoblot could represent different transcription
or translation products, or even protein fragments, but they are CagY-
specific since they are absent in the cagY deletion mutant. **P,0.01;
***P,0.001.
doi:10.1371/journal.ppat.1003189.g004

Functional Plasticity in the H. pylori T4SS
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next examined the motif structure of CagY from rhesus (rOut1-3)

and mouse (mOut1-4) output strains that were previously

characterized (Figures 2 and 4). All output strains from monkeys

and mice with variant cagY alleles had lost one or more A or B

motifs, though there were multiple CagY motif structures

associated with the same IL-8 phenotype. One output strain each

from monkey (rOut1) and from mouse (mOut1), which had both

lost the capacity to induce IL-8, had identical motif structures.

Interestingly, loss of a single A motif was sufficient to markedly

reduce IL-8 induction (rOut2), while loss of 14 A and B motifs

(mOut3), representing a reduction in predicted size from 233 kDa

to 175 kDa, was not. Although we were unable to identify a motif

pattern associated with the IL-8 phenotype, these results suggest

that CagY function is based on a higher order structure and not on

any critical motif within the MRR.

The T4SS pilus is expressed in H. pylori strains with
functional and non-functional cagY alleles

Output colonies that have variant cagY alleles and no longer

induce IL-8 still express CagY (Figures 2 and 4), but they might

not make T4SS pili, or the pili might have altered structural

features. To test this possibility, we used field emission scanning

electron microscopy (FEG-SEM) to image H. pylori strains co-

cultured with AGS cells. As expected, WT J166 but not a cagPAI

deletion mutant produced pilus-like structures (Figure 7). This is

consistent with previous studies demonstrating that the cagPAI is

essential for the formation of a T4SS [2,15,31,32]. Pili of similar

dimensions were previously reported to be present in WT strain

26695, but absent in H. pylori 26695 with deletions of cagT, cagE,

cagL, and cagI, all of which are required for a functional T4SS [15].

Using this imaging approach, we examined isogenic strains of H.

pylori J166 in which the cagY gene had been replaced with alleles

from strains that did (rOut3, mOut3) or did not (rOut2, mOut2)

induce IL-8 and translocate CagA (Figures 2 and 4). Regardless of

cagPAI functionality, all strains made pilus structures (Figure 7).

Although the pili were less prominent on some strains that had

defects in T4SS function, we were unable to identify a

reproducible association between cagPAI function and quantitative

measures of pilus number or morphology (Table S1).

Pilus structures were also seen in H. pylori J166 with a deletion of

cagY (Figure 7); similar results were obtained with a cagY deletion in

H. pylori strain 26695 (Figure 7). To investigate the cellular

localization of CagY, we performed immunogold SEM using

antibody to the CagY MRR to stain H. pylori co-cultured with

AGS cells. Antibody to CagA was used as a positive control.

Although CagY label was seen scattered over the bacterial cells in

WT H. pylori, no staining was found on or near the pilus structure

(Figure 8). In contrast, CagA was identified both on the cell surface

and closely approximated to the tips of pili in WT H. pylori, which

has been reported previously [2]. CagA was not detected in

association with pili in a cagY deletion mutant, in which the T4SS

is not functional, and there was markedly reduced CagA labeling

on the surface of the cagY mutant bacteria compared to WT

(Figure 8). The absence of detectable CagY in association with pili

is consistent with the finding that a DcagY mutant produces pili that

are indistinguishable from those in the WT strain. Together, the

EM results suggest that the loss of function that occurs with

changes in CagY results from a functional change in the T4SS

without any detectable structural defect in the T4SS pilus.

H. pylori SS1, the commonly used mouse-adapted strain
that does not induce IL-8 or translocate CagA, has a non-
functional CagY

Studies of H. pylori pathogenesis were long hampered by the

inability of investigators to successfully colonize mice. Since the

difficulty was attributed primarily to H. pylori strain differences,

mouse-adapted strain SS1 was derived, which has become the

Figure 5. cagY variants that fail to induce IL-8 and translocate
CagA do not induce expression of NF-kB. (A) Co-culture of H.
pylori with AGS cells stably transformed with a reporter plasmid
demonstrated that activation of NF-kB was seen in WT J166 but not in a
strain with a deletion of the cagPAI (nPAI). Reintroduction of J166 cagY
into a cagY deletion mutant restored NF-kB activation. Introduction of
cagY from monkey (B) or mouse (C) output strains showed that
increased NF-kB activation compared to ncagY (nY) or nPAI was seen
only in strains bearing a cagY allele that was competent for induction of
IL-8 and translocation of CagA (rOut3, mOut3, mOut4). ***P,0.001.
doi:10.1371/journal.ppat.1003189.g005
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standard for animal experimentation [33]. However, it was later

realized that H. pylori SS1 did not induce IL-8 or translocate CagA

[20,21], despite having an intact cagPAI detected by microarray

[34]. The reason for this is unknown. It was recently reported that

the original human isolate, designated pre-mouse SS1 (PMSS1),

does have a functional cagPAI [35]. We therefore hypothesized that

SS1 had undergone recombination in cagY during mouse passage

that eliminated its capacity to induce IL-8 and translocate CagA. To

test this hypothesis, we first inoculated PMSS1 into WT C57BL/6

and RAG12/2 mice, and examined IL-8 induction and cagY

RFLP in colonies recovered 8 weeks PI. Similar to the results with

strain J166 (Figure 3), colonies from WT but not RAG12/2 mice

showed loss of IL-8 induction that was associated with recombina-

tion in cagY (Figure 9A). These results are consistent with a previous

report demonstrating loss of T4SS function after challenge with

PMSS1 in adult but not neonatal mice, which control effector T cell

responses by H. pylori-specific regulatory T cells [35].

The cagY allele in SS1 is much larger than that in PMSS1 and

has a markedly different PCR-RFLP pattern (Figure 9B). To

determine if the increase in size of cagY was responsible for loss of a

functional T4SS in SS1, we used contraselection to exchange the

cagY genes between PMSS1 and SS1, and tested the strains for

induction of IL-8 and translocation of CagA. As expected, H. pylori

PMSS1 induced IL-8 and translocated CagA (Figure 9C), while

SS1 did not (Figure 9D), although both expressed CagA and

CagY. However, when cagY from SS1 was introduced into

PMSS1, it could no longer translocate CagA or induce IL-8

(Figure 9C), indicating that the SS1 CagY was not functional.

Interestingly, when cagY from PMSS1 was introduced into SS1,

CagA translocation and IL-8 induction increased, but not to the

level of PMSS1 (Figure 9D), suggesting that alteration in cagY is not

the only defect in the T4SS of SS1. Together, these results suggest

that H. pylori SS1 underwent recombination in cagY during mouse

passage, which eliminated the functionality of the T4SS, reduced

its inflammatory capacity, and enhanced its colonization of mice.

In vivo recombination in CagY can also restore the
capacity to induce IL-8

Recombination in cagY could be a mechanism by which H. pylori

modulates rather than evades the host inflammatory response. If

Figure 6. H. pylori colonization of rhesus monkeys and mice is associated with changes in the motif structure of the CagY middle
repeat region. As in strains J99 and 26695 [19], the predicted amino acid sequence of CagY in WT H. pylori J166 is organized into a 59 repeat region
(residues 9–398), a 39 region orthologous to VirB10 (residues 1784–2028), and a middle repeat region (residues 715–1512) that is composed of a series
of B motifs (yellow) that bracket one to four A motifs (orange). Passage of WT J166 in rhesus monkeys and in mice results in some strains that lose
one or more A or B motifs, which is sometimes sufficient to reduce the capacity to induce IL-8 (rOut1 and rOut2; mOut1 and mOut2) and other times
is not (rOut3; mOut3 and mOut4).
doi:10.1371/journal.ppat.1003189.g006
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Figure 7. Changes in the motif structure of the CagY middle repeat region that alter the function of the cagPAI do not affect
expression of T4SS pili on the bacterial surface. H. pylori was co-cultured with AGS gastric cells at an MOI of 100:1 and imaged by FEG-SEM.
T4SS pilus structures were readily apparent in the WT H. pylori J166 but not in the cagPAI deletion mutant (J166ncagPAI). T4SS pili were also
observed in H. pylori J166 in which the WT cagY allele was replaced with that from output strains with a functional (rOut3, mOut3) or a non-functional
(rOut2 mOut2) cagPAI. Pili were also seen in H. pylori strains J166 and 26695 with deletions in cagY. Magnification bars indicate 500 nm.
doi:10.1371/journal.ppat.1003189.g007
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so, in vivo cagY recombination might sometimes confer an increase

in the function of the T4SS, and enhance rather than reduce H.

pylori inflammatory potential. To address this hypothesis, we

undertook experiments to investigate possible alterations in cagY

that might occur if animals were challenged with H. pylori mOut2,

which had undergone cagY recombination that eliminated function

of the T4SS (Figure 4). As a first step, to exclude the possibility that

additional mutations could have occurred in mOut2 that

conferred loss of T4SS function, we used contraselection to

replace the cagY in mOut2 with that from WT J166. The results

demonstrated that replacement of cagY in this strain with cagY from

WT J166 was sufficient to restore induction of IL-8 in mOut2

(Figure S6). In three of four monkeys infected with mOut2 (36001,

35951, 35930), most colonies recovered two weeks after challenge

resembled the input, with low IL-8 induction and the same cagY

PCR-RFLP (Figure 10A). However, by eight weeks there was a

significant increase in the capacity to induce IL-8 that was

accompanied by changes in the cagY RFLP. One of these three

monkeys (36001) was sampled repeatedly up to 24 weeks post

inoculation; all output colonies recovered 8 weeks or more PI

induced IL-8 and expressed a cagY that differed from that in

mOut2 (Figure S7). A fourth monkey (36018) was colonized with a

mixed population of cagY variants, but nearly all induced low IL-8

similar to that of the challenge strain. We next infected C57BL/6

WT and RAG22/2 mice with mOut2, and analyzed IL-8

induction and cagY RFLP up to 16 weeks PI. Similar to infection

with WT J166, colonization density of mOut2 was greater in

RAG22/2 mice than in C57BL/6 mice (Figure S5B). In general,

strains recovered from both WT and RAG22/2 mice induced

low IL-8 similar to the input mOut2, with no change in cagY

(Figure 10B). A few colonies from both WT and RAG22/2 mice

showed increased IL-8, which was accompanied by a change in

cagY. Strains from mice and monkeys that recovered IL-8

induction showed novel cagY RFLP fingerprints that did not

revert to WT J166. These results demonstrate that in vivo

recombination in cagY can either eliminate or restore the function

of the T4SS encoded on the H. pylori cagPAI. Since CagY that

confers a non-functional T4SS appears stable in mice, modulation

may be driven more by inflammation rather than adaptive

immune responses.

Discussion

The capacity to evade or circumvent host defense is considered

a signature of pathogenic bacteria that distinguishes them from

closely related commensals [36]. The mechanisms by which this

occurs are varied, and they include elaboration of toxins that

inhibit the function of immune cells, iron sequestration, antigenic

variation of surface structures, intracellular invasion, and inducing

host expression of immunosuppressive cytokines, to name just a

few. But bacterial pathogens not only avoid host immune

responses, they also sometimes exploit them. This is perhaps best

understood for infection with Salmonella enterica serotype Typhi-

murium, where the T3SS-dependent host inflammatory response

is required for colonization of mice [37]. Inflammation generates

tetrathionate, an electron acceptor that can be used by S.

Typhimurium but not by competing microbiota [38]. Inflamma-

tion also induces epithelial cells to express lipocalin-2 and

calprotectin, which sequester iron and zinc from the gut

microbiota but not from S. Typhimurium because it expresses

Figure 8. CagY decorates the H. pylori bacterial surface but is not associated with T4SS pili. H. pylori was co-cultured with AGS gastric cells
at an MOI of 100:1, incubated with antibodies to the CagY MRR or CagA, and imaged by FEG-SEM in the environmental mode. CagY was detected on
the bacterial surface of the WT strain but was not associated with pili. CagA was detected both on the bacterial surface and in close approximation to
the tips of the pili of the WT strain. There was markedly reduced CagA labeling on the surface of ncagY mutant strain compared to the WT strain. No
staining was seen when primary antibody was omitted. Pili are sometimes not as well visualized and more often appear broken in these images
compared to Figure 7 due to the lack of metal coating and more frequent washes. Magnification bars indicate 500 nm.
doi:10.1371/journal.ppat.1003189.g008
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specialized high affinity metal transporters [39,40]. Thus, from the

bacterial point of view, the host inflammatory response can be

both deleterious and advantageous.

The hallmark of infection with H. pylori is chronic active gastritis

comprised of polymorphonuclear leukocytes together with Th1,

Th17, and Treg CD4+ lymphocytes [41]. The cagPAI is central to

the inflammatory response because H. pylori strains bearing the

cagPAI are more often associated with clinical disease in humans,

rather than asymptomatic infection. These epidemiologic obser-

vations are supported by studies showing that strains harboring

isogenic deletions within the cagPAI cause less gastritis and

precancerous pathology in animal models than do strains with

an intact cagPAI [35,42,43]. Yet from the bacterial perspective, the

cagPAI has mixed effects. On the one hand, enhanced inflamma-

tion induced by the T4SS partially controls the infectious burden

and presumably decreases transmission and therefore fitness. On

the other hand, T4SS-mediated injection of CagA enhances the

fitness of H. pylori by altering epithelial cell polarity and increasing

bacterial iron acquisition, which permits it to grow on the apical

epithelial cell surface [7,44]. Here we demonstrate that H. pylori

has evolved a novel solution to this dilemma, in which cagY, an

essential component of the T4SS, has highly repetitive DNA

elements that undergo rearrangements that can change the

functionality of the cagPAI. These rearrangements may occur in

Figure 9. Mouse adapted H. pylori strain SS1 expresses a CagY that is not functional for induction of IL-8 or translocation of CagA.
(A) H. pylori was isolated from C57BL/6 WT or RAG12/2 mice (N = 3–6/time point) 8 weeks after experimental infection with H. pylori PMSS1.
Individual colonies (3–6/mouse) were co-cultured with AGS cells, and ELISA was used to measure IL-8 levels, which were normalized to the PMSS1
positive control (line = mean). Each data point represents the results from a single colony. Induction of IL-8 in colonies isolated from WT mice was
significantly lower than in RAG12/2 mice, and was associated with changes in cagY PCR-RFLP (open circles). (B) cagY in H. pylori strain SS1 is larger
than that in the progenitor strain PMSS1, and has a different fingerprint on PCR-RFLP. (C) Deletion of cagY from WT H. pylori PMSS1 reduced the
induction of IL-8 and eliminated translocation of CagA, which were recovered when the WT PMSS1 cagY gene was restored (nY[PMSS1]. However,
replacement of the PMSS1 cagY gene with that from H. pylori SS1 (nY [SS1]) showed reduced levels of IL-8 and no CagA translocation. (D) WT H. pylori
SS1 showed little induction of IL-8 and no CagA translocation, and it was unaffected by deletion of cagY or restoration of the WT SS1 cagY allele.
However, replacement of the WT SS1 cagY allele with that from PMSS1 markedly increased IL-8 induction and CagA translocation, though not to the
level of PMSS1. All assays represent the mean 6SEM of 3 replicates. **P,0.01; ***P,0.001.
doi:10.1371/journal.ppat.1003189.g009
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vivo, but they are likely also present in the bacterial inoculum,

since we could identify cagY variants relatively easily in vitro (2 of 30

clones examined). Although we have not formally identified

recombination as the mechanism (e.g., horizontal gene transfer is

possible), this seems most likely given the high frequency of

repetitive elements within the cagY gene. We propose that cagY is a

sort of contingency locus [45] that generates diversity at the

population level and enhances bacterial fitness by allowing

adaptation to changing conditions that may be found within one

host or during transmission to another.

The most obvious pressure that may select for variant cagY

alleles is the host adaptive immune response. Earlier studies

suggested that the repeat structure of cagY represented a

mechanism for antigenic variation to evade adaptive immunity

Figure 10. Recombination of cagY during infection of rhesus macaques and mice can also restore the capacity to induce IL-8. Rhesus
macaques and mice were inoculated with mOut2, which does not induce IL-8 or translocate CagA. Single colony isolates were recovered and tested
for induction of IL-8 and compared to mOut2 by cagY PCR-RFLP. (A) Colonies from three monkeys (36001, 35951, 35930) showed significantly
increased capacity to induce IL-8 at 8 weeks compared to 2 weeks PI, which was associated with changes in cagY RFLP. The fourth monkey (36018)
was colonized with a mixture of cagY genotypes that induced low IL-8 similar to mOut2. (B) Colonies recovered from WT and RAG22/2 mice typically
induced low IL-8 similar to input mOut2, with no change in cagY. *P,0.05; ***P,0.001.
doi:10.1371/journal.ppat.1003189.g010
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[18], which is consistent with our finding that variant cagY alleles

develop during colonization of WT but not RAG2/2 mice

(Figures 3, 9). However, strains recovered from monkeys and WT

mice infected with H. pylori J166 sometimes maintained the cagY of

the input strain, even after prolonged colonization when adaptive

immunity would be fully developed (Figures 1, 3). Moreover,

humans chronically colonized with H. pylori do not mount a serum

immune response to CagY [18]. Thus, avoiding adaptive

immunity may not be adequate to explain our results. An

alternative hypothesis is that CagY variants serve not to evade

the host immune response, but rather to ‘‘tune’’ it so as to establish

the optimal homeostatic conditions of inflammation under which

H. pylori is most fit. This hypothesis is supported by our finding that

infection of monkeys and mice can select H. pylori strains with

either loss of function (Figures 1,3,9) or gain of function

(Figure 10A) in the T4SS, and the observation that the cagY

genotype is relatively stable in WT mice when it confers a non-

functional T4SS (Figure 10B). Finally, the very fact that many

functional and non-functional variants of CagY arise in vivo by

recombination, suggests that inflammation must be more advan-

tageous to the bacterium in some situations than in others. Studies

in humans have sometimes identified patients with mixed

populations of cagPAI+ and cagPAI2 strains [46]. Some have

suggested that there is in fact a dynamic equilibrium between

cagPAI+ and cagPAI2 strains, creating a sort of H. pylori

quasispecies, where some PAI variants may be better suited for

transmission to a new host, and others better adapted for chronic

persistence [47]. cagPAI+ strains isolated from an individual

patient may also differ markedly in functionality of the T4SS [48],

which might be explained by variations in the motif structure of

CagY, but could also arise from mutations in other cagPAI genes.

However, given the high frequency of cagY recombination, it seems

likely that this mechanism is a much more common strategy by

which H. pylori modulates its capacity to induce inflammation than

is, for example, frameshift mutation, or gain or loss of the entire

cagPAI.

There may also be differences in the relative fitness of H. pylori

strains with a functional or a non-functional T4SS, depending on

the inflammatory response of an individual host. When infected

with WT H. pylori J166, most monkeys selected for loss of function

in the T4SS, though one did not, even after 14 months of

colonization (Figure 1). Similarly, when infected with mOut2,

which has a non-functional T4SS, most monkeys selected for

strains with a gain of function, but one did not (Figure 10A).

Interestingly, in the one monkey available for long-term follow up,

all strains recovered up to 24 weeks PI continued to induce IL-8

(Figure S7). Individual differences in strains recovered from

outbred macaques may reflect host polymorphisms in the

inflammatory response to H. pylori, which are well known to exist

in humans and to have important clinical consequences [49].

Differences were also seen in individual WT C57BL/6 mice,

which sometimes had persistent colonization with WT J166, even

after prolonged infection when most mice selected for non-

functional cagY variants (Figure 3). At first glance this is surprising,

since inbred C57BL/6 mice are usually thought to be genetically

identical. However, infection of mice with Helicobacter can yield

both a resistant (low bacterial load, severe pathology, extensive

CD4+ T cell infiltration, high IFN-c) and a tolerant phenotype

[50], so inbred mice may in fact be more genetically diverse than is

usually thought [51,52]. If inflammation is critical to the H. pylori

lifestyle, yet is variable among hosts, modulation of T4SS function

by recombination in cagY may provide a flexible mechanism to

colonize and adapt to heterogeneous populations.

Strains expressing variant cagY alleles with loss of T4SS function

are indistinguishable from a cagPAI or cagY KO in their IL-8

induction and CagA phosphorylation, which suggests that they are

defective in translocation of CagA and peptidoglycan. Structural

and functional studies of the VirB10 orthologue in other Gram-

negative bacteria provide some basis for speculation on potential

mechanisms by which this might occur. Cryo-EM and crystallog-

raphy studies of the T4SS encoded by the conjugative plasmid

pKM101 showed that VirB10 assembles with VirB7 and VirB9 to

form the outer surface of a core complex that spans the inner and

outer bacterial membranes [17,53]. The C-terminus portion of

CagY that is homologous to VirB10 also forms a complex with the

H. pylori VirB9 orthologue (CagX) [16,54]. Similar to the energy

coupling protein TonB, VirB10 in A. tumefaciens undergoes an

energy dependent conformational change that is required for

complex formation with VirB7 and VirB9, and subsequent

delivery of the T-DNA substrate [55]. Recently a mutation has

been identified in VirB10 from A. tumefaciens that confers a

secretion system defect and regulates substrate passage across the

bacterial outer membrane [56]. Hence, one mechanism by which

CagY variants might alter function of the H. pylori T4SS is by

gating the transfer of CagA, peptidoglycan, or other bacterial

effectors across the host cell membrane.

Changes in the CagY MRR might also affect T4SS function by

altering the binding to b1 integrins, which is essential for CagA

translocation and signaling [1,2]. A previous study suggested that

the CagY MRR decorates the T4SS pilus [31]; another reported

that pili are not observed after deletion of cagY, though the data

were not shown [2,32]. Changes in the modular structure of the

MRR might affect T4SS function, either directly or by changing

the integrin binding of other T4SS components required for pilus

assembly [15]. However, we failed to find evidence of the CagY

MRR on the surface of the T4SS pili, and no differences in pilus

morphology were observed after deletion of cagY. Moreover, yeast

two-hybrid studies suggest that b1 integrin binding occurs only

with the CagY C-terminus [1], which is the region with homology

to the A. tumefaciens VirB10 that spans the inner and outer bacterial

membrane, However, extrapolation from studies of A. tumefaciens

may be limited, because the predicted molecular mass of H. pylori

CagY is 220 kDa, much larger than the predicted 45 kDa VirB10

from A. tumefaciens, which does not contain a region orthologous to

the H. pylori MRR. For the moment, these inconsistencies remain

unresolved.

In conclusion, we have identified a functional plasticity in the H.

pylori T4SS. We propose that immune-driven host selection of

rearrangements in CagY modulates the function of the H. pylori

T4SS and ‘‘tunes’’ the host inflammatory response so as to

maximize persistent infection. Future studies should address the

mechanism by which CagY recombination alters T4SS signaling,

and identify the immune effectors that select CagY variants.

Materials and Methods

Ethics statement
All animal experiments were performed in accordance with

NIH guidelines, the Animal Welfare Act, and U.S. federal law. All

experiments were carried out at the University of California, Davis

under protocol #15597 approved by U.C Davis Institutional

Animal Care and Use Committee (IACUC), which has been

accredited by the Association of Assessment and Accreditation of

Laboratory Animal Care (AAALAC). All animals were housed

under these guidelines in an accredited research animal facility

fully staffed with trained personnel.
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H. pylori strains and culture
H. pylori strain J166 has a functional cagPAI and colonizes both

mice [27] and rhesus macaques [42]. H. pylori SS1 is a mouse-

adapted derivative [33] of strain PMSS1, which is a human

clinical isolate that has a functional cagPAI and also colonizes mice

[35]. All H. pylori plate cultures were performed on brucella agar

(BBL/Becton Dickinson, Sparks, MD) supplemented with 5%

heat-inactivated newborn calf serum (Invitrogen, Carlsbad, CA)

and either ABPNV (amphotericin B, 20 mg/liter; bacitracin,

200 mg/liter; polymyxin B, 3.3 mg/liter; nalidixic acid, 10.7 mg/

liter; vancomycin, 100 mg/liter) or TVPA (trimethoprim, 5 mg/

liter; vancomycin, 10 mg/liter; polymyxin B, 2.5 IU/liter, am-

photericin B, 2.5 mg/liter) antibiotics (all from Sigma), for mouse

and monkey experiments, respectively. H. pylori liquid cultures for

mouse and monkey inoculation were grown in brucella broth with

5% NCS and antibiotic supplementation for approximately 24 h

(optical density at 600 nm 0.35 to 0.45), pelleted by centrifugation,

and suspended in brucella broth. All H. pylori cultures were grown

at 37uC under microaerophilic conditions generated either by a

5% CO2 incubator or by a fixed 5% O2 concentration

(Anoxomat, Advanced Instruments, Norwood, MA). A complete

list of strains and plasmids is shown in Table S2.

Animals and experimental challenge
Male and female specific pathogen free rhesus macaques aged 3

to 6 years were derived at the California National Primate

Research Center from the day of birth using methods previously

described to ensure that they had normal gastric histology and

were free of H. pylori infection [57]. Animals were housed

individually and fed commercial primate chow (Purina) and fruit,

with water available ad libitum. Macaques were orogastrically

inoculated by endoscopy with 109 CFU of H. pylori suspended in

2 ml of brucella broth. Endoscopy with gastric biopsy was

performed with ketamine anesthesia (10 mg/kg given intramus-

cularly) after an overnight fast at defined time points PI. Specific-

pathogen (Helicobacter)-free, female C57BL/6 and RAG22/2

mice (Taconic, Germantown, NY), or C57BL/6 and RAG12/2

mice (Jackson Laboratories) were housed in microisolator cages

and provided with irradiated food and autoclaved water ad libitum.

At 10 to 12 weeks of age mice were fasted for 3 to 4 hr and then

challenged with 2.56109 CFU of H. pylori suspended in 0.25 ml of

brucella broth administered by oral gavage with a ball-end feeding

needle. All mice were euthanized between 2 and 16 weeks post

inoculation (PI) with an overdose of pentobarbital sodium injection

(50 mg/ml IP). Stomachs were cut longitudinally, and half was

placed in brucella broth, weighed, ground with a sterile glass rod

until the mucosal cells were homogenized, and then plated

quantitatively by serial dilution on brucella agar supplemented

with 5% NCS and ABPNV. Multiple single colony isolates

recovered from mice and monkeys were characterized for their

capacity to induce IL-8 and translocate CagA. All animals were

housed under protocols approved by ALAAC and the U.C. Davis

Institutional Animal Care and Use Committee.

IL-8 ELISA
IL-8 was measured essentially as described previously [58].

Approximately 2.56105 human AGS gastric adenocarcinoma cells

(ATCC, Manassas, VA) were seeded in six well plates, washed two

times with 16 PBS, and overlaid with 1.8 ml RPMI/10% fetal

bovine serum and bacteria diluted in 200 ml brucella broth to give

an MOI of 100:1. Brucella broth with no bacteria served as a

baseline control. Supernatants were harvested after 22 hours of

culture (37uC, 5% CO2), stored at 280uC, and then diluted 1:4

prior to IL-8 assay by ELISA (Invitrogen, Camarillo, CA)

performed according to the manufacturer’s protocol. WT H. pylori

J166 and its isogenic cagY deletion were included on every plate as

positive and negative controls, respectively. Results in AGS cells

were confirmed selectively using KATO III gastric adenocarcino-

ma cells (ATCC, Manassas, VA) grown in RPMI 1640 (Gibco

BRL, Grand Island, NY) with 20% fetal bovine serum. To account

for variability in the assay, IL-8 values were normalized to WT H.

pylori determined concurrently.

NF-kB reporter assay
AGS cells stably transfected with an NF-kB luciferase reporter

(Promega E849A, Madison, WI) were plated without antibiotics in

a 48-well plate at a density of 36104 cells per well for 24 hr prior

to co-culture. H. pylori strains were grown overnight in liquid

culture, diluted 10-fold in fresh media, and re-incubated for 4 hr

to achieve log phase growth. Bacterial cells were washed once in

sterile PBS and co-cultured with the AGS cells at an MOI of 10:1

for 4 hr. Phorbol myristate acetate (PMA, 0.5 mg/mL) was used as

a positive control. After 4 hr of co-culture, the media was

removed, 100 mL/well of lysis buffer (Promega E4030) was added

and mixed on an orbital shaker at 500 rpm for 10 min. To

measure the luciferase activity, 100 mL of substrate (Promega

E4030) and 20 mL of cell lysate were mixed and immediately read

in a luminometer.

Immunoblots and CagA translocation
Expression of CagA, phosphorylated CagA, and CagY were

detected by immunoblot. For detection of CagA translocation,

AGS cells were washed twice with 2 ml RPMI 1640 (Invitrogen)

containing 1 mM sodium orthovanadate, and pelleted by centri-

fugation (14,000 g, 30 sec). Pellets were lysed in 100 ml of NENT

(1% NP40, 5 mM EDTA, 250 mM NaCl, 25 mM Tris, 1 mM

sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride),

centrifuged (14,000 g, 3 min), and electrophoresed in a 7.5%

polyacrylamide gel (BioRad, Hercules, CA). Proteins were

transferred to a PVDF membrane (Millipore, Billerica, MA),

blocked overnight in 3% BSA in TTBS (20 mM Tris-HCl,

pH 7.5, 150 mM NaCl, 0.05% Tween 20, 3% bovine serum

albumin), and incubated for 1 hr with mouse anti-phosphotyrosine

IgG (Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1:5,000.

Blots were washed three times for 5 min each in TTBS and

incubated for 1 hr with horseradish peroxidase (HRP)-conjugated

anti-mouse IgG (GE Healthcare, Buckinghamshire, UK) diluted

1:10,000. Bound antibody was detected with chemiluminescence

using ECL reagents (GE Healthcare, Bukinghamshire, UK). The

blot was then incubated in stripping buffer (0.1 M b-mercapto-

ethanol, 10% SDS and 0.5 M Tris, pH 6.8) for 30 min at 50uC,

washed and blocked as before, and immunoblotted for 1 hr with

rabbit IgG antibody (1:5,000) to CagA (Austral Biological, San

Ramon, CA). Blots were washed in TTBS, incubated for 1 hr with

anti-rabbit HRP-conjugated IgG (GE Healthcare, Buckingham-

shire, UK) at 1:20,000 dilution, and visualized by chemilumines-

cence. CagY expression was detected by electrophoresis of

sonicated bacterial proteins on a 7.5% polyacrylamide gel,

incubating with rabbit antiserum (1:10,000) to CagY [18] as

primary antibody and HRP-conjugated anti-rabbit IgG (1:20,000)

as secondary antibody, followed by chemiluminescent detection.

cagY PCR-RFLP
cagY genotyping was performed by polymerase chain reaction-

restriction fragment length polymorphism (PCR-RFLP). A frag-

ment containing the cagY gene was PCR amplified using the

Expand Long Template PCR System (Roche Diagnostics,

Indianapolis, IN). Reactions were performed in a total volume
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of 50-ml containing 100 ng of genomic DNA, 0.3 mM of each

primer (sense 59-CCGTTCATGTTCCATACATCTTTG-39; an-

ti-sense 59-CTATGGTGAATTGGAGCGTGTG -39), 0.35 mM

of each dNTP, 3.75 U of Expand Taq DNA polymerase, and 16
buffer containing 1.75 mM MgCl2. PCR products were purified

(QIAquick PCR Purification Kit, QIAGEN Sciences, Maryland,

MD), adjusted to a concentration of 120 mg/ml, and digested

overnight at 37uC separately with DdeI, BfucI, and HinfI (New

England BioLabs, Ipswich, MA). Digested DNA was separated by

3% (HinfI) or 5% (DdeI, BfucI) agarose gel electrophoresis and then

stained with ethidium bromide. Gels were examined and cagY from

each output colony was determined to be the same as that of the

J166 input strain if RFLP patterns were identical for all three

restriction enzymes. Oligonucleotide primers for amplification,

sequencing, and PCR-RFLP analysis of cagY are shown in Table S3.

Contraselection for genetic exchange of cagY
Alleles of cagY were exchanged between H. pylori strains using

contraselectable streptomycin susceptibility [26] modified essen-

tially as described previously [27]. The 1,420 bp cat-rpsL cassette

encoding chloramphenicol resistance and dominant streptomycin

susceptibility was amplified with primers (RpsLF, C2CamR) that

contained SacI and BamHI restriction sites, ligated between

fragments of DNA upstream (1,348 bp, primers cagXF, cagYR) and

downstream (1,122 bp, primers cagYF and virB11R) of cagY that

contained complementary restriction sites, and cloned into pBlue-

script (Stratagene, La Jolla, CA). H. pylori was made streptomycin

resistant by transformation with genomic DNA from a mutant of

strain 26695, which contained an A-to-G change at codon 43 of

rpsL, and selection on streptomycin (10 mg/ml). Transformation of

streptomycin-resistant H. pylori with plasmid containing the cat-rpsL

cassette and flanking cagY sequences, with selection on chloram-

phenicol (5 mg/ml), resulted in the replacement of bp 13 to 6,135

of cagY. The cagY gene of interest was then reinserted by

transformation of the cagY knockout with genomic DNA from

the donor strain and selection on streptomycin. Streptomycin-

resistant, chloramphenicol-sensitive colonies were fully sequenced

at the cagY locus to confirm that they had undergone the desired

genetic exchange.

FEG-SEM of T4SS pili
H. pylori was imaged by FEG-SEM using methods previously

described [15]. In brief, H. pylori and AGS human gastric cells

were co-cultured at an MOI of 100:1 on tissue culture-treated

coverslips (BD Biosciences) for 4 h at 37uC in the presence of 5%

CO2. Cells were fixed with 2.0% paraformaldehyde, 2.5%

glutaraldehyde in 0.05 M sodium cacodylate buffer for 1 hr at

37uC. Coverslips were washed with sodium cacodylate buffer and

secondary fixation was performed with 1% osmium tetroxide at

room temperature for 30 min. Coverslips were washed with

sodium cacodylate buffer and dehydrated with sequential washes

of increasing concentrations of ethanol. Samples were then dried

at the critical point, mounted onto sample stubs, grounded with a

thin strip of silver paint at the sample edge, and sputter-coated

with palladium-gold before viewing with an FEI Q250 FEG

scanning electron microscope. Image analysis was performed using

Image J software.

Immunogold SEM
Bacteria were co-cultured with AGS cells and fixed as for FEG-

SEM. Cells were then washed three times in 0.05 M sodium

cacodylate buffer before blocking in 0.1% cold fish skin gelatin in

0.05 M sodium cacodylate buffer for 1 hr. Primary polyclonal

rabbit antibodies to CagA and the CagY MRR [18] were applied

overnight followed by three buffer washes and application of

secondary goat anti-rabbit antibody conjugated to 20 nm gold

particle (Electron Microscopy Sciences, Hatfield, PA) for 4 hr.

After three buffer washes, cells were fixed again (2.0% parafor-

maldehyde, 2.5% glutaraldehyde in 0.05 M sodium cacodylate)

for 1 hr to stabilize the antibody interactions, washed, and then

treated with 0.1% osmium tetroxide for 15 min followed by three

additional buffer washes and sequential ethanol dehydration. Cells

were dried at the critical point and carbon-coated before imaging

with an FEI Quanta 250 FEG-SEM. Gold particles were

confirmed with backscatter imaging analysis. As negative controls,

uninfected AGS cells were processed in parallel, or application of

the primary antibody was omitted.

DNA sequencing
cagPAI genes known to be involved in IL-8 induction were

amplified and sequenced using primers shown in Table S3. cagY

genes were amplified with primers in flanking genes using Expand

Long Template PCR system (Roche, Indianapolis, IN). Purified

PCR products were cloned into pDrive (Qiagen, Valencia, CA)

and plasmids were sequenced with dye terminator chemistry. PCR

products were sometimes sequenced directly for verification. To

confirm the number of 390 bp repeats in the FRR, the cagY PCR

products were run on 0.4% agarose gels at 18 volts for 16 hr. The

size of the PCR product minus 477 bp gave an estimate of total

cagY size. All DNA sequences of cagY have been deposited in

GenBank under accession numbers JQ685133–JQ685155.

Statistical analysis
Data were analyzed using a 2-tailed Student’s t test (Prism 5.0)

unless otherwise indicated. A P value,0.05 was considered

statistically significant.

Supporting Information

Figure S1 H. pylori induction of IL-8 is similar in AGS
and KATO III gastric adenocarcinoma cells lines,
related to Figures 1–4. Normalized induction of IL-8 in AGS

cells (filled bars) and KATO III cells (hatched bars) after co-culture

with WT H. pylori, its cagY deletion mutant (nY), and output

strains recovered from monkeys (A) and mice (B) that induce low

(Out1, Out2) or high (Out3, Out4) IL-8. Results are normalized to

WT and expressed as the mean 6 SEM of 3 replicates. **P,0.01;

***P,0.001.

(TIF)

Figure S2 H. pylori J166 cagY has a large number of
direct DNA repeats that are organized into a 59 repeat
region (FRR) and a middle repeat region (MRR). JDotter

(http://athena.bioc.uvic.ca/tools/JDotter) was used to generate a

dot plot comparing the 6,171 bp cagY gene in H. pylori J166 to

itself. Each position at which the base pairs are identical is marked

with a dot. Sequence identity of the two genes generates a single

diagonal line from 0 to 6,171 bp. Direct DNA repeats in the FRR

and MRR are indicated by shorter lines that are symmetrical

about the diagonal. The cagY gene in H. pylori strains J99 and

26695 is organized similarly [18].

(TIF)

Figure S3 H. pylori strains bearing variant cagY alleles
are selected during experimental infection, related to
Figures 1–4. Representative output strains recovered from

monkeys (A) and C57BL/6 mice (B) were identified that induced

low (Out1, Out2) or high (Out3, Out4) IL-8. cagY from WT H.

pylori J166 (input) and each output strain was amplified from
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genomic DNA, digested individually with DdeI, Hinf1, and Bfuc1

(an isoschizomer of Sau3AI), and examined by 3% (Hinf1) or 5%

(DdeI and Bfuc1) agarose gel electrophoresis. Each strain showed

a unique fingerprint except rOut1 and mOut1, which were

demonstrated to be identical by DNA sequence analysis. Size

ladder in base pairs (bp) is shown next to each gel. PCR-RFLP

patterns from 85 output strains from mice and monkeys were

judged by three independent observers, who demonstrated 100%

agreement.

(TIF)

Figure S4 CagA is required for full induction of IL-8 in
H. pylori J166, related to Figure 1. Deletion of cagA (nA) in

H. pylori J166 significantly reduced its capacity to induce IL-8

(mean 6 SEM of 3 replicates) compared to WT, though IL-8

remained higher than in a strain with deletion of cagY (nY).

***P,0.001.

(TIF)

Figure S5 H. pylori colonization of WT C57BL/6 mice
and RAG22/2 mice that do not have functional B or T
cells, related to Figures 3 and 10B. Colonization density in

WT C57BL/6 mice was significantly lower than in RAG22/2

mice infected with WT H. pylori J166 (A) or with mouse output

strain mOut2 (B). Results are shown as mean 6 SEM log10 CFU/

g up to 16 weeks PI. *P,0.05; **P,0.01; ***P,0.001.

(TIF)

Figure S6 Complementation of mOut2 with WT cagY
restores its capacity to induce IL-8, related to Figure 10.
Complementation of cagY in mOut2 with that from WT H. pylori

J166 restored its capacity to induce IL-8 to that of WT J166. All

assays represent the mean 6SEM of 3 replicates. ***P,0.001.

(TIF)

Figure S7 Persistence in one monkey of a variant cagY
strain that induces IL-8, related to Figure 10. Monkey

36001 was inoculated with mOut2, which has a variant cagY allele

and does not induce IL-8 or phosphorylate CagA. Repeated

sampling of monkey 36001 up to 24 wks PI showed that all output

colonies recovered 8 wks or more PI induced IL-8 and expressed a

cagY that differed from that in mOut2.

(TIF)

Table S1 Quantitative analysis of H. pylori pili by FEG-
SEM.

(DOC)

Table S2 Bacterial strains and plasmids.

(DOC)

Table S3 DNA primers used for PCR (bold) and
sequencing.

(DOC)

Acknowledgments

We thank Jenni Boonjakuakul, Jennifer Huff, and Cathy Styer for help

with the initial experiments that led to this work, Don Canfield for H. pylori

challenge and endoscopy of rhesus monkeys, Rainer Haas for the antibody

to CagY, and Chuck Bevins for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: RMB CLC LMH JVS.

Performed the experiments: RMB CLC LMH AML TAC JAG EMJ

GS. Analyzed the data: RMB CLC LMH TLC JVS. Contributed

reagents/materials/analysis tools: JVS TLC RMP. Wrote the paper: RMB

JVS.

References

1. Jimenez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, et al. (2009) Helicobacter

pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-

independent manner. PLoS Pathog 5: e1000684.

2. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, et al. (2007) Helicobacter exploits

integrin for type IV secretion and kinase activation. Nature 449: 862–866.
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